
 
 
Chapter 2 
 
Introduction to Phase Noise  
 
 
 
A brief introduction into the subject of phase noise is given here. We first describe 

the conversion of the phase fluctuations into the noise sideband of the carrier. We 

then define phase noise, frequency noise, and Allan deviation with emphasis on their 

relationship with each other. Leeson’s model is described and used to analyze the 

thermal noise of an ideal, linear LC oscillator. Finally, we give the general 

expression of the minimum measurable frequency shift in a noisy system.  
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2.1 Introduction 

In general, circuit and device noise can perturb both the amplitude and phase of 

an oscillator’s output.1,2 Of necessity, all practical oscillators inherently possess an 

amplitude limiting mechanism of some kind. Because the amplitude fluctuations are 

attenuated, phase noise generally dominates. We will primarily focus on phase noise in 

our theoretical exposition and divide the theoretical investigation into two parts. The first 

part is the general conceptual foundation on how the frequency stability of an oscillator 

should be characterized, more commonly known as the subject of phase noise. The 

second part is the exposition on the physical phase noise mechanisms affecting NEMS 

devices. In this chapter, we will deal with the first part and defer the second part to 

chapter 3. We will also describe Leeson’s model to analyze the thermal noise of an ideal, 

linear LC oscillator. Finally, we will give expressions translating the frequency noise into 

the minimum measurable frequency shift in a noisy system.  

 

2.2 General Remark 

  The output of an oscillator of angular frequency Cω  is generally given by 

)]([))(1()( 0 ttftAXtX C φω ++= .                                                                                  (2.1) 

           Here )(tφ  and  are functions of time and f is a periodic function. Here X can 

be the output voltage from an electrical oscillator or the displacement of a mechanical 

oscillator. The output spectrum contains higher harmonics of 

)(tA

Cω  if the waveform is not 

sinusoidal. For our purpose, we assume no higher harmonics from any nonlinearity of the 

devices or the circuits, and thus the output  is purely sinusoidal. For a sinusoidal 

oscillation, the output is given by  

)(tX
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)](sin[))(1()( 0 tttAXtX C φω ++= .                                                                              (2.2) 

 

2.3 Phase Noise  

The physical fluctuations in the oscillator can perturb the phase of the oscillation 

and produce phase fluctuations. We now describe how then phase fluctuations are 

converted into noise sidebands around the carrier. Considering a small phase 

variation ,sin)( 0 tt ωφφ = equation (2.2) can be expanded as 
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The phase variation generates two sidebands spaced ±ω from the carrier with 

amplitude X0φ0 / 2. The upper sideband is phase-coherent with the lower sideband with 

the opposite sign. The generated sideband is characterized in the following definition: it 

is conventionally given by the ratio of noise power to carrier power for 1 Hz bandwidth 

with offset frequency from the carrier. In notation, the definition is given by   
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CP  is the carrier power and )1,( HzP Csidebank ωω +  is the single sideband power at a 

frequency offset ω from the carrier frequency Cω  with the measurement bandwidth of 1 

Hz as shown in figure 2.1.  Ltotal (ω) is thus in units of decibel referred to the carrier 

power per hertz (dBc/Hz). 
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Figure 2.1. Definition of phase noise. The phase noise is conventionally expressed as 

the ratio of sideband noise power for 1 Hz bandwidth to the carrier power in units of 

dBc/Hz. 
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2.4 Frequency Noise  

Phase is the integration of frequency over time, i.e.,  

ττωφ dt
t

∫
∞−

= )()( .                                                                                                             (2.5) 

Conversely, frequency is the derivative of phase with respect to time, i.e., 

dt
dt φω =)( .                                                                                                                      (2.6) 

The spectral density of the phase noise is thus related to the spectral density of the 

frequency noise by   

)(1)( 2 ω
ω

ω ωφ SS = .                                                                                                        (2.7) 

In addition to angular frequency, we introduce another commonly used quantity, 

fractional frequency, defined as ratio of frequency to carrier frequency.  

C

y
ω
δω

= .                                                                                                                          (2.8) 

The spectral density of fractional frequency is related to the spectral density of frequency 

by 

)(1)( 2 ω
ω

ω ωSS
C

y = .                                                                                                        (2.9) 

The resonance frequency depends on many physical parameters of the resonator. 

The fluctuations of these parameters can translate into fractional frequency noise. The 

fractional noise is related to the fluctuation of the corresponding parameter by  

χχ
ω SyS y

2

)( ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

= .                                                                                                       (2.10) 

 17



χ  is the physical parameter which the resonant frequency is dependent on. For example, 

if χ  is the temperature T of the device, Ty ∂∂ / is simply the temperature coefficient of 

the resonant frequency.  

 

2.5 Allan Variance and Allan Deviation 

  Allan variance is a quantity commonly used by the frequency standard 

community to compare the frequency stabilities of different oscillators. The phase and 

frequency noise are defined in the frequency domain; the Allan deviation is defined in the 

time domain. Allan deviation, , is simply the square root of Allan variance, 

. The defining expression of the Allan deviation is given by
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mf  is the average frequency measured over the mth interval with zero dead time 

and  is the sample number. From this definition, the Allan deviation is related to the 

phase noise density by  
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In the experimental data, Allan deviation is usually presented with the error bar 

given by one standard deviation confidence interval (or 68% confidence interval), i.e., 

1/ −SA Nσ . For example, for sample number NS=101, the one standard deviation 

confidence interval is 10% of the Allan deviation.  
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The noise spectra with different power laws are commonly used so we give the 

formulas of the corresponding Allan deviations. For phase noise having   

component, i.e., , the Allan deviation is given by  

4/1 f

4
4 )/()( ωωωφ CCS =

ACAA C τωπτσ 2
43

)( = .                                                                                                (2.13) 

For phase noise having component, i.e., , the Allan deviation is 

given by 

3/1 f 3
3 )/()( ωωωφ CCS =

CeAA C ωτσ 32log2)( = .                                                                                            (2.14) 

For phase noise having  component, i.e., ,  the Allan deviation 

is given by 
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For the fractional frequency noise having the Lorentizian function form, i.e., 

, the spectral density of phase noise is given by 

. Upon integration, the Allan deviation is given by 

))(1/()( 2
ry AS ωτω +=

))(1/()/()( 22
rCAS ωτωωωφ +=

)(
2

)(
A

r
AA FA

τ
τ

π
τσ = .                                                                                                (2.16) 

)(xF  is an analytic function defined by 
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As shown in figure 2.2,  reaches a maximum at x=1.89 with the value 0.095. The 

asymptotic expressions of  are 

)(xF

)(xF
x

xF
2
1)( =  for x>>1 and xxF

6
1)( =  for x <<1. 
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These behaviors can also be clearly seen in figure 2.2.  In the limit Ar ττ << , equation 

(2.16) becomes  

A

r
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)( = .                                                                                                        (2.18) 

In the other limit rA ττ << , equation (2.16) becomes  
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Figure 2.2. Plot of the function F(x). F(x) shows the dependence of Allan deviation, 

having frequency noise density of  Lorentzian form, on the ratio of the correlation time 

rτ  to the averaging time Aτ .   reaches a maximum at x=1.85 with the value 0.095. 

Its asymptotic behaviors for x <<1 and for x>>1 are also shown. 

)(xF
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2.6 Thermal Noise of an Ideal Linear LC Oscillator 

The phase noise of an ideal linear LC oscillator due to the Nyquist-Johnson noise 

is analyzed by Leeson.4 Figure 2.3 shows that the Nyquist-Johnson noise source 

associated with the resistor injects noise current into a LC tank circuit. The impedance of 

the LC tank with a quality factor Q and the resonant frequency 0ω  at offset frequency ω  

( 0ωω << ) is given by 
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To sustain oscillation, the active device must compensate the energy dissipation 

by positive feedback. Therefore, the active device behaves as a negative conductance 

. For steady state oscillation, the impedance of the oscillator model is given by G−
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The total equivalent parallel resistance of the tank has an equivalent mean square 

noise current density of . Using this effective current power, the phase 

noise can be calculated as 
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PC is the carrier power usually limited by saturation or nonlinearity of the active device. 

The Leeson model demonstrates explicitly the conversion of the current noise into 

sideband and explains the  dependence of the phase noise density.  Upon integration 

of the spectral density, we obtain the expression for the Allan deviation.  

21 ω/
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Figure 2.3. Leeson’s model of phase noise for an ideal linear LC oscillator. 

Equivalent one-port circuit for phase noise calculation for an ideal linear LC oscillator is 

used in the model. The Nyquist-Johnson noise source associated with the resistor injects 

noise current in LC tank, producing the noise sideband around the carrier. Note that the 

active device, compensating the energy dissipation from the resistor, is modeled as a 

negative conductance. 
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2.7 Minimum Measurable Frequency Shift 

Experimentally we measure the change in physical properties of the resonator by 

detecting the corresponding frequency shift and thus an important question needs to be 

addressed:what is the minimum measurable frequency shift, 0δω , that can be resolved in 

a (realistic) noisy system? In principle, a shift comparable to the mean square noise (the 

spread) in an ensemble average of a series of frequency measurements should be 

resolvable, i.e., 2

1
00 )(1 ∑

=

−≈
N

i
iN

ωωδω  for signal-to-noise ratio equal to unity.  An 

estimate for 0δω  can be obtained by integrating the weighted effective spectral density of 

the frequency fluctuations, )(ωωS , by the normalized transfer function of the 

measurement loop, )(ωH :  

2/1

0
0 ])()([∫
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≈ ωωωδω ω dHS .                                                                 (2.24) 

Here, )(ωωS  is in units of .  We can further simplify equation 

(2.24) by replacing 

2( / ) /( /rad s rad s)

)(ωH  with the square transfer function , which has the same 

integrated spectral weight, but is non-zero only within the passband delineated by

)(' ωH

fΔπ2 .  

Here, τπΔ /2≈f  and is dependent upon the measurement averaging time, τ. Given this 

assumption, equation (2.24) takes the simpler, more familiar form. 
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This, of course, is an approximation to a real system — albeit a good one.  If necessary, 

one can resort to the more accurate expression, equation (2.24).  
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2.8 Conclusion  

We describe the conversion of phase fluctuations into the noise sideband of the 

carrier and present the definitions of phase noise, frequency noise, and Allan deviation, 

all commonly used to characterize the frequency stability of an oscillator. Figure 2.4 

summarizes the relation between these quantities. We illustrate these definitions by 

analyzing the phase noise of an ideal, linear LC oscillator in the context of Leeson’s 

model. In particular, Leeson’s model explicitly demonstrates how the Nyquist-Johnson 

current noise produces noise sideband of carrier and explains the 1/  dependence of the 

phase noise density on the offset frequency.  Finally, we give the expressions for the 

minimum measurable frequency shift in a noisy system for sensing applications involving 

oscillators.  

2ω
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Figure 2.4. Summary of the relation between different quantities. In time domain, the 

phase variation φ(t), which is the integration of angular frequency variation )(tω , 

generates the sidebands ])sin[()2/)((0 ttx c ωωφ ±±  through phase modulation (PM).  

The Allan deviation can be calculated with the frequency data from the frequency 

counting measurements.  In the frequency domain, the frequency noise density )(ωωS is 

related to the phase noise density )(ωφS  by .  The noise sideband of 

the carrier is characterized by 

)(/1)( 2 ωωω ωφ SS =

)(ωtotalL , which can be obtained from the power spectrum 

measurement.  
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