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ABSTRACT 

   Nanoelectromechanical systems (NEMS) are microelectromechanical devices 

(MEMS) scaled down to nanometer range. NEMS resonators can be fabricated to achieve 

high natural resonance frequencies, exceeding 1 GHz with quality factors in excess of 104. 

These resonators are candidates for ultrasensitive mass sensors and frequency determining 

elements of precision on-chip clocks. As the size of the NEMS resonators is scaled 

downward, some fundamental and nonfundamental noise processes will impose sensitivity 

limits to their performance. In this work, we examine both fundamental and 

nonfundamental noise processes to obtain the corresponding expressions for phase noise 

density, Allan deviation, and mass sensitivity. Fundamental noise processes considered here 

include thermomechanical noise, momentum-exchange noise, adsorption-desorption noise, 

diffusion noise, and temperature-fluctuation noise. For nonfundamental noise processes, we 

develop a formalism to consider the Nyquist-Johnson noise from transducer-amplifier 

implementations. 

As an initial step to experimental exploration of these noise processes, we 

demonstrate the phase noise measurement of NEMS using the phase-locked loop scheme. 

We analyze control servo behavior of the phase-locked loop and describe several 

implementation schemes at very high frequency and ultra high frequency bands. By 

incorporating the ~190 MHz NEMS resonator into the frequency modulation phase-locked 

loop, we investigate the diffusion noise arising from xenon atoms adsorbed on the device 

surface. Our experimental results can be explained with the diffusion noise theory. The 

measured spectra of fractional frequency noise confirm the predicted functional form from 

the diffusion noise theory and are fitted to extract the diffusion coefficients of adsorbed 

xenon atoms. Moreover, the observed Allan deviation is consistent with the theoretical 
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estimates from diffusion noise theory, using the total number of adsorbed atoms and 

extracted diffusion times. 

  Finally, very high frequency NEMS devices provide unprecedented potential for 

mass sensing into the zeptogram level due to their minuscule mass and high quality factor. 

We demonstrate in situ measurements in real time with mass noise floor ~20 zeptogram.  

Our best mass sensitivity corresponds to ~7 zeptograms, equivalent to ~30 xenon atoms or 

the mass of an individual 4 kDa molecule.  Detailed analysis of the ultimate sensitivity of 

such devices based on these experimental results indicates that NEMS can ultimately provide 

inertial mass sensing of individual intact, electrically neutral macromolecules with single-

Dalton (1 amu) sensitivity. This is an exciting prospect—when realized it will blur the 

traditional distinction between inertial mass sensing and mass spectrometry. We anticipate 

that it will also open intriguing possibilities in atomic physics and life science.    
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Chapter 1 
 
Overview 
 
 
 
1.1 Nanoelectromechanical Systems  

Nanoelectromechanical systems (NEMS) are microelectromechanical devices 

(MEMS) scaled down to nanometer range.  NEMS have a lot of intriguing attributes.  

They offer access to fundamental frequencies in the microwave range;  quality factor (Q) 

in the tens of thousands;  active mass in the femtogram range; force sensitivities at the 

attonewton level;  mass sensitivity at the level of individual molecules  — this list goes 

on. These traits translate into new prospects for a variety of important technological 

applications. Among them, nanomechanical resonators are rapidly being pushed to 

smaller sizes and higher frequencies due to their applications as Q filters and on-chip 

clocks.  The fully integrated NEMS oscillators will boast smaller size and lower power 

consumption and thus can potentially replace their macroscopic counterparts such as the 

quartz crystal oscillators and surface wave acoustic resonators.  

1 2

 3

 4

5,6 7

4

The resonance frequency in general scales as 1/L, where L is the scale of the 

resonator. As size scales are reduced and frequency is increased, the corresponding 

statistical fluctuations will be more pronounced and inevitably limit performance. The 

central question of this thesis is: as the size of the resonator becomes smaller, how stable 



can the resonant frequency be? The answers to this seemingly simple question form the 

subject of phase noise of NEMS. We will review the pioneering work before going to this 

subject in detail.  

 

1.2 Brownian Motion, Nyquist-Johnson Noise, and Fluctuation-Dissipation 

Theorem 

A microscopic particle immersed in a liquid exhibits a random type of motion. 

This phenomenon is called Brownian motion and reveals clearly the statistical 

fluctuations that occur in a system in thermal equilibrium.8 The Einstein relation, perhaps 

the most important result of the study of Brownian motion, states that the diffusion 

constant is proportional to the frictional coefficient determined by the hydrodynamic 

interaction of the particle with the viscous fluid.12 The Brownian motion serves as a 

prototype problem whose analysis provides considerable insight into the mechanisms 

responsible for the existence of fluctuations and dissipation of energy. This problem is 

also of great practical interest because such fluctuations constitute a background of 

“noise” which imposes sensitivity limits on delicate physical measurements. For 

example, Nyquist-Johnson noise, which originates from thermal agitation of electrical 

charge in a conductor,9,10 is present at any circuitry with nonzero dissipation, and in many 

cases determines the noise floor of an amplifier.11 Nyquist’s theorem states that the 

spectral density of the thermal fluctuating voltage of any electrical impedance is always 

proportional to the square root of its resistive part.13 The same arguments used to study 

Brownian motion and Nyquist-Johnson noise can be extended on a more abstract level to 

a general result of wide applicability, the fluctuation-dissipation theorem.12-14 The 

 2



fluctuation-dissipation theorem explicitly indicates how the cross-correlation functions of 

the fluctuating quantities are associated with the friction coefficients of the equations of 

motion, or equivalently, how the spectra of statistical fluctuations are related to the 

dissipations of the system near thermal equilibrium. 

 

1.3 Noise in Microelectromechancial Systems and Nanoelectromechanical 

Systems  

We now review the study of the noise of MEMS and NEMS, starting from the 

work in a liquid. Paul and Cross have considered the Brownian motion of NEMS 

cantilevers and concluded that the corresponding force sensitivities are in the range of 

piconewton.15 Considering the hydrogen bond strength is ~10 pN, such sensitivities 

imply the possibility of using NEMS to sense biological forces at single molecule level. 

On the other hand, optical tweezers have recently led to quite spectacular measurements 

of small weak force, with the force sensitivities again limited by Brownian motion.16 In 

this technique, an optical beam, focused to the diffraction limit, is employed. 

Functionalized dielectric beads, typically having diameters of ~1 μm, are attached to the 

biomolecules under study to provide a handle. In this way, direct measurements of 

piconetwon scale biological forces have been obtained.18 In a more recent study, internal 

dynamics of DNA, yielding forces in the femtonewton range, have been observed via the 

two-point correlation technique.17 

We now discuss the work on characterization the thermomechancial noise of 

MEMS and NEMS in vacuum. Albrecht et al. demonstrate frequency modulation 

detection using high Q cantilevers for enhanced force microscopy sensitivity, limited by 

 3



thermomechancial noise in vacuum.19 Similarly, using a high Q single crystal silicon 

cantilever as thin as 60 nm, T. D. Stowe et al. have achieved attonewton force sensitivity 

at 4.8 K in vacuum.5 Cooling down similar devices further to millikelvin temperatures, 

force sensitivity at subattonewton scale has also been demonstrated.6 Such exquisite force 

sensitivities have ultimately led to the detection of single electron spin using magnetic 

resonance force microscopy (MRFM).20

The observation of thermomechancial noise of high frequency NEMS has been 

hindered, largely due to the diminishing transducer responsivity as the dimensions are 

reduced into the submicron range. This can only be circumvented by delicate 

incorporation of the actuator, transducer, and readout amplifier, all meticulously chosen 

and orchestrated to minimize the noise from these extrinsic elements. For example, the 

piezoresistors on NEMS silicon cantilevers, which acts as transducers upon current 

biasing, convert the mechanical displacement into a voltage signal, which is subsequently 

read out by a low noise amplifier. Using such a scheme, Arlett et al. have observed the 

theromomechanical noise down to cryogenic temperatures for NEMS devices with 

resonance frequencies of ~2 MHz.22   

Another example is the nanomechanical parametric amplifier at 17 MHz by 

Harrington,23 which is similar to the one demonstrated by Rugar and Grutter using a 

microscale cantilever.21 Operating in degenerate mode, a parametric modulation of the 

beam’s effective stiffness at twice the signal frequency is produced by the application of 

an alternating longitudinal force to both ends of a doubly clamped beam. At highest 

mechanical gains, noise matching performance is achieved, resulting in the observation 

of thermomechanical noise squeezing at cryogenic temperatures.  
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Finally, we mention the recent attempt to approach the quantum limit of a 

nanomechancial resonator by coupling a single electron transistor (SET) with a high Q, 

19.7 MHz nanomechanical resonator by LeHaye et al.24 At temperatures as low as 56 

millikelvin, they observe thermomechanical noise corresponding to a quantum 

occupation number of 58, and demonstrate the near-ideal performance of the SET as a 

linear amplifier. This work clearly paves the feasible way to the quantum mechanical 

limits of NEMS, blurring the division between quantum optics and solid state physics.2  

 

1.4 Phase Noise in Microelectromechancial Systems and 

Nanoelectromechanical Systems  

We now review work on the phase noise of NEMS and MEMS. The phase noise 

of MEMS resonators was first analyzed by Vig and Kim.25 They examine how frequency 

stabilities of MEMS and NEMS resonators scale with dimensions. When the dimensions 

of a resonator becomes small, instabilities that are negligible in macroscale devices 

become prominent. At submicron dimensions, the temperature fluctuation noise, 

adsorption-desorption noise, and thermomechanical noise are likely to limit the 

applications of ultra small resonators. Later, Cleland and Roukes develop a self-

containing formalism to treat a similar list of noise sources and estimate their impact on a 

doubly clamped beam of single crystal silicon with a resonance frequency of 1 GHz.26 

Their calculation, however, does not agree with Vig and Kim’s work in terms of the 

magnitude of the impact of the noise, as well as the method of analysis of some of the 

noise sources, in particular, that of the effect of temperature fluctuations. In analyzing the 

temperature fluctuation noise, they consider a more realistic thermal circuit by dividing 
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the device into sections, and show that the resulting Allan variance is of the same 

magnitude as that due to thermomechanical noise for the model resonator with Q of 104. 

This apparently contradicts the excessive temperature fluctuations predicted by Vig and 

Kim.25 Moreover, they conclude that the noise performance, limited by the fundamental 

noise processes, can be comparable with their macroscale counterparts, the oven 

stabilized quartz crystal oscillators. By consolidating these studies, we first introduce the 

subject of phase noise in chapter 2, and then present the theory of the phase noise 

mechanisms affecting  NEMS in chapter 3.   

Except for the aforementioned theoretical works, very little experimental data are 

available for evaluating whether the calculated noise performance can be achieved. More 

systematic approaches, measuring the performance of high Q resonators operating in 

phase-locked loops, with controlled variations in temperature, environment, and 

materials, need to be followed. As an initial step into these efforts, we describe the 

implementations of phase-locked loops based on NEMS devices in chapter 4. We also 

report the observation of adsorption-desorption noise arising from xenon atoms adsorbed 

on the device surface. Our measurement results are in excellent agreement with the 

proposed idea gas model. More generally, our approach represents a canonical example 

on how to study the frequency stabilities arising from a particular noise process of 

interest.  
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1.5 Mass Sensing Based on Microelectromechanical Systems and 

Nanoelectromechancial Systems 

We now review a separate, but closely related front: the inertial mass sensing 

based on MEMS and NEMS. Today mechanically based sensors are ubiquitous, having a 

long history of important applications in many diverse fields of science and technology. 

Among the most responsive sensors are those based on the acoustic vibratory modes of 

crystals,  thin films,  and more recently, MEMS  and NEMS.  Three attributes 

of these devices establish their mass sensitivity: effective vibratory mass, quality factor, 

and resonant frequency. The miniscule mass, high Q, and high resonant frequency of 

NEMS provide them with unprecedented potential for mass sensing. 

27,28 29 30,31 7,32,

Femtogram mass 

sensing using NEMS cantilevers has been demonstrated by Lavrik and Datskos by 

photothermally exciting silicon cantilevers in the range of 1 to 10 MHz and measuring a 

mass change of 5.5 fg upon chemisorption of 11-mercaptoundecanoic acid.32 Ekinci and 

Roukes achieve attogram mass sensing by exposing NEMS devices with Au atomic flux 

and tracking the resulting frequency shift in a phase-locked loop.33 Motivated by these 

experiments, we start to examine theoretically the ultimate limits of inertial mass sensing 

based upon NEMS devices as a result of fundamental noise processes.7 We present the 

resulting theoretical analysis in chapter 3. The conclusion is quite compelling: it indicates 

that NEMS devices can directly “weigh” individual intact, electrically neutral, molecules 

with single Dalton sensitivities.  

As an initial step toward this goal, we present our mass sensing experiments at 

zeptogram scale in chapter 4. This is demonstrated by depositing xenon atoms and 

nitrogen molecules on the NEMS device, and tracking the resulting frequency shift in 
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high precision phase-locked loop. But more importantly, the agreement of our 

experimental results with the theory justifies our formalism and validates its use to 

delineate, for the first time, the feasible pathway into single Dalton sensitivity.    

  

1.6 Organization 

To help the reader understand this work in a more coherent and clear way, this 

thesis is organized in the following way: 

Chapter 2 introduces the subject of phase noise and serves as the mathematical 

foundation of this work. We first describe how phase fluctuations of an oscillator convert 

to the noise sideband of the carrier. We then define the phase noise, the frequency noise, 

and Allan deviation, emphasizing their relationship with each other. As an example, 

Leeson’s model is described and used to analyze the thermal noise of an ideal linear LC 

oscillator. 

Chapter 3 discusses the phase noise mechanism of the NEMS resonators. We first 

examine fundamental noise processes, including thermomechancial noise, momentum 

exchange noise, adsorption-desorption noise, diffusion noise, and temperature fluctuation 

noise. We also discuss nonfundamental noise processes arising from the Nyquist-Johnson 

noise of the transducer amplifier implementations. For each noise process presented here, 

we give  expressions for the phase noise spectra and Allan deviation and then translate 

them into the corresponding minimum measurable frequency shift and mass sensitivity in 

light of their importance in sensing applications. 

Chapter 4 presents the experimental measurement of the phase noise of NEMS. 

First, we first analyze the control servo behavior of the phase-locked loops and give the 

 8



detailed implementations together with their noise performance. The achieved noise 

performance is compared to the local oscillator (LO) requirements of chip scale atomic 

clocks (CSAC) to evaluate the viability of NEMS based oscillators for this application. 

Finally, we investigate the diffusion noise arising from adsorbed xenon atoms by putting 

a very high frequency NEMS into the phase-locked loop and measuring the frequency 

noise spectra and Allan deviation.      

Chapter 5 shows very high frequency NEMS that provide a profound sensitivity 

increase for inertial mass sensing into zeptogram scale. We demonstrate real time, in situ 

mass detection of sequential pulses of ~100 zg nitrogen molecules by tracking resulting 

frequency shift. Measurement and analysis from our experiments demonstrate mass 

sensitivities at the level of ~7 zg, the mass of an individual 4 kDa molecule, or ~30 xenon 

atoms. 

Chapter 6 describes a surface nanomachining process that involves electron beam 

lithography, followed by dry anisotropic and selective electron cyclotron resonance 

plasma etching steps. Measurements on a representative family of the resulting devices 

demonstrate that, for a given geometry, nanometer-scale SiC resonators are capable of 

yielding substantially higher frequencies than GaAs and Si resonators. 

Chapter 7 describes a broadband radio frequency balanced bridge technique for 

electronic detection of displacement in NEMS. The effectiveness of the technique is 

demonstrated by detecting the minute electromechanical impedances of NEMS 

embedded in large electrical impedances at very high frequencies.      
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Chapter 2 
 
Introduction to Phase Noise  
 
 
 
A brief introduction into the subject of phase noise is given here. We first describe 

the conversion of the phase fluctuations into the noise sideband of the carrier. We 

then define phase noise, frequency noise, and Allan deviation with emphasis on their 

relationship with each other. Leeson’s model is described and used to analyze the 

thermal noise of an ideal, linear LC oscillator. Finally, we give the general 

expression of the minimum measurable frequency shift in a noisy system.  
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2.1 Introduction 

In general, circuit and device noise can perturb both the amplitude and phase of 

an oscillator’s output.1,2 Of necessity, all practical oscillators inherently possess an 

amplitude limiting mechanism of some kind. Because the amplitude fluctuations are 

attenuated, phase noise generally dominates. We will primarily focus on phase noise in 

our theoretical exposition and divide the theoretical investigation into two parts. The first 

part is the general conceptual foundation on how the frequency stability of an oscillator 

should be characterized, more commonly known as the subject of phase noise. The 

second part is the exposition on the physical phase noise mechanisms affecting NEMS 

devices. In this chapter, we will deal with the first part and defer the second part to 

chapter 3. We will also describe Leeson’s model to analyze the thermal noise of an ideal, 

linear LC oscillator. Finally, we will give expressions translating the frequency noise into 

the minimum measurable frequency shift in a noisy system.  

 

2.2 General Remark 

  The output of an oscillator of angular frequency Cω  is generally given by 

)]([))(1()( 0 ttftAXtX C φω ++= .                                                                                  (2.1) 

           Here )(tφ  and  are functions of time and f is a periodic function. Here X can 

be the output voltage from an electrical oscillator or the displacement of a mechanical 

oscillator. The output spectrum contains higher harmonics of 

)(tA

Cω  if the waveform is not 

sinusoidal. For our purpose, we assume no higher harmonics from any nonlinearity of the 

devices or the circuits, and thus the output  is purely sinusoidal. For a sinusoidal 

oscillation, the output is given by  

)(tX
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)](sin[))(1()( 0 tttAXtX C φω ++= .                                                                              (2.2) 

 

2.3 Phase Noise  

The physical fluctuations in the oscillator can perturb the phase of the oscillation 

and produce phase fluctuations. We now describe how then phase fluctuations are 

converted into noise sidebands around the carrier. Considering a small phase 

variation ,sin)( 0 tt ωφφ = equation (2.2) can be expanded as 

].)sin[(
2

])sin[(
2

)sin(

)sinsin())(1()(

0
0

0
00

00

tXtXtX

tttAXtX

CCC

C

ωω
φ

ωω
φ

θω

θωφω

−−+++=

+++=
                                (2.3) 

The phase variation generates two sidebands spaced ±ω from the carrier with 

amplitude X0φ0 / 2. The upper sideband is phase-coherent with the lower sideband with 

the opposite sign. The generated sideband is characterized in the following definition: it 

is conventionally given by the ratio of noise power to carrier power for 1 Hz bandwidth 

with offset frequency from the carrier. In notation, the definition is given by   

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=

C

Csideband
total P

HzP
L

)1,(
log10)(

ωω
ω .                                                                     (2.4) 

CP  is the carrier power and )1,( HzP Csidebank ωω +  is the single sideband power at a 

frequency offset ω from the carrier frequency Cω  with the measurement bandwidth of 1 

Hz as shown in figure 2.1.  Ltotal (ω) is thus in units of decibel referred to the carrier 

power per hertz (dBc/Hz). 
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Figure 2.1. Definition of phase noise. The phase noise is conventionally expressed as 

the ratio of sideband noise power for 1 Hz bandwidth to the carrier power in units of 

dBc/Hz. 
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2.4 Frequency Noise  

Phase is the integration of frequency over time, i.e.,  

ττωφ dt
t

∫
∞−

= )()( .                                                                                                             (2.5) 

Conversely, frequency is the derivative of phase with respect to time, i.e., 

dt
dt φω =)( .                                                                                                                      (2.6) 

The spectral density of the phase noise is thus related to the spectral density of the 

frequency noise by   

)(1)( 2 ω
ω

ω ωφ SS = .                                                                                                        (2.7) 

In addition to angular frequency, we introduce another commonly used quantity, 

fractional frequency, defined as ratio of frequency to carrier frequency.  

C

y
ω
δω

= .                                                                                                                          (2.8) 

The spectral density of fractional frequency is related to the spectral density of frequency 

by 

)(1)( 2 ω
ω

ω ωSS
C

y = .                                                                                                        (2.9) 

The resonance frequency depends on many physical parameters of the resonator. 

The fluctuations of these parameters can translate into fractional frequency noise. The 

fractional noise is related to the fluctuation of the corresponding parameter by  

χχ
ω SyS y

2

)( ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

= .                                                                                                       (2.10) 
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χ  is the physical parameter which the resonant frequency is dependent on. For example, 

if χ  is the temperature T of the device, Ty ∂∂ / is simply the temperature coefficient of 

the resonant frequency.  

 

2.5 Allan Variance and Allan Deviation 

  Allan variance is a quantity commonly used by the frequency standard 

community to compare the frequency stabilities of different oscillators. The phase and 

frequency noise are defined in the frequency domain; the Allan deviation is defined in the 

time domain. Allan deviation, , is simply the square root of Allan variance, 

. The defining expression of the Allan deviation is given by

)( AA τσ

)(2
AA τσ 1,3

∑
=

−−
−

=
SN

m
mm

C
AA ff

Nf 2

2
12

2 )(
1

1
2

1)(τσ .                                                                          (2.11) 

mf  is the average frequency measured over the mth interval with zero dead time 

and  is the sample number. From this definition, the Allan deviation is related to the 

phase noise density by  

SN

 ∫
∞

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0

4
2

2 )2/(sin)(22)( ωωτω
ωτ

τσ φ dS A
A

AA .                                                             (2.12) 

In the experimental data, Allan deviation is usually presented with the error bar 

given by one standard deviation confidence interval (or 68% confidence interval), i.e., 

1/ −SA Nσ . For example, for sample number NS=101, the one standard deviation 

confidence interval is 10% of the Allan deviation.  
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The noise spectra with different power laws are commonly used so we give the 

formulas of the corresponding Allan deviations. For phase noise having   

component, i.e., , the Allan deviation is given by  

4/1 f

4
4 )/()( ωωωφ CCS =

ACAA C τωπτσ 2
43

)( = .                                                                                                (2.13) 

For phase noise having component, i.e., , the Allan deviation is 

given by 

3/1 f 3
3 )/()( ωωωφ CCS =

CeAA C ωτσ 32log2)( = .                                                                                            (2.14) 

For phase noise having  component, i.e., ,  the Allan deviation 

is given by 

2/1 f 2
2 )/()( ωωωφ CCS =

A
AA

C
τ
πτσ 2)( = .                                                                                                         (2.15) 

For the fractional frequency noise having the Lorentizian function form, i.e., 

, the spectral density of phase noise is given by 

. Upon integration, the Allan deviation is given by 

))(1/()( 2
ry AS ωτω +=

))(1/()/()( 22
rCAS ωτωωωφ +=

)(
2

)(
A

r
AA FA

τ
τ

π
τσ = .                                                                                                (2.16) 

)(xF  is an analytic function defined by 

∫
∞

−− −−−−=
+

=
0

2
222

4

2 )]1(
4
1)1[(1

2
1

)1(
)2/(sin1)( xx ee

xx
dx

x
xF

ξξ
ξξ .                                    (2.17) 

As shown in figure 2.2,  reaches a maximum at x=1.89 with the value 0.095. The 

asymptotic expressions of  are 

)(xF

)(xF
x

xF
2
1)( =  for x>>1 and xxF

6
1)( =  for x <<1. 
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These behaviors can also be clearly seen in figure 2.2.  In the limit Ar ττ << , equation 

(2.16) becomes  

A

r
AA

A
πτ
τ

τσ
4

)( = .                                                                                                        (2.18) 

In the other limit rA ττ << , equation (2.16) becomes  

r

A
AA

A
πτ
τ

τσ
12

)( = .                                                                                                       (2.19) 
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Figure 2.2. Plot of the function F(x). F(x) shows the dependence of Allan deviation, 

having frequency noise density of  Lorentzian form, on the ratio of the correlation time 

rτ  to the averaging time Aτ .   reaches a maximum at x=1.85 with the value 0.095. 

Its asymptotic behaviors for x <<1 and for x>>1 are also shown. 

)(xF
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2.6 Thermal Noise of an Ideal Linear LC Oscillator 

The phase noise of an ideal linear LC oscillator due to the Nyquist-Johnson noise 

is analyzed by Leeson.4 Figure 2.3 shows that the Nyquist-Johnson noise source 

associated with the resistor injects noise current into a LC tank circuit. The impedance of 

the LC tank with a quality factor Q and the resonant frequency 0ω  at offset frequency ω  

( 0ωω << ) is given by 

0

0

21

11)(

ω
ω

ωω
QjG

Z
+

=+ .                                                                                       (2.20) 

To sustain oscillation, the active device must compensate the energy dissipation 

by positive feedback. Therefore, the active device behaves as a negative conductance 

. For steady state oscillation, the impedance of the oscillator model is given by G−

ω
ω

ωω
ωω

ω
QG

j
i
v

Z
in

out

2
1

)(
)(

)( 0

0

0 −=
+
+

= .                                                                             (2.21) 

The total equivalent parallel resistance of the tank has an equivalent mean square 

noise current density of . Using this effective current power, the phase 

noise can be calculated as 

TGkfi Bin 4/2 =Δ
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⎠
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⎛===
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B

o

in

signal

noise .                                                    (2.22) 

PC is the carrier power usually limited by saturation or nonlinearity of the active device. 

The Leeson model demonstrates explicitly the conversion of the current noise into 

sideband and explains the  dependence of the phase noise density.  Upon integration 

of the spectral density, we obtain the expression for the Allan deviation.  

21 ω/
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B
AA QP

Tk
τ

τσ 2

1)( = .                                                                                               (2.23) 
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Figure 2.3. Leeson’s model of phase noise for an ideal linear LC oscillator. 

Equivalent one-port circuit for phase noise calculation for an ideal linear LC oscillator is 

used in the model. The Nyquist-Johnson noise source associated with the resistor injects 

noise current in LC tank, producing the noise sideband around the carrier. Note that the 

active device, compensating the energy dissipation from the resistor, is modeled as a 

negative conductance. 
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2.7 Minimum Measurable Frequency Shift 

Experimentally we measure the change in physical properties of the resonator by 

detecting the corresponding frequency shift and thus an important question needs to be 

addressed:what is the minimum measurable frequency shift, 0δω , that can be resolved in 

a (realistic) noisy system? In principle, a shift comparable to the mean square noise (the 

spread) in an ensemble average of a series of frequency measurements should be 

resolvable, i.e., 2

1
00 )(1 ∑

=

−≈
N

i
iN

ωωδω  for signal-to-noise ratio equal to unity.  An 

estimate for 0δω  can be obtained by integrating the weighted effective spectral density of 

the frequency fluctuations, )(ωωS , by the normalized transfer function of the 

measurement loop, )(ωH :  

2/1

0
0 ])()([∫

∞

≈ ωωωδω ω dHS .                                                                 (2.24) 

Here, )(ωωS  is in units of .  We can further simplify equation 

(2.24) by replacing 

2( / ) /( /rad s rad s)

)(ωH  with the square transfer function , which has the same 

integrated spectral weight, but is non-zero only within the passband delineated by

)(' ωH

fΔπ2 .  

Here, τπΔ /2≈f  and is dependent upon the measurement averaging time, τ. Given this 

assumption, equation (2.24) takes the simpler, more familiar form. 

2/1
2

0
0 ])([ ∫≈

f

dS
Δπ

ω ωωδω .                                              (2.25) 

This, of course, is an approximation to a real system — albeit a good one.  If necessary, 

one can resort to the more accurate expression, equation (2.24).  
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2.8 Conclusion  

We describe the conversion of phase fluctuations into the noise sideband of the 

carrier and present the definitions of phase noise, frequency noise, and Allan deviation, 

all commonly used to characterize the frequency stability of an oscillator. Figure 2.4 

summarizes the relation between these quantities. We illustrate these definitions by 

analyzing the phase noise of an ideal, linear LC oscillator in the context of Leeson’s 

model. In particular, Leeson’s model explicitly demonstrates how the Nyquist-Johnson 

current noise produces noise sideband of carrier and explains the 1/  dependence of the 

phase noise density on the offset frequency.  Finally, we give the expressions for the 

minimum measurable frequency shift in a noisy system for sensing applications involving 

oscillators.  

2ω
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Figure 2.4. Summary of the relation between different quantities. In time domain, the 

phase variation φ(t), which is the integration of angular frequency variation )(tω , 

generates the sidebands ])sin[()2/)((0 ttx c ωωφ ±±  through phase modulation (PM).  

The Allan deviation can be calculated with the frequency data from the frequency 

counting measurements.  In the frequency domain, the frequency noise density )(ωωS is 

related to the phase noise density )(ωφS  by .  The noise sideband of 

the carrier is characterized by 

)(/1)( 2 ωωω ωφ SS =

)(ωtotalL , which can be obtained from the power spectrum 

measurement.  

 27



 References 

 

1. A. N. Cleland  and M. L. Roukes Noise processes in nanomechanical resonators. 
J. Appl. Phys. 92, 2758 (2002). 

2. A. Hajimiri and T. H. Lee The design of low noise oscillator (Norwell, Kluwer 
Academic Publisher, 1999). 

3. D. W. Allan Statistics of atomic frequency standard. Proc. IEEE 54, 221 (1966). 

4. D. B Leeson A simple model of feedback oscillator noise spectrum. Proc. IEEE  
54, 329 (1996).  

 
 
 
 

 28



 
 
Chapter 3 
 
Theory of Phase Noise Mechanism of 
NEMS 
 
 
 
We present the theory of phase noise mechanism of NEMS. We examine both 

fundamental and nonfundamental noise processes to obtain expressons for phase 

noise density, Allan deviation, and mass sensitivity. Fundamental noise processes 

considered here include thermomechanical noise, momentum exchange noise, 

adsorption-desorption noise, diffusion noise, and temperature fluctuation noise.  For 

nonfundamental noise processes, we develop a formalism to consider the Nyquist-

Johnson noise from transducer amplifier implementations. The detailed analysis 

here not only reveals the achievable frequency stability of NEMS devices, but also 

provides a theoretical framework to fully optimize noise performance and the mass 

sensitivity for sensing applications. 
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3.1 Introduction  

So far we have considered how physical fluctuations convert into the noise 

sidebands of the carrier and give the conventional definition of phase noise, frequency 

noise, and Allan deviation, all commonly used to characterize the frequency stability of 

an oscillator. Here we proceed to investigate phase noise mechanisms affecting NEMS 

devices. First, we examine the fundamental noise processes intrinsic to NEMS devices.1-3 

We begin our discussion from thermomechanical noise, originating from thermally 

driven random motion of the resonator, by considering the thermal fluctuating force 

acting on the resonator. We then consider momentum exchange noise, adsorption-

desorption noise, and diffusion noise, all arising from gaseous molecules in resonator 

surroundings. The impinging gaseous molecules can impart momentum randomly to a 

NEMS device and induce momentum exchange noise. Moreover, when gaseous species 

adsorb on a NEMS device, typically from the surrounding environment, they can diffuse 

along the surface in and out of the device and produce diffusion noise. Meanwhile, they 

can also briefly reside on the surface and then desorb again and generate adsorption-

desorption noise. We also discuss the noise due to the temperature fluctuations; these 

fluctuations are fundamental to any object with finite thermal conductance and are 

distinct from environmental drifts that can be controlled using oven-heated packaging, 

similar to that used for high precision quartz clocks.  

Note that the thermomechanical noise from the internal loss mechanism in the 

resonator and the momentum exchange noise from gaseous damping are dissipation-

induced fluctuations. They are expected for mechanical resonators with nonzero 

dissipation according to the fluctuation-dissipation theorem.4 Other noise sources 

 30



including adsorption-desorption noise, diffusion noise, and temperature fluctuation noise 

are parametric noise. These have to do with parametric changes in the physical properties 

of the resonator such as device mass and temperature, which cause the natural resonance 

frequency of the resonator to change, but do not necessarily involve energy dissipation, 

leaving the quality factor unchanged.1

Finally, we consider the nonfundamental noise processes from the readout 

circuitry of transducer implementations.5 In general, the NEMS transducers covert 

mechanical displacement into an electrical signal, which is subsequently amplified to the 

desired level by an amplifier for readout. Hence both the transducer and amplifier can 

add extrinsic noise to the NEMS devices, and the impact on frequency fluctuations is 

treated by our formalism developed here. Our formalism will reveal the resulting impact 

on the frequency fluctuations and enable the optimization of noise performance. 

Although we focus our discussion on the Nyquist-Johnson noise from the transducer and 

readout amplifier implementations, it can be readily generalized to incorporate other 

types of extrinsic noise such as flicker noise.  

In conjunction with the discussion of each noise process, we also give the 

expression for the corresponding mass sensitivity limit. In general, resonant mass sensing 

is performed by carefully determining the resonance frequency 0ω of the resonator and 

then, by looking for a frequency shift in the steady state due to the accreted mass.  

Therefore, the minimum measurable frequency shift, 0δω , will translate into the 

minimum measurable mass, Mδ , referred to as the mass sensitivity, Mδ . Henceforth, we 

model the resonator as a one-dimensional simple harmonic oscillator characterized by the 
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effective mass  and the dynamic stiffness .effM 2
0ωκ effeff M= 6 Assuming that δM is a 

small fraction of , we can write a linearized expression effM

0
1

0
0

δωδω
ω

δ −ℜ=
∂

∂
≈ effM

M .                                  (3.1) 

  This expression assumes that the modal quality factor and compliance are not 

appreciably affected by the accreted species.  This is consistent with the aforementioned 

presumption that effMM <<δ . Apparently, δM critically depends on the minimum 

measurable frequency shift 0δω  and the inverse mass responsivity . Since 1−ℜ effκ  for 

the employed resonant mode—a function of the resonator’s elastic properties and 

geometry—is unaffected by small mass changes, we can further determine that  

effeff MM 2
00 ωω

−=
∂
∂

=ℜ ,                                   (3.2) 

 0
0

2 δω
ω

δ effM
M −≈ .                                        (3.3) 

We note that equation (3.3) is analogous to the Sauerbrey equation,7 but is instead 

here written in terms of the absolute mass, rather than the mass density, of the accreted 

species. Both fundamental and nonfundamental noise processes will impose limits on 

,0δω  and therefore on .Mδ  For each noise process, we will integrate phase noise density 

to obtain the expression for 0δω  by using equation (2.25) and translate it into Mδ using 

equation (3.3).3  
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3.2 Thermomechanical Noise  

  We now consider the thermomechanical noise, originating from thermally driven 

random motion of NEMS devices.1-3 For the one-dimensional simple harmonic oscillator, 

the mean square displacement fluctuations of the center of mass, thx , satisfy  

2/2/22
0 TkxM Btheff =ω .  Here,  is Boltzmann’s constant and T is the resonator 

temperature.  The spectral density of these random displacements, 

Bk

)(ωxS , (with units of 

m2/Hz) is given by  

22
0

222
0

22 /)(
)(1)(

Q
S

M
S F

eff
x ωωωω

ω
ω

+−
= .                                              (3.4) 

The thermomechanical force spectral density in units of N2/Hz has a white 

spectrum QTkMS BeffF /4)( 0ωω = . For Q/0ωω >> , the phase noise density is given by 

the expression1

2
0

2 8
)(

2
1)( ⎟

⎠
⎞

⎜
⎝
⎛==
ω
ω

π
ω

ωφ
C

B

C

x

P
Tk

x
S

S .                                                                                  (3.5) 

PC is the maximum carrier power, limited by onset of non-linearity of mechanical 

vibration of the NEMS. For a doubly clamped beam with rectangular cross section driven 

into flexural resonance, the non-linearity results from Duffing instability and the 

maximum carrier power can be estimated by QxMQEP CeffCC // 23
00 ωω ==  with 

critical amplitude Cx  given by )1(/ 2ν−Qt  for doubly clamped beams.8 t is the 

dimension of the beam in the direction of transverse vibration; ν is the Poisson ratio of 

the beam material.9

  Upon direct integration of the spectral density, Allan deviation is given by  
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AC

B
AA QP

Tk
τ

=τσ 28
)( .                                                                                                   (3.6) 

   We can rewrite this expression in terms of the ratio of the maximum drive 

(carrier) energy, 22
0 CeffC xME ω= , to the thermal energy, TkE Bth = , representing the 

effective dynamic range intrinsic to the device itself. This is the signal-to-noise ratio 

(SNR) available for resolving the coherent oscillatory response above the thermal 

displacement fluctuations.  We can express this dynamic range, as is customary, by 

 in units of decibels. This yields a very simple expression )/log(10 TkE(dB)DR BC=

20/2/1
0A 10)/1()( DR

AA Q −= ωττσ .                                                                                   (3.7) 

We now turn to the evaluation of the minimum measurable frequency shift, 0δω , 

limited by thermomechanical fluctuations of a NEMS resonator. To obtain 0δω , the 

integral in equation (2.25) must be evaluated using the expression for )(ωωS  given in 

equation (3.5) over the effective measurement bandwidth. Performing this integration for 

the case where Q>>1 and Qf /2 0ωΔπ << , we obtain:  
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We can also recast equation (3.9) in terms of dynamic range DR and mass responsivity 

 as ℜ

( )20/
2/1

0 101 DR

Q
fM −

⎟⎟
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⎞
⎜⎜
⎝

⎛
ℜ

≈
ω

Δδ .                                            (3.10) 

Note that 0/ωQ  is the open-loop response (ring-down) time of the resonator. In table 3.1, 

we have translated these analytical results from equation (3.7) and equation (3.9) into 

 34



concrete numerical estimates for representative realizable device configurations. We list 

the Allan deviation Aσ  (for averaging time Aτ =1 sec) and the mass sensitivity Mδ (for 

measurement bandwidth fΔ =1 kHz), limited by thermomechancial noise, for three 

representative device configurations with quality factor Q=104. For the calculation of 

resonant frequency, we assume Young’s modulus E =169 GPa and mass density ρ =2.33 

g/cm3 for the silicon beam and silicon nanowire and E = 1 TPa and ρ = 1g/cm3 for the 

single walled nanotube (SWNT). First, a large dynamic range is always desirable for 

obtaining frequency stability in the case of thermomechanical noise. Clearly, as the 

device sizes are scaled downward while maintaining high resonance frequencies,  

and  must shrink in direct proportion. Devices with small stiffness (high compliance) 

are more susceptible to thermal fluctuations and consequently, the dynamic range 

becomes reduced. Second, the values of the mass sensitivity span only the regime from a 

few tenths to a few tens of Daltons.  This is the mass range for a small individual 

molecule or atom; hence it is clear that nanomechanical mass sensors offer unprecedented 

ability to weigh individual neutral molecules or atoms and will find many interesting 

applications in mass spectrometry and atomic physics.

effM

effκ

10,11  
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Device Frequency Dimensions (L ×w×  t) Meff DR σA (1sec) δM (1kHz)

Si beam 1 GHz 660 nm×50 nm×50 nm 2.8 fg 66 dB 3.2×10-10 7.0 Da 

Si nanowire 7.7 GHz 100 nm×10 nm×10 nm 17 ag 47 dB 9.5×10-10 0.13 Da 

SWNT 10 GHz 56 nm×1.2 nm(dia.) 165 ag 14 dB 7.4×10-8 0.05 Da 

 
 
Table 3.1. Allan deviation and mass sensitivity limited by thermomechanical noise 

for representative realizable NEMS device configurations  
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3.3 Momentum Exchange Noise  

We now turn to a discussion of the consequences of momentum exchange in a 

gaseous environment between the NEMS resonator and the gas molecules that impinge 

upon it. Gerlach first investigated the effect of a rarefied gas surrounding a resonant 

torsional mirror.12 Subsequently, Uhlenbeck and Goudmit calculated the spectral density 

of the fluctuating force acting upon the mirror due to these random collisions.13 

Following these analyses, Ekinci et al. have obtained the mass sensitivity of the NEMS 

limited by momentum exchange noise.3 Here we reproduce a similar version of their 

discussions. In the molecular regime at low pressure, the resonator’s equation of motion 

is given by  
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.
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Q
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effeff =+⎟⎟

⎠
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⎛
++ ω

ω
.                                                           (3.11) 

The  term results from the intrinsic loss mechanism. The term  

represents the drag force due to the gas molecules. P is the pressure,  is the device 

surface area, and 

.

0 )/( xQM ieffω
.

)/( xvpAD

DA

mTkv B /=  is the thermal velocity of gas molecule. The quality factor 

due to gas dissipation can be defined as Dgas MvPAQ = . The loaded quality factor , as 

a result of two dissipation mechanisms, can be defined as . Since we 

have treated the thermomechanical noise from the intrinsic loss mechanism, we assume 

that  and focus on the noise from gaseous damping. The collision of gas 

molecules produces a random fluctuating force with the spectral density given by

LQ

111 −−− += gasiL QQQ

gasi QQ >>

3  
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B
DF Q

TkM
mvPAS 04

4)(
ω

ω == .                                                                                  (3.12) 
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Similar to equation (3.5) and equation (3.6), the resulting formulas for the phase 

noise density and the Allan deviation are 
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After taking similar steps leading to equation (3.9), we obtain 
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3.4 Adsorption-Desorption Noise  

Adsorption-desorption noise has been first discussed by Yong and Vig.14 The 

resonator environment will always include a nonzero pressure of surface contaminated 

molecules. As the gas molecules adsorb and desorb on the resonator surface, they mass 

load the device randomly and cause the resonant frequency to fluctuate. Yong and Vig 

developed the model for noninteracting, completely localized monolayer adsorption, 

henceforth referred to as Yong and Vig’s model. In addition to Yong and Vig’s model, 

we present the ideal gas model for the case of noninteracting, completely delocalized 

adsorption. However, the extreme of completely localized or completely delocalized 

adsorption rarely occurs on real surfaces; the adsorption on real surfaces always lies 

between these two extremes.15 Adsorbed gases molecules can interact with each other, 

resulting in phase transitions on the surface.16 Instead of monolayer adsorption, multilayer 
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adsorption usually happens on real surfaces.15 All these effects can further complicate the 

analysis of adsorption-desorption noise. The two models presented here, despite their 

simplicity, reveal valuable insight in the theoretical understanding of the adsorption-

desorption noise.     

In Yong and Vig’s model, the assumption of localized adsorption means that the 

kinetic energy of the adsorbed molecule is much smaller than the depth of surface 

potential, and thus the adsorbed molecule is completely immobile in the later direction. 

Thus the concept of adsorption site on the surface is well defined. We further assume 

each site can accommodate only one molecule and consider the stochastic process of 

adsorption-desorption of each site. Consider a NEMS device surrounded by the gas with 

pressure, P, and temperature, T. From kinetic theory of gas, the adsorption rate of each 

site is given by the number of impinging atoms or molecules per unit time per unit area 

times the sticking coefficient, s, and the area per site Asite. 

sitea sA
mkT
Pr

5
2

= ,                                                                                                      (3.16) 

 where P and T are the pressure and temperature of gas, respectively. In general, the 

sticking coefficient depends on temperature and gaseous species.17 Here we assume that 

the sticking coefficient is independent of the temperature. 

Once bound to the surface, a molecule desorbs at a rate  

)exp(
kT
E

r b
dd −=ν ,                                                                                                       (3.17) 

dν  is the desorption attempt frequency, typically of order 1013 Hz for a noble gas on a 

metallic surface, and Eb is the binding energy. For N molecules adsorbed on the surface, 

the total desorption rate for the whole device is Nrd. Since each site can only 
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accommodate one molecule, the number of available sites for adsorption is Na-N, so the 

total adsorption rate is (Na-N)ra. Equating these two rates, we obtain the number of 

adsorbed molecules  

da

a
a rr

r
NN

+
= .                                                                                                           (3.18) 

The average occupation probability f of a site is defined as the ratio of the 

adsorbed molecules to the total number of sites, N/Na, and is given by )/( daa rrrf += . 

Substitution of equation (3.16) and equation (3.17) into equation (3.18) yields the 

formula for the number of adsorbed molecules as a function of temperature, also known 

as the Langmuir adsorption isotherm.16 
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We can rewrite equation (3.16) in terms of the gaseous flux, fluxΦ , given by 

)/)(5/2( mkTPflux =Φ .  
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We derive the spectral density of the frequency noise by considering the 

stochastic process of the adsorption-desorption of each site, which can be described by a 

continuous time two state Markov chain.14 Here we briefly sketch the derivation for a two 

state Markov chain.18 Since each site can be occupied or unoccupied, we consider a 
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continuous time stochastic process { )(tζ , t>0}, where the random variable )t(ζ  can take 

either 0 (unoccupied) or 1 (occupied). The two rate constants of such a Markov chain are 

rd, the rate from state 1 (occupied state) to state 0 (unoccupied), and ra, the rate from state 

0 (unoccupied state) to state 1 (occupied state).We define  as the conditional 

probability that a Markov chain, presently in state i, will be in the state j after additional 

time t. Assuming that the site is initially occupied, we have initial condition, 

)(tPij

1)0(11 =P , 

and for a two state system, )(1)( 1110 tPtP −= . The corresponding Kolmogorov’s forward 

equation and its solution are given by10 
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The correlation time rτ  is defined as )/(1 da rr + . The autocorrelation function can 

be found by calculating the expectation value of )()( tt ζτζ +  from the conditional 

probability function. By definition, the autocorrelation function of )(tζ is given by 

fettER r

OCCsite +=+= − ττσζτζτ /2)]()([)( .                                                              (3.24) 

E[] denotes the expectation value of the random variable. Here for our purpose, 

we neglect the constant term f since this corresponds to the D.C. part of the spectra.  

is the variance of occupational probability f, given by . 

Note that  reaches a maximum for f=0.5 when the adsorption and desorption rates of 

the site are equal. 

2
OCCσ

22 )/()1( dadaOCC rrrrff +=−=σ

2
OCCσ
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We apply the Wiener-Khintchine theorem to obtain the corresponding spectral 

density of )(tζ  for each site by performing the Fourier transform of equation (3.24).  
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Each adsorbed molecule of mass  will contribute to fractional frequency change 

m/2M

m

eff. We obtain the spectral density of fractional frequency noise by simply summing 

the contribution from each individual site.  
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Since the spectral density exhibits Lorentizian function form, we use equation (2.16) to 

obtain 
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)(xF  is the analytic function defined in equation (2.17). In the limit, Ar ττ << , equation 

(3.27) becomes  
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 In the other limit, rA ττ << , equation (3.27) becomes 
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In the ideal gas model, the assumption of delocalized adsorption means that the 

kinetic energy of the adsorbed molecule is much higher than the depth of the surface 

potential, and thus the adsorbed molecule is mobile in the lateral direction. The notion of 

adsorption site in Yong and Vig’s model is not well defined.14 We thus analyze the 
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kinetics of  adsorption-desorption using the total adsorption and desorption rates of the 

adsorbed atoms on the device. The total adsorption rate of the device is given by the flux 

of molecules multiplied by the sticking coefficient s and the device area , DA

D

B

a sA
Tmk

PR
5
2

= .                                                                                             (3.30) 

  Once bound to the surface, the molecule desorbs at a rate given by 

. The total desorption rate of all the adsorbed molecules on the 

device is simply  
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At equilibrium, the total adsorption rate equals the total desorption rate, and the 

number of adsorbed molecules is given by 
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We also rewrite the expression in terms of the impinging gaseous flux fluxΦ , 
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We derive the spectral density of the fractional frequency noise by considering the 

dilute gas limit of Yong and Vig’s model. This is done by keeping the number of 

adsorbed molecules, , constant, and letting the occupational probability go to 

zero, and  go to infinity. Hence, . The spectral density of 

fractional frequency noise becomes  

afNN =

aN NNffN aaOCC →−= )1(2σ
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The correlation time due to adsorption-desorption cycle is given by the time constant of 

the rate equation 

N
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We find that  

)exp(
kT
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dr ντ = .                                                                                                          (3.37) 

 Since the spectral density of fractional frequency in equation (3.35) exhibits 

Lorentizian function form, we use equation (2.16) to obtain   
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 In the limit, Ar ττ << , this expression becomes  

A

r

eff
AA M

mN
τ
τ

τσ
2

)( = .                                                                                           (3.39) 

In the other limit, rA ττ << , this expression becomes  
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Table 3.3 tabulates the expressions for the two models presented here. Note that equation 

(3.27) differs from equation (3.38) in the statistics. The occupational variance  in 

equation (3.27) and thus adsorption-desorption noise in Yong and Vig’s model vanishes 

upon completion of one monolayer due to the assumption that each site accommodates 

2
OCCσ
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only one molecule. In contrast, equation (3.38) exhibits idea gas statistics, manifested in 

the square root dependence of the number of adsorbed molecules.   

Now we discuss the effect of the correlation time on Allan deviation. Because the 

spectral density of fractional frequency for these two models exhibits Lorentizian 

functional form, both equation (3.27) and equation (3.38) have the same dependence on 

the ratio of the correlation time, rτ , to the averaging time, Aτ , through the analytic 

function, , defined in equation (2.17). Mathematically,  reaches a maximum at 

0.095 for x=1.85 and vanishes when 

)(xF )(xF

x  equals to zero or infinity, and. In other words, the 

adsorption-desorption noise in both models maximizes when Ar ττ 095.0=  and 

diminishes for Ar ττ >>  or Ar ττ <<  with the asymptotic behaviors dictated by equation 

(3.25), equation (3.26), equation (3.37), and equation (3.38). 

To explicitly illustrate the surface effect of adsorption-desorption noise, we give 

the expression for the maximum Allan deviation maxAσ in Yong and Vig’s model by 

simultaneously maximizing OCCσ  and )/( ArF ττ  in equation (3.27).  We find that  
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Here  is the mass of a single atom adsorbed the device.  is the total number of 

atoms of the device.  is the surface-to-volume ratio.  

Dm VN

Va NN /

Finally, we give the expressions for minimum measurable frequency shift and 

mass sensitivity. For Yong and Vig’s model, the integration of the spectra density yields 
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Similar to equation (3.41), we give the expression for the maximum mass fluctuation 

maxMδ  by the maximized OCCσ  and )2arctan( rfτΔπ  in equation (3.43) from Yong and 

Vig’s model. We find that mNM aπδ 321/≈max  when ∞→rfτΔπ2  and f=0.5.  

Similarly, for ideal gas model, we obtain 
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            Table 3.2 summarizes the expressions from Yong and Vig’s and ideal gas models. 

Table 3.3 shows the numerical estimates of  and maxAσ maxMδ  arising from nitrogen for 

the same representative NEMS devices used in table 3.1. (The number of sites, , is 

calculated assuming each atom on the device surface serves as one adsorption site. For 

silicon beam and nanowire, we assume that the device surface is terminated Si(100) with 

lattice constant=5.43 Å. For a single-walled nanotube (SWNT), we assume that the 

carbon bond length is 1.4 Å.) First, the magnitude of 

aN

maxMδ  indicates that the mass 

fluctuation associate with adsorption-desorption noise of NEMS is at zeptogram level. 

Second, table 3.4 shows the increase of Allan deviation as a result of increasing the 

surface-to-volume ratio as the device dimensions are progressively scaled down. In 

particular, for the 10 GHz single-walled nanotube (SWNT), representing the extreme 

case that all the atoms are on the surface, the corresponding Allan deviation is almost five 

orders of magnitude higher than that due to thermomechanical noise (see table 3.1). In 

other words, the adsorption-desorption noise can severely degrade the noise performance 
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of the device. This, however, can be circumvented by packaging the device at low 

pressure or passivating the device surface.  
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Table 3.2. Summary of Yong and Vig’s and ideal gas models 
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Device Frequency Na/NV Na σAmax(gas) δMmax

1 GHz 1.1×10-2 8.9×105 1.7×10-6 1.6 zg Si beam 

7.7 GHz 5.5×10-2 2.7×104 4.9×10-5 0.28 zg Si nanowire 

SWNT 10 GHz 1 5.0×103 4.9×10-3 0.27 zg 

  

Table 3.3. Maximum Allan deviation and mass fluctuation of representative NEMS 

devices  
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3.5 Diffusion Noise  

So far we have analyzed the adsorption-desorption noise from adsorbed gasous 

species on the NEMS device. The surface diffusion provides another channel for 

exchange of adsorbed species between the device and the surroundings to generate noise. 

We start the analysis of diffusion noise from calculating the autocorrelation function of 

fractional frequency fluctuation. Mathematically, the autocorrelation function )(τG  is 

calculated as the time average (<> ) of the product of the frequency fluctuations of the 

NEMS. 

22 )(/'),'(),()(/)()()( ><>+=<><>+=< ∫∫ tfdxtxfdxtxftftftfG τδδτδδτ .     (3.47) 

Here  is the instantaneous resonant frequency of the device and we define the 

averaged resonant frequency by 

)(tf

0)( ftf >≡< . In the actual experiments, ),( txfδ  remains 

proportional to local concentration fluctuation dxtxC ),(δ  and is given by 
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where  is the mass of the adsorbed atoms or molecules,  is the effective vibratory 

mass of the device,

m effM

3  is the length of the device, and  is the eigenfunction 

describing  flexural displacement of the beam. Here we only consider the fundamental 

mode  for a beam extending from  to , with 

 with doubly clamped boundary condition imposed. Note that the end of the 

beam is never perfectly clamped so doubly clamped boundary condition is only an 

approximation. The normalization of u(x) factors out in equation (3.48); therefore we are 

L )(xu

kxkxxu cosh117.0cos883.0)( += 2/L− 2/L

730.4=kL
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free to choose u(0)=1. We define Green function for diffusion as 

>+=< ),'(),(),',( txCtxCxx δτδτφ . As a result, equation (3.48) becomes 
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In case of pure diffusion of one species in one dimension, the concentration 

),( τδ xC  obeys the diffusion equation 
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Following Elson and Magde,19,20 we find that  
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where N is the average total number of the adsorbed atoms inside the device. To calculate 

the autocorrelation function, we can approximate the vibrational mode shape by a 

Gaussian mode shape 
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to ∞. Figure 3.1 shows the true vibration mode shape of the beam with its Gaussian 

approximation. Using Gausssian approximation, we can perform the integral analytically 

and obtain the autocorrelation function of the fractional frequency noise 
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Here the diffusion time is defined by . Note that the time course of )2/( 22 DaLD =τ )(τG  

is determined by the factor  even if the concentration correlation function 

has a typical exponential time dependence. This results from the convolution of the 

exponential Fourier components of diffusion with the Gaussian profile of the mode 

shape.

2/1)/1( −+ Dττ

20 Also note that )(τG  is of the form  with d
D

2/1)/1( −+ ττ =d 1, the 

dimensionality of the problem. This is consistent with the factor , obtained 

by Elson and Magde with 

d
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We then apply the Wiener-Khintchine theorem to obtain the corresponding 

spectral density by  

).()(
4

)/1(
cos)

2
(2)(1)(

2

0
2/1

2
2/3

DD
eff

Deff

i
y

M
maN

d
M
maNeGS

ωτξτ
π

τ
ττ
ωτ

π
τ

π
ω ωτ

=

+
== ∫∫

∞∞

∞−                                           (3.53) 

Here xxxSxxCxxx /))sin()(2)cos()(2)sin()(cos()( −−+≡ξ  and  and  

are Fresnel integrals defined by
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In figure 3.2, we plot the function )(xξ  with its asymptotic forms: =)(xξ x/1   as 

 and 0→x =)(xξ π2/1 2x  as ∞→x . For Dτω /1<< , the spectral density of 

fractional frequency noise is given by 
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For Dτω /1>> , the spectral density of fractional frequency noise is given by 
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We now obtain the expression for Allan deviation using equation (3.53) by the 

performing the following integration, 
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Here )(xΧ is defined as 
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For ∞→x , the asymptotic form of  )(xΧ  is given by 

x
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In figure 3.3, we plot the function )(xΧ  in equation (3.60) together with its asymptotic 

form. For the limit, AD ττ >> , we give the expression for Allan deviation as1  
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Figure 3.1. Vibrational mode shape of the beam with doubly clamped boundary 

condition imposed and its Gaussian approximation. The vibrational beam mode shape 

(black) with doubly clamped boundary condition imposed is displayed with its Gaussian 

approximation (red).  
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Figure 3.2. Plot of the function )(xξ . The function )(xξ  (black solid) is plotted 

together with it asymptotic approximations x/1  (red dash) as  and 0→x

π2/1 2x (blue dash) as ∞→x . 
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Figure 3.3. Plot of )(xΧ and its asymptotic form. The function )(xΧ  (black solid) is 

plotted together with its asymptotic form (red dash) 
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3.6 Temperature Fluctuation Noise  

  The small dimensions of NEMS resonators in general imply that the heat capacity 

is very small and therefore the corresponding temperature fluctuations can be rather 

large. The effect of such fluctuations depends on upon the thermal contact of the NEMS 

to their environment. Because the resonant frequency depends on the temperature through 

the resonator material parameters and geometric dimensions, the temperature fluctuations 

produce frequency fluctuations. Here we present a simple model using the thermal circuit 

consisting of a heat capacitance, c , connected by a thermal conductance, g , to an infinite 

thermal reservoir at temperature, T.  In the absence of any power load, the heat 

capacitance, , will have an average thermal energy, c cTEC = . Changes in temperature 

relax with thermal time constant, gcT /=τ . Applying the fluctuation-dissipation theorem 

to such a circuit, we expect a power noise source, p , connected to the thermal 

conductance, g , with the spectral density, , and cause the 

instantaneous energy, 

πω /2)( 2 gTkS Bp =

)()( tEEtE CC δ+= , to fluctuate.4 The spectral density of the 

energy fluctuations )(tEδ  can be derived as 

22

22

1
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B
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τωπ

ω
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= .                                                                                                (3.62) 

  We can interpret the energy fluctuations as temperature fluctuations )(tTCδ , if we 

define the temperature as cET CC /= . The corresponding spectral density of the 

temperature fluctuations is given by  
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Equation (3.63) applies to any system that can be modeled as a heat capacitance 

with a thermal conductance. For a doubly clamped beam, however, there is no clear 

separation of the structure into a distinct heat capacitance and a thermal conductance. 

Cleland and Roukes have developed a distributed model of thermal transport along a 

doubly clamped beam of constant cross section, and derived the spectral density of 

frequency fluctuations arising from temperature fluctuations of a NEMS resonator.1 Their 

analysis leads to 
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           Here ρ/Ecs =  is the temperature dependent speed of sound, 

TLLT ∂∂= /)/1(α  is the linear thermal expansion coefficient, and  and g Tτ  are the  

thermal conductance and thermal time constant for the slice, respectively. In the limits 

TA ττ >> , the Allan deviation is given by 
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           To give the expression for 0δω  and Mδ , we integrate equation (3.65) over the 

measurement bandwidth and obtain  
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The values of the material dependent constants for silicon have been calculated 

as1  
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= 1.26×10-4 1/K.                                                                    (3.69) 

g = 7.4×10-6 W/K and Tτ = 30 ps. Using these values, a numerical estimate of equation 

(3.66) for 1 GHz silicon beam in table 3.1 is given by =)( AA τσ 9.3x10-11/ Aτ .1 For 

=Aτ 1 sec, the Allan deviation is 9.3x10-11, of the same order of magnitude as that due to 

the thermomechanical noise at room temperature listed in table 3.1. Similarly, for the 

same device at room temperature with measurement bandwidth fΔ = 1 Hz, we obtain 

Mδ = 0.245 Da. Despite of the role of thermal fluctuations in generating phase noise that 

limits the mass sensitivity, single Dalton sensing is readily achievable. The effect can be 

even more significant as we further scale down the dimensions or increase the device 

temperature. This can be circumvented by lowering the temperature or optimizing the 

thermal contact of the NEMS to its environment. 

 

                               
3.7 Nonfundamental Noise    

We develop a simple formalism to consider nonfundamental noise process from 

transducer amplifier implementations of NEMS.5 First, the spectral density of the 

frequency noise )(ωωS  is transformed into the voltage domain by the displacement 
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transducer, the total effective voltage noise spectral density at the transducer’s output 

predominantly originates from the transducer and readout amplifier.5 It is the total 

voltage noise referred back to the frequency domain that determines the effective 

frequency fluctuation spectral density for the system .  is the 

transducer output voltage. If we define the transducer responsivity by the derivative of 

transducer output voltage with respect to displacement, i.e., , a simple 

estimate is given by 

2)//()( ωωω ∂∂= VSS V V

)/( xVRT ∂∂=

0/)/( ωω CT xQRV ≈∂∂ . Assuming the voltage fluctuation  

results from Nyquist-Johnson noise from the transducer amplifier and thus has a white 

spectrum, using equation (2.15) we obtain the expression for the Allan deviation 
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AA xR

S
Q

2/1)/(1)(
τπ

τσ = .                                                                                           (3.70) 

We can rewrite this equation in a simple form in terms of the dynamic range, 

])//(log[20 2/122
AVCT SxRDR τπ= , or equivalently the signal-to-noise ratio (SNR) 

referred to transducer output of the NEMS. 

20/-101)( DR
AA Q
=τσ .                                                                                                    (3.71) 

Finally, we give the expression for the minimum detectable frequency shift δω  

and mass sensitivity Mδ . Upon the integration of spectral density using equation (2.21), 

the minimum detectable frequency shift for the measurement bandwidth fΔ , is simply 

20/-0
2/1

0 10
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CT

V

QxR
fS

Q
ωΔω

δω == .                                                                               (3.72) 

The mass sensitivity follows as 

20/10)/(2~ DR
eff QMM −δ .                                                                                            (3.73) 
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Equation (3.73) indicates the essential considerations for optimizing NEMS based mass 

sensors limited by the Nyquist-Johnson noise.  First, this emphasizes the importance of 

devices possessing low mass, i.e., small volume, while keeping high Q. Second, the 

dynamic range for the measurement should be maximized. This latter consideration 

certainly involves careful engineering to minimize the noise from transducer amplifier 

implementations and controlling the nonlinearlity of the resonator through the mechanical 

design.  

 

3.8 Conclusion 

We present the theory of phase noise mechanisms affecting NEMS. We examine 

both fundamental and nonfundamental noises and their imposed limits on device 

performance. Table 3.4 tabulates the expressions for fundamental noise processes 

considered in this work. We find that the anticipated noise is predominantly from 

thermomechanical noise, temperature fluctuation noise, adsorption-desorption noise, and 

diffusion noise. First, a large dynamic range is always desirable for obtaining frequency 

stability in the case of thermomechanical noise. Clearly, as the device sizes are scaled 

downward while maintaining high resonance frequencies,  and  must shrink in 

direct proportion. Devices with small stiffness (high compliance) are more susceptible to 

thermal fluctuations and consequently, the dynamic range becomes reduced. Second, next 

generation NEMS appear to be more susceptible to temperature fluctuations—more 

intensively at elevated temperatures. This fact can be circumvented by lowering the 

device temperatures and by designing NEMS with better thermalization properties. Third, 

for adsorption-desorption noise, both Yong and Vig’s and ideal gas model suggest that 

effM effκ
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this noise becomes significant when appreciable molecules adsorb on the NEMS surface 

and the correlation time of adsorption-desorption cycle roughly matches the averaging 

time. One could easily prevent this, for instance, by reducing the packaging pressure or 

passivating the device to change the binding energy between the molecule and the 

surface.    

To evaluate the impact of each noise process on the mass sensing application, we 

give expressions for the minimum measurable frequency shift and mass sensitivity. Our 

analysis culminates in the expression equation (3.10), i.e., 
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⎠
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⎝

⎛
ℜ

≈
ω

Δδ .                                         (3.74) 

Equation (3.74) distills and makes transparent the essential considerations for 

optimizing inertial mass sensors at any size scale.  There are three principal 

considerations.  First, the mass responsivity, ℜ , should be maximized.  As seen from 

equation (3.3), this emphasizes the importance of devices possessing low mass, i.e., small 

volume, which operate with high resonance frequencies.  Second, the measurement 

bandwidth should employ the full range that is available. Third, the dynamic range for the 

measurement should be maximized.  At the outset, this latter consideration certainly 

involves careful engineering to minimize nonfundamental noise processes from the 

transducer amplifier implementation, as expressed in equation (3.72) and equation (3.73).  

But this is ultimately feasible only when fundamental limits are reached.  In such a 

regime it is the fundamental noise processes that become predominant.   

In table 3.1, we have translated the analytical results from equation (3.10) into 

concrete numerical estimates for representative and realizable device configurations. The 

values of Mδ span only the regime from a few tenths to a few tens of Daltons.  This is the 
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mass range for a small individual molecule; hence it is clear that nanomechanical mass 

sensors offer unprecedented sensitivity to weigh individual neutral molecules routinely—

blurring the distinction between conventional inertial mass sensing and mass 

spectrometry.11  
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Chapter 4 
 
Experimental Measurement of Phase 
Noise in NEMS 
   

 

   

We present the experimental measurement of phase noise of NEMS. First, we 

analyze control servo behavior of the phase-locked loop, and give expressions for the 

locked condition and loop dynamics. We then describe two implementation schemes 

at very high frequency and ultra high frequency bands: (1) homodyne detection 

phase-locked loop based on a two port NEMS device and (2) frequency modulation 

phase-locked loop. The achieved phase noise and Allan deviation are compared with 

the local oscillator requirement of chip scale atomic clocks to evaluate the viability 

for such applications. Finally, we investigate the diffusion noise arising from the 

xenon atoms adsorbed on the NEMS surface by putting a ~190 MHz 

nanomechanical resonator into a phase-locked loop and measure the frequency 

noise and Allan deviation.  
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4.1 Introduction  

We have presented the theory of phase noise mechanism of NEMS in chapter 3. 

So far, to our knowledge, none of fundamental noise sources proposed has been 

measured and very little experimental results are available to decide whether the 

predicted noise performance of NEMS can indeed be achieved. In this chapter, we 

address this problem by inserting high Q NEMS resonators in phase-locked loops and 

evaluate their noise performance against controlled variations in their environments.  

We start our discussion from analyzing control servo behavior of a general phase-

locked loop scheme based on NEMS and give the expressions for the locked condition 

and loop bandwidth. We then present two electronic implementations of NEMS-based 

phase-locked loops: (1) homodyne phase-locked loop based on a two port NEMS device 

and (2) frequency modulation phase-locked loop (FM PLL). These phase-locked loops 

are designed to lock minute electromechanical resonance of NEMS embedded in a large 

electrical background as a result of diminishing transducer responsivity as the device 

dimensions are scaled downward. The achieved noise floor in terms of phase noise 

density and Allan deviation will be compared with the local oscillator (LO) requirement 

of chip scale atomic clock (CSAC) to evaluate the viability of NEMS oscillators for this 

application.1,2

Finally, we investigate the diffusion noise arising from the xenon atoms adsorbed 

on the NEMS surface and measure the corresponding frequency noise and Allan 

deviation using FM PLL. We will characterize the adsorption behavior, extract the 

diffusion coefficients, and compare the experimental results with diffusion noise theory 

and Yong and Vig’s model, both described in chapter 3. 
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4.2 Analysis of Phase-Locked Loop Based on NEMS 

In general, two categories of schemes are commonly used for phase noise 

measurement: self-oscillation and phase-locked loop (PLL). In the self-oscillation scheme 

depicted in figure 4.1, the resonator operates within a positive feedback loop. The phase 

noise, manifesting itself in the noise sideband around the carrier, is measured by a 

spectrum analyzer (see section 2.3). The Allan deviation is calculated from the data taken 

with the frequency counter. Such a scheme has widely been used to characterize 

oscillators, and the detailed analysis can be found elsewhere.3

In this work, we extensively use the phase-locked loop scheme shown in figure 

4.2(a). The principal elements of the loop are voltage control oscillator (VCO) and the 

resonant response circuitry. The VCO is simply an oscillator whose frequency is 

proportional to an externally applied voltage. The response function circuitry, containing 

NEMS and phase detection circuitry, produces a quasi-dc signal proportional to the phase 

of the mechanical resonance of NEMS. This phase sensitive signal is usually passed 

through a loop filter, then applied to the control input of the VCO, and serves as error 

signal to close the feedback loop. If the resonance frequency shifts slightly, the feedback 

will adjust the control voltage to track the frequency change. Therefore, the voltage 

fluctuation in the control input of the VCO reflects the frequency noise in the loop. 

Moreover, the Allan deviation can be obtained from the data taken with the frequency 

counter. 
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Figure 4.1. Self-oscillation scheme for the phase noise measurement of NEMS. The 

principal components of the self-oscillation scheme are (1) NEMS, (2) the amplifier, and 

(3) the phase shifter. The phase noise, manifesting itself in the noise sidebands around the 

carrier, is measured by a spectrum analyzer. The Allan deviation can be calculated from 

the data taken with the frequency counter. 
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Figure 4.2. Configuration of a phase-locked loop based on NEMS. (a) Measurement 

scheme of a phase-locked loop (PLL) based on NEMS. The principal components of a 

PLL are the voltage controlled oscillator (VCO) and the resonant response circuitry 

( ). The output of the resonant response circuitry is used as error signal to the control 

input of the VCO to close the feedback loop. The frequency noise, manifesting itself as 

voltage fluctuation in the control port of the VCO, is measured by a spectrum analyzer. 

The Allan deviation is obtained from the data taken with frequency counter (C). (b) 

Homodyne phase-locked loop. Homodyne phase-locked loop is one example of the 

scheme shown in (a). In the homodyne phase detection, the NEMS device is driven by a 

VCO at constant amplitude, and the output is amplified and mixed with the carrier. The 

resonant response circuitry consists of NEMS, the amplifier, and the mixer. 

RK
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We now analyze control servo behavior of the PLL, aiming to understand the 

locked condition and the loop dynamics under the feedback. The frequency of the VCO is 

determined by the control voltage , as given by  controlV

controlVcontrolVCOVCO VKV +== )0(ωω .                                                                             (4.1) 

VK  and )0( =controlVCO Vω  are the frequency pulling coefficient and the center frequency 

of the VCO, respectively. The output of the resonant response circuitry can be 

represented as a voltage function of carrier frequency, )( CRV ω , and is applied to the 

control input of VCO to provide the feedback. We analyze the loop behavior by 

linearizing )( CRV ω  in the vicinity of the resonance frequency, 0ω , of the NEMS as   

)()( 0 CRCR KV ωωω −= .                                                                                                (4.2) 

Here the proportional constant , called henceforth the resonant response coefficient,  

is defined by 

RK

0
)∂/∂( ωωω == CRR VK .  When the VCO is locked to the NEMS, we have the 

condition . From equation (4.1) and equation (4.2), we obtain the locked 

condition   

controlR VV =

)()0( 0 CRVcontrolVCOC KKV ωωωω −+== .                                                                     (4.3) 

We define the open loop gain of the PLL as   

RVloop KKK = .                                                                                                                (4.4) 

Therefore, equation (4.3) can be rewritten as 

)0(
1

1
1 0 =

+
+

+
= controlVCO

looploop

loop
C V

KK
K

ωωω .                                                              (4.5) 

Assuming that VCO is infinitely stable, i.e., )0( =controlVCO Vω  is constant, equation 

(4.5) implies that any frequency variation in the resonant frequency 0δω  of the device 
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will be scaled by a factor Kloop/(1+Kloop) as a result of feedback and reflected in the 

corresponding carrier frequency change Cδω  in the phase-locked loop, i.e., 

01
δωδω

Loop

Loop
C K

K
+

= .                                                                                                      (4.6) 

Equation (4.5) also implies an experimental way to measure the loop gain . 

We rewrite equation (4.5) as 

loopK

))0((
1

1- 00 ωωωω −=
+

= controlVCO
loop

C V
K

.                                                                  (4.7) 

In other words, 0-ωωC  is proportional to  0)0( ωω −=controlVCO V  with the proportionality 

constant . Experimentally one can hold the resonant frequency )1/(1 loopK+ 0ω  constant, 

rest the center frequency of VCO, )0( =controlVCO Vω , incrementally, and record the carrier 

frequency Cω  of the loop under lock. By plotting Cω  versus )0( =controlVCO Vω , we can 

determine the loop gain from the slope, i.e., the proportionality constant .  )1/(1 loopK+

So far we have considered the locked condition of the PLL in the steady state. We 

now analyze the loop dynamics and give the expressions for the loop bandwidth. We first 

discuss the case that a first-order low pass filter with a frequency cutoff, filterfΔ , described 

by the transfer function, )),2/(1/(1)( filterfilter fjH Δπωω += is employed in the control input 

of the VCO.  Repeating the same steps from equation (4.1) to equation (4.5) by replacing 

 with , we obtain  VK filterV HK

)0(
1

1
]2)1/[(1

)1/(
0 =
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+

++

+
= controlVCO

filterloopfilterloop

looploop
C V
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ωω
Δπω
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Equation (4.8) means that the servo tracks the resonant frequency of the device with the 

loop bandwidth PLLfΔ   given by 

)1( loopfilterPLL Kff +Δ=Δ .                                                                                               (4.9) 

Now we can write down the intrinsic bandwidth of the PLL limited by the NEMS 

itself. This is done by simply replacing filterfΔ  in equation (4.9) with the resonant 

bandwidth )2/( 0 Qπω  in the loop.3 As a result, the intrinsic bandwidth of the PLL is given 

by  

)1)(2/( 0 loopPLL KQf += πωΔ .                                                                                       (4.10) 

Both equation (4.9) and equation (4.10) imply that the effect of feedback enhances the 

bandwidth by the factor loopK+1 .  For applications requiring fast response time, we can 

always increase the loop gain to extend the loop bandwidth. Similar ideas have also been 

used to enhance the bandwidth of atomic force microscopy by Albrecht et al.3

Finally, we give the explicit expression for the resonant response coefficient. The 

resonant response function, )( CRV ω , is determined by the transducer voltage from 

NEMS, )( CtransducerV ω ,  cascaded by the amplifier gain, , and the gain of phase 

detection circuitry,  , as given by  

AK

PK

PACtransducerCR KKVV )()( ωω = .                                                                                     (4.11) 

Taking the derivative of the resonant response function with respect to the carrier 

frequency, the resonant response coefficient is given by  

PAtransducerCRR KKVVK
CC 00

)∂/∂()∂/(∂≡ ωωωω ωω == = .                                                (4.12) 

As an example, we give the expression of resonant response coefficient for 

homodyne phase-locked loop. The homodyne phase-locked loop shown in figure 4.2(b) is 
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one incarnation of the scheme shown in figure 4.2(a). In such a scheme, the NEMS 

device is driven by a VCO at constant amplitude and the output is amplified and mixed 

with the carrier. We first give the expression for the resonant response coefficient . 

The gain of the phase detection circuitry  is given by the mixer gain . 

RK

PK MK

CtransducerV ω∂/∂  can be approximated by  . is the maximum 

transducer voltage producing linear response.  Thus, the loop gain of the PLL is given by  

0
max /ωtransducerQV max

transducerV

0
max /ωtransducerAMR QVKKK = .                                                                                         (4.13) 

In the magnetomotive transduction,  is given by the electromotive force (emf) 

voltage generated across the device with length L vibrating with the amplitude 

max
transducerV

Cx  at the 

frequency  in the magnetic field 0ω B , i.e., 

Ctransducer xBLV 0
max ω= .                                                                                                  (4.14) 

  

  

 75



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PLL Frequency Dimensions(L ×  w×  t) Q Meff DR σA(1sec) Δf 

Two Port 125 MHz 1.6 μm×800 nm×70 nm 1300 1 pg 80 dB 4×10-7 165 kHz

FM VHF 133 MHz 2.3 μm×150 nm×70 nm 5000 100 fg 80 dB 5×10 -8 32 Hz 

FM VHF 190 MHz 2.3 μm×150 nm×100nm 5000 150 fg 80 dB 1×10-7 32 Hz 

FM UHF 419 MHz 1.35 μm×150 nm×70 nm 1000 50 fg 100 dB 1×10-7 32 Hz 

 
Table 4.1. Summary of parameters of all phase-locked loops based on NEMS 

presented in this work  
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4.3 Homodyne Phase-Locked Loop Based upon a Two-Port NEMS Device  

We now present the electronic implementation of the homodyne phase-locked 

loop based on the scheme shown in figure 4.2(b) using a two port NEMS device, who 

parameters are summarized in table 4.1. In practice, the two port topology avoids direct 

electrical feedthrough of the simple one port scheme and allows careful design of the 

bonding fixture to minimize the unwanted parasitic coupling that produces a large 

electrical background on top of electromechanical resonance. Figure 4.3(a) shows the 

SEM micrograph of the two port device fabricated from SiC epilayer with Au 

metallization.4 It is driven magnetomotively and the resonant frequency is found to be 

~125 MHz with quality factor =1300. Figure 4.3(b) shows the fundamental mode of 

vibration of a two port device, optimized through the finite element simulation.  

Q

Figure 4.4 shows the electronic implementation of the PLL. The low phase noise 

VCO (Minicircuits POSA-138) drives the NEMS device at constant amplitude and the 

output of the transducer of the NEMS is amplified by a low noise preamplifier (Miteq 

AU1442).  We further employ an external bridge, consisting of a variable phase shifter 

and a variable attenuator, to null out the electrical background. Figure 4.5 shows the 

resulting mechanical resonant response of the NEMS after the nulling. The rising 

background away from resonance shows the narrowband nature of the nullling,  and 

hence the locking range of the loop is limited within the natural width of the resonance 

due the finite bandwidth of the variable phase shifter in the external bridge.The signal 

from the external bridge is then mixed down with the carrier, amplified by an 

instrumentation amplifier (Stanford Research Systems SR560), offset by a precision bias 

circuit, and fed into the control input of the VCO to close the feedback control loop. Note 
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that the cutoff frequency of the low pass filter in the control servo is set to 1 MHz to fully 

utilize the intrinsic bandwidth, )2/)(1( 0 QKloop πω+ =165 kHz, provided by the NEMS 

device (Kloop approximately equals to 1). Hence this scheme is very desirable in sensing 

applications requiring fast response. 

Figure 4.6 shows the phase noise spectrum of the VCO in PLL as measured by 

spectrum analyzer (Hewlett Packard HP8563E). At frequencies between 100 Hz and 20 

kHz, the spectrum exhibits flicker noise and has  dependence on the offset 

frequency due to the upconversion of the flicker noise of the preamplifier to the sideband 

of the carrier. Above 20 kHz, the spectrum flattens out to about -110dBc/Hz, the 

instrument noise floor of the spectrum analyzer.  

3/1 f

Figure 4.7 shows the Allan deviation versus averaging times from frequency data 

over the course of ~1000 sec interval taken with the frequency counter. At the 

logarithmic scale, the observed Allan deviation, is nominally independent of averaging 

time and confirms the flicker noise in the phase noise spectrum. Note that the error bar of 

the each data point represents the confidence interval of the Allan deviation, given by 

1/)( −SAA Nτσ . For Aτ = 1 sec, the observed Allan deviation )( AA τσ =4.7 x 10-7 is 

consistent with the estimated value 7.7 x 10-7 from the theoretical expression 

 (with dynamic range =80 dB and Q=1300). In the present 

experiment,  is limited by (extrinsic) transducer-amplifier noise and the onset of the 

Duffing instability of the NEMS device. 

20/-10)/1()( DR
AA Q=τσ DR

DR
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Figure 4.3. Pictures of two-port NEMS devices. (a) SEM micrograph of the two port 

NEMS device. The device is fabricated from SiC epilayer with Au metallization. (b) 

Finite element simulation of the fundamental mode of vibration of a two port device. 

The two port device consists of two doubly clamped beams mechanically coupled by a 

central beam. We use the finite element simulation to optimize the mechanical design. 
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Figure 4.4. Implementation of the homodyne phase-locked loop based on a two-port 

NEMS device.  We use a two port NEMS device with external bridge to implement the 

homodyne phase-locked loop. The external bridge, comprised of a narrowband voltage 

controlled phase shifter (φ) and a voltage controlled variable attenuator (Attn), is used to 

null the electrical background.  
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Figure 4.5. Mechanical resonant response after nulling. The mechanical resonance of 

the NEMS at 125 MHz is shown after the constant electrical background is nulled out by 

an external bridge circuit. The rising background away from resonance shows the 

narrowband nature of the nullling due to the bandwidth of the variable phase shifter in the 

external bridge. This limits our locking range within the natural width of the resonance. 
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Figure 4.6. Phase noise density of the 125 MHz homodyne phase-locked loop based 

on a two-port NEMS device. The phase noise density of the 125 MHz homodyne phase-

locked loop based on a two port NEMS is shown. Between 100 Hz and 20 kHz, the phase 

noise spectrum exhibits flicker noise, i.e., having  dependence on the offset 

frequency. Above 20 kHz, it flattens out to ~110 dBc/Hz, the instrument noise floor of 

the spectrum analyzer. 

3/1 f
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Figure 4.7. Allan deviation of the 125 MHz homodyne phase-locked loop based on a 

two-port NEMS device. The Allan deviation of 125 MHz homodyne phase-locked loop 

versus averaging time, calculated from frequency data over the course of ~1000 sec 

interval, is shown. At logarithmic scale, the Allan deviation is nominally independent of 

averaging time and consistent with the observed flicker noise in the phase noise spectrum 

in figure 4.6. The error bar in each data point represents the one-standard-deviation 

confidence interval of the Allan deviation.
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 4.4 Frequency Modulation Phase-Locked Loop 

We now present the analysis and implementation of the frequency modulation 

phase-locked loop, which is designed to lock the even smaller electromechanical 

resonance of a NEMS embedded in a large electrical background. Roughly speaking, the 

frequency modulation of the carrier and subsequent demodulation by lock-in detection 

after mixer generates an electrical signal proportional to the derivative of the resonant 

response with respect to frequency. As a result, the constant electrical background, in 

which the electromechanical resonance of the NEMS is embedded, is nulled out. As 

shown in figure 4.8, the FM PLL is formed by adding frequency modulation of the carrier 

and lock-in detection to the homodyne phase-locked loop. One can prove that addition of 

the frequency modulation and lock-in detection contributes to  with two additional 

gain factors, the frequency modulation index 

RK

Μ  and the lock-in detection gain . 

By inserting these two factors into equation (4.13), we find  

LockinK

LockintransducerAMR KQVKKK Μω )/( 0
max= .                                                                        (4.15) 

Note that =Μ mVm KV ω/  in the case that a sinusoidal voltage of magnitude  at 

modulation frequency, 

mV

mω  is applied to the control voltage port of VCO.  
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Figure 4.8. Conceptual diagram of frequency modulation phase-locked loop (FM 

PLL) scheme.  Similar to homedyne phase-locked loop, the NEMS is driven by a VCO 

at constant amplitude, and the output is amplified and mixed with the carrier. The FM 

PLL is formed by adding the frequency modulation (FM) of the carrier and the lock-in 

detection to the homodyne phase-locked loop. 
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Figure 4.9 shows the electronic implementation of the FM PLL at VHF (very high 

frequency) band for 133 MHz and 190 MHz devices. The device configurations are 

summarized in table 4.1.  We detect the mechanical resonance in the reflection scheme by 

a directional coupler. The signal from the NEMS device is amplified by a radio frequency 

(RF) amplifier with gain, , shifted in phase by the phase shifter, and subsequently 

mixed down to intermediate frequency (IF) by a mixer. The IF signal is further amplified 

by an IF amplifier with gain, . The total amplifier gain is given by 

RFK

IFK

IFRFA KKK = .                                                                                                              (4.16) 

In our experiment, the carrier is modulated at 1.2652 kHz with reference oscillator 

in the lock-in amplifier. The lock-in amplifier (Stanford Research Systems SR830) is 

employed to detect the signal amplitude at the modulation frequency and subsequently 

rescale the readout according to the Sensitivity setting with full scale voltage  

This is further divided by a voltage divider with a dividing factor DF.  For convenience, 

we incorporate the voltage division and rescaling into the lock-in detection gain   

fullscaleV .

( ) ySensitivitVDFK fullscalelockin //1= .                                                                            (4.17) 

We summarize the experimental parameters used in FM PLL at 190 MHz in table 4.2. To 

close the feedback loop, the lock-in amplifier outputs the signal to the control port of the 

VCO. We use the frequency synthesizer (Hewlett Packard HP8648) in frequency 

modulation mode as the VCO. This imposes a proportional control with a frequency 

cutoff proportional to the inverse of the lock-in time constant lockinτ . More precisely, the 

bandwidth of the FM PLL is given by )2/1)(1( lockinloopPLL Kf πτΔ +=  using equation (4.9) 

as a result of feedback. In addition, a digital feedback loop is established by a computer 
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interface, which periodically checks the digital output of the lock-in amplifier, computes 

a correction, and resets the center frequency of the VCO accordingly with prescribed loop 

gain and loop time. Effectively one has a discrete integral control, extending the locking 

range beyond the natural width of the resonance. We use it to follow the frequency shift 

induced by large changes in device mass over extended measurement intervals.  
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Figure 4.9. Implementation of frequency modulation phase-locked loop (FM PLL) 
scheme. We employ frequency modulation phase-locked loop (FM PLL) scheme to track 
the resonant frequency of the device. The mechanical resonance is detected in a reflection 
scheme, by using a directional coupler (CPL). The reflected signal is amplified, phase 
shifted (Φ), and mixed down (⊗). We modulate the carrier at 1.2652 kHz and employ a 
lock-in amplifier (Stanford Research Systems SR830) for demodulation. The resulting 
output (X) provides the analog feedback to the VCO (Hewlett Packard HP8648B). A 
computer-controlled parallel digital feedback (µC) is implemented for applications 
requiring a large locking range.  
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Figure 4.10 shows the phase noise spectrum of the FM PLL based on the 190 

MHz device. At frequencies between 15 mHz and 30 Hz, the spectrum exhibits flicker 

noise, having 3/1 f  dependence on the offset frequency. Above 30 Hz, the spectrum rolls 

off at the slope of  50 dB/decade, reflecting the loop bandwidth limited by the filter in 

lock-in detection. With the lock-in time constant lockinτ = 10 ms and =1, we estimate 

the loop bandwidth to be 32 Hz from the expression 

loopK

)2/1)(1( lockinloopPLL Kf πτΔ += . 

Figure 4.11 shows the observed Allan deviation calculated from data over the course of 

one hour taken with frequency counter (Agilent 53132) for Aτ  ranging from 1 sec to 128 

sec. At the logarithmic scale, the observed Allan deviation versus averaging time is 

nominally constant and thus consistent with flicker noise in the phase noise spectrum in 

Figure 4.10. The Allan deviation )( AA τσ =1x10-7 for Aτ = 1 sec is close to the estimated 

value 2x10-7 from the expression  (with dynamic range DR = 80 

dB and Q= 5000). 

20/-10)/1()( DR
AA Q=τσ

We have also implemented the FM PLL at the ultra high frequency (UHF) band at 

419 MHz. For the 419 MHz SiC device with dimensions 1.35 um(L) x 150 nm(w) x 70 

nm (t) and Q=1600, the mechanical impedance is only ~0.08 Ω and embedded in a large 

electrical impedance ~100 Ω. To detect such a small impedance at the UHF band, we 

replace the simple reflection scheme used for FM PLL at the VHF band with a balanced 

bridge detection (see also chapter 7).5 To amplify the signal from the NEMS device, we 

employ a cryogenic amplifier (Miteq AFS3-00100200-09-CR-4), working from 0.1 to 2 

GHz with the equivalent noise temperature =10 K at 419 MHz. We summarize the 

experimental parameters in table 4.2. Figure 4.12 shows the observed phase noise 

NT
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spectrum. At frequencies between 15 mHz and 30 Hz, the spectrum exhibits  

dependence on the offset frequency. Similar to the FM PLL at VHF band, the additional 

rolloff in the spectrum at 30 Hz results from the loop bandwidth 

2/1 f

)2/1)(1( lockinloopPLL Kf πτΔ += =32 Hz (with lockinτ = 10 ms and =1).  Figure 4.13 

shows the Allan deviation calculated from the frequency data over the course of one hour 

taken with the frequency counter (Agilent 53132). For 

loopK

Aτ =1 sec, the observed Allan 

deviation Aσ =1 x 10-7 is much higher than the estimated value of 6.25 x 10-9 from the 

expression  with DR=100 dB and Q=1000. (DR is estimated 

assuming the white noise contribution from the cryogenic amplifier with equivalent noise 

temperature =10 K at 419 MHz and onset of Duffing nonlinearity of the NEMS.) We 

attribute this discrepancy to the conversion of other noise sources to side band of the 

carrier through the mixer or the nonlinearity of the circuit. 

20/-10)/1()( DR
AA Q=τσ

NT
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Table 4.2. Summary of experimental parameters used in the frequency modulation 
phase-locked loops (FM PLL) at very high frequency (VHF) and ultra high 

frequency (UHF) bands 
 

Parameter Symbol VHF PLL UHF PLL 

Resonant Frequency ω0/2π 190MHz 419MHz 

Quality Factor Q 5000 1600 

Transducer Voltage max
transucerV  ~1μV ~1μV 

RF Gain KRF 35dB 45dB 

IF Gain KIF 500 500 

Mixer Gain KM ~0.1 ~0.1 

Modulation Frequency ωm/2π 1.3kHz 10kHz 

Modulation Voltage Vm 30mV 30mV 

Frequency Pulling 
Coefficient KV 100kHz/V 50kHz/V 

Sensitivity Sensitivity 200mV 1 mV 

Dividing Factor DF 10 10 

Full Scale Voltage Vfullscale 10V 10V 

Lock-in Time Constant τlock-in 10ms 10ms 

Modulation Index Μ 2.3 0.15 

Loop Gain (Estimated) Kloop ~4.8 ~4.5 

Loop Gain (Measured) Kloop ~1 ~1 
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Figure 4.10. Phase noise density of the 190 MHz frequency modulation phase-locked 

loop (FM PLL). The phase noise density of the 190 MHz FM PLL is shown. Between 15 

mHz and 30 Hz , the phase noise spectrum of the 190 MHz phase-locked loop exhibits 

flicker noise, i.e., having  dependence on the offset frequency. Above 30 Hz, it rolls 

off at the slope of 50 dB/decade due to the loop bandwidth limited by lock-in detection 

=32 Hz (with 

3/1 f

)2/1)(1( inlockloopPLL Kf −+= πτΔ inlock −τ =10 ms and =1). loopK
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Figure 4.11. Allan deviation of the 133 MHz frequency modulation phase-locked 

loop (FM PLL). The Allan deviation of the 133 MHz FM PLL versus averaging time, 

calculated from frequency data over the course of one hour, is shown here. At logarithmic 

scale, the Allan deviation is nominally independent of averaging time and thus consistent 

with the observed flicker noise in the phase noise spectrum. The error bar in each data 

point represents the one-standard-deviation confidence interval of the Allan deviation. 
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Figure 4.12. Phase noise density of the 419 MHz frequency modulation phase-locked 

loop (FM PLL). The phase noise density of the 419 MHz FM PLL is shown. Between 15 

mHz and 30 Hz, the phase noise spectrum of the 419 MHz phase-locked loop exhibits 

white noise, having  dependence on offset frequency. Above 30 Hz, it rolls off at the 

slope of  40 dB/decade due to the loop bandwidth limited by lock-in detection 

=32 Hz (with 

2/1 f

)2/1)(1( inlockloopPLL Kf −+= πτΔ inlock −τ =10 ms and =1). loopK
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Figure 4.13. Allan deviation of the 419 MHz frequency modulation phase-locked 

loop (FM PLL).  The Allan deviation of the 419 MHz FM PLL versus averaging time, 

calculated from frequency data over the course of one hour, is shown here. The error bar 

in each data point represents the one-standard-deviation confidence interval of the Allan 

deviation. 
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4.5 Comparison with Local Oscillator Requirement of Chip Scale Atomic 

Clock 

The chip scale atomic clock is the vapor cell atomic clock, scaled down to 

microelectronic chip size.6 The operation of CSAC requires a LO to interrogate the 

atomic transitions to provide the frequency precision. The frequency reference 

configuration consists of the physics package, the control circuitry, and the LO. In the 

physics package, the hyperfine transition of the atoms in the vapor cell is induced by a 

vertical cavity surface emitting laser (VCSEL), modulated at microwave frequency. The 

optical transmission is subsequently sensed by a semiconductor detector to produce a 

microwave signal, which is phase locked to the LO to optimize the long term and short 

term frequency stabilities through the control circuitry. Due to their small size and low 

operating power, NEMS oscillators are very promising candidates as the LO for CSAC, 

so it is interesting to compare our achieved noise floor with the LO requirement and 

evaluate their viability for such applications. 

Kitching calculates the LO requirement by demanding that the fractional 

frequency instability of the CSAC satisfy the DAPRA program goal of 10-11 for one hour 

averaging time.5 Figure 4.14 shows the phase noise floor of the LO requirement using the 

hyperfine transitions of Rb87 at frequency 6.8 GHz together with the measured phase 

noise spectra of all the phase-locked loops presented so far, properly scaled to 6.8 GHz. 

Although the high frequency (>20 kHz) and low frequency (<0.5 Hz) ends of the spectra 

barely meet the requirement, the middle band between 0.5 Hz and 20 kHz is still 40 dB 

higher than the requirement. This is due to extrinsic transducer amplifier noise in our still 

unoptimized experimental configuration. Also shown in figure 4.14 are the projected 

phase noise spectra of 400 MHz NEMS-based oscillators with Q = 104 and Q = 105, 
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limited by thermomechanical noise at room temperature. They are certainly able to meet 

the requirements of CSAC with at least 30 dB margin at all frequencies. 

Figure 4.15 shows the corresponding Allan deviations of all phase-locked loops 

versus averaging time Aτ , and the LO requirement. For Aτ  longer than 1 sec, all the 

experimentally achieved Allan deviations already meet the LO requirement. For Aτ  < 1 

sec, the only available Allan deviation data for the 419 MHz PLL exhibits Aτ/1  

dependence on the averaging time, which is worse than the LO requirement. Also shown 

in figure 4.15 are the projected Allan deviations of 400 MHz NEMS-based oscillators for 

Q=104 and Q=105, limited by thermomechanical noise at room temperature. They are 

certainly able to meet the LO requirement for all averaging times ranging from 10-7 sec to 

100 sec. Meeting the LO requirement in terms of both phase noise spectra and Allan 

deviations clearly demonstrate the viability of the NEMS oscillators as the LO for CSAC. 
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Figure 4.14. Phase noise spectrum of NEMS-based phase-locked loops versus the 

local oscillator (LO) requirement of chip scale atomic clock (CSAC). The measured 

phase noise spectra of 125 MHz, 190 MHz and 419 MHz phase-locked loops based on 

NEMS are compared to the LO requirement of CSAC, upon proper scaling to 6.8 GHz. 

The projected phase noise spectra of 400 MHz NEMS oscillators with Q=104 and Q=105, 

limited by thermomechanical fluctuations at room temperature, clearly shows the ability 

to meet the CSAC requirement. 
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Figure 4.15. Allan deviations of NEMS-based phase-locked loops versus the local 

oscillator (LO) requirement of chip scale atomic clock (CSAC). The measured Allan 

deviations of 125 MHz, 190 MHz and 419 MHz phase-locked loops based on NEMS are 

compared to the LO requirement of CSAC. The projected Allan deviations of 400 MHz 

oscillators based on NEMS of Q=104 and Q=105, limited by thermomechanical 

fluctuations at room temperature, clearly meet the LO requirement of CSAC. 
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4.6 Experimental Measurement of Diffusion Noise  

We have analyzed many noise processes in detail in chapter 3. All these noise 

processes arise from local fluctuation of the intrinsic thermodynamic properties of a 

physical system in equilibrium.7 Although these fluctuations become noise which limits 

NEMS performance as sensors or resonators, they also provide a potential source of 

information.8,9 The fluctuation around the thermodynamic mean is proportional to the 

number of independent accessible degree of freedom. Moreover, the spectral density of 

fluctuations is precisely governed by the dynamic parameters of the systems as generally 

expressed by the fluctuation-dissipation theorem.7 In particular, when gaseous species 

adsorb on a NEMS device, typically from the surrounding environment, they can diffuse 

along the surface in and out of the device. Thus the number of adsorbed atoms in the 

device can fluctuate, which translates into mass fluctuation and hence frequency 

fluctuations. The noise spectrum in this case is governed by the diffusion time. We have 

proposed the diffusion noise theory of NEMS in section 3.5. Here we demonstrate the 

experimental measurement of the diffusion noise arising from adsorbed xenon atoms on 

NEMS surface. 

We incorporate the NEMS device into a low-noise FM PLL circuit (see section 

4.4). Data are obtained from a NEMS resonator with fundamental resonant frequency 

f0~190 MHz and dimensions, 2.3 μm (L) × 150 nm (w) × 100 nm (t). (The surface area of 

the device is =3.45x10DA -13 m2.) The device is a doubly clamped beam patterned from 

SiC epilayers4 and capped with thermally evaporated dual metallic layers: 30 nm Al 

(bottom) and 5 nm Ti (top). (The effective vibratory mass of the device, including the 

metallic layers, is =96 fg.) After fabrication, the device is loaded into a UHV effM
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cryostat, actuated magnetomotively,4 and exhibits Q of ~5000 for the fundamental in-

plane flexural mode of vibration at the measurement temperatures ~58 K.  

Xenon is used in our experiments due to its large atomic mass ( =130 amu), 

and its well characterized surface behavior in literature.

Xem

10-14 A gas nozzle is used to 

deliver a constant, calibrated flux to the device (see also section 5.2). The flux to the 

device, ,Φ  is 2.65×1017 atom/m2sec, corresponding to an effective pressure of 6.6×10-8 

torr at 58 K. Data presented here are taken at constant flux, while changing the 

temperature of the device. 
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Figure 4.16. Experimental configuration for diffusion noise measurement.  A gas 

nozzle with a 300 μm aperture provides a controlled flux of atoms or molecules.  The 

flux is determined by direct measurements of the gas flow rate, in conjunction with a 

well-validated model for the molecular beam emanating from the nozzle.  
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First, we measure the adsorption spectrum, defined as the total number of 

adsorbed xenon atoms versus temperature. As the device is cooled below 57 K, we 

observe irreversible accumulation of xenon in solid phase due to the two-dimensional 

solid-gas phase transition.11 The adsorption of xenon is fully reversible above this 

transition temperature. All the measurements are thus done above 57 K. We take the 

resonance frequency data of the device versus temperature with applied flux and without 

flux, denoted by  and , respectively. The adsorption spectrum is deduced 

from the frequency change by 

)(TfG )(Tf NG

)2//()()(()( πℜ−−= TfTfmTN NGGXe  due to the 

presence of gas, where ==ℜ effMf 2/2/ 0π 0.99 Hz/zg is the mass responsivity of the 

device.15 The coverage θ , defined as the number of adsorbed atoms per unit area, i.e., 

, is 6.67×10DATN /)( 14 atoms/cm2 at T =58 K, consistent with a commensurate 

monolayer coverage of  5×1014 atoms/cm2 on Pt(111) at T=85 K.13 Because the 

roughness of thermally evaporated Ti top layer of the device completely blurs the 

monolayer transition of xenon, we do not observe such a transition in the adsorption 

spectrum.2  
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Figure 4.17. Adsorption spectrum of xenon atoms on NEMS surface. The adsorption 

spectrum is deduced from =)(TN )2//()()(( πℜ−− TfTfm NGGXe , =ℜ π2/ 0.99 Hz/zg 

is the mass responsivity of the device. and  denote the resonant frequency 

data with applied gaseous flux and no flux, respectively.  

)(TfG )(Tf NG
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Figure 4.18 shows the representative data of the spectral density of fractional 

frequency noise at T= 58 K with and without gaseous flux. The spectrum with no applied 

flux exhibits flicker noise from 0.1 Hz to 2 Hz and flattens out above 2 Hz, reflecting the 

instrumentation noise of FM PLL. In contrast, the spectrum with applied flux clearly 

shows excess noise contribution from gas. We have of course tested that the parameters 

affecting the loop gain of FM PLL (in particular, the quality factor of the resonator) do 

not change with temperature or coverage, and therefore cannot be responsible for the 

excess noise. More quantitatively, we calculate the fractional frequency noise contributed 

from gas, , by subtracting the spectral density of fractional frequency noise with 

zero flux, , from that with applied flux at given temperatures , i.e., from 

the formula  All the resulting spectra, as shown in figure 

4.19, exhibit predicted functional form from equation (3.53), i.e., 

)(ωG
yS

)(ωNG
yS )(ωTotal

yS

).()()( ωωω NG
y

Total
y

G
y SSS −=

∫
∞

+
=

0
2/1

2

)/1(
cos)(

4
)()( τ

ττ
ωτ

π
ω d

M
mTaNS

Deff

Xe
y .                                                                 (4.18) 

These spectral data are fitted to extract the diffusion time Dτ , using equation (4.18). 

Because the extracted diffusion times, ranging from 0.114 sec to 0.053 sec, are much 

shorter than the typical correlation times of an adsorption-desorption cycle,16 the 

observed noise spectra cannot be attributed to adsorption-desorption process.  
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Figure 4.18. Representative fractional frequency noise spectra. The spectral density 

of fractional frequency with and without gaseous flux at T=59.2 K is shown. The 

spectrum,  with no applied flux (black) reflects the instrumentation noise of FM 

PLL. In contrast, the spectrum  with applied flux (red) clearly shows excess 

noise contribution from gas. The right hand axis shows the scale of the corresponding 

mass fluctuations in unit of zg/Hz

),(ωNG
yS

)(ωTotal
yS

1/2. 
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Figure 4.19. Spectral density of fractional frequency noise contributed from gas. The 

spectral density of fractional frequency noise contributed from the gaseous flux at four 

measurement temperatures is displayed. We calculate the fractional frequency noise 

contributed from gas, , by subtracting the spectral density of fractional frequency 

noise with zero flux, , from that with applied flux at given temperatures 

, i.e., from the formula . The right hand axis shows 

the scale of the corresponding mass fluctuations in unit of zg/Hz
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From the diffusion noise theory, we can also calculate the diffusion coefficients 

 by , where =4.43 is a numerical factor, and =2.3 μm is the device 

length, (see section 3.5). Table 4.3 lists the extracted diffusion times and diffusion 

coefficients together with the corresponding coverage at four measurement temperatures. 

In general, the surface diffusion of xenon is determined by the corrugation of the 

adsorbate-surface potential and the attractive interactions between the adsorbed atoms.

D )2/( 22
DaLD τ= a L

13 

At very dilute limits, the xenon atoms behave and diffuse like an ideal two-dimensional 

gas.10,12 At higher coverage, however, the diffusion is more dominated by the attractive 

interaction between the adsorbed xenon atoms and as a result, the diffusion coefficient 

dramatically decreases with increasing coverage.13 Our extracted diffusion coefficients 

are very close to D=2x10-8 cm2/s, reported by Meixner and George for xenon on Pt(111) 

for coverage =θ 5x1014 atoms/cm2 in spite of very different surface conditions and 

measurement temperatures.13 The indifference of the diffusion coefficients to surface 

conditions and temperatures suggests that in both cases the attractive interaction between 

adsorbed xenon atoms completely dominates the surface diffusion. 

Figure 4.21 shows the measured Allan deviation )( AA τσ  versus temperature with 

and without the gaseous flux for averaging time Aτ = 1 sec. The Allan deviation with zero 

applied flux, denoted by , reflects the instrumentation noise floor of the FM PLL and 

slightly decreases with temperature. We attribute this slight decreasing trend with 

temperature to the corresponding increase in quality factor (15%) from T=75 K to T=58 

K. In contrast, for temperature below 65 K, the Allan deviation with gaseous flux,  

clearly exceeds the instrumentation noise floor due to the excess noise contribution from 

the gas. Figure 4.22 shows the Allan deviation contributed from gas, , calculated by 

NG
Aσ

,Total
Aσ

G
Aσ
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subtracting the Allan deviation without gas from Allan deviation with gas, i.e.,  from the 

formula .  222 )()()( NG
A

Total
A

G
A σσσ −=

From equation (3.58), the expression for Allan deviation from diffusion noise 

theory is 

)()(2)2/(sin)(
)(

8)(
2

0

4
2

2

A

D

eff

Xe
Ay

A
AA M

mTaNdS
τ
τ

Χ
π

ωωτω
ωτ

τσ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
== ∫

∞

,                     (4.19) 

where )/( AD ττΧ is a function defined in equation (3.59). Equation (4.19) shows that 

Allan deviation associated with the number fluctuation of an ensemble of adsorbed atoms 

is proportional to the square root of its total number, . Roughly speaking, we can 

thus attribute the monotonically increasing trend in Allan deviation in figure 4.22, as 

temperature is lowered, to the corresponding increase in the number of adsorbed xenon 

atoms in figure 4.17. Using equation (4.19) and measured  and 

)(TN

)(TN Dτ  from table 4.3, 

we calculate the Allan deviation and display the result in figure 4.22. In figure 4.22, we 

also show the calculated Allan deviation, ,6/)/()( rAeffXeOCCaAA MmN ττστσ = from 

Yong and Vig’s model for the case of immobile monolayer adsorption, assuming the 

monolayer coverage = 2.3x10aN 6 at T=58 K and the sticking coefficient s=1 to estimate 

the correlation time for an adsorption-desorption cycle from )/()( Dr sATN Φτ =  and the 

variance of occupational probability from  (see section 3.4).22 /)( aaOCC NNNN −=σ 17,18 

As shown in figure 4.22, the experimentally observed Allan deviation is consistent with 

the prediction from diffusion noise theory. In contrast, the estimated Allan deviation from 

Yong and Vig’s model, vanishing at completion of one monolayer, is apparently 

contradictory to experimental observation. 
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Figure 4.20. Spectral density of fractional frequency noise with fitting.  Data (black) 

from figure 4.19 are fitted by a predicted function form in equation (4.18) (red) from 

diffusion noise theory to extract the diffusion times. (a) Spectral density data with 

fitting at T= 58 K. (b) Spectral density data with fitting at T=59.2 K. (c) Spectral 

density data with fitting at T=60.7 K. (d) Spectral density data with fitting at T=63.4 

K.  
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Temp N θ τD D 
K atom atom/cm2 sec cm2/sec 
58 2.30×106 6.67×1014 0.114 1.15 10× -8

59.2 1.79×106 5.19×1014 0.0637 2.06 10× -8

60.7 1.33×106 3.86×1014 0.0553 2.37 10× -8

63.4 8.08×105 2.34×1014 0.0530 2.47 10× -8

 
Table 4.3. Summary of diffusion times and coefficients versus temperature 
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Figure 4.21. Allan deviation data with gas and without gas. The Allan deviation 

(black) with zero applied flux reflects the instrumentation noise floor of the FM PLL. For 

temperature below 65 K, the Allan deviation (red) with gas clearly exceeds that without 

gas due to the excess noise contribution from the gas. The right-hand axis shows the scale 

of the corresponding mass fluctuation in units of zg. 
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Figure 4.22. Comparison with prediction from diffusion noise theory and Yong and 

Vig’s model. The Allan deviation (red) contributed from gas, , is calculated by 

subtracting the Allan deviation without gas from Allan deviation with gas, i.e.,  from the 

formula . The Allan deviation (blue) from diffusion noise is 

calculated using equation (4.19) and measured  and 

G
Aσ

222 )()()( NG
A

Total
A

G
A σσσ −=

)(TN Dτ  from table 4.3. For 

comparison, the calculated Allan deviation (dark gray) from Yong and Vig’s model is 

also displayed, assuming the monolayer coverage = 2.3x10aN 6 at T=58 K and the 

sticking coefficient s=1. The right hand axis shows the scale of the corresponding mass 

fluctuation in units of zg. 
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As already mentioned, no appreciable change in quality factor is observed from 

the adsorbed species in our experiment and thus the observed diffusion noise is non-

dissipassive in nature, a very important attribute of parametric noise as pointed out by 

Cleland and Roukes.17

Having verified that the observed fluctuations are due to the mass fluctuation 

caused by diffusion, we can relate the spectral density of mass fluctuation  to the 

spectral density of fractional frequency noise  by the expression 

 with the mass responsivity. Similarly, we relate the Allan 

deviation to the corresponding mass fluctuation 

)(2/1 ωMS

)(2/1 ωyS

)2//()()( 2/1
0

2/1 πωω ℜ= yM SfS

Mδ  by )2//(0 πσδ ℜ= AfM . The scale 

in the right hand axes in figure 4.18, 4.19, 4.21 and 4.22 shows that the corresponding 

mass fluctuation is on the order of tens of zeptogram (1 zeptogram = 10-21 gram) and thus 

our experiment is indeed the “fluctuation sensing” at zeptogram scale.  

 

4.7 Conclusion  

In this chapter, we present the experimental measurement of phase noise of 

NEMS. We first analyze control servo behavior of a phase-locked loop based on NEMS 

and give the expressions for the locked condition and measurement bandwidth. Based on 

such a scheme, we then present in detail several electronic implementations, all of which 

are designed to lock minute mechanical resonance of NEMS and complement each other 

in their merits. The homodyne phase-locked loop based on a two-port NEMS device fully 

utilizes the intrinsic bandwidth provided by NEMS, and is very desirable for sensing 

applications requiring fast response time. It requires, however, laborious manual 

adjustments and is limited in the locking range. On the other hand, the FM PLL, touted 
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for its easy loop implementation and large locking range, suffers from the limited 

bandwidth due to the lock-in detection. In general, the observed Allan deviation )( AA τσ  

is consistent with the estimated value from the expression  with 

experimentally determined dynamic range DR and Q. We summarize the performance of 

all the phase-locked loops with their device parameters considered in this chapter in table 

4.1. 

20/-10)/1()( DR
AA Q=τσ

We then consolidate the phase noise and Allan deviation data of all the phase-

locked loops and compare them with the LO requirement of CSAC. While our current 

performance, limited by transducer amplifier noise, only partially meets the requirement, 

the projected phase noise and Allan deviation for 400 MHz NEMS based oscillators with 

Q=104 and Q=105, limited by thermomechanical noise, clearly show the potential for this 

application.  

We further demonstrate the measurement of diffusion noise arising from adsorbed 

xenon atoms on the NEMS device. In general, our experimental results can be explained 

with the diffusion noise theory. The measured spectra of fractional frequency noise 

confirm the predicted functional form from the diffusion noise theory and the extracted 

diffusion coefficients agree well with the reported values in literature. Moreover, the 

measured Allan deviation contributed from gas is consistent with the theoretical estimates 

from diffusion noise theory, using the total number of adsorbed atoms and extracted 

diffusion times. Finally, we point out that the diffusion noise or its equivalent mass 

fluctuation, measured with unprecedented mass sensitivity at zeptogram level, imposes 

the ultimate sensitivity limits of any nanoscale gas sensors, regardless of their sensing 

mechanisms. But more importantly, this work, for the first time, goes beyond simple 
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measurement of adsorption spectrum in nanodevices and demonstrate a canonical 

example where a high quality factor NEMS device, inserted into a phase-locked loop, 

serves to probe the noise process of the adsorbed species and extract the microscopic and 

dynamic information of surface diffusion. We expect the generalization of this approach 

will find many interesting applications in surface science of nanodevices.  
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Chapter 5 
 
Zeptogram Scale Nanomechanical 
Mass Sensing 
 
 
 
Very high frequency nanoelectromechanical systems (NEMS) provide 

unprecedented sensitivity for inertial mass sensing.  We demonstrate in situ 

measurements in real time with mass noise floor ~20 zeptogram.  Our best mass 

sensitivity corresponds to ~7 zeptograms, equivalent to ~30 Xenon atoms or the 

mass of an individual 4 kDa molecule.  Detailed analysis of the ultimate sensitivity of 

such devices based on these experimental results indicates that NEMS can 

ultimately provide inertial mass sensing of individual intact, electrically neutral 

macromolecules with single-Dalton (1 amu) sensitivity. 
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5.1 Introduction    

Today mechanically based sensors are ubiquitous, having a long history of 

important applications in many diverse fields of science and technology. Among the most 

responsive are sensors based on the acoustic vibratory modes of crystals,1,2 thin films,3 

and more recently, microelectromechanical systems (MEMS)4,5 and 

nanoelectromechancial systems (NEMS).6,7 Two attributes of NEMS devices—minuscule 

mass and high quality factor (Q)— provide them with unprecedented potential for mass 

sensing. This is revealed in our analysis in chapter 3 and demonstrated by recently 

achieved femtogram6 and attogram resolution.7 Attainment of zeptogram (1 zg=10-21 g) 

sensitivity shown herein opens many new possibilities; among them is directly 

“weighing” the inertial mass of individual, electrically neutral macromolecules.8 Such 

sensitivity also enables the observation of extremely minute (statistical) mass fluctuations 

that arise from the diffusion of atomic species upon the surfaces of NEMS devices—

processes that impose fundamental sensitivity limits upon nanoscale gas sensors (see 

section 4.6). As an initial step into these applications, we perform mass sensing 

experiments with gaseous species adsorbed on the NEMS surfaces at the zeptogram 

scale. 

 

5.2 Experimental Setup 

All the experiments are done in situ within a cryogenically cooled, ultrahigh 

vacuum apparatus with base pressure below 10-10 Torr.  As shown in figure 5.1, a minute, 

calibrated, highly controlled flux of Xe atoms or N2 molecules is delivered to the device 

surface by a mechanically shuttered gas nozzle within the apparatus.9 The nozzle has an 
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orifice with a 100 μm diameter aperture, which is maintained at T=200 K by heating it 

with ~1 W of power to prevent condensation of the gas within the orifice and its supply 

line. Gas is delivered to this nozzle from a buffering chamber (volume VC =100 cm3 for 

the N2 experiments, and 126 cm3 for the Xe experiments), in turn maintained at 

temperature TC = 300 K.  Prior to the commencement of a run, this chamber is 

pressurized with the species to be delivered, then sealed to allow escape only through the 

nozzle. Thereafter, the rate of pressure decrease, , which is continuously monitored, is 

proportional to the total adsorbate delivery rate from the gas nozzle to the NEMS sensor, 

i.e., the number of incident atoms or molecules per unit time.  The total number flux of 

gas atoms or molecules out of the nozzle in steady state is given by . 

CP
.

CBCCC TkVPN /
..

=

Real-time mass sensing is enabled by the incorporation of NEMS device into a 

VHF frequency modulation phase-locked loop (FM PLL), described in section 4.4. With 

this measurement scheme, data are obtained from two separate sets of experiments 

involving different NEMS resonators: a first device (hereafter, D133) with a fundamental 

resonant frequency f0~133 MHz having dimensions: 2.3 μm (L) x 150 nm (w) x 70nm (t), 

and a second (hereafter, D190) with f0~ 190 MHz and dimensions 2.3 μm (L) x 150 nm 

(w) x 100 nm (t). Both are patterned from SiC epilayers10 and exhibit a quality factor of 

Q =5000 in the temperature range of the present measurement. 

For our experiment, the NEMS devices are maintained at high vacuum (~10-7 

torr) at 300K for >1 day prior to mass accretion studies. The experiments are carried out 

immediately after cryogenically cooling the devices in a background pressure below    

~10-10 torr. Hence we assume the arriving species adsorb with unity sticking probability; 
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for our choices of Xe and N2 this is a reasonable assumption.11 The mass deposition rate 

to the device is then  

)/( 2
...

DCDDD LNmANmM π== ,                                                                                   (5.1) 

where m is the mass of adsorbed species ( =131 amu, =28 amu), the factor AXem
2Nm D/L2  

is the solid angle of capture,  AD  is the surface area of the device exposed to the flux, and 

LD  is the distance between the device and nozzle.9 The weighting factor 1/π accounts for 

the cosine distribution of the beam profile. For N2 experiment, = 2.25 x 10CN
.

12 

molecules/sec, = 2.37 cm, and = 3.45 x 10DL DA -13 m2, yielding =20.5 zg/sec. For 

the Xe experiment, the setting are = 2.81 x 10

DM
⋅

CN
.

12 atoms/sec, =1.86 cm, and 

=3.45x10

DL

DA -13 m2. These values yield = 195 zg/sec.   DM
⋅
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Figure 5.1. Experimental configuration. A gas nozzle with a 100 μm aperture provides 

a controlled flux of atoms or molecules. The flux is gated by a mechanical shutter to 

provide calibrated, pulsed mass accretions upon the NEMS device. The mass flux is 

determined by direct measurements of the gas flow rate, in conjunction with effusive-

source formulas for the molecular beam emanating from the nozzle.  
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5.3 Mass Sensing at Zeptogram Scale     

We first demonstrate the real time, in situ, zeptogram-scale mass accretion on 

D190, resulting from pulsed delivery of N2 molecules at T=37 K, as shown in figure 5.2. 

With a mass deposition rate  = 20.5 zg/sec, sequential openings of the shutter for 5 

second intervals provides a series of 100 zg accretions. The resulting discretely stepped 

frequency shifts tracked by the FM PLL confirm sequential, regular steps of mass 

accretion (each ~100 zg, i.e., ~2000 N

DM
⋅

2 molecules).12 The mass sensitivity Mδ  is set by 

the standard deviation of frequency fluctuations on the plateaus 

ℜ−=ℜ= /)(/
2/12

0fffM δδ .                                                                                  (5.2) 

Here effMf ∂∂=ℜ /0  is the mass responsivity of the device;  and  are the 

effective vibratory mass and resonant frequency of the device, respectively. The data of 

figure 5.2 demonstrate

effM 0f

Mδ =20 zg for the 1 sec averaging time employed. 

The mass responsivities for the devices are directly determined from such pulsed 

atom or molecule deposition measurements. Data are shown both for D190 (for 

conditions described above) and for D133 in figure 5.3. We expose D133 to Xe with 

mass deposition rate =195 zg/sec and opening shutter for 1 sec yields ~200 zg mass 

accretion (or equivalently ~900 Xe atoms) per data point at T =46 K.

DM
⋅

 Both devices 

demonstrate unprecedented responsivities: ℜ , directly extracted from the slope of the 

linear fit, at the level of roughly 1 Hz shift per zeptogram of accreted mass. More 

precisely, we find  Hz/zg and 96.0133 ≈ℜD 16.1190 ≈ℜD Hz/zg. These values are in 

excellent agreement with the theoretical estimates from the expression , effMf 2/0≈ℜ
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which yields ~0.89 Hz/zg for D133 ( ≈73 fg) and ~0.99 Hz/zg for D190 ( ≈96 

fg).

effM effM

8

Our highest mass sensitivity, at present, is demonstrated with D133 stabilized at 

T= 4.2 K. Exceptionally small fractional frequency fluctuations 
2/12

00 )(/ ffff −=δ = 

5×10-8 (50 ppb) are observed over a course of ~4000 sec interval with 1 sec averaging 

time (right inset of figure 5.3). This demonstrates attainment of a mass sensitivity of 

Mδ ~7 zg, equivalent to accretion of ~30 Xe atoms or, alternatively, of an individual 4 

kDa macromolecule. Using ≈73 fg, Q~5000, and dynamic range DR ~80 dB, such a 

mass sensitivity is consistent with the estimated value 2.9 zg from the expression, 

effM

20/10)/2(~ DR
eff QMM −δ ,               (5.3) 

as described by Ekinci et al.7 Our current dynamic range is determined, at the bottom end, 

by the noise floor of the posttransducer readout amplifier of the NEMS device and, at the 

top end, by the onset of nonlinearity arising from the Duffing instability for a doubly 

clamped beam (see section 3.2). With our current experimental setup, we are able to track 

mass accretions up to a total of ~2.3x106 Xe atoms on D190, with no observable change 

in the quality factor (see section 4.6). This confirms a remarkably large mass dynamic 

range from a few kDa (or several zeptogram sensitivity) up to ~100 MDa range, 

corresponding to almost femtogram-scale accretions.  
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Figure 5.2.  Real time zeptogram-scale mass-sensing experiment.  Sequential mass 

depositions are executed in situ upon the 190 MHz device within a cryogenic UHV 

apparatus. The resulting frequency shift of the NEMS device is tracked in real time by a 

very high frequency (VHF) phase-locked loop.  Each step in the data corresponds to a 

~100 zg mass accretion (~2000 N2 molecules) resulting from opening the mechanical 

shutter for 5 sec.  The root-mean-square frequency fluctuations of the system correspond 

to a mass sensitivity of Mδ = 20 zg for the 1 sec averaging time employed. 
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Figure 5.3. Mass responsivities of nanomechanical devices.  The mass responsivities 

(resonant frequency shifts versus accreted mass) are measured for two VHF NEMS 

devices (operating at 133 MHz and 190 MHz).  Xe atoms are accreted at T=46 K upon 

the 133 MHz device with ~200 zg mass increments per data point (purple).  N2 molecules 

are accreted at T=37 K upon the 190 MHz device with ~100 zg mass increments per data 

point (blue).  The slopes of the mass loading curves directly exhibit the unprecedented 

mass responsivity on the order 1 Hz per zeptogram. (right inset) Mass sensitivity.   The 

“mass noise floor” for the 133 MHz device, which originates from its frequency-

fluctuation noise, is measured with 1 sec averaging time over the course of ~4000 sec 

while it is temperature stabilized at 4.2 K with zero applied flux.  The average root-mean- 

square value (red dashed line), reflects the attainment of ~7 zg (i.e., ~4 kDa) mass 

sensitivity, the equivalent of ~30 Xe atoms. 
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5.4 Conclusion 

We demonstrate NEMS mass sensing at the zeptogram scale. The agreement 

between predicted and experimentally observed values for both ℜ  and Mδ confirms our 

analyses in chapter 3 and validates their use in projecting a path toward single-Dalton 

mass sensitivity.8 Attainment of this goal is possible, for example, with a device having a 

fundamental resonant frequency of 1 GHz, vibratory mass of Meff=1x10-16 g, and 

Q=10,000, using a transduction-readout system providing DR=80 dB. These are realistic 

parameters for next generation NEMS.13 Huang, et al. recently attained NEMS vibrating 

in fundamental mode at microwave frequencies.13 In conjunction with the recent 

development of techniques for improved Q,14 and the advances in frequency-shift readout 

in the tens of ppb range, it is clear that NEMS sensing at the level of  ~1 Da will soon be 

within reach. Attainment of NEMS mass sensors with single-Dalton sensitivity will make 

feasible the detection of individual, intact, electrically neutral macromolecules with 

masses ranging well into the hundreds of MDa range. This is an exciting prospect — 

when realized it will blur the traditional distinction between inertial mass sensing and 

mass spectrometry. We anticipate that it will also open intriguing possibilities in atomic 

physics and life science.15,16 
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Chapter 6*

 
Monocrystalline Silicon Carbide 
Nanoelectromechanical Systems 
 
 
 
SiC is an extremely promising material for nanoelectromechanical systems given its 

large Young’s modulus and robust surface properties. We have patterned 

nanometer scale electromechanical resonators from single-crystal 3C-SiC layers 

grown epitaxially upon Si substrates. A surface nanomachining process is described 

that involves electron beam lithography followed by dry anisotropic and selective 

electron cyclotron resonance plasma etching steps. Measurements on a 

representative family of the resulting devices demonstrate that, for a given 

geometry, nanometer-scale SiC resonators are capable of yielding substantially 

higher frequencies than GaAs and Si resonators.  

 

© 2001 American Institute of Physics.  [DOI: 10.1063/1.1338959] 

                                                 
* This section has been published as: Y. T. Yang, K. L. Ekinci, X. M. H. Huang, L. M. Schiavone, M. L. 
Roukes, C. A. Zorman, and M. Mehregany, Appl. Phys. Lett. 78, 162-164 (2001). 
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6.1 Introduction  

Silicon carbide is an important semiconductor for high temperature electronics 

due to its large band gap, high breakdown field, and high thermal conductivity. Its 

excellent mechanical and chemical properties have also made this material a natural 

candidate for microsensor and microactuator applications in microelectromechanical 

systems (MEMS).1,2 

Recently, there has been a great deal of interest in the fabrication and 

measurement of semiconductor devices with fundamental mechanical resonance 

frequencies reaching into the microwave bands.3 Among technological applications 

envisioned for these nanoelectromechanical systems (NEMS) are ultrafast, high-

resolution actuators and sensors, and high frequency signal processing components and 

systems. From the point of view of fundamental science, NEMS also offer intriguing 

potential for accessing regimes of quantum phenomena and for sensing at the quantum 

limit.4 

SiC is an excellent material for high frequency NEMS for two important reasons. 

First, the ratio of its Young’s modulus, E, to mass density, ρ, is significantly higher than 

for other semiconducting materials commonly used for electromechanical devices, e.g., 

Si and GaAs. Flexural mechanical resonance frequencies for beams directly depend upon 

the ratio ρ/E . The goal of attaining extremely high fundamental resonance 

frequencies in NEMS, while simultaneously preserving small force constants necessary 

for high sensitivity, requires pushing against the ultimate resolution limits of lithography 

and nanofabrication processes. SiC, given its larger ρ/E , yields devices that operate at 

significantly higher frequencies for a given geometry, than otherwise possible using 
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conventional materials. Second, SiC possesses excellent chemical stability.3 This makes 

surface treatments an option for higher quality factors (Q factor) of resonance. It has been 

argued that for NEMS the Q factor is governed by surface defects and depends on the 

device surface-to-volume ratio.2 

Micron-scale SiC MEMS structures have been fabricated using both bulk and 

surface micromachining techniques. Bulk micromachined 3C-SiC diaphragms, cantilever 

beams, and torsional structures have been fabricated directly on Si substrates using a 

combination of 3C-SiC growth processes and conventional Si bulk micromachining 

techniques in aqueous KOH and TMAH solutions.5,6 Surface micromachined SiC devices 

have primarily been fabricated from polycrystalline 3C-SiC (poly-SiC) thin films 

deposited directly onto silicon dioxide sacrificial layers, patterned using reactive ion 

etching, and released by timed etching in aqueous hydrofluoric acid solutions.8 Single 

crystal 3C-SiC surface micromachined structures have been fabricated in a similar way 

from 3C-SiC-on-SiO2 substrates created using wafer bonding techniques.9 We have 

developed an alternative approach for nanometer-scale single crystal, 3C-SiC layers that 

is not based upon wet chemical etching or wafer bonding. Especially noteworthy is that 

our final suspension step in the surface nanomachining process is performed by using a 

dry etch process. This avoids potential damage due to surface tension encountered in wet 

etch processes, and circumvents the need for critical point drying when defining large, 

mechanically compliant devices. We first describe the method we developed for 

fabrication of suspended SiC structures, then demonstrate the high frequency 

performance attained from doubly clamped beams read out using magnetomotive 

detection. 
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6.2 Device Fabrication and Measurement Results  

               The starting material for device fabrication is a 259 nm thick single crystalline 

3C-SiC film heteroepitaxially grown on a 100 mm diameter (100) Si wafer. 3C-SiC 

epitaxy is performed in a rf induction-heated reactor using a two-step, carbonization-

based atmospheric pressure chemical vapor deposition (APCVD) process detailed 

elsewhere.10 Silane and propane are used as process gases and hydrogen is used as the 

carrier gas. Epitaxial growth is performed at a susceptor temperature of about 1330 °C. 

3C-SiC films grown using this process have a uniform (100) orientation across each 

wafer, as indicated by x-ray diffraction. Transmission electron microscopy and selective 

area diffraction analysis indicates that the films are single crystalline. The microstructure 

is typical of epitaxial 3C-SiC films grown on Si substrates, with the largest density of 

defects found near the SiC/Si interface, which decreases with increasing film thickness. A 

unique property of these films is that the 3C-SiC/Si interface is absent of voids, a 

characteristic not commonly reported for 3C-SiC films grown by APCVD. 

Fabrication begins by defining large area contact pads by optical lithography. A 

60 nm thick layer of Cr is then evaporated and, subsequently, standard lift-off is carried 

out with acetone. Samples are then coated with a bilayer polymethylmethacrylate 

(PMMA) resist prior to patterning by electron beam lithography. After resist exposure 

and development, 30–60 nm of Cr is evaporated on the samples, followed by lift-off in 

acetone. The pattern in the Cr metal mask is then transferred to the 3C-SiC beneath it by 

anisotropic electron cyclotron resonance (ECR) plasma etching. We use a plasma of NF3, 

O2, and Ar at a pressure of 3 mTorr with respective flow rates of 10, 5, 10 sccm, and a 
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microwave power of 300 W. The acceleration dc bias is 250 V. The etch rate under these 

conditions is ~65 nm/min. 

The vertically etched structures are then released by controlled local etching of 

the Si substrate using a selective isotropic ECR etch for Si. We use a plasma of NF3 and 

Ar at a pressure of 3 mTorr, both flowing at 25 sccm, with a microwave power 300 W, 

and a dc bias of 100 V. We find that NF3 and Ar alone do not etch SiC at a noticeable rate 

under these conditions. The horizontal and vertical etch rates of Si are ~300 nm/min. 

These consistent etch rates enable us to achieve a significant level of control of the 

undercut in the clamp area of the structures. The distance between the suspended 

structure and the substrate can be controlled to within 100 nm. 

After the structures are suspended, the Cr etch mask is removed either by ECR 

etching in an Ar plasma or by a wet Cr photomask etchant (perchloric acid and ceric 

ammonium nitrate). The chemical stability and the mechanical robustness of the 

structures allow us to perform subsequent lithographic fabrication steps for the requisite 

metallization (for magnetomotive transduction) step on the released structures. 

Suspended samples are again coated with bilayer PMMA and after an alignment step, 

patterned by electron beam lithography to define the desired electrodes. The electrode 

structures are completed by thermal evaporation of 5 nm thick Cr and 40 nm thick Au 

films, followed by standard lift-off. Finally, another photolithography step, followed by 

evaporation of 5 nm Cr and 200 nm Au and conventional lift-off, is performed to define 

large contact pads for wire bonding. Two examples of completed structures, each 

containing a family of doubly clamped SiC beams of various aspect ratios, are shown in 

figure 6.1. 

 135



 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6.1. SEM picture of doubly clamped SiC beams. Doubly clamped SiC beams 

patterned from a 259 nm thick epilayer. (left) Top view of a family of 150 nm wide 

beams, having lengths from 2 to 8 μm. (right) Side view of a family of 600 nm wide 

beams, with lengths ranging from 8 to 17 μm. 
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We have measured the fundamental resonance frequencies of both the in-plane 

and out-of-plane vibrational modes for a family of doubly clamped SiC beams, with 

rectangular cross section and different aspect ratios (length/width). Samples were glued 

into a chip carrier and electrical connections were provided by Al wirebonds. 

Electromechanical characteristics were measured using the magnetomotive detection 

technique11 from 4.2 to 295 K, in a superconducting solenoid within a variable 

temperature cryostat. The measured fundamental frequencies in this study ranged from 

6.8 to 134 MHz. The quality factors, extracted from the fundamental mode resonances for 

each resonator, range from 103<Q<104. Figure 6.2 shows the response of one 

representative beam with dimensions 8 μm (length) × 600 nm (width) × 259 nm 

(thickness). This particular device yields an in-plane resonant frequency of 71.91 MHz 

and a Q=4000 at 20 K. Quality factors at room temperature were typically a factor of 4–5 

smaller than values obtained at low temperature. 
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Figure 6.2. Representative data of mechanical resonance. A SiC doubly clamped 

beam resonating at 71.91 MHz, with quality factor Q=4000. The family of resonance 

curves are taken at various magnetic fields; the inset shows the characteristic 2B  

dependence expected from magnetomotive detection. For clarity of presentation here the 

data are normalized to response at zero magnetic field, with the electrode’s dc 

magnetoresistance shift subtracted from the data; these provide an approximate means for 

separating the electromechanical response from that of the passive measurement 

circuitry. 
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We now demonstrate the benefits of SiC for NEMS, by directly comparing 

frequencies attainable for structures of similar geometry made with SiC, Si, and GaAs. 

The fundamental resonance frequency, , of a doubly clamped beam of length, , and 

thickness, t, varies linearly with the geometric factor t/L

0f L

2 according to the simple relation 

20 03.1
L
tEf

ρ
= ,                                            (6.1) 

where E is the Young’s modulus and ρ is the mass density. In our devices the resonant 

response is not so simple, as the added mass and stiffness of the metallic electrode 

modify the resonant frequency of the device. This effect becomes particularly significant 

as the beam size shrinks. To separate the primary dependence upon the structural material 

from secondary effects due to electrode loading and stiffness, we employ a simple model 

for the composite vibrating beam.12 In general, for a beam comprised of two layers of 

different materials the resonance equation is modified to become 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

=
2211

2211
20 AA

IEIE
L

f
ρρ

η .                                  (6.2) 

Here the indices 1 and 2 refer to the geometric and material properties of the structural 

and electrode layers, respectively. The constant η depends upon mode number and 

boundary conditions; for the fundamental mode of a doubly clamped beam η =3.57. 

Assuming the correction due to the electrode layer (layer 2) is small, we can define a 

correction factor K, to allow direct comparison with the expression for homogeneous 

beam 
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Figure 6.3. Frequency versus effective geometric factor for three families of doubly 

clamped beams made from single-crystal SiC, Si, and GaAs. All devices are patterned 

to have the long axis of the device along <100>. Ordinate are normalized to remove the 

effect of additional stiffness and mass loading from electrode metallization. The solid 

lines are least squares fits assuming unity slope, and yield values of the parameter 

ρ/Ev =  that closely match expected values. 
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In this expression, I10 is the moment calculated in the absence of the second layer. 

The correction factor K can then be used to obtain a value for the effective geometric 

factor, , for the measured frequency.effLt ]/[ 2 13 Further nonlinear correction terms, of 

order higher than , are expected to appear if the beams are under significant 

tensile or compressive stress. The linear trend of our data, however, indicates that internal 

stress corrections to the frequency are small. 

effLt ]/[ 2

In figure 6.3, we display the measured resonance frequencies as a function of 

 for beams made of three different materials: GaAs, Si and SiC.effLt ]/[ 2 14 The lines in 

this logarithmic plot represent least squares fits to the data assuming unity slope. From 

these we can deduce the effective values of the parameter, ρ/Ev = , which is similar 

(but not identical) to the velocity of sound for the three materials.15 The numerical values 

obtained by this process are: =1.5×10)(SiCv 4 m/s,  =8.4×10)(Siv 3 m/s, and  

=4.4 ×10)(GaAsv 3 m/s. These are quite close to values calculated from data found in the 

literature: =1.2×10)(SiCv 4 m/s,16  =7.5×10)(Siv 3 m/s,17 and =4.0×10)(GaAsv 3 m/s,18 

respectively. The small discrepancies are consistent with our uncertainties in determining 

both the exact device geometries and the precise perturbation of the mechanical response 

arising from the metallic electrodes. Nonetheless, SiC very clearly exhibits the highest 

ρ/E  ratio.17

6.3 Conclusion  

In conclusion, we report a simple method for fabricating nanomechanical devices 

from single-crystal 3C-SiC materials. We demonstrate patterning mechanical resonators 

using a single metal mask, and just two steps of ECR etching. Our results illustrate that 
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SiC is an ideal semiconductor with great promise for device applications requiring high 

frequency mechanical response. 
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Chapter 7*

 
Balanced Electronic Detection of 
Displacement in 
Nanoelectromechanical Systems 
 
 
 
We describe a broadband radio frequency balanced bridge technique for electronic 

detection of displacement in nanoelectromechanical systems (NEMS). With its two-

port actuation-detection configuration, this approach generates a background-

nulled electromotive force in a dc magnetic field that is proportional to the 

displacement of the NEMS resonator. We demonstrate the effectiveness of the 

technique by detecting small impedance changes originating from NEMS 

electromechanical resonances that are accompanied by large static background 

impedances at very high frequencies. This technique allows the study of important 

experimental systems such as doped semiconductor NEMS and may provide 

benefits to other high frequency displacement transduction circuits.  

© 2002 American Institute of Physics. [DOI: 10.1063/1.1507833] 

                                                 
* This section has been published as: K. K. L. Ekinci, Y. T. Yang, X. M. H. Huang, and M. L. Roukes, 
Appl. Phys. Lett. 78 162 (2002). 
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7.1 Introduction 

The recent efforts to scale microelectromechanical systems (MEMS) down to the 

submicron domain1 have opened up an active research field. The resulting 

nanoelectromechanical systems (NEMS) with fundamental mechanical resonance 

frequencies reaching into the microwave bands are suitable for a number of important 

technological applications. Experimentally, they offer potential for accessing interesting 

phonon mediated processes and the quantum behavior of mesoscopic mechanical 

systems. 

Among the most needed elements for developing NEMS based technologies—as 

well as for accessing interesting experimental regimes—are broadband, on-chip 

transduction methods sensitive to subnanometer displacements. While displacement 

detection at the scale of MEMS has been successfully realized using magnetic,2 

electrostatic3,4 and piezoresistive5 transducers through electronic coupling, most of these 

techniques become insensitive at the submicron scales. 

  

7.2 Circuit Schemes and Measurement Results 

An on-chip displacement transduction scheme that scales well into the NEMS 

domain and offers direct electronic coupling to the NEMS displacement is 

magnetomotive detection.6,7 Magnetomotive reflection measurements as shown 

schematically8 in figure 7.1(a) have been used extensively.6,7,9 Here, the NEMS resonator 

is modeled as a parallel RLC network with a mechanical impedance, )(ωmZ , a two-

terminal dc coupling resistance, , and mechanical resonance frequency, eR 0ω . When 
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Figure 7.1. Schematic diagrams for the magnetomotive reflection measurement and 
bridge measurement (a) Schematic diagram for the magnetomotive reflection 
mesurement. In both reflection and bridges measurements, a network analyzer (NA) 
supplies the drive voltage, Vin. In reflection measurement, a directional coupler (DC) is 
implemented to access the reflected signal from the device.  (b) Schematic diagram for 
the magnetomotive bridge measurement. Vin is split into two out-of-phase components 
by a power splitter (PS) before it is applied to ports D1 and D2. (c) Scanning electron 
micrograph of a representative bridge device, from an epitaxially grown wafer with 50 
nm thick n  GaAs and 100 nmGaAs structure layer on top. The doubly clamped beams 
with dimensions of 8 μm(L) × 150 nm(w) × 500 nm(t) at the two arms of the bridge have 
in plane fundamental flexural mechanical resonances at ~35 MHz. D1, D2, and RO ports 
on the device are as shown. 
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driven at ω  by a source with impedance , the voltage on the load, , can be 

approximated as 

sR LR

eL

me
in

meL

me
in RR

ZRV
ZRR

ZRVV
+

+
≅

++
+

=
)()(

))((
)()()(0

ωω
ω

ωωω .                                            (7.1) 

Here, Ω50== SL RR . We have made the approximation that )(ωme ZR >> , as is the 

case in most experimental systems. Apparently, the measured electromotive force (EMF) 

due to the NEMS displacement proportional to )(ωmZ  is embedded in a background 

close to the drive voltage amplitude, )/(log20~0 eLein RRRVV +− dB.10 This facilitates 

the definition of a useful parameter at 0ω ω= , the detection efficiency, S/B, as the ratio of 

the signal voltage to the background. For the reflective, one-port magnetomotive 

measurement of figure 7.1(a), emem RRRZBS //)(/ 0 == ω , indicating some 

shortcomings. First, detection of the EMF becomes extremely challenging, when 

, i.e., in unmetallized NEMS devices or metallized high frequency NEMS 

(small ). Second, the voltage background prohibits the use of the full dynamic range 

of the detection electronics. In addition to the balanced bridge detection here, we describe 

two-port schem to improve the detection efficiency, i.e., S/B ratio.

me RR <<

mR

11

The balanced circuit shown in figure 7.1(b) with a NEMS resonator on one side of 

the bridge and a matching resistor of resistance, RRR e Δ+=  on the other side, is 

designed to improve S/B. The voltage, )(0 ωV at the readout (RO) port is nulled for 

0ω ω≠ , by applying two 180° out of phase voltages to the Drive 1 (D1) and Drive 2 (D2) 

ports in the circuit. We have found that the circuit can be balanced with exquisite 

sensitivity, by fabricating two identical doubly clamped beam resonators on either side of 
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the balance point (RO), instead of a resonator and a matching resistor, as shown in figure 

7.1(c). In such devices, we almost always obtained two well-separated mechanical 

resonances, one from each beam resonator, with Q/112 ωωω >>−  where iω  and  are 

the resonance frequency and the quality factor of resonance of the resonators (i=1,2) (see 

figure 7.3). This indicates that in the vicinity of either mechanical resonance, the system 

is well described by the mechanical resonator-matching resistor model of figure 7.1(b). 

We attribute this behavior to the high Q factors ( ) and the extreme sensitivity of 

the resonance frequencies to local variations of parameters during the fabrication process. 

Q

310≥Q

First, to clearly assess the improvements, we compared reflection and balanced 

bridge measurements of the fundamental flexural resonances of doubly clamped beams 

patterned from  (B-doped) Si as well as from n+ n+  (Si-doped) GaAs. Electronic 

detection of mechanical resonances of these types of NEMS resonators have proven to be 

Challenging,12 since for these systems ΩkRe 2≥  and em RR ≤ . Nonetheless, with the 

bridge technique we have detected fundamental flexural resonances in the 10 MHz<f0 

<85 MHz range for  Si resonators and in the 7 MHz <f n+
0<35 MHz range for n+  GaAs 

beams. In all our measurements, the paradigm that em RR << remained true as 10=mR Ω  

and 2 kΩ 20 kΩ. Here, we focus on our results from << eR n+  Si beams. These were 

fabricated from a B-doped Si on insulator wafer, with Si layer and buried oxide layer 

thicknesses of 350 and 400 nm, respectively. The doping was done at 950 °C. The dopant 

concentration was estimated as  cm19106xN d ≈ -3 from the sample sheet resistance, 

R□=60 Ω.13 The fabrication of the actual devices involved optical lithography, electron 

beam lithography, and lift-off steps followed by anisotropic electron cyclotron resonance 
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plasma and selective HF wet etches.7,9,12 The electromechanical response of the bridge 

was measured in a magnetic field generated by a superconducting solenoid. Figure 7.2(a) 

shows the response of a device with dimensions 15 μm(L) × 500 nm(w) × 350 nm(t) and 

with kΩ, measured in the reflection (upper curves) And bridge configurations 

for several magnetic field strengths. The device has an in plane flexural resonance at 

25.598 MHz with at 

14.2=eR

4103xQ = 20=T K. With 10≈RΔ Ω a background reduction of a 

factor of RRe Δ/ = 200 was obtained in the bridge measurements (see analysis below). 

Figure 7.2(b) shows a measurement of the broadband transfer functions for both 

configurations for comparable drives at zero magnetic field. Notice the dynamic 

background reduction in the relevant frequency range. 
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Figure 7.2 Data from a doubly clamped n+ Si beam. (a) Mechanical resoanance. The 

mechanical resonance at 25.598 MHz with a Q~3x104 from a doubly clamped, n+  Si 

beam is measured in reflection (upper curves) and in bridge (lower curves) configurations 

for magnetic field strengths of B=0,2,4,6 T. The drive voltages are equal. The background 

is reduced by a factor of ~200 in the bridge measurements. The phase of the resonance in 

the bridge measurements can be shifted 180° with respect to the drive signal (see 

Fig.7.1). (b) The amplitude of the broadband transfer functions. The broadband 

transfer function )(/)()( 0 ωωω inB VVH = for reflection (upper curve) and bridge (lower 

curve) configurations. The data indicate a background reduction of at least 20 dB and 

capacitive coupling between the actuation–detection ports in the bridge circuit. 
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Bridge measurements also provided benefits in the detection of electromechanical 

resonances from metallized VHF NEMS. These systems generally possess high and 

diminishes quickly as the resonance frequencies increase. Here, we present from our 

measurements on doubly clamped SiC beams embedded within the bridge configuration. 

These beams were fabricated with top metallization layers using a process described in 

detail.

eR

mR

9 For such beams with 100=eR Ω and 1≤mR Ω, we were able to detect mechanical 

flexural resonances deep into the VHF band. Figure 7.3(a) depicts a data trace of the in 

plane flexural mechanical resonances of two 2 μm (L) × 150 nm (w) × 80 nm (t) doubly 

clamped SiC beams. Two well-separated resonances are extremely prominent at 198.00 

and 199.45 MHz, respectively, with Q=103 at T= 4.2 K. The broadband response from 

the same device is plotted in figure 7.3(b). A reflection measurement in the vicinity of the 

mechanical resonance frequency of this system would give rise to an estimated 

background on the order, inVV /0 =-20dB,10 making the detection of the resonance 

extremely challenging. 
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Figure 7.3. Narrow band and broadband transfer function (S21) amplitudes from 

metallized SiC beams in bridge configuration. (a) The narrow band response. The 

narrowband response is measured for different magnetic field strengths of B=2, 4, 6, 8 T 

and shows two well-separated resonances at 198.00 and 199.45 MHz, respectively, with 

Q=103. (b) The broadband response. The broadband response at B=0 T shows the 

significant background nulling attainable in bridge measurements. We estimate that a 

reflection measurement on this system would produce inVV /0 =20dB for 0ωω ≈ . 
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Figure 7.1(b) depicts our analysis of the bridge circuit. The voltage at point RO in 

the circuit can be determined as14 

)]([
)(
)(

)/2()/1))(((
)]()[()( '0 ωΔ

ω
ω

ωΔ
ωΔω

ω m
eq

in

LeeLem

min ZR
Z
V

RRRRRZR
ZRVV +−=

++++
+

−= ,   (7.2)                        

in analogy to equation (7.1). At 0ω ω= , RRBS m Δ// = . Given that RΔ  is small, the  

background is suppressed by a factor of order RRe Δ/ , as compared to the one-port case 

as shown in figure 7.2(a). At higher frequencies, however, the circuit model becomes 

imprecise as is evident from the measurements of the transfer function. Capacitive 

coupling becomes dominant between D1, D2, and RO ports as displayed in figure 7.2(b), 

and this acts to reduce the overall effectiveness of the technique. With careful design of 

the circuit layout and the bonding pads, such problems can be minimized. Even further 

signal improvements can be obtained by addressing the significant impedance mismatch, 

, between the output impedance, , and the amplifier input impedance, . In 

the measurements displayed in figure 7.2(a), this mismatch caused a signal attenuation 

estimated to be of order ~40 dB. 

Le RR ≥ eR LR

Our measurements on doped NEMS offer insight into energy dissipation 

mechanisms in NEMS, especially those arising from surfaces and surface adsorbates. In 

the frequency range investigated, 10 MHz < f0 < 85 MHz, the measured Q factors of 

2.2x104 < Q < 8x104 in  Si beams is a factor of 2–5 higher than those obtained from 

metallized beams.

n+

15 Both metallization layers16 and impurity dopants3 can make an 

appreciable contribution to the energy dissipation. Our measurements on NEMS seem to 

confirm that metallization overlayers can significantly reduce Q factor. The high Q 

factors attained and the metal free surfaces make doped NEMS excellent tools for the 
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investigation of small energy dissipation changes due to surface adsorbates and defects. 

In fact, efficient in situ resistive heating in doped beams through  has been shown to 

facilitate thermal annealing

eR

17 and desorption of surface adsorbates—yielding even higher 

quality factors. 

 

7.3 Conclusion 

In conclusion, we have developed a broadband, balanced radio frequency bridge 

technique for detection of small NEMS displacements. This technique may prove useful 

for other high frequency high impedance applications such as piezoresistive displacement 

detection. The technique, with its advantages, has enabled electronic measurements of 

NEMS resonances otherwise essentially unmeasurable. 
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