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Abstract 

 

The focus of this thesis is the wet-spinning, in-vitro characterization, and in-vivo implantation of 

drug loaded filaments for ophthalmic, controlled-release applications.  Filaments of ca. 200-300 

m in diameter are comprised of the copolymer poly(d,l-lactide-co-glycolide), with various 

lactide to glycolide ratios, and either the antibiotic levofloxacin or the steroid dexamethasone.    

The objective of this work is to develop implantable filaments that can provide long release of 

drugs in the eye and then dissolve in order to replace eye drops, since poor patient compliance 

can limit the utility of drops.  

 

Filament formation by wet-spinning is examined in Chapter 2.  Mass transfer during filament 

coagulation is experimentally probed.  The experimental plan explores the effect of drug on the 

mass flux of solvent and antisolvent.  Drug retention during extrusion is examined in the context 

of mass transport, as well as solid-state and solution-state thermodynamics. Chapter 3 presents 

data that show how the composition of the filaments affects the thermal, mechanical, and release 

properties.  By manipulating various aspects of filament formulation (drug content, polymer 

type, etc.), release rate and mechanical properties can be greatly changed.  The development of 

an in-vivo model (rabbit) to verify in-vitro results is described in Chapter 4.  Drug release into 

the tear film and mechanical stability are determined for one filament using three different 

implantation techniques.  Large exposed sections of filament are necessary for drug release into 

the tear fluid and filament ends must be secured for in-vivo mechanical stability.  In-vivo results 

correlate well to in-vitro results for both drug release and mechanical life span.  A method of 

combining the properties of different single component filaments through side-by-side 
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multicomponent wet-spinning is described in Chapter 5.  Single component properties are 

maintained by this method, so mechanical and release properties of various monocomponent 

filaments described in Chapter 3 can be combined into a single filament.  This thesis shows that 

wet-spinning is a versatile method of producing drug loaded filaments with various drug 

encapsulation and release properties, and that these filaments are well suited for ophthalmic 

controlled release applications. 
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Chapter 1: Introduction 

This thesis describes efforts aimed at the production and characterization of a new drug delivery 

system that is formed by a wet-spinning technique.  A filament is created by the coagulation of a 

polymer solution containing a dissolved or suspended drug.  Wet-spinning an old technique used 

for preparing polymer fibers and filaments, but the addition of drugs to the coagulating system 

introduces a new variable that required significant investigation.  The filaments are designed for 

use in ophthalmic applications (the primary objective of this work), but they could be used for 

many other applications.  The overall goal of this work is to develop a device that can be 

implanted into the eye with a standard surgical needle.  The filament should maintain mechanical 

integrity without physically irritating the eye and release drugs over the course of several days to 

weeks.   

 

1.1.  Ophthalmic Drug Delivery 

 

Eye drops are the standard way of delivering drugs to the eye but efficacy suffers from poor 

patient compliance, physical difficulties administering drops, variable drop size, and low 

residence time in the eye.  These problems are often worse in children due to the necessity of 

adults administering drops to often uncooperative patients.  Poor patient compliance 

compromises pharmaceutical efficacy and compliance is particularly poor for self-administered 

eye drops[1].  One study of patient compliance using electronic monitoring of drop dispensers 

found that 41% of patients miss at least 6 doses of drug over 30 days.  Another study using self-
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reporting found that only 64% of patients used the drops as directed[2].  The main reasons for 

skipping drug doses are lack of knowledge, lack of interest, and physical inability.  These 

problems are often exacerbated in children[3] and the elderly[2] as their physical limitations 

often force them to rely of others administering their drops.  One study found that 36% of 

patients missed getting the drop in their eye frequently while 20% had problems squeezing the 

bottle[2]. 

 

To address the problem of poor patient compliance, various controlled release drug delivery 

strategies have been tried with limited success.  The largest commercial success was achieved by 

the Ocusert, a product developed and sold by ALZA corporation.  Ocusert was an unanchored, 

5.5 x 13 x 0.5 mm insert containing pilocarpine (an anti-glaucoma drug that requires multiple 

drop installations each day for efficacy) that was slid into upper or lower cul-de-sac of the 

eye[4].  Compression by the surrounding tissue would hold the insert in place and drug would 

release over a week.  The Ocusert typically worked well, and reduced intraocular pressure to 

levels comparable to multiple doses of drop based pilocapine each day.  While irritation was 

reported by some patients, it was not limiting for most.  The major drawback to the Ocusert was 

the tendency of the device to come out of the eye before the appropriate time.  A clinical study 

by Sihvola and Puustjarvi reported that 37% of the devices fell out over the course of a single 

week and that 41/52 implantations had some problem such as falling out, displacement, 

distortion, or insufficient effectiveness against glaucoma[4].  While greater instruction on how to 

use the Ocusert could minimize the risk of device loss, there was no means to reliably protect 

against elimination. 
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Implants that require surgical placement have also been studied.  Kato et al constructed an 

episcleral implant made of ethylene vinyl acetate copolymer and polyvinyl alcohol[5].  The 

episcleral implant required surgery to implant and, since neither polymer is degradable, would 

require a second surgery to remove.  The benefit of such a device is that it can deliver 

betamethasone at a relatively constant rate for three months since drug release is not dependent 

on a biodegrading polymer[5].  Intraocular implants that do not degrade have also been 

studied[6-8].  These implants have essentially the same benefits and drawbacks as the episcleral 

implant. Since device degradation and morphology are not constraints, traditional techniques of 

controlling drug release can be used such as coating degradable polymer with non-degrading 

material[8] or using a membrane[6] to slow delivery.  The drawback to these devices will always 

be that multiple surgeries will be required and patients will not want to go through chronic 

invasive surgeries for long term treatment.  For post-operative therapy, a second surgery several 

weeks after the first is undesirable from the perspective of the patient.  As such, these implants 

are best suited to non-recurring, acute, and dangerous conditions such as prevention of 

proliferative vitreoretinopathy after retinal reattachment surgery or treatment of severe keratitis.   

 

Biodegradable implants, both inside the eye and outside the sclera, have also been studied.  

These implants require only a single surgery since the devices will eventually degrade.  Devices 

to date have tended to be rigid devices made from compression molding, melt extruding, or 

solvent evaporation techniques[9].  These devices are then placed directly at a site and either 

secured or allowed to move freely.  A notable drug delivery platform is what used to be called 

the Oculex Drug Delivery System (before Allergan aquired Oculex in 2003)[10, 11].  The form 

of this device in clinical trials, called Posurdex, releases dexamethasone into the anterior 
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chamber following cataract surgery[10].  This drug delivery platform has also been used to 

deliver cyclosporin to the back of the eye.  The form of the insert is a 1 x 2 mm rod that is 

implanted surgically and is made of PLGA.  It is implanted immediately after surgery and fully 

degrades in time.  Drugs delivered by this method tend to be hydrophobic and release 0.06 mg of 

dexamethasone or 0.5 mg of cyclosporin[11].    Other biodegradable implants have been placed 

outside of surgical sites to prevent wound closure after glaucoma surgery[12].  Biodegradable 

films for transscleral drug delivery have also been tested in-vitro[13]. 

 

In many cases, delivery of drug to the tear film may be desirable or a surgery requiring deep 

penetration of the tissue may be too extreme.  Particularly for antibiotic therapy, devices may be 

placed outside the front of the eye and contact the tear film directly.  One device for this purpose 

is a bioerodilbe minitablet[14-16], which is made from compressing a powder mixture of binders 

and ciprofloxacin hydrochloride.  This device allowed for the slow release of ciprofloxacin into 

the tear film by simply dropping the minitablet into the fornix[15].  Initial studies using a 

fluorescent tracer molecule showed that tear concentration peaked between 2 and 3 hours then 

fell by over an order of magnitude over the course of the next seven hours[14].  This fall off was 

relieved somewhat by changing the compression parameters[16], but the goal for this device is 

approximately 8 hrs of sustained release.  Because the minitablet would gel on contact with 

water, it tended to stay in place over the time course for the experiment (8 hrs), but is unlikely to 

be a substitute for multiple day therapy.  The gelling and dissolving of the tablet also led to 

reports of irritation and blurred vision in patients with significantly higher lacrimation over eye 

drops[15].   Another device was described by Pijls et al to release the veterinary antibiotic 

pradofloxacin into the tear film of dogs.  This device consisted of binding polymers and drug 
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encapsulated in a stainless steel coil and further coated with polymer.  The device showed in-

vitro release characterized by fast release (with highly device dependent spikes) followed by 

lower release to two days.  In-vivo, the device showed high initial concentrations (30-80 g/ml 

depending on the animal), but after 8 hrs most of the tear concentrations fell below 1 g/ml until 

the test ended at 16 hrs.  It was also observed that most of the devices fall out due to blinking or 

the third eyelid of the dog dislodging them.   

 

Another category of a polymeric controlled release device is microspheres or nanospheres.  Since 

the microspheres on the eye are easily eliminated by tearing, much as a drop, the microspheres 

are often administered by sub-conjunctival[17], intra-ocular[18, 19], or periocularl[20] injection.  

These particles are able to move through the tissue once implanted and are nearly impossible to 

remove if there is an adverse reaction to the drug or polymer.  Since release is usually controlled 

by the degradation of the polymer, sustained release of several days to weeks is possible.  Often 

these polymers are of the family of polylactides (PLA) or poly(lactide-co-glycolide) (PLGA).   

 

1.2.  Wet-Spinning 

 

Processing of fibers and filaments from polymer solution was the earliest method of making such 

devices, and is still used today in a more limited fashion[21].  Polymer is dissolved in an 

appropriate solvent and extruded into a coagulation bath that contains a nonsolvent that is 

miscible with the solvent.  Wet-spinning has diminished in importance, relative to melt spinning, 

due to the necessity of removing and disposing of solvent/coagulant mixtures and the problem of 

retaining solvent in the final product[21].  As a result, wet spinning is typically only used when 
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the properties of the polymer make melt spinning prohibitively difficult.  An example of this is 

the spinning of Kevlar, Poly-p-paraphenylene terephthalamide, a high-performance fiber 

composed of aromatic polyamides.   

 

Wet spinning was chosen as the processing technique for this study since our design criteria 

included making a “soft” device that could deform easily, a desire to process the filaments at or 

near room temperature, and a size constraint that the filament be implantable by a standard 

surgical needle.  Wet spinning will produce a porous product under many conditions; since the 

demixing process associated with phase inversion causes polymer lean voids to form in the 

device structure (see Chapter 3).  This porous structure will allow some compliance if the 

filament is pressed by the surrounding tissue.  Wet processing also allows for room temperature 

conditions during the entire formation as long as solvents are chosen for low temperature 

dissolution properties.  Low temperatures may be important for pharmaceutical processing, as 

many active species degrade when exposed to high temperatures.   

 

Wet spinning has been used for drug delivery applications, with several examples appearing in 

the literature in recent years[22-26].  Drug eluting filaments are an exciting platform because the 

morphology of the device is relevant to many applications.  For example, wet processed 

filaments can be arranged into meshes for tissue engineering or used to directly infiltrate a tumor 

with chemotherapy agents.  For ophthalmic applications, filament morphology allows the 

mechanical implantation of a device.  The filament is “self anchored” so the drug delivering 

matrix provides its own mechanical stability and could potentially overcome some of the 

drawbacks of unanchored devices like the Ocusert.   
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1.3.  Objectives 

The specific objectives of this thesis are as follows: 

1. Develop a wet-spinning process for producing drug-loaded filaments out of 

biocompatible and biodegradable materials. 

2. Determine what parameters are important for high drug retention during filament 

formation. 

3. Determine how filament formulation affects thermal properties, mechanical properties, 

and drug release properties.  

4. Examine how filament formulation affects drug release in-vitro and verify release 

characteristics with in-vivo. 

5. Perform in-vitro mechanical properties analysis that mimics in-vivo conditions and 

provides guidance as to in-vivo filament life span. 

6. Enhance the utility of wet-processed filaments through side-by-side, multicomponent 

spinning and show that single component filament properties can be combined to create a 

superior product. 

 

1.4.  Materials Selection 

1.4.1 Polymer 

 

Poly(lactide-co-glycolide) (PLGA) (chemical structure shown in Figure 1.1) is probably the most 

commonly used biodegradable polymer for controlled drug release applications.  PLGA is FDA 
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approved as both suture material and matrix material for controlled release devices.  PLGA is 

also commercially available at many different molar masses and copolymer compositions, so 

release properties can be tuned. 

HO O O

OO

H

n m

 

Figure 1.1.  Chemical structure of Poly(lactide-co-glycolide) (PLGA). 

PLGA is a polyester and degrades by hydrolysis as shown in Figure 1.2.  The final degradation 

products are lactic acid and glycolic acid, both naturally occurring metabolic products.  The 

degradation rate depends on the lactide to glycolide ratio in the copolymer and the rates of 

degradation for many copolymers are available in the literature[27-29].  Poly(lactide) (100% 

lactide with no glycolide content) degrades the slowest, with an increasing content of glycolide 

leading to faster degradation until the lactide to glycolide ratio reaches 50:50.  The PLGA that 

degrades the fastest is the 50:50 copolymer and as the glycolide ratio increases further, 

degradation slows again.   

O


O

H2O
HO



O

OH  

Figure 1.2.  Ester hydrolysis in PLGA. 

The stereochemistry of the lactide content of PLGA influences degradation rate and physical 

properties of the polymers[30, 31].  Poly(l-lactide) contains only one enantiomer of lactide, and 
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results in a semi-crystalline polymer.  As glycolide content increases in poly(l-lactide-co-

glycolide), crystallinity diminishes and is lost beyond approximately 15-20% glycolide.  

Crystalline polymers form mechanically strong devices once processed and poly(l-lactide) is one 

of the most commonly used materials for biodegradable sutures.  However, crystalline polymers 

have limited uses in controlled drug release because of long degradation times and non-

homogenous drug release between amorphous and crystalline regions of the polymer[30]. This 

usually results in a quick release, followed by a very long, slow diffusion-controlled release, and 

final release due to the eventual degradation of the polymer crystals.  This means that drug 

sequestered in the crystalline regions of the polymer may not be released for months or more.  

Often, drug release from poly(l-lactide) devices is fully diffusion controlled, with entrapped drug 

releasing with a constant diffusivity, and polymer degradation is only critical for device 

elimination.  Poly(d,l-lactide) (with approximately equal d and l isomer content) is fully 

amorphous and is more useful for controlled release applications.  Drug is incorporated 

uniformly through the matrix and degradation happens homogenously.  Being amorphous, 

poly(d,l-lactide) is weaker than poly(l-lactide) and deforms plastically.  Amorphous polymers 

tend to be brittle and are usually not suited to applications requiring mechanical stability under 

large loads.  For our application, we chose poly(d,l-lactide) based PLGA copolymers.  

Mechanical strength is important for self-anchoring in the eye, but amorphous filaments may 

irritate less by deforming easily under stress caused by movement of the tissue.  More 

importantly, the need for uniform drug release characteristics and the complete release of drug is 

of utmost importance when the dimensions of the filaments constrain the total amount of drug 

that may be released.  Many of the techniques described in this thesis should be relevant to a 
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wide range of polymers, since the overall focus is on the processing technique and in-vivo utility 

rather than the specific polymer. 

 

1.4.2 Solvent/Non-solvent 

 

When choosing the solvent and non-solvent system for wet spinning a therapeutic loaded 

filament, the first consideration must be safety.  It is unrealistic to expect full elimination of 

either solvent or coagulant, and certainly not unless the device is exposed to high temperature 

(undesirable due to polymer and drug considerations) or high vacuum (a limiting process that 

may end up controlling filament properties).  Since residual solvent and non-solvent must be 

expected, both must be chosen for low toxicity as well as solubility properties.   

 

The U.S. Food and Drug Administration (FDA) characterizes residual solvents in drug 

formulations by toxicity properties.  Class 1 solvents are unacceptably toxic and should be 

avoided unless there are no other alternatives or there is a significant benefit that justifies the 

added risk.  Class 2 solvents are less toxic, but should be limited in use as much as possible.  

Class 3 solvents have little toxicity and should be used preferentially over Class 1 or 2 solvents.  

A list of Class 3 solvents is given in Table 1.1.   
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Table 1.1.  FDA class 3 solvents with Hansen solubility parameters and mixing energetic 

parameters with PLGA 

  Hansen Parameters     REM 

  d p h Ra1 Ra2 Ra1/R Ra2/R
Acetic Acid 14.5 8 13.5 6.6 6.8 0.9 0.9 
Acetone 15.5 10.4 7 5.3 7.4 0.7 1.0 
Anisole 17.8 14.1 6.7 6.3 7.0 0.8 0.9 
1-Butanol 16 5.7 15.8 6.9 7.6 0.9 1.0 
2-Butanol 15.8 5.7 14.5 6.1 7.4 0.8 1.0 
Butyl acetate 15.8 3.7 6.3 7.6 11.6 1.0 1.6 
tert-Butylmethyl 
ether 14.8 4.3 5 9.0 12.6 1.2 1.7 
Cumene 18.1 1.2 1.2 12.3 16.8 1.6 2.2 
Dimethyl sulfoxide 18.4 16.4 10.2 7.6 5.7 1.0 0.8 
Ethanol 15.8 8.8 19.4 9.5 7.5 1.3 1.0 
Ethyl acetate 15.8 5.3 7.2 6.0 9.9 0.8 1.3 
Ethyl ether 14.5 2.9 5.1 10.1 13.7 1.3 1.8 
Ethyl formate 15.5 8.4 8.4 4.4 7.2 0.6 1.0 
Formic acid 14.3 11.9 16.6 9.1 6.3 1.2 0.8 
Heptane 15.3 0 0 14.5 18.7 1.9 2.5 
Isobutyl acetate 15.1 3.7 6.3 8.2 12.0 1.1 1.6 
Isopropyl acetate 14.9 4.5 8.2 7.2 10.5 1.0 1.4 
Methyl acetate 15.5 7.2 7.6 5.1 8.5 0.7 1.1 
3-Methyl-1-butanol 15.4 3.3 12.3 7.3 9.9 1.0 1.3 
Methlyethyl ketone 16 9 5.1 6.1 9.3 0.8 1.2 
Methylisobutyl 
ketone 15.3 6.1 4.1 8.2 11.8 1.1 1.6 
2-Methyl-1-propanol 15.1 5.7 15.9 7.9 8.3 1.0 1.1 
Pentane 14.5 0 0 15.1 19.1 2.0 2.5 
1-Pentanol 15.9 5.9 13.9 5.5 7.1 0.7 0.9 
1-Propanol 16 6.8 17.4 7.8 7.3 1.0 1.0 
2-Propanol 15.8 6.1 16.4 7.4 7.6 1.0 1.0 
Propyl acetate 15.3 4.3 7.6 7.0 10.7 0.9 1.4 
water 15.5 16 42.3 32.8 29.3 4.4 3.9 

  

Water was chosen as the non-solvent, due to its non-toxic nature and known ability to precipitate 

PLGA.  Other possible non-solvents (selected from the list of Class 3 solvents) were tried, but 

usually solvated PLGA too well to be a good coagulant.  Some mixtures of water with solvents, 
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particularly isopropanol and ethanol, may be useful in the future, but the current studies were 

limited to full solutions of water. 

 

An appropriate solvent for wet spinning must be a good solvent for the polymer, as high 

concentration solutions are necessary.  A convenient initial screen for solubility is to compare the 

Hansen solubility parameters of the polymer with the solvent.  Each species is given three 

Hansen solubility parameters, with the energy from dispersion bonds (d), hydrogen bonds (h), 

and polar bonds (p) being reported separately[32].  Similar species will have similar parameters, 

and be soluble in each other.  Experimentally, a polymer can be mapped out in Hansen space and 

a “solubility sphere”, with radius R, which contains all of the solvents that dissolve that 

particular polymer, can be determined.  The distance between parameters (Ra) in Hansen space 

can be calculated by: 

     221
2

21
2

214 pphhddRa    

A guideline for whether a particular polymer will be soluble in a particular solvent is the Relative 

Energy Distance (RED), defined as: 

R

Ra
RED   

A RED of less than 1 indicates solubility, while a RED > 1 indicates immiscibility. 

 

The reported solubility parameters of PLGA (50:50 lactide:glycolide) are shown in Table 1.2 

reported by Schenderlein et al, who also determined R for PLGA to be 7.5[33].  There are two 

sets of solubility parameters reflecting differences in the type of experiment used for 

determination.  Comparing these values to the Hansen Parameters of the Class 3 solvents (Table 
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1.1)[32], Ra for each of the solvents with PLGA is given.  Solvents with at least one value of 

REM less than 1 were considered.  Solvents must also be miscible with water in order to be 

useful in wet-spinning.  Restricting the list to only solvents that are fully miscible in water 

removed many possibilities, including some promising solvents such as 1-butanol, 2-butanol, 1-

pentanol, methyl acetate, anisole, and ethyl formate.  Acetic and formic acid may be appropriates 

solvents, but ester cleavage is acid-catalyzed, so both were discounted as possibilities.  The 

remaining solvents with REM < 1 are acetone and dimethyl sulfoxide.  DMSO was chosen as our 

solvent over acetone due to a practical consideration.  DMSO is denser than water, so extruded 

solutions of all concentrations “fell” in the coagulation bath, while acetone solutions would 

sometimes float and complicate the extrusion.  DMSO was also found to be a better solvent for 

our chosen drugs (it is an especially strong solvent for steroids while acetone is not), so it was 

decided that DMSO would be the most appropriate solvent. 

Table 1.2.  Hansen solubility parameters for 50:50 PLGA determined by two methods.   

d p h

17.4 9.1 10.5
17 12.6 13.4
16 3.6 8.7

Hansen Solubility Parameters (MPa)
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1.4.3 Drugs 

The overall application for the filament is the controlled release of antibiotic and steroid to the 

eye.  The requirements of drug loading determine the length of filament that must be implanted, 

so potent drugs are desired to minimize the length of filament that must be implanted.  Many 

steroids have been formulated for ophthalmic use, including prednisone, prednisolone, 

dexamethasone, hydrocortisone, and prednisolone acetate.  Dexamethasone was chosen for our 

filament, although all of the above steroids were screened and determined to be good candidates 

for filament incorporation.  Dexamethaone has 5-7 times greater efficacy after systemic 

administration than prednisolone or hydrocortisone.  Dexamethasone has already been tested for 

use in an ophthalmic implant (Posurdex), showing that the long term administration of 

dexamethasone to the eye can be safe and effective.     

 

Fluoroquinolones are a potent class of antibiotics that are commonly used for ophthalmic 

treatment.  After testing several fluoroquinolones, including ciprofloxacin, sparfloxacin, 

ofloxacin, and levofloxacin, we chose levofloxacin as the antibiotic most appropriate for 

incorporation into a drug eluting filament.  Levofloxacin is the effective enantiomer of the 

racemic ofloxacin, making it twice as potent as ofloxacin.  Levofloxacin was found to be potent 

against a wider range of ocular bacterial isolates than ofloxacin or ciprofloxacin[34, 35].  

Levofloxacin had the best solubility in DMSO (~10%), after qualitative dissolution experiments, 

and also has a relatively high solubility in water (25 g/L[36]).  The high solubility in DMSO 

allowed for significant loading of drug, while the water solubility assured that potent levels of 

drug could be present in the tear film.   
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1.5.  Thesis Outline 

This thesis is organized in a manner to lead the reader through the formation, characterization, 

and in-vivo implantation cycle of single component filaments.  Next, the single component work 

is followed with work that enables the combination of filament properties by side-by-side 

multicomponent spinning.  The presentation sequence is designed to assist in understanding for 

the reader, but it should be stressed that the actual work was iterative in nature, with problems 

arising during animal testing often influencing further generations of design.  A good example of 

this iterative process is how the finding on the necessity of tear exposure to the filament (Chapter 

4) influenced how much attention was paid to mechanical characterization of the filaments in-

vitro (Chapter 3).   

 

Chapter 2 focuses on the formation mechanics of the filaments and describes drug, polymer, 

solvent, and non-solvent transport during filament formation.  The analytical techniques for 

determining filament composition are described and each individual component of the filament is 

followed as a function of coagulation time.  The phase behaviour of drugs and PLGA in 

DMSO/water solutions is explored and these studies are complimented by light microscopy 

experiments to visualize the competing phenomena of drug precipitation and PLGA phase 

inversion.  Significant differences in the precipitation of dexamethasone and levofloxacin lead to 

very different incorporation profiles in the filament.  Drawing on these experiments, and what is 

known about wet-spinning and similar drug delivery devices, a mechanism is proposed to 

describe drug incorporation in the filament.    The terminology in this section is commonly used 

in wet-spinning, but may require some brief clarification.  The term “dope” is used to describe 
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the solution from which filaments are made or the uncoagulated solution of polymer and drug.  

“Protofilament” describes the stream of polymer/drug that is undergoing coagulation but is not 

yet a fully formed product.  The term “filament” is reserved for a formed product that is removed 

from the coagulation bath and will be exposed to no more processing.  This terminology allows 

for the simple referencing of different states of the same materials (polymer, drug, etc.) during 

processing.  Hopefully, this will avoid confusion by allowing readers to immediately fit a 

particular reference to a specific point on the extrusion timeline.   

 

Chapter 3 examines the in-vitro physical and release properties of the filaments.  A wide range of 

filaments were produced to explore parameter space, and were characterized by determining the 

composition, glass transition, mechanical properties, and release properties.  Studies explored 

how the polymer type could be used to control drug release and how the physical state of the 

drug during formation can affect the subsequent release properties of the drug from the resulting 

filament.  Particular interest is given to early stage release, as this stage of release from filaments 

has been explored by several other groups with conflicting conclusions drawn from about the 

importance and mechanism of this release.  The physical state of the drug during release is 

explored to determine if trapped drug is in a crystalline or amorphous state.  Thermal and 

mechanical properties are tested in Chapter 3, with particular attention paid to how water 

influences the glass transition temperature of PLGA and how that subsequently affects the 

mechanical properties of the filaments.  Water has a significant impact on these properties, which 

is of note because these values are often reported for dry samples and may not be relevant for in-

situ performance.  How filaments made of various PLGA copolymers lose mechanical properties 

with time is explored.   
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Chapter 4 focuses on in-vivo testing of several filaments and compares in-vitro experimental 

results to in-vivo performance.  An animal model was developed for implantation in New 

Zealand white rabbits, a common ophthalmic model.  Filaments were implanted with a standard 

surgical needle and tear samples were taken and analyzed for drug content.  The implantation 

technique was explored, and it was discovered that tear film contact with the device was required 

for successful delivery.  A new implantation technique, where a filament could stay implanted 

until mechanical failure, was developed.  The utility of in-vitro models was investigated several 

ways, including comparing release data for various filaments, comparing mechanical failure 

times, implanted a filament that had undergone incubation in-vitro, and analyzing filaments that 

had been sequentially removed from eyes over the period of 7 days. 

 

A method for combining the properties of filaments is described in Chapter 5.  A lab scale, side-

by-side, multicomponent wet spinning process was developed to allow for the production of 

layered monofilaments.  Each layer can be formulated with a different polymer or drug.  Steady 

drug release over an extended period of time is achieved by combining several components, 

containing the same drug, but with different types of PLGA.  A mechanically stable component, 

formulated from polycaprolactone, can support a PLGA component that encapsulates drug.  It is 

further demonstrated that the morphology, release properties, and thermal properties of each 

individual component are retained. 

 

Chapter 6 summarizes the general conclusions of the thesis work and provides suggestions for 

future work.  The further exploration of the wet spinning process, especially the manipulation of 
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bath-side coagulation conditions, is an interesting avenue for further exploration.  As for other 

applications, filaments may be an excellent platform for the release of anti-glaucoma drugs, 

especially prostaglandin analogues.   
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Chapter 2:  Investigation of Formation and Mass Transport during Wet-
Spinning for Drug Loaded Filaments 

2.1.  Abstract 

The formation process of drug loaded filaments prepared by wet-spinning is investigated, and the 

results rationalized in terms of the mass transport and thermodynamics.  Phase diagrams are 

created for poly(d,l-lactide-co-glycolide) (PLGA), levofloxacin, and dexamethasone in 

water/dimethyl sulfoxide (DMSO) mixtures.  PLGA has a cloud point at ~7% water over the 

concentration ranges of interest.  At 7% water, levofloxacin is 2.5% soluble while 

dexamethasone is 35% soluble.  Formulations containing PLGA dissolved in DMSO with no 

drug, 7.0% dexamethasone, 7.0% levofloxacin, or 0.7% levofloxacin, are prepared to study the 

effects of drug type and amount on mass transfer during coagulation. Light microscopy confirms 
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that when solutions of 23.3% PLGA, 7.0% drug, and 69.7% DMSO contact water, levofloxacin 

precipitates before PLGA while dexamethasone remains in solution except in high water content 

areas (outside of the polymer region).  Filaments are prepared by extruding the polymer/drug 

solutions into a coagulation bath filled with water.  The mass transport during filament formation 

is monitored by compositional analysis of sections of filament after various coagulation times.  

DMSO is rapidly eliminated in all filaments.  Water moves into the filament at the very 

beginning of the coagulation process, but then flows out of the filament as coagulation proceeds.  

Drug type or amount has little effect on water uptake or DMSO elimination.  A filament 

formulated with 7% levofloxacin continuously loses drug throughout coagulation, with drug 

retention ranging from 85% at 15 s to 37% at 63 s.  Formulations of 0.7% levofloxacin and a 7% 

dexamethasone have stable drug retention after a rapid loss of 15-20% of initial drug over the 

first 20 s of coagulation.  Levofloxacin is shown to be 4.4 - 5.5% soluble in PLGA at room 

temperature while dexamethasone is 12.3 – 14.5 % soluble.  The drug levels in filaments exceed 

solid-state drug solubility significantly for both formulations containing 7% drug, suggesting that 

solubility of drug in PLGA is not the characteristic determining drug entrapment.  
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2.2.  Introduction 

 

Wet-spinning has emerged as an attractive process to make drug-eluting filaments[1-6].  To date, 

there have been several reported instances of encapsulating therapeutics in biodegradable 

filaments using wet-spinning, but the mass transfer during formation of wet-spun, drug loaded 

filaments has not been studied extensively.  Here, we look at the formation kinetics of drug-

loaded filaments. 

 

For most applications, the preferred method of processing polymer filaments is melt-spinning, 

with wet-spinning primarily used to create high performance fibers[7].  Wet-spinning is useful 

for high performance fibers because the polymers used in such filaments typically have very high 

melting temperatures[8].  For wet-spinning, a polymer is dissolved in an appropriate solvent and 

then extruded into an antisolvent.  The antisolvent is chosen to be miscible with the solvent, but 

precipitate the polymer.  Solvent diffuses out of the polymer matrix while antisolvent diffuses in.  

Residual solvent is usually present in the filament after processing.  Commercially, the 

application of wet-spinning is limited by the residual solvent in the final product and by disposal 

considerations for large baths of solvent/antisolvent mixtures[7]. 

 

Diffusion of solvent and antisolvent play critical roles during filament extrusion and can affect 

the morphology and properties of the final product[9].  Polymer precipitation can be facilitated 

by diffusion of solvent from the filament and/or diffusion of antisolvent into the filament[10].  

Coagulation typically proceeds from the outside to the inside, with a skin of precipitated polymer 

forming around the uncoagulated polymer dope[9, 11].  The skin forms immediately upon 
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solution contact with antisolvent and acts as a semi-permeable membrane for the rest of the 

formation process.  Small molecular weight substances, like solvent and antisolvent, can pass 

through the membrane while polymer does not.  As solvent diffuses out of the dope, and 

antisolvent diffuses in, the internal concentrations of solvent, antisolvent, and polymer reach 

values that cause phase separation, and coagulation occurs.   

 

Solid-state solubility of a drug in a polymer has been used as an indicator of the suitability of a 

particular drug release matrix[12-14].  Drugs that are more soluble in polymers can maintain 

high drug loading without affecting controlled release properties.   These devices are usually 

processed by solvent evaporation or dry processes and there have been no studies that indicate 

that solid-state solubility is the critical design parameter for wet-spun drug containing filaments.  

Previous studies have also shown the importance of solution thermodynamics to the drug release 

from in-situ forming depots and other devices similarly processed[15].  It remains an open 

question as to which solubility is more important for drug encapsulation in a filament processed 

by wet-spinning, the solubility of drug in polymer or drug in solvent/antisolvent mixture. 

 

While drug containing filaments have been reported, there are no available studies on the 

mechanisms of coagulation or the methods of drug encapsulation.  Final products have been 

characterized, but how the actual filaments form and how drug is lost during the coagulation 

process have not been studied.  In this chapter, the process of forming a drug loaded filament by 

wet spinning is explored.  Particular consideration is given to how the composition of a filament 

changes with coagulation time, with drug, solvent, antisolvent, and polymer compositions 
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independently determined.  The mechanism of coagulation and drug encapsulation is also 

explored. 
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2.3.  Calculations 

 

It is convenient to perform a mass balance for the wet-spinning process so that mass losses and 

gains for solvent, antisolvent, drug, and polymer can be better understood.  There are several 

parameters that are necessary to define a mass balance across a wet-spinning process.  The 

volumetric rate of extrusion (VE), the linear uptake rate of filament (u), and the radius of the 

spinneret (r) define the draw ratio (DR) on the filament as follows: 

     
ur

V
DR E

2
      2.1 

 

The draw ratio is the measure of how fast the extrusion is occurring relative to uptake.  If the 

DR<1, then accumulation of the filament in the bath will occur and each section of filament will 

not be exposed to the same coagulation time.  A DR>1 puts a tension on the filament during 

extrusion that helps to orient the final product.  After setting the draw ratio for a particular 

extrusion, then the initial linear mass of the filament (M, calculated before mass exchange with 

the bath with dimensions of mass/length) is: 

DR

r
MTOTin

2
     2.2 

 

Where  is the density of the polymer solution.  With polymer (P), drug (D), and solvent (S) 

comprising the entire initial mass as follows: 

 

SinPinDinTOTin MMMM     2.3 
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And the mass fraction ( w ) of each component is set: 

 

TOTinDinDin MwM     2.4 

TOTinPinPin MwM     2.5 

TOTinSinSin MwM      2.6 

 

Since there is no antisolvent in the spinning dope: 

 

0ASinM     2.7 

 

During formation of the filament, the composition changes with coagulation time.  It is 

convenient to look at how the composition and mass of the filament change with respect to each 

component over time, but also interesting to observe how each species present in the extrudate 

changes with respect to how much is initially present.  First, we can define the total linear mass 

of a filament at any coagulation time to be: 

  )()()()( tMtMtMtMtM ASSPDTOT   2.8 

The masses of each species can be defined by either the mass fraction in the filament (w) or, for 

the species present in the extrudate, the fraction of species remaining (f): 

 

  DinDTOTDD MtftMtwtM )()()(    2.9 
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  PinPTOTPP MtftMtwtM )()()(    2.10 

  SinSTOTSS MtftMtwtM )()()(    2.11 

  )()( tMtwtM TOTASAS     2.12 

 

A schematic of this mass balance is shown in Figure 2.1. 
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MTOT(t)

 

Figure 2.1:  Schematic of mass balance over a single filament during formation. 
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2.4.  Materials and Methods 

2.4.1 Materials 

Levofloxacin, dexamethasone, and poly(d,l-lactide) (PDLLA, MW 75,000-120,000) were 

purchased from Sigma-Aldrich.  Poly(d,l-lactide-co-glycolide)’s were obtained from Boehringer 

Ingleheim.  The PLGA’s used for this study were Resomer RG 506 (50:50 lactide:glycolide, 

intrinsic viscosity of 0.82) and Resomer RG 756 (75:25 lactide:glycolide, intrinsic viscosity of 

0.80).  DMSO, 0.10 N HCl, and 0.10 N NaOH were obtained from VWR. 

2.4.2  Phase Diagrams for Dexamethasone and Levofloxacin 

 

Solutions of DMSO and water of various mass ratios were prepared.  Drug was added to each 

solution until in excess.  Suspensions of drug were sonicated briefly, and equilibrated overnight 

at 25°C, vortexing occasionally.  Suspensions were centrifuged to a pellet at 100 RPM and the 

supernatants were passed through a 200 nm syringe filter and the drug content of the resulting 

translucent solution was analyzed by HPLC. 

 

2.4.3 Phase Diagrams of PLGA  

Solutions of PLGA (Resomer RG 506) in DMSO were made with the masses of PLGA and 

DMSO recorded accurately.  These solutions were homogenized, and centrifuged gently to 

facilitate full mixing and separation of bubbles.  Water was added to the solutions in small 

aliquots (less than 1% by mass addition each time).  After water addition, the solutions were 

homogenized and centrifuged to determine if phase separation was present.  When two phases 
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were observed (one gel-like and rich in polymer, the other liquid with lower viscosity) water 

addition was stopped and phase separation was reported.   

 

2.4.4 Drug/Polymer Solubility Measurement 

Solid-state solubility of a drug in Resomer RG 506 was determined by a semi-quantitative 

measurement similar to that reported by Panyam et al[12].  Drug solutions of 5 % w/w were 

made by dissolving levofloxacin in chloroform and dexamethasone in methanol.  PLGA was 

dissolved in chloroform to 2% w/w.  Different amounts of drug solution and PLGA solution 

were mixed and films of ~250 l were cast on glass microscope slides and allowed to dry.  The 

presence of crystalline of the drug in the film was determined by powder x-ray diffraction.   

 

2.4.5 Formulation 

Polymer and drug solutions were made with compositions shown in Table 2.1.  Drug was placed 

in a 4 mL vial and dissolved in DMSO.  Polymer was added to the vial and the resulting solution 

was mixed with a vortexing mixer.  The solutions were allowed to settle for 5 hours (voterxing 

repeatedly to mix). 

 

 

Table 2.1:  Filament formulations 

 

    Formulation Composition 

  Drug % Drug % PLGA % DMSO 
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506-7%Levo Levofloxacin 7.0 23.3 69.7 

506-7%Dex Dexamethasone 7.0 23.3 69.7 

506-0.7%Levo Levofloxacin 0.7 24.8 74.4 

506-25%PLGA None 0.0 25.0 75.0 

506-33%PLGA None 0.0 33.0 67.0 

 

2.4.6 Extrusion 

A schematic of the wet-spinning process is shown in Figure 2.2.  Polymer/drug solutions were 

loaded into a 5 mL syringe equipped with a 22 gauge flat-tipped needle (Small Parts Inc.) and 

mounted on a syringe pump.  The solution was extruded into a 16 L water bath (22 ± 2C) and 

the resulting filament taken up on a 1 in bobbin rotated by a DC gear motor.  The pump speed, 

uptake rate, and path length were chosen to fix a particular coagulation time with a draw ratio of 

1.2.  Coagulation time was directly measured by mechanically compressing a small section of 

polymer solution as it exited the syringe and using a stopwatch to measure how long the resulting 

section of filament took to pass through the bath.  After bath residence time was established, 

approximately 1 m of filament was spun over the course of 2 min.  This filament was 

immediately divided into accurately measured sections and frozen for further analysis. 
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Figure 2.2.  Schematic of wet-spinning process.   
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2.5.  Results 

2.5.1 Phase Diagrams 

 

Levofloxacin and dexamethasone saturation curves are shown in Figure 2.3.  Dexamethasone is 

significantly more soluble in pure DMSO, as well as DMSO/water mixtures.  Solid drug particles 

are in phase equilibrium with the saturated solutions.  The points on the curves represent the 

saturated concentrations of each drug.   
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Figure 2.3  Phase diagrams for (a) levofloxacin and (b) dexamethasone. 
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Figure 2.4 shows the cloud point curve for PLGA, Resomer RG 506, in DMSO and water.  The 

cloud point was determined by dissolving various amounts of PLGA in DMSO and adding water 

in small amounts.  This would cause a small amount of polymer precipitation, which could be re-

dissolved if the saturation point had not been reached.  PLGA demixes with only a small addition 

of water, approximately 6-9% over the experiments conducted.  The cloud point is the first 

concentration where a stable, turbid solution is observed.  These points were taken at 

concentrations relevant to filament formation.   

 

 

Figure 2.4:  Cloud point curve for PLGA.   

To better demonstrate the differences in solubility, the above data has been combined and the 

range has been cropped in Figure 2.5.  The percentage of each species (PLGA, Dexamethasone, 

or Levofloxacin) is plotted against the percentage of water in solution at saturation values.  The 

values of 7.0% and 0.7% are highlighted for clarity, since those are the values at which drug was 
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formulated for coagulation studies.  Of note, the line at 7.0% intersects levofloxacin’s curve 

between 1.3% and 2.4% water, while dexamethasone is still 10% soluble, even at 19% water.   
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Figure 2.5.  Comparative solubility of PLGA, levofloxacin, and dexamethasone in 
DMSO/water mixtures.   
Points represent saturation for particular water content. Lines highlight 7% and 0.7%, 
concentrations at which levofloxacin was formulated for extrusion studies. 
 

2.5.2 Microscopy 

2.5.2.1. 0% Drug 

Using light microscopy, the precipitation of drug and polymer can be directly observed.  Figure 

2.6 shows the interface between a solution of PLGA (P) in DMSO and water (W).  A think skins 
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forms at the interface between the two solutions, allowing water and DMSO exchange.  As water 

diffuses into the polymer solutions, and DMSO diffuses out, the polymer solution undergoes 

demixing.  Long, finger-like structures are observed during coagulation.  

 

Figure 2.6:  Light microscope images of solution 506-25%PLGA contacting water.   
Magnification is 10x for (a) and 40x for (b) and (c).  For image (a), the polymer solution is 
marked P while the water is marked W.  The interface between the polymer solution and water is 
shown in (a) and (b) while (c) shows the polymer phase change further back in the polymer 
solution. 

2.5.2.2. 7.0% Levofloxacin 

When solution 506-Levo is contacted to water, crystalline drug is observed (Figure 2.7).  The 

drug crystals are not visible at or near the interface and get progressively larger further into the 

polymer solution.  Large drug precipitates are observed beyond the PLGA coagulation front in 

the polymer solution.  
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Figure 2.7:  Light microscope images of solution 506-7%Levo contacting water.  
Magnification is 10x for (a) and 40x for (b).  For image (a), the polymer solution is marked P 
while the water is marked W.   
 

2.5.2.3. 0.7% Levofloxacin 

When solution 506-0.7%Levo comes into contact with water (Figure 2.8), PLGA coagulation is 

observed, as in Figure 2.6.  No levofloxacin crystals can be seen, either near the polymer/water 

interface or further into the solution. 

 

 

Figure 2.8  Light microscope images of solution 506-0.7%Levo contacting water.  
Magnification is 10x. 
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2.5.2.4. 7.0% Dexamethasone 

For solution 506-Dex, drug crystals are visible near the polymer/water interface and in the water-

rich outer solution (Figure 2.9).  Visible dexamethasone crystals are not present in the finger-like 

region or the polymer solution beyond the polymer coagulation front.   

W

P

 

Figure 2.9  Light microscope images of solution 506-7%Dex contacting water.  
Magnification is 10x for (a) and shows the interface between the polymer solution and water 
while the magnification for (b) is 40x and shows the polymer solution away from the interface.  
For image (a), the polymer solution is marked P while the water is marked W.   
 

 

2.5.3 Solid-State Solubility 

X-ray diffractograms of films made with PLGA and drug are shown in Figure 2.10.  Varying the 

ratio of drug to polymer allows the semi-quantitative measurement of solid-state solubility (since 

PLGA is an amorphous polymer).  When precipitated from evaporating chloroform, levofloxacin 

shows a single characteristic peak at 2= 5.0°.  This peak dissipates as levofloxacin content 

decreases until it disappears entirely between 4.4% and 5.5% levofloxacin content.  

Dexamethasone has several characteristic peaks, with the strongest at 16.4º.  These peaks are 

present at 14.5% drug content but not at 12.3%. 
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Figure 2.10:  X-ray diffractograms of PLGA films containing (a) levofloxacin and (b) 
dexamethasone.   
 

2.5.4 Polymer Retention 

The polymer content of 506-Levo and 506-Dex was measured after a 45 s extrusion to verify full 

retention of PLGA.  Table 2.2 shows the calculated Mpin and the experimentally determined 
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linear mass of each filament.  Agreement between the two values is within the error of 

experimentation, proving that PLGA is retained during the extrusion. 

Table 2.2:  Measurement of PLGA content for filaments coagulated for 45 s 

Sample Theoretical Experimental % Predicted
506-Levo 304 306 ± 24 101 ± 8
506-Dex 304 300 ± 11 99 ± 4

PLGA Linear Mass (g/cm)

 

 

 

2.5.5 Drug Retention 

 

The drugs are small molecule species and may diffuse from the protofilament into the water bath.  

Figure 2.11 shows drug elimination as a function of bath residence time for all drug loaded 

filaments.  For 506-7%Levo, levofloxacin diminishes steadily, but elimination slows as 

coagulation proceeds.  During the first 19 s of coagulation, 32% of the levofloxacin is lost.  

Between 40 and 60 s, only 15% is eliminated, but by 60 s, 32% of the original drug remains in 

the filament. When only 0.7% of the formulation is levofloxacin (506-0.7%Levo), most of the 

drug is retained in the filament after an initial loss.  For 506-7%Dex, 20% of drug is lost in the 

first 19 s, but drug levels remain essentially constant after the initial drop. 
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Figure 2.11  Drug retention during filament coagulation.   
Error bars indicate standard deviation with n=3. 
 

2.5.6 DMSO Retention 

DMSO is rapidly eliminated from the protofilament and generally unaffected by formulation 

(Figure 2.12). After 20 s, all filaments contain only 25-35% of initial DMSO, with levels further 

decreasing as bath residence time increases.  The only significantly different formulation is 506-

33%PLGA, which retains 18% of initial DMSO after 45 s.  Drug type does not appear to effect 

DMSO elimination.  
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Figure 2.12  DMSO elimination during filament coagulation.   
Error bars indicate standard deviation with n=3. 
 

 

2.5.7 Water Uptake 

The polymer solutions are formulated without water and extruded into a coagulating water bath.  

Figure 2.13 shows the mass/length water uptake as a function of coagulation time.  Water rapidly 

enters the filament immediately after extrusion but is then eliminated during the remainder of the 

coagulation. 



 46

0

100

200

300

400

500

600

0 20 40 60 80
Coagulation Time (s)

M
w

at
er

 (
g

/c
m

)

506-7%Levo
506-7%Dex
506-0.7%Levo
506-25%PLGA
506-33%PLGA

 

Figure 2.13:  Water content of filaments vs. bath residence time.   
Filaments formulations do not contain water.  Error bars indicate standard deviation with n=3. 
 

2.5.8 Total Filament Composition 

Component mass fractions (wi) are shown vs. bath residence time in Figure 2.14.  Originally, 

DMSO makes up the largest fraction, but it is rapidly eliminated.  The total mass of the 

protofilament decreases during coagulation.  Since PLGA does not diffuse out, wplga increases 

with extrusion time.  For dexamethasone, wdex also increases with coagulation time, as not much 

dexamethasone is eliminated past 20 s.  Since levofloxacin is eliminated over time, but at a rate 
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slower than DMSO, wlevo increases to a maximum at 0.1 after 40 s of coagulation before falling 

slightly. 
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Figure 2.14.  Total mass and mass fraction of each component for filaments (a) 506-
7%Levo and (b) 506-7%Dex.  Total mass is given in linear values and mass fractions reflect 
the instantaneous composition of a filament after a particular coagulation time. 
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2.6.  Discussion 

 

Wet-processing of drug loaded filaments made from suspensions[4], emulsions[1], and 

homogenous solutions[5] have been described in the literature, but there has been no 

experimental study of the mass transfer processes during filament fabrication.  Mass flux during 

filament formation is unique to solution based processes; as devices formed by solvent-less 

processes (melt, compression, etc.) have no mass flux during formation.  Drug delivery devices 

can be formed from polymer solutions by evaporation of solvent or by antisolvent precipitation.  

Mass transport is especially critical to filaments made by antisolvent precipitation, as solvent, 

antisolvent, and entrapped therapeutic can all diffuse.  Devices formed by evaporation retain all 

non-solvent components, so analysis of the formation process follows only solvent loss over 

time.  Monofilament wet-spinning is, in many ways, uniquely well suited to compositional 

investigation during processing, as bath residence times can be precisely controlled.  This is in 

contrast to techniques such as antisolvent-aided electrospinning, where the final product is 

usually a nonwoven mat.  Even if an antisolvent bath is involved during the electrospinning 

process (required when using a non-volatile solvent), different regions of the mat may have 

different residence times as the final product is usually left in the bath and not withdrawn in a 

steady-state fashion.  Here, we have studied the formation of drug loaded filaments by wet-

spinning.  The full retention of polymer was verified and the flux of drug, DMSO, and water in 

the protofilament was investigated.   
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In order to successfully process a drug loaded filament by wet-spinning, polymer coagulation 

must be faster than drug elimination from the protofilament.  Otherwise, drug retention would be 

poor and the method would be of limited use for controlled drug release applications.  In the 

examples shown here, drug retention is moderate to high (30-90%), demonstrating the utility of 

wet-spinning as a drug encapsulation technique.  Several formulations, containing various 

amounts of drug and polymer, were coagulated to examine the formation process.  In formulating 

506-7%Levo, levofloxacin is dissolved in DMSO at levels close to solution saturation.  In 

contrast, 506-0.7%Levo has only a small amount of levofloxacin dissolved, and 0.7% solutions 

of levofloxacin should be stable in any water/DMSO mixture (as demonstrated in Figure 2.5).    

The solution 506-7%Dex has the same amount of drug as 506-7%Levo, but dexamethasone is 

much more stable in DMSO and low water content DMSO/water mixtures (see Figure 2.3).  Two 

other formulations contain no drug.  Formulation 506-25%PLGA has the same PLGA to DMSO 

ratio as formulations 506-7%Levo and 506-7%Dex, while 506-33%PLGA has the same total 

solid to DMSO ratio as the two 7% drug solutions. 

 

The transport of solvent and nonsolvent during the coagulation process is critical, since this 

diffusion will determine how drug and polymer precipitate[9, 10].  Formulations 506-7%Levo, 

506-7%Dex, 506-0.7%Levo, and 506-25%PLGA have essentially indistinguishable DMSO 

elimination kinetics.  Drug loading and drug type seem to have no effect on DMSO diffusion 

from the protofilament.  The only outlier among the filaments was 506-33%PLGA, which is 

indistinguishable from the other filaments at 18 and 23 s, but has much higher DMSO retention 

at 45 s.  The reason for this high DMSO retention is not completely understood but could be due 

to lower DMSO diffusivity through a thicker polymer network.  
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At first, water is rapidly taken up into the protofilament, but then water content declines.  

Because water does not replace DMSO, the overall mass of the protofilament decreases with 

coagulation time.  The early water influx seems to be influenced by drug content, as water 

content is greater at early time points for formulations with no drug and 506-0.7%Levo.  Linear 

water mass is higher for 506-7%Dex than 506-7%Levo, suggesting that drug type may also 

influence water uptake.  However, these conclusions must be made tentatively, since water flux 

is very fast during early sampling and the values for most of these filaments converge to a 

similar value later in the coagulation process.  Early time points, where water is actively entering 

the protofilament, are inaccessible to our sampling technique.  Samples at times less than 15 s are 

not fully coagulated and handling these samples distorts the resulting data (by squeezing or 

stretching them).  At later coagulation times, the only outlier is again 506-33%PLGA, which 

shows higher levels of water at 45 s than any of the other formulations. 

 

Both drugs and PLGA can be dissolved in DMSO to make homogenous solutions.  Once water 

enters the solution, precipitation of drug and coagulation of the polymer will occur.  The cloud 

point curve of DMSO solutions of PLGA (Resomer RG 506), at concentrations relevant to 

filament spinning, shows that phase separation occurs at 6-9% water.  It is generally assumed 

that polymer is fully retained during wet-spinning, since the polymer is not soluble in the 

antisolvent and the formation of a skin prevents polymer diffusion from the protofilament.  To 

check this assumption, and verify the mass balance over the extrusion, PLGA content was 

measured by a titration technique.  PLGA is a polyester and ester bonds react with NaOH in a 

1:1 ratio.  Ignoring end effects (possible since there are an estimated 1000-3000 repeat units in 
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RG 506), measurement of the number of ester bonds was possible by reacting a section of 

filament with NaOH and back titrating with HCl to pH 7.  The results confirm that there is full 

retention of PLGA.  Measurements of the total mass of the filaments were in good agreement 

with full retention as well. 

 

Solid-state solubility has been shown to be a good predictor of drug encapsulation and controlled 

release potential in other polymer-based systems formed by methods other than wet-spinning.  

Here, a semi-quantitative method of determining solid-state solubility was used to get an idea of 

the solubility of levofloxacin and dexamethasone in PLGA.  Often, differential scanning 

calorimeter (DSC) measurements are used to quantify the solid-state solubility of drugs in 

polymers[16].  These tests measure the heat of melting for a particular drug without the polymer 

present and then again for the drug/matrix controlled release device.  If drug is dissolved in the 

polymer, the heat of melting should decrease and it is possible to determine what fraction of the 

drug is in a crystalline state.  DSC measurements were not particularly applicable to the system 

described here, as both dexamethasone and levofloxacin experience degradation with their melt 

transitions (at around 220ºC) and PLGA degrades in the same temperature range.  This makes 

the melt transitions and degradations difficult to separate on a DSC trace.  Another drawback to 

DSC for this system is that PLGA has a glass transition temperature in the range of 50-60ºC, 

meaning that measurements of solubility may reflect the amount of drug that can be dissolved in 

PLGA at the melt temperature of the drugs rather than at room temperature.  Using a semi-

quantitative method of determining drug solubility in PLGA, levofloxacin has an approximate 

solid-state solubility between 4.5% and 5.5% while dexamethasone has a solid-state solubility 

between 12.3% and 14.5%.  These numbers can be compared to the percentage of drug in the 
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solid material (drug and polymer) during filament formation to determine what role solid-state 

solubility is playing in drug loading during formation.  For 506-7%Levo, 9.2% of solid material 

is levofloxacin after 63 s, while for 506-7%Dex, 19.0% of the solid material is drug.  These 

numbers significantly exceed the encapsulation predicted from solid-state solubility.  Moreover, 

with filament 506-7%Levo, drug that may subsequently leave the filament can still be trapped 

(as for the 40 s time point) in a solidified product.   

 

Solution state solubility may provide a better understanding of drug entrapment than solid-state 

solubility, since filament formation occurs in the presence of DMSO/water mixtures that are 

causing the co-precipitation of polymer and drug.  Levofloxacin is 10% soluble in DMSO but 

only ~4% soluble with 6% water in the mixture.  The result is that levofloxacin precipitates at 

lower water content than PLGA.  This phenomenon is directly observed by light microscopy, 

where levofloxacin crystals are clearly visible beyond the coagulation front for 506-

7%levofloxacin.  At regions close to the coagulation interface, where phase inversion of the 

polymer happens rapidly, levofloxacin crystals are small or not visible.  Dexamethasone is more 

soluble than levofloxacin in DMSO and DMSO/water mixtures.  Dexamethasone stays dissolved 

before PGLA phase inversion, and no precipitates are visible beyond the coagulation front.  

Crystals are instead visible in the water-rich solution.  For the levofloxacin formulation with low 

drug content, 506-0.7%Levo, there are no crystals observed by light microscopy.  These 

differences in solubility and where/if drug precipitation occur could explain the difference in 

drug encapsulation during coagulation.  Levofloxacin precipitates before phase inversion in 506-

7%Levo, leading to a high initial retention since precipitates will not pass through the skin.  The 

precipitated drug is not well incorporated into the polymer matrix and is thus available for 
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diffusion from the protofilament at longer coagulation times.  Initially, dexamethasone is 

released rapidly (~20% before the first time point at 18 s), since it stays dissolved in 

DMSO/water mixtures and is free to diffuse through the skin.  Once demixing of the polymer 

occurs, the polymer-rich phase thickens around the disperse drug and prevents further 

elimination over the course of coagulation.  Supporting this hypothesis, formulation 506-

0.7%Levo has drug encapsulation kinetics similar to 506-7%Dex. This indicates that it is not an 

intrinsic difference between drugs that dictate therapeutic encapsulation, but the kinetics of 

precipitation in the filament. The solution thermodynamics of the polymer and drug and kinetics 

of solvent/antisolvent movement, rather than the solid-state solubility of drug in polymer, are 

what determine drug encapsulation in a filament. 

 

While wet-spinning is well described in the literature, there is little data on the coagulation 

process of wet-spun, drug containing filaments.  There are some data available for other devices 

formed by phase inversion that might be relevant to the discussion of coagulation processes for 

these filaments.  In-situ forming depots are the best characterized class of devices formed by 

phase inversion and provided some insight into the mechanism of coagulation in drug loaded 

filaments[17-19].  Notably, a body of work by A.J. McHugh and colleagues has investigated 

many aspects of phase inversion and release for injectable depots[20-22].  Much of this work 

stems from the formation and characterization of asymmetric membranes formed by 

coagulation[23-26]. 

 

Injectable depots can be categorized as either fast forming or slow forming, and the dynamics of 

polymer coagulation have been shown to influence drug release[20, 21, 27].  Fast forming depots 
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are formulated with water miscible solvents such as DMSO, NMP, or DMF.  These depots 

rapidly take up water, expel solvent, and coagulate around the contained therapeutic.  Slow 

forming depots use water immiscible solvents, such as benzyl benzoate or acetyltriethoxycitrate 

to control the uptake of water and slow coagulation.  This creates a gel-like depot, where the 

water soluble therapeutic can not release until the water front has penetrated to the dispersed 

drug particles.  Slow forming depots have a honeycomb like morphology after solidification, 

while fast forming depots have finger-like pore morphology.  Based on our observations of 

morphology, the coagulating filaments described here behave more like fast forming depots.   

 

Various kinetic, thermodynamic, and release studies have been performed on fast forming 

injectable depots.  The morphology of phase inversion has been found to be the same as wet-

spinning, with a thin skin forming on contact and acting as a membrane across which further 

mass transport occurs[20].  The drug in these systems has been found to partition partly into the 

polymer rich phase and partly into the water rich macrovoids.  Once phase inversion has 

occurred, drug in the voids has an effective diffusivity that is orders of magnitude higher than 

therapeutic trapped in the polymer rich phase[20].  For wet-spinning, this mechanism explains 

why only some drug is available to diffuse out of the protofilament at short time scales and why 

the physical state of the drug at the moment of phase inversion is critical.   

 

While some aspects of fast forming depots solutions are relevant to wet-spinning of drug loaded 

filaments, the analogy is not perfect.  Firstly, the depot solutions need to control release from the 

point of contact with a fluid.  A high, long term drug entrapment is not usually desired, since this 

will limit drug that is immediately able to release.  The bath side conditions are determined by 
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physiology and can not be manipulated.  The formation of an injectable depot will often be 

controlled by bath side considerations, as the space outside of the depot is not well mixed and 

will eventually contain much of the solvent.  Overall, the internal formation of depots is similar 

to wet-processed filaments, but the objectives of the devices are different, so a direct comparison 

is not possible. 

 

Based on this study, and drawing on relevant literature concerning wet-spinning[9-11] and drug 

encapsulation by phase inversion, we propose the coagulation/encapsulation mechanism shown 

schematically in Figure 2.15.  Immediately after extrusion, a thin skin of solidified polymer 

forms on the surface of the protofilament.  This skin is observed in our microscopy experiments.  

The skin acts as a semi-permeable membrane, allowing DMSO, water, and drug to pass through 

but retaining all of the PLGA in the dope.  As antisolvent enters the protofilament, the 

precipitation of drug can occur, as in the case of levofloxacin, if the precipitation concentration 

for the drug is less than the cloud point of the PLGA.  These drug crystals are physically trapped 

in the protofilament and exchange drug molecules with the surrounding solution.  The polymer 

solution undergoes demixing when enough DMSO-water exchange has occurred.  Polymer-lean 

nucleation sites appear and expand, creating finger-like voids in the polymer structure.  The 

polymer-rich phase thickens around any drug remaining in solution, effectively trapping it.  The 

phases further solidify as DMSO leaves and water is drawn out of the filament as the presence of 

water is no longer thermodynamically favorable without the presence of DMSO.  The egress of 

DMSO, drug, and water from the protofilament leads to an overall decrease in mass.  Drug that is 

present in the voids, or drug crystals that bridge to voids, can diffuse out of the protofilament. 
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Figure 2.15.  Schematic of hypothesized filament formation and drug encapsulation 

mechanism.   

The hypothesized mechanism of filament formation draws on previous literature and explains the 

drug encapsulation kinetics observed in our work.  Future work can be directed at clarifying and 

validating this mechanism.  Further exploration using a variety of drugs, solvents, and 

antisolvents may provide more information and clarify this mechanism.  This work provides 

guidance for choosing a proper polymer/solvent/antisolvent to encapsulate a specific drug by wet 

spinning and may be used in the future for determining formulation and processing conditions 

for drug loaded filaments produced by wet-spinning. 
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Chapter 3: In-Vitro Characterization 

3.1.  Abstract 

 

Biodegradable filaments, with diameters of 250-300 m, for the controlled delivery of 

dexamethasone or levofloxacin are described in this chapter.  Filaments are prepared by wet-

spinning solutions of poly(lactide-co-glycolide) (PLGA) and drug dissolved in dimethyl 

sulfoxide (DMSO) that are coagulated in water.  PLGAs of three different lactide to glycolide 

ratios (50:50, 75:25, and 100:0 lactide:glycolide) are extruded at numerous conditions, and the 

filaments obtained analyzed by a variety of methods.  Compositional analyses of the filaments by 

independent measurements of drug, DMSO, water, and polymer give drug loadings up to 40% of 

filament mass and drug retention (drug in filament per drug in solution) greater than 40%.  Drug 

release kinetics, and thermal and mechanical properties, of the filaments are reported.  It is found 

that residual DMSO is present in the filaments, diminished with increased coagulation time, and 

is mostly undetectable after one day of incubation in phosphate buffered saline.  Filaments 

prepared from homogenous solutions have low initial drug release followed by polymer-

dependent, degradation controlled release, while filaments made from solutions containing 

suspended drug particles display rapid release regardless of polymer type.   
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3.2.  Introduction 

Biodegradable polymer-drug composites can be made into different morphologies[1] including 

microspheres[2-4], films[5], and injectable depots[6].  Fibrous morphologies are intriguing 

because they allow for easy implantation/removal, anchorability in tissue, and mechanical 

stability.  Fibrous devices can also provide mechanical stability or be woven with other fibrous 

components that are more mechanically stable.  Common methods for making fibrous devices 

for drug delivery include electrospinning[7-9]and wet spinning[10-13].  The synthetic method is 

usually chosen based on design criteria for the particular application and nature of the polymer.  

Electrospinning can be used to make fibers of micron to submicron diameters[14, 15], but is 

unable to produce large diameter monofilaments.  Recently, wet spinning has emerged as a 

method for preparing drug-loaded filaments for a wide range of applications[10-12, 16].  

Benefits of a wet-processed filament include a porous microstructure, room temperature 

processing conditions, and diameters of suture-like scale.  Filaments made from two phase 

solutions, such as emulsion or solid suspensions, have been shown to be effective in controlling 

therapeutic release and have been used primarily for tissue engineering and cancer therapy. 

 

The thermal properties of a controlled release device, like melting and glass transition 

temperatures (Tg), are linked to the release properties[17].   It is hypothesized that drug can 

diffuse more easily through amorphous polymers in the rubber state, due to the increased motion 

of polymer chains above the Tg[18].  In many reports, glass transition temperatures of the pure 

polymers and drug release matrices are reported as a matter of routine characterization, but some 

studies focus on how various aspects of polymer processing and drug encapsulation affect Tg.  

Plasticizers are polymer additives, usually high boiling point solvents or low melting point 
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solids, which make amorphous polymers, or amorphous sections of semi-crystalline polymers, 

more flexible[19].  It has been shown that plasticizers can affect the rate of release of a drug 

from a polymer matrix[17, 18, 20-22].   

 

Here, we focus on monofilaments made from three types of amorphous PLGA, one with a 50:50 

lactide to glycolide ratio, one with a 75:25 ratio, and one made entirely of d,l-lactide.  Using 

dimethyl sulfoxide (DMSO) as a solvent and water as an antisolvent, levofloxacin or 

dexamethasone containing filaments are prepared.   Most of the filaments are made from a 

solution where the drug and polymer are both completely dissolved, but some of the filaments 

are formulated from solutions with suspended drug particles.  Here, we demonstrate the 

flexibility of wet-processing for the production of drug loaded filaments and explore the 

interplay of composition with drug release, thermal properties, and mechanical properties.  In 

Chapter 4, we demonstrate how these filaments can be implanted with a standard surgical needle 

to control the delivery of a therapeutic to the eye. 
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3.3.  Materials and Methods:  

3.3.1 Materials 

Levofloxacin, dexamethasone, and poly(d,l-lactide) (PDLLA, MW 75,000-120,000) were 

purchased from Sigma-Aldrich.  Poly(d,l-lactide-co-glycolide)’s were obtained from Boehringer 

Ingleheim.  The PLGA’s used for this study were Resomer RG 506 (50:50 lactide:glycolide, 

intrinsic viscosity of 0.82) and Resomer RG 756 (75:25 lactide:glycolide, intrinsic viscosity of 

0.80).  DMSO, 0.10 N HCl, and 0.10N NaOH were obtained from VWR. 

3.3.2 Filament Formation 

Filaments containing levofloxacin or dexamethasone were processed by a wet-spinning 

procedure.  An accurately measured amount of drug was placed in a glass vial to which dimethyl 

sulfoxide (DMSO) was added.  This solution was sonicated for 1 minute to facilitate dissolution 

of the drug.  After sonication, PLGA was added to each vial and the vial vortexed to mix all 

components.  The solution was then allowed to equilibrate for 6 hours, vortexing occasionally to 

mix, at a given temperature (Table 3.1), to eliminate all trapped bubbles.  Table 3.1 shows the 

processing conditions for all of the filaments used for these experiments (naming of the filaments 

follows the pattern of Polymer-Drug#).  Most of the solutions were homogenous (with drug and 

polymer both dissolved to make a translucent solution) with the exceptions for 506-L2 and 756-

L2, which were suspensions of solid drug particles formulated above the solubility of 

levofloxacin in DMSO.  The samples were chosen to allow comparisons between polymer type 

(506-L1, 756-L1, and PDLLA-L1), drug type (506-L1 and 506-D1), coagulation time (506-L1, -

L5, and -L6), amount of drug (506-L1, -L2, -L4, -D1 and -D2 and 756-L1 and -L2), and 

formulation temperature (506-L1 and L3).   
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Table 3.1. Processing conditions for filaments 

 

 

Solutions were loaded into a 5 mL syringe equipped with a 22 gauge flat-tipped needle (Small 

Parts Inc.) and mounted on a syringe pump.  The solutions were extruded into a 16 L water bath 

(22 ± 2C) and taken up onto a 1 inch bobbin rotated by a DC gear motor.  The pump speed and 

uptake rate were chosen to fix a particular coagulation time (Table 1) with a draw ratio of 1.2.  

Filaments were secured tautly without stretching and allowed to dry under ambient conditions 

for two days.  

3.3.3 Determination of Levofloxacin Content 

Total drug loadings of the filaments were determined by dissolving accurately measured sections 

of each filament with 1 M NaOH.  The drug content of the resulting solution was measure by 

using high performance liquid chromatography (HPLC) with a C18 column (Agilent 1200 series 

HPLC).  The mobile phase was 49.95 % water, 49.95 % acetonitrile with 0.1 % trifluoroacetic 

acid.  Levofloxacin was determined by fluorescence detection with an excitation at 292 nm and 

emission at 494 nm while dexamethasone was measured by absorbance at 254 nm.  Some 

samples were measured, placed in 1.5 mL Eppendorf tubes, and incubated in phosphate buffered 
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saline (PBS, pH 7.4) at 37°C on an incubating rocker for one day.  Other samples were tested for 

drug content without incubation. 

 

3.3.4 Determination of Water Content 

Water contents of the filaments were determined by thermogravimetric analysis (TGA).  

Samples were cut into small pieces, placed in an Al2O3 crucible and heated in air to 125°C over 

45 min.  Mass loss was monitored and the difference in mass before and after heating recorded.  

Water content of incubated filaments was done after blotting the filaments with a Kimwipe to 

remove water on the external surface of the filament. 

 

3.3.5 Determination of DMSO Content 

To determine DMSO contents of the filaments, approximately 30 cm (accurately measured) was 

dissolved in deuterated chloroform with an internal standard of 1% TMS.  The sample was then 

analyzed by proton nuclear magnetic resonance (1H NMR).  By comparing the integration of the 

TMS peak to the DMSO peak, the amount of DMSO in the sample can be determined.  Some 

samples containing dexamethasone and incubated samples needed to be filtered through a 0.2 

m syringe filter to remove particles before NMR analysis. 

 

3.3.6 Polymer Content  

Polymer content was directly determined by digesting an accurately measured length of filament 

(approximately 30 cm) with 10 mL 0.1 M NaOH.  The solution was back titrated to neutral with 

0.1 M HCl, with the amount of HCl accurately recorded.  For every ester bond that is 



 67

hydrolyzed, one hydroxide ion will be consumed, so the amount of ester bonds can be 

determined and converted into the mass of polymer in solution.  Incubated filaments were first 

rinsed with water three times before digestion. 

 

3.3.7 Filament Imaging 

Bulk fiber morphology was observed by light microscopy and scanning electron microscopy 

(SEM).  Light microscopy was performed using a Micromaster I light microscope (Fisher 

Scientific, Pittsburgh, PA) at 10x magnification.  The size measurements were calibrated using 

known diameter wires (Small Parts Inc.).  For SEM, samples were coated with Pt/Pd and 

magnifications up to 400x were possible without destroying the samples. 

 

3.3.8 Drug Release  

One inch sections of filament were placed in 1.5 mL tubes.  One mL of phosphate buffered 

saline (pH 7.4) was added to each vial.  The vials were incubated at 37°C under gentle rocking, 

and at various times, the buffer was replaced with fresh PBS.  The removed PBS was analyzed 

for drug content by HPLC as described above. 

 

3.3.9 Mechanical Testing 

Load vs. strain curves for the fibers were collected on an Instron 1150 mechanical properties 

testing apparatus.  Experiments were run under ambient conditions, where the temperature was 

22 ± 2°C with relative humidity of 50 ± 10%, and under incubated conditions, with the filament 

submerged in PBS at 37°C.  The samples were drawn at a strain rate of 1 %/s and the resulting 
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tensions were recorded.  The loads that the filaments were bearing at the time of breakage were 

recorded, as were the maximum elongations of the filaments.  Other samples were tested by 

producing a step change in the strain of the filament and measuring relaxation properties.  These 

filaments were subjected to a 10% strain at 50%/s strain rate and the relaxation was recorded. 

3.3.10 X-Ray Diffraction 

Samples of filaments 506-L1 and 506-D1 were incubated in PBS at 37C.  At various time points, 

samples were removed, dried by lyophilization, and cut into appropriate sections for analysis by 

x-ray diffraction.  Samples were scanned from 2 angles of 2º to 40º.  Samples of levofloxacin 

and dexamethasone, precipitated from concentrated solutions in DMSO by water addition, were 

tested along with samples of PLGA Resomer RG 506. 
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3.4.  Results 

3.4.1 Extrusion and Composition 

Filament compositions are shown in Figure 3.1, and are displayed as mass fractions.  The 

polymer used for fabrication is the most abundant component of every filament.  A small amount 

of DMSO is present after extrusion (this amount is only a very small fraction of the DMSO used 

for formulation) and varies with formulation conditions and compositions.  After one day of 

incubation in PBS at 37°C, the amount of DMSO in several of the filaments fell below the 

sensitivity of detection for the assay, with only small amounts present (less than 0.25%) even 

when detected.  While residual water is present after extrusion, the filaments all swell 

significantly after a day of incubation in PBS at 37°C.  The degree of swelling ranges from 25% 

to 49%.  Influx of water is often accompanied by an increase in filament diameter (Table 3.2), 

particularly for filaments made with Resomer RG 506.  Drug is retained in each filament, with 

loading varying with original drug composition.  Figure 3.2 shows the amount of drug retained in 

the filament relative to the initial formulation.  Drug retention after extrusion ranged from 48% 

to 89% of initial drug depending on formulation conditions.  After one day of incubation in PBS 

at 37°C, all of the fibers display some degree of fast drug release with drug retention after one 

day ranging from 6% to 78% of drug used in its formulation.   
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Figure 3.1.  Composition of filaments after a) extrusion and b) 1 day of incubation in PBS 
at 37°C.    
DMSO, drug, polymer, and water contents are shown.  Values are the averages of three 
measurements for each component. 
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Table 3.2.  Filament diameters after extrusion and one day of incubation in PBS at 37°C. 

Sample Initial Day 1

506-L1 255±2 287±5

506-L2 259±5 314±10

506-L3 266±4 283±11

506-L4 250±4 284±12

506-L5 261±5 322±13

506-L6 252±7 271±8

506-D1 270±7 269±6

506-D2 285±5 304±7

756-L1 288±15 297±3

756-L2 294±6 300±7

PDLLA-L1 299±7 311±5

Diameter m)
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Figure 3.2.  Drug remaining in the filaments after extrusion and 1 day of incubation in PBS 
at 37°C as a percentage of drug in formulation.   
Error bars indicate one standard deviation (n=3). 
 

The swelling kinetics of filament 506-L1 are shown in Figure 3.3.  After 5 min, 25% of the 

filament is water and the water content of the filament increases to 47% after 45 min.  The water 

content then levels off, and the water content at 90 min is essentially unchanged from 45 min.  

Figure 3.1 shows that the filament does not swell significantly more over the course of the next 

22.5 hrs.   
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Figure 3.3.  Swelling kinetics of filament 506-L1.   

3.4.2 Morphology 

Light microscopy allowed for the determination of filament diameter.  Table 3.2 lists the 

diameters of each filament after extrusion and one day of incubation in PBS at 37°C.  

Representative SEM’s of filaments 506-L1, -L2, and -L3 are shown in Figure 3.3.  A cross-

section of 506-L1 shows the internal porosity of the polymeric filaments. The other filaments 

reveal essentially the same cross sectional morphology.  The exterior surfaces of the filaments 

are different. Filaments 506-L1 and -L3 have a rough surface on the sub-micron length scale 

while larger surface protuberances are apparent for 506-L2. 
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Figure 3.4.  SEM images for filaments (a) 506-L1, (b) 506-L2, and (c) 506-L3. 

3.4.3 Drug Release 

Figure 3.5 shows release profiles for each of the filaments separated into groups, with 506-L1 

present in each panel for comparison.  Figure 3.5(a) shows the release of 506-L1, -L3, -L4, -L5, 

and -L6, all filaments made from Resomer RG506 with fully dissolved levofloxacin.  All 

filaments gave similar release profiles.  Figure 3.5(b) illustrates the release profiles of filaments 

made from fully dissolved solutions of levofloxacin (506-L1 and 756-L1) and from suspensions 

of levofloxacin (506-L2 and 756-L2).  Figure 3.5(c) shows the release profiles of 

dexamethsasone loaded filaments 506-D1 and 506-D2 compared to levofloxacin loaded 506-L1.  

The differences in release due to polymer type are illustrated in Figure 3.5(d), with 506-L1, 756-
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L1, and PDLLA-L1 all made with identical ratios of polymer:DMSO:levofloxacin and identical 

processing conditions.  

 

Figure 3.5.  Drug release profiles for filaments.   
The release profiles of (a) filaments containing levofloxacin formulated from single phase 
solutions, (b) filaments formulated with dissolved and suspended levofloxacin, (c) filaments 
made from different polymers, and (d) filaments formulated with dexamethasone (506-L1 given 
in each panel for comparison).  Error bars represent one standard deviation (n=3). 
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3.4.4 Effect of Dissolved vs. Suspended Drug in Formulation 

To further explore the influence of drug solubility on release profile, filaments were made from 

solutions at 25ºC and 60ºC with various levels of dissolved or suspended levofloxacin.  The 

solubility of levofloxacin in DMSO increases with temperature as shown in Figure 3.6.  

Filaments were either formulated below the solubility point of levofloxacin (solutions) or above 

(suspensions).  Figure 3.7 shows release from both suspensions and solutions of levofloxacin 

loaded in RG 506 filaments.  For filaments formulated from solutions at 25ºC, levofloxacin is 

dissolved when it comprises 4.8% and 7.0% of the solution, but is in suspension at compositions 

of 9.1% and 11.1%.  At 60ºC, all of these solutions are homogenous.  Filaments formulated from 

solution all show approximately the same release, with a triphasic profile, but when there is 

suspended levofloxacin, the release happens much faster, with approximately 90% of the drug 

released in a single day.  This same fast release is observed regardless of polymer, as shown in 

Fig. 3.4.  Filaments 506-L1 and 756-L1 both have 7.0% drug in formulation, while 506-L2 and 

756-L2 have 11.1% (at 25ºC).  SEM images of 506-L2 show that the large particles visible in 

Figure 3.3 are no longer present after a day of incubation in PBS (Figure 3.8).  This is in contrast 

to filament 506-L1, which retains a rough surface after incubation. 
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Figure 3.6.  Levofloxacin saturation as a function of solution temperature. 

  

Figure 3.7.  Drug release profiles for filaments formulated with various amounts of 
levofloxacin.   
Drug release profile changes as a function of levofloxacin in formulation for (a) filaments 
formulated at 25ºC and (b) filaments formulated at 60ºC. 
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Figure 3.8.  SEM images of filaments (a) 506-L1 and (b) 506-L2 after one day of incubation 
in PBS at 37ºC.  Scale bar represents 100 m.   
 

 

3.4.5 Effect of Bulk Morphology 

The effects of bulk morphology on drug release for filament 506-L1 was also studied.  Samples 

of filament 506-L1 were subjected to one of several post-processing operations.  Samples were 

cut into approximately equal sections averaging 0.8 mm in length, stretched to 300 % of their 

initial length, flattened into a strip with a hydraulic press, or annealed at 100ºC for 1 hr.  Only 

annealing influences drug release (Figure 3.9). 
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Figure 3.9.  Effects of bulk morphology on drug release.   
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3.4.6 Early Stage Levofloxacin Release 

Figure 3.10 shows early stage release from three samples of filament 506-L1.  Data is plotted as 

amount released per unit length of filament.  Samples start at 2 min and proceed at short time 

intervals over the next 25 hr.  There is an initial burst release at 2 min, followed by a region of 

slow release for the following 1-2 hr.  There is a transition to a faster release rate at 

approximately 2 hr and release slows to a plateau after the release of approximately 18 g/cm of 

levofloxacin.    
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Figure 3.10.  Early drug release from filament 506-L1.   

From the shape of the curve, release after 90 min was hypothesized to be diffusion controlled.  

The Higuchi model of diffusion controlled release was applied to this area of drug release.  The 
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Higuchi model is a one dimensional release model that assumes a higher drug loading (A) than 

drug solubility (Cs) in the release media and has the form: 

SS CCADtQ )2(      3.1 

Where Q is the amount of drug released, D is the effective diffusion coefficient, and t is time.   

Figure 3.11 shows Q as a function of t1/2 for the three samples of 506-L1.  The data in Figure 

3.11 is normalized to 90 min and only cover up to 14 g/cm released, as the assumptions behind 

the Higuchi model start to break down as drug is depleted from the matrix.  The average linear 

fitting parameter is 0.56 ± 0.08 g/cm/min1/2 with an average R2 value of 0.998 ± 0.001. 
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Figure 3.11.  Release from three filaments of 506-L1 plotted against time½.   

3.4.7 X-Ray Diffraction 

To determine the physical state of each drug before and during release from the filaments, x-ray 

diffraction experiments were run.  Figure 3.12 shows the x-ray diffraction patterns for PLGA 

(RG 506), levofloxacin and dexamethasone.  PLGA is an amorphous polymer, so only a small, 

broad peak is visible.   
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Figure 3.12.  X-ray diffractograms of PLGA, levofloxacin, and dexamethasone. 

When levofloxacin is encapsulated in a filament, characteristic peaks at 6.9º, 10.0º, and 26.8º can 

be seen after extrusion (Figure 3.13).  This indicates that at least some of the levofloxacin is 

present in the crystalline form.  After a single day of incubation in PBS at 37ºC, all of the 

characteristic peaks have vanished, with only a peak at 32º present due to residual salt from the 

PBS.   

levoflocaxin 

dexamethasone 

PLGA 
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Figure 3.13.  X-ray diffractograms of levofloxacin loaded filaments after extrusion and one 
day of incubation in PBS at 37°C. 
 

Dexamethasone loaded filaments display the characteristic peaks at 14.5º, 17º, and 18.7º (Figure 

3.14).  These peaks do not fade with incubation time and are present through 25 days of testing, 

indicating that crystalline dexamethasone is present throughout most of the release phase.  The 

peak at 18.7º does dissipate over time, but the other two peaks remain visible.  Again, a peak at 

32º is visible after incubation in PBS. 
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Figure 3.14.  X-ray diffractograms for dexamethasone loaded filaments after incubation 
times in PBS at 37°C from 0 to 25 days. 
 

 

3.4.8 Glass Transition Temperature 

The glass transitions temperatures (Tg) for each filament under wet and dry conditions are shown 

in Table 3.3.  After extrusion, glass transition temperatures are depressed below the raw polymer 

values.  This depression is more pronounced for filaments made of RG 506 and is barely 

noticeable for PDLLA-L1.  In each case, water significantly decreases the glass transition 

temperature of the filaments and the pure polymers.  All the glass transition temperatures are 

essentially the same when the filaments are saturated with water, while they vary greatly for the 

initial filaments when dry.  The variation in Tg is almost entirely eliminated after the filaments 

are incubated for one day. 
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Table 3.3.  Glass transition temperatures for filaments and polymers 

Sample Initial Day 1 Initial Day 1

RG 506 54 - 39 -
506-L1 32 51 37 39
506-L2 37 54 39 39
506-L3 30 52 38 39
506-L4 42 54 39 39
506-L5 23 51 39 38
506-D1 32 52 39 39
506-D2 34 54 40 38
RG 756 58 - 44 -
756-L1 56 58 44 44
756-L2 54 57 44 44
PDLLA 57 - 48 -

PDLLA-L1 56 57 48 48

Tg Dry (°C) Tg Wet (°C)

 

 

3.4.9 Mechanical Properties 

Mechanical properties depend greatly on the conditions of experimentation.  Some of the 

filament samples were tested under ambient conditions (air at 22°C) and others under incubation 

conditions (PBS at 37°C).  Figure 3.15 shows the results of both elongation at steady strain rate, 

and step-strain response for filament 506-L1 after one day of incubation in PBS to remove 

residual solvents.   
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Figure 3.15.  Mechanical properties of filament 506-L1 under ambient and incubation 
conditions. 
Step-strain relaxation is shown in (a) while load/strain curves at a strain rate of 1%/s are shown 
in (b) 
 

For filaments tested under ambient conditions, the as-made filaments displayed distinctly 

different behavior from filaments tested after incubation in PBS.  Figure 3.16 displays the 

ambient mechanical properties filament 506-L1 as-made and after 1 day of incubation. 
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Figure 3.16  Mechanical properties of filament 506-L1 as made and after one day of 
incubation in PBS at 37ºC. 
Load/strain curves at a strain rate of 1%/s are shown in (b) while step-strain relaxation is shown 
in (a) 
 

Figure 3.17 shows an overview of the mechanical properties of all of the filaments. Figure 

3.17(a) lists the load at break in both ambient and incubation conditions after processing and 

after 1 day of incubation in PBS at 37°C.  Incubated filaments tended to elongate and break 

consistently, independent of whether they were previously incubated.  The variation between 

initial properties and properties after 1 day of incubation in PBS at 37°C is noticeable under dry 

conditions, where loads tend to increase and maximum elongation decreases notably.   
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Figure 3.17.  Mechanical properties of filaments:(a) load at break and (b) maximum 
elongation.   
Each sample is tested after extrusion and after 1 day of incubation in PBS at 37°C, under 
ambient and incubated conditions.  Error bars represent one standard deviation (n=3). 
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Filaments lose strength over time when tested under incubation conditions, but become more 

brittle when tested under ambient conditions.  Figure 3.18 shows how the maximum load and 

strain of 506-L1 changes over time when tested under both conditions.  Maximum load decreases 

steadily under incubation conditions while maximum strain decreases under ambient conditions.    
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Figure 3.18.  Maximum load and strain for filament 506-L1 over time when tested under 
ambient (a) or incubation (b) conditions. 
 

 

Figure 3.19 shows how polymer type affects the rate of mechanical properties deterioration.  

Filament 506-L1 loses strength over one week, while 756-L1 lasts close to 20 days and PDLLA-

L1 retains some strength through 45 days.  Samples after this point for each filament were 

difficult to handle and accurate measurements were not possible.  

(a) (b) 
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Figure 3.19.  Maximum load over time for filaments 506-L1, 506-L2, and PDLLA-L3 tested 
under incubation conditions. 
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3.5.  Discussion 

Wet-spinning is a well established process for preparing polymer filaments, and has proven to be 

a versatile method for therapeutic encapsulation for controlled release applications.  The 

filaments prepared here are formulated of copolymers with glycolide and d,l-lactide monomers.  

PLGA copolymers are a good release platform due to the ability to manipulate polymer 

degradation by changing the ratio of lactide to glycolide.  Both drug and polymer were dissolved 

(or suspended) in DMSO.  DMSO was chosen due to its low toxicity, miscibility with water, and 

ability to dissolve the drugs and polymers used in this study.  Other polymers and drugs could 

easily be processed into similar filaments as long as care is taken with the choice of solvent and 

anti-solvent.  All filaments formed displayed a porous, finger-like internal morphology 

consistent with polymers processed by wet-spinning, and were 250-300 m in diameter. 

 

Full compositional analysis provides insight into what chemical species affect the in-situ 

properties of the filaments.  Here, the presence of residual solvent was carefully monitored.  

DMSO was chosen as a solvent due to the relatively low toxicity (the FDA considers DMSO to 

be a class 3, or low toxic potential, solvent) compared to organic solvents such as chloroform and 

dichloromethane.  Residual DMSO was present in all filaments post-extrusion, but levels were 

often below detection after a single day of filament incubation in PBS at 37°C.  Residual solvent 

acts as a plasticizing agent in polymeric devices[23], and affected both thermal and mechanical 

properties of the filaments.  The difference in glass transition temperatures of dry filaments can 

be linked to the presence of residual DMSO (Table 3.3).  Initially, the filaments have residual 

DMSO, which leads to a depression of Tg and makes the filaments more flexible(Figure 3.17).  

After a day of incubation in PBS, the Tg of the filaments is returned to a value very close to the 
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raw polymer value, while the filaments lose ductility as evidenced by a reduction in elongation at 

break.  The difference in mechanical properties due to residual solvents is demonstrated by the 

change in tension response to a step change in strain for filament 506-L1(Figure 3.16).  After 

extrusion, when the filament contains some residual DMSO, the tension on the filament rapidly 

declines to a load of 19 mN over 100 s.  When that same filament is incubated in PBS for one 

day, eliminating residual solvent, the load on the filament stays above 185 mN over the same 

time.  These differences can not be attributed to drug release, as in most filaments more than 

60% of the initial drug is retained over a single day of incubation in PBS at 37°C.  The clearest 

demonstration of the effect of residual DMSO can be found by examination of three filaments 

made with the same formulations but with different coagulation times, 506-L1, L5, and L6.  

Filament 506-L6 had the shortest coagulation time, followed by 506-L1 and 506-L5.  Residual 

DMSO in 506-L6 was 16.6±3.6 g/cm filament (4.2% by mass), while 506-L1 had 7.6±1.7 

g/cm (2.1%) and 506-L5 had 0.5±0.1 g/cm (0.1%). The glass transition temperatures of dry 

filaments (without incubation) were 506-L6<506-L1<506-L5 while the elongation at break for 

the filaments in ambient conditions were 506-L6>506-L1>506-L5.  However, after a single day 

of incubation, these properties converged to a single value while DMSO was eliminated from the 

filaments.  Filaments made without drug display the same decrease in initial glass transition 

temperature and increase initial in elongation (data not shown), further indicating that DMSO 

strongly influences the thermal and mechanical properties of the filaments under ambient 

conditions. 

 

Drug content does not appear to have an effect on the glass transition temperatures of the 

filaments.  The ability for drugs to plasticize polymers, including PLGA, has been reported but is 
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a property specific to the particular drug and polymer.  After one day of incubation, where the 

filaments still contain most drug in the cases of 506-L1 and 506-D1, dry glass transition 

temperatures are essentially unchanged from the raw polymer Tg.  Drug content significantly 

affects the early properties of filaments only in the case of 506-D2, which has 40% drug by mass 

and is extremely brittle under dry conditions (maximum elongation of approximately 10 %) after 

incubation for one day to remove residual DMSO.   Filament 506-D2 also has a decreased 

elongation at break under incubation conditions, stretching only 400% before breaking compared 

to over 600% for all other RG 506 filaments.  The decrease in maximum elongation and lack of 

Tg depression suggest that levofloxacin and dexamethasone do not act as plasticizers for PLGA.   

 

Filaments had very different properties when tested under ambient and incubation conditions 

(Table 3.3 and Figure 3.15).  Water swells poly(lactide), acting as a plasticizer[24], but often 

mechanical and thermal properties are reported for dried samples[25-27].  The behavior observed 

under such conditions may not be the same under physiological conditions[28].  Filament 506-L1 

displayed characteristics indicative of viscoelastic solids when under ambient conditions, similar 

to previous mechanical testing of PLGA devices under similar conditions[25, 27]. The stress 

decreased over time as a result of a step change in strain, but the load on the filament stayed high 

over 100 s.  Under incubation conditions, the filament behaved more like a viscoelastic liquid, 

with the load on the filament falling to just 9 mN over 100 s.  This change in properties is 

actually desirable for our present applications, as the filament can be implanted like a thread but 

will deform easily when placed under any in-situ stress.  This should reduce tension on the tissue 

surrounding a filament implantation.   
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Overall, these findings suggest that the presence of water dominates all other considerations 

when determining in-situ mechanical and thermal properties.  Drug has little influence on Tg or 

mechanical properties, unless extremely high drug loading is used.  Residual solvent only affects 

samples tested outside of water.  When water is present, both the effect of drug and the effect of 

residual DMSO are difficult to determine because under incubation conditions, the effects of 

water are dominant. 

 

By examining at the initial day of release of filament 506-L1, the phenomena that govern early 

drug release can be elucidated (Figure 3.10).  There is an immediate burst of release (around 

2%), present even after only a single minute of incubation in PBS.  Burst release like this is 

likely due to dissolution of surface drug, as water has not permeated the filament.  Over the next 

1-2 hours, release is very slow.  This corresponds to a period of rapid water uptake (Figure 3.3).  

The swelling slows release, by forcing diffusion of drug against a bulk flow of PBS.  After 

swelling, release kinetics are largely diffusion controlled for the first day with a constant 

diffusion coefficient, as exemplified by the close fit to the Higuchi model of release (Figure 

3.11).  The Higuchi model assumes a higher drug loading in the filament than the saturation 

concentration of drug in the release media.  A shrinking core of solid drug is assumed, with the 

concentration of drug at the saturation concentration next to the solid and essentially zero outside 

of the release matrix.  An effective diffusion coefficient of 6.1 ± 1.7 x 10-9 cm2/s is calculated 

from the data in Figure 3.11 and Equation 3.1 with the Cs = 25 mg/mL and A = 40 mg/mL 

(calculated from drug loading and geometry)   
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It can be concluded that diffusion governs this early portion of drug release.  This result sheds 

some light on a previous report by Gao et al on a filament made of poly(l-lactide) containing 

suspended particles of the drug 5-fluoricil[12].  From our results, it can be concluded that that 

Gao et al showed only diffusion controlled release from the filament, as release times (1-5 days) 

were far shorter than the degradation time of the polymer.  Their report showed that by 

thickening the polymer structure, and decreasing the size of particles trapped in the filament, 

release could be extended from a single day to several days for wet-processed filaments.   

 

Filaments formulated from solution of drug (not suspensions) displayed triphasic release profiles 

consistent with release from PLGA devices.  There are two populations of entrapped drug in the 

filaments.  Some of the drug is accessible to initial diffusion, while other drug is trapped in the 

polymer until later times.  The drug with longer residence time does not appear to be trapped 

beneath the skin, but rather is tapped by the polymer itself.  This is demonstrated by the 

morphological changes not affecting drug release (Figure 3.9).  If the drug was simply trapped in 

the pores under the outer polymer skin, then reducing the length scale of the filaments to the 

order of diameter should allow for a greater amount of initial release.  This is not observed, 

which indicates that the length scale relevant to the remaining drug is much smaller than the 

diameter.  This is consistent with previous reports, which show the necessity of drug dispersion 

throughout the polymer matrix in order for the control of release past an initial burst[29, 30].  

Previous reports indicate that phase inversion will trap part of the drug in a crystalline state and 

part in an amorphous state.  The crystalline drug easily accesses pores in the polymer structure 

and rapidly diffuses out of the device.  Amorphous drug is dispersed throughout the polymer 
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system, and is effectively trapped.  The drug trapped in the polymer matrix has a much lower 

diffusivity than drug in the pores[31].   

 

A recent report by Ma et al on non-degradable, drug containing films produced by phase 

inversion suggests that crystalline drug will diffuse out of the system relatively quickly, leaving 

behind amorphously trapped drug[29].  This leads to the conclusion that drug solubility in the 

polymer is the main factor in determining when the drug will release.  The XRD studies above 

throw some doubt on the generality of this claim.  Levofloxacin behaves much as expected from 

the previous report.  Crystalline levofloxacin is present after extrusion for 506-L1, but there is no 

detectable crystalline drug after a single day of release.  However, for 506-D1, dexamethasone 

characteristic peaks were observed well into the second release phase of the filament (25 days).  

This means that for dexamethasone, crystalline drug is trapped in the polymer matrix in a way 

that prohibits the fast release of drug.  Further exploration of the physical state of the drugs 

inside of the filaments was found to be difficult.  Typically, DSC would be used to find what 

fraction of drug is in a crystalline state.  In this case, both drugs do not melt below 200°C and 

melting is only accomplished with drug degradation.  Furthermore, heating filaments to 

temperatures in excess of 100°C leads to polymer degradation and liquefying.  From annealing 

filaments at 100°C, we observed a significant change in release properties, indicating that drug 

interaction with the polymer is not the same after significant heating.  It is likely that, even if 

melting transitions can be adequately observed, such measurements will only record the 

solubility of the drugs in PLGA at their melting temperature.  We found that the competing 

phenomena at the melting temperatures of the drugs did not allow for easy analysis of 

crystallinity.   



 96

 

The encapsulation of levofloxacin in copolymers of lactide and glycolide having monomer ratios 

of 50:50 (RG 506), 75:25 (RG 756), and 100:0 (PDLLA) lactide:glycolide allowed the 

manipulation of release times for the drugs (Figure 3.5).  Higher lactide content should lead to 

slower polymer degradation and drug release.  As degradation causes polymer cleavage and 

erosion, the diffusivity of trapped drug increases, leading to degradation controlled drug release.  

To compare the effects of PLGA type to final fiber properties, 506-L1, 756-L1 and PDLLA-L1 

filaments were made with formulations that were the same except for polymer type.  Filaments 

prepared from each polymer displayed a typical release curve for such devices, with an initial 

burst followed by a plateau of slow release that accelerates as the polymer structure degrades.  

As expected from previous studies using similar polymers[32, 33], 506-L1 releases over the 

shortest time period of 15 days, while 756-L1 releases over 40 days, and PDLLA-L1 over 80 

days.   

 

Thermal and mechanical properties are different depending on polymer type.  Filament 506-L1 

retains more DMSO than the other two filaments, leading to differences in thermal and 

mechanical properties.  Even without residual DMSO, glass transition temperatures are different 

for each polymer, with RG 506 more susceptible to Tg depression by water.  Mechanical 

properties are also different between polymers, with 506-L1 elongating more than 756-L1 or 

PDLLA-L1.  After 1 day of incubation, 506-L1 elongates more than 756-L1 or PDLLA-L1, 

under ambient or incubation conditions.   
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Mechanical deterioration is a sign of polymer degradation in biodegradable devices.  This 

deterioration manifests differently depending on the environment under which filaments are 

tested (Figure 3.18).  For filaments under incubation conditions, this corresponds to a decrease in 

the maximum stress before breakage.  Under ambient conditions, filaments get more brittle, as 

demonstrated by the steady decline in maximum elongation for filament 506-L1.  For different 

polymers, the mechanical deterioration of the filaments happened on the same time scale as drug 

release, with 506-L1 losing strength over a week, 756-L1 over 20 days, and PDLLA-L1 over 50 

days (Figure 3.19).  This results in logistical problem for these devices, as mechanical 

deterioration and release are linked due to the dependence of both on polymer degradation.   

 

The physical state of drug in the formulation can influence various aspects of the processed 

filament[9].  Filaments 506-L2 and 756-L2 were formulated from solutions containing levels of 

levofloxacin above the solubility point and contained suspended particles of drug.  In contrast, 

filaments 506-L1 and 756-L1 were formulated with less drug (under the same conditions 

otherwise) with the levofloxacin fully dissolved with the polymer in DMSO.  SEM images reveal 

rough surfaces for 506-L1 and -L3, which were processed from homogenous solutions, while 

506-L2 has discrete protuberances that are not visible on the other filaments (Figure 3.4).  These 

images likely indicate that drug particles exist in the matrix of 506-L2 in discrete clumps.  

Filaments formulated from suspensions exhibited fast release, with most of the levofloxacin 

releasing over the course of one day.  This burst was so extreme, that only 6% of drug in the 

formulation was retained after a day of incubation in PBS at 37°C.  Even though 506-L2 and 

756-L2 had more drug before and immediately after extrusion than 506-L1 and 756-L1, they lost 

so much levofloxacin during burst release that they were no longer the more highly loaded 
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filaments.  The clumps visible by SEM are no longer observed after this fast stage of release, 

leaving a pocked surface morphology.  These “overloaded” filaments also retained less DMSO 

than other filaments, which had a commensurate influence on mechanical and thermal properties.  

Filament 506-L4 had even less drug and retained slightly more DMSO, but was otherwise not 

distinguished from 506-L1.  The release profiles from filaments formulated from homogenous 

levofloxacin solutions were remarkably similar (Figure 3.5 and Figure 3.7).   

 

To further investigate the differences between drug solutions and suspensions, several filaments 

were formulated at different levofloxacin contents and temperatures (Figure 3.7).  The solubility 

of levofloxacin in DMSO is highly temperature dependent.  Solutions containing levofloxacin at 

25ºC below the solubility point displayed a sustained release profile, while suspensions of 

levofloxacin showed fast release.  When heated to 60ºC before extrusion all of the levofloxacin 

solutions were completely dissolved.  This led to lower drug loading, but all of the release was 

sustained and all of the profiles were similar.  The initial period of release for the filaments 

appears to be diffusion controlled, with only part of the drug accessible to this initial burst.  It is 

reasonable, based on the work described in the introduction, that having large particles of drug 

present makes a pathway by which the drug can diffuse out. These particles create disruption in 

the polymer matrix, dissolve upon polymer swelling, and simply diffuse out like other available 

drug.  The particles make the burst release even worse by acting as nucleation sites for drug 

precipitation during extrusion.  This behavior is consistent with previously reported filaments 

made from wet-spinning of suspensions.  Gao et al demonstrated that by making the particles 

small enough, diffusion can be controlled.  One drawback to this method is the requirement that 

the drug is relatively insoluble in the polymer solution relative to the coagulation media, or the 
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nanoparticles may act as nucleation sites and grow.  This method also limits the release profile to 

a diffusion-based profile, but still is effective for releasing drugs over several days.   

 

The type of drug can influence the properties of the filament.  Dexamethasone is more soluble in 

DMSO, and filament 506-D1 was able to be processed from a homogenous solution even though 

dexamethasone comprised 18.4% of the initial formulation.  Dexamethasone is retained in the 

filament better than levofloxacin.  Filament 506-D1 retained 89% of formulated drug after 

extrusion and 78% after a day of incubation in PBS at 37°C, compared to 53% and 33%, 

respectively, for 506-L1.  Filament 506-D2 was an outlier in several of the above studies; it was 

more brittle than other 506 filaments, it released drug over a longer period, it swelled less (only 

25% compared to 40% + for other RG 506 filaments) and it was the only filament to have a wet 

Tg above the native polymer.   The unique properties of 506-D2 may be due to the extremely 

high drug loading, with dexamethasone comprising 42% of the initial filament mass. This 

surprisingly high filament loading, while retaining mechanical integrity and control of release, 

was probably due to the extreme solubility of dexamethasone in DMSO and the thermodynamics 

of coagulation in this system.  The phase diagrams of PLGA (RG 506), levofloxacin, and 

dexamethasone in water/DMSO (see Chapter 2) may provide insight into why dexamethasone 

can be captured so efficiently relative to levofloxacin.  At PLGA concentrations relevant to this 

study (20-30% by mass), phase separation occurs when water comprises approximately 6% of 

the solution.  Levofloxacin, which can dissolve up to about 10% in pure DMSO, only makes up 

4% of a solution comprising 6% water.  Dexamethasone is more soluble in pure DMSO 

(approximately 50%) and is less sensitive to water addition, still comprising 36% of a saturated 

solution with 6% water.  These results show that more dexamethasone can be initially dissolved 
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in DMSO, and that more dexamethasone will stay in solution during coagulation of PLGA.  This 

solvent/anti-solvent compatibility seems to be a critical parameter of making drug loaded 

filaments by wet processing.  Highly loaded, mechanically stable filaments are possible to 

prepare by wet-spinning if these process is carefully designed based on solubility properties of 

the particular solvent/anti-solvent/drug/polymer system.   

 

Here, we have described a methodology to prepare a wide variety of drug loaded filaments and 

have studied their compositional, release, thermal, and mechanical properties.  These 

characterizations provide insight into how these filaments may perform in medical applications, 

but in-vivo corroboration of in-vitro data is a necessary next step.  In Chapter 4 we examine how 

several of these filaments perform in-vivo by testing their usefulness to control the delivery of 

levofloxacin to the eye.   
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Chapter 4: In-vivo implantation of levofloxacin containing filaments 

4.1.  Abstract 

Biodegradable filaments for the controlled delivery of levofloxacin to the eye are described.   

The filaments are synthesized from poly(dl-lactide-co-glycolide) (PLGA) and implanted in the 

conjunctiva using a standard surgical needle.  Three filaments with levofloxacin contents of 46 ± 

2, 85 ± 4, and 36 ± 2 g/cm (denoted 506-L1, 506-L2, and 506-L3, respectively) prepared by a 

wet-spinning process are investigated.  The strength of all the filaments decreases over 5-7 days 

in PBS at 37°C. Filaments were implanted using 3 different techniques.  Filaments were either 

(1) pulled under the conjuntiva with only a small length of filament exposed, (2) looped on the 

surface of the tissue with two needle passes with unsecured ends, or (3) looped on the surface 

with knots securing the filament ends.  It was found that filaments had to be exposed to the tear 

film and knotted to release drug into the tear film for as long as physically possible.  The time 

dependent, in-vivo tear concentrations of levofloxacin from filament implants in New Zealand 

white rabbit eyes are in general agreement with the results from the  in-vitro release profiles, 

with one of the filaments (506-L1) showing effective levels of levofloxacin in the tears for 6 

days. The filaments are generally well tolerated with none of the rabbits displaying any overt 

signs of irritation or discomfort after recovery from the initial surgery.  Histology from tissue 

taken directly adjacent to degrading filament revealed inflammation and immune response 

consistent with previously described PLGA devices.  Filament failure occurs at 6-8 days within 

the rabbit eyes and this time to failure is essentially the same observed from in-vitro mechanical 

properties testing results.   
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4.2.  Introduction 

 
Eye drops are a standard way of delivering drugs to the eye. However, efficacy suffers from 

numerous factors that include poor patient compliance, physical difficulties in administering 

drops, variable drop size, and low residence time in the eye[1-3]. Winfield et al found that 25% 

of patients do not comply well with drop instructions, with 57% reporting some difficulty with 

drop installation.  Dosing problems can be exacerbated with children due to the necessity of 

adults administering drops to uncooperative adolescents[1].  Eye drops are rapidly cleared by 

blinking and reflex lacrimation, so that only a very small portion of the dose remains available 

for efficacy[4-6]. The eye has the ability to hold approximately 30 ml of solution, but drops 

approach 50 ml.  This means that a significant portion of a drop will not fit into the eye.  

Additionally, drug concentrations fall rapidly due to a 16% turn over in the tear film every 2 min, 

and effective levels are not maintained for extended periods of time.  The rapid turn over of drug 

instilled from eye drops means that multiple dosing is necessary for almost every application.  

Forcing patients to take multiple drops each day highlights the necessity of good patient 

compliance. 

 

Previous attempts to control the release of drugs to the eye include the fabrication of both 

biodegradable and non-degradable[7] devices.  The morphologies of these systems include 

microspheres[8, 9], tablets[10-14], rods[15, 16], and contact lenses[17, 18].  Problems with these 

systems include irritation, short effective lives, the necessity for device removal (for non-

degrading systems and for systems that would cause an adverse reaction in a patient), and 

premature elimination from the eye.  Devices can also be implanted subconjunctival[19-21] or by 
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other periocular routes[22], but the delivery of drugs to the tear film from these positions is 

unknown. 

 

In Chapter 3, we demonstrated the ability of a biodegradable filament to encapsulate and control 

the release of levofloxacin and dexamethasone.  The goal of this investigation is to use several of 

the previously described filaments to control the release of levofloxacin to the eye, that for 

certain indications could replace or complement eye drops.  The suture-like morphology of the 

device allows for easy implantation with a surgical needle.  Here, we illustrate the concept by 

focusing on a device that could provide an alternative to post-operative antibiotic eye drops, and 

facilitate the treatment of severe external bacterial infections such as bacterial corneal ulcers.  

The target performance of the device is that it should be easily implanted after surgery, and 

maintain an effective concentration of the antibiotic in the tear film for 5-10 days.  The filament 

is anchored in the eye by passing it through the conjunctival tissue and removal surgery is 

unnecessary by the controlled biodegradibility.  Levofloxacin is used for this model system due 

to its potency against a broad spectrum of bacteria and its natural fluorescence, which makes 

detection at low concentrations possible.  PLGA has been used extensively in implantable 

devices, including devices implanted in the eye. Levofloxacin not only inhibits bacteria, but is 

also bacteriocidal, in many cases at concentrations just above the MIC90.  Since MIC90 values 

fall below or are close to 1 g/mL for most bacteria, this value was utilized as the minimum 

levofloxacin tear concentration that would be acceptable for sustained release[23].   
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4.3.  Materials and Methods 

4.3.1 Filament Preparation 

Filaments containing levofloxacin or dexamethasone were processed by a wet-spinning 

procedure.  An accurately measured amount of drug was placed in a glass vial to which dimethyl 

sulfoxide (DMSO) was added.  This solution was sonicated for 1 minute to facilitate dissolution 

of the drug.  After sonication, PLGA was added to each vial and the vial vortexed to mix all 

components.  The solution was then allowed to equilibrate for 6 hours, vortexing occasionally to 

mix, at a given temperature (Table 3.1), to eliminate all trapped bubbles. Filaments 506-L1, 506-

L2, and 506-L3 from Chapter 3 were synthesized for these experiments. 

 

Solutions were loaded into a 5 mL syringe equipped with a 22 gauge flat-tipped needle (Small 

Parts Inc.) and mounted on a syringe pump.  The solutions were extruded into a 16 L water bath 

(22 ± 2C) and taken up onto a 1 inch bobbin rotated by a DC gear motor.  The pump speed and 

uptake rate were chosen to fix a particular coagulation time (Table 1) with a draw ratio of 1.2.  

Filaments were secured tautly without stretching and allowed to dry under ambient conditions 

for two days.  

 

4.3.2 Drug Loading 

Total drug loadings of the filaments were determined by dissolving accurately measured sections 

of each filament with 1 M NaOH.  The drug content of the resulting solution was measure by 

using high performance liquid chromatography (HPLC) with a C18 column (Agilent 1200 series 

HPLC).  The mobile phase was 49.95 % water, 49.95 % acetonitrile with 0.1 % trifluoroacetic 
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acid.  Levofloxacin was determined by fluorescence detection with an excitation at 292 nm and 

emission at 494 nm.   

4.3.3 In-Vitro Release  

One inch sections of filament were placed in 1.5 mL tubes.  One mL of phosphate buffered 

saline (pH 7.4) was added to each vial.  The vials were incubated at 37°C under gentle rocking, 

and at various times, the buffer was replaced with fresh PBS.  The removed PBS was analyzed 

for drug content by HPLC as described above. 

4.3.4 In-Vitro Mechanical Testing 

Load vs. strain curves for the fibers were collected on an Instron 1150 mechanical properties 

testing apparatus.  Experiments were run under incubation conditions, with the filament 

submerged in PBS at 37°C.  The samples were drawn at a strain rate of 1 %/s and the resulting 

tensions were recorded.  The loads that the filaments were bearing at the time of breakage were 

recorded.  

4.3.5 In-Vivo Implantation 

 

All use of animals in these experiments was approved by the California Institute of Technology 

Institutional Animal Care and Use Committee. 

 

Filaments were prepared and dried for two days as described.  The day of implantation, they 

were sterilized by dipping in isopropanol followed by dipping in sterile saline.  New Zealand 

white rabbits were anesthetized with isoflurane (5% originally, falling to 2.5% typically) and 

their eyes were treated with 0.5% proparicaine drops.  A speculum was used to hold open the 
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eyelids while implantation was accomplished.  Filament was threaded through a standard 

surgical needle creating a double-stranded device.   

 

Filaments were implanted by three techniques.  In the first technique, the filament was passed 

under the conjunctiva in the inferior fornix and the ends of the filament were clipped close to the 

tissue surface.  This resulted in a single band of double-stranded filament residing, primarily, 

under the tissue surface.  In some cases, small tags of filament were present outside of the tissue.  

 

The second implantation technique allowed for an exposed strip of filament outside of the tissue.  

Filament was passed under the conjunctiva, as with the first technique, but the needle was looped 

back to the starting position and a second pass through the tissue was completed.  The ends of 

the filament were cut, allowing for ~ 0.5 cm exposed end tags, but were not secured further. 

 

In the third implantation technique, the free end of the filament was knotted and the needle was 

passed under the conjunctiva until the knot rested against the tissue.  The needle was returned 

close to the initial position and passed a second time under the tissue, leaving an exposed stand 

of about 1.5 cm above the tissue and in contact with the tear film.  The filament was knotted 

again at the exit point of the tissue so as to secure the device at both ends with knots.  The length 

of the filament before implantation and the remainder after implantation were accurately 

measured to give the length of filament implanted.  Six implantations of each type of filament 

were performed. 
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Tear samples were collected by Schrimer’s test strip.  The mass of a strip before and after 15 s 

contact with the tear film was recorded.  The strip was allowed to dry and then the drug on the 

strip was dissolved in 200 L PBS.  The sample was filtered and levofloxacin concentration was 

determined by HPLC.  The tear concentration measurements were normalized to the average 

length of filament implanted.  For each tear sample, the presence of filament was verified by 

visual observation.  The failure point of the filament was recorded at the first day where no 

filament was visible on the surface of the tissue. 

 

To further correlate in-vitro models with in-vivo performance, samples of 506-L3 that had been 

incubated for two days in-vitro were implanted by technique #3 in three rabbits.  Filament 506-

L3 was made as above and three lengths of approximately 30 cm (accurately measured) were cut 

and each was placed in 10 mL of PBS at 37°C.  For two days, these filaments were incubated at 

37°C like for the in-vitro experiments described above.  After two days, the filaments were 

removed from the PBS, sterilized with isopropanol, and implanted in rabbits. 

 

After 9 days, the rabbits were anesthetized and the area around the implantation was examined 

for filament remnants.  In most cases, no remnants could be found, since filament failure and 

elimination usually involved the entire filament coming out of the tissue.  In some cases, when a 

filament remnant could be positively identified, a biopsy of the site was taken for analysis.  

These samples were sent for blinded, professional histological analysis and a report detailing 

inflammation, foreign body reaction, and other histology features was generated. 
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Some filaments of 506-L1 were implanted using technique 3 and removed periodically for drug 

loading analysis.  These filaments were not allowed to extrude from the eye, but instead were 

located and collected while still residing in the eye.  Small sections of these filaments were cut, 

measured, and analyzed for levofloxacin content to track filament drug release rather than tear 

concentration. 
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4.4.  Results 

4.4.1 In-Vitro Properties 

Table 4.1 lists the linear concentrations of levofloxacin in each of the three filaments.  Filament 

506-L2 was formulated with 1.67 times as much levofloxacin as 506-L1 and -L3 and has a 

significantly higher drug loading (ca. 2X) than the other two filaments.  Each filament has a very 

similar diameter (Table 4.1), which is expected due to their processing under identical extrusion 

conditions 

Table 4.1 Filament Properties 

506-L1 46 ± 2 48 ± 33 7.3 ± 0.5
506-L2 85 ± 4 171 ± 140 8.3 ± 0.8
506-L3 36 ± 2 30 ± 17 6.8 ± 0.7

Levofloxacin 
Loading (g/cm)

g levofloxacin/g tear 
at 3 hr

Average In-vivo 
Failure Time (Days)

 

 

Figure 4.1 shows the in-vitro levofloxacin release for each of the filaments.  Filament 506-L2 

reveals a quick release, while 506-L1 and -L3 show fast release for the first day, followed by a 

plateau from days 1-3, and then ends with a faster release until completion.    
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Figure 4.1.  In-vitro levofloxacin release.   
Error bars represent one standard deviation for n = 3. 

 

The in-vitro strength of the filaments decreases with incubation time when tested in PBS at 37°C 

(Figure 4.2).  Filament 506-L2 maintains strength the longest, followed by 506-L1 and 506-L3.  

All of the filaments last at least 5 days before they are no longer strong enough to handle without 

breaking. 
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Figure 4.2.  In-vitro ultimate strength of filaments under physiological conditions over 
incubation time. 

4.4.2 Implantation Technique #1:  Under Conjunctiva 

The first implantation technique attempted consisted of a double-stranded filament pulled under 

the conjunctiva with the ends cut off close to the tissue surface as shown in Figure 4.3(a).  This 

configuration was used for 506-L1 in three rabbits and drug concentrations in the tear film are 

variable (Figure 4.4).  In some samples, drug is present up to 7 g/g tear (one sample after 3 

hours, and one on day 4),   but in most samples, drug content is below 1 g/g, with many 

samples below detection limits (about 0.05 g/g) for levofloxacin. After 3 days, none of the 

samples showed levofloxacin and the filament was fully healed over in the eye (Figure 4.3(b)).   
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Figure 4.3.  Filaments implanted by technique #1. 
Technique #1 implants (a) are passed under the conjunctiva with small external tags and (b) 
show total tissue encapsulation after 5 days.   
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Figure 4.4.  Levofloxacin levels in tears following filament implantation by technique #1. 

4.4.3 Implantation Technique #2:  Looped 

Three 506-L1 filaments were implanted with an exposed loop on the surface of the tissue, but 

without securing the filament ends in any fashion (Figure 4.5).  The average length of filament 

implanted was 7.3 cm.  Figure 4.6 shows tear concentrations over time.  After 3 hours, drug 

levels are uniformly high.  As the trial progressed, 2/3 of the total samples fell above the 1 g/g 

target.  Two of the samples lasted until day 5 and one lasted until day 6.  It was observed that 

they day 5 samples were recovered intact, without any breakage of the filament. 
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Figure 4.5.  Filament implanted by technique #2. 
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Figure 4.6.  Levofloxacin tear concentrations for filaments implanted by technique #2. 
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4.4.4 Implantation Technique 3:  Secured Ends 

 

Six samples of each of the filaments were implanted into the eyes of New Zealand white rabbits 

as illustrated in Figure 4.7 with a tear-exposed strip and knots at the ends.  The average length of 

implantation was 9.9 ± 1.8 cm.   Levels of levofloxacin in the tears were tested 3 hours after 

implantation, and then every day until the end of the trial.  The filaments were allowed to fall out 

on their own and every day, when tears were sampled, the eyes were examined to determine 

exposed filament presence. With the ends secure, failure occurs when the polymer degrades to a 

point where the filament breaks and falls out of the eye and can no longer be seen by simple 

observation.  Table 4.1 listed the average time to device failure for each of the filaments.  

Filament 506-L2 lasts longer than 506-L1 and 506-L3 failing the earliest.  Some filaments would 

extrude out of the tissue and fall out in entirely, while others left small pieces of filament 

embedded in the tissue. 

 

Figure 4.7.  A filament implanted by technique #3. 
 

After 3 hours, there were high levels of levofloxacin in the tears of each animal for all the 

filaments implanted, with the highest levels for filament 506-L2 (Table 4.1).  The time 
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dependent levofloxacin tear concentrations are shown in Figure 4.8 where the concentrations are 

normalized to the average implantation length to eliminate bias from variations in the amounts 

implanted.  The plots are shown on the semi-log scale to accentuate trends in the tear 

concentrations.  Data points after device failure are omitted, though tear concentrations typically 

fell below detection levels when no filament was visibly present.  Filament 506-L1 exhibits 

stable release, with most values falling between 1 and 10 g levofloxacin/g tear.  Filament 506-

L2 shows significantly lower concentrations for the majority of samples.  Filament 506-L3 has a 

release profile that varies with time, showing a dip at 1 day, rising concentrations through day 3, 

then a gradual decline until device failure.   
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Figure 4.8.  In-vivo levofloxacin tear concentrations for each filament implanted by 
technique #3.   
Concentrations are not reported past the time when filament mechanical failure occurs.  The line 
at 1 g/g tear denotes the target tear concentration. 
Filaments of 506-L1 were removed at various time points and drug content was analyzed (Figure 

4.9).  The levofloxacin loading decreases as a function of implantation time.  As shown in Table 

4.1, the original levofloxacin loading of 506-L1 is 46 g/cm but this level drops to 26 g/cm 

after one day of implantation and by day 7 is down to 5 g/cm.  These samples were taken from 
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filaments that were removed after days of implantation and may have been stretched or 

compromised in other ways during the implanted time.   
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Figure 4.9.  Drug loading of filament 506-L1 vs. in-vivo implantation time.   
 

The transient release profile of filament 506-L3 allowed further investigation into the 

relationships between the in-vitro and in vivo results by incubating samples of 506-L3 for two 

days in PBS at 37°C before implantation.  Figure 4.10shows the results of this study, with the 

samples for the pre-incubated filament shifted to match the timeframe of the filament implanted 

without incubation, so time 0 on the graph corresponds to when un-incubated 506-L3 was 

implanted in the rabbits and when pre-incubated 506-L3 was placed in PBS.  Pre-incubated 506-

L3 was then implanted on day 2.  The pre-incubated filaments show levofloxacin concentrations 

that match well to the original filaments, and the release profiles correlate with the same gradual 
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decline until failure.  The pre-degraded filaments also failed after an average of 4 days, matching 

the average lifespan of original filaments minus the two day incubation period.  
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Figure 4.10.  Comparison of in-vivo levofloxacin tear concentrations between filament 506-
L3 that was implanted as-made and 506-L3 that was incubated in PBS at 37°C for two days 
before implantation. 
 
   
There were visible signs of irritation to the eyes immediately after implantation, but these signs 

dissipated as the rabbits fully recovered from the surgery.  By day 2, there were no visible signs 

of irritation or pain (no scratching, rubbing, or keeping the eye shut).  After nine days, 

examination revealed the discernable remnants of only 5 of the filaments that were implanted.  

Histology of biopsies from these sites revealed chronic inflammation in all samples with foreign 

body reaction and fibrosis each present in 3 out of the 5 samples.  Inflammatory cells made up of 

lymphocytes, plasma cells and eosinophils were present in the subepithelial stroma for all of the 
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samples and foreign body giant cells were seen in 3 of the samples.  This type of tissue response 

is in agreement with previous studies on implanted PLGA and other degradable devices[24-28]. 
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4.5.  Discussion 

Biodegradable filaments for the controlled release of levofloxacin to the eye have been prepared 

and characterized both in vitro and in vivo in the eyes of New Zealand white rabbits.  

Levofloxacin is a highly potent antibiotic against a broad spectrum of microbes (under 1 g /mL 

in the vast majority of cases) and is FDA approved for topical, ophthalmic use[29].  

Levofloxacin is a good model drug for this delivery system since it is easily detectable in low 

concentrations due to its natural fluorescence.  Wet-spinning of PLGA creates a porous, easily 

deformable product that likely aids in the minimization of  irritation upon implantation[30].  The 

diameters of these filaments are similar to suture diameters, with these three filaments having 

diameters typical for a size 2-0 or 3-0 suture.  While this is larger than sutures typically used for 

ophthalmic applications, it is similar to the dimensions of previously described ophthalmic 

controlled release devices[10, 13, 15, 31], including some that have been used clinically[32]. 

 

The method of implantation is critical to the success of a filament.  In order to study the release 

and failure properties of filaments in-vivo, a method of implantation that allowed for 

investigation had to be established.  In this study, filaments were implanted by three different 

techniques: 1) placing the filament under the conjunctiva, 2) looping the filament to provide an 

exposed strip but not securing the filament ends, and 3) looping the filament and tying the ends.  

If a filament is implanted under the conjunctiva, with minimal or no direct tear exposure, than 

drug levels are almost uniformly low.  This is corroborated by the failure to detect levofloxacin 

after filament breakage for the other types of implantation, despite filament remnants present 

under the conjunctiva.  The conjunctiva heals over quickly and after a few days, the entire 

sample is encapsulated under tissue.  The barrier to drug diffusion through the tissue is too great 
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to have a fully implanted filament provide adequate drug release to the tears, and that having part 

of a device exposed to the tear film is necessary.  

 

Two implantation techniques with exposed filament were performed.  It was found that a 

filament could provide adequate drug release if a strip of filament was exposed to the tear film.  

When the filament’s ends were not secured (technique 2), the filament tended to extrude intact 

from the implantation site.  These filaments were collected whole, indicating that failure to 

properly anchor the filament, rather than mechanical failure, was the cause of filament loss.  

Before these filaments were lost, most of the tear concentrations were above 1 g/g tear, 

indicating that filaments exposed to the tear film could release adequate amounts of drug.  The 

final implantation technique used knots to secure the ends of a looped filament.  A secured 

filament provided a stable system for investigating filament drug release and mechanical failure 

properties.    

 

The three filaments used here were characterized more fully in Chapter 3 and limited data are 

provided here for comparison to in-vivo results.  The differences in filament formulation are 

reflected in release profiles and drug loading.  Filament 506-L2 was fashioned from a solution 

containing drug particulates, while 506-L2 and -L3 were processed from homogenous solutions.  

This led to much higher drug loading for 506-L2, while 506-L1 had only slightly higher loading 

than 506-L3.   For a typical implantation, the total amount of levofloxacin in the implanted 

length of filament ranged from approximately 300 g (506-L3) to 750 g (506-L2). 
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The time dependent release properties from in-vitro studies correlated well with in vivo results.  

The release profiles of filaments 506-L1 and -L3 involved an initial burst followed by a small 

plateau and a second phase of release. These results are similar to many previous studies of 

devices fashioned from PLGA or related polymers[33].  The initial burst of antibiotic release is 

clinically desirable as high antibiotic concentration is most important during the time 

immediately after an operation.  In Chapter 3, it was shown that filaments made from solutions 

containing particles of levofloxacin released the drug rapidly, and this is the case for 506-L2.  

The differences in the release behavior in the in-vitro release kinetics are also observed in the in-

vivo tear concentrations.  Filaments 506-L1 and -L3 provide relatively high levels of drug over 

the entire time course of the study while 506-L2 shows mostly low levels of drug after one day.  

The in-vivo verification of in-vitro release profiles is important, since far more filaments were 

made in Chapter 3 than were tested here.  It can now be reasonably assumed that the in-vitro 

release of drugs from the filaments previously described is a good indicator of in-vivo release. 

 

Tears were sampled by contacting the eye with Shirmer’s test strips (mass determinations are 

more accurate than volume and thus were used here).  This method may be affected by reflex 

lacrimation diluting the tear samples as they are collected, resulting in levofloxacin concentration 

readings that are lower than actual levels in the tear film.  The Schirmer’s strips were used since 

alternatives, such as capillary tubes and sterile sponges, also suffered from similar problems and 

were more difficult to use for collection.  Topical anesthesia, that would prevent reflex 

lacrimation, can not be used for tear collection, since any infusion of drops into the eye would 

wash out the levofloxacin.   
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There were also significant rabbit to rabbit differences in tear concentration, with the most 

obvious outlier being a sample of 506-L2.  For one rabbit, 506-L2 gave very high tear 

concentrations throughout the entire course of release.  In figure 4.8, all of the highest drug 

measurements for 506-L2 come from a single implantation.  This significantly skews the results 

of the trial and blurs the destinctions between 506-L2 and the other filaments.  With the outlier 

included, it appears that 33% of the tear concentrations for 506-L2 are over 1 g/g tear but 

without the outlier, this falls to 17%.  This compares to 87% for 506-L1 and 70% for 506-L3.  

When the highest single rabbit is eliminated, 84% of the measurements for 506-L1 are still over 

1 g/g tear while 65% are for 506-L3.   

 

One of the primary goals of a local drug delivery system is to minimize the amount of drug used 

in the dose while maximizing the effectiveness of the dose.  For filaments of the type used here, 

these criteria translate into maintaining an effective level of levofloxacin while minimizing the 

total exposure.  Any side effects or tissue toxicity due to levofloxacin exposure should be 

minimized while effectiveness is retained.  For filament 506-L1, the ability to maintain effective 

levels of levofloxacin has been demonstrated, while the total amount of levofloxacin present in a 

particular eye averages only 455 g.  Eye drops, which maintain effective levels of drug in the 

eye for only a short time, require a far larger total amount of drug.  For example, a typical drop 

of 0.5% levofloxacin contains approximately 250 g of drug (assuming a standard drop of 0.05 

ml).  Thus, the total amount of drug in a standard implantation of 506-L1 is equivalent to the 

total drug content of only two drops of levofloxacin ophthalmic solution. 
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Overall, the filaments were easy to implant with the procedure taking only a couple of minutes 

for each eye.  The rabbits showed some irritation in the time immediately after implantation, but 

they recovered from the implantation and eyes with filaments implanted were not immediately 

discernable from eyes without filaments.  With few exceptions, the eyes with filaments did not 

display excessive tearing and none of the rabbits were observed trying to scratch or rub the 

implantation site.  The 50:50 PLGA that was used for these studies in not often fashioned into 

filaments, but other reported devices made by wet-spinning have been described.  These 

filaments, made by wet spinning, easily yield under wet conditions as shown by the low 

maximum stress obtained during mechanical properties testing, as shown in Chapter 3.  

Moreover, these maximum stresses are often achieved at strains of over 500% which 

demonstrates that the filaments will deform in response to stress rather than recoil.  The low 

irritation could be the result of the easy yielding of the filaments to stress, thus preventing any 

pinching or tightening that could result from a device retracting against any forces acting on the 

devices in the eye.  The irritation may also be lessened by the porosity of the filaments, which 

makes the devices able to deform in the radial direction.  While the rabbit results are promising 

in that the filaments are well tolerated, humans may respond differently to such a device. 

Implantation technique and size may need to be further tuned.  For example, the practice of 

knotting the ends of the filaments may need to be re-evaluated based on patient concerns and 

another method of securing the ends of the filaments may need to be devised.   

 

After the filament has been eliminated, histology reveals that the part of the filament embedded 

in the conjunctiva does cause an inflammation and foreign body response.  This inflammation is 

of a moderate intensity and is similar to the types of inflammation seen in response to degrading 
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sutures and other degradable implants[24-28].  PLGA devices have been approved for human 

implantation by the FDA despite the inflammation caused by degradation products of the 

filament[25].  Since this inflammation is moderate, localized only to the tissue in contact with 

the embedded part of the filament, and is only for devices that are not fully eliminated after 

filament failure, it may be that most of the reaction can be eliminated by changing the 

implantation technique.  If future implants only have a small length embedded in the tissue, with 

most of the filament on the tissue surface, then there is less area for inflammation and not much 

embedded filament to prevent complete device elimination. 

 

Previous attempts at sustained drug delivery to the tear film have mostly focused on shorter 

release times and devices that extend drug residence times when the drug is administered as a 

drop. Diffusion based drug delivery systems, such as contact lenses[17, 18], unanchored 

devices[12, 13, 15], and self-forming gels[6], are often used to stall the release of drug for 

several hours, but rarely work for multiple days.  There have been reports of molecularly 

imprinted contact lenses that release drug for several days, but they must reside on the cornea, 

and this may limit their use for immediately after surgery on the cornea.  Other systems that are 

not anchored may be placed in the conjunctival sac, but can come out due to mechanical 

disturbances.  These devices show promise for multiple-day release, but may ultimately have to 

be anchored in-vivo.    

 

Devices developed for drug delivery to the tear film that are unanchored will be cleared from the 

eye due to blinking or other types of mechanical disturbance[15].  The filaments are self-

anchoring, so they must maintain mechanical strength over the course of drug release.  Eyes that 
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had no visible filament also had no detectable levels of levofloxacin, so the ability of the 

filament devices shown here to reside exposed to the tear film was of critical importance.  At the 

same time, a device that resides in the eye long past the end of drug release is undesirable. The 

filaments described here have mechanical properties that are time dependent due to the 

biodegradation of the PLGA.  In-vitro studies of mechanical properties closely predict the in-

vivo lifespan of the filaments.  The order of survival (506-L2>-L1>-L3) is especially important, 

but the days to failure are even closer in agreement for the in-vitro and in-vivo studies.  In-vivo 

failure tends to happen about a day later than predicted in-vitro, but this is probably due to the 

method of recording failure in-vivo (only looking at tear sampling times) and to filaments 

remaining trapped in the eye past their mechanical failure point.  A critical consideration in the 

design of the filaments is that the mechanisms for drug release and mechanical failure are not 

independent.  This leads to a filament releasing over 70% of its total drug load before failure in-

vitro.   

 

It is important that in-vivo results follow in-vitro trends, as the relative difficulty, time, and 

expense are much higher for in-vivo testing.  Two experiments, the serial removal of implanted 

filaments and the implantation of a pre-incubated filament, were run with the goal of correlating 

in-vitro release and mechanical data to in-vivo results.  Samples of 506-L1 were implanted and 

removed after various time intervals.  Direct measurements of filaments loadings may provide a 

better comparison to in-vitro data, since tear sampling provides an instantaneous measurement of 

release rather than information on the total amount released at any time.  Drug retention in the 

filament was close to expected from in-vitro experiments.  The filament starts at a loading of 46 

mg/cm, but by one day the loading has fallen 39%.  The filament loading then decreases steadily 
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so that only 13% of the initial drug remains by day 7.  The average drug release in a given day 

(past day 1) is 3.5 g/cm.  This data correlates to the in-vitro data but does not provide perfect 

verification.  First, drug levels remaining in the filament are uniformly lower than predicted by 

in-vitro experiments.  Usually, the data points are off by 7-15%, but the loading at 3 days is a 

significant outlier beyond the normal deviation.  These results may be skewed by the filament 

deforming during implantation and subsequent conditions in the eye.  If the filaments are 

stretched, the linear drug loading may decrease.  Assuming as little at 10-20% deformation 

brings most of the numbers in line with in-vitro experiments.   A better method may be to mass 

the filaments and determine drug loading by mass fraction of drug, but with such small sections 

of filament implanted and recovered, the measurement of mass was not reliable.  Overall, the 

filament drug loadings reinformced the overall trend of drug release and verified the amount of 

release/day from the filament.  

 

The implantation of a filament that was pre-incubated in-vitro further shows the validity of the 

in-vitro models used for this system.  The transient in-vivo tear concentrations for 506-L3 had 

the largest variation and thus made this filament the most appropriate one to investigate variation 

in the time dependent release properties.  The pre-incubated filament has the same release profile 

as filament 506-L3 implanted without any incubation when adjusted two days to account for the 

overall incubation time.  Moreover, the pre-incubated filament fails two days earlier than the un-

incubated one.   

 

Another significant benefit of the fibrous morphology of this system is the ease of removal after 

implantation.  Since filaments maintain mechanical strength for several days, they could be 
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easily cut and removed should the patient experience adverse affects due to interactions with 

either the filament material or delivered drug.  This ease of removal is a property of the bulk 

morphology of the device and the type of implantation.  Since the ends of the filament, and a 

loop in the center, are exposed on the tissue surface, a physician would be able to simply cut the 

central loop and pull the entire device out by the ends.  This procedure takes less than a minute to 

complete based on informal testing performed during these experiments.  The ease of removal is 

in contrast to other systems, since fully implanted devices would require a second surgery to 

remove.  Microparticulate devices are not easily removed due to the difficulty in finding and 

eliminating all particles when the devices are small and able to migrate. 

 

 

4.6.  Conclusions 

We have developed biodegradeable filaments (PLGA) for controlled delivery of levofloxacin to 

the eye.  Our initial goals of creating a device that will release effective levels of levofloxacin 

over 5-10 days have been achieved, with tear concentrations above 1 g levofloxacin/g tear from 

the eyes of New Zealand white rabbits obtained for up to 7 days. The filament material is fully 

absorbable, and the total residence time of the device in the eye varies from 5-9 days, depending 

on formulation.  We believe that this process for drug delivery can be applied to other drugs with 

different target release spans and that biodegradable filaments are an effective way of delivering 

therapeutics to the eye. 
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Chapter 5: Wet-spinning of side-by-side multicomponent, drug containing 
filaments  

5.1.  Abstract 

Side-by-side, multicomponent, polymer filaments containing either levofloxacin or 

dexamethasone are synthesized by wet-spinning and characterized to determine physical and 

drug release properties.  Polymer and drug are dissolved in a water miscible organic solvent 

(DMSO) and side-by-side filaments produced by co-extrusion through a hypodermic Y 

connector into a water bath.  The biodegradable polymers used here included three poly(dl-

lactide-co-glycolide) (PLGA) copolymers (with 50:50, 75:25, or 100:0 ratios of 

lactide:glycolide) and polycaprolactone (PCL).    Scanning electron microscopy and differential 

scanning calorimetry revealed that individual filament morphology and thermal properties are 

maintained in the bicomponent filaments.  Filaments prepared from PCL and slower degrading 

75:25 PLGA can mechanically stabilize a 50:50 PLGA component that would normally lose all 

strength over 7 days in PBS at 37ºC.  Drug release from a bicomponent filament is an additive 

composite of the drug release profiles obtained from single component filaments, and 

multicomponent filaments can control the release of drug over much longer times than a 

monocomponent filament.  Drug release from a tetracomponent filament is calculated based on 

the individual component drug release profiles and shown to be a good predictor of 

experimentally determined drug release. 
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5.2.  Introduction: 

Wet spinning has emerged as an attractive method for processing controlled release devices[1-5].  

Wet-processed filaments have been used to control the release of both proteins and small 

molecule therapeutics.  Previously, we demonstrated that a range of poly(d,l-lactide-co-

glycolide) (PLGA) filaments could be prepared with encapsulated antibiotics and steroids, and 

these filaments were tested for ophthalmic applications via a rabbit eye model[4].  In-vivo 

sustained release of levofloxacin was demonstrated over a 7 day period, a time frame appropriate 

for post-surgical antibiotic delivery.  In-vitro release and mechanical failure experiments 

correlated well to in-vivo results.  While single component filaments have been demonstrated to 

show in-vivo function, their use as a versatile controlled release platform is limited by several 

drawbacks.  These features include polymer dependent, triphasic release profiles (with an initial 

fast release, a plateau of slow release, and a second phase of degradation controlled release) and 

mechanical properties failure during the course of release.  Since degradation controls long-term 

release in PLGA devices, faster degrading polymers release drug over a short period of time, 

while slower degrading polymers can exhibit long induction periods before the onset of release.  

The degradation also causes mechanical properties failure, so drug release and filament strength 

are strongly linked.  To extend the utility of these filaments beyond the previously demonstrated 

applications and to prepare a more versatile controlled release filament-based platform, a method 

of processing filaments with multiple side-by-side layers was developed. 

 

Multicomponent filaments have long been produced for commercial applications where one 

polymer type does not have all the necessary properties.  These filaments have mostly been 

bicomponent, but systems containing more than two components have been reported[6].  The 
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production of bicomponent filaments for drug delivery has primarily focused on core-shell 

configurations.  These filaments usually have drug contained in only one component.  Some 

shell-core devices for drug release have a drug containing matrix surrounded by a structural 

shell, and are useful for applications like guided nerve growth[7-9].  Alternately, coatings have 

been made on structural cores[10-12].  A drawback to core-shell devices is that the rate of 

release from internal layers can be influenced by diffusion through external layers.  Additionally, 

processing conditions for multiple concentric components become increasingly complex, and 

spinerette design can become limiting. 

 

Side-by-side bicomponent configurations for controlled release are less represented in the 

literature, but several recent publicationa of side-by-side multicomponent spinning indicate that 

interest in making multicomponent fibers is increasing.  Side-by-side examples mostly come 

from the field of electrospinning, where techniques originally described for the electrospraying 

of two compartment particles has been adapted to make fibers[6, 13-15].  Under certain 

conditions, bicomponent electrospun fibers can separate during formation[15] with the resulting 

fiber mat being a mixture of the two fiber types rather than a single filament having a split 

composition.  At least one previous example of a drug-loaded bicomponent fiber has not shown a 

release profile that was a composite of the single components, but instead had properties 

dominated by the most abundant component[14].  Recently, Lahann and coworkers have 

electrospun multicomponent polymer fibers where the chemical compositions of the different 

compartments are distinct[6].  These fibers were made from polymers relevant to drug delivery 

with encapsulated fluorophores, but release profiles for these devices were not reported.  These 
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filaments were based on earlier work by the same group on electrospraying of multicomponent 

particles[16, 17].   

 

Here, we describe a simple method of producing wet-spun, multicomponent filaments.  The 

described filaments are mostly bicomponent, but it is shown also how this method can be 

extended to accommodate more than two components.  We show that the release, thermal, and 

mechanical properties of each individual component are retained and decoupled from other 

component properties.  Using a side-by-side spinning method, a filament can be produced that 

has properties that can be tailored to a particular application.  
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5.3.  Materials and Methods 

 

5.3.1 Materials 

Levofloxacin, dexamethasone, polycaprolactone (MW 80,000) and poly(d,l-lactide) (PDLLA, 

MW 75,000-120,000) were purchased from Sigma-Aldrich.  Poly(d,l-lactide-co-glycolide)’s 

were purchased from Boehringer Ingleheim.  The PLGA’s in this study were Resomer RG 506 

(50:50 lactide:glycolide, i.v. of 0.82 dl/g) and Resomer RG 756 (75:25 lactide:glycolide, i.v. of 

0.80 dl/g).  DMSO, acetone, HCl, and NaOH were obtained from VWR. 

 

5.3.2 Multicomponent filament extrusion 

Single component filaments were prepared as previously reported[4], while multi-component 

filaments were made by a modification of this method.  Polymer and drug were dissolved in a 

common solvent, with solution compositions shown in  

Table 5.1.  Solutions were loaded into glass syringes fitted with 22 gauge flat-tipped needles.  

For muticomponent filaments, syringes were connected to 22 gauge hypodermic Y-connectors 

(Small Parts Inc.) by Teflon tubing.  Component solutions were extruded in equal amounts.  

Filaments were extruded into a coagulation bath of water at 20°C and taken up on a bobbin with 

a draw ratio of 1.2.  The flow rate out of the spinneret was 70 ml/min for all filaments and 

coagulation time was 45 s except where noted.  Schematics for the combination of polymer 

streams for bicomponent and tetracomponent extrusions are shown in Figure 5.1. 
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Figure 5.1.  Schematic of combining streams for a multicomponent filament. 
 
Table 5.1.  Solution contents and compositions. 

Solution Composition (%wt)
Solution Polymer Drug Solvent Polymer Solvent Drug

A RG 506 Levofloxacin DMSO 23.3 69.8 7.0
B RG 506 Levofloxacin DMSO 22.2 66.7 11.1
C RG 506 Dexamethasone DMSO 23.3 69.8 7.0
D RG 756 Levofloxacin DMSO 23.3 69.8 7.0
E PDLLA Levofloxacin DMSO 23.3 69.8 7.0
F PCL - Acetone 30.0 70.0 0.0
G RG 756 Dexamethasone DMSO 23.3 69.8 7.0  

5.3.3 Drug Loading 

Drug loading was determined by dissolving a measured length of filament in 1 M NaOH.  The 

solution was neutralized with 1 M HCl and diluted to an appropriate concentration for analysis in 

PBS.  Drug concentration in the resulting solution was determined by HPLC using a C18 column 

with a mobile phase of 49.95% water, 49.95% acetonitrile, and 0.1% trifluoroacetic acid.  
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Levofloxacin was detected by fluorescence, with an excitation of 292 nm and emission of 494 

nm.  Dexamethasone was determined by UV absorbance at 254 nm.   

5.3.4 DMSO content 

 

DMSO content was determined by NMR using an internal standard.  An accurately measured 

section of filament (approximately 10 cm) was dissolved in d-chloroform (approximately 1 g, 

accurately measured) with an internal standard of 1% trimethoxysilane.  The proton peak for 

DMSO was compared to the internal standard to give the concentration of DMSO in the sample. 

5.3.5 Drug Release 

 

Release studies were performed in PBS at 37°C on an incubating rocker.  Sections of filament 

measuring 2.5 cm were placed in 1.5 mL Eppendorf tubes, to which was added warmed PBS.  At 

each time point, the PBS was removed for analysis and replaced with fresh PBS.  Drug 

concentration was measured using the above HPLC method. 

5.3.6 Differential Scanning Calorimetry 

 

Differential scanning calorimetry was performed, with selected samples cycled three times from 

-50 to 80°C at a heating rate of 5K/min.  Samples were saturated with water, as previously 

described[4], to allow the separation of transition temperatures for multicomponent filaments.   

 

5.3.7 Filament Imaging 

Bulk fiber morphology was observed by light microscopy and scanning electron microscopy 

(SEM).  Light microscopy was performed using a Micromaster I light microscope (Fisher 
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Scientific, Pittsburgh, PA) at 10x magnification.  The size measurements were calibrated using 

known diameter wires (Small Parts Inc.).  For SEM, samples were coated with Pt/Pd and 

magnifications up to 400x were possible without destroying the samples. 

 

5.3.8 Mechanical Testing 

Load vs. strain curves for the filaments were collected on an Instron 1150 mechanical properties 

testing apparatus.  Experiments were run under ambient conditions, where the temperature was 

22 ± 2°C with relative humidity of 50 ± 10%, and under incubated conditions, with the filament 

submerged in PBS at 37°C.  The samples were drawn at a strain rate of 1 %/s and the resulting 

tensions were recorded.  The loads that the filaments were bearing at the time of breakage were 

recorded, as were the maximum elongations of the filaments.   
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5.4.  Results 

5.4.1 Filament Morphology 

In Figure 5.2, filaments prepared from solutions A and B (denoted as filaments A and B, 

respectively) are shown with a bicomponent filament of AB.  Discrete drug particles are present 

in filament B, while filament A has a rough surface without large protuberances.  Filament AB 

(cross section in Figure 5.2(d)) clearly shows two different morphologies, one side containing 

drug particles (Figure 5.2(c), right) and the other without (Figure 5.2(c), left).  These images 

suggest that morphology of an individual component is retained during multicomponent 

spinning.     

 

Figure 5.2.  SEM images of filaments A (a) and B (b) as well as filament AB (c) and (d).   

a b

dc
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5.4.2 Filament Formation 

 

Data for drug and DMSO retention vs. coagulation time are shown in Figure 5.3 for filament AC 

as well as single component filaments A and C.  Filament AC is a combination of a levofloxacin 

containing component (A) and a dexamethasone containing component (C) with both 

components containing the same polymer (RG 506).  Dexamethasone is highly retained while 

levfloxacin loading steadily decreases with coagulation time.  The retention of drug during 

bicomponent filament extrusion is almost identical to the individual retention profiles for single 

component filaments (Figure 5.3(a)).  DMSO is rapidly eliminateded from all filaments (Figure 

5.3(b)).   
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Figure 5.3.  Drug (left) and DMSO (right) retention during extrusion. 
Profiles for the single component filaments A and C and the bicomponent filament AC are 
shown.   
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5.4.3 Drug Release 

Drug release profiles for several bicomponent filaments are illustrated in Figure 5.4.  In Figure 

5.4(a), a component containing fast-releasing drug particles (B) is combined with a homogenous 

component (A) to achieve a profile that has a large, fast initial release but still retains drug for 

sustained release.  Figure 5.4(a) is shown with a y-axis of total drug released/cm filament to 

highlight the differences in drug loading.  Figure 5.4(b) shows release from filaments A, C and 

AC.  The release profiles of individual components are retained by the bicomponent filament, 

which releases both levofloxacin and dexamethasone according to the single component profile.  

This method can also be used to release a single drug over an extended period of time.  Figure 

5.4(c) demonstrates how a combination of a quickly degrading component (RG 506 in filament 

A) and a slowly degrading component (RG 756 in filament D) can be combined to achieve a 

composite release profile for levofloxacin.   
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Figure 5.4.  Drug release profiles for bicomponent filaments and monofilaments made of 
their individual components.  Bicomponent filaments are shown along with filaments made 
from each of the individual components for different (a) drug forms, (b) drug types, and (c) 
polymer types. 
 

 

(a) (b) (c) 
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5.4.4 Thermal Properties 

DSC measurements of bicomponent filaments reveal little if the PLGA type was the same for 

both components.  If the polymers were different in the different components, multiple 

transitions were observed.  For filament AF, the Tm of PCL and the Tg of PLGA could be 

separated by the addition of H2O to the sample crucible (Figure 5.5(a)).  Samples of water 

saturated PCL show a Tm at 57°C, while PLGA has a Tg at 39°C.  Bicomponent filament AF 

showns both transitions, indicating that the polymer phases are retaining their individual thermal 

properties.  Both transitions can be seen for filament AD as well (Figure 5.5(b)), but the results 

are less clear since the glass transitions of the two PLGA copolymers overlap. 
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Figure 5.5 DSC traces of multicomponent filaments (a) AF and (b) AD along with their 
individual polymer components.   
 
 

5.4.5 Mechanical Properties 

Filament AF was prepared to have a structural PCL component with a PLGA component loaded 

with drug.  Figure 5.6(a) shows the maximum load over time at a strain rate of 1%/s, when tested 

under PBS at 37°C.  The PCL component of the filament provides mechanical stability for 

longer than PLGA alone.  When samples of filament AF are dried and tested in air, the 
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individual breaking points of the components can sometimes be observed.  Figure 5.6(b) shows 

the stress-strain curve of a sample of AF that was freeze dried after incubation in PBS at 37°C 

for one date to eliminate residual solvent.  The PLGA phase breaks at a strain of 210% while the 

PCL component does not break until an elongation of 740%.  
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Figure 5.6:  Mechanical properties of filament AF, a bicomponent PCL/PLGA filament.  
(a) shows that the strength of AF under incubation conditions over several weeks while (b) 
shows a load-strain curve of a dry filament. 
 

Another example of mechanical decoupling could be seen from filament AD (Figure 5.7).  

Filament A loses strength rapidly, with total mechanical deterioration happening by day 7 but 
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filament D lasts for 2-3 weeks (Figure 5.7a).  Filament AD has a combined profile, showing 

attributes of each monocomponent filament.  Since filament D has a much higher maximum load 

after the first day, the mechanical properties of AD are dominated by the D component.  

Filament AD has two breakage events for the first several days of incubation, with each 

component breaking at different strains (Figure 5.7b).  Fig. 6a shows both breakage events at day 

0 and 1 for filament AD.   
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Figure 5.7.  Mechanical properties of filament AD. The maximum filament load over time 
for filaments A, D, and AD is shown (a) as well as a load/strain curve for AD at a strain 
rate of 1 %/s (b). 
 

5.4.6 Tetracomponent Filament Release 

A tetracomponent filament was prepared by combining two bicomponent polymer streams.  This 

filament is composed of components A, D, E, and G.  Levofloxacin release from components A, 

(a) (b) 
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D, and E is shown in Figure 5.8(a) compared to the release predicted by averaging the release of 

the three monofilaments.  This filament has three levofloxacin containing components, each 

formulated with a different PLGA copolymer.  Predicted release values were determined by 

adding the amount released from each single component filament at each time point and dividing 

by 3.  One phase is composed of 75:25 lactide:glycolide PLGA with dexamethasone (G).  The 

release of dexamethasone is independent of the levofloxacin release, and consistent with the 

release profile of monocomponent filament G (Figure 5.8(b)).  
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Figure 5.8.  Drug release from a tetracomponent filament showing (a) levofloxacin and (b) 
dexamethasone release. 
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5.5.  Discussion 

 

Previously, we reported the formation of drug loaded filaments for the controlled release of 

drugs in the eye[4].  The data reported show that drug release and mechanical properties could be 

tuned.  However, these filaments have several limiting characteristics.  First, release profiles 

were triphasic, that is, they have an initial period of fast release, a plateau of slow release, and a 

final region of polymer-dependent, degradation controlled release.  Second, a polymer chosen for 

a particular release profile may not have appropriate mechanical properties for a desired 

application.  Finally, since polymer degradation facilitates both release and mechanical failure, 

filaments lose strength before complete release is achieved.  Release and mechanical strength 

could not be independently tailored.  Here, we describe the combination of multiple filament 

properties into a single device using side-by-side multicomponent spinning.  In order for this 

methodology to be of value, the components of the filament must have decoupled properties so 

that each individual component retains the functionality of a single component filament of 

equivalent composition.  Previously, we showed that for single component filaments, in-vivo 

performance correlated well to in-vitro results.  Many of the same experimental techniques are 

used here to provide insight into the likely in-vivo performance of the multicomponent filaments.   

 

During the extrusion process, drug retention varies depending on drug type.  Dexamethasone 

content drops to approximately 85% of initial drug level over the first 15 seconds of coagulation, 

but is retained at the same level for longer coagulation times.  Levofloxacin content drops 

steadily during coagulation, with 90% retention after 15 s decreasing to 37% after 60 s.  DMSO 

is rapidly eliminated from both filaments in a drug-independent manner.  A bicomponent 
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filament prepared by joining dexamethasone and levofloxacin loaded phases displays the same 

formation mass flux characteristics as the individual components (Figure 5.3).  This result allows 

for the same high dexamethasone retention and moderate levofloxacin retention that is seen in 

individual filaments to be incorporated into a bicomponent filament.   

 

After formation, each individual component largely retains the properties of a single component 

filament of that composition.  The morphology of the components is retained as shown by the 

images in Figure 5.2.  As previously reported, a filament spun from a solution containing 

precipitated drug particles had discrete protuberances on the filament surface.  A filament spun 

from a homogenous solution of drug and polymer has a rough surface, but discrete particles are 

rarely observed. A bicomponent filament comprising a particle containing component and a 

homogenous component has split morphology.  Under SEM, half of the filament has observable 

particles, while the other half does not (Figure 5.2(c) and 1.2(d)).    In addition, there is a clear 

dividing line between the two components, indicating that each component is retaining specific 

morphology based on the physical characteristics of the polymer/drug solution.  Other filaments 

can be prepared where the morphologies of the different phases are difficult to observe, e.g. 

different PLGA copolymers are not differentiated by SEM.   

 

Thermal and mechanical properties of the individual components are also decoupled in a 

bicomponent filament.  Thermal transitions of each component are retained (Figure 5.5), with the 

best example of this being filament AF.  The observation of the individual components is 

possible in AF since the melting point of PCL is separated from the glass transition of RG 506 by 

18°C.  The glass transitions of the various PLGA copolymers are very close to each other 
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(maximum separation of 9°C) and the DSC traces of the transitions tend to overlap for these 

bicomponent filaments.  Filament AD shows a dual glass transition, but the difference between 

the glass transitions of the two PLGA copolymers is not large enough to fully separate.  The 

result is a broad, “two-humped” transition that suggests separation between the two components, 

but is not conclusive.    

 

Filaments made of component A only lose mechanical strength rapidly, and become unstable 

after only 7 days of incubation in PBS at 37°C[4].  Figure 5.6 and Figure 5.7 demonstrate how a 

component made from a different polymer can elongate the mechanical life of a component spun 

from solution A.  Filaments AD and AF were formulated to stabilize component A with a second 

component with a slower degrading polymer.  Filaments AD and AF shows two breakage events 

at the early stages of testing, but after 5 days shows an additive effect between the two 

components, with the longer-lasting component (D) dominating the mechanical behavior.  

Because PCL degrades much more slowly than PLGA, component F can mechanically stabilize 

filament AF.  A PCL component allows the retention of mechanical strength over long time 

lengths.  Ultimately, the PCL component will degrade. However, filament AF is promising 

because it shows that mechanically stabilizing components can be used to elongate the lifetime 

of a drug releasing filament. 

 

Filaments made from single components display a characteristic, triphasic drug release profile 

when using PLGA.   One goal here was to combine individual component release profiles by 

multicomponent spinning to better control the drug release from a single filament.  Precise 

control of drug release can be achieved if release from one component is decoupled from the 
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release of a second component (as demonstrated in Figure 5.4).  In other words, release from any 

individual component should not be affected by the release from neighboring components. 

Decoupling of release is especially important since previous bicomponent filaments have not 

necessarily shown a combined release profile[14]. The release of levofloxacin and 

dexamethasone can be independently controlled from a single filament.  This could allow for the 

release of different therapeutics at different rates, depending on the necessary time course for a 

particular drug.  An example of this may be after surgery, where a short time course of 

antibiotics may want a short period of antibiotic release to prevent immediate infection, with a 

slower period of steroids to prevent inflammation as the surgery fully heals.  Alternately, steroids 

or other anti-inflammatory drugs could be released throughout the lifetime of any degradable 

filament to prevent inflammation associated with device degradation.  For a single drug, fast-

releasing components (component B with large drug particles) can be combined with slower-

releasing components.  This leads to the therapeutically desirable profile of fast initial release 

followed by a long, sustained period of slow release.   

 

Different components of different polymer compositions have additive release profiles, allowing 

extended release of a single therapeutic.  This is a critical finding since single component 

filaments display a triphasic release profile that does not allow for extended, sustained release of 

a drug.  Polymer-dependent release from various components can be combined to give a pseudo-

first order release profile over a desirable time course.  The plateau region of the polymers could 

be manipulated to delay release until long after device implantation.    
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The fabrication of a tetracomponent filament demonstrates the generalization of the methodology 

beyond bicomponent devices.  Figure 5.8 demonstrates how levofloxacin can be released 

continuously over two months, while dexamethsone release is controlled from days 30 to 60.  

Filament A releases most of its drug over 2 weeks, D releases between days 14 and 40, and E 

releases between days 40 and 80.  Because drug is split 1/3 in each phase, the timeframe for 

release is skewed slightly towards earlier times.  In future filaments, the release could be 

smoothed by using more components or having some components contain a larger fraction of the 

total drug than others.  Release of dexamethasone from component G is unaffected by the three 

levofloxacin containing phases and follows the same release profile as monofilament G.  A wide 

variety of PLGA copolymers, of varying lactide to glycolide ratios, are available commercially 

so this multicomponent spinning technique can easily be extended to provide many different 

drug release profiles. 

 

Wet spinning is a useful way of processing drug containing filaments and has been used in recent 

studies for applications including tissue engineering[3, 9], cancer therapy[2], and ophthalmic 

drug delivery[4].  These devices all employed slightly different processing conditions, with some 

being prepared from homogenous solutions, some from suspensions, and some from emulsions.  

Here, we describe a way of furthering these products by a simple combination of polymer 

streams to fabricate multicomponent filaments.  The properties of the individual components are 

decoupled from the properties of other components and can be used to tune the specific release 

and mechanical properties of a device.  We believe that this method can be useful to a wide 

range of wet-processed filaments and can be applied to many different biomedical applications. 
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Chapter 6: Conclusions and Future work 
 

The overall objective of this thesis was to produce, by wet-spinning, a class of biodegradable 

filaments that had mechanical properties suitable for implantation into the eye and could deliver 

drugs over a long period of time.  In the introduction to this thesis, several objectives were laid 

out.  An analysis of success in meeting these objectives, along with some conclusions drawn 

from achieving these objectives, are summarized below. 

 

6.1.  Conclusions 

6.1.1  Wet-spinning is a useful and flexible method for encapsulating drugs in 
biodegradable polymer filaments 

 

Our first objective was to develop a procedure for encapsulating therapeutics by wet-spinning.  

The bench top scale procedure that we ended up using adequately allowed for variation in 

coagulation time and was sufficient for producing a wide range of filaments.  One of the greatest 

benefits of using a syringe pump based extrusion setup, as opposed to some commercially 

available wet-spinning module, was that low volumes of solutions could be used.  Since a variety 

of filaments were produced from expensive starting materials (drug and PLGA), it was necessary 

to use as little material as possible for each extrusion.  For most extrusion, less than 2 grams of 

total material (polymer, DMSO, and drug) was necessary to produce a length of filament 

sufficient for release, thermal, mechanical, and compositional analysis.   

6.1.2  Solubility of drug in solvent/antisolvent system is critical for drug encapsulation and 
controlled release 
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A key objective was to determine what system parameters lead to highly loaded filaments that 

can control the release of therapeutics.  In chapter 2, the drug encapsulation process during wet-

spinning was examined while chapter 3 explores how formulation affects drug encapsulation and 

release.  Dexamethasone, which is almost 50 % soluble in DMSO, can be efficiently loaded into 

filaments relative to levofloxacin.  When 7 % drug solutions are coagulated, dexamethasone is 

highly retained after an initial loss of ~10 - 20 % while levofloxacin is steady depleted, resulting 

in only ~30 - 40 % retention after 60 s.  The levels of drug retention were found to be linked to 

solution-state properties, as solid-state solubility was too low to justify the levels of drug loading.  

Furthermore, it was found that if a formulation of 0.7% levofloxacin was used (a drug 

concentration small enough to ensure that levofloxacin stayed dissolved during polymer 

coagulation), then high loading (~80 %) could be achieved.   

 

Whether drug is dissolved or suspended proved to be important to release properties as found in 

chapters 3 and 4.  Filaments formulated from suspensions of levofloxacin had higher drug 

loading, but most of the therapeutic was released over a single day, in-vitro and in-vivo.  This 

demonstrates the necessity of drug dissolution during formation. 

 

Solid-state solubility was also not a good indicator of controlled release from the filaments.  

Crystalline drug was detected for both levofloxacin and dexamethasone after extrusion and drug 

loadings were significantly higher than solid state solubility.  For a levofloxacin filament, 

crystalline drug could not be detected after one day of release, suggesting that only drug that is 

amorphously trapped in the polymer matrix is released in a controlled fashion.  But this 
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conclusion is directly contradicted by dexamethasone release, where crystalline drug is detected 

for at least 25 days.   

 

6.1.3 Swelling with water dominates in-situ properties of filaments 

It was important to determine if any entrapped chemical species changed the properties of the 

filaments and to determine what aspects of the chemical composition is most important, 

especially for mechanical properties.  This is especially true for a wet-spun filament, where 

residual solvent will always be present to some extent.  Moreover, some drugs are known to 

plasticize polymers used for controlled release[1].  For the filaments in this study, levofloxacin 

and dexamethasone did not seem to have any effect on glass transition temperature.  Drugs had 

some effect on mechanical properties but, with the exception of a filament loaded with 43% 

dexamethasone, these differences were small.  The highly loaded filament probably only had 

different properties due to the sheer amount of solid drug in the filament, not due to drug 

interacting with the polymer.  Residual solvent did have an effect on both thermal and 

mechanical properties, lowering Tg and making the filaments easier to deform.   

 

6.1.4 In-vivo tear concentrations correlate to in-vivo drug release 

In-vitro studies of drug delivery devices are of very little use unless the in-vitro data correlates 

well to in-vivo results.  Implantation technique, meaning filament placement and method of 

securing, had a large impact on the detection of levofloxacin in the tears.  Eventually an 

implantation technique was settled upon, but this experience is of note because it exemplifies 

how in-vivo methodology can be as important as in-vitro experimentation.  In the end, the 
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filament had to be in contact with the tears and the end had to be knotted, but if several iterations 

of implantation had not been attempted, the conclusions from the animal experiments could be 

greatly different.  Once an implantation technique was developed, several different experiments 

were run in-vivo to examine drug and these experiments largely confirmed the in-vitro results.  

The correlation between in-vivo and in-vitro drug release justifies the remaining in-vitro 

experiments, even for filaments that were not implanted.  In-vitro experiments can now be run on 

different filament formulations and designs, with confidence that these experiments will translate 

well into in-vivo results. 

 

6.1.5 Proper mechanical testing mimics in-situ conditions 

 

The mechanical properties of the filaments were just as important as the release properties, as 

filaments that broke after in-vivo implantation were usually expelled from the eye soon 

thereafter.  Again, in-vivo implantation technique was critical to understanding in-vitro 

experiments.  Filaments implanted by technique #2 in chapter 4, without secured ends, would 

sometimes last several days, while others would fall out almost immediately.  This data seemed 

to contradict in-vitro experiments, which showed that filaments gradually lose mechanical 

strength.  The solution to the problem was to tie the ends of the filament.  This solution ended up 

demonstrating how in-vitro experimentation can lead to in-vivo innovations, as the discrepancy 

between in-vitro and in-vivo results led to a change in implantation technique.  In-vivo results 

led to a re-evaluation of in-vitro methods as well.  Originally, filament mechanical properties 

were tested under ambient conditions, but it was noticed that filaments would stretch and comply 

more with movement while implanted in rabbit eyes.  This observation led to the filament 
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mechanical tested under PBS at 37°C and very different mechanical properties results were 

achieved. 

 

Side-by-side multicomponent spinning can be used to combine the properties of individual 

filaments 

 

Single component filaments had two limitations, polymer dependent drug release and mechanical 

failure before full drug release, that were addressed by using a side-by-side, multicomponent 

spinning technique in chapter 5.  The individual properties of the components were retained 

during spinning, allowing a combinatorial approach to creating new devices.  Release properties 

could be predicted from single component filaments and mechanically stable components could 

be used to make filaments with long life spans.  Side-by-side wet-spinning has now been shown 

to be a promising platform technology that can be potentially extended to many drug release 

applications. 

 

 

6.2.  Future work 

6.2.1  Exploration of bath-side conditions during wet-spinning 

One feature that sets wet-spinning apart from other manufacturing processes for drug containing 

polymer devices is the coagulation bath.  For melt, compression, and solvent evaporation 

processes, the external environment is typically air (or some other gas) that does not allow for 

drug egress from the device.  In-situ forming depot solutions do lose drug to their surroundings, 

but the external conditions are set by physiology, and are not easily manipulated to control drug 

release[2].  For wet-spinning, the outer conditions of the filament can be controlled.  Using the 
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techniques described in Chapter 2, the coagulation process can be examined with various 

external conditions. 

 

Sometimes, solvent is added to a coagulation bath to slow the precipitation of polymer in the 

bath[3-5].  Solvent content in the coagulation bath is known to affect the internal morphology of 

the filament and to change the mass transport properties of solvent during coagulation[4].  It is 

unknown at this time how changing the kinetics of polymer coagulation will affect drug retention 

for drug containing filaments, since it was shown that drug content had little effect on 

DMSO/water transport rates and only pure water baths were used in these studies.  Since close to 

full solvent removal is desirable for a final product, multiple baths with progressively lower 

solvent content may ultimately be used if solvent presence in the bath gives any advantage for 

drug loading or release properties.  Having solvent in the coagulation bath may also help to 

provide insight into the early stage of coagulation.  It was mentioned in Chapter 2 that early time 

points for filament coagulation are hard to obtain, since the bath residence times are so short and 

the product is unstable once removed from the bath.  Instead of trying to obtain very short 

coagulatioin time points, it may be more convenient to slow down the solvent/antisolvent 

diffusion process by adding solvent to the coagulation bath.  This could be particularly useful in 

understanding how water moves from the bath to the protofilament during the early stage of 

coagulation. 

 

Bath conditions, like pH and temperature, may affect drug encapsulation during wet spinning, 

depending on drug type. Charged drugs, like levofloxacin, are often pH sensitive.  Levofloxacin 

is more soluble at high and low pH than at neutral pH, with a maximum solubility reported at 
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~pH 6.  Commercially, both as pill and eye drop, levofloxacin is often sold as a salt with HCl to 

improve the solubility in aqueous media.  Based on what was learned in Chapter 2, changes in 

solubility of drugs in DMSO/antisolvent could improve drug loading.  The drawback to this 

approach could be the acidification of the polymer matrix, which would speed polymer 

degradation.  Temperature control in the bath could be interesting to study, particularly since 

temperature should affect the solubility properties of both drug and polymer, and can influence 

the diffusion coefficients of DMSO and water[6].  Bath temperature may not make any 

difference in the early stage if the temperature considerations are dominated by the heat released 

by mixing DMSO and water.  In later coagulation, it would be interesting to study filament 

formation above the glass transition temperature of PLGA in water.  Having a non-glassy 

polymer during all stages of filament formation would have a significant effect on the 

thermodynamics and kinetics of solvent and antisolvent flux, but the effect on drug loading is not 

known. 

 

Placing additives in the coagulation bath that directly affect the solubility properties of the 

formulated drugs is another path that deserves attention in the future.  Drugs are often formulated 

with excipients that change the solubility of the drug in a particular media.  One example is 

hydrophobic ion pairing (HIP), where a charged drug is prepared with a hydrophobic molecule 

of opposite charge.  HIP has been used to increase drug loading in controlled release devices[7, 

8] and to increase ophthalmic bioavailability by making a drug more likely to partition through 

the cornea[9-12].  Use of HIP in the coagulation bath may change the solubility of drugs in a 

way that would encourage drug loading.  A major problem could be that HIP agents are typically 

acidic or basic, which could cause polymer degradation for PLGA.   
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Cyclodextrins are cyclic oligosaccharides that form a cup with a hydrophobic interior and 

hydrophilic exterior[13].  Cyclodextrins can be used to increase the water solubility of small, 

hydrophobic molecules, such as steroids[14-16], chemotherapy agents[17-20], and poorly 

soluble antibiotics[21, 22].  During the course of our investigations, cyclodextrins were 

examined to increase the solubility of some drugs in DMSO (data not shown).  This route was 

ultimately abandoned due to the mass considerations, since cyclodextrins have a molecular 

weight of ~1200 and drugs ~300-400, even a 1:1 cyclodextrin:drug pairing means that most of 

the therapeutic mass comes from the cyclodextrin.  Even though cyclodextrins were not practical 

for most formulations, they could be of use on the bath side of coagulation given what was 

learned in Chapter 2.  Several modified -cyclodextrins (cyclodextrins with 7 sugar units) are 

highly soluble in both DMSO and water.  These could be added to the water bath to keep 

hydrophobic drug solubilized during polymer coagulation.  If benefit was found, this could open 

up a whole new line of research, as transport of cyclodextrin, cyclodextrin/drug affinity, and 

cyclodextrin/PLGA interactions would all become important. 

 

6.2.2  Filaments for glaucoma therapy 

 

One drug that is promising for filament encapsulation by our described technique is latanoprost, 

a prostaglandin analogue used to decrease intraocular pressure for the treatment of 

glaucoma[23].  Glaucoma is an excellent target for a controlled release therapy, since daily 

medication is required and the symptoms of skipped doses are not usually discernable for a 

patient.  It was for these reasons that the Ocusert was developed for pilocarpine release.  



 169

Latanoprost is an extremely potent drug, with eye drops containing only 0.005% drug instilled a 

single time each day[24].  This means that the average patient is receiving only ~1.5 g/eye/day 

of drug.  This means that, for a 10 cm implant over 6 months, a drug loading of ~27 g/cm 

would provide the same amount of drug as drops over that time span.  This level of drug loading 

was achieved and surpassed for both levofloxacin and dexamethasone.  If higher drug loading 

was possible, the length of implanted filament could be shortened.  Replacing daily drops with a 

twice yearly implant could be of significant value for glaucoma patients and could be worth the 

temporary discomfort associated with implantation surgery. 

 

It was shown in Chapter 5 that side-by-side, mulitcomponent spinning could provide drug release 

over extended periods of time.  Specifically, levofloxacin was released over three months at a 

relatively steady rate.  The encapsulation and release of latanoprost over 6 months would be an 

extension of the current technology, but also could bring up new difficulties.  First, new 

polymers may have to be used to control release, but this barrier can probably be addressed by 

choosing from the wide range of commercially available controlled release polymers.  A greater 

problem could be drug stability during release.  A 6 month target for release means that 

significant drug degradation may occur and could undermine the efficacy of the latanoprost.  

This could be especially true since latanoprost contains an ester bond, which could potentially 

cleave by hydrolysis.  However, various cyclodextrins have been shown to stabilize 

prostaglandin analogues and specifically slow the rate of ester bond hydrolysis[25].  In fact, a 

cyclodextrin containing formulation has been shown to essentially halt degradation of 

latanoprost over at least 3 months at 40°C[26]. 
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A new animal model will have to be developed in order to fully explore the potential of filaments 

as anti-glaucoma implants.   Release from latanoprost in an in-vivo model is exciting because the 

efficacy of the drug can be monitored by measuring intraocular pressure.  For drug 

concentration, a commercially available latanoprost ELISA detection kit can be purchased with 

sensitivity on the order of ng/mL, so both effect and drug concentration can be measured at the 

same time.  The major problem with model development is animal species.  Rabbits, typically 

used for ophthalmic models and used in our study, do not show decreased intraocular pressure 

after latanoprost administration[27].  This would necessitate the use of dogs, cats, or another 

animal type for in-vivo trials, a significant step.  Animal model development is typically a slow, 

laborious process involving repeated in-vivo attempts before an adequate result is achieved, but 

by building on what we already know from this thesis, the ultimate number of large animals 

could be minimized.  To reduce the number of animals needed for these experiments, in-vitro 

work, which we have shown to correlate to in-vivo release, should be used extensively.  

Preliminary in-vivo experiments could then be performed in rabbits to verify drug release and 

only when every other test has been done should larger animal in-vivo work be considered. 
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