Compressible Vortex Arrays

Thesis by
Kayvan Ardalan

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology
Pasadena, California

1996
(Submitted September 1, 1995)

it

©1996
Kayvan Ardalan
All rights reserved

i

Acknowledgements

I wish to thank my advisors, Professors Dan Meiron and Dale Pullin, for their
invaluable insight, patience and encouragement that lead to the completion
of this dissertation. Their support and guidance have made my years as a
graduate student at Caltech memorable.

During my stay at Caltech, I have had the pleasure and good fortune
to make an abundance of very good friends. They have influenced my life
greatly and have helped me grow and mature. I thank you all. Yet, the one
constant not only during my graduate studies but throughout my life has
been my family. Abolfath, Farideh, Kamran and Sheila’s never ending love
and support has always been a source of motivation and encouragement for
me. Their love is my most prized possesion.

This work has been supported by teaching assistantships in Applied
Math, Aeronautics and Applied Physics as well as the Air Force Office of
Scientific Research under contract AFOSR F49620-93-1-0338.

v

Abstract

We construct steady, two dimensional, compressible vortex arrays with spec-
ified vorticity distributions. We begin by examining the effects of compress-
iblity on the structure of a single row of hollow-core, constant pressure vor-
tices. The problem is formulated and solved in the hodograph plane. The
transformation from the physical plane to the hodograph plane results in a
linear problem that is solved numerically. The numerical solution is checked
via a Rayleigh-Janzen expansion. It is observed that for an appropriate
choice of the parameters M, the Mach number at infinity, and the speed
ratio, a, transonic shock-free flow exists. Also, for a given fixed speed ratio,
a, the vortices shrink in size and get closer as the Mach number at infinity,
Mo, is increased. In the limit of an evacuated vortex core, we find that
all such solutions exhibit cuspidal behaviour corresponding to the onset of
limit lines.

The hollow core vortex array corresponds to a vorticity distribution
wherein the vorticity is concentrated on the vortex boundary. In the sec-
ond part of this thesis, we examine vortex arrays with continuous vor-
ticity distributions. In particular, we construct Stuart-type vortices in a

channel by requiring the vorticity distribution to be an exponential func-

tion of the stream function of the flow. The problem is formulated and
solved in the physical plane. The numerical solution is checked via a
Rayleigh-Janzen expansion of the unbounded Stuart vortex solution. It is
shown that, in the limit of infinite speed of sound (incompressible flow),
as the channel walls tend to infinity, h — oo, the Stuart vortex so-
lutions are recovered. Furthermore, it is shown that unbounded, com-
pressible Stuart vortices exist and that a generalized Stuart vortex solu-
tion is the proper incompressible limit. For a given fixed circulation, I,
Mach number, M4, and €, (a measure of the compactness of the vor-
ticity distribution) it is shown that the limit of a very narrow channel,
h — 0, is a parallel shear flow. Exact analytical solutions for the compress-

ible parallel shear flow are also found in implicit form.

vi

Contents

1 Introduction

2 The hollow core vortex array
2.1 The physicalplane
2.2 The hodographplane.
2.2.1 Chaplygin’'sequation
2.2.2 Scalingofvariables
2.2.3 The flow in the hodograph plane
2.2.4 The singularity at infinity
2.3 The incompressible problem
2.4 Perturbationsolution. oL
2.5 Numerical method,
26 Results. e
2.6.1 Evacuated vortexcore,
2.6.2 Streamlines and limit lines

2.6.3 Vortexgeometry

3 Compressible Stuart-type vortices

3.1 Generalized Stuart-vortex solutions

vil

3.2 Governing equations
3.21 Homentropicflow
3.3 Stuart-type vortices with walls
3.3.1 Scaling of variables
3.4 Numerical Method
3.5 Perturbation solution
36 Results.
3.6.1 Perturbation expansion for h > o0
3.6.2 Parallel shearflow
3.6.3 Parametersearch

3.6.4 Effect of wall height and compressibility
Conclusion
Asymptotic analysis of Chaplygin’s equation
Estimation of v, using matched asymptotics
Jacobian entries for Stuart vortex problem
Fortran listing for hollow core vortex

Fortran listing for Stuart-type vortices

70

73

76

78

82

160

viii

List of Tables

2.1

2.2

3.1

3.2

3.3

A comparison of the numerical and perturbation results at
Mow=0landa=04...........
A comparison of the numerical and asymptotic results for the

evacuated vortex.

A comparison of the numerical and perturbation results at
Mao=01,h=2 ¢y = logcoshh,and e =0.5.
A comparison of the numerical and perturbation results at
My=01,h=2 Yy = logcoshh, and e =0.5.
A list of the maximum density drop in the core for two differ-

ent values of the wall height, A, and vorticity concentration,

1x

List of Figures

2.1

2.2
2.3
2.4

2.5

2.6

2.7

A sketch of the problem in the physical space. The closed
curves show the vortex boundaries on which the speed is g,. .
A description of the computational domain in physical space.
Computational Domain in Hodograph Plane.
Shape of vortex boundary for My, = 0, a = 0.4. Solid circles
represent Baker, Saffman and Sheffield (1976) solution. Solid
line is a plot of equations (2.19) and (2.20).
Decompostion of finite difference coefficient matrix. The cross
and asterisks symbols emphasize the location of the corrected
rows. Matrix sizeis (N- (M +1)xN- (M +1)).
The solid line represents the loci of sonic vortices, M, = 1.0.
The dotted line indicates the evacuated vortex core limit,
Py = 0. The symbol (o) represents a change of sign of the
Jacobian and (O) indicates no change of sign.
The absolute value of the minimum of the Jacobian is plotted
versus different mesh sizes. M = 256 is kept constant as Agq

isdecreased.

2.8

29

2.10

2.11
2.12

2.13

3.1

Vortex boundaries and the position of the corresponding
limit lines. Boundary A and (>) correspond to (a, M) =
(0.1,0.215). Boundary B and (e) correspond to (a, M) =
(0.2,0.296). Boundary C and (¢) correspond to (a, My) =
(0.25,0.343).
Incompressible, sonic and supersonic vortices. a = 0.2 is kept
fixed and M, is increased. The Mach number on the vortex
boundaries is M,,, = 0.0, M,; = 1.00 and M, = 1.933. The
distance z is measured from the stagnation point.
Streamlines for a transonic shock-free flow. ¢ = 0.4 and
M,,=0.48. Here, M, = 1.4, where M, is the Mach num-
ber on the vortex boundary indicating supersonic flow. The
dotted line indicates the sonic line.
A description of the relevant length scales of the problem. . .
Aspect ratio of the vortex boundary for all possible solutions.
The dotted line represents the limit of circular vortices. (e)
indicates the occurrence of a limit line.
Stretching of the vortex boundary in the z-direction. (e)

indicates the occurrence of a limit line.

A sketch of the streamlines for Stuart-type vortices with walls.
The origin of the coordinate system is positioned at the stag-
nation point of the flow. The channel height is 2h. Point C

denotes the vortex core.

3.2

3.3

3.4

3.5

3.6

3.7

3.8

Xi

Computational domain and boundary conditions of the prob-
lem. The value of the streamfunction on the wall is a constant,
Yyai- Point S is the position of the stagnation point. Point
C locates the vortex core. 46
Comparison of Stuart Vortex solution as given by equation 3.5
and numerical result for M4 = 0, € = 0.5, ¢y,0 = log[cosh(h)]
and h = 6. The circles represent the numerical solution and
the solid line depicts the analytical result. 51
The circulation in the domain, I', is measured as a function
of the wall height, A, for various values of the Mach number,
My =1(0,0.050.1). 55
Velocity distribution on the wall plotted at different values of
the wall height, h. M4 = 0.1, € = 0.5 and 9yqy = log(cosh(h)). 56
The difference between the full numerical solution and the
perturbation solution is denoted by dp. The slope of the solid
line indicates that the difference between the full and approx-
imate solution is O(M%). In this calculation, e = 0.8, h=6 . 57
Comparison of exact solution (solid line) with numerical so-
lution (solid circle). The parameters of the problem are
h=2e=0M4=0.5and 9o =1.341529. 59
Vorticity contours for h = 2, € = 0, ¥yau = log[cosh h] and
M4 = 0. The contours are equally spaced. Level 1 corre-
sponds to a value of w; = 0.128734 and Level F corresponds

tow=0.941895. 60

xil

3.9 Vorticity contours for h = 2, € = 0.5, 1yq = logcosh h and

M4 = 0. The contours are equally spaced. Level 1 corre-

sponds to a value of w; = 0.220126 and Level F corresponds

tow=256006. 61
3.10 Vorticity contours for h = 2, € = 0.8, 1yqy = log(cosh h) and

M4 = 0. The contours are equally spaced. Level 1 corre-

sponds to a value of w; = 0.647702 and Level F corresponds

tow=2935945. 62
3.11 Equally spaced contours of the stream function for h = 2, € =

0.8, 9yeu = logcoshh and M4 = 0.32. Level 1 corresponds

to a value of -1.43116, and Level F corresponds to 1.14126. . 64
3.12 Equally spaced contours of the density for h = 2, € = 0.8,

Ywau = log[cosh h] and M4 = 0.32. Level 1 corresponds to

0.66083, and Level F corresponds to 1.00293. 65
3.13 Equally spaced contours of the density for h = 6, ¢ = 0.8,

Ywait = log[cosh h] and M4 = 0.275. Level 1 corresponds to

0.915557, and Level F corresponds to 1.01879. 65
3.14 Equally spaced contours of the stream function for h = 6, € =

0.8, Yweu = log[cosh h] and M4 = 0.275. Level 1 corresponds

to a value of -0.79971 and Level F corresponds to 4.80415 . . 66
3.15 Local mach number profile at z = 7. Parameters of the prob-

lem are h = 6, e = 0.8, M4 = 0.275 and ¥yaeu = log[cosh(h)]. 66
3.16 Horizontal velocity profile, u(z = m,y), for unbounded Stuart

vortex solution given by equation (3.5) in whiche =0.5. . . . 67
3.17 Vertical velocity profile, v(z,y = 0), for unbounded Stuart

vortex solution given by equation (3.5) in which e =0.5. . . . 67

xili

3.18 Horizontal extent of the defined vortex core plotted versus

varying channel height. I' = 7, M4 = 0, and € = 0.5 are held

3.19 Vertical extent of the defined vortex core plotted versus vary-

ing channel height. I' = n, M4 = 0, and € = 0.5 are held

3.20 Circulation measured as a function of Mach number for vari-

ouswallheights

Chapter 1

Introduction

Many practical problems of interest arising in physics, mathematics and en-
gineering involve the study of vortices and vortex motions. The persistent
trailing vortices behind jumbo jets constitute a hazard to other aircraft and
this has led to a study of vortex formation by the roll-up of vortex sheets
and the decay and interaction of vortex pairs. Attempts to understand two
dimensional turbulence have led to studies of the statistical mechanics of
random arrays of point vortices. The observations of the turbulent mixing
layer (Roshko (1976)) show convincing evidence that the layer consists of
a row of quasi two dimensional coherent structures whose amalgamation
into larger similar structures produces the growth of the mixing layer. Sev-
eral theoretical studies attempt to model the formation of these and other
structures by studying the interaction of two dimensional vortices. Previous
studies, however, have focused exclusively on incompressible flow (Saffman
and Sheffield (1977) and Huang and Chow (1982)), and few theoretical stud-

ies exist on the interaction of vortices in a compressible medium.

Ringleb (1940), Shapiro (1953), Mack (1960), and Brown (1965) are
some of the earlier researchers whose study of the single compressible vor-
tex highlighted the effects of compressibility on the structure of the vortex
core as well as its stability characteristics. Moore (1985) studied the effects
of compressibility on the speed of a vortex ring. Subsequently, Moore and
Pullin (1987) succeeded in constructing the flow field of a translating vor-
tex pair in compressible irrotational flow by transforming the problem to
the hodograph plane. In their formulation, each vortex was modelled by a
constant pressure stagnant core surrounded by a closed vortex sheet. They
realized that for free-boundary problems of this type, this transformation
was effective because it fixed the vortex sheet boundary in the hodograph
plane and this circumvented the need for curvilinear grids which would be
required to solve the problem in the physical plane.

Our aim is to study the basic interactions of vortices in a compressible
fluid via a search for steady solutions of the Euler equations corresponding
to flows with concentrated vortex cores. An infinite array of point vortices
1s the simplest model for a shear layer in incompressible flow. It is well
known that a hollow core vortex in a compressible medium is the limit of a
point vortex in an incompressible medium. Hence, we choose to construct
the compressible analogue of the single row vortex array and to study the
effects of compressibility on this model. In chapter 2, we shall extend the
results of Baker, Saffman and Sheffield (1976) to include compressibility.
This model of a shear layer has the vorticity in the flow concentrated on a
vortex sheet placed on the vortex boundary. This specific choice of vorticity
distribution makes the vortex boundary a streamline of the flow. As will be

shown in subsequent chapters, transforming this free boundary problem to

the hodograph plane results in a linear problem that is solved numerically.
It is shown in section 2.5 that use of the Sherman-Morrison formula [9]
allows for the application of a discrete Fourier transform to the discretized
problem. This reduces the storage requirements for the numerical algorithm
which in turn allows for increased resolution. A parameter search of the
problem shows the regions of the flow that allow for transonic shock-free
flow. As a result of the increased resolution, it’s shown that no evacuated
vortex cores exist without the appearance of a limit line. Furthermore, it is
shown that the vortices shrink in size and get closer together as the Mach
number in the flow is increased.

In chapter 3, we shall extend the result of Stuart (1967) which is an exact
solution of the nonlinear, inviscid equations of motion. The distribution
of vorticity throughout the flow field is continuous and is given by w =

exp(—2%). The stream function of the flow is given by

¥ = log(k cosh 2y /A + V k2 — 1cos 27z /), (1.1)

where 1 < k < oo is a parameter of the flow. The limit of & = 1 corresponds
to a parallel shear flow and the limit as K — oo is an infinite row of point
vortices separated a fixed distance A apart. The stability of this solution
has been studied numerically (Pierrehumbert and Widnall (1982)) and it
has been shown that Stuart vortices display some of the properties observed
by studying mixing layers experimentally (Roshko (1976)). Specifically, it
is shown that shear-layer growth by vortex amalgamation and generation
of three dimensionality by localized pairing are associated with the subhar-

monic instabilities. However, Drazin and Reid (1981) remark that the Stuart

vortex solution, although intriguing, covers special cases and is not yet re-
lated to the main body of the theory of nonlinear stability. While showing
that Stuart vortices can exist in the Garcia model of a stratified shear layer,
Mallier (1994) suggests that the Stuart vortex solution is a special case of a
much larger family of vortices. We suggest an alternate derivation and call
the final result the generalized Stuart vortex solutions since it provides more
insight on how to continue the Stuart vortices to compressible flow. It must
be noted that the generalized Stuart vortices can be transformed to the Stu-
art vortex solution through an appropriate translation and stretching of the
coordinate axes. Furthermore, we construct Stuart-type vortices with walls
in a compressible medium, and by increasing the channel width, we show
numerically that steady, two dimensional Stuart vortices in an unbounded
compressible fluid exist. The numerical scheme uses a Newton iteration to
solve the nonlinear governing equations which are derived in chapter 3. It
is shown that decreasing the wall height tends to eliminate the recirculation
regions present in Stuart vortex solutions. We also find exact analytic so-
lutions for compressible, parallel flow shear layers that could be of use in
stability studies.

In both of these investigations, we validate the numerical solutions via
a Rayleigh-Janzen expansion. In the case of the hollow core vortex array
of chapter 2, we were able to find an analytic expression for the first order
compressibility correction, whereas in chapter 3 it was necessary to solve for

it numerically.

Chapter 2

The hollow core vortex array

2.1 The physical plane

We consider an infinite linear array of identical vortices lying on the z-axis
each separated by a distance L measured from the vortex center (cf. Figure
2.1). Each vortex is hollow (i.e., has a stagnant, constant pressure core).
Since the flow is steady and the pressure is constant inside the cores, the fluid
speed on the boundary of the vortex must be a constant value, ¢,. Outside
the cores, the flow is that of an ideal gas and it is assumed to be irrotational,
compressible and homentropic. The vortices have the same circulation, T,
such that at large distances the flow becomes asymptotic to that produced
by a vortex sheet lying along the z-axis.

We shall seek steady solutions of the configuration sketched in Figure
2.1 in which the vortices have fore-and-aft and top and bottom symmetry,
lL.e., each vortex is symmetrical about the z-axis and a line parallel to the
y-axis through the vortex center. Hence, it will be sufficient to investigate

the details of the flow in the geometry depicted in Figure 2.2. The equation

[
N

E U

Figure 2.1: A sketch of the problem in the physical space. The closed curves
show the vortex boundaries on which the speed is g,.

of continuity in the case of steady two dimensional compressible flow can be

written as,

d(pu) O(pv)
a— + T 0, (2.1)

where p is the density and u and v are the horizontal and vertical components
of the velocity vector. We can satisfy this identically by introducing a stream
function v defined so that

=,
pU = Poaya

where p, is any reference density. We shall identify the density p, with the
density of the flow at infinity (po) and set po, = 1 without loss of generality.

The governing equation in this problem is given by Bernoulli’s theorem.
For homentropic flow of an ideal gas, if c is the speed of sound and p is the

pressure, we have c¢® = yp/p and therefore conservation of energy requires
2 2
c 1, c;

gt = , 2.2
7_1+2q po— (2.2)

where ¢ = vuZ + v2 is the speed of the flow and ¢s is the speed of sound at
the stagnation condition (i.e., when g = 0).

We seek the solution of these equations in the computational domain
depicted in Figure 2.2, which shows a sketch of the streamlines. The point
S corresponds to the stagnation point where the speed of the fluid g is zero.
The curve connecting points A and B represents the boundary of the vortex.
The vertical lines from B and S are assumed to extend to infinity where the
velocity of the flow has a single speed, ¢, and phase direction, 6, namely,
¢ = goo and 6 = 7. On the two vertical boundaries c01-S and B-00,, even
though the speed of the flow varies, the assumed symmetries determine the
phase angle of the velocity vector to be § = 7. On the symmetry line S —~ A,
the flow angle is § = 7/2. Even though it is possible to proceed with the
solution of this problem in the physical plane, we instead transform to the
hodograph plane where the geometry of the flow simplifies to a rectangle and
the governing equation is Chaplygin’s equation, which is a linear equation

for the stream function.

OO9 &%

A u=20

Figure 2.2: A description of the computational domain in physical space.
2.2 The hodograph plane

2.2.1 Chaplygin’s equation

The velocity potential of an irrotational compressible flow satisfies a non-
linear partial differential equation. When (g,) are taken as variables, the
equation becomes linear [27]. This leads to a quasi-conformal map from the
physical plane ((z,y) space) to the hodograph plane ((q,8) space) which we
shall summarize for completeness. Along with the stream function v defined

earlier, we can introduce the velocity potential ¢ and write

—do u v dz
(—po/p) d¥ —v u || dy

and using methods of complex variables, it is easily verified [16] that

20
dz = - S (do + 224 .
2 q(¢+1p), (2.3)

where z = z + 1y and u — 1w = ge¥. It follows that

0z e

d¢ po O

—_ = _+z___

0q q (Bq p O0q
20

6~ ¢ '96 ", o9

)s (2.4)

). (2.5)

Cross differentiation of the above equations then leads to a compatibility

condition akin to the Cauchy-Riemann equations:

9 _ 8o 1
3~ 956 94 3¢ (29

and
9 _ 9% (2.7)

00 poq
These are the equations of the hodograph plane. Eliminating ¢ from
equations (2.4) and (2.5) and noting that, in the hodograph plane, the den-
sity is a function of the speed only, p = p(q), leads to Chaplygin’s equation,

2 (1 _ @’(y=1)| %
? 2¢2 0q?

§

C=3)| %
2¢2 Jq

O+ Py
2c2 06? ’

+q {1 -
(2.8)

2.2.2 Scaling of variables

We next consider the image of our problem in the hodograph plane. Be-
fore doing so we scale all speeds by the speed on the vortex boundary, ¢,.

Furthermore, we shall scale the stream function by the strength of the sin-

10

gularity at infinity in the hodograph plane, which we denote by A. The
singularity at infinity will be discussed in detail in section 2.2.4. This along
with our earlier choice of the reference density, namely po, = 1, leads to the

following relationship between the length, time and mass scales L', T', M’.
LBpo M1 =1, ¢TL'=1 AL?T =1.

At this point we have completed the specification of scales for our problem.
It is important to note here that the distance between the vortices L has not
been used for scaling and that it shall be determined as part of the solution.
The use of equation (2.2) allows us to express the speed of sound at the
stagnation point as
1 2M2 1

i 2.
2T I (- VML F (29)

where @ = ¢ /¢, and the Mach number at infinity, Mo = goo/Coo- We shall

define B = ¢2/2c? and hence can rewrite Chaplygin’s equation as follows:

¢ [1 = B0y = 1)a®| e+ [1 = Bly = 3)¢%] g + [1 = By + 1)a?] s = 0.
(2.10)

2.2.3 The flow in the hodograph plane

To determine the image of the flow in the hodograph plane, we must return to
Figure 2.2. Since at the stagnation point S the speed is zero, the streamlines
form a saddle point pattern at which the flow angle takes on all values
between 7/2 and . Therefore, the stagnation point maps into the vertical

line ¢ = 0 in Figure 2.3. Moving on to the boundary of the vortex, we know

11

that the speed is constant (¢ = ¢,), so after scaling by ¢,, the vertical line
g = 1 is the image of the vortex boundary in the hodograph plane. The
streamline at infinity corresponds to a single speed, ¢ = g, and direction,
0 = m, and so we see that an entire streamline is transformed into a point
singularity in the hodograph plane. We defer a discussion of the nature of
this singular tranformation for the moment and discuss boundary conditions.

Since the stream function is arbitrary to within a constant, we will choose
1y = 0 on the boundary of the vortex without loss of generality. On the
boundary A — S, we have u = 0. Additionally, Figure 2.2 shows that this
boundary is horizontal, dy = 0. Using this information along with equations
(2.1), (2.4) and (2.5), we obtain that 8¢/06 = 0 on 6 = /2. On the segment
from B — 0o and oo — S, we have v = 0 and the streamlines have a single
direction § = 7. It is also clear that here the boundary is vertical, dz = 0.
The use of the hodograph transformation then leads us to the condition that
0v¥/00 = 0 on @ = n. Having determined these boundary conditions, we
can now investigate the nature of the solution near the stagnation point.
An asymptotic analysis of Chaplygin’s equation near g = 0 shows that to

leading order the equation reduces to
0*tgq + q¥q + Yoo = 0,
which along with the boundary conditions
P =0 b=n/2, ©

has the series solution,

12

P ~c + ch2cos(29) + 0(gh)

where ¢; and ¢y are constants. Hence, setting 0Y/0g = 0on g =0 is

consistent. The problem to be solved in the hodograph plane is depicted in

Figure 2.3.
% _
S 00; ocop O
A4 B
0=m
=0 L($) =0 % =0
0=3 A
g=10 g=1
S %192:0

Figure 2.3: Computational Domain in Hodograph Plane.

2.2.4 The singularity at infinity

Using small-disturbance theory it is possible, by means of a simple transfor-
mation, to reduce all subsonic flow problems to an equivalent incompressible
flow problem. This is known as the Prandtl- Glauert rule [5]. The incom-

pressible velocity potential is given by ®(z,y) and the equivalent subsonic

13

potential is given by &’ (z,m) where

n=14/1-MZ2y.

We assume that the flow at infinity is subsonic since otherwise a shock-
free flow field seems unlikely [18]. Assuming small disturbances at infinity
and distorting the incompressible flow solution for a row of equal point vor-
tices [12] as suggested by Prandtl-Glauert theory, we find that the velocity
potential is

¢ = % arctan|cot(nz/L) tanh(my/1 — M2 y/L)). (2.11)

To leading order, therefore, the stream function is given by

r

Y=5ry (2.12)
and the corresponding velocity field is
ue L sinh(27r/1 — MZy/L) (2.13)
2L cosh(2m\/1 — MZy/L) - cos(2mz /L)
and
Y= I'vl—-MZ sin(2nz /L) (2.14)

2L cosh(2m\/1 - MZy/L) — cos(2rz/L)

In order to find the nature of the singularity in the hodograph plane, we
need to eliminate = and y from (2.12), (2.13) and (2.14). Using local quasi-

14

polar coordinates (s,d) centered at the point at infinity in the hodograph

plane defined by
” 0 -7

se = (q—a)+2*m.g,

we can show (Appendix A) that, for small s, the leading order stream func-

(2.15)

tion is given by

W = Alog(s). (2.16)

This form of the singularity indicates that as s — 0, regardless of direction
d, all higher order corrections to the logarithm go to zero. We have now
posed the problem in the hodograph plane. Its solution %(q,8) is a two
parameter family depending on a = ¢ /¢y, the location of the singularity
in the hodograph plane and My, = goo/coo, the Mach number at infinity.
Note that as discussed in section 2.2.2, the strength of the vortex (A = 1)

is scaled out of the problem.

2.3 The incompressible problem

We begin by obtaining an analytical solution in the hodograph plane for the
Moy = 0 limit of the single row. Setting My, = 0 reduces (2.10) to Laplace’s
equation, so by using equation (2.16) we deduce that the correct form of
the singular solution near the point at infinity is given by a point vortex
positioned at the singular point (¢ = a,0 = 7). Using the law of cosines, we

find that this is given by

s = log(g® + a? + 2ag cos). (2.17)

15

Now all that is necessary to complete the solution is to satisfy the boundary

conditions. We apply the method of images to obtain the solution

(¢* + a? + 2ag cos 0)(¢? + a® — 2aq cos 6)

. 2.18
(¢%a® + 1 + 2aq cos6)(q?a? + 1 — 2aq cos) (2.18)

Yo = log

This solution agrees with that given by [2] who solved the same problem
using the ideas of free-streamline theory. For comparison, we find a para-
metric representation for the vortex boundary centered at the origin. The

nondimensional coordinates of the boundary are given by

_a?+1 _ (a+1)sind _ (a—1)sin@
z=-2 [tan 1 [(cos& + 1)(a — 1)} ~ tan”! [(cos& + 1){a + 1)”
(2.19)
2
y= a1 [log(a2 + 1+ 2acos®) — log(a® + 1 — 2a cos 0)] . (2.20)

As shown in Figure 2.4, Baker, Saffman and Sheffield (1976) parameterize
their solutions by the shape ratio R = P/2L where P is the perimeter of
the vortex and L is the separation between the vortices. The circulation I’
about each vortex is then related to gq,, the speed of the vortex boundary,
by

I' = Pgq,.

Furthermore, at large distances, the array looks like a vortex sheet of

strength 2¢.,, where
1

= =TI'/L.
Hence, conservation of circulation then requires that a = R = doo/qy, the
location of the singularity in the hodograph plane. Note that the shape ratio

is restricted to be in the range 0 < R < 1. The limit R = 0 corresponds to

16

an array of point vortices. The opposite limit R = 1 corresponds to a vortex
sheet in which each vortex is pulled out longitudinally and squeezed side-
ways to lie along a length L of the z-axis. The significance of this solution
for our problem is that we have obtained the zeroth order solution of a per-
turbation solution (the Rayleigh-Janzen expansion) with M2 as the small
parameter. An examination of the terms of the operator £(v) indicates
that compressibility is introduced as regular corrections to the incompress-
ible flow indicating the possible existence of a regular perturbation expansion

in powers of M. Below we construct several terms of this solution.

Figure 2.4: Shape of vortex boundary for M, = 0, @ = 0.4. Solid circles
represent Baker, Saffman and Sheffield (1976) solution. Solid line is a plot
of equations (2.19) and (2.20).

17

2.4 Perturbation solution

We construct an approximate series solution to the problem depicted in

Figure 2.3 valid when M, < 1. The problem is formulated as
¢*(1=B(y=1)g"bgqg +a(1 = B(Y=3)a*)pg + (1~ By +1)a*)thuo = 0, (2.21)

with the boundary conditions given by

oy
PRI A t —
0q 2 9=0
¥(q,0) =0 at g=1
oY _m
50 = 0 at 0= 5 and , (2.22)

where 8 = %‘%1%&— The solution we seek has the Rayleigh-Janzen form,
¥(g,6) = 9o + Mip1 + O(My,). (2.23)

As noted above at zeroth order, we have the incompressible solution which

is given by equation (2.18). The second order problem is given by

2
Phrg + a¥1, + Yias = 25 (Yous — o, (2:24)

with the same boundary conditions as mentioned earlier for equation (2.21).
Note that this system has many singular homogenous solutions. According
to Prandtl-Glauert theory, we must ensure that the incompressible solution
is the dominant singularity as the point at infinity is approached. The
only regular homogeneous solution to this problem is the trivial solution

%(q,0) = 0. Hence, finding a particular solution will then lead to a unique

18

solution to this order. By inspection, a particular solution is given by

& o0,
4 9q’

Yy, =

but closer inspection of the above result shows that this is more singular than
the incompressible solution. Note that equation (2.16) shows that ¢ ~ log s
(incompressible solution) and hence the particular solution is more singular
since 11, ~ 1/s. Therefore, we find a complimentary function to add to this
particular solution such that the final result is regular at the point at infinity
and that all boundary conditions are satisfied. This leads to a solution valid
to O(M2L):

%(4,6) = o + M2y (2.25)

where 1), is given by equation (2.18) and the compressibility correction is

given by

= (a* —1)(1 — ¢*/a?)
moT (q +a? + 2agcos 0)(¢® + a2 — 2aqc0s0)fl(q’9)

~2¢*(1 - a®) fa(q,6)

+ [! ;2"1 (2.26)
where
fi(g,0) = L0 = 20%q cos 6% + ¢*a’ + a” — 2% cos 6 + ¢ (2.27)
(¢%a? + 1 + 2aq cos 6)(q%a? + 1 — 2ag cos)
and
fa(q,0) = q’a + 1 2cosg? (2.28)

(g%a? + 1 + 2aq cos 0)(q2a2 + 1 — 2ag cos 0)

19

It is essential to verify that the solution above maintains the integrity
of our original mapping. We check this by verifying that the total distance
traversed around a closed loop in the entire hodograph plane (including the
boundaries) yields zero so that the mapping remains one to one. Equiv-
alently, referring to Figure 2.2, we can show that the horizontal distance
traversed from S to B, zpgg, is equal to that traversed going from oc; to

002, Too. Equation (2.3) gives

sin @ } [cos sin @
dg +

dr = |cos Oaaq(—)y — —wq Py — ¢9}

for measuring horizontal distances in the hodograph plane. Hence, the dis-
tance from the center of the vortex to the stagnation point, zgg, is given

by

T 6 0 6
Tps = / (cos e — sin 1/)6) a0 +/ (_ sin 1/’q) da.
7['/2 p =1 f=n

This distance must be equal to the length of the streamline at infinity which
is given by
-

Too = lim dz(3,8) dd,

50 Jg
where 3 and § are local polar coordinates centered about the singularity
in the hodograph plane. In order to check closure, we must note that the
strength of the vortex is an unknown function of the Mach number so that

the appropriate expansion for the stream function is given by

¥(9,0) = (1+ & ME + O(M,)) vo(q,6) + M2 31 (g, 60) + O(ML).

20

Since the density is only a function of the speed,

L SYP LN
p= 1+TM00(1—G—2) ;

the appropriate expansion in Mach numbers is given by
p=1+pi(g) M% + O(M,),

where p; = %(1 — %;) Substituting the above results into the expression for

zpg and expanding in the Mach number, we find that

TBs = Ths + ML zhs + O(MZ),

where
™ sin @ 1 sin @
Tgg —-/ <c0s01/)0 - ‘1’09) do + (-— 1/)0q) dq
71'/2 gq=1 0 q 6=n/2
and that
Ths =M + 12 + 2761 /a
where
g sin g 1 sin@
m =/ (COSML, - ——dng) d9+/ (— ¢1q) dq,
7r/2 q g=1 0 q 0=n/2

m sin @ 1 sin 6
= [" |—pi(cos O, — 220 d6 + / (sm?) dg.
72 /7r /2[p1(cos 04, . ¢09)] , \P1 g %o, q

6=n/2

21
Evaluating the above integrals, we have that
TBs = 27/a + (—a— +7/a) M5 + O(My,).

In finding the value of z,, we define a local coordinate system centered at

the singular point (¢ = q,6 = 7),
q=3cosé+ a,

6= §sin5+7r.

This makes the expression for dz = dz(3, 5) a function of the local coordi-

nates, hence evaluating the integrals gives

Too = 27/a + (% +m/a) M2 + O(ML).

Hence, we see that our perturbation solution, equation (2.25), satisfies the
closure condition to O(MZ%) automatically since zpg = Too. With this
solution valid for small M, we proceed to discuss the solution at larger

values of M, which is obtained numerically.

2.5 Numerical method

Since the nature of the singularity is known from our earlier analysis, we

opted to solve the following modified but equivalent problem:

Y = ws'*"‘/)r
‘C("/)r) = —L(¢s) (2-29)

22

where
_ 2 2 (0 — 7")2
Ys = log|(g—a)* +a 1= MZ
a?(—)2

(1 - M2)(q - a)?+ (r2a2/4)’ (2.30)

This particular singular form of 1) is chosen for two reasons. The main
advantage is that a local asymptotic analysis near the point at infinity shows
that all other higher order terms vanish in the limit as (¢,8) — (a,n) as
shown in Appendix A. This ensures 1, is finite at (a,7). In addition, the
top and bottom boundary conditions remain unchanged from those for .

The remaining boundary conditions for the modified problem are

O _ ¥ _,
¥r(q,0) = —15(q,0), q=1

OYr T

26 0, =3, m (2.31)

The modified problem described above was solved numerically using

second-order centered differences on a fixed grid

gi = (i — 1)Agq, i=1,.,N

8, = /2 + (j — 1)A8, j=1.,M+1 (2.32)

where Ag = 1/(N — 1) and A8 = 7/(2M), and we define Yi; = ¥r(gi, 0;).
The finite difference form of equation (2.29) is given by

Aij Bi,j} o [Ai,j Ci,jJ o [Aiy Bl

23

CA .
+ ﬁ (Yij1 +Pij-1) = fi; (2.33)
where f; ; = —L(v5(gi,0;)) and the coefficients are defined as follows:

Aij = ¢ 1-Blr-14d],
Bi; = q[1-B(y-3)d,
Ciy = [1-B0r+1)g]. (2.34)

At the top and bottom boundaries, where § = 7 and 6 = 3, the derivative
conditions are satisfied by adding fictitious points parallel to these bound-
aries and applying centered differences except for the point at (g:,6;) =
(a,7). We can not add fictitious points there because the forcing term in
equation (2.29) is not defined. Hence, since we are solving for 1, which is
the regular part of our solution, we found it sufficient to impose the deriva-
tive condition using forward differencing:

2
Agq
=Yt -, = 0, (2.35)

g =

+1,

where 7 is the Jocation of the singularity on the grid.

The use of forward differencing at ¢ = 0 also proved to be the most
effective means for avoiding unphysical §-dependence of the stagnation
value. Implementation of the right-hand side Dirichlet condition (v (1,) =
—15(1,0)) is straightforward. Finally, the problem is reduced to one of linear
algebra and solving a system A -x = B. At this stage, the main difficulty is
resolution since the size of A is (V- (M +1) x N-(M +1)). Figure 2.5 shows

24

Figure 2.5: Decompostion of finite difference coefficient matrix. The cross
and asterisks symbols emphasize the location of the corrected rows. Matrix
sizeis (N- (M +1) x N - (M + 1)).

a schematic of the banded coefficient matrix A and its decomposition. If
not for the form of the -derivative at the singular point, A would have been
amenable to transform methods since it would have been a block tridiagonal
matrix; hence, we chose to use the capacitance matrix approach to change

A appropriately. The decomposition of matrix A can be written as
A=A+U.VT

The Woodbury formula, which is the block-matrix version of the Sherman-

Morrison formula [9], relates A~! to its decompostion as
(A+U- V) 1= A1 [A1.U-1+VT.A"L.U)" 1. VT . A1), (2.36)

where the term (14+ V7. A~1.U)~! is known as the capacitance matrix and
it has dimensions (pxp) where p is the number of corrected rows. Since we

have Neumann boundary conditions in the #-direction, we apply a discrete

25

cosine transform [19] on A. Since we use forward difference formulas at
q = 0, we choose to apply the Woodbury formula one more time so that we
have tridiagonal matrices. Making this extra effort increases our resolution
compared to inverting the original banded matrix since we have minimized
the storage requirements for A.

Note that to obtain 1, we solve a linear system. This was not obvious
at the outset. Indeed Moore and Pullin (1987) find residual nonlinearity in
their formulation of the compressible vortex pair problem in the form of a
forced closure of the physical plane when reconstructed from the solution
of the hodograph problem. This led us to expect that an iterative solution
procedure resulting from the non-linear nature of compressible flow problems
would be required to solve this problem. However, the transformation to
the hodograph plane in this specific example has lead to an entirely linear

problem. Our final solution is written as

¥(q,0) = ¥s(q,0) + ¥r(q,0).

For M, <« 1, we compare our numerical solution with our perturbation
solution for various values of ¢ and 6 and successfully verify that the error

is O(My)*%. Table (2.1) shows the results from one of such tests.

2.6 Results

We perform a parameter search to determine those solutions that are phys-
ically relevant. It is well known (Landau & Lifschitz 1959) that if the Ja-
cobian of the hodograph transformation vanishes at any point, the solution

will exhibit cuspidal behaviour corresponding to the onset of limit lines [11].

26

q P(g, 0 =m/2)
Numerical Perturbation
0.00 -3.6129 -3.6127
0.20 -3.1786 -3.1784
0.40 -2.2798 -2.2796
0.80 -0.6199 -0.6197
1.00 0.0000 0.0000

Table 2.1: A comparison of the numerical and perturbation results at My, =
0.1 and a = 0.4.

Hence, in our search of the parameter space (a, M), we monitored the Jaco-
bian for changes of sign. The search was done at a fixed value of a, stepping
in the Mach number in increments of 0.001, on a (N, M + 1) = (500 x 128)
grid, until a limit line was approached. Note that the computation was
stopped at the first sight of a limit line and then the resolution was increased
to (N, M + 1) = (1000 x 256) and (2000 x 256) to ensure that the results
are grid independent. The level of accuracy of the numerical algorithm for
these computations was up to six digits. The outcome of this investigation
is depicted in Figure 2.6 which summarizes the range of solutions found. It
is evident from the figure that transonic shock-free flows continuous in the
(a — My,) parameter space can and do exist for our problem. The solid line
in Figure 2.6 represents the loci of sonic vortices, i.e., M, = 1, where M, is
the Mach number on the vortex boundary and the circles represent the first

occurrence of limit lines.

27

2.6.1 Evacuated vortex core

The dotted line in Figure 2.6 is an upper boundary on the supersonic flow
region. It actually corresponds to a limit in which the pressure in the core
of the vortex is reduced to zero. This evacuated core limit is a special case
since our problem then reduces to a single parameter family. Recalling the

energy equation (2.2), we note the following:

2 2
Cy 12_ Coo 12

=Q, = —— + —q5- 2.

Since the core is at vacuum, ¢, = 0, manipulating the above equation gives

a relationship for M, in terms of a,

2 a?

My =4 ——n.
* y—11—a2

(2.38)

In relation to Figure 2.6, this corresponds to the dotted line. We chose a
as the parameter for this search and found that limit lines appeared quite
early. Actually, the largest value attained before the Jacobian of the trans-
formation changed sign was a = 0.0015 corresponding to My = 0.00335.
Note that in order to achieve good resolution of the solution near g =0,
where we have a Neumann condition, we had to use fine grids. The evac-
uated vortex results were computed using a resolution of (N, M + 1) =
(2000 x 128), (4000 x 128) and (4000 x 256). At this point it was necessary
to determine the validity of the two solutions for which there was no change
of sign of the Jacobian. Hence, we searched for the minimum of the Jacobian
and monitored its value as we increased the resolution. Figure 2.7 clearly

shows that as the resolution is increased, the Jacobian tends to zero. This

28

leads us to conclude that there exists no evacuated vortex solution for this

problem free of limit lines.

2+ T Non-Physical ~

log(Mso)

|
ot
T

Subsonic o -

4
log(1/a)

Figure 2.6: The solid line represents the loci of sonic vortices, M, = 1.0. The
dotted line indicates the evacuated vortex core limit, p, = 0. The symbol
(o) represents a change of sign of the Jacobian and (D) indicates no change
of sign.

Following [18], we find a leading-order approximation to the value of the
stream function at the boundary of the evacuated vortex by the method of
matched asymptotic expansions (Appendix B). The incompressible solution,
[12], is an outer solution which is matched to the solution for an isolated

hollow vortex, [26], giving

r

Yo = [F(Ly) - loga®)]

Flsm) = —= [loge(1—&) . (239)
v—1Jo

29

Moo (2

Numerical Asymptotic
0.225 -5.8946 -5.84959
0.112 -8.6342 -8.62218

0.045 -12.2892 -12.28734
0.022 -15.0600 -15.0599
0.00335 -22.6540 -22.6484

Table 2.2: A comparison of the numerical and asymptotic results for the
evacuated vortex.

In Table (2) we compare the asymptotic result for the value of the stream
function on the vortex boundary with that from our numerical solution.
Even though all evacuated vortex solutions exhibited cuspidal behaviour
corresponding to the onset of limit lines, the location of the change of sign
of the Jacobian was never on the vortex boundary. Hence, we get good
agreement when comparing the result from equation (2.39) with the full

numerical solution.

2.6.2 Streamlines and limit lines

While monitoring the Jacobian for a change of sign, we also noted the exact
location on the grid for which the limit lines first appear. Figure 2.8 displays
a few examples. We have plotted the boundary of the vortex and the position
of the first occurrence of a limit line for a given (a, My).

In Figure 2.9, we display the free boundaries for a progression of vortices

ranging from incompressible to subsonic to supersonic flow in the range of

30

-37 T T T T T T

T
|

-37.5

-38

log(| Jmin|) -38.5 N
-39

T

T

-39.5 -

40 ! 1 ! 1 ! !
93 92 91 -9 -89 -88 -87 -86
log(Aq)

Figure 2.7: The absolute value of the minimum of the Jacobian is plotted
versus different mesh sizes. M = 256 is kept constant as Agq is decreased.

the (M, a) space where no limit lines were detected. Note that for the free
boundaries shown, the shape ratio was held fixed, a = 0.2. We see that as
My, is increased, the vortices shrink in size and get closer together. Intu-
itively, one expects compression of the type seen. In addition, there exists
some experimental evidence showing a similar effect. Mungal, Hermanson
and Dimotakis have produced some unpublished Schlieren data which shows
that the large scale structures in a shear layer shrink in size as the flow ve-
locity is increased. For photos and discussion refer to [6]. Note that the
present analogy is only qualitative.

In Figure 2.10, we have plotted the streamlines of a transonic flow in the
physical plane. The dotted line on the figure denotes the sonic line. Note
that the sonic line is closer to the vortex boundary in the z-direction than
the y-direction. This phenomenon is explained by the fact that the flow in

the z-direction is required to reach a stagnation point.

31

1 { 1

-1 -095 -09 -08 -0.8 -0.75 -0.7 -0.65
z/L

Figure 2.8: Vortex boundaries and the position of the corresponding limit
lines. Boundary A and (b) correspond to (a, M) = (0.1,0.215). Bound-
ary B and (e) correspond to (a,Ms) = (0.2,0.296). Boundary C and (o)
correspond to (a, M) = (0.25,0.343).

2.6.3 Vortex geometry

At this point, we return to Figure 2.6 to identify the range of (a, My,) for
which solutions exist and survey this parameter space for the associated
vortex boundary geometries. Figure 2.11 shows the relevant length scales in
the physical plane.

Note that b; and b, are measured from the center of the vortex and they
measure the width and height of the vortex boundary respectively. The
length A (= L/2) measures the distance from the center of the vortex to the
stagnation point. We found that presenting the aspect ratio of the vortex
boundary, b;/by, and the parameter b; /A was sufficient to give a complete
overall view of all possible geometrical configurations that the vortices attain
at different values of (a, My).

Figure 2.12 shows that for a fixed value of a, the vortices shrink and get

32

1 | T
4+ .
2 _
C
Yy 0F .
2+ .
4 F -
| i |
-40 -35 -30 -25 -20

T

Figure 2.9: Incompressible, sonic and supersonic vortices. a = 0.2 is kept
fixed and M, is increased. The Mach number on the vortex boundaries is
M,, = 0.0, M,, = 1.00 and M, = 1.933. The distance z is measured from
the stagnation point.

closer together as the Mach number is increased. Note that by /by = 1 is the
limit of circular vortices. Figure 2.13 shows the extent to which the vortex
boundary is stretched in the horizontal direction. It is evident that for a
fixed a, as the Mach number is increased, the vortex boundary stretches out
in the horizontal direction.

When b,/ = 0, we are at the point vortex solution whereas b; /A=1
is the limit of the shear layer solution. Note that in both Figure 2.12 and
Figure 2.13, the solutions were terminated at the first occurrence of a limit

line.

33

15.0 -

125 | Level psi

-0.375994
-0.751988
-1.12798
-1.50398
-1.87997
-2.25596
-2.63196
-3.00795
-3.38394
-3.75994
-4.13593
-4.51193
-4.88792
-5.26391
-5.63991

“NWAONDOBPDDOOMN

25 5.0

Figure 2.10: Streamlines for a transonic shock-free low. a = 0.4 and
My=0.48. Here, M, = 1.4, where M, is the Mach number on the vor-
tex boundary indicating supersonic flow. The dotted line indicates the sonic
line.

S

Figure 2.11: A description of the relevant length scales of the problem.

34

10 T T T T

b1 /by

Figure 2.12: Aspect ratio of the vortex boundary for all possible solutions.
The dotted line represents the limit of circular vortices. (e) indicates the
occurrence of a limit line.

1 T T T
a:0;925
- =0.9
0.8 a=0.849a
0.6 | 0.6 -
b1/ e
04 —
a=0.4
e
02 r 320'2 _
e a=0.1
o ——2 a=0.05 ! ! !
0 0.2 0.4 0.6 0.8 1
M,

Figure 2.13: Stretching of the vortex boundary in the z-direction. (e) indi-
cates the occurrence of a limit line.

35

Chapter 3

Compressible Stuart-type

vortices

For two dimensional incompressible flow, it can be shown that the vorticity
equation is satisfied by taking w = F(3). J.T. Stuart [25], while investigating
mixing layers of the form u = tanh y, realized that by taking

w = Bexp(—2¢/A),

the governing equation for incompressible flows with this specific form of
vorticity distribution leads to an example of the well-known Liouville equa-

tion [3]

V2 = Bexp(—2y/A), (3.1)

36

where A and B are constants. Taking B = 27mus /A and A = ux)A/27, an

exact solution of equation (3.1) can be written as

2
P(z,y) = u2°°)‘ log |k cosh % + VK% — 1cos %Tm . (3.2)
m

This solution describes an infinite array of vortices of circulation ueA/27,
lying on the z-axis, separated a fixed distance A. The constant & is a pa-
rameter with the range 1 < k < oo that measures the compactness of the
vorticity distribution. The limit k — 1 gives a parallel shear flow. The
limit K — oo describes the flow of an infinite array of point vortices in an
unbounded fluid. At this stage we choose to rescale the parameter s as

suggested by [15],
e=Vvk2—-1/k (3.3)

such that 0 < € < 1, and hence the vorticity distribution can be written as

W= 2T U
DY

(1—-€)exp [—3—:}] . (3.4)

The Stuart vortex solutions then take the form,

_ UgoA 2my 27r1:}
Y(z,y) = o log [cosh 3 + €cos | (3.5)

The significance of the above transformation is to introduce the parameter
€ in the expression for the vorticity so as to facilitate the extension of the
Stuart vortex solutions to compressible flow. This will become more evident
as we derive the governing equations. We shall denote flows with the vortic-
ity distribution given by (3.4) as Stuart-type vortices. Before we proceed to

find Stuart-type vortices in a channel, we need to discuss the asymptotics

37

of this very special solution of the inviscid Euler equations. We shall denote
the stream function at infinity as 1, and by taking the limit y — oo in
equation (3.5), we can identify the nature of the singularity of the stream
function.

oo 1
Voo ~ %—T-ri [y + log 5 + O(2¢€ cosz exp(—y))]. (3.6)

Note that the transformation suggested by equation (3.3) has yet another
useful feature in that it fixes the constant at infinity given in equation (3.6)
as log(1/2). Had we employed x as a parameter, the correction to the
singularity at infinity for the stream function would have been a function of

Kk as is shown below:

.\
Yoo ~ 52 [y +log 5 + O(V/? — 1 cos z exp(—y))].

3.1 Generalized Stuart-vortex solutions
We can write the Stuart vortex solution in nondimensional form as

Y(z,y) = log[coshy + € cos z]

and calculate its circulation, I, in the domain depicted in Figure 3.2 with

the exception that the upper boundary is at y — co. We find that

r = y{z’i-(fl

= / UpodT = T. (3.7)
0

38

We now ask whether this solution is unique. In other words, we will try to

construct solutions to
V2 = (1 — €%) exp(—2¢)), (3.8)

with the same distribution of vorticity as that of the Stuart vortex solution

that have different circulations. We shall assume

Y(z,y) = log [f(y) + €g(z)] (3.9)

and substitute this into the left-hand side of equation (3.8). After some

algebra, we have
Vi = [~ D)+ (¢ f+9f e+ (g 9—9)EN/(f +e9)?, (3.00)

and since we require the same vorticity distribution as the Stuart solution,
we match the right-hand side of equation (3.8) with equation (3.10) to get

the conditions on our unknown functions f(y) and g(z);

Fr=-r* =1, (3.11)
g f+gf" =0 (3.12)
99-g2 = -1 (3.13)
Solving (3.12) we find that
f(y) = Cexplay) + Dexp(—ay), (3.14)

g(z) = Acos(az) + Bsin(az), (3.15)

39

where A, B, C, D and « are constants of integration determined by satisfying

equations (3.11) and (3.12):

4Co’D = 1, (3.16)
?(A’+B% = 1. (3.17)

Note that « is assumed real. Using the above conditions we can write a

solution to equation (3.8) in the following form:

V1 - a?A2

Y(z,y) = log [C exp(ay) + @ exp(—oay) + € [A cos(az) + — sin(az)H .

(3.18)
The circulation of this solution is given by
r = j{ -dl,
= /; UsodZ = 7. (3.19)
0

Yet, equation (3.18) can always be mapped back onto the Stuart vortex
solution through the appropriate stretching and translation of the coordinate
axes. The mapping from the Stuart vortex to the solution given by equation

(3.18) is given by the following:

Yy = aj + log(2aC),

z = af + arccos(aA).

The derivation of the Stuart vortex solution given by equation (3.18) shows

40

that as y — oo, then

Yoo ~ ay + log(C/2).
The usefulness of the above result will be discussed further in chapter 4. We
now proceed to derive the equations governing the compressible Stuart-type
vortices.

3.2 Governing equations

The inviscid flow of a compressible fluid is described by the Euler equations:

5t +(u-V)p+pV-u=0, (3.20)
ou 1
el . = —_Vnp. 21
Y + (u-V)u pr (3.21)

We shall be considering two dimensional, steady flow, and hence we can

define a stream function by the relations
PU = Pref o,
Tef ay
oY
U= —pres 5 (3.22)

where py is some reference density, such that the continuity equation (3.20)
is automatically satisfied. Using the definition of vorticity (w = V x u) along
with equation (3.22), we can relate the stream function of a compressible

flow to the vorticity distribution by the elliptic equation

(%%)z + (ﬁ;{i«py)y = —w. (3.23)

41

In order to have a closed set of equations, we need to specify the thermo-
dynamics of the flow. We use the result from the first and second law of

thermodynamics:

Tds = dH — dp/p, (3.24)

where T is the temperature, s, the entropy, H, the enthalpy, and p, the
pressure of the gas, in conjunction with the momentum equation (3.21) to
arrive at a useful relationship known as Crocco’s Theorem [5]. In its general
form, Crocco’s Theorem can be written as

du

TVs=VHy—ux (Vxu)+ e (3.25)

This gives a relationship between the kinematics of the flow and the ther-

modynamics of the fluid. Note that for steady flow, the above result relates

the vorticity in the flow to the thermodynamics of the fluid motion:
uxw=VHy—TVs. (3.26)

Here w = V x u is the vorticity and Hy = H + u?/2 is the total enthalpy
of the flow. There are two limits to equation (3.26) that are relevant to
our problem. The constraint Vs = 0 corresponds to homentropic flow. The
constraint VHy = 0 corresponds to homenthalpic flow. The latter constraint
is of interest because it will allow for a change in the entropy distribution
throughout the flow and, hence, might lead to the formation of shock waves.

Before proceeding with our problem, we recall the vorticity equation for

42
compressible flow in two dimensions:
Ow 1
E—f—(u-V)w—i—w(V-u):FVprp. (3.27)

We shall need to make use of the definition of the total derivative, D /Dt =
9/0t+u-V. Using the chain rule for differentiation in conjunction with the
vorticity and continuity equations, we arrive at the following compact form

for the vorticity:
D 1

The importance of this form of the vorticity equation shall be more evident

as we further discuss the type of solutions we wish to capture.

3.2.1 Homentropic flow

A flow in which the entropy is constant everywhere in the flow is said to be
a homentropic flow. It can be shown that the equation of state for such a

flow reduces to the following:
P _
— = constant, (3.29)
p’Y

where v = ¢, /¢, is the ratio of specific heats. This implies that the gradient
of density and pressure are aligned and hence the right-hand side of equation
(3.28) is identically zero. Hence, for two dimensional, steady, homentropic
flow of a compressible fluid, we can state that the ratio of the vorticity to

the local density is constant along a particle path,

I%(w/p) =0. (3.30)

43

Since particle paths are streamlines for steady flow, solutions of (3.30) can

be written in the following form:

w
P Pref

F(). (3.31)

The left-hand side of equation (3.26) can be re-written as

- ~ ~

1 J k
uxXw = | (prer/p) ¥y —(pres/p) Y 0
0 0 —(p/pres) F ()
= Y F) i+ F()]
= VG, (3.32)

where

Y
G= F(n)dn.
'd)ref

The assumption of homentropic flow in conjunction with the definition

of total enthalpy and the result above leads to
1 o2, .9
v H+§(U +v)—G =0,
or
1
H+ E(u2 +v?) — G = constant. (3.33)

We shall be solving for the flow of an ideal gas; hence,

2

H=c,,T='yRT/('y—1)=7_1. (3.34)

44

Furthermore, the assumption of homentropic flow then gives a relationship

between the speed of sound of the fluid and the density distribution so that

we can write

1 D
2 2 1
a = RT-— RT —} =q)7 . 335
Y Y 'ref(Tref) ref(ref) ()

Combining equations (3.33), (3.34) and (3.35) allows us to rewrite the energy

equation in the following form:

2
Gref (P _yy-1_ L Prefra 9 2 / Vres
L Sy g + = Yo +Ys) + F({)d¢ = constant. (3.36

Equations (3.23), (3.31) and (3.36) describe the steady flow of a homen-
tropic, compressible flow in two dimensions. At this stage, we can specify a
desired vorticity distribution and hence reduce our system to two equations
for two unknowns, namely the density and the stream function. The choice
of vorticity distribution is arbritrary, but we choose to investigate those
types of flow that have the same distribution of vorticity as that suggested

by [25].

3.3 Stuart-type vortices with walls

Equation (3.6) shows that the stream function of the incompressible Stuart
vortex in an unbounded domain (y — o) is singular. We choose to investi-
gate Stuart-type vortices in a channel of finite height as depicted in Figure
3.1 so as to understand the nature of this singularity for compressible flow

thru the limit h — oo.

45

2h

Figure 3.1: A sketch of the streamlines for Stuart-type vortices with walls.
The origin of the coordinate system is positioned at the stagnation point of
the flow. The channel height is 2h. Point C denotes the vortex core.

The vortices are of Stuart-type because we require the vorticity distri-
bution throughout the flow to be of the form given in equation (3.4). We
assume that the flow is periodic in the z-direction with period A\ and hence
construct the solutions to our problem in a quarter of the geometry de-
picted in Figure 3.1. The right- hand side boundary of the computational
domain is constructed by drawing a line through the vortex core (point C in
Figure 3.2) parallel to the y-axis and denoting the intersection of this line
with the wall as point A. The computational domain along with the relevant
boundary conditions is depicted in Figure 3.2.

We shall choose the conditions at point A, depicted in Figure 3.2, as
the reference velocity and density. Since the flow is inviscid, the wall is a

stream function of the flow and hence its value, 1,,,y, is constant along the

46

Y = Yyau
y=h *{A
E(iﬁ,ﬂ):o 5]
%0 =0
G(,p) =0
y—OL C
=90 s =7
S Z=0

Figure 3.2: Computational domain and boundary conditions of the problem.
The value of the streamfunction on the wall is a constant, 1,,.;. Point S is
the position of the stagnation point. Point C locates the vortex core.

line y = h. With point A as our choice of reference state, we can rewrite

equations (3.23), (3.31) and (3.36) as follows:

pA pA _ P
(7#’2)1 + (7¢y)y - pA -7:(¢)’ (3'37)

a p -1, 1,pa2, .0 9 Ywall B
o1 (a)"’ + 5(7) (s +'t/)y) +/1/; F(Q)d¢ = constant, (3.38)

(1- 62)exp(—3:—1f\)). (3.39)

2nuy

A

F(¥)

The value of the constant in equation (3.38) is determined by evaluating the
equation at the reference state A. We note that the vorticity term in the

energy equation (3.38) evaluated at the wall is identically zero, and hence

47

the value of the constant can be related to the conditions at point A.

2 2

constant = »yaTAl + %4 =Cy. (3.40)

Before proceeding with the solution, we need to find the appropriate scalings

for the problem and determine the number of relevant physical parameters.

3.3.1 Scaling of variables

We shall define the Mach number at the reference point A as My =uy/ay
and evaluate the integral term in equation (3.38) analytically. Furthermore,

we define the following non-dimensional quantities;

P 2nz . 2
- A bl y - A bl
L _ P~ 2myp
= =L 3.41
= P ” (3.41)

and proceed to solve the following equations on the computational grid de-

picted in Figure 3.2:

1. - .
(G + (%«/»g)g = (1~ €) exp(~24)), (3.42)
P - s+ 1 M 2+)
- 2 ; lMi (1- 62) [exp(—2't/3) — exp(—21/3wa”)]. (3.43)

We choose to omit the use of the hat notation in what follows below.

It should be noted that all variables used will be non-dimensional unless

48

otherwise stated.

In the limit of infinite sound speed, the Mach number tends to zero and
the energy equation (3.43) gives p = 1 everywhere in the flow. Substituting
this result into equation (3.42) then gives us Louiville’s equation for which
we know Stuart vortices are an exact solution. It is possible to recover the
Stuart vortex solution by an appropriate choice of boundary conditions on
the wall. The asymptotics of the Stuart vortex solution as given by equation
(3.6) suggests that if 9.y = log[cosh(h)] and M4 = 0, then in the limit
as h — oo, the solutions to equations (3.42) and (3.43) shall approach the

Stuart vortex solution.

3.4 Numerical Method

We choose to stretch the vertical axis, y = y/h, so that the vertical axis of
the domain depicted in Figure 3.2 transforms to 0 < y' < 1. This stretching
is also applied to Equations (3.42) and (3.43) and, hence, the wall height,

h, now appears as a parameter in our system of equations.

1 1
Ce)e+ aGay)y = (1=) exp(-2), (3.4
-1 -1 1 1
P = (M) + M (2 + 97
S lMﬁ (1 — €) [exp(—24) — exp(—2yan)]- (3.45)

2

The nonlinear nature of the above equations requires an iterative numerical

procedure. As in Newton’s method, we write the stream function and the

49
density as an initial guess plus some correction

Y = o + 69,

p = po + dp,

and substitute the above expressions into equations (3.44) and (3.45). Lin-
earizing the resulting system in 01 and dp leads to a linear system given
in Appendix C. 9 and po are the initial guesses, and so we attempt to
approach the correct solution by solving for d9, dp and then updating 1
and p. It is important to note here that equation (3.45) is really a scalar
equation in the variable p, and so it is possible to analytically solve for dp.
This reduces the size of the Jacobian by half since the matrix that needs
to be inverted at each iteration step now only corresponds to the unknowns
6.

Second order finite difference formulas are used to evaluate the coeffi-

cients of the Jacobian, and hence the discretized system of equations
A -0 ; =By, (3.46)
is solved on the grid defined by

z; = (i — 1) dz, i=1,N

’

where dz = n/(N — 1) and dy' = 1/(M — 1), subject to the modified

50

boundary conditions

06y) _ o '
o T oy v =0
a(6y) Oy _
oz T s r=0
0 = Yuar—t% oy =1 (3.48)

The entries of the matrices A;; and B;; are given in Appendix C. For a
given Mach number M4, the parameters that need to be fixed are h, Yuwails
and e. If we set 1yq1 = log[cosh(h)], M4 = 0 and € = 0.5 and take the limit
of equations (3.44) and (3.45) as h — oo numerically, we must recover the
incompressible Stuart vortex solution given by equation (3.5) for ¢ = 0.5.
This is the main reason for the transformation from x to € as suggested in
equation (3.3). If we had used k as a parameter, there would be no clear
limiting procedure to recover the unbounded, incompressible Stuart vortex
solutions from the compressible Stuart-type vortices with walls. Figure (3.3)
shows that the result from the calculations of A = 6 is in good agreement
with the incompressible, unbounded Stuart vortex solution given by equa-

tion (3.5). This suggests that h = 6 is a good approximation for A — 0.

3.5 Perturbation solution

We construct an approximate series solution to equations (3.44) and (3.45)

valid when M4 < 1. The solution we seek has the Rayleigh-Janzen form,

¥(@,y) = tolz,y) + M3 ¢1(z,y) + O(M}),

51

Figure 3.3: Comparison of Stuart Vortex solution as given by equation 3.5
and numerical result for M4 = 0, € = 0.5, Yy = log[cosh(h)] and h = 6.
The circles represent the numerical solution and the solid line depicts the

analytical result.

plz,y) = 1+ M3 pi(z,y) + o(M3). (3.49)

Substituting the above series form into equations (3.44) and (3.45) gives an

equation for the zeroth order incompressible solution
1 2
IpOzz + h_2'¢0yy = (1 —€)exp(_2¢0)’ (3'50)
along with the following boundary conditions:

%, = 0 z=0,m
1/)01/ = 0 Yy =Oa

Y = Yuwall y =1 (351)

52

The zeroth order solution must be obtained numerically since we do not
have an analytical form for the Stuart vortex flow with walls. Note that this
analysis shows that po(z,y) = 1 is the correct solution to this order.

Since equation (3.45) is algebraic in p(z,y), it is possible to obtain an
analytic expression for the density distribution from the second order prob-

lem,

pra) =5 (1= (5297 = (002 _ (1 -)fexp(—240) — exp(~2un)]

oy
(3.52)
in terms of the known incompressible solution. This is not the case for the

stream function which requires numerical solution of the equation

Y1,, + h—l;ﬂr’)ly,y, +2(1 - €’ exp(—20) ¥y = p1(1 — €2) exp(—240)

+ (p1¢0z).’t
+ oo,y (35)

For this analysis, we assume that the value of the stream function on the
wall, 1y, has no Mach number dependence. This does not have to be
the case. Since we are constructing the perturbation solutions to serve as a
check for the full numerical algorithm, it is only necessary to be consistent
when it comes to the definition of Ywa- Hence, the boundary conditions

consistent with this assumption for the second order problem are as follows:

P, = 0 z=0,7
1/)1/ =0 y =0,
¥

v =0 y =1 (3.54)

53

y Y(z=my)

Numerical Perturbation
0.00 -0.634237 -0.634791
0.20 -0.487040 -0.487600
0.40 -0.121898 -0.122383
0.60 0.338631 0.338302
0.80 0.827671 0.827511
1.00 1.325003 1.325003

Table 3.1: A comparison of the numerical and perturbation results at M 4=
0.1, h = 2, 9yeu = logcosh h, and € = 0.5.

The compressibility correction to the zeroth order incompressible prob-
lem of Stuart-type vortices with walls is found numerically. Combining the
incompressible solution with the compressible corrections as suggested by
equation (3.49) then provides an approximate solution that can be com-
pared to the full numerical solution discussed in the previous section. We
test the numerical algorithm by performing both the full numerical simu-
lation and calculating the perturbation solution for M 4 =01, h=2 and
%wan = log[cosh h)]. The results are shown in tables (3.1) and (3.2) for both
the density distribution and the stream function. Since the perturbation
solution is accurate to O(M73) and since M4 = 0.1, we would expect any
difference between the full numerical solution and the perturbation result
to be in the fourth significant digit which is indicated by Tables (3.1) and
(3.2).

o4

z p(z,y =0)

Numerical Perturbation
0.000000 1.002749 1.002880
0.628319 1.002323 1.002458
1.256637 1.000894 1.001031
1.884956 0.998105 0.998187
2.513274 0.994193 0.994065
3.141593 0.991952 0.991629

Table 3.2: A comparison of the numerical and perturbation results at M4 =
0.1, h = 2, ¥yau = logcosh h, and € = 0.5.

3.6 Results

We begin by exploring the Mach number dependence of the circulation of
the flow as h — co. We set ¢,qu = log[cosh(h)] and M4 = 0 and compute
the solutions to equations (3.44) and (3.45) for ¢ = 0.5 and increasing h.
The computations are done on an (N, M) = (101,101) grid. The starting
value of the wall height is A = 2, and the computations are continued until
a wall height of h = 12. This procedure is then repeated for M4 = 0.05
and M4 = 0.1. The circulation in the computational domain is shown
plotted versus the wall height in Figure 3.4. It is evident that for M4 = 0,
the circulation is asymptotically approaching I' = «, the value expected
from the Stuart vortex solution. Also, as the Mach number is increased,
the circulation in the domain asymptotes to a constant other than ' = =,

suggesting that the circulation for the compressible Stuart-type vortices in

95

3.3 T T T T
3.25 -

3.2 B —

3.15 |

3.1 =

305 1 1 | {
2 4 6 8 10 12

Figure 3.4: The circulation in the domain, I, is measured as a function of the
wall height, h, for various values of the Mach number, M4 = (0,0.05,0.1).

an unbounded domain is a definite function of the Mach number. This was
alluded to earlier in section 3.3.1. In the limit as h — oc, we would expect
that the velocity distribution tends to a constant value along the line y = h
since the flow at infinity should resemble that of a vortex sheet. Figure 3.5
shows the velocity of the wall reaching a constant in the limit of increasing

wall height for M4 = 0.1.

3.6.1 Perturbation expansion for & — co

Before proceeding any further, we wish to construct yet another check of the
numerical results. The asymptotic behaviour of the Stuart vortex solution
is given by equation (3.6). It is clear that the value of the stream function
on the wall is infinite as h — oo, hence we can re-write equations (3.41) and

(3.42) in the limit as 1y, — 00,

v, + E“’-”L =p(1=€) exp(-29), (3.55)

56

1.3 T T T T T T
1.25
1.2 h=2 :
L15 f .
1.1 r 7
1.05

T

u(x,y=h)

0.95
0.9
0.85
0.8 — e

Figure 3.5: Velocity distribution on the wall plotted at different values of
the wall height, h. M4 = 0.1, € = 0.5 and 9,4y = log(cosh(h)).

_ -1 1 -1 -1
P’ 1+7TM3°? [1/)3 + ¢§}+Z—§—M§o (1-€?) exp(—2¢) = 1+L2—Mgo
(3.56)
where
o, Ma = Moo

since the flow at infinity is that which would be produced by a vortex sheet
of finite strength.

Now we attempt to construct a perturbation solution for the compress-
ible Stuart-type vortices in an unbounded domain by assuming an expansion

of the form

Y(z,y) = volz,y) + MZ i(z,y) + My to(z,y) + ...

p(z,y) = 1+ M2 pi(z,y) + M pa(z,y) + ... (3.57)

57

log(dp)

8 | ! ! ! | |
-3 28 -26 -24 -229 -2 -1.8
log(Mu)

Figure 3.6: The difference between the full numerical solution and the per-
turbation solution is denoted by dp. The slope of the solid line indicates
that the difference between the full and approximate solution is O(M%). In
this calculation, e = 0.8, h = 6

where v is that given by equation (3.5). Substituting the above expansions
into equations (3.55) and (3.56), we find that since the energy equation is
algebraic in p, it is easy to solve for the first correction of the density, p1,

analytically. Therefore, we can write the density distribution in the flow as

€ COST (358)

z,y) =1+ M2 .
p(z,y) + * coshy + € cosz

We will compare the above result with the numerical calculations for the
case of h = 6, € = 0.8, ¥yqy = log[cosh(h)] and M4 = 0.10. In Figure
(3.6), dp is defined as the difference between the full numerical solution and
the perturbation result. As expected, this difference is O(M4). It must be
noted here that since obtaining p; for the compressible Stuart vortex in an
unbounded domain is easy (as shown above), it was attempted so as to have

yet another analytic result by which to validate the full numerical solution

58

of equations (3.44) and (3.45). Obtaining v; must be done numerically and
it is not a trivial matter. A discussion of the appropriate solution procedure

for obtaining compressible Stuart vortex solutions in an unbounded domain

is presented in chapter 4.

3.6.2 Parallel shear flow

The parallel shear flow is an interesting limit of the Stuart vortex solution
that corresponds to € = 0. In this limit, there is no z-dependence in the

flow and hence the governing equations can be simplified and re-written as,

171
|, = e e (359
-1 -1
- [1+72 M§]+12—M3%¢§,
-1
= T 2M% (1 -) [exp(~29) — exp(~24uan)]. (3.60)

2

By analogy with one dimensional homentropic flow, if we choose to search
for solutions in which the density is a function of the Mach number, M4,

only, we find an exact solution to the above system of equations given below.

$(y) = log[coshphy],

Y=l 1 -
T M g 3.61

It is now possible to use the above solution as yet another check on the
numerical algorithm. We set 1,4 = log(coshph), ¢ = 0 and h = 2 and
continue the solutions from M4 = 0 to M4 = 0.5. Figure (3.7) shows that

59

the two solutions are in excellent agreement.

14 T T T T T T T
1.2

1
0.8
0.6
04
0.2

0

0 02040608 1 12141618 2
Yy

Figure 3.7: Comparison of exact solution (solid line) with numerical solution
(solid circle). The parameters of the problem are h = 2, = 0,M 4 = 0.5 and
Ywan = 1.341529.

The nonlinear nature of the governing equations for the parallel shear
flow suggest that there might be other solutions than the one obtained above.
This is actually easy to verify by looking at equation (3.59). Instead of
stretching the y-coordinate axis with the density, it is possible to view the
compressibility correction as an addition to some base incompressible result

and hence write

¥ = logcosh(hy') + log(p), (3.62)

which, when substituted into equation (3.60), will give the following implicit
analytic result for the density of the flow

1/(v-1)

t 2
anh” f, . (3.63)

02

~1
p= 1+72 M2(1 -

Note that these solutions have different values for the stream function on

the wall and hence have different circulations.

60

1.0 [

08 [2

0.6 — = 4 5

0 0|
0 0|

04 E - -

0.2 E = =

0.0 : P T S SRS NN VRS T S A |
0.0

Figure 3.8: Vorticity contours for h = 2, € = 0, ¥yeu = log[cosh h] and
M,y = 0. The contours are equally spaced. Level 1 corresponds to a value
of w; = 0.128734 and Level F corresponds to w = 0.941895.

3.6.3 Parameter search

Equation (3.58) suggests that for a fixed Mach number, the greatest drop
in density will be realized for the vortices with the smallest cores. These
vortices correspond to € = 1 and are the limit of an array of point vortices.
The other limit corresponds to € = 0 which represents a parallel shear flow.
Since we have explored the parallel shear flow limit analytically, we shall
now choose two different values of ¢ = 0.5,0.8 to conduct our parameter
search. The vorticity contours for each of these values as well as that of
¢ = 0 is shown in Figures (3.8), (3.9) and (3.10). All the solutions depicted
showed second order convergence consistant with the numerical discretiza-
tion described in section 3.4.

Furthermore, we shall choose two values of the wall height, h = 2,6. We
have shown that A = 6 is a good approximation for h — oo, and by taking

h = 2 we will study the effect of walls on the flow structure. In each of the

61

1.0

Figure 3.9: Vorticity contours for h = 2, ¢ = 0.5, Yyen = logcoshh and
M4 = 0. The contours are equally spaced. Level 1 corresponds to a value
of w; = 0.220126 and Level F corresponds to w = 2.56006.

above computations, the Mach number is set at M 4 = 0 and is increased in
steps of 0M4 = 0.01. Test runs were done on various grid sizes (N, M) =
(81,81),(101,101), (121,121) and finally the computations were performed
on a (N, M) = (101,101) grid. While increasing the Mach number of the
flow, we noticed that the number of iterations for convergence to a solution
increased as well. For all the cases tested above, the solutions would exhibit
a drop in the core density with an increase in the Mach number. After some
critical value of My, the density in the core would start increasing, and
finally the solution would converge to a parallel shear flow regardless of the
input parameters. The maximum attainable Mach number as well as the
density drop in the core are tabulated in Table (3.3). Typical contours of
the stream function and density are shown in Figures (3.11), (3.12), (3.13)
and (3.14).

Even though the drop in the core density was much more significant for

€ = 0.8 than for € = 0.5, none of the above searches lead to local supersonic

62

1.0

06 F
04 F

02 F

0.0 0.5 1.0 1.5

Figure 3.10: Vorticity contours for h = 2, € = 0.8, 9yqy = log(cosh h) and
M,4 = 0. The contours are equally spaced. Level 1 corresponds to a value
of w; = 0.647702 and Level F corresponds to w = 9.35945.

flow anywhere in the computational domain. As is shown in Figure (3.15),
the local Mach number in the flow increases from the specified value on the
wall to a value slightly higher and decreases to zero at the core of the vor-
tex. Solving equation (3.46) with a suitable iterative solver will increase the
resolution of the problem, and this could possibly lead to finding supersonic

flow.

3.6.4 Effect of wall height and compressibility

We shall attempt to define a vortex core so as to investigate the effects of
compressibility and wall height on the structure of vortices with continuous
vorticity distribution. Figure (3.16) depicts the horizontal velocity at the
right- hand boundary, u(z = =, y). Figure (3.17) depicts the vertical velocity
profile on the symmetry line y = 0. We shall denote the distance from the

peak of the horizontal velocity, umqz(z = m,y), to the vortex core by b;.

63

h € My p(,’z}:ﬂ',y::O)

2.00 0.50 0.27 0.9634
2.00 0.80 0.32 0.6365
6.00 0.50 0.175 0.9853

6.00 0.80 0.275 0.90833

Table 3.3: A list of the maximum density drop in the core for two different
values of the wall height, h, and vorticity concentration, e.

Similarly, we shall define the distance from the peak of the vertical velocity,
Umaz(T,y = 0), to the core by b;. In Figures (3.18) and (3.19), we set
e = 0.5 and M4 = 0.0 and hold the circulation in the domain, I" = 7, fixed
and compute the solutions for various wall heights. The curve plotted in
Figure (3.18) flattens out at h = 3 and remains horizontal as h — 0. This
plot shows that the location of the maximum horizontal velocity peak used
in Figure (3.16) to define b; approaches the channel wall as h — 3 and
remains there for all subsequent decreasing values of h. Figure (3.19) shows
that the location of the maximum vertical velocity peak used to define by
in Figure (3.17) is tending towards zero as h — 0. Hence, we can conclude
that in the limit of decreasing wall height, the recirculation regions present
in Stuart vortex solutions vanish. In Figure (3.20) we set € = 0.5 and Yo =
log{cosh k], increase the Mach number M4, and measure the circulation in
the domain for various values of the channel height. This shows that for a
given vorticity distribution in which the parameters are fixed, the circulation
in the domain is greatest for smaller values of the wall height. Also, it further

confirms that A = 6 is a good numerical approximation for h — oo since

64

i T

2.5

Figure 3.11: Equally spaced contours of the stream function for h = 2,
€ = 0.8, Yyeu = logcoshh and M4 = 0.32. Level 1 corresponds to a value
of -1.43116, and Level F corresponds to 1.14126.

the difference between the values of the circulations plotted for various wall
heights decreases rapidly such that the difference between h = 4 and h = 6
is hardly noticeable. It must be noted here that the computations for the

various wall heights was stopped at the highest attainable Mach number.

65

1.0

0.8 — l l /

; //

L
1.5 20 2.5 3.0

Figure 3.12: Equally spaced contours of the density for h = 2, ¢ = 0.8,

Ywan = log[coshh] and M4 = 0.32. Level 1 corresponds to 0.66083, and
Level F corresponds to 1.00293.

1.0

0.8 |

Figure 3.13: Equally spaced contours of the density for h = 6, € = 0.8,

Ywan = log[cosh h] and M4 = 0.275. Level 1 corresponds to 0.915557, and
Level F corresponds to 1.01879.

66

1.0

08 E - D-
o B. B
06 E A 5 A S
[P 8
i -2 7.
0.4 — - - & -
02F 4 3
- 1
0.0 S T SO S SN SRR WA TR SR R SRR Pt B R | /‘/I—’l-’l‘_’l_l_l—(__lT
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 3.14: Equally spaced contours of the stream function for A = 6,
€ = 0.8, Yyqu = log[cosh h] and M4 = 0.275. Level 1 corresponds to a value
of -0.79971 and Level F corresponds to 4.80415

Figure 3.15: Local mach number profile at £ = 7. Parameters of the problem
are h =6, e = 0.8, M4 = 0.275 and 0y = log[cosh(h)].

67

u{x=n,y)

Figure 3.16: Horizontal velocity profile, u(z = =,y), for unbounded Stuart
vortex solution given by equation (3.5) in which € = 0.5.

0.5

04}

03

v{x,y=0}

01

0.0 1 1 1 Lo 1 1
0.0 05 1.0 1.5 20! 25 3.0

X

Figure 3.17: Vertical velocity profile, v(z,y = 0), for unbounded Stuart
vortex solution given by equation (3.5) in which € = 0.5.

68

0.8 -
bi/h 06 .

04 =

Figure 3.18: Horizontal extent of the defined vortex core plotted versus
varying channel height. I' = 7, M4 = 0, and € = 0.5 are held fixed

0.8 T T T T T T T
0.7
0.6
0.5
ba/h 04
0.3
0.2

01 | 1 1 | 1 | |

T
[

T
i

T
I

T
1

PN

Figure 3.19: Vertical extent of the defined vortex core plotted versus varying
channel height. T' = 7, M4 = 0, and € = 0.5 are held fixed

69

3.6 T T T T T
3.55 F -
35
3.45
3.4
' 335
3.3
3.25
3.2
3.15 h=6
0 005 01 015 02 025 03

My

Figure 3.20: Circulation measured as a function of Mach number for various
wall heights

70

Chapter 4

Conclusion

In chapter 2 we have shown that it is possible to have steady flow of an infi-
nite, periodic array of vortices in a compressible flow and, furthermore, that
this array can exhibit transonic shock-free flow. It has also been illustrated
that by taking special care in treating the singularity of the transformation
at infinity, it is possible to reduce a compressible transonic flow to a strictly
linear problem in the hodograph plane. The evacuated vortex core results
indicate that such solutions can be constructed in the hodograph plane, but
that they all exhibit cuspidal behaviour which indicates the onset of limit
lines.

Further extensions of this work include investigation of the stability of
this vortex array. We have shown that steady solutions exist and now we
must determine whether these solutions are stable. Also of interest is to de-
termine whether there exists a class of compressible free boundary problems
that lead to a linear system of equations in the hodograph plane. If so, this

would then allow for the use of the principle of superposition in constructing

71

compressible flow streamlines for a variety of flows in the hodograph plane
akin to potential flow theory.

Note that the vorticity in the hollow vortex core problem of chapter 2 was
concentrated into vortex sheets on the surfaces of the vortices. In chapter
3, by extending the Stuart vortex solution to include compressibility, we
have constructed two dimensional steady compressible vortex flows with
continuous distribution of vorticity. Increasing the channel width, A — oo,
shows that compressible Stuart-type vortices in an unbounded domain exist.
Furthermore, it suggests that the circulation is a specific function of the
Mach number. Hence, in order to solve for the unbounded vortex flow, it is
necessary to continue the generalized Stuart vortex solution given in section
3.1. By taking

Yp=Ay, y-ox

we inflate the system of equations given by equation (3.46) by one unknown,
A, and use as the boundary condition at infinity a chosen value for the
circulation of the problem, I'. The specified value of the circulation then
will determine the value of A uniquely. This gives an integral constraint for
the boundary condition at infinity that can easily be dealt with through the
use of bordered matrices.

We have shown that the effect of decreasing the channel width while
fixing the circulation in the problem is to wash out the recirculating re-
gions and that the limit of very small channel height is inevitably a parallel
shear flow. Furthermore, exact analytical solutions for the special case of
the compressible parallel shear flow are given in implicit form. Even though

no local supersonic regions where found for the Stuart-type vortices, it is

72

believed that increasing the resolution will most probably help in increasing
the Mach numbers achieved in this work. The fact that the number of iter-
ations per solution increased as the Mach number was raised suggests that
if an iterative matrix solver with an appropriate pre-conditioner is chosen,
perhaps locally supersonic flow can be achieved.

Constructing the compressible homentropic Stuart vortices in an un-
bounded domain is certainly a natural extension of this work. These so-
lutions can be very valuable to studies of shock vortex interaction in com-
pressible media as well as studies in turbulence and aero acoustics. The
extension of this work to the other limit of homenthalpic flow, as described
in section (3.2), can also be very enlightening since allowing the entropy to
vary may result in regions of steep entropy gradients in the flow. Certainly
a stability analysis of these flows is also necessary to make the investigation
of the compressible Stuart-type vortices complete.

Another interesting thought that has risen from this work is the possi-
bility of extending results in potential flow to include continuous vorticity
distributions. The Stuart vortex solution can be viewed as extending an
infinite array of point vortices. Mallier and Maslowe [15] capitalize on this
idea by extending the potential for a row of counter rotating vortices. Since
potential flow theory has been used to a great extent by scientists and engi-
neers to model flows (i.e., wake behind a cylinder, flow over an airfoil, etc.),
this extension to include continuous vorticity distributions would make the

models more realistic.

73

Appendix A

Asymptotic analysis of

Chaplygin’s equation

Introducing the following local coordinates in the hodograph plane,
a=gq-—a, B=6-—m, (A.1)

and substituting this result into equation (2.10) leads to

52 82 52
Gt U-MyTE = — (@420 - piar 1) 2Y
- (@t - pola+ 112
2
+ p4(a2+2a)g—6f, (A.2)

where p; = lg—lMgo, pPe=1+p;, p3= %Mgo and py = 1;—1M§o

74

Near the singularity at (a,), (A.2) takes the form

2 32
%+(1—M;)a—f;f=o (A.3)

along with the corresponding boundary condition,

&y B
25=0 B=0 (A.4)

We introduce local polar coordinates (s, §) defined by

se¥ = (g—a)+ z—TH\/_%E. (A.5)
Then, all possible solutions of the above equation are of the form
¥ = 2™ cos 2mé (A.6)
where m has integral values, as well as
P =log(s) + C (A.7)

where C' is a constant. We choose the type of the singularity in the hodo-
graph plane as required by the formulation of the problem in the physical

plane (as discussed in section 2.2.4). Thus we write 1) = 1o + 11 where

%o = log(s) (A.8)

75

so that, on identifying the dominant terms on the right-hand side of (A.2),

32¢1+13¢1 1y

26 §
32 T30 T2 a5 —2pss cos d cos i (p2 — p3) cos > (A.9)

where ps = 1 — p; + 5. Solving the above equation leads to the com-
plementary function

P = %s cos 36 — %ﬁslogs cos 4. (A.10)

It is now evident that the log s singularity has higher order corrections that
all go to zero smoothly as (s,d) = (0,0). Since we intend to subtract the
singularity from equation (2.10) and solve for the regular corrections, the
exact form of the singularity is crucial. Any other form of the singularity,
upon subtraction from equation (2.10), would lead to residual singularities

in the modified equation.

76

Appendix B

Estimation of v, using

matched asymptotics

In this Appendix we find a leading order approximation to the value of the
stream function at the boundary of the evacuated vortex. The incompress-

ible solution [12] for a row of point vortices is given by
r 1
$(z,y) =~ log [5 (cosh(2my/L) — cos(27rx/L))} . B
We opt to use polar coordinates and hence use the transformation

y =rsind,

z =rcosb,

77

to get the incompressible solution ¢ = (r,6). Furthermore, we take the

limit of (B.1) as » — 0 and find the leading order behaviour to be given by
) r

lim ¢(r,0) ~ — [—log(m/L) — log(r)]. (B.2)
r—0 27

The solution for an isolated hollow vortex [18] in a compressible medium

is given by

vlo) = 3 (1= o7 oga+ = [Moget -7 de| + v (B

1
where s = R?/r? and R = %(\};:-CE- where the subscript o denotes stagnation

conditions. We shall define
1 s 2=y
Flsim) = — [loge (1) d
¥=1Jo
and hence find the leading order behaviour of ¥(s) as s — 0 as follows:
r 1
P(s) ~ 7 [— logr +log R — §F(1;'y)] + 1y (B.4)

The incompressible solution, (B.2), is an outer solution which is matched
to the solution for an isolated hollow vortex, (B.4), giving an approximation

for the value of the stream function on the boundary of the evacuated vortex.

Yo = 1 [F(i7) - loga?]. (B3

78

Appendix C

Jacobian entries for Stuart

vortex problem

Section (3.4) discusses how to obtain the Jacobian of the system of equations

(3.44) and (3.45). The linearized form of equation (3.44) is written as
Abtpzz + Béthyy + Codvpr + Détpy+ Edyp + Fop+ Gopr + Hépy+ L = 0. (C.1)
We solve for the density correction, ép, from equation (3.45),

Sp = “51 (R %5 + S 8%, + T 59 + G (4o, po)),

—1)M?
(’yp#,%m
0
—_ ———'————h2pg Oyl’

= —(y—1)M3(1 — €%) exp(—2¢),

- -1 1
= (=D g MA (ol +) (C:2)
0

79

where G1(vo, pg) is equation (3.45) evaluated at the latest guess and h is the
position of the wall. We can now substitute the above result into equation

(C.1). This leads to the following system:

cp2dz bz + cp2dy 8¢y, + cpldz Gip, (C.3)

+ cpldy §py + cpmd 8y + cp 69 + ce = 0.

The entries of the Jacobian matrix A;;, and the right-hand side matrix,

B, ;, is given by the following:

Gi+1,; = cp2dz/Az? + cpldz/2Az,
ai-1; = cp2dz/Az? - cpldz/2Ax,
a;j; = —2cp2dz/Az® -2 cp2dy/Ay? + cp,
aij+1 = cpdy/Ay® + cpldy/2Ay,
aij-1 = cp2dy/Ay® — cpldy/2Ay,
Git1,5+1 = cpmd/4 Az Ay,
Gi-1,5-1 = cpmd/4 Az Ay,
Gi+1,5-1 = cpmd/4 Az Ay,
a;—1+1 = cpmd/4 Az Ay, (C.4)

where Az and Ay are defined in section 3.4 and

A-(GR/Q),
cp2dy = B-(HS/Q),
C—(FR/Q) + G((RQ:/Q%) ~ (R./Q) ~ (T/Q)]

cp2dxr =

cpldr =

80

+ H[(QyR/Q%) - (R,/Q)),
cplay = D—(FS/Q)+G[(5Q:/Q?) ~ (5./Q)]
+ H[(QyS/Q%) - (8,/Q) — (T/Q)),
® = E-(FT/Q)+GlQ.T/Q*) - (T./Q)] + H[(TQ,/Q%) — (T,/Q)],

cpmd = —(SG/Q) - (HR/Q),
ce = L-(FG/Q)+Cl(Q:6/Q%) — (6:/Q)]
+ H[(QG/Q% - (Gy/Q)]. (C.5)

The functions @, R, S, T and G have already been defined above. The re-
maining functions from the Jacobian entries above are related to the initial

guess through the following relationships:

A = 1/p

B = 1/(h’pp)

C = —po,/p}

D = —pg,/[(h?p})

E = 2po(1 - €?)exp(~24)

F o= —vo../05 + 200, %0. /03 ~ th,, /(h? o})
+ 2p0,%0,/(h* 63) — (1 - €2) exp(~2 1y

G = —io,/p}

H = —4q,/(h%py,)

L = (Yo./po)z + (%0,/p0)y — po(1 — €2) exp(—21)y) (C.6)

81

The right-hand side matrix is given by the following everywhere in the in-

terior of the grid,
bi,j = —ce, (C?)

and by the boundary conditions listed in section (3.4) on the boundaries.

82

Appendix D

Fo

rtran listing for hollow

core vortex

e e 3k ok

% %k ¥k

Ak k

Ak k

% %k

%k %k

* %k %k

% o ok xk k

Using the capacitance matrix approach

to solve the second order finite difference
discretization of the problem. The point at
infinity is treated specially (dtpsi=0 used directly)
Don’t forget to change dimensions for the mapping !!!

Need to change in subroutine map as well as function psin

real*8 q,tht,ainf,minf,bta,g,a,b,d,e,arg3,arg4,arg5
real*8 dq,dtht,pi,tl,t2,tm1,mv,diff,exact,extra,pert
real*8 force,minf2,ainf2,ext,arg1,arg2,filter

real*8 term,bnqu,bndqi,bndtop,botconst,topconst,capconst

integer n,m,i,j,il,iu,ia,is,js,ias

83

integer ji1,j2,j3,j4,j5,nm,ik,ip,kmap,nn
parameter(n=1001,m=256,il=1,iu=n,nm=n*(m+1),ip=1,kmap=10)
parameter (ainf=0.2d0,minf=0.d0,g=1.4d0,nn=((n-1) /kmap)+1)
double precision aa(n),bb(n),dd(n),cc(n),res6(nm,ip)
double precision psik(n,m+1),y(m+1),yz(nm),psi(n,m+1)
double precision uu(nm),vv(nm),res(ip,ip),rhs(nm)

double precision unit(ip,ip),res2(ip,ip),indx(ip),yy(ip,ip)
double precision res3(ip,ip),res4(ip,ip),res5(nm,ip)
double precision ut(n),vt(n),wk(n),xt(nn,m+1),yt(nn,m+1)
open(67,file=’kay.out’)

open(70,file=’stag.out’)

open(71,file="top.out’)

open(73,file=’inf.out’)

open(74,file=’side.out’)

write(*,*) ’parameters of the problem’

pi = dacos(-1.40)

ainf*ainf

ainf?2
minf2
bta = (minf2/(2.d0+((g-1)*minf2)))/(ainf2)

minf*minf

write(*,*) ’bta= ’,bta

dq = 1.40/(n-1)

dtht = (pi)/(2.d0*(m))

tml = (ainf2-1.d0)*(g-1.d0)*minf2+2.d0*ainf2
mv = dsqrt(2.d0*minf2/tm1)

write(*,*) ’dq2= ’,dq*dq

write(*,*) ’dtht2= ’,dtht=*dtht

84

write(*,*) ’minf= ’ minf
write(*,*) ’ainf= ’, ainf
wvrite(*,*) ’mmortex= ’,mv
write(x,*)

write(*,*) ’checking points for the computation’

4k % %k ¥
*** initializing the unit matrix for the capacitance approach
% 2k 3 ok
do 123 i=1,ip
do 124 j=1,ip
unit(i,j) = 1.d0
124 continue

123 continue

% 3k ok 2k
**x setting up the correction matrices
A o ok

is = (ainf/dq)+1

js = m+l

ias = n*(js-1)+is

ia = ias

do 55 i=1,nm
uu(i)=0.d0

55 continue

85

uu(ia)=1.4d0

do 66 i=1,nm
vv(i)=0.do0

66 continue

j=m+1
g=(is-1)*dq
write(*,*) ’at infinity q= ’,q
if(q.ne.ainf) pause ’something is wrong’

tht = (pi/2.d0)+(j-1)*dtht

Jj1 = n*(j-1)+is+1
j2 = n*(j-1)+is
j3 = n*(j-1)+is-1
j4 = n*(j-2)+is
j5 = n*(j-3)+is

vv(j1)= -a(g,bta,dq,q)

vv(j2)= 3.d0-d(g,bta,dq,dtht,q)
vv(j3)= -b(g,bta,dq,q)

vv(j4)= -4.d0-2.d0*e(g,bta,dtht,q)
vv(j5) = 1.40

o0 2k ok 3k ok
**x Re-ordering and transforming the U matrix

2% 2ok ok %k

do 51 i=1,n
do 100 j=1,m+1

86

ia = nx(j-1)+i
y(j) = uu(ia)

100 continue

call cosftl (y,m)

do 111 j=1,m+1
ia = nx(j-1)+i
uu(ia) = y(j)
111 continue

51 continue

% % % Ak
x sgetting up the equations for each mode

3 o ok %k %k

do 5 j=1,m+1
3 3k 2 o
x constructing the "i+1" diagnol
LE2 2 2]

do 15 i=2,n-1

g=(i-1)*dq

tl = g*q*(1.d0-(g-1.d0)*bta*q*q)/(dg*dq)

t2 = q*(1.d0-(g-3.d0)*bta*q*q)/(2.d0*dq)
aa(i) = ti1+t2

15 continue

87

*** boundary conditions
aa(il) = 4.40
aa(iu) = 0.d0

3 2k ok ok %k

*** constructing the "i" diagnol

2 ko k
do 20 i=2,n-1
g=(i-1)*dq
tht = (pi/2.d0)+(j-1)*dtht
tl = -2.d0*q*q*(1.d0-(g-1.d0) *btaxq*q)/(dg*dq)
filter = 8.d0*(cos((j-1)*dtht)-1.d0)/(dtht*dtht)
* filter = -4.d0*(j-1)*(j-1)

t2 = filter=(1.d0-(g+1)*bta*q*q)
dd(i) = t1+t2

20 continue

**x boundary conditions

dd(il) = -3.d0

dd(iu) 1.40

3% % %k %k %k

*** constructing the "i-1" diagnol

ok ok ok 2k

88

do 25 i=2,n-1

q=(i-1)#*dq

tl = g*q*(1-(g-1)*btaxq*q)/(dq*dq)

t2 = -q*(1-(g-3)*bta*q*q)/(2.d0*dq)
bb(i) = t1+t2

25 continue

***x boundary conditions

bb(il) = 0.dO

bb(iu) = 0.d0

A o ok 2
*** solving the first of the P-auxilary problems

3 2k ok ok ok

do 225 i=1,n
ik = nx(j-1)+i
cc(i) = uu(ik)

225 continue

% o %k %k
*** using the Sherman-Morrison formula for the
*** tri-diagnol solves ... see diagram

4 2 3 k%

1022

1011

1012

A 2k kK

89

do 1022 i=1,n

ut(i) = 0.d0
vt(i) = 0.d0
continue

ut(il) = 1.40
vt(3) = -1.40

call sy(il,ju,bb,dd,aa,cc)
do 1011 i=1,n

wk(i) = cc(i)
cc(i) = ut(i)
continue

call sy(il,iu,bb,dd,aa,cc)

call dotmat(vt,cc,1,1,n,res)
botconst = 1.40 + res(1,1)
call dotmat(vt,wk,1,1,n,res)

topconst = res(1,1)

capconst = -1.d0O*topconst/botconst
do 1012 i=1,n

cc(i) = capconst*cc(i)

continue

call addmat{(wk,cc,n,1,cc)

sherman-morrison formula done

90

e ek ok kK

do 226 i=1,n
ik=n*(j-1)+i
uu(ik)=cc (i)
226 continue
5 continue

write(*,*) ’it is working for auxilary problem’

ok 3k ok ok
*¥** taking the result of the auxilary problem and transforming

kK it back to real space

% 3 3k kK
do 83 i=1,n
do 84 j=1,m+1
ia = n*x(j-1)+i
y(3) = uu(ia)
84 continue

call cosfti(y,m)

do 85 j=1,m+1
ia = n*(j-1)+i
uu(ia) = (2.d0/m) *y ()

85 continue

91

83 continue

write(*,*) ’I have z in the real space’

4 ¢ o ok %k

*** Performing the PxP matrix inversion

3 ok 3k ok kK
call dotmat(vv,uu,ip,ip,nm,res)
write(*,*) ’the product of vv and z= ’,res(1,1)
call addmat(res,unit,ip,ip,res2)
write(*,*) ’the addition by one gives= ’,res2(1,1)
call matinv(res2,ip,ip,indx,yy)
write(*,*) ’the inversion routine gives= ’,yy(1,1)
ext = 1/yy(1,1)
write(*,*) ’this is inversion by hand= ’,ext

e 3k 2 ok 2k 3k

2 ok ok K

*** Constructing the Forcing Term
4 o 3k %k Ak
A ook ok ok

**x the interior points

do 2 i=2,n-1
do 3 j=1,m+1
q = (i-1)*dq
tht = (pi/2.d0) + (j-1)=*dtht

92

ia = n*(j-1)+i

if(q.eq.ainf.and.tht.eq.pi) then

rhs(ia) = 0.40
else
rhs(ia) = force(g,ainf,minf,q,tht)
* rhs(ia) = 0.40
endif
3 continue
2 continue

*** the right hand side derivative condition

i=1
do 444 j=1,m+1
q = (i~1)#*dq
tht = (pi/2.d0) + (j-1)=dtht
ia = n*(j-1)+i
rhs(ia) = 2.d0*dq*bndqO(ainf,minf,tht)
* rhs(ia) = 0.40

444 continue

*** the fixed value of psi

i=n

93

do 4 j=1,m+1
tht = (pi/2.d0) + (j-1)=dtht
ia = n*x(j-1)+i

rhs(ia) = bndql (ainf ,minf,tht)

* rhs(ia) = cos(2.d0*tht)

4 continue

**x the bottom boundary ... dtpsi=f(q)
j=1

do 114 i=2,n-1
q=(i-1)*dq
tht = (pi/2.d0)+(j-1)*dtht
ia = n*x(j-1)+i
term = 2.d0*dtht*e(g,bta,dtht,q)*bndtop(ainf,minf,q)
* rhs(ia)=force(g,ainf,minf,q,tht)+term
* rhs(ia) = 0.d0
114 continue

write(*,*) ’forcing function complete’

¥ 3 ok 2k
*** transforming the rhs vector to Fourier Space
*x %k %k %k %k
do 512 i=1i,n
do 200 j=1,m+1

94

ia = nx(j-1)+i
y(j) = rhs(ia)

200 continue

call cosftl (y,m)

do 121 j=1,m+1
ia = nx(j-1)+i
rhs(ia) = y(j)
121 continue

512 continue

4 3k ok 2k ok
*** setting up the equations for each mode

% 2 o Kk

do 151 j=1,m+1
% o o ok %k
*** constructing the "i+1" diagnol
3 2k 3 ok %k

do 115 i=2,n-1

q=(i-1)*dq

tl = gxq*(1-(g-1)*bta*q*q)/(dq*dq)

t2 = q*(l'(g—3)*bta*q*q)/(2,dO*dq)
aa(i) = t1+t2

115 continue

95

*** boundary conditions
aa(il) = 4.do0
aa(iu) = 0.d40

KKKk *k

**x constructing the "i" diagnol

3% 2k % %k

do 120 i=2,n-1

q=(i-1)*dq

tht = (pi/2.d0)+(j-1)*dtht

tl = =2.d0*q*q* (1-(g-1) *bta*q*q) / (dq*dq)

filter = 8.d0*(cos((j-1)*dtht)-1.d0)/(dtht*dtht)
* filter = -4.d0*(j-1)*(j-1)

t2 = filter»(1.d0-(g+1)*bta*qxq)
dd(i) = t1+t2

120 continue

*** boundary conditions

dd(il) = -3.d0

dd(iu) 1.d0

e ok ok k
*** constructing the "i-1" diagnol

A %k ok Xk

96

do 125 i=2,n-1

g=(i-1)*dq

t1 = q*q*(1-(g-1)*btaxq*q) /(dq*dq)

t2 ‘q*(l-(g-3)*bta*q*q)/(2.dO*dq)
bb(i) = t1+t2

125 continue

*** boundary conditions

bb(il) = 0.d0

bb(iu)

0.do

% ok %k
*** Solving the last tridiagnol problem

% 2 3 3k ok

do 77 i=1,n
ik = nx(j-1)+i
cc(i)=rhs(ik)

77 continue

ek xk ok
*** using the Sherman-Morrison formula for the
*** tri-diagnol solves ... see diagram

3 2 %k ok %k

1042

1031

1032

¥ kK ok Xk

97

do 1042 i=1,n

ut(i) = 0.40
vt(i) = 0.40
continue

ut(il) = 1.40
vt(3) = -1.40

call sy(il,iu,bb,dd,aa,cc)
do 1031 i=1,n

wk(i) = cc(i)

cc(i) = ut(i)
continue

call sy(il,iu,bb,dd,aa,cc)

call dotmat(vt,cc,1,1,n,res)
botconst = 1.d0 + res(1,1)

call dotmat(vt,wk,1,1,n,res)

topconst = res(1,1)
capconst = -1.d0*topconst/botconst
do 1032 i=1,n

cc(i) = capconst*cc(i)

continue

call addmat(wk,cc,n,1,cc)

sherman-morrison formula done

2 oK o ok ok *k

98

do 30 i=1,n
psik(i,j) = cc(i)
30 continue

151 continue

3 3k o %k ok

*** re-storing solution to physical plane

3k 3k 3 %k %k
do 35 i=1,n
do 40 j=1,m+1
y(3) = psik(i,j)
40 continue

call cosfti(y,m)

do 45 j=1,m+1
psi(i,j) = (2.40/m)*y(j)
45 continue

35 continue

do 81 i=1,n
do 82 j=1,m+1

ia = n*(j-1)+i

99

yz(ia)=psi(i,j)
82 continue

81 continue

a0 3 3k ok ok
*** the final stage of the capacitance matrix approach

% 2k 3k % *k

call dotmat(vv,yz,ip,ip,nm,res3)
call dotmat(yy,res3,ip,ip,ip,res4)
do 71 i=1,ip
do 72 j=1,ip
res4(i,j) = -resd(i,j)
72 continue
71 continue
call dotmat(uu,res4,nm,ip,ip,res5)
call addmat(yz,res5,nm,ip,res6)

write(*,*) ’the capacitance matrix approach is DONE’

do 181 i=1,n
do 182 j=1,m+1
ia = n*(j-1)+i
psi(i,j) = res6(ia,1)
182 continue

181 continue

88

%*
34
33

% ok ok Xk Xk

i = (ainf/
do 88 j=1
tht = (
write(7

continue

do 33 i=1
do 34

q=(
tht =
ia =
argl
arg2
arg3
arg4
argb

100

dqg)+1

,m+1

Pi/2.d0) + (j-1)*dtht
3,%) tht,psi(i,j)

,n

j=1,m+1

i-1)#*dq
(pi/2.d0)+(j-1)*dtht

n*(j-1)+i

(q-ainf)*(q-ainf)

ainf2*(tht-pi)*(tht-pi)/(1.d0-minf?2)

~1.d0*ainf2+(tht-pi)* (tht-pi)

(1.d0-minf2)*(q-ainf)*(q-ainf)

ainf2*pi*pi/4.d0

extra = arg3/(arg4+args)

if(q.
psi(i
psi(
continue

continue

eq.ainf.and.tht.eq.pi) go to 34
»J) = res6(ia,1)+log(argl+arg2)+extra

i,j) = res6(ia,1)+log(argl+arg?2)

101

*xx checking to see whether solution closes the
*xx hodograph plane.
3% %k % 2k Xk

call closure(n,m+l,ainf,minf,g,dq,dtht,psi)

% %k 3 %k %k

*** checking for limit lines

% % %k %k Xk
call cusp(psi,n,m,dq,dtht,ainf,minf,g)
write(*,*) ’No limit lines have appeared !!!’

% % %k %k

**xx formatting output

% %k % %k

if (minf.gt.0.1d0) go to 901

i = (ainf/dq)+10
do 89 j=1,m+1
q = (i-1)=dq
tht = (pi/2.d40)+(j-1)*dtht
exact = pert(ainf,minf,q,tht)
diff = exact - psi(i,j)
vrite(74,701) tht,psi(i,j),exact,diff

89 continue

i=1

do 54 j=1,m+1

102

q = (i-1)*dq

tht = (pi/2.40)+(j-1)+*dtht

exact = pert(ainf,minf,q,tht)

diff = exact - psi(1,j)

write(70,701) tht,psi(1,j),exact,diff
54 continue

701 format(1x,4(£12.6,3x))

j=1
do 65 i=1,n
q = (i-1)*dq
tht = (pi/2.40)+(j-1)+*dtht
exact = pert(ainf,minf,q,tht)
diff = psi(i,1) - exact
write(67,301) q,psi(i,1),exact,diff
65 continue

301 format(1x,4(f12.6,2x))

j=m
do 665 i=1,n
q = (i-1)=*dq
tht = (pi/2.d0)+(j-1)=dtht
exact = pert(ainf,minf,q,tht)
diff = psi(i,m) - exact
write(71,301) q,psi(i,m),exact,diff

665 continue

103

2 2k o ok k
*** output formatted for use with Tecplot

3 3k 3k ok Xk

901 write(*,*) ’preparing output for tecplot’
call map(g,ainf,minf,psi,n,m+1,xt,yt,nn,kmap)
stop

end

subroutine addmat(a,b,n,m,res)
implicit double precision (a-h,o-z)
integer i,j,n,m
double precision a(n,m),b(n,m),res(n,m)
* write(*,*) ’inside matrix addition routine’
do 10 i=1,n
do 12 j=1,m
res(i,j) = a(i,j)+b(i,j)
* write(*,*) i,j,a(i,j),b(d,j),res(d,j)
12 continue
10 continue
* write(*,*) ’outside matrix addition routine’
return

end

20

15
10

104

subroutine dotmat(a,b,n,m,ijcmn,res)
real*8 sum
integer i,j,n,m,ij,ijcmn

double precision a(n,ijcmn),b(ijcmn,m),res(n,m)

do 10 i=1i,n
do 15 j=1,m
sum = 0.d0

do 20 ij=1,ijcmn
sum = sum + a(i,ij)*b(ij,j)
continue
res(i,j) = sum
continue
continue
return

end

function a(g,bta,dq,q)

real*8 g,bta,a,q,dq

real*8 t1,t2

a = (t1(g,bta,q)/(dg*dq)) + (t2(g,bta,q)/(2.d0*dq))
return

end

function d(g,bta,dq,dtht,q)
real*8 d,q,dtht,dq

105

real*8 t1,t3,g,bta
d = -2.d0*((t1(g,bta,q)/(dg*dq))+(t3(g,bta,q)/(dtht*dtht)))
return

end

function b(g,bta,dq,q)

real*8 g,bta,b,q,dq,t1,t2

b = (t1(g,bta,q)/(dq*dq))—(t2(g,bta,q)/(2.dO*dq))
return

end

function e(g,bta,dtht,q)
real*8 g,bta,e,q,dtht,t3

e = t3(g,bta,q)/(dtht*dtht)
return

end

function ti(g,bta,q)

real*8 g,bta,q,ti

tl = (q*q)*(l.dO—(q*q*bta*(g—i.dO)))
return

end

function t2(g,bta,q)
real*8 g,bta,q,t2
t2 = g*(1.d0-(q*g*bta*(g-3.d0)))

% 3% o & 3k

% %k %k

& 2k ok ok 2k

% %k %

%k %k %

106

return

end

function t3(g,bta,q)

real*8 g,bta,q,t3

t3 = 1.d0-((g+1.d0)*bta*q*q)
return

end

Thomas Algorithm ... tridiagnol matrix solver

subroutine sy(il,iu,bb,dd,aa,cc)

real*8 r

double precision aa(iu),bb(iu),cc(iu),dd(iu)
integer il,iu,l1p,i,j,nmax

parameter (nmax=10000)

double precision f(nmax)

making sure that the original matrix

stays in tact ... work vector f(mmax)

do 5 i=il,iu
£(i) = dd(i)

continue

107

*** establish upper triangular matrix

1p = il+1

do 10 i=lp,iu

r = bb(i)/dd(i-1)
dd(i)=dd(i)-r*aa(i-1)

10 cc(i) = cc(i)-r*cc(i-1)

x back substitution

cc(iu)=cc(iu)/dd(iu)
do 20 i=1p,iu
j = diu-i+il

20 cc(j)=(cc(j)-(aa(j)*cc(j+1)))/dd(j)

* ok solution stored in cc

**x restoring the diagnol of original matrix
do 256 i=il,iu
dd(i) = £(i)
25 continue
return

end

% % ok %k %

108

* kK Calculates the cosine transform of a set y(1:n+1) of real-valued
*** data points. The transformed data replace the original data in
*** array y. N must be a power of 2. This program, without changes,
* k% also calculates the inverse cosine transform, but in this case
*** the output array should be multiplied by 2/n.

3% 3 ok o %k

subroutine cosfti(y,n)

integer j,n

real*8 sum,yl,y2

real*8 theta,wi,wpi,wpr,wr,wtemp
double precision y(n+1)

theta = dacos(-1.d0)/n

wr = 1.d0

wi = 0.d0

wpr = -2.d0*sin(0.5d0*theta)**2
wpi = dsin(theta)

sum = 0.5d0*(y(1)-y(n+1))

y(1) = 0.5d0*(y(1)+y(n+1))
do 11 j=1,(n/2)-1

wtemp = wr

WI = WI*Wpr-wi*wpi+wr

Wi = wi*wpr+wtemp*wpi+wi

y1 = 0.5d0*(y(j+1)+y(n-j+1))
y2

y(j+1) = yl-wixy2

(y(§+1)-y(n-j+1))

11

12

109

y(n-j+1) = yl+wixy2
sum = sum+wr*xy2
continue
call realft(y,n,1)
y(n+1) = y(2)
y(2) = sum
do 12 j=4,n,2
sum = sum +y(j)
y(j) = sum
continue
return

end

subroutine realft(data,n,isign)
integer isign,n
integer i,i1,i2,i3,i4,n2p3
double precision data(n)
real*8 cl1,c2,hli,hlr,h2]i ,h2r,wis,vrs
real*8 theta,wi,wpi,wpr,wr,wtemp
theta = dacos(-1.d0)/(dble(n/2))
¢l = 0.5d0
if(isign.eq.1) then

c2 = -0.5d0

call fouri(data,n/2,1)

else

110

c2 = 0.5d0

theta = -theta

endif

wpr = -2.d0*dsin(0.5d0*theta)**2
wpi = dsin(theta)

wr = 1.d0+wpr

wi = wpi

n2p3 = n+3

do 11 i=2,n/4

il = 2%i-1
i2 = i1+]

i3 = n2p3-i2
i4 = i3+1
wrs = wr

wis = wi

hir = cix(data(il)+data(i3))
hli = ci1*(data(i2)-data(id))
h2r = -c2x(data(i2)+data(i4))
h2i = c2*(data(il)-data(i3))

data(il) = hir+wrs*h2r-wis*h2i

data(i2) = hli+wrs*h2i+wis*h2r

data(i3) = hir-wrs*h2r+wis*h2i

data(i4) = -hli+wrs*h2i+wis*h2r
wtemp=wr

WI = Wr*wpr-wiswpi+wr

Wi = wi*wpr+wtemp*wpi+wi

111

11 continue
if(isign.eq.1) then
hir = data(l)

data(l) = hir + data(2)
data(2) = hir - data(2)
else

hir = data(1)
data(1)=ci*(hir+data(2))
data(2)=ci*(hir-data(2))
call fourl(data,n/2,-1)
endif
return

end

subroutine fouri(data,nn,isign)
integer nn,isign
integer i,istep,j,m,mmax,n
real*8 tempi,tempr,theta,wi,wpi,wpr,wr,wtemp
double precision data(2+*nn)
n = 2*nn
j=1
do 11 i=1,n,2
if(j.gt.i) then

tempr = data(j)

tempi = data(j+1)

11

112

data(j) = data(i)

da

ta(j+1) = data(i+1)

data(i) = tempr

data(i+1l) = tempi

endif
m = n/2
if((m.ge
j=jm
m=m/2
goto 1
endif
j=j+m
continue

mmax = 2

.2).and.(j.gt.m)) then

if (n.gt.mmax) then

istep
theta
wpr =
wpi =
T =
wi =
do 13
do

2*mmax

-2.d0*dsin(0.5d0*theta) **2
dsin(theta)
1.40

0.d0

m=1,mmax, 2
12 i=m,n,istep

j=i+mmax

tempr = wr*data(j)-wi*data(j+1)

tempi = wr*data(j+1)+wixdata(j)

(2.d0*dacos(-1.d0))/(isign*mmax)

113

data(j) = data(i)-tempr
data(j+1) = data(i+1)-tempi
data(i) = data(i) + tempr
data(i+1l) = data(i+1)+tempi
12 continue
wtemp = wr
WIr = Wr*wpr-wixwpi+wr
wi = wixwpr+wtemp*wpi+wi
13 continue
mmax = istep
goto 2
endif
return

end

ok ok ok k

**x This routine employs the LU decomposition routine from the
*** Numerical Recipes handbook and then multiplies the result
*** by the identity matrix to find the inverse of a general
**x NxN matrix. The inverse of the matrix is stored in Y and
*** the original matrix A is destroyed...

2 o A ok %k

subroutine matinv(a,n,np,indx,y)
real d

integer i, j,n,np

33

22

10
56

* %Xk

3 ok X 2k ok

% ok %k

114

double precision a(n,n),y(n,n),indx(n)

do 22 i=1,n
do 33 j=1,n
y(i,j)=0.4d0
continue
y(i,i)=1.40

continue

call ludcmp(a,n,np,indx,d)

do 10 j=1,n
call lubksb(a,n,np,indx,y(1,j))
continue

format (1x,6(£8.4,3x))

return

end

LU Decomposition

subroutine ludcmp(a,n,np,indx,d)
real*8 d,aamax,sum,tiny,dum
integer i,j,n,np,k,nmax,imax

parameter (nmax=10000,tiny=1.0e-16)

11

12

13

14

15

115

double precision a(n,n),indx(n),vv(nmax)
d =1.0
do 12 i=1,n
aamax = 0.0
do 11 j=1,n
if(abs(a(i,j)).gt.aamax) aamax=abs(a(i,j))
continue
if (aamax.eq.0) pause ’singular matrix’
vv(i)=1./aamax
continue
do 19 j=1,n
do 14 i=1,j-1
sum = a(i,j)
do 13 k=1,i-1
sum = sum - a(i,k)*a(k,j)
continue
a(i,j) = sum
continue
aamax = 0.0
do 16 i=j,n
sum = a(i,j)
do 15 k=1,j-1
sum = sum-a(i,k)=*a(k,j)
continue
a(i,j) = sum

dum = vv(i)*abs(sum)

16

17

18

19

116

if (dum.ge.aamax) then
imax = i
aamax = dum
endif
continue
if (j.ne.imax) then
do 17 k=1,n
dum = a(imax,k)
a(imax,k)=a(j,k)
a(j,k) = dum
continue
d=-d
vv(imax) = vv(j)
endif
indx(j)=imax
if(a(j,j).eq.0.) a(j,j) = tiny
if(j.ne.n) then
dum = 1./a(j,j)
do 18 i=j+1,n
a(i,j) = a(i,j)*dum
continue
endif
continue
return

end

11

12

13

14

117

subroutine lubksb(a,n,np,indx,b)
real*8 sum
integer i,j,n,np,ii,11
double precision a(n,n),indx(n),b(n)
ii =0
do 12 i=1i,n
11 = indx(i)
sum = b(1l1)
b(11)=b(i)
if (ii.ne.0) then
do 11 j=ii,i-1
sum = sum - a(i,j)*b(j)
continue
else if (sum.ne.0) then
ii =13
endif
b(i) = sum
continue
do 14 4i=n,1,-1
sum = b(i)
do 13 j=i+i,n
sum = sum-a(i,j)*b(j)
continue
b(i) = sum/a(i,i)
continue

return

118

end

function psiO(ainf,q,tht)
real*8 ainf,q,tht,psi0,q2,ainf2
real*8 argl,arg2,arg3,arg4

ainf2 = ainf*ainf

92 = q*q

argl = q2+ainf2+2.d0*ainf*q*cos (tht)

arg2 = g2+ainf2-2.d0*ainf*q*cos (tht)

arg3d = q2*ainf2+1.d0+2.d0*ainf*q*cos (tht)
arg4 = q2*ainf2+1.d0-2.d0*ainf*q*cos (tht)
psi0 = log((argi*arg2)/(arg3*arg4d))
return

end

function bndqO(ainf,minf,tht)
realx*8 minf,ainf,tht,bndqo,pi
real*8 argl,arg2,arg3,minf?2
real*8 argd,arg5,extra

minf2 = minf*minf

pi = dacos(-1.d40)

argl = (tht-pi)*(tht-pi)
arg2? = 1.d0-minf2
arg3 = argl/arg?2

arg4 = 32.d0*argl*arg?

119

args = ainf*(-4.d0*arg2-pi*pi)*(-4.dO*arg2-pi*pi)

extra = arg4/args

bndq0 = (2.d0/(ainf*(1.d0+arg3)))+extra
bndq0 = (2.d0/(ainf*(1.d0+arg3)))
return

end

function bndqil(ainf,minf,tht)
real*8 minf,ainf,tht,bndql,pi
real*8 argl,arg2,arg3

real*8 ainf2,minf?2

real*8 arg4,extra

pi = dacos(-1.d0)

ainf2 = ainf*ainf

minf2 = minf#*minf

argl = (1.d0-ainf)*(1.d0-ainf)
arg2 = ainf2#*(tht-pi)=*(tht-pi)
arg3 = 1.d0-minf2

argé4 = arg3*argl + (ainf2+pi*pi/4.d0)

extra = arg2/arg4

bndql = -1.d0*log(argi+(arg2/arg3)) + extra
bndql = -1.d0*log(argi+(arg2/arg3))

return

end

120

function bndtop(ainf,minf,q)

real*8 ainf,minf,q,bndtop,ainf2
real*8 argl,arg2,arg3,argd,pi,minf2
pi = dacos(-1.d0)

ainf2 = ainf*ainf

minf2 = minf*minf

argl = pi*ainf2

arg2 = (1.d0-minf2)

arg3 = (q-ainf)#*(q-ainf)
arg4 = pispi*ainf2/4.40

bndtop = argl/(arg2*arg3+arg4)
return

end

function force(g,ainf,minf,q,theta)
implicit double precision (a-h,o-z)
real*8 minf,minf2,pi

minf2 minf#*minf

ainf2 ainf*ainf

pi = dacos(-1.d0)

tht = theta
t2 = ainf#*x*2
t3 = t2%*x2

t4 = t3%q

121

t5 = thetax**2
t7 = minf*x*2
t8 = t7**2

t9 = t8*t7
t10 = t3%t9

t12 = t3*ainf

t14 = qe*2

t15 = t14+%2
t16 = t15%q
t19 = pi**2
t21 = t12#t7
t23 = t9+t15
t25 = t12+t8
126 = t8+t15

t29 = t2*ainf

t30 = t29*t14

t34 = t29%t9

t36 = tildxq

t40 = 4#t4xt5-t10*%q+2*t12%t5+2%t 9%t 16-4#t8*t 16+2%t 125t 19+3%t21
#+2*t7*£16-5+t23%ainf-2*t12-t25+10*t26*ainf-t21*t5-2*t30-t21
#xt19-t21 g+t 25%g+t34% £ 14425t 2%t 364t 7-8*t 4%t 7

t42 = t2+t8
t44 = t3+t8
t45 = q*t5

t47 = t8*t14
t48 = g#t29

122

t49 = t48%t5
t51 = t48*t19

t53 = g*ti14
t55 = t29*t8
t57 = t7*t15
t58 = gxainf
t61 = t3%t7
t63 = t2%t9
t64 = g*t36
t66 = g*t19
t68 = t7xt14

t69 = t29*t19

t72 = t29*t5

t78 = 4*t4*t19-5*t42*t36+t44*t45+t47*t49+t47*t51-t34*t53+t55
#*t53+t57*t58+t23*t58-4*t61*t45-t63*t64+t44*t66+t68*t69+4*t4
#+6*t30*t7—t47*t72—t47*t69—t68*t51—5*t55*t14+5*t44*q

t84 = thetaxpi
t87 = gxq

t89 = t87x*t5

t91 = t87*t19
t99 = g*theta*pi

t111 = —4*t12*theta*pi+3*t63*t36—5*t57*ainf—8*t4*t84—t68*t49
#+t10*t87-t44*t89-t44*t91+t21*g*t5+t21*g*t19+t68*t72+8*t61*t99
#-4*t61*t66+2*t21*t84-2*t2*t7*t64+3*t42*t64+2*t61*t87-3*t44
#*t87+2*t61*t89—4*t61*g*t99

t120 = t7*t36

123

t121 = g*t2
t122 = t121%t5

t126 = t2+theta*pi

t128 = t121*t19

t130 = t8*t36

t138 = t29*theta*pi

t142 = t2*t5

t145 = t2*t19

t152 = 2*t130%t128+2*t68%g¥t138-24t47*g*t138+4*£120%t142
#-8%1120%£126+4%t120%t145-4%t130%t142+8*t130*t126-4*t130
#*1£145-2%t68*t138+2*t47+t138
top=2.d0*(-q+ainf) * (t40+t78+t111+2%t61xt91+2xt44*g*£99
#-2xt21%grtheta*pi-2%t44+t99-2%t26%t58-2%t120%t122+4%£120
#*g*t126—2*t120*t128+2*t130*t122—4*t130*g*t126+t152)

bl = ainf2*(2.d0+(g-1.d0)*minf2)
b2 = 1.d0-minf2

b3 = (g-ainf)*(q-ainf)

b4 = (theta-pi)=*(theta-pi)

b5 = (b2*b3+ainf2*b4)

bot = blxb5*b5

if (bot.eq.0.d0) PAUSE ’force is singular’

f1

top/bot
£2

exforce(g,ainf,minf,q,tht)

124

force = f1+£2
force = f1
return

end

function exforce(g,ainf,minf,q,tht)
implicit double precision (a-h,o-z)

real*8 minf

pi = dacos(-1.d0)
tl = minf**x2
t2 = t1x*x2

t3 = t2*xt1

t4 = g**2

t5 = t4*x%2

t6 = tb*t4

t7 = t3*t6

t9 = ti*t6
t1l = ainf**2
t12 = t11%x2

t13 = t12st11
t14 = t13%t2
t16 = ti1i*ainf
t17 = t4xq
t18 = t16+t17
t19 = t18+t1

125

t20 = t2*t6
t22 = tht**2

t24 = t12*ainf

t25 = t24xq
t26 = t25%t1
t27 = t12%t3
t29 = pi*x*2
t30 = £29%x2
t32 = t4xt12
t34 = t6xt11

t36 = 128*t7*g+128*t9*g+256*t14*g-3072*t19-256*t20*g-512*t14
#+768*t18*t22-2560*t26+896*t27*t4-64*t25*t30+128*t32*t30—512

#*t34%t29
t37 = t13*t1
t40 = t3*t5

t41 = t22*t11

t43 = tht*pi
t44 = t43xt1
t48 = t2*t5
t49 = g*t22

t50 = t49*t11
t52 = t1xt5
t53 = t52xg
t54 = t43xt11
t56 = t48xg
t58 = gxt29

126

t59 = t58*t11

t62 = tbxq

t63 = t3*t62

t65 = 8¥t37+t30-128*t32+t29+1024%t40+t41-4096%t34+t44+1024

#*t40*t29*t11+512*t48*t50+512*t53*t54-1024*t56*t54—192*t52
#*t59-1536*132-64%t14%t29-512%t63*ainf

t69 = t22*t1

t71

t29*pi

t72 = tht*t71

t73 = t72*t11

t75 = t58*ainf

t77 = g*t30

t78 = t77*t11

t80 = t43#*ainf

t86 = 1024*t25-1536+t18%t43+1024+t34*t43-2304+t18%t69+
#256%148*t73+640%137-384*t63% L T5+64+t48%£78+T68+£63%£80+
#768%t63*g*t80-128*t56%t73+256*%t7*t58

t88 = t49xainf
t90 = t41*t29
t93 = t3*tht*pi
t95 = t2*tht
t96 = t95*t71
t98 = gxtht
t99 = t98xpi
t101 = £24%t2
t102 = t101*q

t103
t106
t107
t108
t110

127

t13*t3

t12xt2

t106*t4

t2*t62
256%t7*t49-384%t63*t88+64*t56%t90+1536%t18%£93~-

#128*t32*t96-512*t7*t99+2048*t102—256*t20-128*t103*g+

#128*t7+768*t18%£29-3328+t107+1024*t108*ainf

t113
t116
t117
t119
t120
t123
t124
t125
t127
t130
t132
t134

t13*t29
t24*t3

t116%q

t16*%t3*t17

t22*t29

t1xt17

t123*g

t72%t16

t2%t29

t2*t17

t29*t1
192%t113%t1-256%t25%t22+128%t9-512*t117-1024*t119

#-64%t25%£120+4512%t25%t43-64%1124*t125+2432%t 18+t 127-2624

#*t34*t127-192%t130%t125+256%t25% 1132

t135
t137
t140
t142
t146

t11*t2
t69*t29
t130=*g
t22xt16#*t29
t77*t16

128

t150

t30*t16

t154 -2048*t135*t5—192*t32*t137+192*t123*t125—32*t140

#*t142+64*t140*t125+32*t124*t142+32*t123*t146-2048*t40*t54
#-96*t123*t142—96*t123*t150+96*t130*t142+448*t48*t59

t159 = t2%t22
t167 = t159%t29
t169 = tixg

t170 = t169%t22

t172 = t98*t71

t174 = -256*t40*t50+512*t40*g*t54-2560*t34*t159+2304*t18
#*t159—256*t40*t59+96*t130*t150—32*t130*t146+640*t25*t69+
#128*t25*t72-32*t25*t167-128*t25*t170+64*t26*t172

t175 = t2xg

t176 = t175%t29

t180 = gxt5

t183 = g*t4

t185 = t1*t62

t186 = gxainf

t190 = t16*t2*t17

t192 = t22*ainf

t195 = t3*t29

t198 = 128*t25%t176-64*t102%t172+640%t11 %t 1%t 180-640%t12
#*tl*t183-512*t185*t186+4608*t18*t44+128*t103+3072*t190—256*
#t52*t50—384*t63*t192—128*t48*t90-768*t18*t195+64*t32*t167

t202

t30*t11

t204 = t3*t22

129

t207 = t29*ainf

t214 = g*q

t216 = t11*t3

t219 = 128*t52%t202-768*t18%t204+256*t32*t132+768%t108%t207

#-384%t185*t207+1024*t108+t186-512%t63*t186+128*t52%t90-640
#*L27+£183+512%t116%t214+896*t216%t5-1024*t101*t214

£226 = £32+%t1
1232 = t3+g

£233 = £232%t29

t235 = -1280%t135%t180+512+t24+t1%t214+640%t216+t180+1280

#*£106*t183+768%t108*t192+3968+t226-512%t185*ainf-512%t34%t22
#+64*125%£96-64*t37*t58+64*t 14%t58-128%£25%t233

£237 = t175%t30
£241 = £232%t£22

£243 = £49*t29

£245 = £169%t30

£247 = t95#pi

t250 = t1*tht*t71

t252 = t175%£22

t257 = 32%t25%t237-256%t25%t93+256%5117+£99-128%t25%t241

#+32%£102*£243-32%125%£245+1024% £t 25%£ 24719241 25%£ 250+256
#*£25%1252-32%t26%£243+256*%£26%t99-512*%t102%t99

t260 = t1*t30
t264 = t2*t30
t273 = -384*t185*t192-8+t37*t77+96*t25%t260+128*t25%t204

#+128*£25%£195-32%£25%£264-1280%t 25+t 44+96*+ £ 25%t137-512%£25

130

#*t159—384*t25*t127—184*t32*t260-4608*t18*t247+5120*t34*t247
t289 = 72*t32*t245-128*t32*t127+384*t18*t169*t29—896*t18
#*t176—128*t226*t172+2048*t190*t99—1024*t19*t99—256*t32*t72
#-64*t32*t237+1408*t34*t1+64*t226*t243—1024*t18*t252

t305 = 512*t18*t170—128*t48*t202+128*t32*t120—384*t63*t207
#—64*t52*t78+768*t185*t80-1536*t108*t80+768*t108*t75—512*t20
#*t58-384*t185*t75+128*t53*t73-1536*t108*g*t80+768*t185*g*t80
t319 = 1024*t20*t99-64*t53*t90-512*t9*t99+64*t32*t264+768
#*t108*t88-384*t185*t88-512*t20*t49+384*t32*t250+256*t9*t49
#-128*t37*g+2048*t34*t69+2112%t34%t132

t329 = —64*t107*t243-1024*t119*t99-256*t52*t73+512*t18*t241
#-2432*t18*t132-16*t13*t30—256*t34+1024*t18—256*t13—128*t113
#+128%t107*t172+512%t 18+ 233+256%t9*t58

t333 = t36+t65+t86+t110+t134+t154+t174+t198+t219+t235+t257
#+1273+t289+t305+t319+t329

top = t333
tl = minf**2

t4d = g**2

t6 = ainf**2

t1l = pi*x2

t13 = -4xt4+8*qrainf-4*t6+4xt1xt4-Bxt1+qrainf+4*t1*xt6-t6%t11
t14 = t13*%2

t16 = (2+t1%g-t1)*t14%t13

bot = t16

131

if(bot.eq.0.d0) PAUSE ’extraforce is singular’

exforce = top/bot
return

end

function pert(ainf,minf,q,theta)

real*8 pert,ainf,minf,q,theta,psil

real*8 t1,t2,t3,t5,t6,t8,t10,t11,t12,t13
real*8 t15,t16,t18,t19,t20,t21,t23,t24,t25
real*8 t26,t27,t29,t40,t43,top,bottom,tol,psiO

tol = 1e-16

tl = g**2

t2 = ainf**2
t3 = ti1xt2

t5 = dcos(theta)
t6 = ainf*q*t5
t10 = t1x*2
tll = £10%x2
t12 = t11*t2
t13 = tH**2
t15 = t2*x*2
t16 = t1=*t15

t18

t10=*t1

t19
t20
t21
t23
t24
t25
t26
t27
t29

132

t18*t15

t10%t2

t156*t2

t15%*2

t18*t23

t11*»t21

t23*t1

t18*t21
—2%t12%t13+t16+t11%t15-t19-2%t 3+t 20+t 12-t10*t 21

#-2%£24-2xt25+£26+2%£27+t23*£ 10

t40 = =4*t27+t13+4*t3*t13-2%t26%t13+2*%t 25t 13+ 2%t 19#t13+2%

#24%t13+2%121%t13%t10-2+%£16%t13-2%t20%t 13+t 18-t15+t21-t10

t43

top

t1
t2
t3
t6
t8
ti1
t16

- (t3+1+2*t6) * (t3+1-2*%t6) * (£t29+t40)
t43

ainf**2
q**2
tixt2
ainf*g*dcos(theta)

(t3+1+2%t6) **2

(£3+1-2%t6) **2

t1*t8*t11* (t2+t1+2%t6) * (£t2+t1-2*t6)

bottom = t16

if (bottom.le.tol) then

write(*,*) ’g= ’,q

133

write(*,*) ’theta= ’,theta
PAUSE ’denomenator is zero’
else

endif

psil = (top/bottom)

pert = psiO(ainf,q,theta)+(minf*minf*psil)
return

end

subroutine closure(n,m,ainf,minf,g,dq,dtht,psi)
real*8 ainf,minf,g,q,tht,dq,dtht,qfix,ff,q0,qn
real*8 pi,d1,d2,d43,d4,d5,d6,d7,eps,qtest

real*8 sum,f0,fn,totall,diff,total2

real*8 hO,hn,minf2,ainf2,rho,t1,dqqtpsi

real*8 tol,dpdq,dpdt,dpdq0,dpdtO0,dpdqn,dpdtn,hh,tht0,thtn
real*8 coffQ,coffn,coff,t10,tin,thtfix,tf,wl,w2
real*8 dm,dml,dm?2,d8,ddm,gtol

parameter (eps=0.1d0,tol=1e-16)

integer ji,j2

integer i,j,n,m,isl,ieps,i0,in, jO,jn, jeps
double precision psi(n,m)

pi = dacos(-1.d0)

ainf2 = ainf * ainf

minf?2 = minf#*minf

isl = (ainf/dq)+1

%%k ¥

* %k %k

3¢k %k

134

ieps = ((ainf+eps)/dq)+1

dé = 0.d0

gtol = (1.d0/(n-1))*(1.d0/(n-1))
integration along path 1 ... tht=pi & g=ainf+eps..1
j=m

q0 = ainf+eps

gn = 1.d0

i0 = ieps

in = n

gtest = (i0-1)*dq

diff = abs(qtest-q0)

if(diff.gt.tol) then

write(*,*) ’q0= ’,q0

write(*,*) ’qtest= ’,qtest

PAUSE ’starting point error on path 1’

else

endif

£0 = -sin(pi)*((-3.d0*psi(i0,j)+4.d0*psi(i0+1,j)-psi(i0+2,3))
*/(2.d0*dq))/ (rho(g,ainf ,minf,q0) *q0)

fn = -sin(pi)*((3.d0*psi(in,j)-4.d0*psi(in-1,j)+psi(in-2,3j))
*/(2.d0*dq))/(rho(g,ainf ,minf,qn) *qn)

sum = 0.d0

do 5 1i=i0+1,n-1

135

q = (i-1)xdq
ff = sin(pi)*((psi(i+1,j)-psi(i-1,3j))/(2.d0*dq))
*/(rho(g,ainf ,minf,q)*q)
sum = ff + sum
5 continue
dl = -dq*(£0+fn+2.d0*sum)/2.d0

write(*,*) ’result of pathi= ’,d1

* k¥
*** integration along path 2 ... q=ainf+eps & tht=pi-eps..pi
% %k %
qfix = ainf+eps
i=1i0
jO = m-(i0-isl1)
jn=m
jeps = jO
tht0 = (pi/2.d0)+(jO-1)*dtht
thtn = pi
dpdq0 = ((psi(i0+1,jO)-psi(iO-l,jO))/(2.dO*dq))
dpdt0=(—3.dO*psi(iO,j0)+4.dO*psi(iO,jO+1)-psi(iO,j0+2))
*/(2.d0*dtht)
dpdgn=((psi(i0+1, jn)-psi(i0-1,jn))/(2.d0*dq))
dpdtn=(3.dO*psi(iO,jn)-4.dO*psi(iO,jn-1)+psi(iO,jn—2))
*/(2.d0*dtht)
h0 = (cos(tht0)*dpdq0/(rho(g,ainf,minf,qfix))) -
* (sin(thtO)*dpdto/(rho(g,ainf,minf,qfix)*qfix))

136

hn = (cos(thtn)*dpdqn/(rho(g,ainf,minf,qfix))) -
* (sin(thtn)*dpdtn/(rho(g,ainf,minf,qfix)*qfix))
sum = 0.d0

do 6 j = jOo+i,m-1

tht = (pi/2.d0)+(j-1)*dtht
((psi(i0+1,j)~psi(i0-1,j))/(2.d0xdq))
((psi(i0,j+1)-psi(i0,j-1))/(2.d0*dtht))

dpdq
dpdt

hh = (cos(tht)*dpdq/rho(g,ainf,minf,qfix)) -
* (sin(tht)*dpdt/(rho(g,ainf,minf,qfix)*qfix))
sum = sum + hh

6 continue
d2 = -dtht*(hO+hn+2.d0*sum)/2.d0

write(*,*) ’result of path2= ’,d2

%k %k
*** integration along path 3 ... tht=pi-eps & gq=ainf-eps..ainf+eps
* %k %k

3=30

thtfix = (pi/2.d0)+(j-1)+*dtht

q0 = ainf-eps

qn = ainf+eps

i0

isl-(ieps-is1)
in = jeps

qtest = (i0-1)#*dq
diff = abs(qtest-q0)
if(diff.gt.tol) then

137

write(*,*) ’q0= ’,q0

write(*,*) ’qtest= ’,qtest

PAUSE ’starting point error om path 3’

else

endif

dpdt0 = ((psi(i0,j+1)-psi(i0,j-1))/(2.d0*dtht))
dpdq0=((psi (10+1,1)-psi(i0-1,3))/(2.d0*dq))

dpdtn = ((psi(in,j+1)-psi(in,j-1))/(2.d0*dtht))
dpdqn=((psi(in+1,j)-psi(in-1,3))/(2.d40*dq))

coff0 = 1.d40+((g-1.d0)/2.d0)*minf2*(1.d0-(q0*q0/ainf2))
t10 = (minf2/ainf2)/(rho(g,ainf ,minf,q0)*coff0)

coffn = 1.d0+((g-1.d0)/2.d0)*minf2*(1.d0-(gn*qn/ainf2))
tin = (minf2/ainf2)/(rho(g,ainf,minf,qn)*coffn)

tf = thtfix

wl = cos(tf)*dpdtO*t10-(cos(tf)*dpdt0/(rho(g,ainf,minf,q0)

#*q0*q0))

w2 = sin(tf)=*dpdq0/(rho(g,ainf,minf,q0)*q0)

fO = wi-w2

wl = cos(tf)*dpdtn*tin-(cos(tf)*dpdtn/(rho(g,ainf,minf,qn)
#*qn*qn))

w2 = sin(tf)*dpdqn/(rho(g,ainf ,minf,qn)*qn)

fn = wil-w2

sum = 0.d0

do 7 i = i0+1,in-1
q = (i-1)*dq
coff = 1.d0+((g-1.40)/2.d0)*minf2*(1.d0-(q*q/ainf2))

138

ti = (minf2/ainf2)/(rho(g,ainf,minf,q)*coff)
(psi(i+1,j)-psi(i-1,3))/(2.d0*dq)
((psi(i,j+1)-psi(i,j-1))/(2.d0*dtht))

dpdq
dpdt

ff = (tlxcos(thtfix)=*dpdt)-(cos(thtfix)*dpdt/
#(rho(g,ainf,minf,q)*q*q))-(sin(thtfix)*dpdq/
#(rho(g,ainf,minf,q)*q))
sum = sum + ff
7 continue
d3 = -dg*(fO+fn+2.d0*sum)/2.d0

write(*,*) ’result of path3 = ’,d3

% %k %k
*** integration along path 4 ...g=ainf-eps & tht=Pi-eps..Pi

*x k%

i=1i0
jO = jeps
jp=m

tht0 = (pi/2.d0)+(jO-1)*dtht

thtn = pi

dpdq0=((psi(i0+1,3j0)-psi(i0-1,j0))/(2.d0*dq))
dpdt0=(-3.d0*psi(i0,j0)+4.d0*psi(i0, jO+1)-psi(i0,j0+2))
*/(2.d0xdtht)

dpdgn=((psi(i0+1, jn)-psi(i0-1,jn))/(2.d0*dq))
dpdtn=(3.d0*psi (i0, jn)-4.d0*psi(i0, jn-1)+psi(i0, jn-2))

139

*/(2.d0*dtht)

hO0 = (cos(tht0)*dpdq0/(rho(g,ainf,minf,qfix))) -
* (sin(tht0)*dpdt0/(rho(g,ainf,minf,qfix)*qfix))
bn = (cos(thtn)*dpdqn/(rho(g,ainf ,minf,qfix))) -
* (sin(thtn)*dpdtn/(rho(g,ainf,minf,qfix)*qfix))
sum = 0.d40

do 8 j=jO+1,jn-1

tht = (pi/2.d0)+(j-1)*dtht
((psi(i0+1,3)-psi(i0-1,7))/(2.d0*dq))
((psi(i0,j+1)-psi(i0,j~1))/(2.d0*dtht))

dpdq
dpdt

hh = (cos(tht)*dpdq/rho(g,ainf,minf,qfix)) -
* (sin(tht)*dpdt/(rho(g,ainf,minf,qfix)*qfix))
sum = sum + hh
8 continue
d4 = dtht*(hO+hn+2.d0*sum)/2.d0

write(*,*) ’result of path4 = ’,d4

% %k %
**x integration along path 5 ...tht=pi and q=0..ainf-eps
3% % ok

j=m

0.do

q0

gn = ainf-eps

in = i0

dm=(2.d0*psi(1,j)-5.d0*psi(2,]j)+4.d0*psi(3,])-psi(4,3))/(dq*dq)

140

dm1=(2.d0*psi(1,j1)-5.d0*psi(2,j1)+4.d0*psi(3,j1)-psi(4,j1))
dmi = dmi/(dq*dq)

j2 = ji-1

dm2=(2.d0*psi (1,j2)-5.d0*psi (2, §2)+4.d0*psi(3,j2)-psi(4,32))
dm2 = dm2/(dgq*dq)

dqqtpsi=(3.d0*dm-4.d0*dmi+dm2)/(2.d0*dtht)

dqqtpsi = dqqtpsi/10.d0

* if (abs(dgqtpsi) .gt.gtol) pause ’something wrong at q=0 path 5’
f0 = -sin(pi)*dm/(rho(g,ainf ,minf,q0))
fn = -sin(pi)*((3.d0*psi(in,j)-4.d0*psi(in-1,j)+psi(in-2,3))

*/(2.d0*dq))/ (rho(g,ainf ,minf,qn) *qn)
sum = 0.40
do 9 i=2,in-1

q = (i-1)*dq

ff = sin(pi)*((psi(i+1,j)-psi(i-1,j))/(2.d0*dq))

*/(rho(g,ainf ,minf,q) *q)
sum = ff + sum
9 continue
d5 = -dq*(£f0+fn+2.d0*sum)/2.d0

write(*,*) ’result of path5= ’,d5

& %k
* evaluating the total contribution at infinity
ok 2 2k

totall = di+d2+d3+d4+db

write(*,*)

141

write(*,*) ’eps= ’,eps
write(*,*) ’the contribution at infinity= ’,totall

write(*,*)

% %k %k
**%x*k* integration along path 7
* %k

0.d0

q0
gn = 1.d0

thtfix = pi/2.do0

tf = thtfix

ddm=(35.d0*psi(1,1)-104.d0*psi(2,1)+114.d0*psi(3,1)~
#56.d0*psi(4,1)+11.d0+psi(5,1))/(12.d0*dq*dq)

write(*,*) ’ddm= ’,ddm
dm=(2.d0*psi(1,1)~5.d0*psi(2,1)+4.d0*psi(3,1)-psi(4,1))/(dq*dq)
dm1=(2.d0*psi(1,2)-5.d0*psi(2,2)+4.d0*psi(3,2)-psi(4,2))/(dg*dq)
dm2=(2.d0*psi(1,3)-5.d0*psi(2,3)+4.d0*psi(3,3)-psi(4,3))/(dq*dq)
dqqtpsi=(-3.d0*dm+4.d0*dm1-dm2) / (2.d0O*dtht)

dqqtpsi = dqqtpsi/10.d0

* if (abs(dqqtpsi) .gt.gtol) pause ’something wrong at q=0 path 7’

f0=-sin(tf)*ddm/ (rho(g,ainf ,minf,q0))
fn=-sin(tf)*((3.d0*psi(n,1)-4.d0*psi(n-1,1)+psi(n-2,1))/(2.d0*dq))
#/rho(g,ainf ,minf,qn)

sum=0.d0

do 10 i=2,n-1

q = (i-1)*dq

142

dpdg = ((psi(i+1,1)-psi(i~1,1))/(2.d0*dq))
ff = -sin(tf)*dpdq/(rho(g,ainf ,minf,q)*q)
sum = sum + ff
10 continue
d7 = dg*(£f0+fn+2.d0*sum)/2.d0

write(*,*) ’result of path7= ’,d7

% %k
***** integration along path 8 ... gq=1 & tht=pi/2..pi

% %k %k

qfix = 1.d0
jo =1

jn=m

tht0 = pi/2.do

thtn = pi
dpdq0=(3.d0*psi(n,j0)-4.d0*psi(n-1,3j0)+psi(n-2,3j0))/(2.d0*dq)
dpdt0=(-3.d0*psi(n, jO)+4.d0*psi(n,jO+1)-psi(n, jO+2))
*/(2.d0*dtht)
dpdqn=(3.dO*psi(n,jn)-4.d0*psi(n-1,jn)+psi(n—2,jn))/(2.dO*dq)
dpdtn=(3.d0*psi(n, jn)-4.d0*psi(n, jn-1)+psi(n,jn-2))/(2.d0*dtht)
hO = (cos(tht0)*dpdq0/(rho(g,ainf,minf,qfix))) -

* (sin(thtO)*dpdtO/(rho(g,ainf,minf,qfix)*qfix))

hn = (cos(thtn)#*dpdgn/(rho(g,ainf,minf,qfix))) -

* (sin(thtn)*dpdtn/(rho(g,ainf,minf,qfix)*qfix))

sum = 0.d0

11

143

do 11 j=2,m-1
tht = (pi/2.d0)+(j-1)*dtht

dpdq = ((3.dO*psi(n,j)-4.d0*psi(n—1,j)+psi(n-2,j))/(2.dO*dq))
dpdt = ((psi(nm,j+1)-psi(n,j-1))/(2.d0*dtht))

hh = (cos(tht)*dpdq/rho(g,ainf,minf,qfix)) -
* (sin(tht)*dpdt/(rho(g,ainf,minf,qfix)*qfix))

sum = sum + hh

continue

d8 = dtht*(hO+hn+2.d0*sum)/2.d0

write(*,*) ’result of path8= ’,d8

write(*,*)

total2 = d7+d8

write(*,*) ’total at bottom= ’,total?

write(*,x)

diff = (total2+totall)/total?

write(*,*) ’around the plane= ’,diff

end

function rho(g,ainf ,minf,q)
real*8 rho,minf,ainf,q,g,term,coff

coff = (g-1.d0)/2.do0

1.d0 + (coff*minf*minf)#*(1.d0-(q*q/(ainf*ainf)))

term
rho = term**(1.d40/(g-1.d0))
return

end

3 2k %k 3k 3k

%k ok ok

% %k ok %k

144

subroutine cusp(psi,n,m,dq,dtht,ainf,minf,g)
realx*8 dq,dtht,ainf,minf,q,ainf2,minf2,g

real*8 argl,arg2,arg3,arg4,term1,dtpsi

real*8 dgpsi,dtpsi2,dqpsi2,tht,pi,dqpsin,dtpsin
integer i,j,n,m

double precision psi(n,m)

pi = dacos(-1.d0)

minf2 = minf*minf
ainf2 = ainf*ainf
argl = (g-1.d0)*minf2/2.40

arg2 = minf2/ainf2

checking the interior

do 2 i=2,n-1
do 5 j=2,m-1
q = (i-1)=*dq
tht = (pi/2.d0)+(j-1)*dtht
dtpsi= (psi(i,j+1)-psi(i,j-1))/(2.40*dtht)
dgpsi=(psi(i+1,j)-psi(i-1,3j))/(2.d0*dq)

dtpsi2 = dtpsi*dtpsi

dgpsi2 = dqpsi*dqgpsi

terml = (1.d0-(q*q/(ainf2)))

arg3 = (arg2*q*q/(1.d0+argi*termi1))-1.d0
arg4 = arg3*dtpsi2-q*q*dqpsi2

if(arg4.gt.0.d0) then

145

write(x,*) ’q= ’,q
write(*,*) ’tht= ’,tht

PAUSE ’cuspidal behaviour °’

else
endif
5 continue
2 continue

24 ok 2 ok Xk
*** looking at the equation need not worry about g=0
*** hence, just calculating the value of delta at q=1

2 2 ok ok ok

do 10 j=2,m-1
tht = (pi/2.d0)+(j-1)*dtht
dqpsin=(3.d0*psi(n,j)—4.d0*psi(n-1,j)+psi(n—2,j))/(2.d0*dq)
dtpsin=(psi(n, j+1)-psi(n,j-1))/(2.d0*dtht)
((arg2/(1.dO+argi*(1-(1/ainf2))))-1.d0)

]

arg3

[]

argd arg3*dtpsin*dtpsin-dqpsin*dqpsin
if(arg4.gt.0.d0) then
vrite(*,*) ’q= ’,1.d0
write(*,*) ’tht= ’ tht
PAUSE ’cuspidal behaviour °’
else

endif

10 continue

146

ek e ok 2k
**x Looking at the equation the solution should be 0.K.
*xx on the boundaries since dtpsi=0
4 2k 2k %k 3k
return

end

subroutine map(g,ainf,minf,psi,n,m,x,y,nn,k)
real*8 q,tht,dq,dtht,fx,pi,cx,sumx

real*8 g,ainf,minf,ainf2,minf2,dqn,qn
real*8 cn,c0,fy,sumy,cy,yint,xint,ys
real*8 dvx0,dvxn,dvx,dvy0,dvyn,dvy,psi
real*8 bx1,bx2,byl,by2,dqgpsi,dtpsi,rho
integer i,j,n,m,iO,in,il,k,nn,ji,j2,ijunk
integer istopl,istop2,itotal,jtotal
parameter (ys=15.d0)

double precision x(nn,m),y(nn,m),psi(n,m)
open(69,file="grid.out’)

write(*,*) ’nn= ’,nn

pi = dacos(-1.d0)

ainf?2 ainf*ainf

minf2 minf*minf

dg = 1.d0/(n-1)
dtht = (pi/2.d0)/(m-1)

147

4 2 ¥ kK %k

*** the stagnation point needs to be treated specially

**x*x t1 = 2*dtpsidt/q*q = d3psidq2dt
**x* t2 = dpsidq/q = d2psidq2
4 2k 3k ok k

do 2 j=1,m

do i1 ii=1,nn

x(i1,j) = 0.40

y(i1,j) = 0.d0
i continue
2 continue

do 3 j=1i,m

i0 =1

do 5 il1=2,nn

in = i0 + k

% % %k

* integration of the x-direction

% %k K

sumx = 0.40
c0 = fx(psi,n,m,io,j,ainf,minf,g)

cn = fx(psi,n,m,in,j,ainf,minf,g)

148

do 10 i=i0+1,in-1
q = (i-1)=*dq
tht = (pi/2.d0)+(j-1)*dtht
cx = fx(psi,n,m,i,j,ainf,minf,g)
sumx = sumx + Cx
10 continue
xint = (cO+cn+2.d0*sumx)*(dq/2.d0)

x(i1,j) = xint + x(i1-1,j)
*kk

* integration of the y-direction

& 3k kK

sumy = 0.d0

c0 = fy(psi,n,m,i0, j,ainf,minf,g)

cn fy(psi,n,m,in,j,ainf,minf,g)
do 12 i=i0+1,in-1
q = (i-1)*dq
tht = (pi/2.d0)+(j-1)*dtht
cy = fy(psi,n,m,i,j,ainf,minf,g)
sumy = sumy + cy

12 continue
yint = (cO+cn+2.d0*sumy)*(dq/2.d0)
y(i1,j) = yint + y(i1-1,j)
i0 = i0 + k
dgn = 1.d0/(nn-1)

5
3

149

gqn = (i1-1)*dgn
if(y(il1,m).gt.ys) go to 50
continue

continue

300 format(1x,i3,2x,i3,2x,2(£f12.6,2x))

k¥
*
% % %k

50

stepping on to the vortex boundary @ g=1

istopl = il

q = (i-1)*dq
(pi/2.d0)+(j1-1)*dtht

o o

K K B

N = o
"]]

dvx0= bx1-bx2

byl

by2
dvy0 = byl+by2

q = (i-1)*dq
(pi/2.d0)+(j2-1)*dtht

o o
-
- &
[T

cos(tht)*dgpsi(psi,n,m,i,j1)/rho(g,ainf,minf,q)
sin(tht)*dtpsi(psi,n,m,i,jl)/(rho(g,ainf,minf,q)*q)

sin(tht)*dgpsi(psi,n,m,i,j1)/rho(g,ainf,minf,q)
cos(tht)*dtpsi(psi,n,m,i,j1)/(rho(g,ainf,minf,q)*q)

cos(tht)*dqpsi(psi,n,m,i,j2)/rho(g,ainf,minf,q)

150

bx2 = sin(tht)*dtpsi(psi,n,m,i,j2)/(rho(g,ainf,minf,q)*q)
dvxn = bx1-bx2

byl = sin(tht)*dqpsi(psi,n,m,i,j2)/rho(g,ainf,minf,q)

cos(tht)*dtpsi(psi,n,m,i,j2)/(rho(g,ainf ,minf,q)*q)

by2
dvyn = byl+by2

dvx = dg*(dvxO+dvxn)/2.d0

dvy = dg*(dvxn+dvyn)/2.d0
write(*,*) ’dvx= ’,dvx
write(*,*) ’dvy= ’,dvy
vrite(*,*) nn,m-1,’ x(on,m-1)= ’,x(an,m-1)
write(*,*) nn,m-1,’ y(an,m-1)= ’,y(nn,m-1)
x(nn,m) = x(nn,m-1)+dvx
y(on,m) = y(nn,m-1)+dvy
write(*,#*) ’xb= ’,x(nn,m)
write(*,*) ’yb= ’,y(nn,m)
j=m
i0 =n
do 42 iil=nn-1,1,-1
in = i0-k

sumx = 0.d0

c0 = fx(psi,n,m,i0,j,ainf ,minf,g)

cn = fx(psi,n,m,in,j,ainf,minf,g)
do 34 i=i0-1,in+1,-1

q = (i-1)*dq

34

33

42
40

151

tht = (pi/2.d0)+(j-1)#*dtht
cx = fx(psi,n,m,i,j,ainf,minf,g)
sumx = sumx + cx

continue

xint = (cO+cn+2.d0*sumx)*(dq/2.d0)

x(i1,j) = x(i1+1,j)-xint

sumy = 0.d0
c0

fy(psi,n,m,i0,j,ainf,minf,g)

cn fy(psi,n,m,in,j,ainf,minf,g)
do 33 1i=i0-1,in+1,-1
q = (i-1)*dq
tht = (pi/2.d0)+(j-1)*dtht
cy = fy(psi,n,m,i,j,ainf,minf,g)
sumy = sumy + cy
continue

yint = (cO+cn+2.d0*sumy)*(dq/2.d0)
y(i1,3) = y(i1+1,j)-yint

i0 =10 - k
if(abs(y(i1,j)).gt.ys) go to 40
continue

q=(i-1)#dq

istop2 = i1

write(,*) ’istop2= ’,istop2,’ g=’,q

write(*,*) ’istopl= ’,istopil

152

% %k Xk

* formatting the output

% % %k
ijunk = (istop2-istopl+1)
itotal = nn-ijunk
jtotal = m
write(*,*) ’itotal= ’,itotal
vrite(*,*) ’jtotal= ’,jtotal
%k Kk

* the header required by Tecplot

& k%

write(69,*) 'TITLE = "Incompressible Flow"’
write(69,*) ’VARIABLES = x, y, psi’
write(69,*) ’ZONE T="ZONE-one", I=’,itotal,’ , J=’,m,

3*

>, F=POINT’

do 22 j=1,m

do 21 iil=1,nn
if(il.ge.istopl.and.il.le.istop2) go to 21

dgn = 1.40/(nn-1)

q = (i1-1)*dqn

tht = (pi/2.d0)+(j-1)*dtht

153

i= (i1-1)*k + 1

write(69,301) x(i1,3j),y(i1,j),psi(d, ;)
21 continue
22 continue
301 format(1x,3(£8.4,3x))

return

end

function fx(psi,n,m,i,j,ainf,minf,g)
real=8 fx,q,tht,dq,dtht,ainf,minf,g,fx0
real*8 pi,argl,arg2,den,rho,dtpsi,dqpsi
integer i,j,n,m

double precision psi(n,m)

pi = dacos(-1.d0)
dq

dtht = (pi/2.d0)/(m-1)

i

1.40/(n-1)

q = (i-1)*dq

if(q.eq.0) then
fx = fxO(psi,n,m,i,j,ainf,minf,g)
go to 12

else

endif

tht = (pi/2.d0)+(j-1)*dtht

argl cos(tht)*dtpsi(psi,n,m,i,j)*den(g,ainf,minf,q)

arg?2 sin(tht)*dqpsi(psi,n,m,i,j)/(rho(g,ainf,minf,q)*q)

fx = argl-arg?2

12

13

154

return

end

function fy(psi,n,m,i,j,ainf,minf,g)
real*8 fy,q,tht,dq,dtht,ainf,minf,g,fy0
real*8 pi,argl,arg2,den,rho,dtpsi,dgpsi
integer i,j,n,m

double precision psi(n,m)

dacos(-1.40)

pi

dg = 1.40/(n-1)

dtht = (pi/2.d0)/(m-1)

q = (i-1)*dq

if(q.eq.0) then
fy = fyO(psi,n,m,i,j,ainf,minf,g)
go to 13
else

endif

tht = (pi/2.d40)+(j-1)*dtht

argl

arg2
fy = argl+arg2
return

end

function fx0(psi,n,m,i,j,ainf,minf,g)

sin(tht)*dtpsi(psi,n,m,i,j)*den(g,ainf,minf,q)

cos(tht)*dqpsi(psi,n,m,i,j)/(rho(g,ainf ,minf,q)*q)

155

real*8 ainf,minf,g,fxO,aian,minf2,dq,dtht
realx8 argi,arg2,arg3,cst,tti,tt2,t3,pi
real*8 rho,dtpsi,q,tht

integer i,j,n,m

double precision psi(n,m)

pi = dacos(-1.d0)

ainf?2 ainf*ainf

minf?2 minf*minf

dq = 1.d0/(n-1)

dtht = (pi/2.d0)/(m-1)

q = (i-1)*dq

tht = (pi/2.d0)+(j-1)*dtht

t3 = 1.d0+((g-1.d0)/2.d0)*minf2x(1.d0- (q*q/(ainf2)))
cst = minf2/(ainf2*rho(g,ainf,minf,q)*t3)

argl = cos(tht)*dtpsi(psi,n,m,i,j)*cst

arg2 = cos(tht)*ttl(psi,n,m,j)/rho(g,ainf,minf,q)
arg3 = sin(tht)*tt2(psi,n,m,j)/(rho(g,ainf,minf,q))
fx0 = argl-arg2-arg3

return

end

function fyO(psi,n,m,i,j,ainf,minf,g)
real*8 ainf,minf,g,fy0,ainf2,minf2,dq
real*8 argl,arg2,arg3,ttl,tt2,t3,cst,dtht
real*8 rho,dtpsi,q,tht,pi

integer i,j,n,m

156

double precision psi(n,m)
pi = dacos(-1.40)

dq = 1.d0/(n-1)

dtht = (pi/2.d0)/(m-1)

ainf2 = ainf*ainf
minf2 = minf*minf
g=(i-1)*dq

tht = (pi/2.d0)+(j-1)*dtht
t3 = 1.d0+((g-1.d0)/2.d0)*minf2x(1.d0-(q*q/ (ainf2)))
cst = minf2/(ainf2*rho(g,ainf,minf,q)*tS)

argl = sin(tht)*dtpsi(psi,n,m,i,j)*cst
arg2 = sin(tht)*tti(psi,n,m,j)/rho(g,ainf,minf,q)
arg3 = cos(tht)*tt2(psi,n,m,j)/(rho(g,ainf,minf,q))

fy0 = argl-arg2+arg3
return

end

function tt2(psi,n,m,j)
real*8 dq,dtht,tt2,pi
integer i,j,n,m

double precision psi(n,m)
pi = dacos(-1.d40)

dq = 1.d0/(n-1)

dtht = (pi/2.d0)/(m-1)

i=1

157

tt2 = (2.d0*psi(i,})-5.d0*psi(i+1,})+4.d0*psi(i+2,)
#-psi(i+3,3j))/(dq*dq)
return

end

function tt1(psi,n,m,j)

real*8 dq,dtht,tti,tht,pi,tt2

integer j,n,m

double precision psi(n,m)

pi = dacos(-1.d0)

dq = 1.d0/(n-1)

dtht = (pi/2.d0)/(m-1)

tht = (pi/2.d0)+(j-1)*dtht

if(tht.eq.(pi/2.d0)) then

ttl = (-3.dO*tt2(psi,n,m,1)+4.d0*tt2(psi,n,m,2)
#-tt2(psi,n,m,3))/(2.d0*dtht)

else

if(tht.eq.pi) then

ttl = (3.dO*tt2(psi,n,m,j)—4.d0*tt2(psi,n,m,j—1)
#+tt2(psi,n,m,j-2))/(2.d0*dtht)

else

ttl = (tt2(psi,n,m,j+1)-—tt2(psi,n,m,j—i))/(2.d0*dtht)
endif

endif

return

end

158

function den(g,ainf,minf,q)
real*8 g,ainf,minf,q,den,q2,rho

real*8 argl,arg2,arg3,ainf2,minf2

ainf2 = ainf*ainf
minf2 = minf*minf
q2 = gq*q

argi= 1.d0+((g~1.d0)/2.d0) *minf2#(1.d0-(q2/ainf2))

arg?2 minf2/(ainf2*argl*rho(g,ainf,minf,q))

arg3 = 1.d0/(q*q*rho(g,ainf,minf,q))
den = arg2-arg3
return

end

function dtpsi(psi,n,m,i,j)
real*8 dq,dtht,dtpsi,pi
integer i,j,n,m

double precision psi(n,m)

pi = dacos(-1.4d0)
dq

dtht = (pi/2.d0)/(m-1)

1.40/(n-1)

if(j.eq.(m-1).or.j.eq.m) then

dtpsi = (3.d0*psi(i,j)-4.d0*psi(i,j-1)+psi(i,j-2))/(2.d0*dtht)
else

if(j.eq.1) then

dtpsi = (-3.d0*psi(i,j)+4.dO*psi(i,j+1)—psi(i,j+2))/(2.d0*dtht)

159

else

dtpsi = (psi(i,j+1)-psi(i,j-1))/(2.d0*dtht)
endif

endif

return

end

function dqpsi(psi,n,m,i,j)
real*8 dq,dtht,dqpsi,q,pi
integer i,j,n,m

double precision psi(n,m)
pi = dacos(-1.d0)

dq = 1.40/(n-1)

dtht = (pi/2.d0)/(m-1)

q = (i-1)=*dq
if(q.eq.1) then

dgpsi = (3.dO*psi(i,j)-4.d0*psi(i—1,j)+psi(i—2,j))/(2.d0*dq)
else

dgpsi = (psi(i+1,3)-psi(i-1,3))/(2.d0*dq)

endif

return

end

160

Appendix E

Fortran listing for

Stuart-type vortices

2 2K e %k

ok 3 %

A ek

%k k¥

3k %

* %%k

4 % 3k %k Kk

This program solves for the compressible analogue of the
Stuart Vortices. The flow is assumed to be Homentropic

and the governing equations linearized for iterative solver.
Newton’s method is employed for the unknown psi(i,j)

h = wall height

real*8 x,y,mach,mach2,g,h,psiwall,eps,eps2,dx2,dy2,tol
real*8 tiplj,tij,timlj,tijpl,tijml,tipljpl,tipljml,rhoc
real*8 timljpl,timljml,cp2dx,cpldx,cpmd,cp2dy,cpldy,crhs,cp

real*8 chkil,chk2,eqnorm,deltrho,rcond,dmach,sol,maxerr,h?2

161

real*8 dervx,psinc,chk,dervy,value,circ,dh,omega
real*8 Xmax,ymax,umax,vmax,bl,b2

integer i,j,ieqn,kiter,kmax,kplc,kp,ichk,itol

integer 31,32,33,34,35,36,j7,j8,j9,ijob,kmach, kmachmax
integer lda,ml,mu,job,iflag,iflag2,iflagh,khmax,kh
include ’input.h’

parameter (mu=2*n,ml=2#n,1da=2*ml+mu+1, job=0, kmax=400, khmax=0)
parameter (kmachmax=0)

common /param/ g,mach,eps,h,psiwall

double precision psi(n,m),rho(n,m),dpsi(n,m),drho(n,m)
double precision abd(lda,nm),z(nm) ,rhsvec(nm),fint (n)

double precision u(n,m),v(n,m)

integer ipvt(nm)

open(69,file=’psi.contour’)
open(70,file=’rho.contour’)
open(71,file=’init.guess’)
open(72,file=’reg.soln’)
open(73,file=’search.out’)
open(74,file=’vel.profile’)
open(75,file=’omega.contour’)
open(76,file=’info.out’)

open(77,file=’vel.geom’)

do 811 i=1,1lda

162

do 82 j=1,nm
abd(i,j) = 0.d0
rhsvec(j) = 0.d0

82 continue

811 continue

*
*** initializing the parameters of the problem
**x for incomp. flow: psinf = log(kappa/2)

*

mach = 0.d0
h =2.40
h2 = h*h
dh = 0.d0
g = 1.4d0
eps = 0.8d0

eps2 = eps*eps

psiwall = log(cosh(h))

tol = le-8
dx2 = dx*dx
dy2 = dy=*dy

mach2 = mach*mach

write(*,x)

write(*,*) ’n= ’,n

163

write(*,*) ’m= ' m

write(*,*) ’mach= ’,mach
write(*,*) ’eps= ’,eps
write(*,*) ’wall height= ’,h
write(»,*) ’psi wall= ’,psiwall

write(*,x)

kiter = 0
kmach = 0
*
*** Initial Guess ... close to solution
*
do 5 i=1,n
x = (i-1)=*dx
do 10 j=1,m
¥y = (j-1)=*dy
ieqn = n*(j-1)+i
* psi(i,j) = psinc(x,y,eps,h)
* rho(i,j) = 1.d0

read(71,x) psi(i,j),rho(i,j)
10 continue

5 continue

* do 7 i=1,n

164

* psi(i,m) = psiwall

* 7 continue

if(kiter.eq.0) go to 901

*

*** the iteration procedure begins

*

911 kiter = kiter + 1

do 439 i=1i,n
do 440 j=1,m
iegn = n*(j-1)+i
dpsi(i,j) = rhsvec(ieqgn)
440 continue

439 continue

do 441 i=1,n
do 442 j=1,m
drho(i,j) = deltrho(psi,rho,dpsi,i,j)
442 continue

441 continue

do 222 i=1,n
do 223 j=1,m

165

ieqn = n*(j-1)+i

psi(i,j) = psi(di,j)+dpsi(i,j)

rho(i,j) = rho(i,j)+drho(i,j)
223 continue

222 continue

%k Kk
***** checking the infinity norm of the equationms

3% %k K

ijob =1

chkl = eqnorm(psi,rho,ijob)

ijob = 2

chk2 = eqnorm(psi,rho,ijob)
write(*,*) ’chki= ’,chki
write(*,*) ’chk2= ’,6chk?2
write(*,x)
write (*,*)
write(x,*)
*
*** applying the stencil to the grid
*** and initializing the rhs-vector
*
901 do 20 i=2,n-1
do 25 j=2,m-1

*

166

ieqn = n*(j-1)+i
(i-1)*dx
(j-1)*dy

X

y

tiplj = (cp2dx(psi,rho,i,j)/dx2)+
#(cpldx(psi,rho,i,j)/(2.d0*dx))

tij = cp(psi,rho,i,j)-2.d0*((cp2dx(psi,rho,i,j)/dx2)
#+ (cp2dy(psi,rho,i,j)/dy2))

timij =(cp2dx(psi,rho,i,j)/dx2)-(cp1dx(psi,rho,i,j)/(2.d0*dx))
tijp1=(cp2dy(psi,rho,i,j)/dy2)+(cp1dy(psi,rho,i,j)/(2.d0*dy))
tijm1=(cp2dy(psi,rho,i,j)/dy2)-(cp1dy(psi,rho,i,j)/(2.dO*dy))

tipljpl = cpmd (psi,rho,i,j)/(4.d0*dx*dy)
timljml = cpmd(psi,rho,i,j)/(4.d0*dx*dy)
tipljml = -cpmd(psi,rho,i,j)/(4.d0*dx*dy)
timljpl = -cpmd(psi,rho,i,j)/(4.d0*dx*dy)
j1 = n*(j-1)+i

kp = kplc(ml,mu,nm,ieqn,j1)
abd(kp,j1) = tij

abd(kp,j1) = tij/tij

j2

n*(j-1)+i+1

kp = kplc(ml,mu,nm,ieqn,j2)
abd(kp,j2) = tip1j

abd (kp,j2) = tip1j/tij

167

j3
kp
abd(kp,j3) = timlj

n*(j-1)+i-1

kplc(ml,mu,nm,ieqn,j3)

abd(kp, j3) = timi1j/tij

j4

n*(j)+i

kplc(ml,mu,nm,ieqn, j4)

H

kp
abd(kp, j4) = tijp1
abd(kp,j4) = tijpl/tij

j5
kp
abd (kp, j5) = tijm1

n*(j-2)+i

kplc(ml,mu,nm,ieqn, j5)

abd(kp,j5) = tijm1/tij

i6
kp
abd(kp,j6) = tipljpi

abd(kp,j6) = tip1jp1/tij

n*(j)+i+1

kplc(ml,mu,nm,ieqn, j6)

7
kp
abd(kp,j7) = timijmi

n*(j-2)+i-1
kplc(ml,mu,nm,ieqn, j7)

abd(kp,j7) = timljml/tij

25
20

*
%k 3k %k
* 2k %k
*

4 e K

168

j8
kp
abd(kp,j8) = tipljmi

n*(j-2)+i+1

kplc(ml,mu,nm,ieqn, j8)

abd(kp,j8) = tipljm1/tij

j9 = n*(j)+i-1
kp = kplc(ml,mu,nm,ieqgn,j9)
abd(kp, j9) = timijp1

abd(kp,j9) = timljp1/tij
rhsvec(ieqn) = -crhs(psi,rho,i,j)
rhsvec(ieqn) = -crhs(psi,rho,i,j)/tij
continue
continue

setting the boundary conditions

for coefficient matrix AND rhs-vector

at x=0

i=1
do 30 j=1,m
iegn = n*x(j-1)+i

x = (i~-1)=*dx

169

y = (j-1)*dy

j1l = iegn
kp = kplc(ml,mu,nm,ieqn,ji1)
abd(kp,j1) = -3.d0

* abd (kp,j1) = -3.d0/(-3.d0)
j2 = ieqn+1l
kp = kplc(ml,mu,nm,ieqgn,j2)
abd(kp,j2) = 4.d0

* abd(kp,j2) = 4.d0/(-3.d0)
j3 = iegn+2
kp = kplc(ml,mu,nm,ieqn, j3)
abd(kp,j3) = -1.d0

* abd(kp,j3) = -1.40/(-3.4d0)

rhsvec(iegn) = -2.d0*dx*dervx(psi,i,j)
* rhsvec(ieqn) = -2.dO*dx*dervx(psi,i,j)/(-3.d0)

30 continue
%*
*** at x=pi
%*
i=n

do 31 j=1,m

170

iegn = n*(j-1)+i

x = (i-1)=*dx
y = (j-1)*dy
j1 = iegn

kp = kplc(ml,mu,nm,ieqn,ji)
abd(kp,j1) = 3.40

* abd(kp,j1) = 3.d0/3.d0
j2 = ieqn-1
kp = kplc(ml,mu,nm,ieqn,j2)
abd(kp,j2) = -4.d0

* abd(kp,j2) = -4.d0/3.d0
j3 = iegn-2
kp = kplc(ml,mu,nm,ieqn, j3)
abd(kp,j3) = 1.d0

* abd(kp,j3) = 1.d0/3.d0

rhsvec(ieqn) = -2.d0*dx*dervx(psi,i,j)
* rhsvec(ieqn) = -2.dO*dx*dervx(psi,i,j)/3.d0
*
31 continue
*
*** at y=0

*

171

j=1
do 32 i=2,n-1

iegn = n*(j-1)+i

x = (i-1)=*dx
y = (j-1)*dy
j1 = iegn

kp = kplc(ml,mu,nm,ieqn,j1)
abd(kp,j1) = -3.d0
abd(kp,j1) = -3.d0/(-3.d0)

j2
kp
abd(kp,j2) = 4.d0

n*(j)+i

kplc(ml,mu,nm,ieqn,j2)

abd(kp,j2) = 4.d0/(-3.d0)

j3

n*x(j+1)+i

kp kplc(ml,mu,nm,ieqn,j3)
abd(kp,j3) = -1.d0

abd(kp,j3) = -1.d0/(-3.d0)

rhsvec(ieqn) = -2.d0*dy*dervy(psi,i,j)
rhsvec(ieqn) = ~2.d0*dy*dervy(psi,i,j)/(-3.d0)

continue

172

*
***x at y=1
*

j=m

do 33 i=2,n-1

iegn = n*(j-1)+i

x = (i-1)=*dx
y = (j-1)*dy
j1l = ieqgn

kp
abd(kp,j1) = 1.d0

kplc(ml,mu,nm,ieqn,jl)

rhsvec(ieqn) = psiwall-psi(i,j)
33 continue
*
x Solving the problem A.X=B
*
call dgbco(abd,lda,nm,ml,mu,ipvt,rcond,z)

call dgbsl(abd,lda,nm,ml,mu,ipvt,rhsvec,job)

do 101 i=1,lda
do 102 j=1,nm

173

abd(i,j) = 0.40
102 continue

101 continue

*
*** checking the error with L infinity norm
*
maxerr = 0.d40
do 50 i=1,nm
chk = abs(rhsvec(i))
if(chk.gt.maxerr) then
maxerr=chk
ichk = j§
else
endif
50 continue
write(*,*) ’iteration no.= ’,kiter
write(*,*) ’mach= ’,mach
write(*,*) ’condition number= ’,rcond
write(*,*) ’maxerr= ’,maxerr
write(*,*) ’ichk= ’,ichk
if (maxerr.gt.tol) then
if (kiter.gt.kmax) PAUSE ’kmax exceeded’
go to 911
else

write(*,*) ’procedure done in ’,kiter,’ steps’
P P

174

endif

ijob =1

chk1l = egnorm(psi,rho,ijob)
ijob = 2

chk2 = egnorm(psi,rho,ijob)

write(*,*) ’chkl= ’,chkl
write(*,*) ’chk2= ’,chk2

write(*,x*)

value = circ(psi,rho,fint)/h

write(*,*)

write(*,*) ’circulation in the domain= ’,value
write(*,*) ’core demsity= ’, rho(n,1)

write(*,x)

call core(psi,rho,xmax,vmax,ymax,umax)
rhoc = rho(n,1)
bl = ymax
b2 = pi-xmax
write(76,341) mach,value,bl,b2,rhoc,kiter
call flush(76)
341 format(ix,5(£10.5,2x),51)
write(77,343) h,mach,umax,vmax
343 format(1x,4(£11.5,2x))

vrite(*,*) ’do you want to increase the Mach number? ’

175

write(*,*) ’press 1 for yes’
write(*,*) ’press 2 for no’
read(*,*) iflag?

write(x,x)

iflag2 = 1

write(*,*)

write(*,*) ’do you want to change the tolerance?’
write(*,*) ’press 1 for yes’

write(*,*) ’press 2 for no °’

read(*,*) itol

itol = 2

if(itol.eq.1) then
write(*,*) ’what is the new tolerance? ’
read(*,*) tol
else

endif

if(iflag2.eq.1) then
write(*,*) ’what is the mach number increment?’
read(*,*) dmach
dmach = 0.01d0

if (kmach.ge.kmachmax) go to 1010

176

mach = mach + dmach

mach2 = mach#*mach
kmach = kmach + 1
kiter = 0

if (mach.ge.0.1d0) go to 1010
go to 901
else

endif

iflagh = 1
iflagh = 0
if(iflagh.eq.1) then
write(73,241) mach,h,value,kiter
call flush(73)
241 format (1x,3(f12.6,3x),i6)
write(*,*) mach,h,value

if (kh.ge.khmax) go to 1010

h=h+ dh

kh = kh + 1

kiter = 0

go to 901
else

endif

177

*
*** formatting the output
*
1010 write(*,*) ’the output files are for the following’
write(*,*) ’mach= ’,mach
write(*,*) ’eps= ’,eps
write(*,*) ’wall height= ’,h
write(*,*) ’n= ’,n

write(*,*) ’m= ’,m

do 123 i=1,n
do 124 j=1,m
write(72,*) psi(i,j),rho(i,j)
124 continue

123 continue

* write(*,*) ’press 1 if you want streamlines’
* write(*,*) ’press 0 if you want to bypass’
* read(*,*) iflag

iflag = 1

if(iflag.eq.0) go to 212

write(69,*) ’TITLE="Stuart Vortex Problem" ’
write(69,*) ’VARIABLES = x, y, psi’

write(69,*) ’ZONE T="ZONE-one",’, ’I= ’,n,’, J= ’,m,’?

write(70,*) °TITLE="Stuart Vortex Problem" ’

,F=POINT’

178

write(70,*) ’VARIABLES = x, y, rho’

write(70,*) ’ZONE T="ZONE-one",’, ’I= ’,n,’, J= ’,m,’ ,F=POINT’
write(75,*) 'TITLE="Stuart Vortex Problem" °’

write(75,*) ’VARIABLES = x, y, omega’

write(75,*) ’ZONE T="ZONE-one",’, ’I= ’,n,’, J= ’,m,’ ,F=POINT’

do 111 j=1,m
do 112 i=1,n

X (i-1)*dx

y = (j-1)*dy

sol = psi(i,j)

omega rho(i,j)*(l.dO—eps2)*exp(—2.d0*psi(i,j))

omega = omega/(rho(n,m))

u(i,j) = dervy(psi,i,j)/(h*rho(i,j))

v(i,j) = -dervx(psi,i,j)/rho(i,j)
write(69,*) x,y,sol
write(70,x*) X,y,rho(i,j)
write(75,*) x,y,omega

112 continue

111 continue

j=m
do 2 i=1,n
X = (i-1)=*dx
write(74,%) x,u(i,j),v(i,j)

2 continue

212

20

179

stop

end

subroutine core(psi,rho,xmax,vmax,ymax,umax)

realx*8 Xmax,umax, vmax,ymax,dervx,dervy,u,v,x,y,rhoc
integer i,j

include ’input.h’

double precision psi(n,m),rho(n,m)

rhoc = rho(n,m)
vmax = 0.d40
j=1
do 20 i=1,n
x = (i-1)*dx
v = -rhoc*dervx(psi,i,j)/rho(i,j)

if(v.gt.vmax) then

vmax = v
Xmax = Xx
else
endif
continue

umax = 0.d0
i=n

do 30 j=1,m

30

180

y=(j-1)*dy
u = rhoc*dervy(psi,i,j)/rho(i,j)
if(u.gt.umax) then
umax = u
ymax =y
else
endif
continue
return
end

function kplc(ml,mu,n2,i,j)

integer ml,mu,n2,j,kplc,i,ms

ms =

kplc

ml+mu+1

= ji-j+ms

return

end

function eqnorm(psi,rho,ijob)

real*8 egnorm,fc,t1,max,sc

integer i,j,ijob

include ’input.h’

double precision psi(n,m),rho(n,m)

12
10

181

max = 0.d40
do 10 i=2,n-1
do 12 j=2,m-1

if(ijob.eq.1) then

tl = abs(fc(psi,rho,i,j))
else

tl = abs(sc(psi,rho,i,j))

endif

if(t1.gt.max) then
max = t1i
else
endif
continue

continue

eqnorm = max
return

end

function circ(psi,rho,fint)
real*8 circ,dervy,sum,vcirc
integer 1i,j

include ’input.h’

182

double precision psi(n,m),rho(n,m)

double precision fint(n)

do 5 i=1,n

fint(i) = 0.40

5 continue
j=m
do 10 i=1,n

fint(i) = dervy(psi,i,j)/rho(i,j)

10 continue

sum = 0.d0
do 12 i=2,n-1
sum = fint(i)+sum

12 continue

veirce = fint(1)+fint(n)+2.d0*sum
circ = vcircxdx/2.d0
return

end

% o o Ak Xk XK
***% matrix coefficients evaluated as functions
% %k %k ... coefficients of the stretched Newton variables

e K o Xk %k Kk

183

function cp2dx(psi,rho,i,j)
real*8 a,gf,r,q,t1,t2,cp2dx
integer 1i,j

include ’input.h’

double precision psi(m,m),rho(n,m)

ti

a(psi,rho,i,j)

t2 gf(psi,rho,i,j)*r(psi,rho,i,j)/q(psi,rho,i,j)
cp2dx = t1-t2
return

end

function cpildx(psi,rho,i,j)

real*8 t1,t2,t3,t4,t5,t6,t7,t8,t9,cp1dx
real*8 q,q2,qx,qy,c,f,r,gf,rx,t,hf,ry
integer 1i,j

include ’input.h’

double precision psi(n,m),rho(n,m)

q2 = q(PSi,rhO,i,j)*q(psi,rho,i,j)
tl = c(psi,rho,i,j)
t2 = f(psi,rho,i,j)*r(psi,rho,i,j)/q(psi,rho,i,j)

t3 = gf(psi,rho,i,j)

t4 = r(psi,rho,i,j)*qx(psi,rho,i,j)/q2

184

t5 = rx(psi,rho,i,j)/q(psi,rho,1,j)

t6 = t(psi,rho,i,j)/q(psi,rho,i,j)

t7 = hf(psi,rho,i,j)

t8 = r(psi,rho,i,j)*qy(psi,rho,1i,j)/q2
t9 = ry(psi,rho,i,j)/q(psi,rho,i,j)
cpldx = t1-t2+t3*(t4-t5-t6)+t7*(t8-t9)
return

end

function cpmd(psi,rho,i,j)
real*8 t1,t2,cpmd

real*8 s,gf,q,hf,r
integer i,j

include ’input.h’

double precision psi(n,m),rho(n,m)

tl = -s(psi,rho,i,j)*gf(psi,rho,i,j)/q(psi,rho,i,j)

t2

-hf(psi,rho,i,j)*r(psi,rho,i,j)/q(psi,rho,i,j)
cpmd = t1+t2
return

end

function cp2dy(psi,rho,i,j)
real*8 t1,t2,cp2dy,b,hf,s,q

integer i, j

185

include ’input.h’

double precision psi{(n,m),rho(n,m)

t1

t2

b(psi,rho,i,j)
hf(psi,rho,i,j)*s(psi,rho,i,j)/q(psi,rho,i,j)

cp2dy = t1-t2

return

end

function cpidy(psi,rho,i,j)

real*8 t1,t2,t3,t4,t5,t6,t7,t8,t9,cpldy

real*8 q,q2,9x,qy,d,f,gf,s,sx,sy,t,hf

integer 1i,j

include ’input.h’

double precision psi(n,m),rho(n,m)

q2
t1
t2
t3
t4
t5
t6
7
t8
t9

q(psi,rho,i,j)*q(psi,rho,i,j)

d(psi,rho,i,j)
f(psi,rho,i,j)*s(psi,rho,i,j)/q(psi,rho,i,j)
gf(psi,rho,i,j)
qx(psi,rho,i,j)*s(psi,rho,i,j)/q2
sx(psi,rho,i,j)/q(psi,rho,1i,j)

hf (psi,rho,i,j)
s(psi,rho,i,j)*qy(psi,rho,i,j)/q2
sy(psi,rho,i,j)/q(psi,rho,1,j)
t(psi,rho,i,j)/q(psi,rho,i,j)

186

cpldy = t1-t2+t3*(t4-t5)+t6*(t7-t8-t9)
return

end

function cp(psi,rho,i,j)

real*8 t1,t2,t3,t4,t5,t6,t7,t8,cp
realx8 ty,tx,q,92,e,f,gf

real*8 t,qgx,hf,qy

integer i, j

include ’input.h’

double precision psi(n,m),rho(n,m)

q2 = q(psi,rho,i,j)*q(psi,rho,i,j)

tl = e(psi,rho,i,j)

t2 = f(psi,rho,i,j)*t(psi,rho,i,j)/q(psi,rho,i,j)
t3 = gf(psi,rho,i,j)

t4 = gx(psi,rho,i,j)*t(psi,rho,i,j)/q2
t5 = tx(psi,rho,i,j)/q(psi,rho,i,j)

t6 = hf(psi,rho,i,j)

t7 = t(psi,rho,i,j)*qy(psi,rho,i,j)/q2
t8 = ty(psi,rho,i,j)/q(psi,rho,i,j)

Ccp = t1-t2+t3*(t4-t5)+t6*(t7-t8)
return

end

187

function crhs(psi,rho,i,j)

realx8 t1,t2,t3,t4,t5,t6,t7,t8,crhs
realx*8 fc,f,sc,q,gf,qx,q92,scx,scy,qy,hf
integer 1i,j

include ’input.h’

double precision psi(n,m),rho(n,m)

q2 = q(psi,rho,i,j)*q(psi,rho,i,j)

t1 = fc(psi,rho,i,j)

t2 = f(psi,rho,i,j)*sc(psi,rho,i,j)/q(psi,rho,i,j)
t3 = gf(psi,rho,i,j)

t4 = sc(psi,rho,i,j)*qx(psi,rho,i,j)/q2
t5 = scx(psi,rho,i,j)/q(psi,rho,i,j)

t6 = hf(psi,rho,i,j)

t7 = sc(psi,rho,i,j)*qy(psi,rho,i,j)/q2
t8 = scy(psi,rho,i,j)/q(psi,rho,i,j)
crhs = t1-t2+(t3*(t4-t5))+(t6x(t7-t8))
return

end

3 3k o % ok %k
**x the functions that give the matrix coefficients

% o o X %k %k

function fc(psi,rho,i,j)

real*8 fc,dervx,dervy,rho2,h,h2,eps

188

real*8 t1,t2,t3,t4,t5,t6,t7,eps2,t41
real*8 g,mach,psiwall

integer i,j

include ’input.h’

common /param/ g,mach,eps,h,psiwall

double precision psi(n,m),rho(n,m)

h2 = h*h

eps2 = eps*eps

rho2 = rho(i,j)*rho(i,j)

tl = -(dervx(rho,i,j)/(rho2))*dervx(psi,i,j)

t2 = (psi(i+1,j)-2.d0*psi(i,j)+psi(i-1,j))/ (dx*dx)
t3 = (t2/rho(i,j))+t1

t4 = (psi(i,j+1)-2.d0*psi(i,j)+psi(i,j-1))/ (dy*dy)
t41 = t4/(rho(i,j)*h2)

t5 = -dervy(rho,i,j)*dervy(psi,i,j)/(rho2*h2)

t6 = t41+t5

t7 = -rho(i,j)*(1.d0-eps2)*exp(-2.d0*psi(i,j))

fc = t3+t6+t7

return

end

function sc(psi,rho,i,j)
real*8 g,mach,mach2,h,h2,eps,eps2

real*8 sc,dervx,dervy,psiwall

189

real*8 t1,t2,t3,t4,t5,t6,t7,t8,t9
integer 1i,j

include ’input.h’

common /param/ g,mach,eps,h,psiwall

double precision psi{(n,m),rho(n,m)

mach?2 = mach¥*mach

h2 = hxh

eps2 = eps*eps

tl = rho(i,j)**(g-1.40)

t2 = 1.d0+((g-1.d0)*mach2/2.d0)

t3 = (g-1.d0)*mach2/(2.d0*rho(i,j)*rho(i,j))
t4 = dervx(psi,i,j)*dervx(psi,i,j)

t5 = dervy(psi,i,j)*dervy(psi,i,j)/h2
t6 = t3%(t4+t5)

t7 = (g-1.d0)*mach2*(1.d0-eps2)/2.d0

t8 = exp(-2.d0*psi(i,j))-exp(-2*psiwall)
t9 = t7*t8

sc = t1-t2+t6+t9

return

end

function a(psi,rho,i,j)
real*8 a
integer i,j

include ’input.h’

190

double precision psi{(n,m),rho(n,m)

a = 1.d0/rho(d,j)
return

end

function b(psi,rho,i,j)

real*8 b,rho2,h,h2,g,mach,eps,psivall
integer 1i,j

include ’input.h’

common /param/ g,mach,eps,h,psiwall

double precision psi(n,m),rho(n,m)

h2 = hx*h

rho2 = rho(i,j)*rho(i,j)
b = 1.d0/(h2*rho2)
return

end

function c(psi,rho,i,j)
real*8 c,dervx,rho?2
integer i,j

include ’input.h’

double precision psi(n,m),rho(n,m)

rho2 = rho(i,j)*rho(i,j)

191

¢ = -dervx(rho,i,j)/rho2
return

end

function d(psi,rho,i,j)

real*8 d,dervy,h,h2,rho2,g,mach,eps,psiwall
integer 1i,j

include ’input.h’

common /param/ g,mach,eps,h,psiwall

double precision psi(n,m),rho(n,m)

h2 = hxh

rho2 = rho(i,j)*rho(i,j)

d = -dervy(rho,i,j)/(h2*rho2)
return

end

function e(psi,rho,i,j)

real*8 e,eps,eps2,g,mach,h,psiwvall
integer 1i,j

include ’input.h’

common /param/ g,mach,eps,h,psiwall

double precision psi(n,m),rho(n,m)

eps2 = eps*eps

e = 2.d0*rho(i, j)*(1.d0-eps2)*exp(~2.d0*psi (i, j))

192

return

end

function f(psi,rho,i,j)

real*8 f,t1,t2,t3,t4,t5,t6,t7,rho3,g,mach

real*8 dervx,dervy,rho2,h,h2,eps,eps2,psiwall

integer i,j

include ’input.h’

common /param/ g,mach,eps,h,psiwall

double precision psi(n,m),rho(n,m)

rho?2

rho3

eps2
t1l =
t2 =

t3 =

rho(i,j)*rho(i,j)

rho(i,j)*rho2

hxh

= eps*eps
(psi(i+1,j)-2.d0*psi(d,j)+psi(i-1,j))/ (dx*dx)
-t1/rho2

2.d0xdervx(rho,i,j)*dervx(psi,i,j)/rho3

t4 = (psi(i,j+1)~-2.d0*psi(i,j)+psi(i,j-1))/(dy*dy)
t5 = t4/(rho2#*h2)

t6 = 2.d0*dervy(rho,i,j)*dervy(psi,i,j)/ (h2*rho3)
t7 = (1.d0-eps2)*exp(-2.d0*psi(i,j))

f = t2+t3-t5+t6-t7

return

end

193

function gf (psi,rho,i,j)
real*8 gf,dervx,rho2
integer 1i,j

include ’input.h’

double precision psi(n,m),rho(n,m)

rho2 = rho(i,j)*rho(i,j)
gf = -dervx(psi,i,j)/rho2
return

end

function hf(psi,rho,i,j)

real*8 hf,h,h2,dervy,rho2,mach,eps,psivall,g
integer i,j

include ’input.h’

common /param/ g,mach,eps,h,psiwall

double precision psi(n,m),rho(n,m)

rho2 = rho(i,j)*rho(i,j)

h2 = hx*h

hf = -dervy(psi,i,j)/(rho2*h2)
return

end

194

function q(psi,rho,i,j)

real*8 q,h,h2,dervx,dervy,rho3,eps,psiwvall
real*8 g,mach,mach2,t1,t2,t3,t4,t5

integer i,j

include ’input.h’

common /param/ g,mach,eps,h,psiwall

double precision psi(n,m),rho(n,m)

mach?2 = mach*mach
h2 = hx*h
rho3

rho(i, j)*rho(i,j)*rho(i,j)

tl = (g-1.d0)*(rho(i,j)**(g-2.d0))

t2 = (g-1.d0)*mach2/rho3

t3 = dervx(psi,i,j)*dervx(psi,i,j)

t4 = dervy(psi,i,j)*dervy(psi,i,j)/h2
t5 = t2*(t3+t4)

q = ti1-t5

return

end

function r(psi,rho,i,j)
real*8 r,dervx,rho2,eps,h
real*8 g,mach,mach2,psiwall
integer 1i,j

include ’input.h’

195

common /param/ g,mach,eps,h,psiwall

double precision psi(n,m),rho(n,m)

rho2 = rho(i, j)*rho(i,j)

mach?2 = mach*mach

r = (g-1.d0)*mach2*dervx(psi,i,j)/rho2
return

end

function s(psi,rho,i,j)

real*8 s,h,h2,dervy,rho2,eps
real*8 mach,mach2,g,psiwall

integer i,j

include ’input.h’

common /param/ g,mach,eps,h,psiwall

double precision psi(n,m),rho(n,m)

mach2 = mach*mach

h2 = hxh

rho2 = rho(i, j)*rho(i,j)

s = (g-1.d0)*mach2*dervy(psi,i,j)/(h2*rho2)
return

end

function t(psi,rho,i,j)

real*8 t,eps,eps2,mach,mach2,g,psiwall,h

196

integer i,j
include ’input.h’
common /param/ g,mach,eps,h,psiwall

double precision psi(n,m),rho{(n,m)

mach2 = mach*mach

eps2 = eps*eps

t = ~(g-1.d0)*mach2*(1.d0-eps2)*exp(-2*psi(i,j))
return

end

function gx(psi,rho,i,j)

real*8 gx,g,mach,mach2,h,h2,rho3,dervy
real*8 dervx,rho4,t1,t2,t3,t4,t5,t6
real*8 t7,t8,t9,t10,psiwall,eps
integer 1i,j

include ’input.h’

common /param/ g,mach,eps,h,psiwall

double precision psi(n,m),rho(n,m)

mach2 = mach#*mach

h2 = hx*h
rho3 = rho(i,j)*rho(i,j)*rho(i,j)
rho4 = rho(i,j)*rho(i,j)*rho(i,j)*rho(i,])

t1 = (rho(i,j)**(g-3.d0))

197

t2 = (g-1.d0)*(g-2.d0) *dervx(rho,i,j)*tl

t3 = 3.dO*dervx(rho,i,j)*(g-1.d0)*mach2/rho4

t4 = dervx(psi,i,j)*dervx(psi,i,j)

ts = dervy(psi,i,j)*dervy(psi,i,j)/h2

t6 = t3%(t4+t5)

t7 = 2.d0*(g-1.d0)*mach2/rho3

t8 = (dervx(psi,i,j+1)-dervx(psi,i,j-1))/(2.d0*dy)
t9 = (psi(i+1,j)-2.d0*psi(i,j)+psi(i-1,j))/(dx*dx)
t10 = t7*(dervx(psi,i,j)*t9+dervy(psi,i,j)*t8/h2)

gx = t2+t6-t10

return

end

function qy(psi,rho,i,j)

real*8 qgy,mach,mach2,h,h2,rho3,rho4,dervx,psiwall
real*8 t1,t2,t3,t4,t5,t6,t7,t8,t9,t10,dervy,g,eps
integer 1i,j

include ’input.h’

common /param/ g,mach,eps,h,psiwall

double precision psi(n,m),rho(n,m)

mach2 = mach*mach

h2 = hx*h

rho3 = rho(i,j)*rho(i,j)*rho(i,j)

rho4

rho(i, j)*rho3

198

t1 rho(i,j)**(g-3.4d0)

t2 = (g-1.d0)*(g-2.d0)*dervy(rho,i,j)*t1

t3 = 3.d0*dervy(rho,i,j)*(g-1.d0)*mach2/rho4d

t4 = dervx(psi,i,j)*dervx(psi,i,j)

tb = dervy(psi,i,j)*dervy(psi,i,j)/h2

t6 = t3x(t4+t5)

t7 = 2.d0*(g-1.d0)*mach2/rho3

t8 = (dervx(psi,i,j+1)-dervx(psi,i,j-1))/(2.d0*dy)
t9 = (psi(i,j+1)-2.d0*psi(i,{)+psi(i,j-1))/(dy*dy)

t10 = t7*(t8*dervx(psi,i,j)+t9*dervy(psi,i,j)/h2)
qy = t2+t6-t10
return

end

function rx(psi,rho,i,j)

real*8 rx,mach,mach2,h,h2,dervx,rho2,rho3
real*8 t1,t2,t3,psivall,eps,g

integer i, j

include ’input.h’

common /param/ g,mach,eps,h,psiwall

double precision psi(n,m),rho(n,m)

mach2 = mach*mach
h2 = hx*h

rho2 = rho(i,j)*rho(i,j)

199

rho3 = rho2*rho(i,j)

tl = -2.d0*dervx(rho,i,j)*(g-1.d0)*mach2*dervx(psi,i,j)/rho3
t2 = (psi(i+1,3j)-2.d0*psi(i,j)+psi(i-1,j))/(dx*dx)

t3 = (g-1.d0)*mach2*t2/rho2

rx = t1+t3

return

end

function ry(psi,rho,i,j)

real*8 ry,mach,mach2,h,h2,dervx,dervy,eps
real*8 rho2,rho3,t1,t2,t3,t4,t5,psivall,g
integer i,j

include ’input.h’

common /param/ g,mach,eps,h,psiwall

double precision psi(n,m),rho(n,m)

mach2 = mach*mach

h2 = hx*h
rho2 = rho(i,j)*rho(i,j)
rho3 = rho2*rho(i,j)

tl = -2.d0*(g-1.d0)*mach2*dervy(rho,i,j)

t2 = tl*dervx(psi,i,j)/rho3

t3 = (g-1)*mach2/rho2

t4 = (dervx(psi,i,j+1)~dervx(psi,i,j-1))/(2.d0*dy)

t5 = t3*t4

200

Iy = t2+t5
return
end

function sx(psi,rho,i,j)

real*8 sx,mach,mach2,h,h2,rho2,rho3,dervx
real*8 ti,t2,t3,t4,t5,psiwall,g,eps,dervy
integer 1i,j

include ’input.h’

common /param/ g,mach,eps,h,psiwall

double precision psi(n,m),rho(n,m)

mach?2 = mach*mach
h2 = hx*h
rho?2

rho(i, j)*rho(i,j)
rho3

rho(i,j)*rho2

tl = -2.d0*dervx(rho,i,j)*(g~1.d0)*mach2/h2

t2 = ti*dervy(psi,i,j)/rho3

t3 = (g-1.d0)*mach2/(h2*rho2)

t4 = (dervx(psi,i,j+1)—dervx(psi,i,j—i))/(2.d0*dy)

t5 = t3*t4
sx = t2+t5
return

end

201

function sy(psi,rho,i,j)

real*8 sy,mach,mach?,h,h2,rho3,rho2,g

real*8 t1,t2,t3,t4,t5,dervy,psiwall,eps

integer 1i,j

include ’input.h’

common /param/ g,mach,eps,h,psiwall

double precision psi(n,m),rho(n,m)

mach2 = mach*mach

h2 = h*h

tho2 = rho(i,j)*rho(i,j)

rho3 = rho(i,j)*rho2

tl = -2.d0*dervy(rho,i,j)*(g-1.d0)*mach2/rho3
t2 = ti*dervy(psi,i,j)/h2

t3 = (g-1.d0)*mach2/(h2*rho2)

t4 = (psi(i,j+1)-2.d0*psi(i,j)+psi(i,j-1))/(dy*dy)
tb = t3*t4

sy = tb+t2

return

end

function tx(psi,rho,i,j)

real*8 tx,mach,mach2,h,h2,eps,eps2,g

real*8 tl,dervx,psiwvall

202

integer i, j
include ’input.h’
common /param/ g,mach,eps,h,psiwall

double precision psi(n,m),rho(n,m)

mach?2 = mach*mach
h2 = hx*h

eps2 = eps*eps

tl = 2.d0*dervx(psi,i,j)*(g-1.d0)*mach2
tx = t1*(1.d0-eps2)*exp(-2.d0*psi(i,j))
return

end

function ty(psi,rho,i,j)

real*8 ty,mach,mach2,h,h2,eps,ep52,g
real*8 ti,dervy,psiwall

integer i, j

include ’input.h’

common /param/ g,mach,eps,h,psiwall

double precision psi(n,m),rho(n,m)

mach? = mach*mach
h2 = hxh
eps2 = eps*eps

tl = 2.d0*(g-1.d0)*mach2+*(1.d0-eps2)

203

ty = tl*dervy(psi,i,j)*exp(~-2.d0*psi(i,j))
return

end

function scx(psi,rho,i,j)

real*8 scx,dervx,dervy,rho2,rho3,mach,mach2,h,h2
real*8 eps,eps2,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10,t11,t12
real*8 psiwall,g

integer i, j

include ’input.h’

common /param/ g,mach,eps,h,psiwall

double precision psi(n,m),rho(n,m)

mach2 = mach*mach

h2 = hxh

eps2 = eps*eps

rho2 = rho(i,j)*rho(i,j)

rho3

rho2*rho(i, j)

tl = rho(di,j)**(g-2.40)

t2 = (g-1.d0)*t1*dervx(rho,i,j)

t3 = dervx(rho,i,j)*(g-1.d0)*mach2/rho3
t4 = dervx(psi,i,j)*dervx(psi,i,j)

t5 = dervy(psi,i,j)*dervy(psi,i,j)/h2
t6 = -t3*(t4+t5)

t7 = (g-1.d0)*mach2/rho2

204

t8 = (psi(i+1,j)-2.d0*psi(i,j)+psi(i-1,j))/ (dx*dx)
t9 = (dervx(psi,i,j+1)-dervx(psi,i,j-1))/(2.d0*dy)
t10 = t7*(dervx(psi,i,j)*t8 + t9*dervy(psi,i,j)/h2)
t11 = (g-1.d0)*mach2#*(1.d0-eps2)*dervx(psi,i,j)

t12 = -t1lxexp(-2.d0*psi(i,j))

scx = t2+t6+t10+t12

return

end

function scy(psi,rho,i,j)

real*8 scy,dervx,dervy,rho2,rho3,mach,mach?2
real*8 t1,t2,t3,t4,t5,t6,t7,t8,t9,t10
real*8 psiwall,g,eps,h,h2,t11,t12,eps2
integer 1i,]j

include ’input.h’

common /param/ g,mach,eps,h,psiwall

double precision psi(n,m),rho(n,m)

mach?2 = mach*mach

h2 = hx*h

eps2 = eps*eps

rho2 = rho(i,j)#*rho(i,j)
tho3 = rho2*rho(i,j)

tl = rho(i,j)**(g-2.d0)
t2 = (g-1.d0)*dervy(rho,i,j)*tl

t3
t4
t5
t6
t7
t8
t9

205

(g-1.d0) *mach2*dervy(rho,i,j)/rho3
dervx(psi,i,j)*dervx(psi,i,j)
dervy(psi,i,j)*dervy(psi,i,j)/h2

-t3*(t4+t5)

(g-1.d0)*mach2/rho2
(dervx(psi,i,j+1)-dervx(psi,i,j-1))/(2.d0*dy)
(psi(i,j+1)-2.d0*psi(i,j)+psi(i,j-1))/(dy*dy)

t10 = t7*(dervx(psi,i,j)*t8+dervy(psi,i,j)*t9/h2)

t11 = -(g-1.d0)*mach2*(1.d0-eps2)*dervy(psi,i,j)
t12 = tii*exp(-2.d0*psi(i,j))

SCy = t2+t6+t10+£12

return

end

% % k3

***x calculating the change in rho(xi,eta)

*

function deltrho(psi,rho,dpsi,i,j)

real*8 dervx,dervy,deltrho,sc,q,r,s,t

real*8 t1,t2,t3,t4

integer i,j

incliude ’input.h’

double precision psi(n,m),rho(n,m),dpsi(n,m)

t1

t2

#

r(psi,rho,i,j)*dervx(dpsi,i,j)

s(psi,rho,i,j)*dervy(dpsi,i,j)

206

t3 = t(psi,rho,i,j)*dpsi(i,j)

it

t4

sc(psi,rho,i,j)
deltrho = -(t1+t2+t3+t4)/q(psi,rho,i,j)
return

end

24 ok 3k ok ok Xk

*** the initial guess .

*
function psinc(x,y,eps,h)
real*8 x,y,eps,psinc
psinc = log(cosh(y/h)+eps*cos(x))
return
end

% %k % 3k 3k %k

*xx peneric routine for calculating first order x-derivative
*

function dervx(f,i,j)

real*8 dervx

integer i,

include ’input.h’

double precision f(n,m)

if(i.eq.l.0r.i.eq.n) then

207

if(i.eq.1) then

dervx = (-3.d0*f(i,j)+4.d0*f(i+1,3)-£(i+2,j))/(2.d0*dx)
go to 100

else

dervx = (3.d0*f(i,j)-4.d0*f(i-1,j)+f(i-2,3))/(2.d0*dx)
go to 100

endif

else

endif

dervx = (f(i+1,j)—f(i-1,j))/(2.d0*dx)
100 return

end

Aok ok
**x generic routine for calculating first order y-derivative
*

function dervy(f,i,j)

real*8 dervy

integer i,j

include ’input.h’

double precision f(n,m)

if(j.eq.1.0r.j.eq.m) then

if(j.eq.1) then

208

dervy=(-3.d0*£ (i, j)+4.d0*f (i, j+1)-£(i,j+2))/(2.d0*dy)
go to 111

else

dervy=(3.d0*f(i,j)-4.d0*f (i,j-1)+£(i,j-2))/(2.d0*dy)
go to 111

endif

else

endif

dervy = (£(i,j+1)-f(i,j-1))/(2.40%dy)
111 return

end

209

Bibliography

[1] ABRAMOWITZ, M. & STEGUN, A. 1970 Handbook of Mathematical

Functions. 9th edn. Dover.

[2] BAKER, G.R., SAFFMAN, P.G. & SHEFFIELD, J.S. 1976 Structure of
a linear array of hollow vortices of finite cross section. J. Fluid Mech. 7 4,

469-476.

[3] BATEMAN, H. 1952 Partial Differential Equations of Mathematical

Physics. pp. 166-169. Cambridge University Press.

[4] BROWN, S.N. 1965 The compressible leading-edge vortex. J. Fluid Mech.
22, 17-32.

[5] CURRIE, I.G. 1974 Fundamental Mechanics of Fluids. McGraw-Hill
Book Company.

(6] DiMOTAKIS, P.E. 1991 Turbulent Free Shear Layer Mixing and Com-
bustion. Prog. Astro. and Aero. ATAA 137, 265-340.

[7] DrAzIN, P.G. & REID, W.H. 1981 Hydrodynamic Stability. Cambridge

University Press, London.

210
(8] MALLIER, R. 1994 Stuart Vortices in a stratified mixing layer. I: The
Garcia model. Geophys. Astrophys. Fluid Dynamics. 74, 73-97.

[9] GoLuB, G.H. & VAN LoaN, C.F. 1989 Matrix Computations. The

Johns Hopkins University Press.

[10] HuaNG, M.K. AND CHow, C.Y. 1982 Trapping of a free-vortex by
Joukowski airfoils. ATAA J. 20, 292-298.

[11] Kvo, Y.H. & SEARS, W.R. 1954 Plane subsonic and transonic poten-
tial flows. In General Theory of High-Speed Aerodynamics, Vol. VI, High
Speed Aerodynamics and Jet propulsion (ed. W.R. Sears), pp. 490-577.

Princeton University Press.
[12] Lams, H. 1932 Hydrodynamics. Cambridge University Press.

[13] LANDAU, L.D. & LiFsHITZ, E.M. 1959 Fluid Mechanics Pergamon

Press.

(14] MACK, L.M. 1960 The compressible viscous heat-conducting vor-
tex.J. Fluid Mech. 8, 284-292.

[15] MALLIER, R. AND MASLOWE, S.A. 1993 A row of counter-rotating
vortices. Phys. Fluids A 5, 1074-1075.

[16] MILNE-THOMSON, L. 1966 Theoretical Aerodynamics Macmillan.

[17) MOORE, D.W. 1985 The effect of compressibility on the speed of a
vortex ring. Proc. R. Soc. Lond. A 397, 87-97.

(18] MoORE, D.W. & PULLIN, D.I. 1987 The compressible vortex pair.
J. Fluid Mech. 185, 171-204.

211

[19] PrEss, W.H. & TEUKOLSKY, S.A. & VETTERLING, W.T. & FLAN-
NERY, B.P. 1992 Numerical Recipes in Fortran Cambridge University

Press.

[20] PIERREHUMBERT, R.T. & WIDNALL, S.E. 1982 The two- and three-
dimensional instabilities of a spatially periodic shear layer. J. Fluid Mech.

114, 59-82.

[21] RINGLEB, F. 1940 Exakte Losungen der Differentialgleichungen einer
adiabatischen Gasstromung Z.A.M.M. Bd. 20, Heft4, pp. 185-198. (Avail-
able as R.T.P. Translation No. 1609, British Ministry of Aircraft Produc-

tion.)

[22] RosHKO, A. 1976 Structure of turbulent shear flows: a new look AJAA
J. 14, 1349-1357.

[23] SAFFMAN, P.G. & SHEFFIELD, J.S. 1977 Flow over a Wing with an
Attached Free Vortex Stud. Appl. Maths 57, 107-117.

[24] SHAPIRO, A.H. 1953 The Dynamics and Thermodynamics of Com-
pressible Flow. Vol I. John Wiley and Sous.

[25] STUART, J.T. 1967 On finite amplitude oscillations in laminar mixing

layers. J. Fluid Mech. 29, 417-440.
[26) THOMPSON, P.A. 1972 Compressible Fluid Dynamics. McGraw-Hill.

[27] VoN Mises, R. 1958 Mathematical Theory of Compressible Fluid

Flow. Academic Press.

