Compressible Vortex Arrays

Thesis by
Kayvan Ardalan

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology
Pasadena, California

1996
(Submitted September 1, 1995)
Acknowledgements

I wish to thank my advisors, Professors Dan Meiron and Dale Pullin, for their invaluable insight, patience and encouragement that lead to the completion of this dissertation. Their support and guidance have made my years as a graduate student at Caltech memorable.

During my stay at Caltech, I have had the pleasure and good fortune to make an abundance of very good friends. They have influenced my life greatly and have helped me grow and mature. I thank you all. Yet, the one constant not only during my graduate studies but throughout my life has been my family. Abolfath, Farideh, Kamran and Sheila’s never ending love and support has always been a source of motivation and encouragement for me. Their love is my most prized possession.

This work has been supported by teaching assistantships in Applied Math, Aeronautics and Applied Physics as well as the Air Force Office of Scientific Research under contract AFOSR F49620-93-1-0338.
Abstract

We construct steady, two dimensional, compressible vortex arrays with specified vorticity distributions. We begin by examining the effects of compressibility on the structure of a single row of hollow-core, constant pressure vortices. The problem is formulated and solved in the hodograph plane. The transformation from the physical plane to the hodograph plane results in a linear problem that is solved numerically. The numerical solution is checked via a Rayleigh-Janzen expansion. It is observed that for an appropriate choice of the parameters M_∞, the Mach number at infinity, and the speed ratio, a, transonic shock-free flow exists. Also, for a given fixed speed ratio, a, the vortices shrink in size and get closer as the Mach number at infinity, M_∞, is increased. In the limit of an evacuated vortex core, we find that all such solutions exhibit cuspidal behaviour corresponding to the onset of limit lines.

The hollow core vortex array corresponds to a vorticity distribution wherein the vorticity is concentrated on the vortex boundary. In the second part of this thesis, we examine vortex arrays with continuous vorticity distributions. In particular, we construct Stuart-type vortices in a channel by requiring the vorticity distribution to be an exponential func-
tion of the stream function of the flow. The problem is formulated and solved in the physical plane. The numerical solution is checked via a Rayleigh-Janzen expansion of the unbounded Stuart vortex solution. It is shown that, in the limit of infinite speed of sound (incompressible flow), as the channel walls tend to infinity, \(h \to \infty \), the Stuart vortex solutions are recovered. Furthermore, it is shown that unbounded, compressible Stuart vortices exist and that a generalized Stuart vortex solution is the proper incompressible limit. For a given fixed circulation, \(\Gamma \), Mach number, \(M_A \), and \(\epsilon \), (a measure of the compactness of the vorticity distribution) it is shown that the limit of a very narrow channel, \(h \to 0 \), is a parallel shear flow. Exact analytical solutions for the compressible parallel shear flow are also found in implicit form.
Contents

1 Introduction ... 1

2 The hollow core vortex array 5
 2.1 The physical plane 5
 2.2 The hodograph plane 8
 2.2.1 Chaplygin’s equation 8
 2.2.2 Scaling of variables 9
 2.2.3 The flow in the hodograph plane 10
 2.2.4 The singularity at infinity 12
 2.3 The incompressible problem 14
 2.4 Perturbation solution 17
 2.5 Numerical method 21
 2.6 Results ... 25
 2.6.1 Evacuated vortex core 27
 2.6.2 Streamlines and limit lines 29
 2.6.3 Vortex geometry 31

3 Compressible Stuart-type vortices 35
 3.1 Generalized Stuart-vortex solutions 37
3.2 Governing equations ... 40
 3.2.1 Homentropic flow ... 42
3.3 Stuart-type vortices with walls 44
 3.3.1 Scaling of variables 47
3.4 Numerical Method ... 48
3.5 Perturbation solution .. 50
3.6 Results .. 54
 3.6.1 Perturbation expansion for $h \to \infty$ 55
 3.6.2 Parallel shear flow 58
 3.6.3 Parameter search .. 60
 3.6.4 Effect of wall height and compressibility 62

4 Conclusion .. 70

A Asymptotic analysis of Chaplygin's equation 73
B Estimation of ψ_v using matched asymptotics 76
C Jacobian entries for Stuart vortex problem 78
D Fortran listing for hollow core vortex 82
E Fortran listing for Stuart-type vortices 160
List of Tables

2.1 A comparison of the numerical and perturbation results at $M_\infty = 0.1$ and $a = 0.4$. .. 26

2.2 A comparison of the numerical and asymptotic results for the evacuated vortex. ... 29

3.1 A comparison of the numerical and perturbation results at $M_A = 0.1$, $h = 2$, $\psi_{wall} = \log \cosh h$, and $\epsilon = 0.5$. 53

3.2 A comparison of the numerical and perturbation results at $M_A = 0.1$, $h = 2$, $\psi_{wall} = \log \cosh h$, and $\epsilon = 0.5$. 54

3.3 A list of the maximum density drop in the core for two different values of the wall height, h, and vorticity concentration, ϵ. ... 63
List of Figures

2.1 A sketch of the problem in the physical space. The closed curves show the vortex boundaries on which the speed is q_v.

2.2 A description of the computational domain in physical space.

2.3 Computational Domain in Hodograph Plane.

2.4 Shape of vortex boundary for $M_\infty = 0$, $a = 0.4$. Solid circles represent Baker, Saffman and Sheffield (1976) solution. Solid line is a plot of equations (2.19) and (2.20).

2.5 Decomposition of finite difference coefficient matrix. The cross and asterisks symbols emphasize the location of the corrected rows. Matrix size is $(N \cdot (M + 1) \times N \cdot (M + 1))$.

2.6 The solid line represents the loci of sonic vortices, $M_v = 1.0$. The dotted line indicates the evacuated vortex core limit, $p_v = 0$. The symbol (o) represents a change of sign of the Jacobian and (□) indicates no change of sign.

2.7 The absolute value of the minimum of the Jacobian is plotted versus different mesh sizes. $M = 256$ is kept constant as Δq is decreased.
2.8 Vortex boundaries and the position of the corresponding limit lines. Boundary A and (♦) correspond to \((a, M_{\infty}) = (0.1, 0.215)\). Boundary B and (●) correspond to \((a, M_{\infty}) = (0.2, 0.296)\). Boundary C and (○) correspond to \((a, M_{\infty}) = (0.25, 0.343)\).

2.9 Incompressible, sonic and supersonic vortices. \(a = 0.2\) is kept fixed and \(M_{\infty}\) is increased. The Mach number on the vortex boundaries is \(M_{vA} = 0.0, M_{vB} = 1.00\) and \(M_{vC} = 1.933\). The distance \(x\) is measured from the stagnation point.

2.10 Streamlines for a transonic shock-free flow. \(a = 0.4\) and \(M_{\infty} = 0.48\). Here, \(M_v = 1.4\), where \(M_v\) is the Mach number on the vortex boundary indicating supersonic flow. The dotted line indicates the sonic line.

2.11 A description of the relevant length scales of the problem.

2.12 Aspect ratio of the vortex boundary for all possible solutions. The dotted line represents the limit of circular vortices. (●) indicates the occurrence of a limit line.

2.13 Stretching of the vortex boundary in the \(x\)-direction. (●) indicates the occurrence of a limit line.

3.1 A sketch of the streamlines for Stuart-type vortices with walls. The origin of the coordinate system is positioned at the stagnation point of the flow. The channel height is \(2h\). Point C denotes the vortex core.
3.2 Computational domain and boundary conditions of the problem. The value of the streamfunction on the wall is a constant, ψ_{wall}. Point S is the position of the stagnation point. Point C locates the vortex core. .. 46

3.3 Comparison of Stuart Vortex solution as given by equation 3.5 and numerical result for $M_A = 0$, $\epsilon = 0.5$, $\psi_{wall} = \log[\cosh(h)]$ and $h = 6$. The circles represent the numerical solution and the solid line depicts the analytical result. 51

3.4 The circulation in the domain, Γ, is measured as a function of the wall height, h, for various values of the Mach number, $M_A = (0, 0.05, 0.1)$. ... 55

3.5 Velocity distribution on the wall plotted at different values of the wall height, h. $M_A = 0.1$, $\epsilon = 0.5$ and $\psi_{wall} = \log(\cosh(h))$. ... 56

3.6 The difference between the full numerical solution and the perturbation solution is denoted by $\delta \rho$. The slope of the solid line indicates that the difference between the full and approximate solution is $O(M_\infty^4)$. In this calculation, $\epsilon = 0.8$, $h = 6$ 57

3.7 Comparison of exact solution (solid line) with numerical solution (solid circle). The parameters of the problem are $h = 2, \epsilon = 0, M_A = 0.5$ and $\psi_{wall} = 1.341529$. 59

3.8 Vorticity contours for $h = 2$, $\epsilon = 0$, $\psi_{wall} = \log[\cosh(h)]$ and $M_A = 0$. The contours are equally spaced. Level 1 corresponds to a value of $\omega_1 = 0.128734$ and Level F corresponds to $\omega = 0.941895$. ... 60
3.9 Vorticity contours for $h = 2$, $\epsilon = 0.5$, $\psi_{wall} = \log \cosh h$ and $M_A = 0$. The contours are equally spaced. Level 1 corresponds to a value of $\omega_1 = 0.220126$ and Level F corresponds to $\omega = 2.56006$. .. 61

3.10 Vorticity contours for $h = 2$, $\epsilon = 0.8$, $\psi_{wall} = \log(\cosh h)$ and $M_A = 0$. The contours are equally spaced. Level 1 corresponds to a value of $\omega_1 = 0.647702$ and Level F corresponds to $\omega = 9.35945$. .. 62

3.11 Equally spaced contours of the stream function for $h = 2$, $\epsilon = 0.8$, $\psi_{wall} = \log \cosh h$ and $M_A = 0.32$. Level 1 corresponds to a value of -1.43116, and Level F corresponds to 1.14126. ... 64

3.12 Equally spaced contours of the density for $h = 2$, $\epsilon = 0.8$, $\psi_{wall} = \log[\cosh h]$ and $M_A = 0.32$. Level 1 corresponds to 0.66083, and Level F corresponds to 1.00293. 65

3.13 Equally spaced contours of the density for $h = 6$, $\epsilon = 0.8$, $\psi_{wall} = \log[\cosh h]$ and $M_A = 0.275$. Level 1 corresponds to 0.915557, and Level F corresponds to 1.01879. 65

3.14 Equally spaced contours of the stream function for $h = 6$, $\epsilon = 0.8$, $\psi_{wall} = \log[\cosh h]$ and $M_A = 0.275$. Level 1 corresponds to a value of -0.79971 and Level F corresponds to 4.80415 66

3.15 Local mach number profile at $x = \pi$. Parameters of the problem are $h = 6$, $\epsilon = 0.8$, $M_A = 0.275$ and $\psi_{wall} = \log[\cosh(h)]$. ... 66

3.16 Horizontal velocity profile, $u(x = \pi, y)$, for unbounded Stuart vortex solution given by equation (3.5) in which $\epsilon = 0.5$ 67

3.17 Vertical velocity profile, $v(x, y = 0)$, for unbounded Stuart vortex solution given by equation (3.5) in which $\epsilon = 0.5$ 67
3.18 Horizontal extent of the defined vortex core plotted versus varying channel height. $\Gamma = \pi$, $M_A = 0$, and $\epsilon = 0.5$ are held fixed ... 68

3.19 Vertical extent of the defined vortex core plotted versus varying channel height. $\Gamma = \pi$, $M_A = 0$, and $\epsilon = 0.5$ are held fixed ... 68

3.20 Circulation measured as a function of Mach number for various wall heights .. 69
Chapter 1

Introduction

Many practical problems of interest arising in physics, mathematics and engineering involve the study of vortices and vortex motions. The persistent trailing vortices behind jumbo jets constitute a hazard to other aircraft and this has led to a study of vortex formation by the roll-up of vortex sheets and the decay and interaction of vortex pairs. Attempts to understand two dimensional turbulence have led to studies of the statistical mechanics of random arrays of point vortices. The observations of the turbulent mixing layer (Roshko (1976)) show convincing evidence that the layer consists of a row of quasi two dimensional coherent structures whose amalgamation into larger similar structures produces the growth of the mixing layer. Several theoretical studies attempt to model the formation of these and other structures by studying the interaction of two dimensional vortices. Previous studies, however, have focused exclusively on incompressible flow (Saffman and Sheffield (1977) and Huang and Chow (1982)), and few theoretical studies exist on the interaction of vortices in a compressible medium.
Ringleb (1940), Shapiro (1953), Mack (1960), and Brown (1965) are some of the earlier researchers whose study of the single compressible vortex highlighted the effects of compressibility on the structure of the vortex core as well as its stability characteristics. Moore (1985) studied the effects of compressibility on the speed of a vortex ring. Subsequently, Moore and Pullin (1987) succeeded in constructing the flow field of a translating vortex pair in compressible irrotational flow by transforming the problem to the hodograph plane. In their formulation, each vortex was modelled by a constant pressure stagnant core surrounded by a closed vortex sheet. They realized that for free-boundary problems of this type, this transformation was effective because it fixed the vortex sheet boundary in the hodograph plane and this circumvented the need for curvilinear grids which would be required to solve the problem in the physical plane.

Our aim is to study the basic interactions of vortices in a compressible fluid via a search for steady solutions of the Euler equations corresponding to flows with concentrated vortex cores. An infinite array of point vortices is the simplest model for a shear layer in incompressible flow. It is well known that a hollow core vortex in a compressible medium is the limit of a point vortex in an incompressible medium. Hence, we choose to construct the compressible analogue of the single row vortex array and to study the effects of compressibility on this model. In chapter 2, we shall extend the results of Baker, Saffman and Sheffield (1976) to include compressibility. This model of a shear layer has the vorticity in the flow concentrated on a vortex sheet placed on the vortex boundary. This specific choice of vorticity distribution makes the vortex boundary a streamline of the flow. As will be shown in subsequent chapters, transforming this free boundary problem to
the hodograph plane results in a linear problem that is solved numerically. It is shown in section 2.5 that use of the Sherman-Morrison formula [9] allows for the application of a discrete Fourier transform to the discretized problem. This reduces the storage requirements for the numerical algorithm which in turn allows for increased resolution. A parameter search of the problem shows the regions of the flow that allow for transonic shock-free flow. As a result of the increased resolution, it's shown that no evacuated vortex cores exist without the appearance of a limit line. Furthermore, it is shown that the vortices shrink in size and get closer together as the Mach number in the flow is increased.

In chapter 3, we shall extend the result of Stuart (1967) which is an exact solution of the nonlinear, inviscid equations of motion. The distribution of vorticity throughout the flow field is continuous and is given by $\omega = \exp(-2\psi)$. The stream function of the flow is given by

$$\psi = \log(\kappa \cosh 2\pi y/\lambda + \sqrt{\kappa^2 - 1} \cos 2\pi x/\lambda),$$

where $1 \leq \kappa \leq \infty$ is a parameter of the flow. The limit of $\kappa = 1$ corresponds to a parallel shear flow and the limit as $\kappa \to \infty$ is an infinite row of point vortices separated a fixed distance λ apart. The stability of this solution has been studied numerically (Pierrehumbert and Widnall (1982)) and it has been shown that Stuart vortices display some of the properties observed by studying mixing layers experimentally (Roshko (1976)). Specifically, it is shown that shear-layer growth by vortex amalgamation and generation of three dimensionality by localized pairing are associated with the subharmonic instabilities. However, Drazin and Reid (1981) remark that the Stuart
vortex solution, although intriguing, covers special cases and is not yet related to the main body of the theory of nonlinear stability. While showing that Stuart vortices can exist in the Garcia model of a stratified shear layer, Mallier (1994) suggests that the Stuart vortex solution is a special case of a much larger family of vortices. We suggest an alternate derivation and call the final result the generalized Stuart vortex solutions since it provides more insight on how to continue the Stuart vortices to compressible flow. It must be noted that the generalized Stuart vortices can be transformed to the Stuart vortex solution through an appropriate translation and stretching of the coordinate axes. Furthermore, we construct Stuart-type vortices with walls in a compressible medium, and by increasing the channel width, we show numerically that steady, two dimensional Stuart vortices in an unbounded compressible fluid exist. The numerical scheme uses a Newton iteration to solve the nonlinear governing equations which are derived in chapter 3. It is shown that decreasing the wall height tends to eliminate the recirculation regions present in Stuart vortex solutions. We also find exact analytic solutions for compressible, parallel flow shear layers that could be of use in stability studies.

In both of these investigations, we validate the numerical solutions via a Rayleigh-Janzen expansion. In the case of the hollow core vortex array of chapter 2, we were able to find an analytic expression for the first order compressibility correction, whereas in chapter 3 it was necessary to solve for it numerically.
Chapter 2

The hollow core vortex array

2.1 The physical plane

We consider an infinite linear array of identical vortices lying on the x-axis each separated by a distance L measured from the vortex center (cf. Figure 2.1). Each vortex is hollow (i.e., has a stagnant, constant pressure core). Since the flow is steady and the pressure is constant inside the cores, the fluid speed on the boundary of the vortex must be a constant value, q_v. Outside the cores, the flow is that of an ideal gas and it is assumed to be irrotational, compressible and homentropic. The vortices have the same circulation, Γ, such that at large distances the flow becomes asymptotic to that produced by a vortex sheet lying along the x-axis.

We shall seek steady solutions of the configuration sketched in Figure 2.1 in which the vortices have fore-and-aft and top and bottom symmetry, i.e., each vortex is symmetrical about the x-axis and a line parallel to the y-axis through the vortex center. Hence, it will be sufficient to investigate the details of the flow in the geometry depicted in Figure 2.2. The equation
Figure 2.1: A sketch of the problem in the physical space. The closed curves show the vortex boundaries on which the speed is q_v.

of continuity in the case of steady two dimensional compressible flow can be written as,

$$
\frac{\partial (\rho u)}{\partial x} + \frac{\partial (\rho v)}{\partial y} = 0, \quad (2.1)
$$

where ρ is the density and u and v are the horizontal and vertical components of the velocity vector. We can satisfy this identically by introducing a stream function ψ defined so that

$$
\rho u = -\rho_o \frac{\partial \psi}{\partial y},
$$

$$
\rho v = \rho_o \frac{\partial \psi}{\partial x},
$$
where \(\rho_0 \) is any reference density. We shall identify the density \(\rho_0 \) with the density of the flow at infinity (\(\rho_\infty \)) and set \(\rho_\infty = 1 \) without loss of generality.

The governing equation in this problem is given by Bernoulli’s theorem. For homentropic flow of an ideal gas, if \(c \) is the speed of sound and \(p \) is the pressure, we have \(c^2 = \gamma p / \rho \) and therefore conservation of energy requires

\[
\frac{c^2}{\gamma - 1} + \frac{1}{2} q^2 = \frac{c_s^2}{\gamma - 1},
\]

(2.2)

where \(q = \sqrt{u^2 + v^2} \) is the speed of the flow and \(c_s \) is the speed of sound at the stagnation condition (i.e., when \(q = 0 \)).

We seek the solution of these equations in the computational domain depicted in Figure 2.2, which shows a sketch of the streamlines. The point \(S \) corresponds to the stagnation point where the speed of the fluid is zero. The curve connecting points \(A \) and \(B \) represents the boundary of the vortex. The vertical lines from \(B \) and \(S \) are assumed to extend to infinity where the velocity of the flow has a single speed, \(q \), and phase direction, \(\theta \), namely, \(q = q_\infty \) and \(\theta = \pi \). On the two vertical boundaries \(\infty_1 - S \) and \(B - \infty_2 \), even though the speed of the flow varies, the assumed symmetries determine the phase angle of the velocity vector to be \(\theta = \pi \). On the symmetry line \(S - A \), the flow angle is \(\theta = \pi/2 \). Even though it is possible to proceed with the solution of this problem in the physical plane, we instead transform to the hodograph plane where the geometry of the flow simplifies to a rectangle and the governing equation is Chaplygin’s equation, which is a linear equation for the stream function.
2.2 The hodograph plane

2.2.1 Chaplygin's equation

The velocity potential of an irrotational compressible flow satisfies a non-linear partial differential equation. When \((q, \theta)\) are taken as variables, the equation becomes linear [27]. This leads to a quasi-conformal map from the physical plane \((x,y)\) space to the hodograph plane \((q,\theta)\) space which we shall summarize for completeness. Along with the stream function \(\psi\) defined earlier, we can introduce the velocity potential \(\phi\) and write

\[
\begin{bmatrix}
-d\phi \\
(-\rho_0/\rho) \, d\psi
\end{bmatrix}
= \begin{bmatrix}
u \\
v - u
\end{bmatrix}
\begin{bmatrix}
dx \\
dy
\end{bmatrix},
\]

and using methods of complex variables, it is easily verified [16] that...
\[dz = -\frac{e^{i\theta}}{q}(d\phi + \frac{i\rho_o}{\rho}d\psi), \]

where \(z = x + iy \) and \(u - iv = qe^{i\theta} \). It follows that

\[\frac{\partial z}{\partial q} = -\frac{e^{i\theta}}{q} \left(\frac{\partial \phi}{\partial q} + \frac{i\rho_o}{\rho} \frac{\partial \psi}{\partial q} \right), \]

\[\frac{\partial z}{\partial \theta} = -\frac{e^{i\theta}}{q} \left(\frac{\partial \phi}{\partial \theta} + \frac{i\rho_o}{\rho} \frac{\partial \psi}{\partial \theta} \right). \]

Cross differentiation of the above equations then leads to a compatibility condition akin to the Cauchy-Riemann equations:

\[\frac{\partial \phi}{\partial q} = q \frac{\partial \psi}{\partial q} \frac{\partial}{\partial q} \left(\frac{1}{p} \right), \]

(2.6)

and

\[\frac{\partial \phi}{\partial \theta} = \frac{q}{\rho} \frac{\partial \psi}{\partial q}. \]

(2.7)

These are the equations of the hodograph plane. Eliminating \(\phi \) from equations (2.4) and (2.5) and noting that, in the hodograph plane, the density is a function of the speed only, \(\rho = \rho(q) \), leads to Chaplygin's equation,

\[q^2 \left[1 - \frac{q^2(\gamma - 1)}{2c_s^2} \right] \frac{\partial^2 \psi}{\partial q^2} + q \left[1 - \frac{q^2(\gamma - 3)}{2c_s^2} \right] \frac{\partial \psi}{\partial q} + \left[1 - \frac{q^2(\gamma + 1)}{2c_s^2} \right] \frac{\partial^2 \psi}{\partial \theta^2} = 0. \]

(2.8)

2.2.2 Scaling of variables

We next consider the image of our problem in the hodograph plane. Before doing so we scale all speeds by the speed on the vortex boundary, \(q_v \). Furthermore, we shall scale the stream function by the strength of the sin-
singularity at infinity in the hodograph plane, which we denote by A. The singularity at infinity will be discussed in detail in section 2.2.4. This along with our earlier choice of the reference density, namely $\rho_\infty = 1$, leads to the following relationship between the length, time and mass scales L', T', M'.

$$L'^3 \rho_\infty M'^{-1} = 1, \quad q_v T' L'^{-1} = 1, \quad \mathcal{A} L'^{-2} T' = 1.$$

At this point we have completed the specification of scales for our problem. It is important to note here that the distance between the vortices L has not been used for scaling and that it shall be determined as part of the solution.

The use of equation (2.2) allows us to express the speed of sound at the stagnation point as

$$\frac{1}{c_s^2} = \frac{2M_\infty^2}{2 + (\gamma - 1)M_\infty^2} \frac{1}{a^2 q_v^2} \quad (2.9)$$

where $a = q_\infty / q_v$ and the Mach number at infinity, $M_\infty = q_\infty / c_\infty$. We shall define $\beta = q_v^2 / 2c_s^2$ and hence can rewrite Chaplygin's equation as follows:

$$q^2 \left[1 - \beta (\gamma - 1) q^2 \right] \psi_{qq} + q \left[1 - \beta (\gamma - 3) q^2 \right] \psi_q + \left[1 - \beta (\gamma + 1) q^2 \right] \psi_{\theta\theta} = 0. \quad (2.10)$$

2.2.3 The flow in the hodograph plane

To determine the image of the flow in the hodograph plane, we must return to Figure 2.2. Since at the stagnation point S the speed is zero, the streamlines form a saddle point pattern at which the flow angle takes on all values between $\pi/2$ and π. Therefore, the stagnation point maps into the vertical line $q = 0$ in Figure 2.3. Moving on to the boundary of the vortex, we know
that the speed is constant \((q = q_\infty)\), so after scaling by \(q_\infty\), the vertical line \(q = 1\) is the image of the vortex boundary in the hodograph plane. The streamline at infinity corresponds to a single speed, \(q = q_\infty\), and direction, \(\theta = \pi\), and so we see that an entire streamline is transformed into a point singularity in the hodograph plane. We defer a discussion of the nature of this singular transformation for the moment and discuss boundary conditions.

Since the stream function is arbitrary to within a constant, we will choose \(\psi = 0\) on the boundary of the vortex without loss of generality. On the boundary \(A - S\), we have \(u = 0\). Additionally, Figure 2.2 shows that this boundary is horizontal, \(dy = 0\). Using this information along with equations (2.1), (2.4) and (2.5), we obtain that \(\partial \psi / \partial \theta = 0\) on \(\theta = \pi / 2\). On the segment from \(B - \infty\) and \(\infty - S\), we have \(v = 0\) and the streamlines have a single direction \(\theta = \pi\). It is also clear that here the boundary is vertical, \(dx = 0\).

The use of the hodograph transformation then leads us to the condition that \(\partial \psi / \partial \theta = 0\) on \(\theta = \pi\). Having determined these boundary conditions, we can now investigate the nature of the solution near the stagnation point. An asymptotic analysis of Chaplygin’s equation near \(q = 0\) shows that to leading order the equation reduces to

\[q^2 \psi_{qq} + q \psi_q + \psi_{\theta \theta} = 0, \]

which along with the boundary conditions

\[\psi_\theta = 0 \quad \theta = \pi / 2, \pi \]

has the series solution,
\[\psi \sim c_1 + c_2 q^2 \cos(2\theta) + O(q^4) \]

where \(c_1 \) and \(c_2 \) are constants. Hence, setting \(\partial \psi / \partial q = 0 \) on \(q = 0 \) is consistent. The problem to be solved in the hodograph plane is depicted in Figure 2.3.

![Figure 2.3: Computational Domain in Hodograph Plane.](image)

2.2.4 The singularity at infinity

Using small-disturbance theory it is possible, by means of a simple transformation, to reduce all subsonic flow problems to an equivalent incompressible flow problem. This is known as the Prandtl- Glauert rule [5]. The incompressible velocity potential is given by \(\Phi(x, y) \) and the equivalent subsonic
potential is given by $\Phi'(x, \eta)$ where

$$\Phi = \frac{1}{\sqrt{1 - M^2_\infty}} \Phi',$$

$$\eta = \sqrt{1 - M^2_\infty} y.$$

We assume that the flow at infinity is subsonic since otherwise a shock-free flow field seems unlikely [18]. Assuming small disturbances at infinity and distorting the incompressible flow solution for a row of equal point vortices [12] as suggested by Prandtl-Glauert theory, we find that the velocity potential is

$$\phi = \frac{\Gamma}{2\pi} \arctan[\cot(\pi x/L) \tanh(\pi \sqrt{1 - M^2_\infty} y/L)].$$

(2.11)

To leading order, therefore, the stream function is given by

$$\psi = \frac{\Gamma}{2L} y$$

(2.12)

and the corresponding velocity field is

$$u = \frac{\Gamma}{2L} \frac{\sinh(2\pi \sqrt{1 - M^2_\infty} y/L)}{\cosh(2\pi \sqrt{1 - M^2_\infty} y/L) - \cos(2\pi x/L)}$$

(2.13)

and

$$v = \frac{\Gamma \sqrt{1 - M^2_\infty}}{2L} \frac{\sin(2\pi x/L)}{\cosh(2\pi \sqrt{1 - M^2_\infty} y/L) - \cos(2\pi x/L)}.$$

(2.14)

In order to find the nature of the singularity in the hodograph plane, we need to eliminate x and y from (2.12), (2.13) and (2.14). Using local quasi-
polar coordinates \((s, \delta)\) centered at the point at infinity in the hodograph plane defined by

\[se^{i\delta} = (q - a) + i \frac{\theta - \pi}{\sqrt{1 - M_\infty^2}}, \tag{2.15} \]

we can show (Appendix A) that, for small \(s\), the leading order stream function is given by

\[\psi = A \log(s). \tag{2.16} \]

This form of the singularity indicates that as \(s \to 0\), regardless of direction \(\delta\), all higher order corrections to the logarithm go to zero. We have now posed the problem in the hodograph plane. Its solution \(\psi(q, \theta)\) is a two parameter family depending on \(a = q_\infty/q_v\), the location of the singularity in the hodograph plane and \(M_\infty = q_\infty/c_\infty\), the Mach number at infinity. Note that as discussed in section 2.2.2, the strength of the vortex \((A = 1)\) is scaled out of the problem.

2.3 The incompressible problem

We begin by obtaining an analytical solution in the hodograph plane for the \(M_\infty = 0\) limit of the single row. Setting \(M_\infty = 0\) reduces (2.10) to Laplace's equation, so by using equation (2.16) we deduce that the correct form of the singular solution near the point at infinity is given by a point vortex positioned at the singular point \((q = a, \theta = \pi)\). Using the law of cosines, we find that this is given by

\[\psi_s = \log(q^2 + a^2 + 2aq \cos \theta). \tag{2.17} \]
Now all that is necessary to complete the solution is to satisfy the boundary conditions. We apply the method of images to obtain the solution

$$\psi_0 = \log \left[\frac{(q^2 + a^2 + 2aq \cos \theta)(q^2 + a^2 - 2aq \cos \theta)}{(q^2a^2 + 1 + 2aq \cos \theta)(q^2a^2 + 1 - 2aq \cos \theta)} \right].$$ (2.18)

This solution agrees with that given by [2] who solved the same problem using the ideas of free-streamline theory. For comparison, we find a parametric representation for the vortex boundary centered at the origin. The nondimensional coordinates of the boundary are given by

$$x = -2 \frac{a^2 + 1}{a} \left[\tan^{-1} \left(\frac{(a + 1) \sin \theta}{\cos \theta + 1(a - 1)} \right) - \tan^{-1} \left(\frac{(a - 1) \sin \theta}{\cos \theta + 1(a + 1)} \right) \right]$$

$$y = \frac{a^2 - 1}{a} \left[\log(a^2 + 1 + 2a \cos \theta) - \log(a^2 + 1 - 2a \cos \theta) \right].$$ (2.19) (2.20)

As shown in Figure 2.4, Baker, Saffman and Sheffield (1976) parameterize their solutions by the shape ratio \(R = P/2L \) where \(P \) is the perimeter of the vortex and \(L \) is the separation between the vortices. The circulation \(\Gamma \) about each vortex is then related to \(q_v \), the speed of the vortex boundary, by

$$\Gamma = P q_v.$$

Furthermore, at large distances, the array looks like a vortex sheet of strength \(2q_\infty \), where

$$q_\infty = \frac{1}{2} \frac{\Gamma}{L}.$$

Hence, conservation of circulation then requires that \(a = R = q_\infty / q_v \), the location of the singularity in the hodograph plane. Note that the shape ratio is restricted to be in the range \(0 < R < 1 \). The limit \(R = 0 \) corresponds to
an array of point vortices. The opposite limit $R = 1$ corresponds to a vortex sheet in which each vortex is pulled out longitudinally and squeezed sideways to lie along a length L of the x-axis. The significance of this solution for our problem is that we have obtained the zeroth order solution of a perturbation solution (the Rayleigh-Janzen expansion) with M^2_{∞} as the small parameter. An examination of the terms of the operator $\mathcal{L}(\psi)$ indicates that compressibility is introduced as regular corrections to the incompressible flow indicating the possible existence of a regular perturbation expansion in powers of M_{∞}. Below we construct several terms of this solution.

![Graph](image)

Figure 2.4: Shape of vortex boundary for $M_{\infty} = 0, \alpha = 0.4$. Solid circles represent Baker, Saffman and Sheffield (1976) solution. Solid line is a plot of equations (2.19) and (2.20).
2.4 Perturbation solution

We construct an approximate series solution to the problem depicted in Figure 2.3 valid when $M_\infty \ll 1$. The problem is formulated as

$$q^2(1-\beta(\gamma-1)q^2)\psi_{qq} + q(1-\beta(\gamma-3)q^2)\psi_q + (1-\beta(\gamma+1)q^2)\psi_{q\theta} = 0,$$ \hspace{1cm} (2.21)

with the boundary conditions given by

$$\frac{\partial \psi}{\partial q} = 0 \quad \text{at} \quad q = 0$$
$$\psi(q, \theta) = 0 \quad \text{at} \quad q = 1$$
$$\frac{\partial \psi}{\partial \theta} = 0 \quad \text{at} \quad \theta = \frac{\pi}{2} \text{ and } \pi,$$ \hspace{1cm} (2.22)

where $\beta = \frac{M_\infty^2/L^2}{2+(\gamma-1)M_\infty^2}$. The solution we seek has the Rayleigh-Janzen form,

$$\psi(q, \theta) = \psi_0 + M_\infty^2 \psi_1 + O(M_\infty^4).$$ \hspace{1cm} (2.23)

As noted above at zeroth order, we have the incompressible solution which is given by equation (2.18). The second order problem is given by

$$q^2 \psi_{qq} + q\psi_{q} + \psi_{q\theta} = \frac{q^2}{a^2}(\psi_{q\theta} - q\psi_{q\theta})$$ \hspace{1cm} (2.24)

with the same boundary conditions as mentioned earlier for equation (2.21). Note that this system has many singular homogenous solutions. According to Prandtl-Glauert theory, we must ensure that the incompressible solution is the dominant singularity as the point at infinity is approached. The only regular homogeneous solution to this problem is the trivial solution $\psi(q, \theta) = 0$. Hence, finding a particular solution will then lead to a unique
solution to this order. By inspection, a particular solution is given by

\[\psi_{1p} = \frac{q^3}{4} \frac{\partial \psi_0}{\partial q}, \]

but closer inspection of the above result shows that this is more singular than the incompressible solution. Note that equation (2.16) shows that \(\psi \sim \log s \) (incompressible solution) and hence the particular solution is more singular since \(\psi_{1p} \sim 1/s \). Therefore, we find a complimentary function to add to this particular solution such that the final result is regular at the point at infinity and that all boundary conditions are satisfied. This leads to a solution valid to \(O(M_\infty^4) \):

\[\psi(q, \theta) = \psi_0 + M_\infty^2 \psi_1 \quad (2.25) \]

where \(\psi_0 \) is given by equation (2.18) and the compressibility correction is given by

\[\psi_1 = -q^2 \frac{(a^4 - 1)(1 - q^2/a^2)}{(q^2 + a^2 + 2aq \cos \theta)(q^2 + a^2 - 2aq \cos \theta)} f_1(q, \theta) \]

\[-2q^2(1 - a^2) f_2(q, \theta) + \left[\frac{1 - a^2}{a^2} \right] \quad (2.26) \]

where

\[f_1(q, \theta) = \frac{a^4 q^2 - 2a^2 q^4 \cos \theta^2 + q^4 a^2 + a^2 - 2a^2 \cos \theta^2 + q^2}{(q^2 a^2 + 1 + 2aq \cos \theta)(q^2 a^2 + 1 - 2aq \cos \theta)} \quad (2.27) \]

and

\[f_2(q, \theta) = \frac{q^2 a^2 + 1 - 2 \cos \theta^2}{(q^2 a^2 + 1 + 2aq \cos \theta)(q^2 a^2 + 1 - 2aq \cos \theta)}. \quad (2.28) \]
It is essential to verify that the solution above maintains the integrity of our original mapping. We check this by verifying that the total distance traversed around a closed loop in the entire hodograph plane (including the boundaries) yields zero so that the mapping remains one to one. Equivalently, referring to Figure 2.2, we can show that the horizontal distance traversed from S to B, x_{BS}, is equal to that traversed going from ∞_1 to ∞_2, x_{∞}. Equation (2.3) gives

\[
dx = \left[\cos \theta \frac{\partial}{\partial q} \left(\frac{1}{\rho q} \right) \psi_q - \frac{\sin \theta}{\rho q} \psi_q \right] dq + \left[\frac{\cos \theta}{\rho} \psi_q - \frac{\sin \theta}{\rho q} \psi_q \right] d\theta
\]

for measuring horizontal distances in the hodograph plane. Hence, the distance from the center of the vortex to the stagnation point, x_{BS}, is given by

\[
x_{BS} = \int_{\pi/2}^{\pi} \left(\frac{\cos \theta}{\rho} \psi_q - \frac{\sin \theta}{\rho q} \psi_q \right) d\theta + \int_{0}^{1} \left(-\frac{\sin \theta}{\rho q} \psi_q \right) _{\theta=\pi/2} dq.
\]

This distance must be equal to the length of the streamline at infinity which is given by

\[
x_{\infty} = \lim_{\hat{s} \to 0} \int_{0}^{\pi} dx(\hat{s}, \hat{\theta}) \ d\hat{\theta},
\]

where \hat{s} and $\hat{\theta}$ are local polar coordinates centered about the singularity in the hodograph plane. In order to check closure, we must note that the strength of the vortex is an unknown function of the Mach number so that the appropriate expansion for the stream function is given by

\[
\psi(q, \theta) = (1 + \xi_1 M_\infty^2 + O(M_\infty^4)) \psi_0(q, \theta) + M_\infty^2 \psi_1(q, \theta) + O(M_\infty^4).
\]
Since the density is only a function of the speed,

$$\rho = \left[1 + \frac{\gamma - 1}{2} M_{\infty}^2 (1 - \frac{q^2}{q^2}) \right]^{\gamma-1},$$

the appropriate expansion in Mach numbers is given by

$$\rho = 1 + \rho_1(q) M_{\infty}^2 + O(M_{\infty}^4),$$

where $\rho_1 = \frac{1}{2} (1 - \frac{q^2}{q^2})$. Substituting the above results into the expression for x_{BS} and expanding in the Mach number, we find that

$$x_{BS} = x_{BS}^0 + M_{\infty}^2 x_{BS}^1 + O(M_{\infty}^4),$$

where

$$x_{BS}^0 = \int_{\pi/2}^{\pi} \left(\cos \theta \psi_{0q} - \frac{\sin \theta}{q} \psi_{0q} \right) d\theta + \int_0^1 \left(-\frac{\sin \theta}{q} \psi_{0q} \right)_{\theta=\pi/2} dq$$

and that

$$x_{BS}^1 = \eta_1 + \eta_2 + 2\pi\xi_1/a$$

where

$$\eta_1 = \int_{\pi/2}^{\pi} \left(\cos \theta \psi_{1q} - \frac{\sin \theta}{q} \psi_{1q} \right) d\theta + \int_0^1 \left(-\frac{\sin \theta}{q} \psi_{1q} \right)_{\theta=\pi/2} dq,$$

$$\eta_2 = \int_{\pi/2}^{\pi} \left[-\rho_1 (\cos \theta \psi_{0q} - \frac{\sin \theta}{q} \psi_{0q}) \right] d\theta + \int_0^1 \left(\rho_1 \frac{\sin \theta}{q} \psi_{0q} \right)_{\theta=\pi/2} dq.$$
Evaluating the above integrals, we have that

\[x_{BS} = 2\pi/a + \left(\frac{2\pi \xi_1}{a} + \pi/a \right) M_\infty^2 + O(M_\infty^4). \]

In finding the value of \(x_\infty \), we define a local coordinate system centered at the singular point \((q = a, \theta = \pi) \),

\[q = \hat{s} \cos \hat{\theta} + a, \]
\[\theta = \hat{s} \sin \hat{\theta} + \pi. \]

This makes the expression for \(dx = dx(\hat{s}, \hat{\theta}) \) a function of the local coordinates, hence evaluating the integrals gives

\[x_\infty = 2\pi/a + \left(\frac{2\pi \xi_1}{a} + \pi/a \right) M_\infty^2 + O(M_\infty^4). \]

Hence, we see that our perturbation solution, equation (2.25), satisfies the closure condition to \(O(M_\infty^4) \) automatically since \(x_{BS} = x_\infty \). With this solution valid for small \(M_\infty \), we proceed to discuss the solution at larger values of \(M_\infty \) which is obtained numerically.

2.5 Numerical method

Since the nature of the singularity is known from our earlier analysis, we opted to solve the following modified but equivalent problem:

\[\psi = \psi_s + \psi_r \]
\[\mathcal{L}(\psi_r) = -\mathcal{L}(\psi_s) \] \hspace{1cm} (2.29)
where

$$\psi_s = \log \left((q-a)^2 + a^2(\theta - \pi)^2 \frac{1}{1 - M_{\infty}^2} \right) - \frac{a^2(\theta - \pi)^2}{(1 - M_{\infty}^2)(q-a)^2 + (\pi^2a^2/4)}. \quad (2.30)$$

This particular singular form of ψ_s is chosen for two reasons. The main advantage is that a local asymptotic analysis near the point at infinity shows that all other higher order terms vanish in the limit as $(q, \theta) \to (a, \pi)$ as shown in Appendix A. This ensures ψ_r is finite at (a, π). In addition, the top and bottom boundary conditions remain unchanged from those for ψ.

The remaining boundary conditions for the modified problem are

$$\frac{\partial \psi_r}{\partial q} = -\frac{\partial \psi_s}{\partial q}, \quad q = 0$$

$$\psi_r(q, \theta) = -\psi_s(q, \theta), \quad q = 1$$

$$\frac{\partial \psi_r}{\partial \theta} = 0, \quad \theta = \frac{\pi}{2}, \pi. \quad (2.31)$$

The modified problem described above was solved numerically using second-order centered differences on a fixed grid

$$q_i = (i-1)\Delta q, \quad i = 1, ..., N$$

$$\theta_j = \pi/2 + (j-1)\Delta \theta, \quad j = 1, ..., M + 1 \quad (2.32)$$

where $\Delta q = 1/(N-1)$ and $\Delta \theta = \pi/(2M)$, and we define $\psi_{i,j} = \psi_r(q_i, \theta_j)$.

The finite difference form of equation (2.29) is given by

$$\left[\frac{A_{i,j}}{\Delta q^2} + \frac{B_{i,j}}{2\Delta q} \right] \psi_{i+1,j} - 2 \left[\frac{A_{i,j}}{\Delta q^2} + \frac{C_{i,j}}{\Delta \theta^2} \right] \psi_{i,j} + \left[\frac{A_{i,j}}{\Delta q^2} - \frac{B_{i,j}}{2\Delta q} \right] \psi_{i-1,j}$$
\[+ \left(\frac{C_{i,j}}{\Delta \theta^2} \right) (\psi_{i,j+1} + \psi_{i,j-1}) = f_{i,j} \]

(2.33)

where \(f_{i,j} = -\mathcal{L}(\psi_s(q_i, \theta_j)) \) and the coefficients are defined as follows:

\[
\begin{align*}
A_{i,j} &= q_i^2 \left[1 - \beta(\gamma - 1)q_i^2 \right], \\
B_{i,j} &= q \left[1 - \beta(\gamma - 3)q_i^2 \right], \\
C_{i,j} &= \left[1 - \beta(\gamma + 1)q_i^2 \right].
\end{align*}
\]

(2.34)

At the top and bottom boundaries, where \(\theta = \pi \) and \(\theta = \frac{\pi}{2} \), the derivative conditions are satisfied by adding fictitious points parallel to these boundaries and applying centered differences except for the point at \((q_i, \theta_j) = (a, \pi)\). We can not add fictitious points there because the forcing term in equation (2.29) is not defined. Hence, since we are solving for \(\psi_r \), which is the regular part of our solution, we found it sufficient to impose the derivative condition using forward differencing:

\[
\hat{i} = \frac{a}{\Delta q} + 1, \\
-3\psi_{i, M+1} + 4\psi_{i, M} - \psi_{i, M-1} = 0,
\]

(2.35)

where \(\hat{i} \) is the location of the singularity on the grid.

The use of forward differencing at \(q = 0 \) also proved to be the most effective means for avoiding unphysical \(\theta \)-dependence of the stagnation value. Implementation of the right-hand side Dirichlet condition \(\psi_r(1, \theta) = -\psi_s(1, \theta) \) is straightforward. Finally, the problem is reduced to one of linear algebra and solving a system \(\mathbf{A} \cdot \mathbf{x} = \mathbf{B} \). At this stage, the main difficulty is resolution since the size of \(\mathbf{A} \) is \((N \cdot (M+1) \times N \cdot (M+1))\). Figure 2.5 shows
Figure 2.5: Decomposition of finite difference coefficient matrix. The cross and asterisk symbols emphasize the location of the corrected rows. Matrix size is \((N \cdot (M + 1)) \times N \cdot (M + 1))\).

A schematic of the banded coefficient matrix \(A\) and its decomposition. If not for the form of the \(\theta\)-derivative at the singular point, \(A\) would have been amenable to transform methods since it would have been a block tridiagonal matrix; hence, we chose to use the capacitance matrix approach to change \(A\) appropriately. The decomposition of matrix \(A\) can be written as

\[
A = \hat{A} + U \cdot V^T.
\]

The Woodbury formula, which is the block-matrix version of the Sherman-Morrison formula [9], relates \(A^{-1}\) to its decomposition as

\[
(\hat{A} + U \cdot V^T)^{-1} = \hat{A}^{-1} - [\hat{A}^{-1} \cdot U \cdot (1 + V^T \cdot \hat{A}^{-1} \cdot U)^{-1} \cdot V^T \cdot \hat{A}^{-1}],
\]

where the term \((1 + V^T \cdot \hat{A}^{-1} \cdot U)^{-1}\) is known as the capacitance matrix and it has dimensions \((p \times p)\) where \(p\) is the number of corrected rows. Since we have Neumann boundary conditions in the \(\theta\)-direction, we apply a discrete
cosine transform [19] on \hat{A}. Since we use forward difference formulas at $q = 0$, we choose to apply the Woodbury formula one more time so that we have tridiagonal matrices. Making this extra effort increases our resolution compared to inverting the original banded matrix since we have minimized the storage requirements for A.

Note that to obtain ψ_r we solve a linear system. This was not obvious at the outset. Indeed Moore and Pullin (1987) find residual nonlinearity in their formulation of the compressible vortex pair problem in the form of a forced closure of the physical plane when reconstructed from the solution of the hodograph problem. This led us to expect that an iterative solution procedure resulting from the non-linear nature of compressible flow problems would be required to solve this problem. However, the transformation to the hodograph plane in this specific example has lead to an entirely linear problem. Our final solution is written as

$$\psi(q, \theta) = \psi_\delta(q, \theta) + \psi_r(q, \theta).$$

For $M_\infty \ll 1$, we compare our numerical solution with our perturbation solution for various values of q and θ and successfully verify that the error is $O(M_\infty)^4$. Table (2.1) shows the results from one of such tests.

2.6 Results

We perform a parameter search to determine those solutions that are physically relevant. It is well known (Landau & Lifschitz 1959) that if the Jacobian of the hodograph transformation vanishes at any point, the solution will exhibit cuspidal behaviour corresponding to the onset of limit lines [11].
\[\begin{array}{ccc}
g & \psi(g, \theta = \pi/2) \\
\hline
& \text{Numerical} & \text{Perturbation} \\
0.00 & -3.6129 & -3.6127 \\
0.20 & -3.1786 & -3.1784 \\
0.40 & -2.2798 & -2.2796 \\
0.80 & -0.6199 & -0.6197 \\
1.00 & 0.0000 & 0.0000 \\
\end{array} \]

Table 2.1: A comparison of the numerical and perturbation results at \(M_\infty = 0.1 \) and \(a = 0.4 \).

Hence, in our search of the parameter space \((a, M_\infty)\), we monitored the Jacobian for changes of sign. The search was done at a fixed value of \(a \), stepping in the Mach number in increments of 0.001, on a \((N, M + 1) = (500 \times 128)\) grid, until a limit line was approached. Note that the computation was stopped at the first sight of a limit line and then the resolution was increased to \((N, M + 1) = (1000 \times 256)\) and \((2000 \times 256)\) to ensure that the results are grid independent. The level of accuracy of the numerical algorithm for these computations was up to six digits. The outcome of this investigation is depicted in Figure 2.6 which summarizes the range of solutions found. It is evident from the figure that transonic shock-free flows continuous in the \((a - M_\infty)\) parameter space can and do exist for our problem. The solid line in Figure 2.6 represents the loci of sonic vortices, i.e., \(M_\nu = 1 \), where \(M_\nu \) is the Mach number on the vortex boundary and the circles represent the first occurrence of limit lines.
2.6.1 Evacuated vortex core

The dotted line in Figure 2.6 is an upper boundary on the supersonic flow region. It actually corresponds to a limit in which the pressure in the core of the vortex is reduced to zero. This evacuated core limit is a special case since our problem then reduces to a single parameter family. Recalling the energy equation (2.2), we note the following:

\[
\frac{c_v^2}{\gamma - 1} + \frac{1}{2} q_v^2 = \frac{c_{\infty}^2}{\gamma - 1} + \frac{1}{2} q_{\infty}^2.
\]

(2.37)

Since the core is at vacuum, \(c_v = 0\), manipulating the above equation gives a relationship for \(M_{\infty}\) in terms of \(a\),

\[
M_{\infty} = \sqrt{\frac{2a^2}{\gamma - 1 - a^2}}.
\]

(2.38)

In relation to Figure 2.6, this corresponds to the dotted line. We chose \(a\) as the parameter for this search and found that limit lines appeared quite early. Actually, the largest value attained before the Jacobian of the transformation changed sign was \(a = 0.0015\) corresponding to \(M_{\infty} = 0.00335\).

Note that in order to achieve good resolution of the solution near \(q = 0\), where we have a Neumann condition, we had to use fine grids. The evacuated vortex results were computed using a resolution of \((N, M + 1) = (2000 \times 128), (4000 \times 128)\) and \((4000 \times 256)\). At this point it was necessary to determine the validity of the two solutions for which there was no change of sign of the Jacobian. Hence, we searched for the minimum of the Jacobian and monitored its value as we increased the resolution. Figure 2.7 clearly shows that as the resolution is increased, the Jacobian tends to zero. This
leads us to conclude that there exists no evacuated vortex solution for this problem free of limit lines.

![Graph](image)

Figure 2.6: The solid line represents the loci of sonic vortices, $M_v = 1.0$. The dotted line indicates the evacuated vortex core limit, $p_v = 0$. The symbol (○) represents a change of sign of the Jacobian and (□) indicates no change of sign.

Following [18], we find a leading-order approximation to the value of the stream function at the boundary of the evacuated vortex by the method of matched asymptotic expansions (Appendix B). The incompressible solution, [12], is an outer solution which is matched to the solution for an isolated hollow vortex, [26], giving

\[
\begin{align*}
\psi_v &= \frac{\Gamma}{4\pi} [F(1; \gamma) - \log a^2)] \\
F(s; \gamma) &= \frac{1}{\gamma - 1} \int_0^s \log \xi (1 - \xi)^{\frac{2-\gamma}{\gamma-1}} \, d\xi.
\end{align*}
\] (2.39)
\[
\begin{array}{ccc}
M_\infty & \psi_v \\
& \text{Numerical} & \text{Asymptotic} \\
0.225 & -5.8946 & -5.84959 \\
0.112 & -8.6342 & -8.62218 \\
0.045 & -12.2892 & -12.28734 \\
0.022 & -15.0600 & -15.0599 \\
0.00335 & -22.6540 & -22.6484 \\
\end{array}
\]

Table 2.2: A comparison of the numerical and asymptotic results for the evacuated vortex.

In Table (2) we compare the asymptotic result for the value of the stream function on the vortex boundary with that from our numerical solution. Even though all evacuated vortex solutions exhibited cuspidal behaviour corresponding to the onset of limit lines, the location of the change of sign of the Jacobian was never on the vortex boundary. Hence, we get good agreement when comparing the result from equation (2.39) with the full numerical solution.

2.6.2 Streamlines and limit lines

While monitoring the Jacobian for a change of sign, we also noted the exact location on the grid for which the limit lines first appear. Figure 2.8 displays a few examples. We have plotted the boundary of the vortex and the position of the first occurrence of a limit line for a given \((a, M_\infty)\).

In Figure 2.9, we display the free boundaries for a progression of vortices ranging from incompressible to subsonic to supersonic flow in the range of
Figure 2.7: The absolute value of the minimum of the Jacobian is plotted versus different mesh sizes. \(M = 256 \) is kept constant as \(\Delta q \) is decreased.

In the \((M_\infty, a)\) space where no limit lines were detected. Note that for the free boundaries shown, the shape ratio was held fixed, \(a = 0.2 \). We see that as \(M_\infty \) is increased, the vortices shrink in size and get closer together. Intuitively, one expects compression of the type seen. In addition, there exists some experimental evidence showing a similar effect. Mungal, Hermanson and Dimotakis have produced some unpublished Schlieren data which shows that the large scale structures in a shear layer shrink in size as the flow velocity is increased. For photos and discussion refer to [6]. Note that the present analogy is only qualitative.

In Figure 2.10, we have plotted the streamlines of a transonic flow in the physical plane. The dotted line on the figure denotes the sonic line. Note that the sonic line is closer to the vortex boundary in the \(x \)-direction than the \(y \)-direction. This phenomenon is explained by the fact that the flow in the \(x \)-direction is required to reach a stagnation point.
Figure 2.8: Vortex boundaries and the position of the corresponding limit lines. Boundary A and (△) correspond to \((a, M_\infty) = (0.1, 0.215)\). Boundary B and (●) correspond to \((a, M_\infty) = (0.2, 0.296)\). Boundary C and (○) correspond to \((a, M_\infty) = (0.25, 0.343)\).

2.6.3 Vortex geometry

At this point, we return to Figure 2.6 to identify the range of \((a, M_\infty)\) for which solutions exist and survey this parameter space for the associated vortex boundary geometries. Figure 2.11 shows the relevant length scales in the physical plane.

Note that \(b_1\) and \(b_2\) are measured from the center of the vortex and they measure the width and height of the vortex boundary respectively. The length \(\lambda = L/2\) measures the distance from the center of the vortex to the stagnation point. We found that presenting the aspect ratio of the vortex boundary, \(b_1/b_2\), and the parameter \(b_1/\lambda\) was sufficient to give a complete overall view of all possible geometrical configurations that the vortices attain at different values of \((a, M_\infty)\).

Figure 2.12 shows that for a fixed value of \(a\), the vortices shrink and get
Figure 2.9: Incompressible, sonic and supersonic vortices. \(a = 0.2 \) is kept fixed and \(M_\infty \) is increased. The Mach number on the vortex boundaries is \(M_{vA} = 0.0, M_{vB} = 1.00 \) and \(M_{vC} = 1.933 \). The distance \(x \) is measured from the stagnation point.

closer together as the Mach number is increased. Note that \(b_1/b_2 = 1 \) is the limit of circular vortices. Figure 2.13 shows the extent to which the vortex boundary is stretched in the horizontal direction. It is evident that for a fixed \(a \), as the Mach number is increased, the vortex boundary stretches out in the horizontal direction.

When \(b_1/\lambda = 0 \), we are at the point vortex solution whereas \(b_1/\lambda = 1 \) is the limit of the shear layer solution. Note that in both Figure 2.12 and Figure 2.13, the solutions were terminated at the first occurrence of a limit line.
Figure 2.10: Streamlines for a transonic shock-free flow. $a = 0.4$ and $M_\infty = 0.48$. Here, $M_v = 1.4$, where M_v is the Mach number on the vortex boundary indicating supersonic flow. The dotted line indicates the sonic line.

Figure 2.11: A description of the relevant length scales of the problem.
Figure 2.12: Aspect ratio of the vortex boundary for all possible solutions. The dotted line represents the limit of circular vortices. (●) indicates the occurrence of a limit line.

Figure 2.13: Stretching of the vortex boundary in the x-direction. (●) indicates the occurrence of a limit line.
Chapter 3

Compressible Stuart-type vortices

For two dimensional incompressible flow, it can be shown that the vorticity equation is satisfied by taking $\omega = F(\psi)$. J.T. Stuart [25], while investigating mixing layers of the form $u = \tanh y$, realized that by taking

$$\omega = B \exp(-2\psi/A),$$

the governing equation for incompressible flows with this specific form of vorticity distribution leads to an example of the well-known Liouville equation [3]

$$\nabla^2 \psi = B \exp(-2\psi/A), \quad (3.1)$$
where \(A\) and \(B\) are constants. Taking \(B = 2\pi u_\infty / \lambda\) and \(A = u_\infty \lambda / 2\pi\), an exact solution of equation (3.1) can be written as

\[
\psi(x, y) = \frac{u_\infty \lambda}{2\pi} \log \left[\kappa \cosh \frac{2\pi y}{\lambda} + \sqrt{\kappa^2 - 1} \cos \frac{2\pi x}{\lambda} \right]. \tag{3.2}
\]

This solution describes an infinite array of vortices of circulation \(u_\infty \lambda / 2\pi\), lying on the \(x\)-axis, separated a fixed distance \(\lambda\). The constant \(\kappa\) is a parameter with the range \(1 \leq \kappa \leq \infty\) that measures the compactness of the vorticity distribution. The limit \(\kappa \to 1\) gives a parallel shear flow. The limit \(\kappa \to \infty\) describes the flow of an infinite array of point vortices in an unbounded fluid. At this stage we choose to rescale the parameter \(\kappa\) as suggested by [15],

\[
\epsilon = \sqrt{\kappa^2 - 1 / \kappa} \tag{3.3}
\]

such that \(0 \leq \epsilon \leq 1\), and hence the vorticity distribution can be written as

\[
\omega = \frac{2\pi u_\infty}{\lambda} (1 - \epsilon^2) \exp \left[-\frac{4\pi \psi}{u_\infty \lambda} \right]. \tag{3.4}
\]

The Stuart vortex solutions then take the form,

\[
\psi(x, y) = \frac{u_\infty \lambda}{2\pi} \log \left[\cosh \frac{2\pi y}{\lambda} + \epsilon \cos \frac{2\pi x}{\lambda} \right]. \tag{3.5}
\]

The significance of the above transformation is to introduce the parameter \(\epsilon\) in the expression for the vorticity so as to facilitate the extension of the Stuart vortex solutions to compressible flow. This will become more evident as we derive the governing equations. We shall denote flows with the vorticity distribution given by (3.4) as Stuart-type vortices. Before we proceed to find Stuart-type vortices in a channel, we need to discuss the asymptotics
of this very special solution of the inviscid Euler equations. We shall denote
the stream function at infinity as \(\psi_\infty \), and by taking the limit \(y \to \infty \) in
equation (3.5), we can identify the nature of the singularity of the stream
function.

\[
\psi_\infty \sim \frac{u_\infty \lambda}{2\pi} \left[y + \log \frac{1}{2} + O(2\epsilon \cos x \exp(-y)) \right].
\] (3.6)

Note that the transformation suggested by equation (3.3) has yet another
useful feature in that it fixes the constant at infinity given in equation (3.6)
as \(\log(1/2) \). Had we employed \(\kappa \) as a parameter, the correction to the
singularity at infinity for the stream function would have been a function of
\(\kappa \) as is shown below:

\[
\psi_\infty \sim \frac{u_\infty \lambda}{2\pi} \left[y + \log \frac{\kappa}{2} + O(\sqrt{\kappa^2 - 1} \cos x \exp(-y)) \right].
\]

3.1 Generalized Stuart-vortex solutions

We can write the Stuart vortex solution in nondimensional form as

\[\psi(x, y) = \log [\cosh y + \epsilon \cos x] \]

and calculate its circulation, \(\Gamma \), in the domain depicted in Figure 3.2 with
the exception that the upper boundary is at \(y \to \infty \). We find that

\[
\Gamma = \oint \bar{u} \cdot \bar{d}l = \int_{0}^{\pi} u_\infty dx = \pi.
\] (3.7)
We now ask whether this solution is unique. In other words, we will try to construct solutions to

\[
\nabla^2 \psi = (1 - \epsilon^2) \exp(-2\psi),
\]

(3.8)

with the same distribution of vorticity as that of the Stuart vortex solution that have different circulations. We shall assume

\[
\psi(x, y) = \log[f(y) + \epsilon g(x)]
\]

(3.9)

and substitute this into the left-hand side of equation (3.8). After some algebra, we have

\[
\nabla^2 \psi = [(f'' f - f'^2) + (g'' f + g f'') \epsilon + (g'' g - g'^2) \epsilon^2]/(f + \epsilon g)^2,
\]

(3.10)

and since we require the same vorticity distribution as the Stuart solution, we match the right-hand side of equation (3.8) with equation (3.10) to get the conditions on our unknown functions \(f(y)\) and \(g(x)\):

\[
\begin{align*}
 f'' f - f'^2 &= 1, \\
 g'' f + g f'' &= 0, \\
 g'' g - g'^2 &= -1.
\end{align*}
\]

(3.11) (3.12) (3.13)

Solving (3.12) we find that

\[
\begin{align*}
 f(y) &= C \exp(\alpha y) + D \exp(-\alpha y), \\
 g(x) &= A \cos(\alpha x) + B \sin(\alpha x),
\end{align*}
\]

(3.14) (3.15)
where A, B, C, D and α are constants of integration determined by satisfying equations (3.11) and (3.12):

\begin{align}
4C\alpha^2 D &= 1, \\
\alpha^2 (A^2 + B^2) &= 1.
\end{align}

(3.16) \hspace{1cm} (3.17)

Note that α is assumed real. Using the above conditions we can write a solution to equation (3.8) in the following form:

$$
\psi(x, y) = \log \left[C \exp(\alpha y) + \frac{1}{4\alpha^2 C} \exp(-\alpha y) + \epsilon \left[A \cos(\alpha x) \pm \frac{\sqrt{1 - \alpha^2 A^2}}{\alpha} \sin(\alpha x) \right] \right].
$$

(3.18)

The circulation of this solution is given by

$$
\Gamma = \oint \vec{u} \cdot d\vec{l},
$$

$$
= \int_0^\pi u_\infty dx = \pi.
$$

(3.19)

Yet, equation (3.18) can always be mapped back onto the Stuart vortex solution through the appropriate stretching and translation of the coordinate axes. The mapping from the Stuart vortex to the solution given by equation (3.18) is given by the following:

$$
y = \alpha \hat{y} + \log(2\alpha C),
$$

$$
x = \alpha \hat{x} + \arccos(\alpha A).
$$

The derivation of the Stuart vortex solution given by equation (3.18) shows
that as \(y \to \infty \), then

\[
\psi_\infty \sim \alpha y + \log(C/2).
\]

The usefulness of the above result will be discussed further in chapter 4. We now proceed to derive the equations governing the compressible Stuart-type vortices.

3.2 Governing equations

The inviscid flow of a compressible fluid is described by the Euler equations:

\[
\begin{align*}
\frac{\partial \rho}{\partial t} + (\mathbf{u} \cdot \nabla) \rho + \rho \nabla \cdot \mathbf{u} &= 0, \\
\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} &= -\frac{1}{\rho} \nabla p.
\end{align*}
\]

We shall be considering two dimensional, steady flow, and hence we can define a stream function by the relations

\[
\begin{align*}
\rho u &= \rho_{ref} \frac{\partial \psi}{\partial y}, \\
\rho v &= -\rho_{ref} \frac{\partial \psi}{\partial x},
\end{align*}
\]

where \(\rho_{ref} \) is some reference density, such that the continuity equation (3.20) is automatically satisfied. Using the definition of vorticity \((\omega = \nabla \times \mathbf{u}) \) along with equation (3.22), we can relate the stream function of a compressible flow to the vorticity distribution by the elliptic equation

\[
\left(\frac{\rho_{ref}}{\rho} \frac{\partial \psi_x}{\partial y} \right)_y + \left(\frac{\rho_{ref}}{\rho} \frac{\partial \psi_y}{\partial x} \right)_x = -\omega.
\]

(3.23)
In order to have a closed set of equations, we need to specify the thermodynamics of the flow. We use the result from the first and second law of thermodynamics:

\[Tds = dH - dp/\rho, \]

where \(T \) is the temperature, \(s \), the entropy, \(H \), the enthalpy, and \(p \), the pressure of the gas, in conjunction with the momentum equation (3.21) to arrive at a useful relationship known as Crocco’s Theorem [5]. In its general form, Crocco’s Theorem can be written as

\[T\nabla s = \nabla H_0 - \mathbf{u} \times (\nabla \times \mathbf{u}) \quad + \frac{\partial \mathbf{u}}{\partial t}. \]

This gives a relationship between the kinematics of the flow and the thermodynamics of the fluid. Note that for steady flow, the above result relates the vorticity in the flow to the thermodynamics of the fluid motion:

\[\mathbf{u} \times \omega = \nabla H_0 - T\nabla s. \]

Here \(\omega = \nabla \times \mathbf{u} \) is the vorticity and \(H_0 = H + \frac{u^2}{2} \) is the total enthalpy of the flow. There are two limits to equation (3.26) that are relevant to our problem. The constraint \(\nabla s = 0 \) corresponds to homentropic flow. The constraint \(\nabla H_0 = 0 \) corresponds to homenthalpic flow. The latter constraint is of interest because it will allow for a change in the entropy distribution throughout the flow and, hence, might lead to the formation of shock waves.

Before proceeding with our problem, we recall the vorticity equation for
compressible flow in two dimensions:

$$\frac{\partial \omega}{\partial t} + (u \cdot \nabla) \omega + \omega (\nabla \cdot u) = \frac{1}{\rho^2} \nabla \rho \times \nabla p. \quad (3.27)$$

We shall need to make use of the definition of the total derivative, $D/Dt = \partial/\partial t + u \cdot \nabla$. Using the chain rule for differentiation in conjunction with the vorticity and continuity equations, we arrive at the following compact form for the vorticity:

$$\frac{D}{Dt}(\omega/\rho) = \frac{1}{\rho^3} \nabla \rho \times \nabla p. \quad (3.28)$$

The importance of this form of the vorticity equation shall be more evident as we further discuss the type of solutions we wish to capture.

3.2.1 Homentropic flow

A flow in which the entropy is constant everywhere in the flow is said to be a homentropic flow. It can be shown that the equation of state for such a flow reduces to the following:

$$\frac{p}{\rho^\gamma} = \text{constant}, \quad (3.29)$$

where $\gamma = c_p/c_v$ is the ratio of specific heats. This implies that the gradient of density and pressure are aligned and hence the right-hand side of equation (3.28) is identically zero. Hence, for two dimensional, steady, homentropic flow of a compressible fluid, we can state that the ratio of the vorticity to the local density is constant along a particle path,

$$\frac{D}{Dt}(\omega/\rho) = 0. \quad (3.30)$$
Since particle paths are streamlines for steady flow, solutions of (3.30) can be written in the following form:

$$\frac{\omega}{\rho} = -\frac{1}{\rho_{ref}} F(\psi). \quad (3.31)$$

The left-hand side of equation (3.26) can be re-written as

$$\mathbf{u} \times \omega = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ (\rho_{ref}/\rho) \psi_y & -(\rho_{ref}/\rho) \psi_x & 0 \\ 0 & 0 & -(\rho/\rho_{ref}) F(\psi) \end{vmatrix}$$

$$= \psi_x F(\psi) \hat{i} + \psi_y F(\psi) \hat{j}$$

$$= \nabla G, \quad (3.32)$$

where

$$G = \int_{\psi_{ref}}^{\psi} F(\eta) d\eta.$$

The assumption of homentropic flow in conjunction with the definition of total enthalpy and the result above leads to

$$\nabla \left[H + \frac{1}{2}(u^2 + v^2) - G \right] = 0,$$

or

$$H + \frac{1}{2}(u^2 + v^2) - G = \text{constant}. \quad (3.33)$$

We shall be solving for the flow of an ideal gas; hence,

$$H = c_p T = \gamma RT / (\gamma - 1) = \frac{a^2}{\gamma - 1}. \quad (3.34)$$
Furthermore, the assumption of homentropic flow then gives a relationship between the speed of sound of the fluid and the density distribution so that we can write

\[a^2 = \gamma RT = \gamma RT_{ref} \left(\frac{T}{T_{ref}} \right) = a_{ref}^2 \left(\frac{\rho}{\rho_{ref}} \right)^{\gamma - 1}. \tag{3.35} \]

Combining equations (3.33), (3.34) and (3.35) allows us to rewrite the energy equation in the following form:

\[\frac{a_{ref}^2}{\gamma - 1 \left(\frac{\rho}{\rho_{ref}} \right)^{\gamma - 1}} + \frac{1}{2} \left(\frac{\rho_{ref}}{\rho} \right)^2 (\psi_z^2 + \psi_y^2) + \int_{\psi}^{\psi_{ref}} F(\zeta) d\zeta = \text{constant}. \tag{3.36} \]

Equations (3.23), (3.31) and (3.36) describe the steady flow of a homentropic, compressible flow in two dimensions. At this stage, we can specify a desired vorticity distribution and hence reduce our system to two equations for two unknowns, namely the density and the stream function. The choice of vorticity distribution is arbitrary, but we choose to investigate those types of flow that have the same distribution of vorticity as that suggested by [25].

3.3 Stuart-type vortices with walls

Equation (3.6) shows that the stream function of the incompressible Stuart vortex in an unbounded domain \((y \to \infty)\) is singular. We choose to investigate Stuart-type vortices in a channel of finite height as depicted in Figure 3.1 so as to understand the nature of this singularity for compressible flow thru the limit \(h \to \infty\).
Figure 3.1: A sketch of the streamlines for Stuart-type vortices with walls. The origin of the coordinate system is positioned at the stagnation point of the flow. The channel height is $2h$. Point C denotes the vortex core.

The vortices are of Stuart-type because we require the vorticity distribution throughout the flow to be of the form given in equation (3.4). We assume that the flow is periodic in the x-direction with period λ and hence construct the solutions to our problem in a quarter of the geometry depicted in Figure 3.1. The right-hand side boundary of the computational domain is constructed by drawing a line through the vortex core (point C in Figure 3.2) parallel to the y-axis and denoting the intersection of this line with the wall as point A. The computational domain along with the relevant boundary conditions is depicted in Figure 3.2.

We shall choose the conditions at point A, depicted in Figure 3.2, as the reference velocity and density. Since the flow is inviscid, the wall is a stream function of the flow and hence its value, ψ_{wall}, is constant along the
\[\psi = \psi_{\text{wall}} \]

![Diagram](image)

Figure 3.2: Computational domain and boundary conditions of the problem. The value of the streamfunction on the wall is a constant, \(\psi_{\text{wall}} \). Point \(S \) is the position of the stagnation point. Point \(C \) locates the vortex core.

line \(y = h \). With point \(A \) as our choice of reference state, we can rewrite equations (3.23), (3.31) and (3.36) as follows:

\[
\left(\frac{\rho_A}{\rho} \psi_x \right)_x + \left(\frac{\rho_A}{\rho} \psi_y \right)_y = \frac{\rho}{\rho_A} \mathcal{F}(\psi), \quad (3.37)
\]

\[
\frac{a_A^2}{\gamma - 1} \left(\frac{\rho}{\rho_A} \right)^{\gamma - 1} + \frac{1}{2} \left(\frac{\rho_A}{\rho} \right)^2 (\psi_x^2 + \psi_y^2) + \int_{\psi}^{\psi_{\text{wall}}} F(\zeta) \, d\zeta = \text{constant}, \quad (3.38)
\]

\[
\mathcal{F}(\psi) = \frac{2\pi u_A}{\lambda} \left(1 - \epsilon^2 \right) \exp\left(-\frac{4\pi \psi}{u_A \lambda} \right). \quad (3.39)
\]

The value of the constant in equation (3.38) is determined by evaluating the equation at the reference state \(A \). We note that the vorticity term in the energy equation (3.38) evaluated at the wall is identically zero, and hence
the value of the constant can be related to the conditions at point A.

\[
\text{constant} = \frac{a_A^2}{\gamma - 1} + \frac{u_A^2}{2} \equiv C_A. \tag{3.40}
\]

Before proceeding with the solution, we need to find the appropriate scalings for the problem and determine the number of relevant physical parameters.

3.3.1 Scaling of variables

We shall define the Mach number at the reference point A as \(M_A = u_A/a_A \) and evaluate the integral term in equation (3.38) analytically. Furthermore, we define the following non-dimensional quantities:

\[
\hat{x} = \frac{2\pi x}{\lambda}, \quad \hat{y} = \frac{2\pi y}{\lambda},
\]

\[
\hat{\rho} = \frac{\rho}{\rho_A}, \quad \hat{\psi} = \frac{2\pi \psi}{u_A \lambda}, \tag{3.41}
\]

and proceed to solve the following equations on the computational grid depicted in Figure 3.2:

\[
\left(\frac{1}{\hat{\rho}} \hat{\psi}_\hat{x}\right)_\hat{x} + \left(\frac{1}{\hat{\rho}} \hat{\psi}_\hat{y}\right)_\hat{y} = \hat{\rho} (1 - \varepsilon^2) \exp(-2\hat{\psi}), \tag{3.42}
\]

\[
\hat{\rho}^{\gamma - 1} = (1 + \frac{\gamma - 1}{2} M_A^2) + \frac{\gamma - 1}{2} M_A^2 \frac{1}{\rho^2} (\hat{\psi}_\hat{x}^2 + \hat{\psi}_\hat{y}^2)
\]

\[
= -\frac{\gamma - 1}{2} M_A^2 (1 - \varepsilon^2) [\exp(-2\hat{\psi}) - \exp(-2\hat{\psi}_{\text{wall}})]. \tag{3.43}
\]

We choose to omit the use of the hat notation in what follows below. It should be noted that all variables used will be non-dimensional unless
otherwise stated.

In the limit of infinite sound speed, the Mach number tends to zero and the energy equation (3.43) gives \(\rho = 1 \) everywhere in the flow. Substituting this result into equation (3.42) then gives us Louiville's equation for which we know Stuart vortices are an exact solution. It is possible to recover the Stuart vortex solution by an appropriate choice of boundary conditions on the wall. The asymptotics of the Stuart vortex solution as given by equation (3.6) suggests that if \(\psi_{\text{wall}} = \log[\cosh(h)] \) and \(M_A = 0 \), then in the limit as \(h \to \infty \), the solutions to equations (3.42) and (3.43) shall approach the Stuart vortex solution.

3.4 Numerical Method

We choose to stretch the vertical axis, \(y' = y/h \), so that the vertical axis of the domain depicted in Figure 3.2 transforms to \(0 \leq y' \leq 1 \). This stretching is also applied to Equations (3.42) and (3.43) and, hence, the wall height, \(h \), now appears as a parameter in our system of equations.

\[
\left(\frac{\psi_x}{\rho} \right)_x + \frac{1}{h^2} \left(\frac{\psi_y}{\rho} \right)_y = \rho (1 - \epsilon^2) \exp(-2\psi), \quad (3.44)
\]

\[
\rho^{\gamma - 1} = (1 + \frac{\gamma - 1}{2} M_A^2) + \frac{\gamma - 1}{2} M_A^2 \frac{1}{\rho^2} \left(\psi_x^2 + \frac{1}{h^2} \psi_y^2 \right)
\]

\[
= -\frac{\gamma - 1}{2} M_A^2 (1 - \epsilon^2) \left[\exp(-2\psi) - \exp(-2\psi_{\text{wall}}) \right]. \quad (3.45)
\]

The nonlinear nature of the above equations requires an iterative numerical procedure. As in Newton's method, we write the stream function and the
density as an initial guess plus some correction

\[\psi = \psi_0 + \delta \psi, \]

\[\rho = \rho_0 + \delta \rho, \]

and substitute the above expressions into equations (3.44) and (3.45). Linearizing the resulting system in \(\delta \psi \) and \(\delta \rho \) leads to a linear system given in Appendix C. \(\psi_0 \) and \(\rho_0 \) are the initial guesses, and so we attempt to approach the correct solution by solving for \(\delta \psi \), \(\delta \rho \) and then updating \(\psi \) and \(\rho \). It is important to note here that equation (3.45) is really a scalar equation in the variable \(\rho \), and so it is possible to analytically solve for \(\delta \rho \). This reduces the size of the Jacobian by half since the matrix that needs to be inverted at each iteration step now only corresponds to the unknowns \(\delta \psi \).

Second order finite difference formulas are used to evaluate the coefficients of the Jacobian, and hence the discretized system of equations

\[\mathbf{A}_{i,j} \cdot \delta \psi_{i,j} = \mathbf{B}_{i,j} \quad (3.46) \]

is solved on the grid defined by

\[x_i = (i - 1) \, dx, \quad i = 1, N \]
\[y_j = (j - 1) \, dy, \quad j = 1, M \quad (3.47) \]

where \(dx = \pi/(N - 1) \) and \(dy' = 1/(M - 1) \), subject to the modified
boundary conditions

\[
\begin{align*}
\frac{\partial (\delta \psi)}{\partial y'} &= -\frac{\partial \psi_0}{\partial y} && y' = 0, \\
\frac{\partial (\delta \psi)}{\partial x} &= -\frac{\partial \psi_0}{\partial x} && x = 0, \pi \\
\delta \psi &= \psi_{\text{wall}} - \psi_0 && y' = 1.
\end{align*}
\]

(3.48)

The entries of the matrices \(A_{i,j}\) and \(B_{i,j}\) are given in Appendix C. For a given Mach number \(M_A\), the parameters that need to be fixed are \(h\), \(\psi_{\text{wall}}\), and \(\epsilon\). If we set \(\psi_{\text{wall}} = \log(\cosh(h))\), \(M_A = 0\) and \(\epsilon = 0.5\) and take the limit of equations (3.44) and (3.45) as \(h \to \infty\) numerically, we must recover the incompressible Stuart vortex solution given by equation (3.5) for \(\epsilon = 0.5\). This is the main reason for the transformation from \(\kappa\) to \(\epsilon\) as suggested in equation (3.3). If we had used \(\kappa\) as a parameter, there would be no clear limiting procedure to recover the unbounded, incompressible Stuart vortex solutions from the compressible Stuart-type vortices with walls. Figure (3.3) shows that the result from the calculations of \(h = 6\) is in good agreement with the incompressible, unbounded Stuart vortex solution given by equation (3.5). This suggests that \(h = 6\) is a good approximation for \(h \to \infty\).

3.5 Perturbation solution

We construct an approximate series solution to equations (3.44) and (3.45) valid when \(M_A \ll 1\). The solution we seek has the Rayleigh-Janzen form,

\[
\psi(x, y) = \psi_0(x, y) + M_A^2 \psi_1(x, y) + O(M_A^4),
\]
Figure 3.3: Comparison of Stuart Vortex solution as given by equation 3.5 and numerical result for $M_A = 0, \epsilon = 0.5, \psi_{wall} = \log[\cosh(h)]$ and $h = 6$. The circles represent the numerical solution and the solid line depicts the analytical result.

$$\rho(x, y) = 1 + M_A^2 \rho_1(x, y) + O(M_A^4). \quad (3.49)$$

Substituting the above series form into equations (3.44) and (3.45) gives an equation for the zeroth order incompressible solution

$$\psi_{0_{xx}} + \frac{1}{H^2} \psi_{0_{yy}} = (1 - \epsilon^2) \exp(-2\psi_0), \quad (3.50)$$

along with the following boundary conditions:

$$\psi_0 = \psi_{wall} \quad y' = 1. \quad (3.51)$$
The zeroth order solution must be obtained numerically since we do not have an analytical form for the Stuart vortex flow with walls. Note that this analysis shows that \(\rho_0(x, y) = 1 \) is the correct solution to this order.

Since equation (3.45) is algebraic in \(\rho(x, y) \), it is possible to obtain an analytic expression for the density distribution from the second order problem,

\[
\rho_1(x, y) = \frac{1}{2} \left(1 - \left(\frac{\partial \psi_0}{\partial x} \right)^2 - \frac{1}{h^2} \left(\frac{\partial \psi_0}{\partial y} \right)^2 \right) - (1 - \epsilon^2)[\exp(-2\psi_0) - \exp(-2\psi_{wall})],
\]

(3.52)
in terms of the known incompressible solution. This is not the case for the stream function which requires numerical solution of the equation

\[
\psi_{1xx} + \frac{1}{h^2} \psi_{1y'y'} + 2(1 - \epsilon^2) \exp(-2\psi_0) \psi_1 = \rho_1(1 - \epsilon^2) \exp(-2\psi_0)
+ (\rho_1 \psi_0_x)_x
+ \frac{1}{h^2} (\rho_1 \psi_0_y)_y'.
\]

(3.53)

For this analysis, we assume that the value of the stream function on the wall, \(\psi_{wall} \), has no Mach number dependence. This does not have to be the case. Since we are constructing the perturbation solutions to serve as a check for the full numerical algorithm, it is only necessary to be consistent when it comes to the definition of \(\psi_{wall} \). Hence, the boundary conditions consistent with this assumption for the second order problem are as follows:

\[
\begin{align*}
\psi_1 &= 0 & x &= 0, \pi \\
\psi_1' &= 0 & y' &= 0, \\
\psi_1 &= 0 & y' &= 1.
\end{align*}
\]

(3.54)
<table>
<thead>
<tr>
<th>y</th>
<th>$\psi(x = \pi, y')$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Numerical</td>
</tr>
<tr>
<td>0.00</td>
<td>-0.634237</td>
</tr>
<tr>
<td>0.20</td>
<td>-0.487040</td>
</tr>
<tr>
<td>0.40</td>
<td>-0.121898</td>
</tr>
<tr>
<td>0.60</td>
<td>0.338631</td>
</tr>
<tr>
<td>0.80</td>
<td>0.827671</td>
</tr>
<tr>
<td>1.00</td>
<td>1.325003</td>
</tr>
</tbody>
</table>

Table 3.1: A comparison of the numerical and perturbation results at $M_A = 0.1$, $h = 2$, $\psi_{wall} = \log \cosh h$, and $\epsilon = 0.5$.

The compressibility correction to the zeroth order incompressible problem of Stuart-type vortices with walls is found numerically. Combining the incompressible solution with the compressible corrections as suggested by equation (3.49) then provides an approximate solution that can be compared to the full numerical solution discussed in the previous section. We test the numerical algorithm by performing both the full numerical simulation and calculating the perturbation solution for $M_A = 0.1$, $h = 2$, and $\psi_{wall} = \log[\cosh h)]$. The results are shown in tables (3.1) and (3.2) for both the density distribution and the stream function. Since the perturbation solution is accurate to $O(M_A^4)$ and since $M_A = 0.1$, we would expect any difference between the full numerical solution and the perturbation result to be in the fourth significant digit which is indicated by Tables (3.1) and (3.2).
\[x \quad \rho(x, y' = 0) \]

<table>
<thead>
<tr>
<th></th>
<th>Numerical</th>
<th>Perturbation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000000</td>
<td>1.002749</td>
<td>1.002880</td>
</tr>
<tr>
<td>0.628319</td>
<td>1.002323</td>
<td>1.002458</td>
</tr>
<tr>
<td>1.256637</td>
<td>1.000894</td>
<td>1.001031</td>
</tr>
<tr>
<td>1.884956</td>
<td>0.998105</td>
<td>0.998187</td>
</tr>
<tr>
<td>2.513274</td>
<td>0.994193</td>
<td>0.994065</td>
</tr>
<tr>
<td>3.141593</td>
<td>0.991952</td>
<td>0.991629</td>
</tr>
</tbody>
</table>

Table 3.2: A comparison of the numerical and perturbation results at \(M_A = 0.1 \), \(h = 2 \), \(\psi_{wall} = \log \cosh h \), and \(\epsilon = 0.5 \).

3.6 Results

We begin by exploring the Mach number dependence of the circulation of the flow as \(h \rightarrow \infty \). We set \(\psi_{wall} = \log[\cosh(h)] \) and \(M_A = 0 \) and compute the solutions to equations (3.44) and (3.45) for \(\epsilon = 0.5 \) and increasing \(h \). The computations are done on an \((N, M) = (101, 101)\) grid. The starting value of the wall height is \(h = 2 \), and the computations are continued until a wall height of \(h = 12 \). This procedure is then repeated for \(M_A = 0.05 \) and \(M_A = 0.1 \). The circulation in the computational domain is shown plotted versus the wall height in Figure 3.4. It is evident that for \(M_A = 0 \), the circulation is asymptotically approaching \(\Gamma = \pi \), the value expected from the Stuart vortex solution. Also, as the Mach number is increased, the circulation in the domain asymptotes to a constant other than \(\Gamma = \pi \), suggesting that the circulation for the compressible Stuart-type vortices in
an unbounded domain is a definite function of the Mach number. This was alluded to earlier in section 3.3.1. In the limit as $h \to \infty$, we would expect that the velocity distribution tends to a constant value along the line $y = h$ since the flow at infinity should resemble that of a vortex sheet. Figure 3.5 shows the velocity of the wall reaching a constant in the limit of increasing wall height for $M_A = 0.1$.

3.6.1 Perturbation expansion for $h \to \infty$

Before proceeding any further, we wish to construct yet another check of the numerical results. The asymptotic behaviour of the Stuart vortex solution is given by equation (3.6). It is clear that the value of the stream function on the wall is infinite as $h \to \infty$, hence we can re-write equations (3.41) and (3.42) in the limit as $\psi_{wall} \to \infty$,

$$\left[\frac{1}{\rho} \psi_x\right]_x + \left[\frac{1}{\rho} \psi_y\right]_y = \rho (1 - \epsilon^2) \exp(-2\psi),$$

(3.55)
Figure 3.5: Velocity distribution on the wall plotted at different values of the wall height, \(h \). \(M_A = 0.1, \epsilon = 0.5 \) and \(\psi_{\text{wall}} = \log(\cosh(h)) \).

\[
\rho^{-1} + \frac{\gamma - 1}{2} \frac{M_{\infty}^2}{\rho^2} \left[\psi_x^2 + \psi_y^2 \right] + \frac{\gamma - 1}{2} M_{\infty}^2 (1 - \epsilon^2) \exp(-2\psi) = 1 + \frac{\gamma - 1}{2} M_{\infty}^2
\]

(3.56)

where

\[
\lim_{h \to \infty} M_A^2 = M_{\infty}^2
\]

since the flow at infinity is that which would be produced by a vortex sheet of finite strength.

Now we attempt to construct a perturbation solution for the compressible Stuart-type vortices in an unbounded domain by assuming an expansion of the form

\[
\psi(x, y) = \psi_0(x, y) + M_{\infty}^2 \psi_1(x, y) + M_{\infty}^4 \psi_2(x, y) + ... \\
\rho(x, y) = 1 + M_{\infty}^2 \rho_1(x, y) + M_{\infty}^4 \rho_2(x, y) + ...
\]

(3.57)
Figure 3.6: The difference between the full numerical solution and the perturbation solution is denoted by $\delta \rho$. The slope of the solid line indicates that the difference between the full and approximate solution is $O(M^4_{\infty})$. In this calculation, $\epsilon = 0.8$, $h = 6$

where ψ_0 is that given by equation (3.5). Substituting the above expansions into equations (3.55) and (3.56), we find that since the energy equation is algebraic in ρ, it is easy to solve for the first correction of the density, ρ_1, analytically. Therefore, we can write the density distribution in the flow as

$$
\rho(x, y) = 1 + M^2_{\infty} \frac{\epsilon \cos x}{\cosh y + \epsilon \cos x}.
$$

(3.58)

We will compare the above result with the numerical calculations for the case of $h = 6$, $\epsilon = 0.8$, $\psi_{wall} = \log[\cosh(h)]$ and $M_A = 0.10$. In Figure (3.6), $\delta \rho$ is defined as the difference between the full numerical solution and the perturbation result. As expected, this difference is $O(M^4_{\infty})$. It must be noted here that since obtaining ρ_1 for the compressible Stuart vortex in an unbounded domain is easy (as shown above), it was attempted so as to have yet another analytic result by which to validate the full numerical solution.
of equations (3.44) and (3.45). Obtaining ψ_1 must be done numerically and it is not a trivial matter. A discussion of the appropriate solution procedure for obtaining compressible Stuart vortex solutions in an unbounded domain is presented in chapter 4.

3.6.2 Parallel shear flow

The parallel shear flow is an interesting limit of the Stuart vortex solution that corresponds to $\epsilon = 0$. In this limit, there is no x-dependence in the flow and hence the governing equations can be simplified and re-written as,

\[
\frac{1}{h^2} \left[\frac{1}{\rho} \psi' \right]_{y'} = \rho (1 - \epsilon^2) \exp(-2\psi), \quad (3.59)
\]

\[
\rho^{\gamma-1} = \left[1 + \frac{\gamma - 1}{2} M_A^2 \right] + \frac{\gamma - 1}{2} M_A^2 \frac{1}{\rho} \psi'_y
\]

\[= -\frac{\gamma - 1}{2} M_A^2 (1 - \epsilon^2) [\exp(-2\psi) - \exp(-2\psi_{wall})]. \quad (3.60)
\]

By analogy with one dimensional homentropic flow, if we choose to search for solutions in which the density is a function of the Mach number, M_A, only, we find an exact solution to the above system of equations given below.

\[
\psi(y') = \log \left[\cosh \rho \ h \ y' \right], \\
\rho = \left(1 + \frac{\gamma - 1}{2} M_A^2 \frac{1}{\cosh^2 \rho \ h} \right)^{1/(\gamma-1)} \quad (3.61)
\]

It is now possible to use the above solution as yet another check on the numerical algorithm. We set $\psi_{wall} = \log(\cosh \rho \ h)$, $\epsilon = 0$ and $h = 2$ and continue the solutions from $M_A = 0$ to $M_A = 0.5$. Figure (3.7) shows that
the two solutions are in excellent agreement.

![Graph showing comparison of exact and numerical solutions](image)

Figure 3.7: Comparison of exact solution (solid line) with numerical solution (solid circle). The parameters of the problem are \(h = 2, \varepsilon = 0, M_A = 0.5 \) and \(\psi_{wall} = 1.341529 \).

The nonlinear nature of the governing equations for the parallel shear flow suggest that there might be other solutions than the one obtained above. This is actually easy to verify by looking at equation (3.59). Instead of stretching the \(y \)-coordinate axis with the density, it is possible to view the compressibility correction as an addition to some base incompressible result and hence write

\[
\psi = \log \cosh(h \, y') + \log(\rho),
\]

(3.62)

which, when substituted into equation (3.60), will give the following implicit analytic result for the density of the flow

\[
\rho = \left[1 + \frac{\gamma - 1}{2} M_A^2 \left(1 - \frac{\tanh^2 h}{\rho^2} \right) \right]^{1/(\gamma - 1)}.
\]

(3.63)

Note that these solutions have different values for the stream function on the wall and hence have different circulations.
Figure 3.8: Vorticity contours for $h = 2$, $\epsilon = 0$, $\psi_{wall} = \log[\cosh h]$ and $M_A = 0$. The contours are equally spaced. Level 1 corresponds to a value of $\omega_1 = 0.128734$ and Level F corresponds to $\omega = 0.941895$.

3.6.3 Parameter search

Equation (3.58) suggests that for a fixed Mach number, the greatest drop in density will be realized for the vortices with the smallest cores. These vortices correspond to $\epsilon = 1$ and are the limit of an array of point vortices. The other limit corresponds to $\epsilon = 0$ which represents a parallel shear flow. Since we have explored the parallel shear flow limit analytically, we shall now choose two different values of $\epsilon = 0.5, 0.8$ to conduct our parameter search. The vorticity contours for each of these values as well as that of $\epsilon = 0$ is shown in Figures (3.8), (3.9) and (3.10). All the solutions depicted showed second order convergence consistent with the numerical discretization described in section 3.4.

Furthermore, we shall choose two values of the wall height, $h = 2, 6$. We have shown that $h = 6$ is a good approximation for $h \to \infty$, and by taking $h = 2$ we will study the effect of walls on the flow structure. In each of the
The above computations, the Mach number is set at $M_A = 0$ and is increased in steps of $\delta M_A = 0.01$. Test runs were done on various grid sizes $(N, M) = (81, 81), (101, 101), (121, 121)$ and finally the computations were performed on a $(N, M) = (101, 101)$ grid. While increasing the Mach number of the flow, we noticed that the number of iterations for convergence to a solution increased as well. For all the cases tested above, the solutions would exhibit a drop in the core density with an increase in the Mach number. After some critical value of M_A, the density in the core would start increasing, and finally the solution would converge to a parallel shear flow regardless of the input parameters. The maximum attainable Mach number as well as the density drop in the core are tabulated in Table (3.3). Typical contours of the stream function and density are shown in Figures (3.11), (3.12), (3.13) and (3.14).

Even though the drop in the core density was much more significant for $\epsilon = 0.8$ than for $\epsilon = 0.5$, none of the above searches lead to local supersonic
Figure 3.10: Vorticity contours for $h = 2, \epsilon = 0.8, \psi_{wall} = \log(\cosh h)$ and $M_A = 0$. The contours are equally spaced. Level 1 corresponds to a value of $\omega_1 = 0.647702$ and Level F corresponds to $\omega = 9.35945$.

flow anywhere in the computational domain. As is shown in Figure (3.15), the local Mach number in the flow increases from the specified value on the wall to a value slightly higher and decreases to zero at the core of the vortex. Solving equation (3.46) with a suitable iterative solver will increase the resolution of the problem, and this could possibly lead to finding supersonic flow.

3.6.4 Effect of wall height and compressibility

We shall attempt to define a vortex core so as to investigate the effects of compressibility and wall height on the structure of vortices with continuous vorticity distribution. Figure (3.16) depicts the horizontal velocity at the right-hand boundary, $u(x = \pi, y)$. Figure (3.17) depicts the vertical velocity profile on the symmetry line $y = 0$. We shall denote the distance from the peak of the horizontal velocity, $u_{\text{max}}(x = \pi, y)$, to the vortex core by b_1.
\[
\begin{array}{cccc}
 h & \epsilon & M_A & \rho(x = \pi, y = 0) \\
 2.00 & 0.50 & 0.27 & 0.9634 \\
 2.00 & 0.80 & 0.32 & 0.6365 \\
 6.00 & 0.50 & 0.175 & 0.9853 \\
 6.00 & 0.80 & 0.275 & 0.90833 \\
\end{array}
\]

Table 3.3: A list of the maximum density drop in the core for two different values of the wall height, \(h \), and vorticity concentration, \(\epsilon \).

Similarly, we shall define the distance from the peak of the vertical velocity, \(u_{\text{max}}(x, y = 0) \), to the core by \(b_2 \). In Figures (3.18) and (3.19), we set \(\epsilon = 0.5 \) and \(M_A = 0.0 \) and hold the circulation in the domain, \(\Gamma = \pi \), fixed and compute the solutions for various wall heights. The curve plotted in Figure (3.18) flattens out at \(h = 3 \) and remains horizontal as \(h \to 0 \). This plot shows that the location of the maximum horizontal velocity peak used in Figure (3.16) to define \(b_1 \) approaches the channel wall as \(h \to 3 \) and remains there for all subsequent decreasing values of \(h \). Figure (3.19) shows that the location of the maximum vertical velocity peak used to define \(b_2 \) in Figure (3.17) is tending towards zero as \(h \to 0 \). Hence, we can conclude that in the limit of decreasing wall height, the recirculation regions present in Stuart vortex solutions vanish. In Figure (3.20) we set \(\epsilon = 0.5 \) and \(\psi_{\text{wall}} = \log[\cosh h] \), increase the Mach number \(M_A \), and measure the circulation in the domain for various values of the channel height. This shows that for a given vorticity distribution in which the parameters are fixed, the circulation in the domain is greatest for smaller values of the wall height. Also, it further confirms that \(h = 6 \) is a good numerical approximation for \(h \to \infty \) since
Figure 3.11: Equally spaced contours of the stream function for $h = 2$, $\epsilon = 0.8$, $\psi_{\text{wall}} = \log \cosh h$ and $M_A = 0.32$. Level 1 corresponds to a value of -1.43116, and Level F corresponds to 1.14126.

the difference between the values of the circulations plotted for various wall heights decreases rapidly such that the difference between $h = 4$ and $h = 6$ is hardly noticeable. It must be noted here that the computations for the various wall heights was stopped at the highest attainable Mach number.
Figure 3.12: Equally spaced contours of the density for $h = 2$, $\epsilon = 0.8$, $\psi_{wall} = \log[\cosh h]$ and $M_A = 0.32$. Level 1 corresponds to 0.66083, and Level F corresponds to 1.00293.

Figure 3.13: Equally spaced contours of the density for $h = 6$, $\epsilon = 0.8$, $\psi_{wall} = \log[\cosh h]$ and $M_A = 0.275$. Level 1 corresponds to 0.915557, and Level F corresponds to 1.01879.
Figure 3.14: Equally spaced contours of the stream function for $h = 6$, $\epsilon = 0.8$, $\psi_{wall} = \log[\cosh h]$ and $M_A = 0.275$. Level 1 corresponds to a value of -0.79971 and Level F corresponds to 4.80415.

Figure 3.15: Local mach number profile at $x = \pi$. Parameters of the problem are $h = 6$, $\epsilon = 0.8$, $M_A = 0.275$ and $\psi_{wall} = \log[\cosh(h)]$.
Figure 3.16: Horizontal velocity profile, $u(x = \pi, y)$, for unbounded Stuart vortex solution given by equation (3.5) in which $\epsilon = 0.5$.

Figure 3.17: Vertical velocity profile, $v(x, y = 0)$, for unbounded Stuart vortex solution given by equation (3.5) in which $\epsilon = 0.5$.
Figure 3.18: Horizontal extent of the defined vortex core plotted versus varying channel height. $\Gamma = \pi$, $M_A = 0$, and $\epsilon = 0.5$ are held fixed.

Figure 3.19: Vertical extent of the defined vortex core plotted versus varying channel height. $\Gamma = \pi$, $M_A = 0$, and $\epsilon = 0.5$ are held fixed.
Figure 3.20: Circulation measured as a function of Mach number for various wall heights
Chapter 4

Conclusion

In chapter 2 we have shown that it is possible to have steady flow of an infinite, periodic array of vortices in a compressible flow and, furthermore, that this array can exhibit transonic shock-free flow. It has also been illustrated that by taking special care in treating the singularity of the transformation at infinity, it is possible to reduce a compressible transonic flow to a strictly linear problem in the hodograph plane. The evacuated vortex core results indicate that such solutions can be constructed in the hodograph plane, but that they all exhibit cuspidal behaviour which indicates the onset of limit lines.

Further extensions of this work include investigation of the stability of this vortex array. We have shown that steady solutions exist and now we must determine whether these solutions are stable. Also of interest is to determine whether there exists a class of compressible free boundary problems that lead to a linear system of equations in the hodograph plane. If so, this would then allow for the use of the principle of superposition in constructing
compressible flow streamlines for a variety of flows in the hodograph plane akin to potential flow theory.

Note that the vorticity in the hollow vortex core problem of chapter 2 was concentrated into vortex sheets on the surfaces of the vortices. In chapter 3, by extending the Stuart vortex solution to include compressibility, we have constructed two dimensional steady compressible vortex flows with continuous distribution of vorticity. Increasing the channel width, \(h \to \infty \), shows that compressible Stuart-type vortices in an unbounded domain exist. Furthermore, it suggests that the circulation is a specific function of the Mach number. Hence, in order to solve for the unbounded vortex flow, it is necessary to continue the generalized Stuart vortex solution given in section 3.1. By taking

\[\psi = Ay, \quad y \to \infty \]

we inflate the system of equations given by equation (3.46) by one unknown, \(A \), and use as the boundary condition at infinity a chosen value for the circulation of the problem, \(\Gamma \). The specified value of the circulation then will determine the value of \(A \) uniquely. This gives an integral constraint for the boundary condition at infinity that can easily be dealt with through the use of bordered matrices.

We have shown that the effect of decreasing the channel width while fixing the circulation in the problem is to wash out the recirculating regions and that the limit of very small channel height is inevitably a parallel shear flow. Furthermore, exact analytical solutions for the special case of the compressible parallel shear flow are given in implicit form. Even though no local supersonic regions where found for the Stuart-type vortices, it is
believed that increasing the resolution will most probably help in increasing the Mach numbers achieved in this work. The fact that the number of iterations per solution increased as the Mach number was raised suggests that if an iterative matrix solver with an appropriate pre-conditioner is chosen, perhaps locally supersonic flow can be achieved.

Constructing the compressible homentropic Stuart vortices in an unbounded domain is certainly a natural extension of this work. These solutions can be very valuable to studies of shock vortex interaction in compressible media as well as studies in turbulence and aeroacoustics. The extension of this work to the other limit of homenthalpic flow, as described in section (3.2), can also be very enlightening since allowing the entropy to vary may result in regions of steep entropy gradients in the flow. Certainly a stability analysis of these flows is also necessary to make the investigation of the compressible Stuart-type vortices complete.

Another interesting thought that has risen from this work is the possibility of extending results in potential flow to include continuous vorticity distributions. The Stuart vortex solution can be viewed as extending an infinite array of point vortices. Mallier and Maslows [15] capitalize on this idea by extending the potential for a row of counter rotating vortices. Since potential flow theory has been used to a great extent by scientists and engineers to model flows (i.e., wake behind a cylinder, flow over an airfoil, etc.), this extension to include continuous vorticity distributions would make the models more realistic.
Appendix A

Asymptotic analysis of Chaplygin’s equation

Introducing the following local coordinates in the hodograph plane,

$$\alpha = q - a, \quad \beta = \theta - \pi,$$ \hspace{1cm} (A.1)

and substituting this result into equation (2.10) leads to

$$\frac{\partial^2 \psi}{\partial \alpha^2} + (1 - M^2_\infty) \frac{\partial^2 \psi}{\partial \beta^2} = - (\alpha^2 + 2\alpha)(1 - p_1(\alpha + 1)^2) \frac{\partial^2 \psi}{\partial \alpha^2}$$

$$- (\alpha + 1)(p_2 - p_3(\alpha + 1)^2) \frac{\partial \psi}{\partial \alpha}$$

$$+ p_4(\alpha^2 + 2\alpha) \frac{\partial^2 \psi}{\partial \beta^2},$$ \hspace{1cm} (A.2)

where $p_1 = \frac{\gamma - 1}{2} M^2_\infty$, $p_2 = 1 + p_1$, $p_3 = \frac{\gamma - 3}{2} M^2_\infty$ and $p_4 = \frac{\gamma + 1}{2} M^2_\infty$.
Near the singularity at \((a, \pi)\), (A.2) takes the form

\[
\frac{\partial^2 \psi}{\partial \alpha^2} + (1 - M_{\infty}^2) \frac{\partial^2 \psi}{\partial \beta^2} = 0
\]

(A.3)

along with the corresponding boundary condition,

\[
\frac{\partial \psi}{\partial \beta} = 0, \quad \beta = 0.
\]

(A.4)

We introduce local polar coordinates \((s, \delta)\) defined by

\[
s e^{i \delta} = (s - a) + i \frac{\theta - \pi}{\sqrt{1 - M_{\infty}^2}}.
\]

(A.5)

Then, all possible solutions of the above equation are of the form

\[
\psi = e^{2m \delta} \cos 2m\delta
\]

(A.6)

where \(m\) has integral values, as well as

\[
\psi = \log(s) + C
\]

(A.7)

where \(C\) is a constant. We choose the type of the singularity in the hodograph plane as required by the formulation of the problem in the physical plane (as discussed in section 2.2.4). Thus we write \(\psi = \psi_0 + \psi_1\) where

\[
\psi_0 = \log(s)
\]

(A.8)
so that, on identifying the dominant terms on the right-hand side of (A.2),

$$
\frac{\partial^2 \psi_1}{\partial s^2} + \frac{1}{s} \frac{\partial \psi_1}{\partial s} + \frac{1}{s^2} \frac{\partial^2 \psi_1}{\partial \delta^2} = -2p_5 s \cos \delta \cos \frac{2\delta}{s} - (p_2 - p_3) \cos \frac{\delta}{s},
$$

(A.9)

where \(p_5 = 1 - p_1 + \frac{p_4}{1/M_{\infty}} \). Solving the above equation leads to the complementary function

$$
\psi_1 = \frac{p_5}{8} s \cos 3\delta - \frac{p_6}{2} s \log s \cos \delta.
$$

(A.10)

It is now evident that the \(\log s \) singularity has higher order corrections that all go to zero smoothly as \((s, \delta) = (0, 0)\). Since we intend to subtract the singularity from equation (2.10) and solve for the regular corrections, the exact form of the singularity is crucial. Any other form of the singularity, upon subtraction from equation (2.10), would lead to residual singularities in the modified equation.
Appendix B

Estimation of ψ_v using matched asymptotics

In this Appendix we find a leading order approximation to the value of the stream function at the boundary of the evacuated vortex. The incompressible solution [12] for a row of point vortices is given by

$$\psi(x, y) = -\frac{\Gamma}{4\pi} \log \left(\frac{1}{2} (\cosh(2\pi y/L) - \cos(2\pi x/L)) \right). \quad (B.1)$$

We opt to use polar coordinates and hence use the transformation

$$y = r \sin \theta,$$

$$x = r \cos \theta,$$
to get the incompressible solution $\psi = \psi(r, \theta)$. Furthermore, we take the limit of (B.1) as $r \to 0$ and find the leading order behaviour to be given by

$$\lim_{r \to 0} \psi(r, \theta) \sim \frac{\Gamma}{2\pi} \left[- \log(\pi/L) - \log(r)\right]. \quad \text{(B.2)}$$

The solution for an isolated hollow vortex [18] in a compressible medium is given by

$$\psi(s) = \frac{\Gamma}{4\pi} \left[(1 - s)^{\gamma-1} \log s + \frac{1}{\gamma - 1} \int_1^s \log \xi (1 - \xi)^{\frac{2-\gamma}{\gamma-1}} d\xi \right] + \psi_v, \quad \text{(B.3)}$$

where $s = R^2/r^2$ and $R = \frac{\Gamma(\gamma-1)^{\frac{1}{2}}}{2\sqrt{2\pi}e_0}$ where the subscript 0 denotes stagnation conditions. We shall define

$$F(s; \gamma) = \frac{1}{\gamma - 1} \int_0^s \log \xi (1 - \xi)^{\frac{2-\gamma}{\gamma-1}} d\xi$$

and hence find the leading order behaviour of $\psi(s)$ as $s \to 0$ as follows:

$$\psi(s) \sim \frac{\Gamma}{2\pi} \left[- \log r + \log R - \frac{1}{2} F(1; \gamma) \right] + \psi_v \quad \text{(B.4)}$$

The incompressible solution, (B.2), is an outer solution which is matched to the solution for an isolated hollow vortex, (B.4), giving an approximation for the value of the stream function on the boundary of the evacuated vortex.

$$\psi_v = \frac{\Gamma}{4\pi} \left[F(1; \gamma) - \log a^2 \right]. \quad \text{(B.5)}$$
Appendix C

Jacobian entries for Stuart vortex problem

Section (3.4) discusses how to obtain the Jacobian of the system of equations (3.44) and (3.45). The linearized form of equation (3.44) is written as

$$A \delta \psi_{xx} + B \delta \psi_{yy} + C \delta \psi_x + D \delta \psi_y + E \delta \psi + F \delta \rho + G \delta \rho_x + H \delta \rho_y + \mathcal{L} = 0.$$ (C.1)

We solve for the density correction, $\delta \rho$, from equation (3.45),

$$\delta \rho = \frac{-1}{Q} (R \delta \psi_x + S \delta \psi_y + T \delta \psi + \mathcal{G}_1(\psi_0, \rho_0)),
$$

$$R = \frac{(\gamma - 1) M_A^2}{\rho_0^2} \psi_{0z},$$

$$S = \frac{(\gamma - 1) M_A^2}{h^2 \rho_0^2} \psi_{0y'},$$

$$T = - (\gamma - 1) M_A^2 (1 - \epsilon^2) \exp(-2\psi),$$

$$Q = (\gamma - 1) \rho_0^{-2} - \frac{\gamma - 1}{\rho_0^3} M_A^2 (\psi_{0x}^2 + \frac{1}{h^2} \psi_{0y'}^2).$$ (C.2)
where $G_{1}(v_{0}, p_{0})$ is equation (3.45) evaluated at the latest guess and h is the position of the wall. We can now substitute the above result into equation (C.1). This leads to the following system:

\[
\begin{align*}
\cpx 2 \delta \psi_{xx} + \cpx y \delta \psi_{yy} + \cpl x \delta \psi_{x} +
\cpl y \delta \psi_{y} + \cpmd \delta \psi_{xy} + \cpx \delta \psi + c \epsilon &= 0.
\end{align*}
\]

(C.3)

The entries of the Jacobian matrix $A_{i,j}$, and the right-hand side matrix, $B_{i,j}$, is given by the following:

\[
\begin{align*}
a_{i+1,j} &= \cpx 2 / \Delta x^2 + \cpl x / 2 \Delta x, \\
a_{i-1,j} &= \cpx 2 / \Delta x^2 - \cpl x / 2 \Delta x, \\
a_{i,j} &= -2 \cpx y / \Delta x^2 - 2 \cpx y / \Delta y^2 + \cpx, \\
a_{i,j+1} &= \cpx y / \Delta y^2 + \cpl y / 2 \Delta y, \\
a_{i,j-1} &= \cpx y / \Delta y^2 - \cpl y / 2 \Delta y, \\
a_{i+1,j+1} &= \cpmd / 4 \Delta x \Delta y, \\
a_{i-1,j-1} &= \cpmd / 4 \Delta x \Delta y, \\
a_{i+1,j-1} &= \cpmd / 4 \Delta x \Delta y, \\
a_{i-1,j+1} &= \cpmd / 4 \Delta x \Delta y,
\end{align*}
\]

(C.4)

where Δx and Δy are defined in section 3.4 and

\[
\begin{align*}
\cpx 2 &= A - (GR/Q), \\
\cpx y &= B - (HS/Q), \\
\cpl x &= C - (FR/Q) + G[(RQ_z/Q^2) - (R_z/Q) - (T/Q)].
\end{align*}
\]
\[+ H[(Q_y R/Q^2) - (R_y/Q)], \]

\[
cp_{1dy} = D - (FS/Q) + G[(SQ_x/Q^2) - (S_x/Q)]
\]

\[+ H[(Q_y S/Q^2) - (S_y/Q) - (T/Q)], \]

\[
\begin{align*}
\text{cp} &= E - (FT/Q) + G[(Q_x T/Q^2) - (T_x/Q)] + H[(T Q_y/Q^2) - (T_y/Q)], \\
\text{cpmd} &= -(SG/Q) - (HR/Q), \\
\text{ce} &= L - (FG/Q) + G[(Q_x G/Q^2) - (G_x/Q)] \\
&\quad + H[(Q_y G/Q^2) - (G_y/Q)]. \quad \text{(C.5)}
\end{align*}
\]

The functions \(Q, R, S, T \) and \(G \) have already been defined above. The remaining functions from the Jacobian entries above are related to the initial guess through the following relationships:

\[
\begin{align*}
A &= 1/\rho_0 \\
B &= 1/(h^2 \rho_0) \\
C &= -\rho_{0z}/\rho_0^2 \\
D &= -\rho_{0z}/(h^2 \rho_0^3) \\
E &= 2 \rho_0 (1 - \epsilon^2) \exp(-2 \psi_0) \\
F &= -\psi_{0zz}/\rho_0^2 + 2\rho_{0z} \psi_{0z}/\rho_0^3 - \psi_{0zz}/(h^2 \rho_0^3) \\
&\quad + 2 \rho_{0y} \psi_{0y}/(h^2 \rho_0^3) - (1 - \epsilon^2) \exp(-2 \psi_0) \\
G &= -\psi_{0z}/\rho_0^2 \\
H &= -\psi_{0y}/(h^2 \rho_{0y}) \\
L &= (\psi_{0z}/\rho_0)z + (\psi_{0y}/\rho_0)y - \rho_0 (1 - \epsilon^2) \exp(-2 \psi_0). \quad \text{(C.6)}
\end{align*}
\]
The right-hand side matrix is given by the following everywhere in the interior of the grid,

$$b_{i,j} = -ce,$$ \hspace{1cm} (C.7)

and by the boundary conditions listed in section (3.4) on the boundaries.
Appendix D

Fortran listing for hollow core vortex

*** Using the capacitance matrix approach
*** to solve the second order finite difference
*** discretization of the problem. The point at
*** infinity is treated specially (dtsi=0 used directly)
*** Don’t forget to change dimensions for the mapping !!!
*** Need to change in subroutine map as well as function psin

real*8 q,tth,a1f,bta,g,a,b,d,e,ar3,ar4,ar5
real*8 dq,dth,pi,t1,t2,tm1,mv,df,exact,extra,pert
real*8 force,ainf2,a2f,ext,ar1,ar2,filter
real*8 term,bndq0,bndq1,bndtop,botconst,topconst,capconst
integer n,m,i,j,il,lu,ia,is,js,ias
integer j1,j2,j3,j4,j5,nm,ik,ip,kmap,nn
parameter(n=1001,m=256,il=1,iu=n,nm=n*(m+1),ip=1,kmap=10)
parameter(aInf=0.2d0, minf=0.d0, g=1.4d0, nn=((n-1)/kmap)+1)
double precision aa(n), bb(n), dd(n), cc(n), res6(nm, ip)
double precision psik(n, m+1), y(m+1), yz(mm), psi(n, m+1)
double precision uu(nm), vv(nm), res(ip, ip), rhs(nm)
double precision unit(ip, ip), res2(ip, ip), indx(ip), yy(ip, ip)
double precision res3(ip, ip), res4(ip, ip), res5(nm, ip)
double precision ut(n), vt(n), wk(n), xt(nn, m+1), yt(nn, m+1)
open(67, file='kay.out')
open(70, file='stag.out')
open(71, file='top.out')
open(73, file='inf.out')
open(74, file='side.out')
write(*,*) 'parameters of the problem'
pi = dacos(-1.d0)
aInf2 = aInf*aInf
minf2 = minf*minf
bta = (minf2/(2.d0+((g-1)*minf2)))/aInf2
write(*,*) 'bta = ', bta
dq = 1.d0/(n-1)
dttht = (pi)/(2.d0*(m))
tm1 = (aInf2-1.d0)*(g-1.d0)*minf2+2.d0*aInf2
mv = dsqrt(2.d0*minf2/tm1)
write(*,*) 'dq2 = ', dq*dq
write(*,*) 'dttht2 = ', dttht*dttht
write(*,*) 'minf= ',minf
write(*,*) 'ainf= ',ainf
write(*,*) 'mmortex= ',mv
write(*,*)
write(*,*) 'checking points for the computation'

*** initializing the unit matrix for the capacitance approach

do 123 i=1,ip
do 124 j=1,ip
 unit(i,j) = 1.d0
124 continue
123 continue

*** setting up the correction matrices

is = (ainf/dq)+1
js = m+1
ias = n*(js-1)+is
ia = ias

do 55 i=1,nm
 uu(i)=0.d0
55 continue
uu(ia)=1.d0

do 66 i=1,nm
 vv(i)=0.d0
66 continue

j=m+1

q=(is-1)*dq
write(*,*)'at infinity q=',q
if(q.ne.ainf) pause 'something is wrong'

tht = (pi/2.d0)+(j-1)*dtht

j1 = n*(j-1)+is+1
j2 = n*(j-1)+is
j3 = n*(j-1)+is-1
j4 = n*(j-2)+is
j5 = n*(j-3)+is

vv(j1)= -a(g,bta,dq,q)
vv(j2)= 3.d0-d(g,bta,dq,dtht,q)
vv(j3)= -b(g,bta,dq,q)
vv(j4)= -4.d0-2.d0*e(g,bta,dtht,q)
vv(j5) = 1.d0

*** Re-ordering and transforming the U matrix

do 51 i=1,n
 do 100 j=1,m+1
ia = n*(j-1)+i
y(j) = uu(ia)
100 continue

call cosft1 (y,m)

do 111 j=1,m+1
 ia = n*(j-1)+i
 uu(ia) = y(j)
 111 continue
51 continue

*** setting up the equations for each mode

do 5 j=1,m+1

*** constructing the "i+1" diagnol

do 15 i=2,n-1
 q=(i-1)*dq
 t1 = q*q*(1.d0-(g-1.d0)*bta*q*q)/(dq*dq)
 t2 = q*(1.d0-(g-3.d0)*bta*q*q)/(2.d0*dq)
 aa(i) = t1+t2
15 continue
*** boundary conditions
 aa(il) = 4.d0
 aa(iu) = 0.d0

*** constructing the "i" diagonal

 do 20 i=2,n-1
 q=(i-1)*dq
 tht = (pi/2.d0)+(j-1)*dtht
 t1 = -2.d0*q*q*(1.d0-(g-1.d0)*bta*q*q)/(dq*dq)
 filter = 8.d0*(cos((j-1)*dtht)-1.d0)/(dtht*dtht)
*
 filter = -4.d0*(j-1)*(j-1)
 t2 = filter*(1.d0-(g+1)*bta*q*q)
 dd(i) = t1+t2
 20 continue

*** boundary conditions
 dd(il) = -3.d0
 dd(iu) = 1.d0

*** constructing the "i-1" diagonal

do 25 i=2,n-1
 q=(i-1)*dq
 t1 = q*q*(1-(g-1)*bta*q*q)/(dq*dq)
 t2 = -q*(1-(g-3)*bta*q*q)/(2.d0*dq)
 bb(i) = t1+t2
 25 continue

*** boundary conditions
 bb(i1) = 0.d0
 bb(iu) = 0.d0

*** solving the first of the P-auxiliary problems

 do 225 i=1,n
 ik = n*(j-1)+i
 cc(i) = uu(ik)
 225 continue

*** using the Sherman-Morrison formula for the
*** tri-diagonal solves ... see diagram

do 1022 i=1,n
 ut(i) = 0.d0
 vt(i) = 0.d0
1022 continue
 ut(il) = 1.d0
 vt(3) = -1.d0

call sy(il,iu,bb,dd,aa,cc)
do 1011 i=1,n
 wk(i) = cc(i)
 cc(i) = ut(i)
1011 continue

call sy(il,iu,bb,dd,aa,cc)

call dotmat(vt,cc,1,1,n,res)
botconst = 1.d0 + res(1,1)
call dotmat(vt,wk,1,1,n,res)
topconst = res(1,1)
capconst = -1.d0*topconst/botconst
do 1012 i=1,n
 cc(i) = capconst*cc(i)
1012 continue

call addmat(wk,cc,n,1,cc)

**** sherman-morrison formula done

do 226 i=1,n
 ik=n*(j-1)+i
 uu(ik)=cc(i)
226 continue
5 continue

write(*,*) 'it is working for auxiliary problem'

*** taking the result of the auxiliary problem and transforming
*** it back to real space

do 83 i=1,n
 do 84 j=1,m+1
 ia = n*(j-1)+i
 y(j) = uu(ia)
84 continue

call cosft1(y,m)

do 85 j=1,m+1
 ia = n*(j-1)+i
 uu(ia) = (2.d0/m)*y(j)
85 continue
continue
write(*,*) 'I have z in the real space'

*** Performing the PxP matrix inversion

call dotmat vv, uu, ip, ip, nm, res
write(*,*) 'the product of vv and z = ', res(1,1)
call addmat res, unit, ip, ip, res2
write(*,*) 'the addition by one gives = ', res2(1,1)
call matinv res2, ip, ip, indx, yy
write(*,*) 'the inversion routine gives = ', yy(1,1)

ext = 1/yy(1,1)
write(*,*) 'this is inversion by hand = ', ext

*** Constructing the Forcing Term

*** the interior points

do 2 i=2, n-1
do 3 j=1, m+1
q = (i-1)*dq
tht = (pi/2.0d0) + (j-1)*dtht
\begin{verbatim}

ia = n*(j-1)+i
if(q.eq.ainf.and.tht.eq.pi) then
 rhs(ia) = 0.d0
else
 rhs(ia) = force(g,ainf,minf,q,tht)
* rhs(ia) = 0.d0
endif
3 continue
2 continue

*** the right hand side derivative condition

i=1
do 444 j=1,m+1
 q = (i-1)*dq
 tht = (pi/2.d0) + (j-1)*dtht
 ia = n*(j-1)+i
 rhs(ia) = 2.d0*dq*bndq0(ainf,minf,tht)
* rhs(ia) = 0.d0
444 continue

*** the fixed value of psi

i=n
\end{verbatim}
do 4 j=1,m+1
 tht = (pi/2.d0) + (j-1)*dtht
 ia = n*(j-1)+i
 rhs(ia) = bndq1(ainf,minf,tht)
 * rhs(ia) = cos(2.d0*tht)
4 continue

*** the bottom boundary ... dtpsi=f(q)

j=1
do 114 i=2,n-1
 q=(i-1)*dq
 tht = (pi/2.d0)+(j-1)*dtht
 ia = n*(j-1)+i
 term = 2.d0*dtht*e(g,bta,dtht,q)*bdntop(ainf,minf,q)
 * rhs(ia)=force(g,ainf,minf,q,tht)+term
 * rhs(ia) = 0.d0
114 continue
 write(*,*) 'forcing function complete'

*** transforming the rhs vector to Fourier Space

 do 512 i=1,n
 do 200 j=1,m+1

ia = n*(j-1)+i
y(j) = rhs(ia)

continue

call cosft1 (y, m)

do 121 j=1, m+1
 ia = n*(j-1)+i
 rhs(ia) = y(j)
121 continue

512 continue

*** setting up the equations for each mode

do 151 j=1, m+1

*** constructing the "i+1" diagnol

do 115 i=2, n-1
 q=(i-1)*dq
 t1 = q*q*(1-(g-1)*bta*q*q)/(dq*dq)
 t2 = q*(1-(g-3)*bta*q*q)/(2.*d0*dq)
 aa(i) = t1+t2
115 continue
*** boundary conditions
 aa(il) = 4.d0
 aa(iu) = 0.d0

*** constructing the "i" diagonal

 do 120 i=2,n-1
 q=(i-1)*dq
 tht = (pi/2.d0)+(j-1)*dtht
 t1 = -2.d0*q*q*(1-(g-1)*bta*q*q)/(dq*dq)
 filter = 8.d0*(cos((j-1)*dtht)-1.d0)/(dtht*dtht)
 filter = -4.d0*(j-1)*(j-1)
 t2 = filter*(1.d0-(g+1)*bta*q*q)
 dd(i) = t1+t2
120 continue

*** boundary conditions
 dd(il) = -3.d0
 dd(iu) = 1.d0

*** constructing the "i-1" diagonal

do 125 i=2,n-1
q=(i-1)*dq

\[t1 = q^2(1-(g-1)*\beta a *q)/(dq*dq) \]
\[t2 = -q^2(1-(g-3)*\beta a *q)/(2.d0*dq) \]

bb(i) = t1+t2

125 continue

*** boundary conditions
bb(i1) = 0.d0
bb(iu) = 0.d0

*** Solving the last tridiagonal problem

do 77 i=1,n
ik = n*(j-1)+i
cc(i)=rhs(ik)

77 continue

*** using the Sherman-Morrison formula for the
*** tri-diagonal solves ... see diagram

do 1042 i=1,n
 ut(i) = 0.d0
 vt(i) = 0.d0
1042 continue
 ut(il) = 1.d0
 vt(3) = -1.d0

call sy(il,iu,bb,dd,aa,cc)
do 1031 i=1,n
 wk(i) = cc(i)
 cc(i) = ut(i)
1031 continue
 call sy(il,iu,bb,dd,aa,cc)

call dotmat(vt,cc,1,1,n,res)
botconst = 1.d0 + res(1,1)
call dotmat(vt,wk,i,1,n,res)
topconst = res(1,1)
capconst = -1.d0*topconst/botconst
do 1032 i=1,n
 cc(i) = capconst*cc(i)
1032 continue
 call addmat(wk,cc,n,1,cc)

**** sherman-morrison formula done

do 30 i=1,n
 psik(i,j) = cc(i)
30 continue
151 continue

*** re-storing solution to physical plane

do 35 i=1,n
 do 40 j=1,m+1
 y(j) = psik(i,j)
40 continue

call cosft1(y,m)

do 45 j=1,m+1
 psi(i,j) = (2.d0/m)*y(j)
45 continue
35 continue

do 81 i=1,n
 do 82 j=1,m+1
 ia = n*(j-1)+i
yz(ia) = psi(i, j)

82 continue
81 continue

*** the final stage of the capacitance matrix approach

call dotmat(vv, yz, ip, ip, nm, res3)
call dotmat(yy, res3, ip, ip, ip, res4)
do 71 i = 1, ip
 do 72 j = 1, ip
 res4(i, j) = -res4(i, j)
 72 continue
71 continue
call dotmat(uu, res4, nm, ip, ip, res5)
call addmat(yz, res5, nm, ip, res6)
write(*,*) 'the capacitance matrix approach is DONE'

do 181 i = 1, n
 do 182 j = 1, m + 1
 ia = n*(j-1)+i
 psi(i, j) = res5(ia, 1)
 182 continue
181 continue
i = (ainf/dq)+1
do 88 j=1,m+1
 tht = (pi/2.d0) + (j-1)*dtht
 write(73,*) tht, psi(i,j)
88 continue

do 33 i=1,n
 do 34 j=1,m+1
 q = (i-1)*dq
 tht = (pi/2.d0)+(j-1)*dtht
 ia = n*(j-1)+i
 arg1 = (q-ainf)*(q-ainf)
 arg2 = ainf2*(tht-pi)*(tht-pi)/(1.d0-minf2)
 arg3 = -1.d0*ainf2*(tht-pi)*(tht-pi)
 arg4 = (1.d0-minf2)*(q-ainf)*(q-ainf)
 arg5 = ainf2*pi*pi/4.d0
 extra = arg3/(arg4+arg5)
 if(q.eq.ainf.and.tht.eq.pi) go to 34
 psi(i,j) = res6(ia,1)+log(arg1+arg2)+extra
 * psi(i,j) = res6(ia,1)+log(arg1+arg2)
 34 continue
33 continue

*** checking to see whether solution closes the
*** hodograph plane.

 call closure(n,m+1,ainf,minf,g,dq,dtht,psi)

*** checking for limit lines

 call cusp(psi,n,m,dq,dtht,ainf,minf,g)
 write(*,*) 'No limit lines have appeared !!!'

*** formatting output

 if(minf.gt.0.1d0) go to 901

 i = (ainf/dq)+10

 do 89 j=1,m+1
 q = (i-1)*dq
 tht = (pi/2.d0)+(j-1)*dtht
 exact = pert(ainf,minf,q,tht)
 diff = exact - psi(i,j)
 write(74,701) tht,psi(i,j),exact,diff
 89 continue

 i=1

 do 54 j=1,m+1
q = (i-1)*dq
tht = (pi/2.d0)+(j-1)*dtht
exact = pert(ainf,minf,q,tht)
diff = exact - psi(1,j)
write(70,701) tht,psi(1,j),exact,diff
continue

format(1x,4(f12.6,3x))

j=1
do 65 i=1,n
q = (i-1)*dq
tht = (pi/2.d0)+(j-1)*dtht
exact = pert(ainf,minf,q,tht)
diff = psi(i,1) - exact
write(67,301) q,psi(i,1),exact,diff
continue

format(1x,4(f12.6,2x))

j=m
do 665 i=1,n
q = (i-1)*dq
tht = (pi/2.d0)+(j-1)*dtht
exact = pert(ainf,minf,q,tht)
diff = psi(i,m) - exact
write(71,301) q,psi(i,m),exact,diff
continue

*** output formatted for use with Tecplot

901 write(*,*) 'preparing output for tecplot'
 call map(g,a1nf,mini,p,si,n,m+1,xt,yt,nn,kmap)
 stop
 end

subroutine addmat(a,b,n,m,res)
 implicit double precision (a-h,o-z)
 integer i,j,n,m
 double precision a(n,m),b(n,m),res(n,m)
 *
 write(*,*) 'inside matrix addition routine'
 do 10 i=1,n
 do 12 j=1,m
 res(i,j) = a(i,j)+b(i,j)
 *
 write(*,*) i,j,a(i,j),b(i,j),res(i,j)
 12 continue
 10 continue
 *
 write(*,*) 'outside matrix addition routine',
 return
 end
subroutine dotmat(a,b,n,m,ijcmn,res)
 real*8 sum
 integer i,j,n,m,ij,ijcmn
 double precision a(n,ijcmn),b(ijcmn,m),res(n,m)

 do 10 i=1,n
 do 15 j=1,m
 sum = 0.d0
 do 20 ij=1,ijcmn
 sum = sum + a(i,ij)*b(ij,j)
 20 continue
 res(i,j) = sum
 15 continue
 10 continue
 return
end

function a(g,bta,dq,q)
 real*8 g,bta,a,q,dq
 real*8 t1,t2
 a = (t1(g,bta,q)/(dq*dq)) + (t2(g,bta,q)/(2.d0*dq))
 return
end

function d(g,bta,dq,dttht,q)
 real*8 d,q,dttht,dq
real*8 t1, t3, g, bta

\[d = -2.0 * ((t1(g, bta, q)/(dq*dq)) + (t3(g, bta, q)/(dtht*dtht))) \]

return
d

function b(g, bta, dq, q)
real*8 g, bta, b, q, dq, ti, t2

\[b = (t1(g, bta, q)/(dq*dq)) - (t2(g, bta, q)/(2.0*dq)) \]

return
d

function e(g, bta, dtht, q)
real*8 g, bta, e, q, dtht, t3

\[e = t3(g, bta, q)/(dtht*dtht) \]

return
d

function t1(g, bta, q)
real*8 g, bta, q, t1

\[t1 = (q*q)*(1.0 - (q*q*bta*(g-1.0))) \]

return
d

function t2(g, bta, q)
real*8 g, bta, q, t2

\[t2 = q*(1.0 - (q*q*bta*(g-3.0))) \]
return
dend

function t3(g,bta,q)
real*8 g,bta,q,t3
 t3 = 1.0d0-((g+1.0d0)*bta*q*q)
return
dend

*** Thomas Algorithm ... tridiagonal matrix solver

subroutine sy(il,iu,bb,dd,aa,cc)
real*8 r
double precision aa(iu),bb(iu),cc(iu),dd(iu)
integer il,iu,lp,i,j,nmax
 parameter(nmax=10000)
double precision f(nmax)

*** making sure that the original matrix
*** stays in tact ... work vector f(nmax)

do 5 i=il,iu
 f(i) = dd(i)
 5 continue
*** establish upper triangular matrix

lp = il+1
do 10 i=lp,iu
 r = bb(i)/dd(i-1)
 dd(i)=dd(i)-r*aa(i-1)
10 cc(i) = cc(i)-r*cc(i-1)

*** back substitution

cc(iu)=cc(iu)/dd(iu)
do 20 i=lp,iu
 j = iu-i+il
20 cc(j)=(cc(j)-(aa(j)*cc(j+1)))/dd(j)

*** solution stored in cc

*** restoring the diagonal of original matrix

do 25 i=il,iu
 dd(i) = f(i)
25 continue
return
end

*** Calculates the cosine transform of a set y(1:n+1) of real-valued
*** data points. The transformed data replace the original data in
*** array y. N must be a power of 2. This program, without changes,
*** also calculates the inverse cosine transform, but in this case
*** the output array should be multiplied by 2/n.

subroutine cosft1(y,n)
 integer j,n
 real*8 sum,y1,y2
 real*8 theta,wi,wpi,wpr,wr,wtemp
 double precision y(n+1)
 theta = dacos(-1.d0)/n
 wr = 1.d0
 wi = 0.d0
 wpr = -2.d0*sin(0.5d0*theta)**2
 wpi = dsin(theta)
 sum = 0.5d0*(y(1)-y(n+1))
 y(1) = 0.5d0*(y(1)+y(n+1))
 do 11 j=1,(n/2)-1
 wtemp = wr
 wr = wr*wpr-wi*wpi+wr
 wi = wi*wpr+wtemp*wpi+wi
 y1 = 0.5d0*(y(j+1)+y(n-j+1))
 y2 = (y(j+1)-y(n-j+1))
 y(j+1) = y1-wi*y2
 11 continue

y(n+j+1) = y1+wi*y2
sum = sum+wr*y2
11 continue
 call realft(y,n,1)
y(n+1) = y(2)
y(2) = sum
do 12 j=4,n,2
 sum = sum +y(j)
y(j) = sum
12 continue
return
end

subroutine realft(data,n,isign)
 integer isign,n
 integer i,i1,i2,i3,i4,n2p3
 double precision data(n)
real*8 c1,c2,h1i,h1r,h2i,h2r,wis,wrs
real*8 theta,wi,wpi,wpr,wr,wtemp
theta = dacos(-1.d0)/(dble(n/2))
c1 = 0.5d0
if(isign.eq.1) then
 c2 = -0.5d0
 call four1(data,n/2,1)
else
\[c_2 = 0.5d0 \]
\[\theta = -\theta \]
\[\text{end if} \]
\[wpr = -2.d0 * \text{dsin}(0.5d0 * \theta) ** 2 \]
\[wpi = \text{dsin}(\theta) \]
\[wr = 1.d0 + wpr \]
\[wi = wpi \]
\[n2p3 = n + 3 \]
\[\text{do 11 i=2,n/4} \]
\[i1 = 2*i-1 \]
\[i2 = i1+1 \]
\[i3 = n2p3-12 \]
\[i4 = i3+1 \]
\[wrs = wr \]
\[wis = wi \]
\[h1r = c1 * (\text{data}(i1)+\text{data}(i3)) \]
\[h1i = c1 * (\text{data}(i2)-\text{data}(i4)) \]
\[h2r = -c2 * (\text{data}(i2)+\text{data}(i4)) \]
\[h2i = c2 * (\text{data}(i1)-\text{data}(i3)) \]
\[\text{data}(i1) = h1r+wrs*h2r-wis*h2i \]
\[\text{data}(i2) = h1i+wrs*h2i+wis*h2r \]
\[\text{data}(i3) = h1r-wrs*h2r+wis*h2i \]
\[\text{data}(i4) = -h1i+wrs*h2i+wis*h2r \]
\[\text{wtemp}=wr \]
\[wr = wr*wpr-wi*wpi+wr \]
\[wi = wi*wpr*wtemp*wpi+wi \]
continue
if(isign.eq.1) then
 h1r = data(1)
data(1) = h1r + data(2)
data(2) = h1r - data(2)
else
 h1r = data(1)
data(1)=c1*(h1r+data(2))
data(2)=c1*(h1r-data(2))
call four1(data,n/2,-1)
endif
return
end

subroutine four1(data,nn,isign)
integer nn,isign
integer i,istep,j,m,mmax,n
real*8 tempi,tempr,theta,wi,wpi,wpr,wr,wtemp
double precision data(2*nn)
n = 2*nn
j=1
do 11 i=1,n,2
 if(j.gt.i) then
 tempr = data(j)
 tempi = data(j+1)
 endif
11 continue
data(j) = data(i)
data(j+1) = data(i+1)
data(i) = tempr
data(i+1) = tempi

endif

m = n/2

1 if((m.g.e.2).and.(j.gt.m)) then
j=j-m
m=m/2
goto 1
dendif

j=j+m

11 continue

mmax = 2

2 if(n.gt.mmax) then
 istep = 2**mmax
 theta = (2.d0*dcos(-1.d0))/(isign*mmax)
 wr = -2.d0*dsin(0.5d0*theta)**2
 wi = dsin(theta)
 wr = 1.d0
 m = 1,mmax,2
 do 12 i=m,n,istep
 j=i+mmax
 tempr = wr*data(j)-wi*data(j+1)
 tempi = wr*data(j+1)+wi*data(j)
 do 12
data(j) = data(i) - tempr
data(j+1) = data(i+1) - tempi
data(i) = data(i) + tempr
data(i+1) = data(i+1) + tempi

12 continue
wtemp = wr
wr = wr * wpr - wi * wpi + wr
wi = wi * wpr + wtemp * wpi + wi

13 continue
mmax = istep
goto 2
def
return
end

*** This routine employs the LU decomposition routine from the
*** Numerical Recipes handbook and then multiplies the result
*** by the identity matrix to find the inverse of a general
*** NxN matrix. The inverse of the matrix is stored in Y and
*** the original matrix A is destroyed...

subroutine matinv(a,n,np,indx,y)
real d
integer i,j,n,np
double precision a(n,n),y(n,n),indx(n)

do 22 i=1,n
 do 33 j=1,n
 y(i,j)=0.d0
 33 continue
 y(i,i)=1.d0
 22 continue

call lubcmp(a,n,np,indx,d)

do 10 j=1,n
 call lubksb(a,n,np,indx,y(1,j))
 10 continue
 56 format(1x,6(f8.4,3x))
return
end

****** LU Decomposition

subroutine lubcmp(a,n,np,indx,d)
real*8 d,aamax,sum,tiny,dum
integer i,j,n,np,k,nmax,imax
parameter (nmax=10000,tiny=1.0e-16)
double precision a(n,n), indx(n), vv(nmax)

d = 1.0

11 do 12 i=1,n
aamax = 0.0

11 do 11 j=1,n
if(abs(a(i,j)).gt.aamax) aamax=abs(a(i,j))

11 continue

if(aamax.eq.0) pause 'singular matrix'

vv(i)=1./aamax

12 continue

12 do 19 j=1,n
 do 14 i=1,j-1
 sum = a(i,j)

12 do 13 k=1,i-1
 sum = sum - a(i,k)*a(k,j)

13 continue

14 a(i,j) = sum

14 continue

aamax = 0.0

16 do 16 i=j,n
 sum = a(i,j)

16 do 15 k=1,j-1
 sum = sum-a(i,k)*a(k,j)

15 continue

15 a(i,j) = sum

15 dum = vv(i)*abs(sum)
if(dum.ge.aamax) then
 imax = i
 aamax = dum
endif

continue

if (j.ne.imax) then
 do 17 k=1,n
 dum = a(imax,k)
 a(imax,k)=a(j,k)
 a(j,k) = dum
 17 continue

 d=-d
 vv(imax) = vv(j)
endif

indx(j)=imax

if(a(j,j).eq.0.) a(j,j) = tiny

if(j.ne.n) then
 dum = 1./a(j,j)
 do 18 i=j+1,n
 a(i,j) = a(i,j)*dum
 18 continue
endif

continue

return

end
subroutine lubksb(a,n,np,indx,b)
real*8 sum
integer i,j,n,np,ii,ll
double precision a(n,n),indx(n),b(n)
ii = 0
do 12 i=1,n
 ll = indx(i)
 sum = b(ll)
 b(ll)=b(i)
 if (ii.ne.0) then
 do 11 j=ii,i-1
 sum = sum - a(i,j)*b(j)
 continue
 end
 else if (sum.ne.0) then
 ii = i
 endif
 b(i) = sum
 continue
12
 do 14 i=n,1,-1
 sum = b(i)
 do 13 j=i+1,n
 sum = sum-a(i,j)*b(j)
 continue
 b(i) = sum/a(i,i)
14
 continue
return
function psi0(ainf,q,tth)
real*8 ainf,q,tth,psi0,q2,ainf2
real*8 arg1,arg2,arg3,arg4
ainf2 = ainf*ainf
q2 = q*q
arg1 = q2+ainf2+2.d0*ainf*q*cos(tth)
arg2 = q2+ainf2-2.d0*ainf*q*cos(tth)
arg3 = q2*ainf2+1.d0+2.d0*ainf*q*cos(tth)
arg4 = q2*ainf2+1.d0-2.d0*ainf*q*cos(tth)
psi0 = log((arg1*arg2)/(arg3*arg4))
return
end

function bndq0(ainf,minf,tth)
real*8 minf,ainf,tth,bndq0,pi
real*8 arg1,arg2,arg3,minf2
real*8 arg4,arg5,extra
minf2 = minf*minf
pi = dacos(-1.d0)
arg1 = (tth-pi)*(tth-pi)
arg2 = 1.d0-minf2
arg3 = arg1/arg2
arg4 = 32.d0*arg1*arg2
arg5 = ainf*(-4.d0*arg2-pi*pi)*(-4.d0*arg2-pi*pi)
extra = arg4/arg5

bndq0 = (2.d0/(ainf*(1.d0+arg3)))+extra
* bndq0 = (2.d0/(ainf*(1.d0+arg3)))
return
end

function bndq1(ainf,minf,tht)
real*8 minf,ainf,tht,bndq1,pi
real*8 arg1,arg2,arg3
real*8 ainf2,minf2
real*8 arg4,extra
pi = dacos(-1.d0)
ainf2 = ainf*ainf
minf2 = minf*minf
arg1 = (1.d0-ainf)*(1.d0-ainf)
arg2 = ainf2*(tht-pi)*(tht-pi)
arg3 = 1.d0-minf2

arg4 = arg3*arg1 + (ainf2*pi*pi/4.d0)
extra = arg2/arg4
bndq1 = -1.d0*log(arg1+(arg2/arg3)) + extra
* bndq1 = -1.d0*log(arg1+(arg2/arg3))
return
end
function bndtop(ainf,minf,q)
 real*8 ainf,minf,q,bndtop,ainf2
 real*8 arg1, arg2, arg3, arg4, pi, minf2
 pi = dacos(-1.d0)
 ainf2 = ainf*ainf
 minf2 = minf*minf
 arg1 = pi*ainf2
 arg2 = (1.d0-minf2)
 arg3 = (q-ainf)*(q-ainf)
 arg4 = pi*pi*ainf2/4.d0
 bndtop = arg1/(arg2*arg3+arg4)
 return
end

function force(g, ainf, minf, q, theta)
implicit double precision (a-h, o-z)
real*8 minf, minf2, pi
 minf2 = minf*minf
 ainf2 = ainf*ainf
 pi = dacos(-1.d0)
 tht = theta
 t2 = ainf**2
 t3 = t2**2
 t4 = t3*q
t5 = \theta^2

t7 = \min^2

t8 = t7^2

t9 = t8 \times t7

t10 = t3 \times t9

t12 = t3 \times \alpha

t14 = q^2

t15 = t14^2

t16 = t15 \times q

t19 = \pi^2

t21 = t12 \times t7

t23 = t9 \times t15

t25 = t12 \times t8

t26 = t8 \times t15

t29 = t2 \times \alpha

t30 = t29 \times t14

t34 = t29 \times t9

t36 = t14 \times q

\begin{align*}
t40 &= 4 \times t4 \times t5 - t10 \times q + 2 \times t12 \times t5 + 2 \times t9 \times t16 - 4 \times t8 \times t16 + 2 \times t12 \times t19 + 3 \times t21 \\
&= 2 \times t7 \times t16 - 5 \times t23 \times \alpha - 2 \times t12 - t25 + 10 \times t26 \times \alpha - t21 \times t5 - 2 \times t30 - t21 \\
&= t19 - t21 \times g + t25 \times g + t34 \times t14 + 2 \times t2 \times t36 \times t7 - 8 \times t4 \times t7
\end{align*}

t42 = t2 \times t8

t44 = t3 \times t8

t45 = q \times t5

t47 = t8 \times t14

t48 = g \times t29
t49 = t48\times t5 \\
t51 = t48\times t19 \\
t53 = g\times t14 \\
t55 = t29\times t8 \\
t57 = t7\times t15 \\
t58 = g\times \text{ainf} \\
t61 = t3\times t7 \\
t63 = t2\times t9 \\
t64 = g\times t36 \\
t66 = q\times t19 \\
t68 = t7\times t14 \\
t69 = t29\times t19 \\
t72 = t29\times t5 \\
t78 = 4\times t4\times t19-5\times t42\times t36+t44\times t45+t47\times t49+t47\times t51-t34\times t53+t55 \\
\#*t53+t57+t58+t23+t58-4\times t61\times t45-t63\times t64+t44\times t66+t68+t69+4\times t4 \\
\#+6\times t30\times t7-t47\times t72-t47\times t69-t68\times t51-5\times t55\times t14+5\times t44\times q \\
t84 = \theta\times \pi \\
t87 = g\times q \\
t89 = t87\times t5 \\
t91 = t87\times t19 \\
t99 = q\times \theta\times \pi \\
t111 = -4\times t12\times \theta\times \pi+3\times t63\times t36-5\times t57\times \text{ainf}-8\times t4\times t84-t68\times t49 \\
\#\times t10\times t87-t44\times t89-t44\times t91+\times t21\times g\times t5+t21\times g\times t19+t68\times t72+8\times t61\times t99 \\
\#-4\times t61\times t66+2\times t21\times t84-2\times t2\times t7\times t64+3\times t42\times t64+2\times t61\times t87-3\times t44 \\
\#\times t87+2\times t61\times t89-4\times t61\times g\times t99 \\
t120 = t7\times t36
t121 = g*t2

\begin{align*}
t122 &= t121*t5 \\
t126 &= t2*theta*pi \\
t128 &= t121*t19 \\
t130 &= t8*t36 \\
t138 &= t29*theta*pi \\
t142 &= t2*t5 \\
t145 &= t2*t19 \\
t152 &= 2*t130*t128+2*t68*g*t138-2*t47*g*t138+4*t120*t142 \\
&\quad -8*t120*t126+4*t120*t145-4*t130*t142+8*t130*t126-4*t130 \\
&\quad -2*t145-2*t68*t138+2*t47*t138 \\
&\quad -2*t21*g*theta*pi-2*t44*t99-2*t26*t58-2*t120*t122+4*t120 \\
&\quad -g*t126-2*t120*t128+2*t130*t122-4*t130*g*t126+t152
\end{align*}

b1 = ainf2*(2.0+(g-1.0)*minf2)

b2 = 1.0-minf2

b3 = (q-ainf)*(q-ainf)

b4 = (theta-pi)*(theta-pi)

b5 = (b2*b3+ainf2*b4)

bot = b1*b5*b5

if(bot.eq.0.0) PAUSE 'force is singular'

f1 = top/bot

f2 = exforce(g,ainf,minf,q,tth)
force = f1+f2

* force = f1
return
dend

function exforce(g,ainf,minf,q,tth)
implicit double precision (a-h,o-z)
real*8 minf
pi = dacos(-1.d0)
t1 = minf**2
t2 = t1**2
t3 = t2*t1
t4 = q**2
t5 = t4**2
t6 = t5*t4
t7 = t3*t6
t9 = t1*t6
t11 = ainf**2
t12 = t11**2
t13 = t12*t11
t14 = t13*t2
t16 = t11*ainf
t17 = t4*q
t18 = t16*t17
t19 = t18*t1
t20 = t2*t6
\[t22 = \text{tht}**2 \]
\[t24 = t12*a\text{inf} \]
\[t25 = t24*q \]
\[t26 = t25*t1 \]
\[t27 = t12*t3 \]
\[t29 = \text{pi}**2 \]
\[t30 = t29**2 \]
\[t32 = t4*t12 \]
\[t34 = t5*t11 \]
\[t36 = 128*t7*g+128*t9*g+256*t14*g-3072*t19-256*t20*g-512*t14 \]
\[\#+768*t18*t22-2560*t26+896*t27*t4-64*t25*t30+128*t32*t30-512 \]
\[\#*t34*t29 \]
\[t37 = t13*t1 \]
\[t40 = t3*t5 \]
\[t41 = t22*t11 \]
\[t43 = \text{tht}*\text{pi} \]
\[t44 = t43*t1 \]
\[t48 = t2*t5 \]
\[t49 = g*t22 \]
\[t50 = t49*t11 \]
\[t52 = t1*t5 \]
\[t53 = t52*g \]
\[t54 = t43*t11 \]
\[t56 = t48*\text{g} \]
\[t58 = g*t29 \]
\[\begin{align*}
t59 &= t58 \cdot t11 \\
t62 &= t5 \cdot q \\
t63 &= t3 \cdot t62 \\
t65 &= 8 \cdot t37 \cdot t30 - 128 \cdot t32 \cdot t29 + 1024 \cdot t40 \cdot t41 - 4096 \cdot t34 \cdot t44 + 1024 \\
\# \cdot t40 \cdot t29 \cdot t11 + 512 \cdot t48 \cdot t50 + 512 \cdot t53 \cdot t54 - 1024 \cdot t56 \cdot t54 - 192 \cdot t52 \\
\# \cdot t59 - 1536 \cdot t32 - 64 \cdot t14 \cdot t29 - 512 \cdot t63 \cdot ainf \\
t69 &= t22 \cdot t1 \\
t71 &= t29 \cdot \pi \\
t72 &= \text{hht} \cdot t71 \\
t73 &= t72 \cdot t11 \\
t75 &= t58 \cdot ainf \\
t77 &= g \cdot t30 \\
t78 &= t77 \cdot t11 \\
t80 &= t43 \cdot ainf \\
t86 &= 1024 \cdot t25 - 1536 \cdot t18 \cdot t43 + 1024 \cdot t34 \cdot t43 - 2304 \cdot t18 \cdot t69 + \\
\# 256 \cdot t48 \cdot t73 + 640 \cdot t37 - 384 \cdot t63 \cdot t75 + 64 \cdot t48 \cdot t78 + 768 \cdot t63 \cdot t80 + \\
\# 768 \cdot t63 \cdot g \cdot t80 - 128 \cdot t56 \cdot t73 + 256 \cdot t7 \cdot t58 \\
t88 &= t49 \cdot ainf \\
t90 &= t41 \cdot t29 \\
t93 &= t3 \cdot \text{hht} \cdot \pi \\
t95 &= t2 \cdot \text{hht} \\
t96 &= t95 \cdot t71 \\
t98 &= g \cdot \text{hht} \\
t99 &= t98 \cdot \pi \\
t101 &= t24 \cdot t2 \\
t102 &= t101 \cdot q
\end{align*} \]
t103 = t13*t3

\[t106 = t12*t2 \]

\[t107 = t106*t4 \]

\[t108 = t2*t62 \]

\[t110 = 256*t7*t49-384*t63*t88+64*t56*t90+1536*t18*t93-\]

\[#128*t32*t96-512*t7*t99+2048*t102-256*t20-128*t103*g+\]

\[#128*t7+768*t18*t29-3328*t107+1024*t108*a+inf \]

\[t113 = t13*t29 \]

\[t116 = t24*t3 \]

\[t117 = t116*q \]

\[t119 = t16*t3*t17 \]

\[t120 = t22*t29 \]

\[t123 = t1*t17 \]

\[t124 = t123*g \]

\[t125 = t72*t16 \]

\[t127 = t2*t29 \]

\[t130 = t2*t17 \]

\[t132 = t29*t1 \]

\[t134 = 192*t113*t1-256*t25*t22+128*t9-512*t117-1024*t119 \]

\[#*-64*t25*t120+512*t25*t43-64*t124*t125+2432*t18*t127-2624 \]

\[**t34*t127-192*t130*t125+256*t25*t132 \]

\[t135 = t11*t2 \]

\[t137 = t69*t29 \]

\[t140 = t130*g \]

\[t142 = t22*t16*t29 \]

\[t146 = t77*t16 \]
\[t_{150} = t_{30} \cdot t_{16} \]
\[t_{154} = -2048 \cdot t_{135} \cdot t_{5} - 192 \cdot t_{32} \cdot t_{137} + 192 \cdot t_{123} \cdot t_{125} - 32 \cdot t_{140} \]
\[#*t_{142} + 64 \cdot t_{140} \cdot t_{125} + 32 \cdot t_{124} + 32 \cdot t_{123} + 142 - 2048 \cdot t_{40} \cdot t_{54} \]
\[#-96 \cdot t_{123} \cdot t_{142} - 96 \cdot t_{123} \cdot t_{150} + 96 \cdot t_{130} \cdot t_{142} + 448 \cdot t_{48} \cdot t_{59} \]
\[t_{159} = t_{2} \cdot t_{22} \]
\[t_{167} = t_{159} \cdot t_{29} \]
\[t_{169} = t_{1} \cdot g \]
\[t_{170} = t_{169} \cdot t_{22} \]
\[t_{172} = t_{98} \cdot t_{71} \]
\[t_{174} = -256 \cdot t_{40} \cdot t_{50} + 512 \cdot t_{40} \cdot g \cdot t_{54} + 2560 \cdot t_{34} \cdot t_{159} + 2304 \cdot t_{18} \]
\[#*t_{159} - 256 \cdot t_{40} \cdot t_{59} + 96 \cdot t_{130} \cdot t_{150} - 32 \cdot t_{130} \cdot t_{146} + 640 \cdot t_{25} \cdot t_{69} + \]
\[#128 \cdot t_{25} \cdot t_{72} - 32 \cdot t_{25} \cdot t_{167} - 128 \cdot t_{25} \cdot t_{170} + 64 \cdot t_{25} \cdot t_{172} \]
\[t_{175} = t_{2} \cdot g \]
\[t_{176} = t_{175} \cdot t_{29} \]
\[t_{180} = g \cdot t_{5} \]
\[t_{183} = g \cdot t_{4} \]
\[t_{185} = t_{1} \cdot t_{62} \]
\[t_{186} = g \cdot a_{inf} \]
\[t_{190} = t_{16} \cdot t_{2} \cdot t_{17} \]
\[t_{192} = t_{22} \cdot a_{inf} \]
\[t_{195} = t_{3} \cdot t_{29} \]
\[t_{198} = 128 \cdot t_{25} \cdot t_{176} - 64 \cdot t_{102} \cdot t_{172} + 640 \cdot t_{11} \cdot t_{1} \cdot t_{180} - 640 \cdot t_{12} \]
\[#*t_{1} \cdot t_{183} - 512 \cdot t_{185} + 4508 \cdot t_{18} \cdot t_{44} + 128 \cdot t_{103} - 3072 \cdot t_{190} - 256 \cdot \]
\[#t_{52} \cdot t_{50} - 384 \cdot t_{63} \cdot t_{192} - 128 \cdot t_{48} \cdot t_{90} - 768 \cdot t_{18} \cdot t_{195} + 64 \cdot t_{32} \cdot t_{167} \]
\[t_{202} = t_{30} \cdot t_{11} \]
\[t_{204} = t_{3} \cdot t_{22} \]
t207 = t29*a inf

t214 = g*q

t216 = t11*t3

t219 = 128*t52*t202-768*t18*t204+256*t32*t132+768*t108*t207

#-384*t185*t207+1024*t108*t186-512*t63*t186+128*t52*t90-640

#*t27*t183+512*t116*t214+896*t216*t5-1024*t101*t214

t226 = t32*t1

t232 = t3*g

t233 = t232*t29

t235 = -1280*t135*t180+512*t24*t1*t214+640*t216*t180+1280

#*t106*t183+768*t108*t192+3968*t226-512*t185*a inf-512*t34*t22

#*64*t25*t96-64*t37*t58+64*t14*t58-128*t25*t233

t237 = t175*t30

t241 = t232*t22

t243 = t49*t29

t245 = t169*t30

t247 = t95*pi

t250 = t1*ht*ht*t71

t252 = t175*t22

t257 = 32*t25*t237-256*t25*t93+256*t117*t99-128*t25*t241

#*32*t102*t243-32*t25*t245+1024*t25*t247-192*t25*t250+256

#*t25*t252-32*t26*t243+256*t26*t99-512*t102*t99

t260 = t1*t30

t264 = t2*t30

t273 = -384*t185*t192-8*t37*t77+96*t25*t260+128*t25*t204

#*128*t25*t195-32*t25*t264-1280*t25*t44+96*t25*t137-512*t25
\[
\begin{align*}
&= t_{159} - 384 \cdot t_{25} \cdot t_{127} - 184 \cdot t_{32} \cdot t_{260} - 4608 \cdot t_{18} \cdot t_{247} + 5120 \cdot t_{34} \cdot t_{247} \\
t_{289} = 72 \cdot t_{32} \cdot t_{245} - 128 \cdot t_{32} \cdot t_{127} + 384 \cdot t_{18} \cdot t_{169} \cdot t_{29} - 896 \cdot t_{18} \\
&= t_{176} - 128 \cdot t_{226} \cdot t_{172} + 2048 \cdot t_{190} \cdot t_{99} - 1024 \cdot t_{19} \cdot t_{99} - 256 \cdot t_{32} \cdot t_{72} \\
&= -64 \cdot t_{32} \cdot t_{237} + 1408 \cdot t_{34} \cdot t_{1} + 64 \cdot t_{226} \cdot t_{243} - 1024 \cdot t_{18} \cdot t_{252} \\
t_{305} = 512 \cdot t_{18} \cdot t_{170} - 128 \cdot t_{48} \cdot t_{202} + 128 \cdot t_{32} \cdot t_{120} - 384 \cdot t_{63} \cdot t_{207} \\
&= -64 \cdot t_{52} \cdot t_{78} + 768 \cdot t_{185} \cdot t_{80} - 1536 \cdot t_{108} \cdot t_{80} + 768 \cdot t_{108} \cdot t_{75} - 512 \cdot t_{20} \\
&= t_{58} - 384 \cdot t_{185} \cdot t_{75} + 128 \cdot t_{53} \cdot t_{73} - 1536 \cdot t_{108} \cdot g \cdot t_{80} + 768 \cdot t_{185} \cdot g \cdot t_{80} \\
t_{319} = 1024 \cdot t_{20} \cdot t_{99} - 64 \cdot t_{53} \cdot t_{90} - 512 \cdot t_{9} \cdot t_{99} + 64 \cdot t_{32} \cdot t_{264} + 768 \\
&= t_{108} - 384 \cdot t_{88} + 512 \cdot t_{20} \cdot t_{49} + 384 \cdot t_{32} \cdot t_{250} + 256 \cdot t_{9} \cdot t_{49} \\
&= -128 \cdot t_{37} \cdot g + 2048 \cdot t_{34} \cdot t_{69} + 2112 \cdot t_{34} \cdot t_{132} \\
t_{329} = -64 \cdot t_{107} \cdot t_{243} - 1024 \cdot t_{119} \cdot t_{99} - 256 \cdot t_{52} \cdot t_{73} + 512 \cdot t_{18} \cdot t_{241} \\
&= -2432 \cdot t_{18} \cdot t_{132} - 16 \cdot t_{13} \cdot t_{30} - 256 \cdot t_{34} + 1024 \cdot t_{18} - 256 \cdot t_{13} - 128 \cdot t_{113} \\
&= +128 \cdot t_{107} \cdot t_{172} + 512 \cdot t_{18} \cdot t_{233} + 256 \cdot t_{9} \cdot t_{58} \\
t_{333} = t_{36} + t_{65} + t_{86} + t_{110} + t_{134} + t_{154} + t_{174} + t_{198} + t_{219} + t_{235} + t_{257} \\
&= t_{273} + t_{289} + t_{305} + t_{319} + t_{329} \\
\text{top} = t_{333} \\

\begin{align*}
&t_{1} = \text{min}\# \cdot 2 \\
&t_{4} = \text{g} \cdot 2 \\
&t_{6} = \text{ainf} \cdot 2 \\
&t_{11} = \pi \cdot 2 \\
&t_{13} = -4 \cdot t_{4} + 8 \cdot q \cdot \text{ainf} - 4 \cdot t_{6} + 4 \cdot t_{1} \cdot t_{4} - 8 \cdot t_{1} \cdot q \cdot \text{ainf} + 4 \cdot t_{1} \cdot t_{6} - t_{6} \cdot t_{11} \\
&t_{14} = t_{13} \cdot 2 \\
&t_{16} = (2 + t_{1} \cdot g - t_{1}) \cdot t_{14} \cdot t_{13} \\
\end{align*}

\text{bot} = t_{16}
if(bot.eq.0.d0) PAUSE 'extraforce is singular'

exforce = top/bot
return
end

function pert(ainf,minf,q,theta)
real*8 pert,ainf,minf,q,theta,psi1
real*8 t1,t2,t3,t5,t6,t8,t10,t11,t12,t13
real*8 t15,t16,t18,t19,t20,t21,t23,t24,t25
real*8 t26,t27,t29,t40,t43,top,bottom,tol,psi0
tol = 1e-16

 t1 = q**2
 t2 = ainf**2
 t3 = t1*t2
 t5 = dcos(theta)
 t6 = ainf*q*t5
 t10 = t1**2
 t11 = t10**2
 t12 = t11*t2
 t13 = t5**2
 t15 = t2**2
 t16 = t1*t15
 t18 = t10*t1
t19 = t18*t15

\[t20 = t10 \cdot t2 \]
\[t21 = t15 \cdot t2 \]
\[t23 = t15 \cdot t2 \]

\[t24 = t18 \cdot t23 \]
\[t25 = t11 \cdot t21 \]
\[t26 = t23 \cdot t1 \]

\[t27 = t18 \cdot t21 \]

\[t29 = -2 \cdot t12 \cdot t13 + t16 + t11 \cdot t15 - t19 - 2 \cdot t3 + t20 + t12 - t10 \cdot t21 \]

\[\# = -2 \cdot t24 - 2 \cdot t25 + t26 + 2 \cdot t27 + t23 \cdot t10 \]

\[t40 = -4 \cdot t27 \cdot t13 + 4 \cdot t3 \cdot t13 - 2 \cdot t26 \cdot t13 + 2 \cdot t25 \cdot t13 + 2 \cdot t19 \cdot t13 + 2 \cdot t24 \cdot t13 + 2 \cdot t21 \cdot t10 \]

\[\# t24 \cdot t13 + 2 \cdot t21 \cdot t13 - 2 \cdot t16 \cdot t13 - 2 \cdot t20 \cdot t13 + t18 - t15 + t21 \cdot t10 \]

\[t43 = -(t3 \cdot 1 + 2 \cdot t6) \cdot (t3 \cdot 1 - 2 \cdot t6) \cdot (t29 + t40) \]

\[\text{top} = t43 \]

\[t1 = \text{ainf} \cdot t2 \]
\[t2 = \text{q} \cdot t2 \]
\[t3 = t1 \cdot t2 \]

\[t6 = \text{ainf} \cdot \text{q} \cdot \text{dcos(theta)} \]

\[t8 = (t3 \cdot 1 + 2 \cdot t6) \cdot t2 \]
\[t11 = (t3 \cdot 1 - 2 \cdot t6) \cdot t2 \]

\[t16 = t1 \cdot t8 + t11 \cdot (t2 + t1 \cdot 2 \cdot t6) \cdot (t2 + t1 \cdot 2 \cdot t6) \]

\[\text{bottom} = t16 \]

\[\text{if(bottom.le.tol) then} \]

\[\text{write(*,*) 'q= ',q} \]
write(*,*) 'theta=',theta
 PAUSE 'denomenator is zero'
else
endif

psi1 = (top/bottom)
pert = psi0(ainf,q,theta)+(minf*minf*psi1)
return
end

subroutine closure(n,m,ainf,minf,g,dq,dtht,psi)
 real*8 ainf,minf,g,q,tht,dq,dtht,qfix,ff,q0,qn
 real*8 pi,d1,d2,d3,d4,d5,d6,d7,eps,qtest
 real*8 sum,f0,fn,total1,diff,total2
 real*8 h0,hn,minf2,ainf2,rho,t1,dqtppsi
 real*8 tol,dpdq,dpdt,dpdq0,dpdt0,dpdq2,dpdt2,h0,t0,tthn
 real*8 coff0,coffn,coff,t10,t1n,tthfix,tf,w1,w2
 real*8 dm,dm1,dm2,d8,ddm,gtol
parameter (eps=0.1d0,tol=1e-16)
integer j1,j2
integer i,j,n,m,is1,ieps,i0,in,j0,jn,jeps
double precision psi(n,m)
pi = dacos(-1.d0)
ainf2 = ainf * ainf
minf2 = minf*minf
is1 = (ainf/dq)+1
ieps = ((ainf+eps)/dq)+1
d6 = 0.d0
gtol = (1.d0/(n-1))*(1.d0/(n-1))

*** integration along path 1 ... tht=pi & q=ainf+eps..1

j=m
q0 = ainf+eps
qn = 1.d0
i0 = ieps
in = n
qtest = (i0-1)*dq
diff = abs(qtest-q0)
if(diff.gt.tol) then
write(*,*) 'q0= ',q0
write(*,*) 'qtest= ',qtest
PAUSE 'starting point error on path 1'
else
endif
f0 = -sin(pi)*((-3.d0*psi(i0,j)+4.d0*psi(i0+1,j)-psi(i0+2,j))
/(2.d0*dq))/(rho(g,ainf,minf,q0)*q0)
fn = -sin(pi)*((3.d0*psi(in,j)-4.d0*psi(in-1,j)+psi(in-2,j))
/(2.d0*dq))/(rho(g,ainf,minf,qn)*qn)
sum = 0.d0

do 5 i=i0+1,n-1
\[
q = (i-1) \cdot dq
\]
\[
ff = \sin(pi) \ast ((\psi(i+1,j) - \psi(i-1,j)) / (2.d0 \ast dq))
\]
\[
/ (\rho(g, ainf, minf, q) \ast q)
\]
\[
\text{sum} = ff + \text{sum}
\]

5 continue

\[
d1 = -dq \ast (f0+fn+2.d0 \ast \text{sum}) / 2.d0
\]

write(*,*) 'result of path1= ', d1

*** integration along path 2 ... q=ainf+eps & tht=pi-eps..pi

qfix = ainf+eps
i = i0
j0 = m-(i0-is1)
jn = m
jeps = j0
tht0 = (pi/2.d0)+(j0-1)*dtht
thtn = pi
dpq0 = ((\psi(i0+1,j0) - \psi(i0-1,j0)) / (2.d0 \ast dq))
dpdt0 = (-3.d0 \ast \psi(i0,j0)+4.d0 \ast \psi(i0,j0+1)-\psi(i0,j0+2))
/ (2.d0 \ast dtht)
dpqn=((\psi(i0+1,jn)-\psi(i0-1,jn)) / (2.d0 \ast dq))
dpdt((3.d0 \ast \psi(i0,jn)-4.d0 \ast \psi(i0,jn-1)+\psi(i0,jn-2))
/ (2.d0 \ast dtht)
h0 = (\cos(tht0) \ast dpdq0 / (\rho(g, ainf, minf, qfix))) -
\ast (\sin(tht0) \ast dpdt0 / (\rho(g, ainf, minf, qfix) \ast qfix))
hn = (cos(thtn)*dpdq/(rho(g,ainf,minf,qfix))) -
* (sin(thtn)*dpdt/(rho(g,ainf,minf,qfix)*qfix))
sum = 0.d0

6 do j = j0+1,m-1
 tht = (pi/2.d0)+(j-1)*dtht
 dpdq = ((psi(i0+1,j)-psi(i0-1,j))/(2.d0*dq))
 dpdt = ((psi(i0,j+1)-psi(i0,j-1))/(2.d0*dtht))
 hh = (cos(tht)*dpdq/rho(g,ainf,minf,qfix)) -
* (sin(tht)*dpdt/(rho(g,ainf,minf,qfix)*qfix))
 sum = sum + hh
 continue
6 d2 = -dtht*(h0+hn+2.d0*sum)/2.d0
write(*,*) 'result of path2=',d2

*** integration along path 3 ... tht=pi-eps & q=ainf-eps..ainf+eps

j=j0
thtfix = (pi/2.d0)+(j-1)*dtht
q0 = ainf-eps
qn = ainf+eps
i0 = is1-(ieps-is1)
in = ieps
qtest = (i0-1)*dq
diff = abs(qtest-q0)
if(diff.gt.tol) then
write(*,*) 'q0= ',q0
write(*,*) 'qtest= ',qtest
PAUSE 'starting point error on path 3'
else
endif
dpdt0 = ((psi(i0,j+1)-psi(i0,j-1))/(2.d0*dttht))
dpdq0=((psi(i0+1,j)-psi(i0-1,j))/(2.d0*dq))
dpdttn = ((psi(in,j+1)-psi(in,j-1))/(2.d0*dttht))
dpdtqn=((psi(in+1,j)-psi(in-1,j))/(2.d0*dq))
coff0 = 1.d0+((g-1.d0)/2.d0)*minf2*(1.d0-(q0*q0/ainf2))
t10 = (minf2/ainf2)/(rho(g,ainf,minf,q0)*coff0)
coffn = 1.d0+((g-1.d0)/2.d0)*minf2*(1.d0-(qn*qn/ainf2))
tin = (minf2/ainf2)/(rho(g,ainf,minf,qn)*coffn)
 tf = thtf
 w1 = cos(tf)*dpdt0*t10-(cos(tf)*dpdt0/(rho(g,ainf,minf,q0))
 #*q0*q0))
 w2 = sin(tf)*dpdq0/(rho(g,ainf,minf,q0)*q0)
f0 = w1-w2
 w1 = cos(tf)*dpdttn*tin-(cos(tf)*dpdttn/(rho(g,ainf,minf,qn))
 #*qn*qn))
 w2 = sin(tf)*dpdtqn/(rho(g,ainf,minf,qn)*qn)
 fn = w1-w2
sum = 0.d0
do 7 i = i0+1,in-1
 q = (i-1)*dq
coff = 1.d0+((g-1.d0)/2.d0)*minf2*(1.d0-(q*q/ainf2))
t1 = (minf2/ainf2)/(rho(g,ainf,minf,q)*coff)
dpq = (psi(i+1,j)-psi(i-1,j))/(2.d0*dq)
dpt = ((psi(i,j+1)-psi(i,j-1))/(2.d0*dtth))
ff = (t1*cos(thtfix)*dpdt)-(cos(thtfix)*dpdt/
#(rho(g,ainf,minf,q)*q*q))-(sin(thtfix)*dpdq/
#(rho(g,ainf,minf,q)*q))
sum = sum + ff
continue
d3 = -dq*(f0+fn+2.d0*sum)/2.d0
write(*,*) 'result of path3 = ',d3

*** integration along path 4 ...q=ainf-eps & tht=Pi-eps..Pi

qfix = ainf-eps
i = i0
j0 = jeps
jn = m
tht0 = (pi/2.d0)+(j0-1)*dtth
thtn = pi
dpdq0=((psi(i0+1,j0)-psi(i0-1,j0))/(2.d0*dq))
dpdt0=-3.d0*psi(i0,j0)+4.d0*psi(i0,j0+1)-psi(i0,j0+2))
*/(2.d0*dtth)
dpq0=((psi(i0+1,jn)-psi(i0-1,jn))/(2.d0*dq))
dpdt0=3.d0*psi(i0,jn)-4.d0*psi(i0,jn-1)+psi(i0,jn-2))
\(*/(2.0d0*dtth)\)

\[h_0 = (\cos(tht0) \cdot dpdq0 / (\rho(g, ainf, minf, qfix)) - \]

\[\ast (\sin(tht0) \cdot dpdt0 / (\rho(g, ainf, minf, qfix) \cdot qfix)) \]

\[h_n = (\cos(thtn) \cdot dpdqn / (\rho(g, ainf, minf, qfix)) - \]

\[\ast (\sin(thtn) \cdot dpdtn / (\rho(g, ainf, minf, qfix) \cdot qfix)) \]

\[\text{sum} = 0.0 \]

\[\text{do 8 j=j0+1,jn-1} \]

\[\text{tht} = (\pi / 2.0d0) + (j-1) \cdot dtth \]

\[\text{dpdq} = ((\psi(i0+1,j) - \psi(i0-1,j)) / (2.0d0 \cdot dq)) \]

\[\text{dpdt} = ((\psi(i0,j+1) - \psi(i0,j-1)) / (2.0d0 \cdot dtth)) \]

\[\text{hh} = (\cos(tht) \cdot dpdq / \rho(g, ainf, minf, qfix)) - \]

\[\ast (\sin(tht) \cdot dpdt / (\rho(g, ainf, minf, qfix) \cdot qfix)) \]

\[\text{sum} = \text{sum} + \text{hh} \]

\[8 \text{ continue} \]

\[\text{d4} = dtth \ast (h0 + hn + 2.0d0 \ast \text{sum}) / 2.0d0 \]

\[\text{write(*,*) 'result of path4 = ',d4} \]

*** integration along path 5 ...tht=pi and q=0..ainf-eps

\[j=m \]

\[q0 = 0.0 \]

\[qn = ainf-eps \]

\[in = i0 \]

\[dm = (2.0d0 \ast \psi(1,j) - 5.0d0 \ast \psi(2,j) + 4.0d0 \ast \psi(3,j) - \psi(4,j)) / (dq \ast dq) \]

\[j1 = j-1 \]
\[dm1 = (2.0 \cdot \psi(1,j1) - 5.0 \cdot \psi(2,j1) + 4.0 \cdot \psi(3,j1) - \psi(4,j1)) \]

\[j2 = j1 - 1 \]

\[dm2 = (2.0 \cdot \psi(1,j2) - 5.0 \cdot \psi(2,j2) + 4.0 \cdot \psi(3,j2) - \psi(4,j2)) \]

\[dqtpsi = (3.0 \cdot \psi - 4.0 \cdot dm1 + dm2) / (2.0 \cdot dtth) \]

\[dqtpsi = dqtpsi / 10.0 \]

*
if(abs(dqtpsi) .gt. gtol) pause 'something wrong at q=0 path 5'

\[f0 = -\sin(\pi) \cdot dm / (\rho(\theta, ainf, minf, q0)) \]

\[fn = -\sin(\pi) \cdot ((3.0 \cdot \psi(i,j) - 4.0 \cdot \psi(i-1,j) + \psi(i-2,j)) \]

\[/ (2.0 \cdot dq) / (\rho(\theta, ainf, minf, qn) * qn) \]

\[sum = 0.0 \]

Do 9 i=2,in-1

\[q = (i-1) \cdot dq \]

\[ff = \sin(\pi) \cdot ((\psi(i+1,j) - \psi(i-1,j)) / (2.0 \cdot dq)) \]

\[/ (\rho(\theta, ainf, minf, q) * q) \]

\[sum = ff + sum \]

9 continue

\[d5 = -dq \cdot (f0 + fn + 2.0 \cdot dq * sum) / 2.0 \]

write(*,*), 'result of path5= ', d5

* evaluating the total contribution at infinity

\[total1 = d1 + d2 + d3 + d4 + d5 \]

write(*,*)
**

****** integration along path 7
**

q0 = 0.d0
qn = 1.d0
thtfix = pi/2.d0
tf = thtfix

\[\text{ddm} = (35.0*\psi(1,1) - 104.0*\psi(2,1) + 114.0*\psi(3,1) - 56.0*\psi(4,1) + 11.0*\psi(5,1))/(12.0*dq*dq) \]

write(*,*) 'ddm= ', ddm

\[\text{dm} = (2.0*\psi(1,1) - 5.0*\psi(2,1) + 4.0*\psi(3,1) - \psi(4,1))/(dq*dq) \]

\[\text{dm1} = (2.0*\psi(1,2) - 5.0*\psi(2,2) + 4.0*\psi(3,2) - \psi(4,2))/(dq*dq) \]

\[\text{dm2} = (2.0*\psi(1,3) - 5.0*\psi(2,3) + 4.0*\psi(3,3) - \psi(4,3))/(dq*dq) \]

\[dqdtpsi = (-3.0*dq*dm + 4.0*dm1 - dm2)/(2.0*dttht) \]

dqdtpsi = dqdtpsi/10.d0

* if(abs(dqdtpsi).gt.ttol) pause 'something wrong at q=0 path 7'

f0 = -\sin(tf)*ddm/(\rho(g, q0))

fn = -\sin(tf)*((3.0*\psi(n-1,1) - 4.0*\psi(n-1,1) + \psi(n-2,1))/(2.0*dq))

#/\rho(g, qn)

sum = 0.d0

do 10 i = 2, n-1

q = (i-1)*dq

10 continue
dpdq = ((psi(i+1,1)-psi(i-1,1))/(2.d0*dq))
ff = -sin(tf)*dpdq/(rho(g,ainf,minf,q)*q)
sum = sum + ff
10 continue

d7 = dq*(f0+fn+2.d0*sum)/2.d0
write(*,*) 'result of path7= ',d7

***** integration along path 8 ... q=1 & tht=pi/2..pi

qfix = 1.d0
j0 = 1
jn = m
tht0 = pi/2.d0
thtn = pi
dpq0=(3.d0*psi(n,j0)-4.d0*psi(n-1,j0)+psi(n-2,j0))/(2.d0*dq)
dpt0=(-3.d0*psi(n,j0)+4.d0*psi(n,j0+1)-psi(n,j0+2))*/(2.d0*dtht)
dpqn=(3.d0*psi(n,jn)-4.d0*psi(n-1,jn)+psi(n-2,jn))/(2.d0*dq)
dptn=(3.d0*psi(n,jn)-4.d0*psi(n,jn-1)+psi(n,jn-2))/(2.d0*dtht)
h0 = (cos(tht0)*dpdq0/(rho(g,ainf,minf,qfix))) -
* (sin(tht0)*dpdt0/(rho(g,ainf,minf,qfix)*qfix))
hn = (cos(thtn)*dpdqn/(rho(g,ainf,minf,qfix))) -
* (sin(thtn)*dpdt(n)/(rho(g,ainf,minf,qfix)*qfix))
sum = 0.d0
do 11 j=2,m-1
 tht = (pi/2.d0)+(j-1)*dtht
 dpdq = ((3.d0*psi(n,j)-4.d0*psi(n-1,j)+psi(n-2,j))/(2.d0*dq))
 dpdt = ((psi(n,j+1)-psi(n,j-1))/(2.d0*dtht))
 hh = (cos(tht)*dpdq/rho(g,ainf,minf,qfix)) -
 * (sin(tht)*dpdt/(rho(g,ainf,minf,qfix)*qfix))
 sum = sum + hh
11 continue

d8 = dtht*(h0+hn+2.d0*sum)/2.d0
write(*,*) 'result of path8= ',d8
write(*,*)
total2 = d7+d8
write(*,*) 'total at bottom= ',total2
write(*,*)
diff = (total2+total1)/total2
write(*,*) 'around the plane= ',diff
end

function rho(g,ainf,minf,q)
real*8 rho,ainf,minf,q,g,term,coff
coff = (g-1.d0)/2.d0
term = 1.d0 + (coff*minf*minf)*(1.d0-(q*q/(ainf*ainf)))
rho = term**(1.d0/(g-1.d0))
return
end
subroutine cusp(psi,n,m,dq,dtht,ainf,minf,g)
real*8 dq,dtht,ainf,minf,q,ainf2,minf2,g
real*8 arg1, arg2, arg3, arg4, term1, dtpsi
real*8 dpqsi, dtpsi2, dpqsi2, tht, pi, dpqsin, dtpsin
integer i, j, n, m

double precision psi(n,m)
pi = dacos(-1.d0)
minf2 = minf*minf
ainf2 = ainf*ainf
arg1 = (g-1.d0)*minf2/2.d0
arg2 = minf2/ainf2

*** checking the interior

do 2 i=2,n-1
do 5 j=2,m-1
 q = (i-1)*dq
 tht = (pi/2.d0)+(j-1)*dtht
dtpsi = (psi(i,j+1)-psi(i,j-1))/(2.d0*dtht)
dpqsi = (psi(i+1,j)-psi(i-1,j))/(2.d0*dq)
dtpsi2 = dtpsi*dtpsi
dpqsi2 = dpqsi*dpqsi
term1 = (1.d0-(q*q/(ainf2)))
arg3 = (arg2*q*q/(1.d0+arg1*term1)) - 1.d0
arg4 = arg3*dtpsi2-q*q*dpqsi2
if(arg4.gt.0.d0) then
write(*,*) 'q= ',q
write(*,*) 'tht= ',tht
PAUSE 'cuspidal behaviour'
else
endif
5 continue
2 continue

*** looking at the equation need not worry about q=0
*** hence, just calculating the value of delta at q=1

do 10 j=2,m-1
tht = (pi/2.d0)+(j-1)*dtht
dqpsin=(3.d0*psi(n,j)-4.d0*psi(n-1,j)+psi(n-2,j))/(2.d0*dq)
dtptsin=(psi(n,j+1)-psi(n,j-1))/(2.d0*tht)
arg3 = ((arg2/(1.d0+arg1*(1-(1/ainf2))))-1.d0)
arg4 = arg3*dtptsin*dtptsin-dqpsin*dqpsin
if(arg4.gt.0.d0) then
 write(*,*) 'q= ',1.d0
 write(*,*) 'tht= ',tht
 PAUSE 'cuspidal behaviour'
else
endif
10 continue

*** Looking at the equation the solution should be O.K.
*** on the boundaries since dtpsi=0

return
end

subroutine map(g,ainf,minf,psi,n,m,x,y,nn,k)
real*8 q,t,h,dt,hfx,p,xc,sumx
real*8 g,ainf,minf,ainf2,minf2,dqn,qn
real*8 cn,co,fy,sumy,cy,yint,xint,ys
real*8 dvx0,dvxn,dvx,dvy0,dvyn,dvy,psi
real*8 bx1,bx2,by1,by2,dqpsi,dtpsi,rho
integer i,j,n,m,i0,in,i1,k,nn,j1,j2,ijunk
integer istop1,istop2,itotal,jtotal
parameter(ys=15.d0)
double precision x(nn,m),y(nn,m),psi(n,m)
open(69,file='grid.out')
write(*,*) 'nn=',nn
pi = dacos(-1.d0)
ainf2 = ainf*ainf
minf2 = minf*minf
dq = 1.d0/(n-1)
dt = (pi/2.d0)/(m-1)

*** the stagnation point needs to be treated specially
*** t1 = 2*dtpsidt/q*q = d3psidq2dt
*** t2 = dpsidq/q = d2psidq2

 do 2 j=1,m
 do 1 i1=1,nn
 x(i1,j) = 0.d0
 y(i1,j) = 0.d0
 1 continue

 do 2 j=1,m
 i0 = 1
 2 continue

 do 3 j=1,m
 i0 = 1
 3 continue

 do 5 i1=2,nn
 in = i0 + k

* integration of the x-direction

 sumx = 0.d0
 c0 = fx(psi,n,m,i0,j,ainf,minf,g)
 cn = fx(psi,n,m,in,j,ainf,minf,g)
do 10 i=i0+1,in-1
q = (i-1)*dq
tht = (pi/2.d0)+(j-1)*dtht
cx = fx(psi,n,m,i,j,ainf,minf,g)
sumx = sumx + cx
10 continue
xint = (c0+cn+2.d0*sumx)*(dq/2.d0)
x(i1,j) = xint + x(i1-1,j)

* integration of the y-direction

sumy = 0.d0
c0 = fy(psi,n,m,i0,j,ainf,minf,g)
cn = fy(psi,n,m,in,j,ainf,minf,g)
do 12 i=i0+1,in-1
q = (i-1)*dq
tht = (pi/2.d0)+(j-1)*dtht
cy = fy(psi,n,m,i,j,ainf,minf,g)
sumy = sumy + cy
12 continue
yint = (c0+cn+2.d0*sumy)*(dq/2.d0)
y(i1,j) = yint + y(i1-1,j)
i0 = i0 + k
dqn = 1.d0/(nn-1)
qn = (i1-1)*dqn
if(y(i1,m).gt.ys) go to 50
5 continue
3 continue
300 format(1x,i3,2x,i3,2x,2(f12.6,2x))

* stepping on to the vortex boundary @ q=1

50 istop1 = i1
 i = n
 j1 = m-1
 q = (i-1)*dq
 tht = (pi/2.d0)+(j1-1)*dtht
 bx1 = cos(tht)*dqpsi(psi,n,m,i,j1)/rho(g,ainf,minf,q)
 bx2 = sin(tht)*dtpsi(psi,n,m,i,j1)/(rho(g,ainf,minf,q)*q)
 dvx0 = bx1-bx2

 by1 = sin(tht)*dqpsi(psi,n,m,i,j1)/rho(g,ainf,minf,q)
 by2 = cos(tht)*dtpsi(psi,n,m,i,j1)/(rho(g,ainf,minf,q)*q)
 dvy0 = by1+by2

 j2 = m
 q = (i-1)*dq
 tht = (pi/2.d0)+(j2-1)*dtht
 bx1 = cos(tht)*dqpsi(psi,n,m,i,j2)/rho(g,ainf,minf,q)
bx2 = sin(tht)*dtpsi(psi,n,m,i,j2)/(rho(g,ainf,minf,q)*q)
dvxn = bx1-bx2

by1 = sin(tht)*dqpsi(psi,n,m,i,j2)/rho(g,ainf,minf,q)
by2 = cos(tht)*dtpsi(psi,n,m,i,j2)/(rho(g,ainf,minf,q)*q)
dvyn = by1+by2

dvx = dq*(dvx0+dvxn)/2.d0
dvy = dq*(dvxn+dvyn)/2.d0
write(*,*) 'dvx= ',dvx
write(*,*) 'dvy= ',dvy
write(*,*) nn,m-1,' x(nn,m-1)= ',x(nn,m-1)
write(*,*) nn,m-1,' y(nn,m-1)= ',y(nn,m-1)
x(nn,m) = x(nn,m-1)+dvx
y(nn,m) = y(nn,m-1)+dvy
write(*,*) 'xb= ',x(nn,m)
write(*,*) 'yb= ',y(nn,m)
j = m
i0 = n
do 42 i1=nn-1,1,-1
 in = i0-k
 sumx = 0.d0
c0 = fx(psi,n,m,i0,j,ainf,minf,g)
cn = fx(psi,n,m,in,j,ainf,minf,g)
do 34 i=i0-1,in+1,-1
 q = (i-1)*dq

tht = (pi/2.d0)+(j-1)*dtht

cx = fx(psi,n,m,i,j,ainf,minf,g)

sumx = sumx + cx

34 continue

xint = (c0+cn+2.d0*sumx)*(dq/2.d0)

x(i1,j) = x(i1+1,j)-xint

sumy = 0.d0

c0 = fy(psi,n,m,i0,j,ainf,minf,g)

cn = fy(psi,n,m,in,j,ainf,minf,g)
do 33 i=i0-1,in+1,-1

q = (i-1)*dq

tht = (pi/2.d0)+(j-1)*dtht

cy = fy(psi,n,m,i,j,ainf,minf,g)

sumy = sumy + cy

33 continue

yint = (c0+cn+2.d0*sumy)*(dq/2.d0)

y(i1,j) = y(i1+1,j)-yint

i0 = i0 - k

if(abs(y(i1,j)).gt.ys) go to 40

continue

40 q=(i-1)*dq

istop2 = i1

write(*,*) 'istop2= ',istop2,' q=',q

write(*,*) 'istop1= ',istop1

* formatting the output

ijunk = (istop2-istop1+1)

itotal = nn-ijunk
jtotal = m
write(*,*) 'itotal=',itotal
write(*,*) 'jtotal=',jtotal

* the header required by Tecplot

write(69,*) 'TITLE = "Incompressible Flow"
write(69,*) 'VARIABLES = x, y, psi'
write(69,*) 'ZONE T="ZONE-one", I=',itotal,', J=',m,'#

do 22 j=1,m
do 21 i1=1,nn
 if(ii.ge.istop1.and.ii.le.istop2) go to 21
dqn = 1.d0/(nn-1)
q = (i1-1)*dqn
tht = (pi/2.d0)+(j-1)*dtht
i = (i1-1)*k + 1
write(69,301) x(i1,j),y(i1,j),psi(i,j)
continue
continue
format(1x,3(f8.4,3x))
return
end

function fx(psi,n,m,i,j,ainf,minf,g)
real*8 fx,q,tht,dq,dtht,ainf,minf,g,fx0
real*8 pi,arg1,arg2,den,rho,dtpsi,dqpsi
integer i,j,n,m
double precision psi(n,m)
pi = dacos(-1.d0)
dq = 1.d0/(n-1)
dtht = (pi/2.d0)/(m-1)
q = (i-1)*dq
if(q.eq.0) then
 fx = fx0(psi,n,m,i,j,ainf,minf,g)
go to 12
else
endif
tht = (pi/2.d0)+(j-1)*dtht
arg1 = cos(tht)*dtpsi(psi,n,m,i,j)*den(g,ainf,minf,q)
arg2 = sin(tht)*dqpsi(psi,n,m,i,j)/(rho(g,ainf,minf,q)*q)
fx = arg1-arg2
function fy(psi,n,m,i,j,ainf,minf,g)
real*8 fy,q,tht,dq,dtht,ainf,minf,g,fy0
real*8 pi,arg1,arg2,den,rho,dtpsi,dqpsi
integer i,j,n,m
double precision psi(n,m)
pi = dacos(-1.d0)
dq = 1.d0/(n-1)
dtht = (pi/2.d0)/(m-1)
q = (i-1)*dq
if(q.eq.0) then
 fy = fy0(psi,n,m,i,j,ainf,minf,g)
go to 13
else
 endif
 tht = (pi/2.d0)+(j-1)*dtht
arg1 = sin(tht)*dtpsi(psi,n,m,i,j)*den(g,ainf,minf,q)
arg2 = cos(tht)*dqpsi(psi,n,m,i,j)/(rho(g,ainf,minf,q)*q)
fy = arg1+arg2
13 return
end

function fx0(psi,n,m,i,j,ainf,minf,g)
real*8 ainf, minf, g, fx0, ainf2, minf2, dq, dtth
real*8 arg1, arg2, arg3, cst, tt1, tt2, t3, pi
real*8 rho, dtpsi, q, tht

integer i, j, n, m

double precision psi(n,m)
pi = dacos(-1.0d0)
ainf2 = ainf*ainf
minf2 = minf*minf
dq = 1.0d0/(n-1)
dtth = (pi/2.0d0)/(m-1)
q = (i-1)*dq

tht = (pi/2.0d0)+(j-1)*dtth
t3 = 1.0d0+((g-1.0d0)/2.0d0)*minf2*(1.0d0-(q*q/(ainf2)))
cst = minf2/(ainf2*rho(g, ainf, minf, q)*t3)
arg1 = cos(tht)*dtpsi(psi, n, m, i, j)*cst
arg2 = cos(tht)*tt1(psi, n, m, j)/rho(g, ainf, minf, q)
arg3 = sin(tht)*tt2(psi, n, m, j)/(rho(g, ainf, minf, q))
fx0 = arg1-arg2-arg3

return
end

function fy0(psi, n, m, i, j, ainf, minf, g)
real*8 ainf, minf, g, fy0, ainf2, minf2, dq
real*8 arg1, arg2, arg3, tt1, tt2, t3, cst, dtth
real*8 rho, dtpsi, q, tht, pi
integer i, j, n, m
double precision psi(n,m)
pi = dacos(-1.d0)
dq = 1.d0/(n-1)
dtht = (pi/2.d0)/(m-1)
ainf2 = ainf*ainf
minf2 = minf*minf
q=(i-1)*dq
tht = (pi/2.d0)+(j-1)*dtht
t3 = 1.d0+((g-1.d0)/2.d0)*minf2*(1.d0-(q*q/(ainf2))
cst = minf2/(ainf2*rho(g,ainf,minf,q)*t3)
arg1 = sin(tht)*dtpsi(psi,n,m,i,j)*cst
arg2 = sin(tht)*tt1(psi,n,m,j)/rho(g,ainf,minf,q)
arg3 = cos(tht)*tt2(psi,n,m,j)/(rho(g,ainf,minf,q))
fy0 = arg1-arg2+arg3
return
end

function tt2(psi,n,m,j)
real*8 dq,dtht,tt2,pi
integer i,j,n,m
double precision psi(n,m)
pi = dacos(-1.d0)
dq = 1.d0/(n-1)
dtht = (pi/2.d0)/(m-1)
i=1
tt2 = (2.d0*psi(i,j)-5.d0*psi(i+1,j)+4.d0*psi(i+2,j)
#-psi(i+3,j))/(dq*dq)
return
end

function tt1(psi,n,m,j)
real*8 dq,dtht,tt1,tht,pi,tt2
integer j,n,m
double precision psi(n,m)
pi = dacos(-1.d0)
dq = 1.d0/(n-1)
dtht = (pi/2.d0)/(m-1)
tht = (pi/2.d0)+(j-1)*dtht
if(tht.eq.(pi/2.d0)) then
 tt1 = (-3.d0*tt2(psi,n,m,1)+4.d0*tt2(psi,n,m,2)
 #-tt2(psi,n,m,3))/(2.d0*dtht)
else
 if(tht.eq.pi) then
 tt1 = (3.d0*tt2(psi,n,m,j)-4.d0*tt2(psi,n,m,j-1)
 #+tt2(psi,n,m,j-2))/(2.d0*dtht)
 else
 tt1 = (tt2(psi,n,m,j+1)-tt2(psi,n,m,j-1))/(2.d0*dtht)
 endif
endif
return
end
function den(g, ainf, minf, q)
real*8 g, ainf, minf, q, den, q2, rho
real*8 arg1, arg2, arg3, ainf2, minf2
ainf2 = ainf*ainf
minf2 = minf*minf
q2 = q*q
arg1 = 1.0d0 + ((g-1.0d0)/2.0d0)*minf2*(1.0d0-(q2/ainf2))
arg2 = minf2/(ainf2*arg1*rho(g, ainf, minf, q))
arg3 = 1.0d0/(q*q*rho(g, ainf, minf, q))
den = arg2-arg3
return
end

function dtpsi(psi, n, m, i, j)
real*8 dq, dtht, dtpsi, pi
integer i, j, n, m
double precision psi(n, m)
pi = dacos(-1.0d0)
dq = 1.0d0/(n-1)
dtht = (pi/2.0d0)/(m-1)
if(j.eq.(m-1).or.j.eq.m) then
dtpsi = (3.0d0*psi(i, j)-4.0d0*psi(i, j-1)+psi(i, j-2))/(2.0d0*dtht)
else
if(j.eq.1) then
dtpsi = (-3.0d0*psi(i, j)+4.0d0*psi(i, j+1)-psi(i, j+2))/(2.0d0*dtht)
else

dtpsi = (psi(i,j+1)-psi(i,j-1))/(2.d0*dtht)
endif
endif
return
end

function dqpsi(psi,n,m,i,j)
real*8 dq,dtht,dqpsi,q,pi
integer i,j,n,m
double precision psi(n,m)
pi = dacos(-1.d0)
dq = 1.d0/(n-1)
dtht = (pi/2.d0)/(m-1)
q = (i-1)*dq
if(q.eq.1) then

dqpsi = (3.d0*psi(i,j)-4.d0*psi(i-1,j)+psi(i-2,j))/(2.d0*dq)
else

dqpsi = (psi(i+1,j)-psi(i-1,j))/(2.d0*dq)
endif
return
end
Appendix E

Fortran listing for
Stuart-type vortices

*** This program solves for the compressible analogue of the
*** Stuart Vortices. The flow is assumed to be Homentropic
*** and the governing equations linearized for iterative solver.
*** Newton's method is employed for the unknown psi(i,j)
*** h = wall height

real*8 x,y,mach,mach2,g,h,psiwall,eps,eps2,dx2,dy2,tol
real*8 tip1j,ti,ti1j,ti1jp1,ti1jm1,ti1jlp1,ti1jlm1,rhoc
real*8 tim1jp1,tim1jm1,cp2dx,cp1dx,cpmd,cp2dy,cp1dy,crhs,cp
real*8 chk1,chk2,eqnorm,delrho,rcond,dmach,sol,maxerr,h2
real*8 dervx,psinc,chk,dervy,value,circ,dh,omega
real*8 xmax,ymax,umax,vmax,b1,b2
integer i,j,ieqn,kiter,kmax,kplc,kp,ichk,itol
integer j1,j2,j3,j4,j5,j6,j7,j8,j9,ijob,kmach,kmachmax
integer lda,ml,mu,job,iflag,iflag2,iflagh,khmax,kh
include 'input.h'
parameter(mu=2*n,ml=2*n,lda=2*ml+mu+1,job=0,kmax=400,khmax=0)
parameter(kmachmax=0)
common /param/ g,mach,eps,h,psiwall
double precision psi(n,m),rho(n,m),dpsi(n,m),drho(n,m)
double precision abd(lda,nm),z(nm),rhsvec(nm),fint(n)
double precision u(n,m),v(n,m)

integer ipvt(nm)

open(69,file='psi.contour')
open(70,file='rho.contour')
open(71,file='init.guess')
open(72,file='reg.soln')
open(73,file='search.out')
open(74,file='vel.profile')
open(75,file='omega.contour')
open(76,file='info.out')
open(77,file='vel.geom')

do 811 i=1,lda
do 82 j=1,nm
 abd(i,j) = 0.d0
 rhsvec(j) = 0.d0
 82 continue

811 continue

*
*** initializing the parameters of the problem
*** for incomp. flow: psinf = log(kappa/2)
*

mach = 0.d0
h = 2.d0
h2 = h*h
dh = 0.d0
g = 1.4d0
eps = 0.8d0
eps2 = eps*eps
psiwall = log(cosh(h))
tol = 1e-8
dx2 = dx*dx
dy2 = dy*dy
mach2 = mach*mach

write(*,*)
write(*,*) 'n= ',n
write(*,*) 'm= ',m
write(*,*) 'mach= ',mach
write(*,*) 'eps= ',eps
write(*,*) 'wall height= ',h
write(*,*) 'psi wall= ',psiwall
write(*,*)
kiter = 0
kmach = 0

*

*** Initial Guess ... close to solution
*

do 5 i=1,n
 x = (i-1)*dx
 do 10 j=1,m
 y = (j-1)*dy
 ieqn = n*(j-1)+i
 psi(i,j) = psinc(x,y,eps,h)
 rho(i,j) = 1.d0
 read(71,*), psi(i,j), rho(i,j)
10 continue
5 continue

* do 7 i=1,n
* psi(i,m) = psiwall
* 7 continue

if(kiter.eq.0) go to 901

*
*** the iteration procedure begins
*

911 kiter = kiter + 1

do 439 i=1,n
 do 440 j=1,m
 ieqn = n*(j-1)+i
 dpsi(i,j) = rhsvec(ieqn)
 440 continue
 439 continue

 do 441 i=1,n
 do 442 j=1,m
 drho(i,j) = delrho(psi,rho,dpsi,i,j)
 442 continue
 441 continue

 do 222 i=1,n
 do 223 j=1,m
ieqn = n*(j-1)+i
psi(i,j) = psi(i,j)+dpsi(i,j)
rho(i,j) = rho(i,j)+drho(i,j)

continue

continue

***** checking the infinity norm of the equations

ijob = 1
chk1 = eqnorm(psi,rho,ijob)
ijob = 2
chk2 = eqnorm(psi,rho,ijob)
write(*,*) 'chk1= ',chk1
write(*,*) 'chk2= ',chk2
write(*,*)
write(*,*)
write(*,*)
write(*,*)
write(*,*)
write(*,*)

*
*** applying the stencil to the grid
*** and initializing the rhs-vector
*

901 do 20 i=2,n-1
do 25 j=2,m-1
ieqn = n*(j-1)+i
x = (i-1)*dx
y = (j-1)*dy

tipj = (cp2dx(psi,rho,i,j)/dx2)+
#(cp1dx(psi,rho,i,j)/(2.0*dx))
tij = cp(psi,rho,i,j)-2.0*((cp2dx(psi,rho,i,j)/dx2)
#+ (cp2dy(psi,rho,i,j)/dy2))
tij1 = (cp2dx(psi,rho,i,j)/dx2)-(cp1dx(psi,rho,i,j)/(2.0*dx))
tijp1=(cp2dy(psi,rho,i,j)/dy2)+(cp1dy(psi,rho,i,j)/(2.0*dy))
tijm1=(cp2dy(psi,rho,i,j)/dy2)-(cp1dy(psi,rho,i,j)/(2.0*dy))
tip1jp1 = cpm(psi,rho,i,j)/(4.0*dx*dy)
tim1jm1 = cpm(psi,rho,i,j)/(4.0*dx*dy)
tip1jm1 = -cpm(psi,rho,i,j)/(4.0*dx*dy)
tim1jp1 = -cpm(psi,rho,i,j)/(4.0*dx*dy)

j1 = n*(j-1)+i
kp = kplc(ml,nu,nn,ieqn,j1)
abd(kp,j1) = tij
* abd(kp,j1) = tij/tij

j2 = n*(j-1)+i+1
kp = kplc(ml,nu,nn,ieqn,j2)
abd(kp,j2) = tipj
* abd(kp,j2) = tipj/tij
\[j_3 = n*(j-1)+i-1 \]
\[kp = kplc(ml, mu, nm, ieqn, j3) \]
\[\text{abd}(kp, j3) = \text{tim}_1 j \]
\[\text{abd}(kp, j3) = \text{tim}_1 j / t_i j \]

\[j_4 = n*(j)+i \]
\[kp = kplc(ml, mu, nm, ieqn, j4) \]
\[\text{abd}(kp, j4) = \text{ti}_j p_1 \]
\[\text{abd}(kp, j4) = \text{ti}_j p_1 / t_i j \]

\[j_5 = n*(j-2)+i \]
\[kp = kplc(ml, mu, nm, ieqn, j5) \]
\[\text{abd}(kp, j5) = \text{ti}_j m_1 \]
\[\text{abd}(kp, j5) = \text{ti}_j m_1 / t_i j \]

\[j_6 = n*(j)+i+1 \]
\[kp = kplc(ml, mu, nm, ieqn, j6) \]
\[\text{abd}(kp, j6) = \text{ti}_j p_1 j_1 \]
\[\text{abd}(kp, j6) = \text{ti}_j p_1 j_1 / t_i j \]

\[j_7 = n*(j-2)+i-1 \]
\[kp = kplc(ml, mu, nm, ieqn, j7) \]
\[\text{abd}(kp, j7) = \text{ti}_j m_1 \]
\[\text{abd}(kp, j7) = \text{ti}_j m_1 / t_i j \]
\[j_8 = n*(j-2)+i+1 \]
\[kp = kplc(ml,mu,nm,ieqn,j8) \]
\[abd(kp,j8) = tip1jm1 \]
* \[abd(kp,j8) = tip1jm1/\tau_j \]

\[j_9 = n*(j)+i-1 \]
\[kp = kplc(ml,mu,nm,ieqn,j9) \]
\[abd(kp,j9) = tim1jp1 \]
* \[abd(kp,j9) = tim1jp1/\tau_j \]
* \[rhsvec(ieqn) = -crhs(psi,rho,i,j) \]
* \[rhsvec(ieqn) = -crhs(psi,rho,i,j)/\tau_j \]
*
25 continue
20 continue

*
*** setting the boundary conditions
*** for coefficient matrix AND rhs-vector
*
*** at x=0
*

i = 1

do 30 j=1,m

\[ieqn = n*(j-1)+i \]
\[x = (i-1)*dx \]
\[y = (j-1) \cdot dy \]

\[j1 = ieqn \]
\[kp = kplc(ml, mu, nm, ieqn, j1) \]
\[abd(kp, j1) = -3.0 \]
\[* \quad abd(kp, j1) = -3.0 / (-3.0) \]

\[j2 = ieqn+1 \]
\[kp = kplc(ml, mu, nm, ieqn, j2) \]
\[abd(kp, j2) = 4.0 \]
\[* \quad abd(kp, j2) = 4.0 / (-3.0) \]

\[j3 = ieqn+2 \]
\[kp = kplc(ml, mu, nm, ieqn, j3) \]
\[abd(kp, j3) = -1.0 \]
\[* \quad abd(kp, j3) = -1.0 / (-3.0) \]

* \[\text{rhsvec(ieqn)} = -2.0 \cdot dx \cdot dervx(psi, i, j) \]
* \[\text{rhsvec(ieqn)} = -2.0 \cdot dx \cdot dervx(psi, i, j) / (-3.0) \]
*
30 continue

*

*** at x=\pi

*

i=n

do 31 j=1, m
ieqn = n*(j-1)+i
x = (i-1)*dx
y = (j-1)*dy
j1 = ieqn
kp = kplc(ml, mu, nm, ieqn, j1)
abd(kp, j1) = 3.d0
* abd(kp, j1) = 3.d0/3.d0

j2 = ieqn-1
kp = kplc(ml, mu, nm, ieqn, j2)
abd(kp, j2) = -4.d0
* abd(kp, j2) = -4.d0/3.d0

j3 = ieqn-2
kp = kplc(ml, mu, nm, ieqn, j3)
abd(kp, j3) = 1.d0
* abd(kp, j3) = 1.d0/3.d0

* rhsvec(ieqn) = -2.d0*dx*dervx(psi, i, j)
* rhsvec(ieqn) = -2.d0*dx*dervx(psi, i, j)/3.d0
*
31 continue
*
*** at y=0
*
j=1
 do 32 i=2,n-1
 ieqn = n*(j-1)+i
 x = (i-1)*dx
 y = (j-1)*dy
 j1 = ieqn
 kp = kplc(ml,mu,nm,ieqn,j1)
 abd(kp,j1) = -3.0
 * abd(kp,j1) = -3.0/(-3.0)

 j2 = n*(j)+i
 kp = kplc(ml,mu,nm,ieqn,j2)
 abd(kp,j2) = 4.0
 * abd(kp,j2) = 4.0/(-3.0)

 j3 = n*(j+1)+i
 kp = kplc(ml,mu,nm,ieqn,j3)
 abd(kp,j3) = -1.0
 * abd(kp,j3) = -1.0/(-3.0)

 * rhsvec(ieqn) = -2.0*dy*dervy(psi,i,j)
 * rhsvec(ieqn) = -2.0*dy*dervy(psi,i,j)/(-3.0)
 *
 32 continue
*
*** at y=1
*
j=m
do 33 i=2,n-1
 ieqn = n*(j-1)+i
 x = (i-1)*dx
 y = (j-1)*dy
 j1 = ieqn
 kp = kplc(ml,mu,nm,ieqn,j1)
 abd(kp,j1) = 1.d0
*
rhsvec(ieqn) = psiwall-psi(i,j)
*
 33 continue

*
*** Solving the problem A.X=B
*
call dgbco(abd,lda,nm,ml,mu,ipvt,rcond,z)

call dgbsla(abd,lda,nm,ml,mu,ipvt,rhsvec,job)

do 101 i=1,lda
 do 102 j=1,nm
abd(i,j) = 0.d0

101 continue

*
*** checking the error with L infinity norm
*
maxerr = 0.d0

50 do 50 i=1,nm
 chk = abs(rhsvec(i))
 if(chk.gt.maxerr) then
 maxerr=chk
 ichk = i
 else
 endif
 continue

 write(*,*) ' iteration no. = ',kiter
 write(*,*) ' mach = ',mach
 write(*,*) ' condition number = ',rcond
 write(*,*) ' maxerr = ',maxerr
 write(*,*) ' ichk = ',ichk
 if(maxerr.gt.tol) then
 if(kiter.gt.kmax) PAUSE ' kmax exceeded'
 go to 911
 else
 write(*,*) ' procedure done in ',kiter,' steps'
endif

ijob = 1
chk1 = eqnorm(psi,rho,ijob)

ijob = 2
chk2 = eqnorm(psi,rho,ijob)
write(*,*) 'chk1= ',chk1
write(*,*) 'chk2= ',chk2
write(*,*)

value = circ(psi,rho,fint)/h
write(*,*)
write(*,*) 'circulation in the domain= ',value
write(*,*) 'core density= ', rho(n,1)
write(*,*)

call core(psi,rho,xmax,vmax,ymax,umax)
rhoc = rho(n,1)
b1 = ymax
b2 = pi-xmax
write(76,341) mach,value,b1,b2,rhoc,kiter
call flush(76)
341 format(1x,5(f10.5,2x),5i)
write(77,343) h,mach,umax,vmax
343 format(1x,4(f11.5,2x))
* write(*,*) 'do you want to increase the Mach number? '
* write(*,*) 'press 1 for yes'
* write(*,*) 'press 2 for no'
* read(*,*) iflag2
* write(*,*)
iflag2 = 1

write(*,*)
* write(*,*) 'do you want to change the tolerance?'
* write(*,*) 'press 1 for yes'
* write(*,*) 'press 2 for no'
* read(*,*) itol
itol = 2

if(itol.eq.1) then
 write(*,*) 'what is the new tolerance?'
 read(*,*) tol
else
endif

if(iflag2.eq.1) then
 write(*,*) 'what is the mach number increment?'
 read(*,*) dmach
 dmach = 0.01d0

 if(kmach.ge.kmachmax) go to 1010
mach = mach + dmach
mach2 = mach*mach
kmach = kmach + 1
kiter = 0

* if(mach.ge.0.1d0) go to 1010

 go to 901
 else
 endif

iflagh = 1

* iflagh = 0

 if(iflagh.eq.1) then
 write(73,241) mach,h,value,kiter
 call flush(73)
 241 format(1x,3(f12.6,3x),i6)
 write(*,*) mach,h,value
 if(kh.ge.khmax) go to 1010

 h = h + dh
 kh = kh + 1
 kiter = 0
 go to 901
 else
 endif
*** formatting the output

1010 write(*,*) 'the output files are for the following'
 write(*,*) 'mach= ',mach
 write(*,*) 'eps= ',eps
 write(*,*) 'wall height= ',h
 write(*,*) 'n= ',n
 write(*,*) 'm= ',m

 do 123 i=1,n
 do 124 j=1,m
 write(72,*) psi(i,j),rho(i,j)
 124 continue
 123 continue

write(*,*) 'press 1 if you want streamlines'
write(*,*) 'press 0 if you want to bypass'
read(*,*) iflag
iflag = 1
if(iflag.eq.0) go to 212
write(69,*) 'TITLE="Stuart Vortex Problem" '
write(69,*) 'VARIABLES = x, y, psi'
write(69,*) 'ZONE T="ZONE-one",', ',I= ',n,', J= ',m,'
write(70,*) 'TITLE="Stuart Vortex Problem" '
write(70,*) 'VARIABLES = x, y, rho'
write(70,*) 'ZONE T="ZONE-one",' , 'I= ',n,' , J= ',m,' , F=POINT'
write(75,*) 'TITLE="Stuart Vortex Problem"'
write(75,*) 'VARIABLES = x, y, omega'
write(75,*) 'ZONE T="ZONE-one",' , 'I= ',n,' , J= ',m,' , F=POINT'

do 111 j=1,m
 do 112 i=1,n
 x = (i-1)*dx
 y = (j-1)*dy
 sol = psi(i,j)
 omega = rho(i,j)*(1.d0-eps2)*exp(-2.d0*psi(i,j))
 omega = omega/(rho(n,m))
 u(i,j) = dervy(psi,i,j)/(h*rho(i,j))
 v(i,j) = -dervx(psi,i,j)/rho(i,j)
 write(69,*),x,y,sol
 write(70,*),x,y,rho(i,j)
 write(75,*),x,y,omega
 112 continue
111 continue

j=m
do 2 i=1,n
 x = (i-1)*dx
 write(74,*),x,u(i,j),v(i,j)
2 continue
212 stop
end

subroutine core(psi, rho, xmax, vmax, ymax, umax)
real*8 xmax, ymax, vmax, dervx, dervy, u, v, x, y, rhoc
ingterger i, j
include 'input.h'
double precision psi(n,m), rho(n,m)

rhoc = rho(n,m)
vmax = 0.d0
j=1
do 20 i=1,n
 x = (i-1)*dx
 v = -rhoc*dervx(psi, i, j)/rho(i, j)
 if (v.gt.vmax) then
 vmax = v
 xmax = x
 else
 endif
20 continue

umax = 0.d0
i=n
do 30 j=1,m
y=(j-1)*dy
u = rhoc*dervy(psi,i,j)/rho(i,j)
if(u.gt.umax) then
 umax = u
 ymax = y
else
 endif
30 continue
return
end

function kplc(ml,mu,n2,i,j)
integer ml,mu,n2,j,kplc,i,ms
ms = ml+mu+1
kplc = i-j+ms
return
end

function eqnorm(psi,rho,ijob)
real*8 eqnorm,fc,ti,max,sc
integer i,j,ijob
include 'input.h'
double precision psi(n,m),rho(n,m)
max = 0.d0

do 10 i=2,n-1
 do 12 j=2,m-1

 if(ijob.eq.1) then
 t1 = abs(fc(psi,rho,i,j))
 else
 t1 = abs(sc(psi,rho,i,j))
 endif

 if(t1.gt.max) then
 max = t1
 else
 endif
 12 continue
10 continue

eqnorm = max
return
end

function circ(psi,rho,fint)
real*8 circ,dervy,sum,vcirc
integer i,j
include 'input.h'
double precision psi(n,m), rho(n,m)
double precision fint(n)

do 5 i=1,n
 fint(i) = 0.d0
5 continue

j=m

do 10 i=1,n
 fint(i) = dervy(psi,i,j)/rho(i,j)
10 continue

sum = 0.d0

do 12 i=2,n-1
 sum = fint(i)+sum
12 continue

vcirc = fint(1)+fint(n)+2.d0*sum
circ = vcirc*dx/2.d0
return
end

*** matrix coefficients evaluated as functions
*** ... coefficients of the stretched Newton variables

function cp2dx(psi, rho, i, j)
real*8 a, gf, r, q, t1, t2, cp2dx
integer i, j
include 'input.h'
double precision psi(n,m), rho(n,m)

t1 = a(psi, rho, i, j)
t2 = gf(psi, rho, i, j) * r(psi, rho, i, j) / q(psi, rho, i, j)
cp2dx = t1 - t2
return
end

function cp1dx(psi, rho, i, j)
real*8 t1, t2, t3, t4, t5, t6, t7, t8, t9, cp1dx
real*8 q, q2, qx, qy, c, f, r, gf, rx, t, hf, ry
integer i, j
include 'input.h'
double precision psi(n,m), rho(n,m)

q2 = q(psi, rho, i, j) * q(psi, rho, i, j)
t1 = c(psi, rho, i, j)
t2 = f(psi, rho, i, j) * r(psi, rho, i, j) / q(psi, rho, i, j)
t3 = gf(psi, rho, i, j)
t4 = r(psi, rho, i, j) * qx(psi, rho, i, j) / q2
\[t_5 = \frac{r_x(\psi, \rho, i, j)}{q(\psi, \rho, i, j)} \]
\[t_6 = \frac{t(\psi, \rho, i, j)}{q(\psi, \rho, i, j)} \]
\[t_7 = h_\rho(\psi, \rho, i, j) \]
\[t_8 = \frac{r(\psi, \rho, i, j) \cdot q_y(\psi, \rho, i, j)}{q^2} \]
\[t_9 = \frac{r_y(\psi, \rho, i, j)}{q(\psi, \rho, i, j)} \]
\[cpdx = t_1 - t_2 + t_3 \cdot (t_4 - t_5 - t_6) + t_7 \cdot (t_8 - t_9) \]

end

function \(cpmd(\psi, \rho, i, j) \)
real*8 \(t_1, t_2, cpmd \)
real*8 \(s, gf, q, hf, r \)
integer \(i, j \)
include 'input.h'
double precision \(\psi(n,m), \rho(n,m) \)

\[t_1 = -s(\psi, \rho, i, j) \cdot gf(\psi, \rho, i, j) / q(\psi, \rho, i, j) \]
\[t_2 = -hf(\psi, \rho, i, j) \cdot r(\psi, \rho, i, j) / q(\psi, \rho, i, j) \]
\[cpmd = t_1 + t_2 \]

return
end

function \(cp2dy(\psi, \rho, i, j) \)
real*8 \(t_1, t_2, cp2dy, b, hf, s, q \)
integer \(i, j \)
include 'input.h'
double precision psi(n,m),rho(n,m)

t1 = b(psi,rho,i,j)
t2 = hf(psi,rho,i,j)*s(psi,rho,i,j)/q(psi,rho,i,j)
cp2dy = t1-t2
return
end

function cp1dy(psi,rho,i,j)
real*8 t1,t2,t3,t4,t5,t6,t7,t8,t9,cp1dy
real*8 q,q2,qx,qy,d,f,gf,s,sx,sys,t,hf
integer i,j
include 'input.h'
double precision psi(n,m),rho(n,m)

q2 = q(psi,rho,i,j)*q(psi,rho,i,j)
t1 = d(psi,rho,i,j)
t2 = f(psi,rho,i,j)*s(psi,rho,i,j)/q(psi,rho,i,j)
t3 = gf(psi,rho,i,j)
t4 = qx(psi,rho,i,j)*s(psi,rho,i,j)/q2
t5 = sx(psi,rho,i,j)/q(psi,rho,i,j)
t6 = hf(psi,rho,i,j)
t7 = s(psi,rho,i,j)*qy(psi,rho,i,j)/q2
t8 = sy(psi,rho,i,j)/q(psi,rho,i,j)
t9 = t(psi,rho,i,j)/q(psi,rho,i,j)
\[cp_{1dy} = t_1 - t_2 + t_3 \times (t_4 - t_5) + t_6 \times (t_7 - t_8 - t_9) \]

return
end

function \text{cp}(\psi, \rho, i, j)
real*8 \ t_1, t_2, t_3, t_4, t_5, t_6, t_7, t_8, cp
real*8 \ ty, tx, q, q_2, e, f, gf
real*8 \ t, qx, hf, qy
integer \ i, j
include 'input.h'
double precision \psi(n, m), \rho(n, m)

\[q_2 = q(\psi, \rho, i, j) \times q(\psi, \rho, i, j) \]
\[t_1 = e(\psi, \rho, i, j) \]
\[t_2 = f(\psi, \rho, i, j) \times t(\psi, \rho, i, j) / q(\psi, \rho, i, j) \]
\[t_3 = gf(\psi, \rho, i, j) \]
\[t_4 = qx(\psi, \rho, i, j) \times t(\psi, \rho, i, j) / q_2 \]
\[t_5 = tx(\psi, \rho, i, j) / q(\psi, \rho, i, j) \]
\[t_6 = hf(\psi, \rho, i, j) \]
\[t_7 = t(\psi, \rho, i, j) \times qy(\psi, \rho, i, j) / q_2 \]
\[t_8 = ty(\psi, \rho, i, j) / q(\psi, \rho, i, j) \]
\[cp = t_1 - t_2 + t_3 \times (t_4 - t_5) + t_6 \times (t_7 - t_8) \]
return
end
function crhs(psi,rho,i,j)
real*8 t1,t2,t3,t4,t5,t6,t7,t8,crhs
real*8 fc,f,sc,q,gf,qx,q2,scx,scy,qy,hf
integer i,j
include 'input.h'
double precision psi(n,m),rho(n,m)

q2 = q(psi,rho,i,j)*q(psi,rho,i,j)
t1 = fc(psi,rho,i,j)
t2 = f(psi,rho,i,j)*sc(psi,rho,i,j)/q(psi,rho,i,j)
t3 = gf(psi,rho,i,j)
t4 = sc(psi,rho,i,j)*qx(psi,rho,i,j)/q2
t5 = scx(psi,rho,i,j)/q(psi,rho,i,j)
t6 = hf(psi,rho,i,j)
t7 = sc(psi,rho,i,j)*qy(psi,rho,i,j)/q2
t8 = scy(psi,rho,i,j)/q(psi,rho,i,j)
crhs = t1-t2+(t3*(t4-t5))+(t6*(t7-t8))
return
end

*** the functions that give the matrix coefficients

function fc(psi,rho,i,j)
real*8 fc,dervx,dervy,rho2,h,h2,eps
real*8 t1,t2,t3,t4,t5,t6,t7,eps2,t41
real*8 g,mach,psiwall
integer i,j
include 'input.h'
common /param/ g,mach,eps,h,psiwall
double precision psi(n,m),rho(n,m)

h2 = h*h
eps2 = eps*eps
rho2 = rho(i,j)*rho(i,j)
t1 = -(derivx(rho,i,j)/(rho2))*derivx(psi,i,j)
t2 = (psi(i+1,j)-2.d0*psi(i,j)+psi(i-1,j))/(dx*dx)
t3 = (t2/rho(i,j)) + t1

function sc(psi,rho,i,j)
real*8 g,mach,mach2,h,h2,eps,eps2
real*8 sc,derivx,derivy,psiwall
t4 = (psi(i,j+1)-2.d0*psi(i,j)+psi(i,j-1))/(dy*dy)
t41 = t4/(rho(i,j)*h2)
t5 = -derivy(rho,i,j)*derivy(psi,i,j)/(rho2*h2)
t6 = t41 + t5

t7 = -rho(i,j)*(1.d0-eps2)*exp(-2.d0*psi(i,j))
fc = t3 + t6 + t7
return
end

end
real*8 t1, t2, t3, t4, t5, t6, t7, t8, t9
integer i, j
include 'input.h'
common /param/ g, mach, eps, h, psiwall
double precision psi(n, m), rho(n, m)

mach2 = mach*mach
h2 = h*h
eps2 = eps*eps
t1 = rho(i, j) ** (g - 1.d0)
t2 = 1.d0 + ((g - 1.d0) * mach2 / 2.d0)
t3 = (g - 1.d0) * mach2 / (2.d0 * rho(i, j) * rho(i, j))
t4 = dervx(psi, i, j) * dervx(psi, i, j)
t5 = dervy(psi, i, j) * dervy(psi, i, j) / h2
t6 = t3 * (t4 + t5)
t7 = (g - 1.d0) * mach2 * (1.d0 - eps2) / 2.d0
t8 = exp(-2.d0 * psi(i, j)) - exp(-2 * psiwall)
t9 = t7 * t8
sc = t1 - t2 + t6 + t9
return
end

function a(psi, rho, i, j)
real*8 a
integer i, j
include 'input.h'
double precision psi(n,m), rho(n,m)

a = 1.d0/rho(i,j)
return
end

function b(psi,rho,i,j)
real*8 b, rho2, h2, g, mach, eps, psiwall
integer i, j
include 'input.h'
common /param/ g, mach, eps, h, psiwall
double precision psi(n,m), rho(n,m)

h2 = h*h
rho2 = rho(i,j)*rho(i,j)
b = 1.d0/(h2*rho2)
return
end

function c(psi, rho, i, j)
real*8 c, dervx, rho2
integer i, j
include 'input.h'
double precision psi(n,m), rho(n,m)

rho2 = rho(i,j)*rho(i,j)
c = -dervx(rho,i,j)/rho2
return
dend

function d(psi,rho,i,j)
real*8 d,dervy,h,h2,rho2,g,mach,eps,psiwall
integer i,j
include 'input.h'
common /param/ g,mach,eps,h,psiwall
double precision psi(n,m),rho(n,m)

h2 = h*h
rho2 = rho(i,j)*rho(i,j)
d = -dervy(rho,i,j)/(h2*rho2)
return
dend

function e(psi,rho,i,j)
real*8 e,eps,eps2,g,mach,h,psiwall
integer i,j
include 'input.h'
common /param/ g,mach,eps,h,psiwall
double precision psi(n,m),rho(n,m)

eps2 = eps*eps
e = 2.d0*rho(i,j)*(1.d0-eps2)*exp(-2.d0*psi(i,j))
return
end

function f(psi,rho,i,j)
real*8 f,t1,t2,t3,t4,t5,t6,t7,rho3,g,mach
real*8 dervx,dervy,rho2,h,h2,eps,eps2,psiwall
integer i,j
include 'input.h'
common /param/ g,mach,eps,h,psiwall
double precision psi(n,m),rho(n,m)

rho2 = rho(i,j)*rho(i,j)
rho3 = rho(i,j)*rho2
h2 = h*h
eps2 = eps*eps
t1 = (psi(i+1,j)-2.d0*psi(i,j)+psi(i-1,j))/(dx*dx)
t2 = -t1/rho2
t3 = 2.d0*dervx(rho,i,j)*dervx(psi,i,j)/rho3
t4 = (psi(i,j+1)-2.d0*psi(i,j)+psi(i,j-1))/(dy*dy)
t5 = t4/(rho2*h2)
t6 = 2.d0*dervy(rho,i,j)*dervy(psi,i,j)/(h2*rho3)
t7 = (1.d0-eps2)*exp(-2.d0*psi(i,j))
f = t2+t3-t5+t6-t7
return
end
function gf(psi,rho,i,j)
real*8 gf, dervx, rho2
integer i, j
include 'input.h'
double precision psi(n,m), rho(n,m)

rho2 = rho(i,j)*rho(i,j)
gf = -dervx(psi,i,j)/rho2
return
end

function hf(psi,rho,i,j)
real*8 hf, h, h2, dervy, rho2, mach, eps, psiwall, g
integer i, j
include 'input.h'
common /param/ g, mach, eps, h, psiwall
double precision psi(n,m), rho(n,m)

rho2 = rho(i,j)*rho(i,j)
h2 = h*h
hf = -dervy(psi,i,j)/(rho2*h2)
return
end
function q(psi,rho,i,j)
real*8 q,h,h2,dervx,dervy,rho3,eps,psiwall
real*8 g,mach,mach2,t1,t2,t3,t4,t5
integer i,j
include 'input.h'
common /param/ g,mach,eps,h,psiwall
double precision psi(n,m),rho(n,m)

mach2 = mach*mach
h2 = h*h
rho3 = rho(i,j)*rho(i,j)*rho(i,j)
t1 = (g-1.d0)*rho(i,j)**(g-2.d0))
t2 = (g-1.d0)*mach2/rho3
t3 = derivx(psi,i,j)*dervx(psi,i,j)
t4 = dervy(psi,i,j)*dervy(psi,i,j)/h2
t5 = t2*(t3+t4)
q = t1-t5
return
end

function r(psi,rho,i,j)
real*8 r,dervx,rho2,eps,h
real*8 g,mach,mach2,psiwall
integer i,j
include 'input.h'
common /param/ g,mach,eps,h,pswall
double precision psi(n,m),rho(n,m)

rho2 = rho(i,j)*rho(i,j)
mach2 = mach*mach
r = (g-1.d0)*mach2*dervx(psi,i,j)/rho2
return
end

function s(psi,rho,i,j)
real*8 s,h,h2,dervy,rho2,eps
real*8 mach,mach2,g,pswall
integer i,j
include 'input.h'
common /param/ g,mach,eps,h,pswall
double precision psi(n,m),rho(n,m)

mach2 = mach*mach
h2 = h*h
rho2 = rho(i,j)*rho(i,j)
s = (g-1.d0)*mach2*dervy(psi,i,j)/(h2*rho2)
return
end

function t(psi,rho,i,j)
real*8 t,eps,eps2,mach,mach2,g,pswall,h
integer i,j
include 'input.h'
common /param/ g,mach,eps,h,psiwall
double precision psi(n,m),rho(n,m)

mach2 = mach*mach
eps2 = eps*eps
t = -(g-1.d0)*mach2*(1.d0-eps2)*exp(-2*psi(i,j))
return
end

function qx(psi,rho,i,j)
real*8 qx,g,mach,mach2,h,h2,rho3,dervy
real*8 dervx,rho4,t1,t2,t3,t4,t5,t6
real*8 t7,t8,t9,t10,psiwall,eps
integer i,j
include 'input.h'
common /param/ g,mach,eps,h,psiwall
double precision psi(n,m),rho(n,m)

mach2 = mach*mach
h2 = h*h
rho3 = rho(i,j)*rho(i,j)*rho(i,j)
rho4 = rho(i,j)*rho(i,j)*rho(i,j)*rho(i,j)
t1 = (rho(i,j)**(g-3.d0))
t2 = (g-1.0d0)*(g-2.0d0)*dervx(rho,i,j)*t1

\[t3 = 3.0d0*dervx(rho,i,j)*(g-1.0d0)*mach2/rho4 \]

\[t4 = dervx(psi,i,j)*dervx(psi,i,j) \]

\[t5 = dervy(psi,i,j)*dervy(psi,i,j)/h2 \]

\[t6 = t3*(t4+t5) \]

\[t7 = 2.0d0*(g-1.0d0)*mach2/rho3 \]

\[t8 = (dervx(psi,i,j+1)-dervx(psi,i,j-1))/(2.0d0*dy) \]

\[t9 = (psi(i+1,j)-2.0d0*psi(i,j)+psi(i-1,j))/(dx*dx) \]

\[t10 = t7*(dervx(psi,i,j)*t9+dervy(psi,i,j)*t8/h2) \]

\[qx = t2+t6-t10 \]

return

end

function qy(psi,rho,i,j)
real*8 qy,mach,mach2,h,h2,rho3,rho4,dervx,psiwall
real*8 t1,t2,t3,t4,t5,t6,t7,t8,t9,t10,dervy,g,eps
integer i,j
include 'input.h'
common /param/ g,mach,eps,h,psiwall
double precision psi(n,m),rho(n,m)

mach2 = mach*mach
h2 = h*h
rho3 = rho(i,j)*rho(i,j)*rho(i,j)
rho4 = rho(i,j)*rho3
\begin{verbatim}
t1 = rho(i,j)**(g-3.d0)
t2 = (g-1.d0)*(g-2.d0)*dervy(rho,i,j)*t1
t3 = 3.d0*dervy(rho,i,j)*(g-1.d0)*mach2/rho4
t4 = dervx(psi,i,j)*dervx(psi,i,j)
t5 = dervy(psi,i,j)*dervy(psi,i,j)/h2
t6 = t3*(t4+t5)
t7 = 2.d0*(g-1.d0)*mach2/rho3
t8 = (dervx(psi,i,j+1)-dervx(psi,i,j-1))/(2.d0*dy)
t9 = (psi(i,j+1)-2.d0*psi(i,j)+psi(i,j-1))/(dy*dy)
t10 = t7*(t8*dervx(psi,i,j)+t9*dervy(psi,i,j)/h2)
qy = t2+t6-t10
return
end

function rx(psi,rho,i,j)
real*8 rx,mach,mach2,h,h2,dervx,rho2,rho3
real*8 t1,t2,t3,psiwall,eps,g
integer i,j
include 'input.h'
common /param/ g,mach,eps,h,psiwall
double precision psi(n,m),rho(n,m)

mach2 = mach*mach
h2 = h*h
rho2 = rho(i,j)*rho(i,j)
\end{verbatim}
rho3 = rho2*rho(i,j)
t1 = -2.d0*dervx(rho,i,j)*(g-1.d0)*mach2*dervx(psi,i,j)/rho3
t2 = (psi(i+1,j)-2.d0*psi(i,j)+psi(i-1,j))/(dx*dx)
t3 = (g-1.d0)*mach2*t2/rho2
rx = t1+t3
return
end

function ry(psi,rho,i,j)
real*8 ry,mach,mach2,h,h2,dervx,dervy,eps
real*8 rho2,rho3,t1,t2,t3,t4,t5,psiwall,g
integer i,j
include 'input.h'
common /param/ g,mach,eps,h,psiwall
double precision psi(n,m),rho(n,m)
mach2 = mach*mach
h2 = h*h
rho2 = rho(i,j)*rho(i,j)
rho3 = rho2*rho(i,j)
t1 = -2.d0*(g-1.d0)*mach2*dervy(rho,i,j)
t2 = t1*dervx(psi,i,j)/rho3
r3 = (g-1)*mach2/rho2
t4 = (dervx(psi,i,j+1)-dervx(psi,i,j-1))/(2.d0*dy)
t5 = t3*t4
ry = t2+t5
return
end

function sx(psi,rho,i,j)
real*8 sx,mach,mach2,h,h2,rho2,rho3,dervx
real*8 t1,t2,t3,t4,t5,psiwall,g,eps,dervy
integer i,j
include 'input.h'
common /param/ g,mach,eps,h,psiwall
double precision psi(n,m),rho(n,m)

mach2 = mach*mach
h2 = h*h
rho2 = rho(i,j)*rho(i,j)
rho3 = rho(i,j)*rho2
t1 = -2.d0*dervx(rho,i,j)*(g-1.d0)*mach2/h2
t2 = t1*dervy(psi,i,j)/rho3
t3 = (g-1.d0)*mach2/(h2*rho2)
t4 = (dervx(psi,i,j+1)-dervx(psi,i,j-1))/(2.d0*dy)
t5 = t3*t4
sx = t2+t5
return
end
function sy(psi,rho,i,j)
real*8 sy,mach,mach2,h,h2,rho3,rho2,g
real*8 t1,t2,t3,t4,t5,dervy,psiwall,eps
integer i,j
include 'input.h'
common /param/ g,mach,eps,h,psiwall
double precision psi(n,m),rho(n,m)

mach2 = mach*mach
h2 = h*h
rho2 = rho(i,j)*rho(i,j)
rho3 = rho(i,j)*rho2
t1 = -2.d0*dervy(rho,i,j)*(g-1.d0)*mach2/rho3
t2 = t1*dervy(psi,i,j)/h2
t3 = (g-1.d0)*mach2/(h2*rho2)
t4 = (psi(i,j+1)-2.d0*psi(i,j)+psi(i,j-1))/(dy*dy)
t5 = t3*t4
sy = t5+t2
return
end

function tx(psi,rho,i,j)
real*8 tx,mach,mach2,h,h2,eps,eps2,g
real*8 t1,dervx,psiwall
integer i,j
include 'input.h'
common /param/ g,mach,eps,h,psiwall
double precision psi(n,m),rho(n,m)

mach2 = mach*mach
h2 = h*h
eps2 = eps*eps
t1 = 2.d0*dervx(psi,i,j)*(g-1.d0)*mach2
tx = t1*(1.d0-eps2)*exp(-2.d0*psi(i,j))
return
end

function ty(psi,rho,i,j)
real*8 ty,mach,mach2,h,h2,eps,eps2,g
real*8 t1,dervy,psiwall
integer i,j
include 'input.h'
common /param/ g,mach,eps,h,psiwall
double precision psi(n,m),rho(n,m)

mach2 = mach*mach
h2 = h*h
eps2 = eps*eps
t1 = 2.d0*(g-1.d0)*mach2*(1.d0-eps2)
ty = t1*dervy(psi,i,j)*exp(-2.d0*psi(i,j))
return
end

function scx(psi,rho,i,j)
real*8 scx,dervx,dervy,rho2,rho3,mach,mach2,h,h2
real*8 eps,eps2,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10,t11,t12
real*8 psiwall,g
integer i,j
include 'input.h'
common /param/ g,mach,eps,h,psiwall
double precision psi(n,m),rho(n,m)

mach2 = mach*mach
h2 = h*h
eps2 = eps*eps
rho2 = rho(i,j)*rho(i,j)
rho3 = rho2*rho(i,j)
t1 = rho(i,j)**(g-2.d0)
t2 = (g-1.d0)*t1*dervx(rho,i,j)
t3 = dervx(rho,i,j)*(g-1.d0)*mach2/rho3
nt4 = dervx(psi,i,j)*dervx(psi,i,j)
t5 = dervy(psi,i,j)*dervy(psi,i,j)/h2
t6 = -t3*(t4+t5)
t7 = (g-1.d0)*mach2/rho2
t8 = (psi(i+1,j)-2.d0*psi(i,j)+psi(i-1,j))/(dx*dx)
t9 = (dervx(psi,i,j+1)-dervx(psi,i,j-1))/(2.d0*dy)
t10 = t7*(dervx(psi,i,j)*t8 + t9*dervy(psi,i,j)/h2)
t11 = (g-1.d0)*mach2*(1.d0-eps2)*dervx(psi,i,j)
t12 = -t11*exp(-2.d0*psi(i,j))
scx = t2+t6+t10+t12
return
end

function scy(psi,rho,i,j)
real*8 scy,dervx,dervy,rho2,rho3,mach,mach2
real*8 t1,t2,t3,t4,t5,t6,t7,t8,t9,t10
real*8 psiwall,g,eps,h,h2,t11,t12,eps2
integer i,j
include 'input.h'
common /param/ g,mach,eps,h,psiwall
double precision psi(n,m),rho(n,m)
mach2 = mach*mach
h2 = h*h
eps2 = eps*eps
rho2 = rho(i,j)*rho(i,j)
rho3 = rho2*rho(i,j)
t1 = rho(i,j)**(g-2.d0)
t2 = (g-1.d0)*dervy(rho,i,j)*t1
t3 = (g-1.d0)*mach2*dervy(rho,i,j)/rho3
t4 = dervx(psi,i,j)*dervx(psi,i,j)
t5 = dervy(psi,i,j)*dervy(psi,i,j)/h2
t6 = -t3*(t4+t5)
t7 = (g-1.d0)*mach2/rho2
t8 = (dervx(psi,i,j-1)-dervx(psi,i,j-1))/(2.d0*dy)
t9 = (psi(i,j+1)-2.d0*psi(i,j)+psi(i,j-1))/(dy*dy)
t10 = t7*(t8+dervy(psi,i,j)*t9/h2)
t11 = -(g-1.d0)*mach2*(1.d0-eps2)*dervy(psi,i,j)
t12 = t11*exp(-2.d0*psi(i,j))
scy = t2+t6+t10+t12
return
delrho(psi,rho,dpsi,i,j)
function delrho(psi,rho,dpsi,i,j)
real*8 dervx,dervy,delt rho,sc,q,r,s,t
real*8 t1,t2,t3,t4
integer i,j
include 'input.h'
double precision psi(n,m),rho(n,m),dpsi(n,m)

 t1 = r(psi,rho,i,j)*dervx(dpsi,i,j)
t2 = s(psi,rho,i,j)*dervy(dpsi,i,j)
t3 = t(\psi, \rho, i, j) \cdot d\psi(i, j)

\text{t4 = } s\text{c}(\psi, \rho, i, j) \\
\text{delt} \rho = -(t1 + t2 + t3 + t4)/q(\psi, \rho, i, j) \\
\text{return} \\
\text{end}

*** the initial guess ...
*

\text{function psinc(x, y, eps, h) } \\
\text{real*8 x, y, eps, psinc} \\
\text{psinc = } \log(\cosh(y/h)+\text{eps} \cdot \cos(x)) \\
\text{return} \\
\text{end}

*** generic routine for calculating first order x-derivative
*

\text{function dervx(f, i, j) } \\
\text{real*8 dervx} \\
\text{integer i, j} \\
\text{include 'input.h'} \\
\text{double precision f(n,m)}

\text{if(i.eq.1.or.i.eq.n) then}
if(i.eq.1) then
dervx = (-3.d0*f(i,j)+4.d0*f(i+1,j)-f(i+2,j))/(2.d0*dx)
go to 100
else
dervx = (3.d0*f(i,j)-4.d0*f(i-1,j)+f(i-2,j))/(2.d0*dx)
go to 100
endif
else
endif

dervx = (f(i+1,j)-f(i-1,j))/(2.d0*dx)
100 return
end

*** generic routine for calculating first order y-derivative
*
function dervy(f,i,j)
real*8 dervy
integer i,j
include 'input.h'
double precision f(n,m)

if(j.eq.1.or.j.eq.m) then

if(j.eq.1) then
dervy = (-3.d0*f(i,j)+4.d0*f(i,j+1)-f(i,j+2))/(2.d0*dy)
go to 111
else
dervy = (3.d0*f(i,j)-4.d0*f(i,j-1)+f(i,j-2))/(2.d0*dy)
go to 111
endif
else
endif

dervy = (f(i,j+1)-f(i,j-1))/(2.d0*dy)
111 return
end
Bibliography

