Development of the Enantioselective Oxidation of Secondary Alcohols and Natural Products Total Synthesis

Thesis by
Jeffrey T. Bagdanoff

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology
Pasadena, California
2005
(Thesis Defended August 5, 2005)
For

Claire Weatherhead
Acknowledgements

The Stoltz group has collaborated to establish a work environment alive with creativity, based in mutual respect, and fortified with an amazing work ethic. It has been a truly rewarding experience to watch the lab grow from a group of friends, unsure of our common purpose but eager to find out, into a mature research force.

I’d like to first thank Brian for providing me with an excellent example of exactly what a successful, well-balanced scientist is. He has been a great motivator, mentor, teacher and friend over the years and I am constantly impressed at his ability to develop his students. That man knows what he is doing.

While every member of the group, past and present, has had an impact on me in my time here I would like to single out a few people. I’d like to thank all of my collaborators over the years, including Doug Behenna and, more recently, Jen Stockdill, for their diligent work on zoanthenol. While a number of people have contributed to various aspects of a rich palladium program, I’d like especially to thank Eric Ferriera, Raissa Trend, and Dave Ebner for keeping oxidation exciting and expanding my understanding of palladium catalysis. I’d like to thank Eric Ashley for pretending to not have a photographic memory and brightly outshining me during those early years as my baymate. (I was probably “in over my head” when I first got here.) I’d like to thank Uttam Tambar, Ryan Zeidan, Yeeman Ramtohul, and the Reverend Joel Austin for the many adventurous nights that made my last few years of bachelorhood here at Caltech memorable.
Which brings me to my bride-to-be. I need to thank Claire for standing by my side during the challenging times and lighting my way. I have the deepest gratitude for the love, patience and support she has given to me. I will work hard to return those gifts in our new life together.

Finally, I would like to thank my dad for setting the bar high, and my mom for helping my chin to reach it during my earliest years.
Abstract

Oxidation is a fundamental process in chemistry and biology. In synthetic chemistry, there are several methods for the asymmetric oxidation of organic substrates. Classically, these methods have focused on the delivery of a heteroatom from a reagent or catalyst to a prochiral substrate. What have historically been underdeveloped are enantioselective oxidation methods that do not involve the transfer of a heteroatom, but rather are defined by the enantioselective dehydrogenation of an organic substrate. This type of oxidative transformation was investigated using a palladium(II) catalyst system.

A palladium-catalyzed oxidative kinetic resolution of secondary alcohols was developed. Key features of the catalytic system include the use of (−)-sparteine as the source of chiral relay, and molecular oxygen as the sole stoichiometric oxidant. Under the described catalytic system, a number of benzylic and allylic alcohols have been oxidized in an enantioselective manner, to provide a ketone and residual alcohol in high enantiomeric excess and excellent yield.

Subsequent to the original system, the systematic investigation of a number of mechanistic hypotheses involving the role of exogenous bases and H-bonding additives prompted the discovery of new reaction conditions displaying greatly enhanced reactivity, selectivity, atom economy, and generality. The net result of these improvements was a catalytic system effective in oxidative desymmetrization of a number of complex meso-diols. Ultimately, these advances have permitted our method to be applied towards a number of synthetic endeavors, including the key step in the total synthesis of the natural product alkaloid (−)-lobeline.
Table of Contents

Acknowledgements...iv
Abstract..vi
Table of Contents...vii
List of Schemes...xi
List of Figures...xiv
List of Tables...xxi
Abbreviations...xxii

Section I.

Chapter 1 Progress Toward the Total Synthesis of Zoanthenol

I. Introduction...1
 Zoanthid natural products ..1
 Background ..2
 Retrosynthesis ...6
 Mechanistic Considerations ...8

II. Results and Discussion ...9
 Retrosynthetic analysis of the DEFG ring precursor9
 Synthetic Route from the Chiral Pool ...10
 Synthetic Route from Glycidol ..11
Section II.

Chapter 2 Development and Application of the Oxidative Kinetic Resolution of 2°-Alcohols by Catalytic Palladium

I. Introduction ...55

Enantioselective Oxidation Background ..55

The Original Oxidative Kinetic Resolution (OKR)57

II. Results and Discussion ...59
Chapter 3 Total Synthesis of (−)-Lobeline and (−)-Sedamine by Palladium-Catalyzed Enantioselective Oxidation

I. Introduction ...230

Enantioselective Oxidation ..230
List of Schemes

Chapter 1

Scheme 1. Miyashita’s intramolecular Diels-Alder reaction2
Scheme 2. Synthesis of the Diels-Alder substrate3
Scheme 3. Endgame for Miashitas’ norzoanthamine synthesis4
Scheme 4. Williams’ synthetic studies on norzoanthamine AB-rings4
Scheme 5. Williams’ tandem aminial cyclization5
Scheme 6. Degradation of a sugar ..10
Scheme 7. Synthetic route from glycidol ...11
Scheme 8. Advancing to the final retron ...12
Scheme 9. Enantioselective hetero-Diels-Alder reaction13
Scheme 10. Advancing enantiopure synthetic intermediates14
Scheme 11. Endgame for zoanthenol ...14

Chapter 2

Scheme 1. Uemuras’ protocol for the oxidation of alcohols55
Scheme 2. β-Silicon effect in cation stabilization65
Scheme 3. Tandem oxidation/intermolecular Si-transfer65
Scheme 4. Formation of a (sp)Pd(II)carbonate complex72
Scheme 5. Retrosynthesis of a polymethoxydiene83
Scheme 6. Variable ether arrays from a common source84
Scheme 7. Advancing the anti-ether array85
Scheme 8. Advancing the syn-ether array86
Scheme 9. Establishing relative stereochemistry86
Scheme 10. Enantioselective oxidative meso-diol desymmetrization87
Scheme 11. Homologation to the skipped framework88
Scheme 12. Regioselective formation of a palladium-alkoxide100
Scheme 13. A palladium phenoxide ...102

Chapter 3

Scheme 1. Epimerization pathway ..234
Scheme 2. Attempted ring hydrogenation route237
Scheme 3. Attempted tropenone route239
Scheme 4. Small quantities of a key intermediate239
Scheme 5. Diastereoselective reduction240
Scheme 6. Retrosynthesis of (−)-lobeline241
Scheme 7. Advancing the piperidine242
Scheme 8. Functionalizing the piperidine ring243
Scheme 9. Completion of the meso-diol244
Scheme 10. OKR on an advanced lobeline intermediate246
Scheme 11. Attempted methylation ...246
Scheme 12. Dynamic precipitation of (−)-lobeline250
Scheme 13. Derivatization to a HPLC tractable analogue251
Scheme 14. Previous enantioselective synthesis257
Scheme 15. OKR of a sedamine intermediate ..257
Scheme 16. Demethylation problem ..259
Scheme 17. Mechanism for the Polonovski demethylation259
Scheme 18. Modified Polonovski demethylation260
Scheme 19. Lobeline demethylation ..262
List of Figures

Chapter 1

Figure 1. Zoanthamine natural products1
Figure 2. Retrosynthetic analysis of zoanthenol7
Figure 3. A reasonable mechanism for the cyclization8
Figure 4. Retrosynthesis of caprolactam 3311
Figure 5. X-ray structure of phthalamide adduct 5712
Figure 6. Hetero-Diels-Alder catalyst13

Appendix 1

Figure A1.1 1HNMR (300 MHz, CDCl$_3$) of compound 63...............27
Figure A1.2 Infrared spectrum (thin film/NaCl) of compound 6328
Figure A1.3 13CNMR (125 MHz, CDCl$_3$) of compound 6328
Figure A1.4 1HNMR (300 MHz, CDCl$_3$) of compound 3729
Figure A1.5 Infrared spectrum (thin film/NaCl) of compound 3730
Figure A1.6 13CNMR (125 MHz, CDCl$_3$) of compound 3730
Figure A1.7 1HNMR (300 MHz, CDCl$_3$) of compound 6431
Figure A1.8 Infrared spectrum (thin film/NaCl) of compound 6432
Figure A1.9 13CNMR (125 MHz, CDCl$_3$) of compound 6432
Figure A1.10 1HNMR (300 MHz, CDCl$_3$) of compound 6533
Figure A1.11 Infrared spectrum (thin film/NaCl) of compound 6534
Figure A1.12 13CNMR (125 MHz, CDCl$_3$) of compound 6534
Figure A1.13 1HNMR (300 MHz, CDCl$_3$) of compound 5735
Figure A1.14 Infrared spectrum (thin film/NaCl) of compound 5736
Figure A1.15 13CNMR (125 MHz, CDCl$_3$) of compound 5736
Figure A1.16 1HNMR (300 MHz, CDCl$_3$) of compound 5837
Figure A1.17 Infrared spectrum (thin film/NaCl) of compound 5838
Figure A1.18 13CNMR (125 MHz, CDCl$_3$) of compound 5838
Figure A1.19 1HNMR (300 MHz, CDCl$_3$) of compound 5939
Figure A1.20 Infrared spectrum (thin film/NaCl) of compound 5940
Figure A1.21 13CNMR (125 MHz, CDCl$_3$) of compound 5940
Figure A1.22 1HNMR (300 MHz, CDCl$_3$) of compound 3341
Figure A1.23 Infrared spectrum (thin film/NaCl) of compound 33..................42
Figure A1.24 13CNMR (125 MHz, CDCl$_3$) of compound 33......................42
X-ray crystal structure report 1 ...43

Chapter 2

Figure 1. Principles of an oxidative kinetic resolution.........................56
Figure 2. X-Ray crystal structure of Pd(sp)Cl$_2$.................................58
Figure 3. Plausible mechanism for Pd catalyzed oxidation.....................60
Figure 4. The potential role of Cs$_2$CO$_3$..64
Figure 5. Crystal structure of (sp)Pd(CO$_3$)73
Figure 6. Plausible mechanism involving H-bonding species74
Figure 7. Resolution vs. desymmetrization83
Figure 8. The chirality of (−)-sparteine ..91
Figure 9. Synthetic diamine vs. natural (−)-sparteine chiral pocket.......92
Figure 10. Bispinidones, bispinidines, and (−)-sparteine93
Figure 11. Calculated lowest energy pathway98
Figure 12. A model for asymmetric induction101
Figure 13. Crystal structure of (sp)PdII(pentafluoropenoxide)103
Figure 14. Experimental setup ...110

Appendix 2

Figure A2.1 1HNMR (300 MHz, CDCl$_3$) of compound 72...............146
Figure A2.2 Infrared spectrum (thin film/NaCl) of compound 72........147
Figure A2.3 13CNMR (125 MHz, CDCl$_3$) of compound 72..............147
Figure A2.4 1HNMR (300 MHz, CDCl$_3$) of compound 88.................148
Figure A2.5 Infrared spectrum (thin film/NaCl) of compound 88149
Figure A2.6 \(^1\)CNMR (125 MHz, CDCl\(_3\)) of compound 88149
Figure A2.7 \(^1\)HNMR (300 MHz, CDCl\(_3\)) of compound 96150
Figure A2.8 Infrared spectrum (thin film/NaCl) of compound 96151
Figure A2.9 \(^1\)CNMR (125 MHz, CDCl\(_3\)) of compound 96151
Figure A2.10 \(^1\)HNMR (300 MHz, CDCl\(_3\)) of compound 98152
Figure A2.11 Infrared spectrum (thin film/NaCl) of compound 98153
Figure A2.12 \(^1\)CNMR (125 MHz, CDCl\(_3\)) of compound 98153
Figure A2.13 \(^1\)HNMR (300 MHz, CDCl\(_3\)) of compound 99154
Figure A2.14 Infrared spectrum (thin film/NaCl) of compound 99155
Figure A2.15 \(^1\)CNMR (125 MHz, CDCl\(_3\)) of compound 99155
Figure A2.16 \(^1\)HNMR (300 MHz, CDCl\(_3\)) of compound 100156
Figure A2.17 Infrared spectrum (thin film/NaCl) of compound 100157
Figure A2.18 \(^1\)CNMR (125 MHz, CDCl\(_3\)) of compound 100157
Figure A2.19 \(^1\)HNMR (300 MHz, CDCl\(_3\)) of compound 101158
Figure A2.20 Infrared spectrum (thin film/NaCl) of compound 101159
Figure A2.21 \(^1\)CNMR (125 MHz, CDCl\(_3\)) of compound 101159
Figure A2.22 \(^1\)HNMR (300 MHz, CDCl\(_3\)) of compound 102160
Figure A2.23 Infrared spectrum (thin film/NaCl) of compound 102161
Figure A2.24 \(^1\)CNMR (125 MHz, CDCl\(_3\)) of compound 102161
Figure A2.25 \(^1\)HNMR (300 MHz, CDCl\(_3\)) of compound 103162
Figure A2.26 Infrared spectrum (thin film/NaCl) of compound 103163
Figure A2.27 \(^1\)CNMR (125 MHz, CDCl\(_3\)) of compound 103163
Figure A2.28 \(^1\)HNMR (300 MHz, CDCl\(_3\)) of compound 104164
Figure A2.29 Infrared spectrum (thin film/NaCl) of compound 104165
Figure A2.30 \(^1\)CNMR (125 MHz, CDCl\(_3\)) of compound 104165
Figure A2.31 \(^1\)HNMR (300 MHz, CDCl\(_3\)) of compound 105166
Figure A2.32 Infrared spectrum (thin film/NaCl) of compound 105167
Figure A2.33 \(^1\)CNMR (125 MHz, CDCl\(_3\)) of compound 105167
Figure A2.34 \(^1\)HNMR (300 MHz, CDCl\(_3\)) of compound 106168
Figure A2.35 \(^1\)HNMR NOE 1 (300 MHz, CDCl\(_3\)) of compound 106169
Figure A2.36 \(^1\)HNMR NOE 2 (300 MHz, CDCl\(_3\)) of compound 106170
Figure A2.37 Infrared spectrum (thin film/NaCl) of compound 106171
Figure A2.38 \(^1\)CNMR (125 MHz, CDCl\(_3\)) of compound 106171
Figure A2.39 \(^1\)HNMR (300 MHz, CDCl\(_3\)) of compound (–)-107172
Figure A2.40 Infrared spectrum (thin film/NaCl) of compound (–)-107173
Figure A2.41 \(^1\)CNMR (125 MHz, CDCl\(_3\)) of compound (–)-107173
Figure A2.42 \(^1\)HNMR (300 MHz, CDCl\(_3\)) of compound 107a174
Figure A2.43 Infrared spectrum (thin film/NaCl) of compound 107a175
Figure A2.44 \(^1\)CNMR (125 MHz, CDCl\(_3\)) of compound 107a175
Figure A2.45 \(^1\)HNMR (300 MHz, CDCl\(_3\)) of compound (–)-108176
Figure A2.46 Infrared spectrum (thin film/NaCl) of compound (–)-108177
Figure A2.47 \(^1\)CNMR (125 MHz, CDCl\(_3\)) of compound (–)-108177
Figure A2.48 \(^1\)HNMR (300 MHz, CDCl\(_3\)) of compound (–)-109178
Figure A2.49 Infrared spectrum (thin film/NaCl) of compound (–)-109179
Figure A2.50 \(^1\)CNMR (125 MHz, CDCl\(_3\)) of compound (–)-109179
Chapter 3

Figure 1. Structures of piperidine natural products ...232

Figure 2. Proposed biogenesis of (–)-lobeline ..234

Figure 3. Lobeline derived from a meso-diol ...235

Figure 4. Stereochemical rationale for hydride addition ..243

Figure 5. X-ray crystal structure of diol 206 (lobelanine) ..245

Figure 6. Predicted solution phase conformations ..247

Figure 7. Steric congestion about the 3°-amine in (–)-lobeline249
Figure 8. OKR vs. oxidative desymmetrization ..254
Figure 9. Retrosynthesis of sedamine alkaloids ..256
Figure 10. Proposed mechanism of the modified Polonovski261
Figure 11. Experimental setup ...286

Appendix 3

Figure A3.1 1H NMR (300 MHz, CDCl3) of compound (cis:trans)-162305
Figure A3.2 IR spectrum (thin film/NaCl) of compound (cis:trans)-162306
Figure A3.3 13C NMR (125 MHz, CDCl3) of compound (cis:trans)-162306
Figure A3.4 1H NMR (300 MHz, CDCl3) of compound 162307
Figure A3.5 Infrared spectrum (thin film/NaCl) of compound 162308
Figure A3.6 13C NMR (125 MHz, CDCl3) of compound 162308
Figure A3.7 1H NMR (300 MHz, CDCl3) of compound (–)-163309
Figure A3.8 Infrared spectrum (thin film/NaCl) of compound (–)-163310
Figure A3.9 13C NMR (125 MHz, CDCl3) of compound (–)-163310
Figure A3.10 1H NMR (300 MHz, CDCl3) of compound (+)-163311
Figure A3.11 Infrared spectrum (thin film/NaCl) of compound (+)-163312
Figure A3.12 13C NMR (125 MHz, CDCl3) of compound (+)-163312
Figure A3.13 1H NMR (300 MHz, D6-DMSO) of compound 177313
Figure A3.14 Infrared spectrum (KBr pellet) of compound 177314
Figure A3.15 13C NMR (125 MHz, D6-DMSO) of compound 177314
Figure A3.16 1H NMR (300 MHz, CDCl3) of compound 180315
Figure A3.17 Infrared spectrum (thin film/NaCl) of compound 180316
Figure A3.18 13C NMR (125 MHz, CDCl3) of compound 180316
Figure A3.19 1H NMR (300 MHz, CDCl3) of compound 182317
Figure A3.20 Infrared spectrum (thin film/NaCl) of compound 182317
Figure A3.21 13C NMR (125 MHz, CDCl3) of compound 182318
Figure A3.22 1H NMR (300 MHz, CDCl3) of compound 186319
Figure A3.23 Infrared spectrum (thin film/NaCl) of compound 186319
Figure A3.24 13C NMR (125 MHz, CDCl3) of compound 186320
Figure A3.25 1H NMR (300 MHz, CDCl3) of compound 187321
Figure A3.26 Infrared spectrum (thin film/NaCl) of compound 187322
Figure A3.27 13C NMR (125 MHz, CDCl3) of compound 187322
Figure A3.28 1H NMR (300 MHz, CDCl3) of compound 188323
Figure A3.29 Infrared spectrum (thin film/NaCl) of compound 188324
Figure A3.30 13C NMR (125 MHz, CDCl3) of compound 188324
Figure A3.31 1H NMR (300 MHz, CDCl3) of compound 190325
Figure A3.32 Infrared spectrum (thin film/NaCl) of compound 190326
Figure A3.33 13C NMR (125 MHz, CDCl3) of compound 190326
Figure A3.34 1H NMR (300 MHz, CDCl3) of compound 191327
Figure A3.35 Infrared spectrum (thin film/NaCl) of compound 191
Figure A3.36 13CNMR (125 MHz, CDCl$_3$) of compound 191
Figure A3.37 1HNMR (300 MHz, CDCl$_3$) of compound 193
Figure A3.38 Infrared spectrum (thin film/NaCl) of compound 193
Figure A3.39 13CNMR (125 MHz, CDCl$_3$) of compound 193
Figure A3.40 1HNMR (300 MHz, CDCl$_3$) of compound 194
Figure A3.41 Infrared spectrum (thin film/NaCl) of compound 194
Figure A3.42 13CNMR (125 MHz, CDCl$_3$) of compound 194
Figure A3.43 1HNMR (300 MHz, CDCl$_3$) of compound (-)-194
Figure A3.44 Infrared spectrum (thin film/NaCl) of compound (-)-194
Figure A3.45 13CNMR (125 MHz, CDCl$_3$) of compound (-)-194
Figure A3.46 1HNMR (300 MHz, CDCl$_3$) of compound (+)-195
Figure A3.47 Infrared spectrum (thin film/NaCl) of compound (+)-195
Figure A3.48 13CNMR (125 MHz, CDCl$_3$) of compound (+)-195
Figure A3.49 1HNMR (300 MHz, CDCl$_3$) of compound (-)-195
Figure A3.50 Infrared spectrum (thin film/NaCl) of compound (-)-195
Figure A3.51 13CNMR (125 MHz, CDCl$_3$) of compound (-)-195
Figure A3.52 1HNMR (300 MHz, CDCl$_3$) of compound (±)-196
Figure A3.53 Infrared spectrum (thin film/NaCl) of compound (±)-196
Figure A3.54 13CNMR (125 MHz, CDCl$_3$) of compound (±)-196
Figure A3.55 1HNMR (300 MHz, CDCl$_3$) of compound (±)-199
Figure A3.56 Infrared spectrum (thin film/NaCl) of compound (±)-199
Figure A3.57 13CNMR (125 MHz, CDCl$_3$) of compound (±)-199
Figure A3.58 1HNMR (300 MHz, CDCl$_3$) of compound (±)-201
Figure A3.59 Infrared spectrum (thin film/NaCl) of compound (±)-201
Figure A3.60 13CNMR (125 MHz, CDCl$_3$) of compound (±)-201
Figure A3.61 1HNMR (300 MHz, CDCl$_3$) of compound (±)-202
Figure A3.62 Infrared spectrum (thin film/NaCl) of compound (±)-202
Figure A3.63 13CNMR (125 MHz, CDCl$_3$) of compound (±)-202
Figure A3.64 1HNMR (300 MHz, CDCl$_3$) of compound (±)-203
Figure A3.65 Infrared spectrum (thin film/NaCl) of compound (±)-203
Figure A3.66 13CNMR (125 MHz, CDCl$_3$) of compound (±)-203
Figure A3.67 1HNMR (300 MHz, CDCl$_3$) of compound (±)-204
Figure A3.68 Infrared spectrum (thin film/NaCl) of compound (±)-204
Figure A3.69 13CNMR (125 MHz, CDCl$_3$) of compound (±)-204
Figure A3.70 1HNMR (300 MHz, CDCl$_3$) of compound 205
Figure A3.71 Infrared spectrum (thin film/NaCl) of compound 205
Figure A3.72 13CNMR (125 MHz, CDCl$_3$) of compound 205
Figure A3.73 1HNMR (300 MHz, CDCl$_3$) of compound 206
Figure A3.74 Infrared spectrum (thin film/NaCl) of compound 206
Figure A3.75 13CNMR (125 MHz, CDCl$_3$) of compound 206
Figure A3.76 1HNMR (300 MHz, CDCl$_3$) of compound 208
Figure A3.77 Infrared spectrum (thin film/NaCl) of compound 208
Figure A3.78 13CNMR (125 MHz, CDCl$_3$) of compound 208
Figure A3.79 1HNMR (300 MHz, CDCl$_3$) of compound 217
Figure A3.80 Infrared spectrum (thin film/NaCl) of compound 217
Figure A3.81 13CNMR (125 MHz, CDCl$_3$) of compound 217358
Figure A3.82 1HNMR (300 MHz, CDCl$_3$) of compound 218359
Figure A3.83 Infrared spectrum (thin film/NaCl) of compound 218360
Figure A3.84 13CNMR (125 MHz, CDCl$_3$) of compound 218360
Figure A3.85 1HNMR (300 MHz, CDCl$_3$) of compound 219361
Figure A3.86 Infrared spectrum (thin film/NaCl) of compound 219362
Figure A3.87 13CNMR (125 MHz, CDCl$_3$) of compound 219362
X-ray crystal structure report 5 ...363
List of Tables

Chapter 2

Table 1. The original oxidative kinetic resolution57
Table 2. In situ catalyst formation ...59
Table 3. Additive effects on the OKR61
Table 4. Effect of excess (−)-sparteine63
Table 5. Effect of an oxidatively inert alcohol67
Table 6. Effect of oxidatively inert alcohols on the OKR68
Table 7. Cumulative additive effects70
Table 8. Cs₂CO₃/t-BuOH-modified OKR71
Table 9. Impact of solvent on reaction rate76
Table 10. C–D stretch of CDCl₃ ..77
Table 11. Scope of the CHCl₃ conditions79
Table 12. Comparison of oxidation performance80
Table 13. Effect of O₂ concentration81
Table 14. Monoamine and diamine ligands94
Table 15. Impact of ligand structure on conversion96
Table 16. Effect of sodium phenoxide salts on the OKR104

Chapter 3

Table 1. Scope of the original palladium catalyzed OKR230
Table 2. Evolution of the palladium catalyzed OKR231
Table 3. Impact of N-protecting groups on the OKR236
List of Abbreviations

- $[\alpha]_D$: specific rotation at wavelength of sodium D line
- aq.: aqueous
- Ar: aryl
- atm: atmosphere
- BBN: borabicyclo[3.3.1]nonane
- Bn: benzyl
- Boc: \textit{tert}-butyloxycarbonyl
- bp: boiling point
- br: broad
- Bu: butyl
- \textit{i}-Bu: isobutyl
- \textit{n}-Bu: \textit{n}-butyl
- \textit{t}-Bu: \textit{tert}-butyl
- Bz: benzoyl
- \(c\): concentration for specific rotation measurements
- °C: degrees Celsius
- calc’d: calculated
- cat.: catalytic
- comp: complex
- d: doublet
- DCC: dicyclohexylcarbodiimide
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCE</td>
<td>1,2-dichloroethane</td>
</tr>
<tr>
<td>DIBAL</td>
<td>diisobutylaluminum hydride</td>
</tr>
<tr>
<td>DMAP</td>
<td>4-dimethylaminopyridine</td>
</tr>
<tr>
<td>DMF</td>
<td>N,N-dimethylformamide</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulfoxide</td>
</tr>
<tr>
<td>dr</td>
<td>diastereomeric ratio</td>
</tr>
<tr>
<td>ee</td>
<td>enantiomeric excess</td>
</tr>
<tr>
<td>EI</td>
<td>electrospray ionization</td>
</tr>
<tr>
<td>equiv</td>
<td>equivalents</td>
</tr>
<tr>
<td>Et</td>
<td>ethyl</td>
</tr>
<tr>
<td>EtOAc</td>
<td>ethyl acetate</td>
</tr>
<tr>
<td>FAB</td>
<td>fast atom bombardment</td>
</tr>
<tr>
<td>g</td>
<td>grams</td>
</tr>
<tr>
<td>GC</td>
<td>gas chromatography</td>
</tr>
<tr>
<td>[H]</td>
<td>reduction</td>
</tr>
<tr>
<td>h</td>
<td>hour(s)</td>
</tr>
<tr>
<td>hv</td>
<td>light</td>
</tr>
<tr>
<td>HPLC</td>
<td>high performance liquid chromatography</td>
</tr>
<tr>
<td>HRMS</td>
<td>high resolution mass spectroscopy</td>
</tr>
<tr>
<td>Hz</td>
<td>hertz</td>
</tr>
<tr>
<td>Imid.</td>
<td>Imidazole</td>
</tr>
<tr>
<td>IR</td>
<td>infrared</td>
</tr>
<tr>
<td>J</td>
<td>coupling constant</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Meaning</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Kcal</td>
<td>kilocalories</td>
</tr>
<tr>
<td>L</td>
<td>liter</td>
</tr>
<tr>
<td>LAH</td>
<td>lithium aluminum hydride</td>
</tr>
<tr>
<td>M</td>
<td>metal or molar</td>
</tr>
<tr>
<td>m</td>
<td>milli or multiplet or meters</td>
</tr>
<tr>
<td>m/z</td>
<td>mass to charge ratio</td>
</tr>
<tr>
<td>µ</td>
<td>micro</td>
</tr>
<tr>
<td>Me</td>
<td>methyl</td>
</tr>
<tr>
<td>MHz</td>
<td>megahertz</td>
</tr>
<tr>
<td>min</td>
<td>minutes</td>
</tr>
<tr>
<td>mol</td>
<td>moles</td>
</tr>
<tr>
<td>mmol</td>
<td>millimoles</td>
</tr>
<tr>
<td>mp</td>
<td>melting point</td>
</tr>
<tr>
<td>MS</td>
<td>molecular sieves</td>
</tr>
<tr>
<td>Ms</td>
<td>methanesulfonyl</td>
</tr>
<tr>
<td>N</td>
<td>normal</td>
</tr>
<tr>
<td>nbd</td>
<td>norbornadiene</td>
</tr>
<tr>
<td>NMO</td>
<td>(N)-methylmorpholine (N)-oxide</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>NOE</td>
<td>nuclear Overhouser effect</td>
</tr>
<tr>
<td>[O]</td>
<td>oxidation</td>
</tr>
<tr>
<td>OKR</td>
<td>oxidative kinetic resolution</td>
</tr>
<tr>
<td>Ph</td>
<td>phenyl</td>
</tr>
</tbody>
</table>
PhH benzene
pKa acidity constant
ppm parts per million
i-Pr isopropyl
q quartet
ref reference
R_F retention factor
s singlet or selectivity factor
sp (−)-sparteine
t triplet
TBAF tetrabutylammonium fluoride
TBS tert-butyldimethylsilyl
TCA trichloroacetic acid
Tf trifluoromethanesulfonyl
TFA trifluoroacetic acid
THF tetrahydrofuran
TLC thin-layer chromatography
TMS trimethylsilyl
v/v volume to volume
w/v weight to volume