
QUANTITATIVE INSIGHTS INTO DEVELOPMENTAL SIGNALS AND 
PHENOTYPES IN C. ELEGANS 

 
 
 
 
 
 
 
 
 

Thesis by 
 

Claudiu Giurumescu 
 
 
 
 
 
 
 
 

In Partial Fulfillment of the Requirements 
 

for the Degree of 
 

Doctor of Philosophy 
 
 
 
 
 
 
 
 
 
 
 
 
 

CALIFORNIA INSTITUTE OF TECHNOLOGY 
Pasadena, California 

 
2008 

 
(Defended July 31, 2007) 



ii
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2008 
 

Claudiu Giurumescu 
 

All Rights Reserved 



iii
ACKNOWLEDGEMENTS 

 
I would foremost like to thank my thesis advisor Professor Anand Asthagiri for 

allowing me to pursue projects that excite me at my own pace. During my residency at 

Caltech, he has changed the way I perceive science and view the world. From him I have 

learned to question reality in the most counterintuitive ways; his keen insight will always 

amaze me. 

I want to thank Professor Paul Sternberg for giving me the opportunity to work in 

his laboratory and for inspiring me with the excitement of doing science. He played a 

great role in my decision to wavily go the "worm way" in my scientific career after 

Caltech. I would also like to thank my other thesis committee members, Professors Mark 

Davis, David Tirrell and Zhen-Gang Wang, for their valuable time and advice. 

The experience at Caltech would not have been complete without my labmates 

Nick Graham, Niki Galownia, Steve Chapman, Melissa Pope, Kei Kushiro, Jin-Hong 

Kim, and Paul Minor. I have learned a lot from all of you and I will always appreciate 

your daily companionship while I was at Caltech. I am also indebted for their friendship 

to Tharathorn Rimchala and Yuan Gong, whom I had the opportunity to mentor at 

various times in the Asthagiri lab. 

Many thanks to all the mentors that I have had throughout my years of formal 

education. I would like to thank my high-school chemistry teacher Zena Popa for her 

belief in my abilities and support in pursuing my passion for chemistry and Professors 

Cornelia Guran  and Sorin Roşca for further guiding me in my learning of chemistry. I 

would also like to thank my undergraduate mentor, Professor Bernhardt Trout, for 



iv
allowing me to learn all the things I nowadays know about computers in his 

computational lab. 

Finally, I would like to thank my wife Thuy for her immeasurable help and 

patience throughout the late part of my PhD and for her strong encouragements.  

 



v

ABSTRACT 
 

Design of biomaterials and cellular scaffolds for tissue-engineering applications 

and regenerative medicine requires a precise understanding of the principles underlying 

multicellular patterning.  Adhesion, migration, division, differentiation, and apoptosis are 

characteristic cellular behaviors, the engineering of which has the potential to allow 

creation of custom, multicellular structures.  These cellular events occur naturally during 

embryonic and postembryonic development of multicellular organisms.  Development 

thus offers the opportunity to learn about the design principles and molecular 

mechanisms that guide cellular patterning. 

 

A key finding in developmental biology is that a limited set of conserved 

molecular signaling pathways act at multiple times and locations throughout the embryo 

to introduce cell-fate asymmetries in homogenous populations of cells.  In turn, these 

asymmetries serve as starting points for the patterning of new organs.  These signaling 

pathways interact quantitatively at multiple levels, including signaling cues, post-

translational regulation, and gene-regulatory networks, to guide multicellular patterning. 

 

How does the quantitative performance of these signaling networks ensure the 

intended phenotype pattern?  How do changes in the quantitative performance of these 

networks, possibly over the course of evolution, give rise to new phenotypes?  These are 

the central questions pursued in this thesis.  
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In order to answer such questions, we used vulva formation in the nematode 

Caenorhabditis elegans as a model system of cellular patterning.  We formulated a 

mathematical model of the molecular network underlying cellular-fate specification in 

this system.  Computational analysis of this molecular network reveals that cell–cell 

coupling through lateral LIN-12/Notch signaling amplifies the perception of the gradient 

in the epidermal-growth-factor-like soluble cue, LIN-3.  Thus, the gradient in LIN-3 

concentration produces an even steeper difference in LIN-3-mediated intracellular signals 

between adjoining cells.  Such gradient amplification may be particularly important in 

converting a shallow, graded-specification signal into a spatial pattern of distinct fate 

choices. 

 

Through quantitative perturbations of interaction strengths between components 

of the vulval patterning network, we further show that our modeling approach can 

correctly predict phenotype patterns observed in C. elegans mutation studies.  This study 

generated a framework for quantitative analysis of molecular networks that links 

quantitative molecular perturbations to patterning outcomes.  This framework will prove 

useful in the analysis of other systems involving cellular fate decisions and in tissue 

engineering applications where the generation of precise cell patterns is needed.  We 

demonstrate the generality of our approach through an application to evolutionary 

developmental biology.  Since molecular connectivity of the vulva patterning network of 

several closely related Caenorhabditis species is preserved, we correctly predict the 

quantitative diversification that must have occurred in this network during species 

evolution. 
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CHAPTER 1: MULTICELLULAR PATTERNING IN DEVELOPMENT 

 

1.1 Abstract 

Developing design strategies for tissue engineering and regenerative medicine is 

limited by our nascent understanding of how cell populations “self-organize” into 

multicellular structures on synthetic scaffolds.  Mechanistic insights and design principles 

can be gleaned from the quantitative analysis of multicellular patterning during the 

natural processes of embryonic and adult development.  This chapter describes the 

critical layers of signaling mechanisms that drive developmental multicellular patterning: 

spatiotemporal presentation of extracellular cues, intracellular signaling networks that 

mediate crosstalk among extracellular cues, and finally, intranuclear signal integration at 

the level of transcriptional regulatory networks.  At every level in this hierarchy, the 

quantitative attributes of signals have a profound impact on patterning.  We discuss how 

the simple model organism Caenorhabditis elegans may be used to uncover these 

quantitative features and their impact on multicellular phenotype through mathematical 

modeling and quantitative experiments. 

 

1.2 Introduction 

The development of a multicellular organism from an embryo is one of nature’s 

most remarkable phenomena.  Deciphering how this transformation occurs is a 

fundamental challenge in biology with profound biomedical implications.  Insights into 

the molecular signals guiding developmental patterning will provide design strategies to 

promote multicellular structure formation in applications such as tissue engineering and 

regenerative medicine.  Recently, significant attention has been given to the use of stem 
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cells in these applications.  A major challenge, however, is to engineer a cellular 

microenvironment that presents the right combination of cues to promote differentiation 

and cellular “self-organization.”  This bioengineering challenge will undoubtedly benefit 

from a more quantitative and integrative understanding of developmental signals.  In fact, 

gleaning design insight from natural developmental processes is imperative, since 

erroneous manipulation of developmental mechanisms can lead to pathologies.  Perhaps, 

the most striking example is that aberrations in developmental signals play a prominent 

role in the structural and functional regression of tissues during cancer development [1].  

Development begins with asymmetric divisions of the fertilized egg, partitioning it into 

distinct groups of cells or “progenitor fields” that will ultimately develop into future 

organs [2].  Each group executes a distinct gene expression program, thereby specifying 

it toward a unique developmental fate.  The next round of specification cues further 

subdivides the progenitor field, with each subgroup now executing a distinct specification 

(i.e., gene expression) program.  Thus, development involves successive rounds of 

asymmetry-inducing specification cues that trigger specific gene expression programs.  

Interspersed among these successive rounds is the cellular execution of the gene 

expression program.  Specifically, this program dictates cell behaviors, such as division, 

migration, death, and extracellular matrix deposition and remodeling—events that shape 

and functionalize developing tissues, and ultimately, the organism. 

 

Thus, the molecular signals at the heart of development are the specification cues 

and the network of biochemical reactions that process these cues and instruct the 

appropriate cell behavioral response.  Specification cues must encode spatial information, 
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since groups of cells must be partitioned according to a precise three-dimensional 

geometry.  Once the specification cue has been perceived, cells must then execute the 

downstream gene expression program in a context-sensitive manner.  Here, context has 

twofold significance.  First, in any spatial context, cells are exposed to multiple cues.  

The specification cue must be processed in this rich backdrop of signals.  Furthermore, in 

some cases, information from two or more specification cues must be integrated to induce 

the appropriate response.  Second, cellular response to a specification cue must take into 

account the temporal context.  When a cell is exposed to a specification cue at a 

particular time in development, its response will be biased by its developmental history.  

For example, the cell response will be affected by its proteomic profile, which is 

determined by the series of gene expression programs executed up to that time.  In fact, 

the context dependence of cell response is absolutely critical, since the same specification 

cue is often used in multiple places and times to guide development.  Cells respond to the 

same cue in distinct ways by accounting for their spatial and temporal context through 

remarkably sophisticated signal integration mechanisms. 

 

1.3 Specification Cues 

Specification cues are signals that instruct cells to execute a particular gene 

expression program, and thereby propel cells to a particular fate.  Classical models 

envisioned that spatial gradients in soluble cues may guide multicellular patterning over 

longer length scales [3].  Indeed, such soluble specification cues or morphogens have 

been identified, including four major families: fibroblast growth factor (FGF), hedgehog 

(Hh), wingless (Wg/Wnt), and transforming growth factor-β (TGFβ)  [4].  These factors 
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operate in a wide span of organisms including both invertebrates (Drosophila, C. elegans, 

and sea urchin) and vertebrates (Xenopus, zebrafish, mouse, and chicken). 

 

Morphogens are signaling molecules that partition a field of cells into two or 

more fates [5].  They act directly to specify fates in a concentration-dependent manner 

(Figure 1.1).  Because cells respond to the local concentration, the shape of the 

morphogen gradient across a field of cells dictates the pattern of cell fates.  Although 

several factors had been long thought to act as morphogens, direct experimental evidence 

for spatially graded, concentration-dependent action was first demonstrated for activin, a 

member of the TGFβ family, that guides mesoderm induction in Xenopus embryos [6].  

 

 
Figure 1.1. Activin concentration-dependent gene expression domains 
Cells that are closest to the activin morphogen source are exposed to a high concentration 
of activin and express goosecoid.  At intermediate distances, activin induces the 
expression of brachyury.  Cells farthest away from morphogen source receive the least 
amount of morphogen and do not express either gene. 
 
 

Spatial gradients are established by localized secretion of morphogen along with 

its transport across the cell field.  The secreting source may be a single cell as in the case 

of LIN-3 release during C. elegans vulval development [7] or an array of cells as in the 

case of Decapentaplegic (Dpp)-mediated anteroposterior (AP) patterning of the 
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Drosophila wing [8].  In systems where a single cell releases the morphogen, the gradient 

will most likely span a short distance on the order of several cell lengths.  Morphogen 

release from several cells can lead to gradients that span hundreds of cells lengths, 

although short range coverage is also possible as in Hh-initiated AP patterning in the 

Drosophila wing [9].  Importantly, morphogens need not be extracellular factors.  During 

early stages of Drosophila development, the embryo is a multinuclear synctium with no 

cell boundaries.  Gradients in maternal gene products, such as Dorsal and Bicoid, 

establish asymmetries in gene expression during dorsoventral (DV) and AP patterning, 

respectively, of the Drosophila embryo. 

 

Secreted extracellular morphogens are generally expressed as transmembrane 

precursors that are later processed by proteases to release the soluble form [7, 10].  The 

mechanisms regulating morphogen release are beginning to be uncovered.  Transport 

between intracellular compartments and retention in the endoplasmatic reticulum (ER) 

play a regulatory role in the release of Spitz morphogen during Drosophila eye 

development [11].  However, interesting questions remain: how are source cells 

synchronized to initiate (and to stop) the release of morphogen?  Are such decisions 

autonomous or nonautonomous?  Synchronous release may involve cell–cell 

communication, a plausible mechanism if the secreting source were a small group of 

cells.  Such coordinated secretion would be more difficult if the secreting source were a 

large group of cells.  In this case, a relay mechanism may provide synchronicity and the 

desired amplification.  For example a long range gradient in Dpp morphogen patterns the 

Drosophila wing.  This gradient is set up by a shorter range gradient in Hh [12]. 
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Once secreted, the morphogen must be transported across the cell field to 

establish a gradient.  Several genetics studies revealed that endocytosis—the 

internalization of morphogen-bound receptor by the cell—plays a key role in establishing 

morphogen gradients [13, 14].  These observations suggested that morphogen transport 

may occur by an active, cell-assisted process labeled transcytosis (Figure 1.2).  In this 

process, morphogen-bound receptors are endocytosed and then exocytosed or brought 

back to the cell surface.  Exocytosed complexes dissociate and release the morphogen.  If 

the reemergence of the internalized morphogen is isotropic, transcytosis-mediated 

morphogen transport may be characterized by an effective diffusion coefficient [15].  In 

fact, it has been suggested that passive diffusion may not be well suited to establish 

steady-state morphogen gradients [16]. 

 

 
Figure 1.2. Mechanisms of morphogen transport 
(A) Transport by passive diffusion entails release of morphogen from the Golgi (green) in 
the extracellular space by the source cell (left) and random walk of molecules away from 
the source.  The morphogen can be endocytosed and transported through early 
endosomes (gray) to late endosomes (blue-gray) and recycled to Golgi or degraded in 
lysosomes (blue).  (B) Transport by transcytosis consists of rounds of endocytosis and 
exocytosis by the cells in the field. 
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However, an integrative analysis of diffusion-mediated transport alongside key 

biochemical pathways revealed that diffusive transport can establish steady-state 

morphogen gradients, provided there are degradation sinks for the morphogen [17].  In 

the absence of morphogen degradation, an ever-increasing morphogen concentration will 

result in uniform occupancy of target receptors at steady state.  However, in the presence 

of morphogen sinks, a steady-state gradient in receptor occupancy will form in a 

diffusion-based transport model.  Indeed, receptor-mediated endocytosis itself promotes 

morphogen degradation  [13, 18].  Thus, the requirement for endocytosis to establish 

morphogen gradients is entirely consistent with diffusive transport.  

 

Furthermore, the diffusion/endocytosis model may be physically more plausible 

than transcytosis, since the latter may require that certain cellular processes occur at 

nonphysiological rates.  For example, the formation of a steady-state gradient on the 

timescale of a typical developmental process would require that morphogen be 

transported across a single cell on an average time scale of 100 seconds [17], seemingly 

unachievable considering the relatively slow kinetics of the steps involved in 

transcytosis: receptor association, internalization, directed transport through the cell, 

exocytosis, and receptor dissociation.  However, it can be argued that the rates of these 

processes have not been measured in vivo where cells may be optimized to facilitate 

transcytosis [15].  Furthermore, the diffusion/endocytosis model is not consistent with all 

experimental data [19].  In cell fields where a patch of cells is deficient in endocytosis, a 

depression in morphogen concentration is observed adjacent to the patch on the side 

opposite from the secreting morphogen source.  The diffusion/endocytosis model would 
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predict that in the endocytosis-defective patch, reduced receptor degradation increases 

receptor expression and prevents morphogen transport, thereby producing the “shadow” 

effect.  However, recent measurements of the receptor expression level in the 

endocytosis-deficient patch suggest that the increase in receptor expression is not of 

sufficient magnitude to explain quantitatively the shadow phenomenon [19].  

 

In summary, an integrative analysis demonstrates that diffusion is entirely capable 

of establishing morphogen gradients in an endocytosis-dependent fashion, although other 

mechanisms such as transcytosis may play a concomitant role.  Model predictions about 

morphogen transport may be validated by comparison to direct measurements of 

morphogen gradients.  Gradients have been directly observed in vivo using green 

fluorescent protein (GFP) fusion constructs.  This approach has been used to study the 

formation of the Dpp and Wg gradients in Drosophila during the anterior-posterior 

patterning of wing discs and during embryonic development, respectively [13, 20, 21].  

Mathematical models have been constructed to explain the mechanisms of Dpp gradient 

formation and the role of receptors in shaping this gradient [19, 22].  

 

However, in most cases, direct observation of the gradient has been hampered by 

difficulty in expressing GFP-fused morphogens or in using antibodies to detect low 

concentrations of morphogens [19, 23].  In these cases, the intracellular expression of a 

gene target is measured as an indirect monitor of the extracellular morphogen.  For 

example, during C. elegans vulval development, the gradient in an EGF-like soluble 

factor (LIN-3) has been observed indirectly from the graded activity of a reporter of the 
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LIN-3 target gene, egl-17 [24].  Such studies offer important qualitative confirmation of 

the morphogen gradient, but do not provide key quantitative information, such as the 

steepness of the steady-state gradient. 

 

A gradient that is too shallow or too steep would not be biologically useful.  A 

metric of gradient steepness is the ratio L/λ where λ is the characteristic decay length 

scale of the morphogen gradient and L is the length of the field of cells to be patterned 

[25].  A biologically useful gradient would have a steepness characterized by L/λ = 1. 

Shvartsman and colleagues recently described an elegant systems approach to infer 

quantitatively the steady-state gradient in the morphogen Gurken in the Drosophila egg 

chamber [26].  Using molecular genetics, the expression level of the Gurken receptor 

(EGFR) was manipulated in order to alter the Gurken morphogen gradient.  Since the 

gradient could not be directly measured, its effect on the expression of the target gene 

pipe was quantified using imaging techniques.  This quantitative data set that related 

EGFR expression level to the spatial boundaries of pipe expression was fit to a systems-

scale model of Gurken gradient formation and signaling.  This analysis revealed that the 

steady-state Gurken gradient is characterized by a L/λ value of 2.7.  This model-based 

estimation of the parameter L/λ provides complete information about the full, nonlinear 

shape of the Gurken gradient and offers intriguing insight on how sensitive downstream 

gene expression must be to Gurken concentration.  For example, a significant change in 

gene expression program is observed at a boundary where the Gurken gradient changes 

by only threefold, suggesting a remarkable switchlike sensitivity of these cells to Gurken 

concentration. 
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This type of ultrasensitivity to morphogen concentration would seem to suggest 

that even mild fluctuations in gradient formation would significantly perturb 

developmental patterning.  Indeed, it is expected that a simple transport model involving 

secretion, diffusion and degradation would yield gradients that are highly sensitive to 

variations in parameters, such as temperature and the secretion rate [25].  In some cases, 

additional mechanisms are employed to buffer morphogen gradient formation against 

these fluctuations.  For example, elevations in the morphogen secretion rate are buffered 

by a feedback loop during AP patterning of Drosophila wing [27].  Here, the Hh 

morphogen induces localized expression of its receptor Ptc, which in turn sequesters and 

directs Hh to endocytic degradation.  This negative feedback loop is a robust mechanism 

that limits the morphogen from reaching distant cells in the event of elevated morphogen 

secretion.  

 

Yet, in other systems, the steady-state gradient is not robust to variations in 

temperature, ligand secretion rates, or geometrical variations [25, 28].  The Bicoid 

gradient that patterns Drosophila embryo along anterior-posterior axis shows an embryo-

to-embryo variability in its diffusion length of 5% of embryo length. Interestingly, the 

expression of the downstream gene target Hunchback (Hb) is robust to these fluctuations. 

Instead of exhibiting fluctuations in the position of Hb expression boundary of 7% of 

embryo length (about 7 cell diameters), the value expected based on the above variability 

in the Bicoid gradient, embryos show only 1% variability.  Thus, in some systems, 

robustness may be conferred not at the level of gradient formation, but by the 

mechanisms involved in perceiving and interpreting the specification cues. 
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1.4 Quantitative Signal Processing and Integration 

Upon receiving a specification cue, cells must choose a fate that precisely 

accounts for (a) the quantitative nature of the signal, (b) the spatial context that may 

include other environmental cues, and (c) the cell’s developmental history.  Intracellular 

molecular networks achieve this quantitative signal processing and integration of spatial 

and temporal context. 

 

The first step in processing graded levels of extracellular specification cues 

involves their detection by cell surface receptors.  The cells must then interpret this 

quantitative information from its receptors to choose between distinct fates.  The MAP 

kinase pathway is a common signaling “protocol” used across a wide range of 

developmental systems [29-31] and performs with quantitative properties that would be 

desirable in a developmental context.  Foremost, the MAP kinase cascade has been 

shown to convert a graded stimulus into a digital output, a feature that has clear 

implications for converting a spatial morphogen gradient into a discrete pattern of cell 

responses (Figure 1.1).  While some of this switchlike behavior is due to the cascade 

structure of the MAP kinase module, the dominant contribution is provided by positive 

feedback [32].  In Xenopus oocyte extracts, MAP kinase activity increases the expression 

of Mos, an upstream element in the MAP kinase activation pathway.  This positive 

feedback yields a switchlike response to a graded stimulus, and inhibition of protein 

synthesis ablates the upregulation of Mos and results in a graded output. 
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When the positive feedback is of sufficient magnitude, the MAP kinase pathway 

encodes another attractive feature for development – irreversibility (Figure 1.3).  Upon 

transient stimulation with progesterone, the Xenopus oocyte irreversibly specifies from 

the immature to mature state [33].  The MAP kinase pathway mediates this irreversible 

specification.  The positive feedback loop in the MAP kinase module acts in concert with 

a second signaling module that also contains a positive feedback loop.  The combined 

effect is that the progesterone stimulus activates maturation, and even upon removal of 

the stimulus, the cell remains committed to that fate. 

 

 
Figure 1.3. Transient signals and the irreversibility of commitment and cell fate 
execution 
Specification cues such as morphogens (red) are secreted only transiently.  This transient 
cue activates intracellular signals (green) that commit cells to a fate.  These intermediate 
commitment signals must be irreversible on the short timescale during which the 
specification cue may subside.  Over longer timescales and once past the point of 
commitment (vertical dotted line), the commitment signals must also dissipate, since 
intracellular signaling pathways, such as the MAP kinase cascade, are often reused in 
multiple contexts.  Unlike the specification cue and the commitment signal, the 
expression of terminal differentiation genes (blue) associated with a specific cell fate are 
expressed irreversibly. 
 
 

Specification cues presented to cells during development are present only 

transiently, long enough for the cell to commit to a fate, but short enough to prepare the 

system to potentially re-use the cue for later developmental steps.  For example, in C. 
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elegans, the EGF-like morphogen LIN-3 is secreted by the anchor cell to stimulate vulval 

precursor cell specification [7]; later, the descendants of vulval precursor cells release 

LIN-3 toward the anchor cell to induce vulval-uterine attachment [34].  Since cues are 

only transient, irreversible cell commitment to execute particular fates is critical. 

 

An important observation is that even intermediate signals, such as MAP kinase, 

are re-used.  Thus, even though intermediate signals may be irreversible on the timescale 

of fate commitment, they too must decay back to a basal level to be available for the next 

round of specification cues.  We hypothesize that this reversibility of intermediate 

commitment signals over longer time scales is achieved by deactivating the positive 

feedback pathways.  However, it should be noted that fate execution itself cannot be 

reversible.  Indeed, if the fate is cell division or death, the condition of irreversibility is 

obviously satisfied.  However, if fate execution involves the expression of specific genes, 

mechanisms must be put in place to maintain that expression once the specification cue 

and intermediate commitment signals have dissipated.  Positive feedback loops at the 

level of gene regulation may be involved. 

 

Notably, a conversion from an analog to an irreversible, digital signal still leaves 

the cell with a conundrum.  How do different levels of a single molecular signal, such as 

MAP kinase, trigger substantially distinct gene expression programs?  In some systems, 

this quantitative decoding may occur at a point that is most proximal to gene expression: 

the cis-regulatory sequences that tune the level of transcriptional activity.  During 

dorsoventral (DV) patterning of the Drosophila embryo, a gradient in the transcription 
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factor Dorsal establishes a spatial pattern of gene expression (Figure 1.4).  The cis-

regulatory elements of gene targets like twist and snail contain low affinity binding sites 

for Dorsal, and these genes are expressed in the ventral-most field where Dorsal 

concentrations are high.  Meanwhile, gene targets such as rho that are expressed more 

dorsally possess optimal Dorsal binding sites in their cis-regulatory elements.  These 

higher affinity sites compensate for the lower Dorsal concentrations in that region.  In 

fact, the number and quality of Dorsal binding sites on cis-regulatory elements strongly 

correlates with the pattern of dorsoventral gene expression across four divergent species 

of Drosophilids [35]. 

 

 
Figure 1.4. Dorsoventral patterning in Drosophila 
A gradient in transcription factor Dorsal patterns the Drosophila embryo along the 
dorsoventral axis.  The genes twi and sna with low affinity sites are active only in the 
ventral-most region (a) where the Dorsal concentration is highest.  In the adjacent region 
(b) with intermediate Dorsal concentrations, rho and brk are expressed from optimal 
Dorsal binding sites.  In the dorsal most region (c), the presence of repressors and the low 
concentration of Dorsal prevent activation of any of these genes. 
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These findings strongly suggest a model where the binding affinity of 

transcriptional activators to gene targets sets the threshold of specification signal needed 

to initiate gene expression.  Genes with low affinity transcription factor binding sites may 

be expressed only if the specification signal is sufficiently high.  Meanwhile, genes 

possessing high affinity binding sites would be responsive even if the specification signal 

were low.  However, how do these high affinity binding sites remain unresponsive in 

regions where the specification signal is high?  This additional quantitative selectivity is 

also prescribed by cis-regulatory elements, but via a mechanism unrelated to binding 

affinity for transcription factors.  Cis-regulatory elements contain binding sites for 

multiple transcription factors, some activators and others inhibitors of gene expression.  

Combinatorial processing of these multiple inputs determines the net level of gene 

expression. 

 

Such combinatorial processing of multiple inputs plays a key role in Drosophila 

DV patterning.  As described above, the gene target snail contains low affinity binding 

sites for Dorsal and is expressed only in the ventral-most region where Dorsal 

concentration is highest.  Interestingly, snail encodes a transcriptional repressor that 

binds cis-regulatory elements of other gene targets of Dorsal, including rho.  Hence, Snail 

represses rho expression in the ventral-most region despite the high concentrations of 

Dorsal.  Meanwhile, in the adjacent region, the concentration of Dorsal and Snail 

diminish.  Here, rho is expressed because of its high affinity binding sites for Dorsal, 

while the lower concentration of Snail renders its repression less effective. 
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In this manner, cis-regulatory elements serve as crucial points of signal 

integration.  Significant advances have been made in uncovering the network of 

transcription factors and the cis-regulatory elements on which they act.  Such gene 

regulatory networks have been delineated for endomesoderm specification in sea urchin, 

dorsal-ventral axis patterning in Drosophila, vulva differentiation in C. elegans , and 

mesoderm specification in Xenopus (reviewed by [36, 37]).  A key consideration, 

however, is that each cis-regulatory element or node in this network is not merely a 

connection for multiple inputs, but is a quantitative processor.  The concentrations of 

input transcription factors are detected by the affinity and number of sites on the node.  

The relative amounts of activators and repressors are also part of the calculus.  These 

quantitative aspects of the input then determine the extent of output, i.e., gene 

transcriptional activity.  

 

The quantitative signal processing and integration that occur at the cis-regulatory 

modules provide not only spatial, but also temporal context.  During early development 

of sea urchin, the endo-16 gene [38] is expressed in the entire vegetal plate, i.e., progeny 

of cells derived from the veg2 blastomeres.  Later in development, its expression further 

increases in endoderm and future archenteron, while decaying back to basal level in veg2 

progeny cells that will become mesoderm.  Throughout this time, the gene is continually 

repressed in micromeres or veg1 progeny cells.  In each of these spatial and temporal 

contexts, endo-16 is repressed or expressed at different levels because different panels of 

transcription factors act on its cis-regulatory modules.  What is the mechanistic basis for 

having distinct panels of transcription factors in these various contexts?  The answer is a 
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recursive one.  At an earlier stage, each panel of transcription factors was expressed as 

dictated by their own cis-regulatory elements.  Thus, the history of genes that were 

expressed in a particular cell encodes its temporal context, thereby priming the cell to 

respond appropriately to its current specification cues.  

 

This cascade of gene expression events is not a simple linear pathway, but rather a 

gene regulatory network.  The genes and the associated cis-regulatory elements that 

comprise these genetic circuits have been elucidated for a wide range of developmental 

contexts [37].  However, the quantitative calculations that occur at each cis-regulatory 

element remain to be elucidated.  Such quantitative insight would enable the development 

of mathematical models of these networks.  Such models can allow us to explore the 

capabilities of the network beyond the developmental context from which they were 

formulated.  Indeed, development may not exhaustively cover all the contexts to which 

the cis-regulatory module of each gene responds.  Analyzing the performance of cis-

regulatory modules under developmentally unachievable contexts would offer a method 

to explore potential disease states or synthetic/engineering objectives. 

 

But, one critical challenge is to develop models that not only track biochemical 

signals in time and space, but also predict what the actual cell fate decisions and patterns 

will be.  Such models could explore the connection between network structure and 

phenotypes that are typically scored in genetics experiments.  In addition, these models 

could provide the foundation for computationally exploring phenotypic diversity that may 

emerge from modifications to the underlying network.  This thesis describes significant 
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steps to address these computational challenges in developmental and evolutionary 

biology. 

 

1.5 Vulva Development in C. elegans 

The nematode Caenorhabditis elegans has been established as a model organism 

to study genetics of development since the pioneering studies led by Sydney Brenner in 

the 1970s [39].  It is suitable for laboratory culture and experimentation because of its 

self-breeding ability, short life span (about two weeks of development and senescence) 

and ease of genetic manipulation.  Moreover, its transparent body allows visualization of 

individual cells by Nomarski optics.  The 1 mm long worm has 959 somatic cells that 

derive from the fertilized egg with precise invariant lineages [40].  It is the first 

multicellular organism to have its genome sequenced [41]. 

 

Development of the vulva in C. elegans is a well-established model for studying 

cell patterning [42].  Over the past decades, genetics experiments have allowed inference 

of the molecular mechanisms guiding vulval patterning.  The vulva is derived from a 

linear array of six vulva precursor cells (P3-8.p) [40], aligned along the antero-posterior 

axis of the body (Figure 1.5).  These cells can adopt three fates: primary (1°), secondary 

(2°), and tertiary (3°).  Only the first two fates are vulval fates, i.e., if adopted by a cell, 

that cell will be the ancestor of cells that ultimately form the vulva.  While all six cells 

have the potential to adopt vulval fates [43], only three cells (P5-7.p) do so in wild-type 

worms. 
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Figure 1.5. Position of vulva precursor cells along C. elegans body 
The vulva precursor cells (P3-8.p) are aligned along the antero-posterior axis of the body. 
Upon receiving the LIN-3 stimulus from the anchor cell (AC), the centrally located cells 
P5-7.p start to divide and differentiate into the twenty-two cells that ultimately form the 
vulva.  
 
 

Patterning of the vulva starts when EGF-like factor LIN-3 is released by the 

centrally positioned anchor cell (AC) (Figure 1.5 and Figure 1.6) [7].  The factor is 

perceived by the vulva precursor cells in a graded fashion and triggers activity of the Ras 

pathway [30], leading to the activation of MPK-1, the C. elegans  MAP kinase.  The 

MAP kinase inductive signaling in a particular cell leads to expression of ligands for the 

receptor LIN-12 [44] in that cell, which in turn activates LIN-12 lateral signaling in the 

neighboring cells.  These two signals are further coupled together, as inductive signaling 

enhances LIN-12 endocytosis and degradation in the same cell [45], while lateral 

signaling transcribes genes encoding phosphatases that deactivate components of the Ras 

pathway [46].  Fates (1°, 2°, or 3°) are determined by the balance of the inductive and 

lateral biochemical signals present in a cell.  Cells at high inductive and low lateral 

signaling adopt the 1° fate, cells at low inductive and high lateral signaling adopt the 2° 

fate, and cells with low signaling levels in both pathways adopt the 3° fate. 
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Figure 1.6. Wild-type patterning of C. elegans vulva 
The anchor cell (AC) stimulates the vulva precursor cells Pn.p with LIN-3 in a graded 
manner.  These cells laterally interact with one another through LIN-12 pathway.  
Integration of signaling from LIN-3 receptor LET-23 and LIN-12 receptor results in the 
wild-type pattern of differentiation 3°3°2°1°2°3°. 
 
 

In this system, we focused on quantitative issues concerning the coupled network 

topology of inductive and lateral signaling (Chapter 2) and the patterns of cell fates that 

could emerge from this network when it is quantitatively perturbed (Chapter 4).  

Computational analysis of this molecular network as detailed in Chapter 2 reveals that 

cell–cell coupling amplifies the perception of the LIN-3 gradient [47].  Thus, a gradient 

in LIN-3 concentration produces an even steeper difference in LIN-3-mediated 

intracellular signals between adjoining cells.  Such gradient amplification may be 

particularly important in converting a shallow, graded morphogen signal into a spatial 

pattern of digital choices suitable for robust fate determination.  Variation of interaction 

strength among the components of the network as detailed in Chapter 4 is able to predict 

mutant phenotypes of cell patterns that were observed in genetics experiments.  Our 

computational framework offers opportunities for understanding cellular fate decisions 

based on biochemical signals in other systems (for example cell fate specification in the 

immune system or cell patterning in tissue engineering applications) and for 

understanding the quantitative diversification  occurring during evolution of closely 
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related species with similar molecular network topologies.  Preliminary experimental 

work was conducted to establish systems and methods to begin to validate the model 

predictions made in Chapter 2. These are presented in Chapter 3.  Finally, future 

directions will be discussed in Chapter 5. 
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CHAPTER 2: INTERCELLULAR COUPLING AMPLIFIES FATE 
SEGREGATION DURING C. ELEGANS VULVAL DEVELOPMENT1 

 

2.1 Abstract 

During vulval development in C. elegans, six precursor cells acquire a spatial 

pattern of distinct cell fates.  This process is guided by a gradient in the soluble factor, 

LIN-3, and by direct interactions between neighboring cells mediated by the Notch-like 

receptor, LIN-12.  Genetic evidence has revealed that these two extracellular signals are 

coupled:  lateral cell-cell interactions inhibit LIN-3-mediated signaling, while LIN-3 

regulates the extent of lateral signaling.  To elucidate the quantitative implications of this 

coupled network topology for cell patterning during vulval development, we developed a 

mathematical model of LIN-3/LIN-12-mediated signaling in the vulval precursor cell 

array.  Our analysis reveals that coupling LIN-3 and LIN-12 amplifies cellular perception 

of the LIN-3 gradient and polarizes lateral signaling, both of which enhance fate 

segregation beyond that achievable by an uncoupled system. 

 

2.2 Introduction 

Vulval development in C. elegans involves the spatially coordinated commitment 

of vulval precursor cells (VPCs) toward distinct cell fates, labeled primary (1o), 

secondary (2o) and tertiary fates (3o) (Figure 2.1).  This patterning is guided by an 

epidermal growth factor (EGF)-like soluble factor LIN-3 that is produced by a centrally 

positioned anchor cell (AC).  LIN-3 activates an EGF receptor(LET-23)-mediated signal 

                                                 
1 Reprinted from Proc. Natl. Acad. Sci. USA, 2006. 103(5): p.1331-6. 
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transduction pathway in the VPCs that is required for 1º and 2º cell fates; in the absence 

of LIN-3, all VPCs assume the default, 3º fate [1]. 

 

 
Figure 2.1. Spatial patterning of vulval precursor cells in C. elegans 
The anchor cell (AC) in the gonad releases LIN-3 (♦), which distributes across the linear 
array of vulval precursor cells (P3.p–P8.p). This factor binds its receptor LET-23 ( ) on 
the basal surface of the precursor cells and provides an inductive signal for fate 
specification.  The interplay between the inductive signal (LIN-3:LET-23 complexes, ) 
and lateral coupling between neighboring cells mediated by LIN-12 ( ) and its ligands 
( ) specifies P3.p–P8.p cells to three distinct cell fates (1º, 2º, and 3º). 
 
 

The dose of LIN-3 is a critical determinant of cell fate.  In animals where all 

VPCs but one are ablated, the intact VPC chooses a cell fate depending on its relative 

position to the AC: when close to the AC, the VPC chooses 1º fate, while when distal 

from the AC, it chooses the 3º fate.  At intermediate position, the VPC chooses a 2º fate 

[1].  Indeed, a gradient in LIN-3 signaling has been observed indirectly in vivo using a 

sensitive reporter of LIN-3 mediated transcriptional activity [2]. These observations 

strongly support the notion that LIN-3 acts as a morphogen, a soluble factor whose 

spatial concentration gradient influences cell fate choices [3, 4]. 

 

In addition to the LIN-3 signal, direct communication between neighboring cells 

involving the Notch-like receptor (LIN-12) and its ligands drives cell patterning.  In 
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organisms lacking LIN-12, VPCs fail to commit to 2º fate, producing only 1º/3º cell fates 

[5].  Meanwhile, in mutant organisms with hyperactive inductive, LET-23–mediated 

signals, VPCs acquire not only 1o fates, but also 2o fates.  In fact, an intriguing alternating 

pattern of 1º and 2º cells (e.g., 2º 1º 2º) is observed, suggesting that commitment to 1º fate 

forces its direct neighbors to acquire 2º fate via a lateral “inhibitory” signal [6].  These 

and other observations suggest a sequential model wherein LIN-3 inductive signal is 

essential only to promote 1º cell fate, which in turn stimulates 2º fate choice via a direct, 

lateral signal to its neighbors. 

 

Resolving the relative importance of the LIN-3 gradient (morphogen model) and 

the lateral signal (sequential model) is challenged by the fact that these two extracellular 

signals are coupled through an intracellular signaling network [7]. LIN-3 binds LET-23 

and produces intracellular signals via a canonical Ras-MAP kinase signaling pathway [8].  

Activation of the MAP kinase, MPK-1, stimulates the production of LIN-12 ligands and 

the endocytosis of LIN-12 [9-11].  Thus, the inductive LIN-3 signal influences the extent 

to which each VPC sends out and receives lateral signal by modulating the expression of 

LIN-12 ligand and LIN-12, respectively.  LIN-12, in turn, affects the extent to which 

each VPC is responsive to the inductive signal: LIN-12 stimulates the transcription of 

negative regulators of the LIN-3 mediated Ras signaling pathway [2, 12]. 

 

While the biochemical details of the intracellular molecular mechanisms coupling 

LIN-3 and LIN-12 are being elucidated, the quantitative effects of this network topology 

remain unclear.  Because lateral signaling couples the signaling network in each VPC to 
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that of its neighbors, it is expected to influence how each VPC responds to its local LIN-3 

concentration.  Conversely, the local LIN-3 concentration will impact how effectively a 

particular VPC receives and sends lateral signals.  Here, we develop and analyze a 

mathematical model of LIN-3/LIN-12-mediated signaling in order to elucidate 

quantitatively how this network topology achieves spatially patterned cell fate 

specification. 

 

2.3 Model Development 

Vulval precursor cells are treated as a discrete, linear array of cells, wherein each 

cell (i) is stimulated by an inductive signal (Indi) corresponding to the number of LIN-

3:LET-23 complexes per cell.  The vector of inductive signals { }( )iInd=Ind  defines the 

external morphogen gradient to which the VPC array responds.  In each cell, the 

inductive signal (Indi) activates the MAP kinase MPK-1, producing MPK-1* (Figure 2.2).  

In turn, these active species are returned to their inactive state by the constitutive action 

of phosphatases (Ph). 
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Figure 2.2. Model schematic 
A pair of interacting cells, i and i+1, is shown; longer cell arrays are simulated by adding 
similar modular cells to the array.  The inductive signal Ii activates MPK-1 in each cell i 
with rate constant .mk +   Constitutive phosphatases Ph deactivate MPK-1* with rate 
constant .mk −   The inductive signal upregulates the lateral signal in the neighboring cell 
with rate constant 

3xk  and downregulates it in the same cell with rate constant 
2
.xk   In 

turn, the lateral signal in each cell deactivates MPK-1* with rate constant 
1
.xk  

 
 

In addition to constitutive deactivation, the level of MPK-1* in each cell is 

affected by lateral signal activity.  Lateral signal activity in cell i (lati) is received via the 

receptor LIN-12 and stimulates transcription of negative regulators of MPK-1.  All 

together, the cumulative effects of inductive stimulation, constitutive deactivation and 

lateral signal-mediated deactivation determine the level of MPK-1* as represented by the 

following differential equation: 

( ) ( ) ( )( ) ( )
( )

( )*
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2

2
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iTii
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i mpk
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xmm K

kkk
d
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where TPh  is the amount of phosphatase per cell; +
mk  and −

mk  are the second-order rate 

constants for MPK-1 activation and constitutive deactivation, respectively; 
1xk  is a rate 

constant for lateral signal-mediated deactivation of MPK-1*.  
latMK  represents the width 
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of the Hill function describing the transcriptional events associated with expression of 

MPK-1* deactivators.   

 

The amount of lateral signal received by cell i (lati) is determined by two MPK-1–

dependent processes.  First, MPK-1* stimulates the endocytic degradation of the LIN-12 

receptor, thereby decreasing the reception of lateral signal.  Second, active MPK-1 in 

neighboring cells ( *
1impk +  and *

1-impk ) stimulates the synthesis of ligands for LIN-12, 

thereby increasing the lateral signal into cell i.  In addition to these MPK-1*-mediated 

effects, the level of lateral signal (lati) is determined by constitutive synthesis and 

degradation. 

 

Because little quantitative information is available on the regulation of LIN-12 

endocytosis and LIN-12 binding to its ligands within the intercellular space, we sought to 

capture the salient features of LIN-12 regulation.  Thus, the model tracks the level of 

LIN-12 complexes with its ligands as a lumped measure of lateral signaling as follows: 
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where +
nk  and −

nk  are the constitutive rate constants of lateral signal generation and 

degradation, 
2xk  is the rate constant for MPK-1*-mediated downregulation of lateral 

signaling by enhanced endocytosis of LIN-12, 
3xk  is the rate constant for lateral signal 

transmission into cell i by its neighbors, and 
indMK  represents the width of the Hill 

function describing the generation of lateral signal by MPK-1*; νi−1 and νi+1 are the 
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number of neighbors for cell i−1 and i+1, respectively.  For a linear array, the value of υi 

is either 1 or 2.  In Equation 2.1 and Equation 2.2, we have assumed that transcriptional 

regulation occurs in a cooperative manner  with a Hill coefficient (ηH) of 2; however, 

eliminating this cooperativity (ηH = 1) does not affect the trends predicted by the model. 

 

It is meaningful to introduce the following substitutions: 

( )3 2

*
i i i

Tm
T T

Ind mpk lat, , , Ph ,
Ind mpk / mpki i i m

x x

I m l k t
k k

τ −= = = =  (2.3) 

where mInd  is the maximum number of morphogen:morphogen-receptor complexes per 

cell,  Tmpk  is the total number of MPK-1 molecules per cell, and t is dimensional time.  

Incorporating these substitutions in Equation 2.1 and Equation 2.2 yields the following 

differential equations: 
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where the dimensionless parameters μ , χ , 
latMκ , 

indMκ , sλ , dλ , and ψ  are defined as 

follows: 
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Two dimensionless groups of particular importance are χ and ψ, which together 

offer a gauge of intercellular coupling.  The first parameter χ is a ratio of the timescale 

for constitutive deactivation of MPK-1* to the time scale of lateral signal-mediated 

deactivation of MPK-1*.  Large values for χ indicate that constitutive deactivation of 

MPK-1* occurs much slower than lateral signal-mediated deactivation.  For example, a 

value of χ = 10 indicates that when lateral signaling is maximal, lateral signal-mediated 

deactivation of MPK-1* occurs at a rate that is 10-fold greater than rate of deactivation 

mediated constitutive pathways.  The second parameter ψ is a ratio of the time scale of 

MPK-1*-mediated downregulation of lateral signal to the time scale of MPK-1* 

deactivation by phosphatases.  Thus, large values for ψ imply that a given MPK-1* 

molecule is more likely to be deactivated before contributing to the downregulation of 

lateral signal.  Thus, large ψ indicates that each cell is more susceptible to lateral effects. 

Reference values for these and other dimensionless parameters were chosen as outlined in 

Section 2.7. 

 

The outlined mathematical model differs significantly from a recent treatment of 

this system that employed a state-charts approach [13], wherein the fate of a particular 

VPC is decided based on the state of its neighbors using fate decision rules.  These rules 

are high-level abstractions of the underlying logic guiding fate determination as outlined 

in 1989 [14].  Since then, significant advances have been made in our understanding of 

the intracellular signals occurring in each VPC and the molecular mechanisms by which 

VPCs are coupled.  Our mathematical model encodes explicitly these intracellular 

molecular mechanisms and the coupling between VPCs, allowing a direct examination of 
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the importance of these molecular interactions for spatial patterning of fates during C. 

elegans vulval development. 

 

The analysis presented in this work focuses on the steady-state behavior of the 

model.  Experiments wherein the anchor cell is ablated at different times during the fate 

specification process have revealed that fate specification is unaffected if the anchor cell 

is eliminated after a five-hour window [15, 16].  Analysis of model dynamics shows that 

the timescale for reaching steady state is less than five hours for reference values of 

parameters (data not shown).  Thus, we proceed under the reasonable assumption that the 

steady state achieved during this time frame dictates fate specification. 

 

2.4 Improved Gradient Perception 

Two observations indicate that LIN-3 performs as a prototypical morphogen 

whose spatial gradient determines cell fate patterning.  First, cell fate is sensitive to LIN-

3 dose [1].  Second, a gradient in LIN-3 concentration has been observed indirectly in 

vivo [2].  These observations raise the question why cells seemingly guided to pattern 

formation by a morphogen gradient further require a lateral signaling mechanism. 

 

To begin to address this issue, we examined how lateral coupling affects the 

perception of the extracellular gradient in the inductive signal LIN-3.  The response of a 

simplified, 2-cell system to gradients in LIN-3 concentration was simulated by specifying 

the amount of inductive signal (I1 and I2) for neighboring cells (1 and 2) (Figure 2.2).  To 

quantify how a gradient in extracellular LIN-3 concentration (I1/I2) is converted into a 
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gradient in LIN-3-mediated intracellular MPK signal, we defined a gradient comparator 

(Q ) as: 

Q ≡
d lnm( )
d ln I( )

=
ln m1 /m2( )
ln I1 /I2( )

, (2.6) 

where m1 and m2 are the steady state fraction of activated MPK-1 in cells 1 and 2, 

respectively.  Note that Q  is undefined when there is no gradient in input (i.e., I1/I2 = 1).  

When the relative spatial gradient in LIN-3 translates into exactly the same relative 

spatial gradient in MPK-1*, the value of Q is one.  When the spatial gradient in 

intracellular signal is attenuated relative to the gradient in extracellular stimulus, the 

value of Q is less than one; in contrast, when the MPK-1* gradient is amplified relative to 

the extracellular LIN-3 gradient, the value of Q is greater than one. 

In the absence of lateral coupling (i.e., 0=χ ) between neighboring cells, the 

gradient comparator (Q ) is given by: 
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This expression reveals two regimes of perceiving gradients in inductive signal.  

For sufficiently low 1I  and 2I  (specifically, 1
1

−<< μI and 1
2

−<< μI ), the value of Q  is 

nearly one.  Thus, in this input domain, a gradient in extracellular signal is converted to a 

near equivalent gradient in intracellular signal.  For relatively higher values of 1I and 2I , 

Q decreases below one, indicating that a gradient in extracellular signal is converted into 

a shallower gradient in intracellular signal.  At these higher values of input, relative 

changes in input do not translate into the same relative change in intracellular signal due 

to a saturation of available inactive MPK-1 molecules.  Figure 2.3A depicts these two 
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regimes of gradient perception in an uncoupled system.  For I1 = 10−1 and I2 = 10−2 with 

0.05μ −1 = , Q  is approximately 0.61, indicating that a 10-fold difference in input 

produces only a 4-fold difference in intracellular signal.  Even significant differences in 

extracellular input result in considerably milder differences in intracellular signal, 

suggesting that establishing steep gradients in extracellular signal may be an inadequate 

mechanism for assuring distinct cell fate choices in an uncoupled system. 

 

In contrast, a system coupled by lateral signaling displays gradient amplification.  

The value of the gradient comparator for a coupled system (Qc) exceeds one in a 

subdomain of inductive signals (Figure 2.3B). In this region, a gradient in extracellular 

signal is amplified to produce a steeper gradient in intracellular MPK-1* signal. For 

example, maximum gradient amplification occurs at I1 = 0.0091 and I2 = 0.0072 

(equivalent to 910 and 720 LIN-3:LET-23 complexes per cell, respectively).  For this 

combination of inductive signals, the value of Qc is 1.8, indicating that the ~30% 

difference in inductive signal is magnified to ~50% difference in intracellular MPK-1* 

activity between neighboring cells.  For low to moderate coupling, an increase in the 

strength of coupling further enhances the extent of gradient amplification (Figure 2.3C).  

For the aforementioned combination of inductive signals, Qc improves to 9.0 when the 

value of χ is increased 10-fold, corresponding to a ~725% disparity in intracellular  

MPK-1* activity while the extracellular signals still differ by only ~30%.  These results 

demonstrate that lateral coupling substantially sharpens the perception of an extracellular 

gradient in LIN-3, overcoming an inherent limitation of uncoupled systems. 
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Figure 2.3. Gradient amplification in coupled systems 
The value of the gradient comparator (Q) was determined for a wide range of inductive 
signals in a two-cell system that was uncoupled (A, χ = 0) or coupled at two different 
strengths (B, χ = χº, and C, χ = 10 χº).  The color bar denotes the relation between the 
greyscale and the value of the gradient comparator.  Only in the presence of lateral 
coupling (B and C), the value of the gradient comparator exceeds one, indicating gradient 
amplification in that subdomain of inductive signals.  The extent of gradient 
amplification increases in the presence of greater lateral coupling (compare B and C). 
 
 

The underlying cause of amplified perception of the LIN-3 gradient involves the 

establishment of a countergradient in lateral signaling.  In analytical terms, in order to 

achieve gradient amplification (i.e., 1>cQ ), the following condition must hold: 
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That is, the lateral signal in cell 2 must be sufficiently greater than the lateral signal in 

cell 1, yielding a gradient that is in direct opposition to the gradient in inductive signal (I1 

> I2).  Thus, as in the context of a metabolic network [17], gradient amplification requires 
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the presence of two competing contributions, one inductive (LIN-3) and the other 

inhibitory (lateral signal), whose spatial profiles run counter to each other. 

  

Even in regions of the input domain where gradient amplification does not occur 

(Qc < 1 in Figure 2.3B and Figure 2.3C), lateral coupling still provides a robust and 

significant advantage over an uncoupled system in perceiving a morphogen gradient.  For 

example, for I1 = 10−1 and I2 = 10−2, Qc is approximately 0.85 whereas Qº is 0.61.  Thus, 

lateral coupling offers approximately 40% improvement in perceiving this particular 

gradient in extracellular signal when compared to the uncoupled system.  In fact, Figure 

2.4 shows that in the entire domain of inductive signals, the coupled system outperforms 

an uncoupled system in perceiving a gradient in inductive signal.  Thus, the gradient 

comparator for a coupled system ( cQ ) is greater than or equal to Q  for all combinations 

of inductive signals.  In mathematical terms, we find that lateral coupling improves the 

perception of a gradient in inductive signal, i.e., QQc > , if 
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The above criterion is less stringent than that required for gradient amplification 

(Equation 2.8), suggesting that it may be satisfied over a broader range of model 

parameters.  In fact, the coupled system meets this condition, or the associated equality, 

for any choice of model parameter values (Section 2.8).  Thus, our  model predicts that 

lateral coupling robustly enables better, or at least equivalent, gradient perception as an 

uncoupled system, with the added advantage that for a subset of inductive signals 

meeting condition Equation 2.8, lateral coupling amplifies the external gradient.  These 

predictions are currently being tested in wild-type (coupled) and mutant (uncoupled) 
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worms in which the gradient in MPK-1* is monitored using an egl-17 transcriptional 

reporter. 

 

 
Figure 2.4. Coupled systems robustly outperform uncoupled systems in gradient 
sensing 
The ratio of the gradient comparator for coupled systems (Qc) to that of uncoupled 
systems (Qº) is plotted for a wide range of inductive signals in a two-cell system.  The 
lateral coupling was maintained at its reference value (χ = χº).  The ratio Qc:Qº is greater 
than or equal to one in the entire domain of inductive signals. 
 
 

What determines whether the perception of LIN-3 gradient is amplified?  We 

have stated that an opposing gradient in lateral signal is required (condition Equation 

2.8).  However, even in the absence of coupling ( 0),χ =  a gradient in the inductive 

signal LIN-3 produces a countergradient in lateral signal (Figure 2.5A), owing to MPK-1-

mediated regulation of lateral signaling (Figure 2.2, arrows marked 
2xk  and 

3
)xk .  In 

systems such as the R3-R4 fate specification in Drosophila, this morphogen-induced bias 

in lateral signal is then magnified via a feedback loop intrinsic to the Notch-Delta 

signaling system [18].  However, the polarization of lateral signals between neighboring 

cells has no consequence for the interpretation of the morphogen gradient in these 

systems. 
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Here, vulval development in C. elegans appears to be unique.  Experimental 

evidence suggests that the Notch-Delta-like lateral signaling system is not self-propelled 

by an intrinsic positive feedback [19].  Rather, in the presence of coupling ( 0),χ >  

lateral signal deactivates MPK-1 (Figure 2.2, arrow marked 
1
)xk .  Thus, a gradient in 

inductive LIN-3 signal sets a disparity in lateral signal (Figure 2.5A), and in a coupled 

system, the latter provides a disparity in the specific driving force for MPK-1* 

deactivation (Figure 2.5B).  The net effect is that the cell receiving smaller inductive 

signal receives greater lateral signal and possesses greater specific activity for MPK-1* 

deactivation (Figure 2.5A and Figure 2.5B, cell 2).  These disparities render the MPK-1 

activity in this cell more sensitive to the strength of coupling.  Thus, as the value of χ is 

increased, the MPK-1 activity decreases in the cell distal from the LIN-3 signal, while the 

cell proximal to the inductive signal is less affected (Figure 2.5C).  However, at 

extremely high values of χ, lateral signal-mediated deactivation of MPK-1 dominates, 

even in the cell receiving the higher inductive signal (Figure 2.5B).  Thus, the disparity in 

MPK-1 activity shrinks (Figure 2.5C), thereby eliminating the key element supporting a 

gradient in lateral signal.  In the absence of a lateral signaling gradient at extremely high 

χ (Figure 2.5A), the MPK-1 gradient is determined entirely by the LIN-3 gradient, as 

would be the case in an uncoupled system.  Thus, for extremely high χ, the perception of 

the LIN-3 gradient becomes equivalent to that of an uncoupled system (Figure 2.5D). 

 

Our analysis shows that intercellular coupling via Delta-Notch signaling alters the 

way VPCs perceive the LIN-3 morphogen gradient.  This gradient appears steeper when 

read as intracellular MPK-1 activity.  We propose that this mechanism for enhancing the 
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perception of the gradient reveals a new paradigm for spatial patterning that contrasts 

other developmental contexts wherein the extracellular morphogen gradient itself is 

steepened or otherwise re-shaped to guide patterning.  Examples of the latter include the 

establishment of Gurken and Spitz morphogen gradients during Drosophila egg 

development [20, 21] or Hedgehog and Wingless morphogen gradients during 

Drosophila wing disc patterning [22]. 

 

 
Figure 2.5. Factors contributing to coupling-mediated gradient amplification 
(A) Lateral signal in cell 1 (solid) and in cell 2 (dashed) is shown as a function of lateral 
coupling strength. (B) The specific rate of MPK-1* deactivation is plotted as a function of 
coupling strength for cell 1 (solid) and 2 (dashed).  The specific rate of MPK-1* 
deactivation is the rate of MPK-1* deactivation normalized by the amount of MPK-1*, 
and according to Equation 2.4, it is given by ( )222 /1 ili ll ++ κχ .  (C) The amount of MPK-
1* in cells 1 (solid) and 2 (dashed) is plotted as a function of lateral coupling strength. (D) 
The value of the gradient comparator in a coupled system maxc,Q  (solid) and uncoupled 
system Q  (dashed) are shown for varying lateral coupling strength.  Calculations were 
performed at I1 = 0.0091 and I2 = 0.0072, the combination of inductive signals that 
yielded maximum Qc when lateral coupling strength is χf = χ/χº = 1 (Figure 2.3B). 
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Enhancing the gradient in intracellular perception without altering the 

extracellular morphogen gradient raises the possibility that one mode of perception (e.g., 

the MAP kinase pathway) is amplified, while other parallel signals generated by the 

morphogen mirror the external gradient. This differential perception may help to 

modularize the developmental purpose of a morphogen, while leaving parallel signals 

available to mediate other critical cellular/organismal functions.  Indeed, such pleiotropic 

roles for soluble factors is not uncommon as most ligands, including EGF, often stimulate 

several parallel signaling pathways and concomitantly affect a range of cell functions. 

 

2.5 Fate Plane  

Our analysis demonstrates that lateral coupling enhances the perception of the 

extracellular LIN-3 gradient in a two-cell model system.  In addition, experimental 

evidence suggests that lateral signaling plays a more direct role in specifying cell fates 

[14]. In the absence of lateral signaling, the 2° fate is not observed, although VPCs 

acquire 1º and 3º fates.  Furthermore, in mosaic experiments where P5.p and P7.p cells 

lack the receptor for LIN-3, these cells still acquire 2º fate, suggesting that the lateral 

LIN-12-mediated signal may confer this fate independently, provided the inductive LIN-

3 signal has been sufficiently quenched.  These observations have led to the hypothesis 

that the level of active MPK-1 and the amount of LIN-12-mediated signaling together 

determine 1° and 2° fates, respectively. Cells with high MPK-1 activity and low lateral 

activity commit to a 1º fate, while cells with low MPK-1 activity and high lateral activity 

commit to a 2º fate.  Finally, cells lacking both MPK-1 and lateral activity acquire the 3º 

fate.  
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Based on this paradigm for fate specification, we examined the role of lateral 

coupling in segregating VPCs on a “fate plane,” where MPK-1 activity is represented on 

the ordinate and LIN-12 activity is represented on the abscissa (Figure 2.6).  Further, our 

analysis was expanded to a linear array of six cells, topologically representative of the 

P3.p – P8.p vulval precursor cells (Figure 2.1).  The simulations were conducted with a 

gradient in inductive signal that decays as the square of the distance from the anchor cell, 

characteristic of morphogen diffusion.  The maximal inductive signal (IP6.p) was applied 

to the P6.p cell, the VPC most proximal to the anchor cell.  Results for one side of the 

gradient (P3.p – P6.p cells) are presented, since the response of P7.p and P8.p cells is 

nearly equivalent to that of P5.p and P4.p cells, respectively (Figure 2.8).  

 

Our analysis shows that fate specification of the VPC array requires the inductive 

signal provided by the anchor cell.  At low morphogen levels (IP6.p = 10−3), there is no 

segregation of cells along the lateral signaling axis, suggesting that 2º fate specification 

depends upon the level of inductive signal (Figure 2.6). These results are consistent with 

the experimental observation that 2º fates are not observed in systems where the anchor 

cell is laser ablated [1].  Thus, the response to low morphogen levels was used to 

parameterize the threshold amount of MPK-1* (approx. 5⋅102/cell) and lateral signal 

(approx. 103/cell) needed for 1º and 2º fates, respectively.  Therefore, cells in quadrants I, 

II and III are designated as 1º, 2º and 3°, respectively (Figure 2.6).  Based on this 

parametrization of the fate plane, segregation of VPC fates is observed at higher 

inductive signals (IP6.p = 10−2) (Figure 2.6). This result is in agreement with LIN-3 dosage 
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experiments, wherein increasing LIN-3 production by the anchor cell permits 

specification of 1º and 2° fates [4]. 

 

 
Figure 2.6. Wild-type and mutant alternating phenotypes on the fate plane 
The position of P3.p-P6.p vulval pre-cursor cells is depicted on a fate plane defined by 
two fate-determining signals, the intracellular product of inductive signaling ( *

impk , y-
axis) and the lateral signal (lati, x-axis). The wild-type cell array (blue) was coupled (χ/χº 
= 100) with μ = μº and stimulated with two levels of inductive signal: IP6.p = 10−3 
(dashed) or 10−2 (solid).  The mutant cell array (red) with hyperactive inductive signaling 
(μ = 10 μº) was stimulated with IP6.p = 10−2 and was either uncoupled (χ/χº = 0, dashed) 
or coupled (χ/χº = 100, solid). The filled circle denotes the P6.p cell, and the empty 
circles mark the remainder of the cells (P5.p, P4.p and P3.p) in the order indicated by the 
arrowhead.  The three quadrants (I, II and III) demarcated by the gray bars denote 1º, 2º 
and 3º fates, respectively. The cells in the unmarked quadrant will adopt either 1º or 2º 
fate, but it cannot be determined which fate. 
 
 

To further validate our model, we considered the striking phenotype observed 

among mutant animals with hyperactive LIN-3 signaling.  In these mutant worms, VPCs 

acquire only 1º and 2º fates with a final pattern that precludes two adjoining 1º cells [23].  

Thus, a common phenotype among these mutants is the alternating fate pattern 1º 2º 1º 2º 

1º 2º, a sharp contrast to the wild-type 3º 3º 2º 1º 2º 3º fate pattern.  This alternating 

pattern has been reported in mutant animals with either lin-15(lf) or let-60(gf) mutations 

[6, 14, 24]. The detailed molecular mechanism by which lin-15(lf) hyperactivates LIN-3 

signaling remains unclear.  In contrast, it is well established that let-60 encodes a Ras 
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homolog that lies upstream of MPK-1 activation [25].  Thus, we simulate the let-60(gf) 

mutation in our model by increasing the value of μ from its wild-type, reference value μº.  

 

As shown in Figure 2.6, the mutant cell array (μ = 10 μº) displays an alternating 

1º-2º phenotype.  The cells switch between a high MPK-1*/low lateral state (P8.p, P6.p, 

P4.p) and a low MPK-1*/high lateral state (P7.p, P5.p, P3.p) in the fate plane.  Notably, a 

mutant cell array lacking any coupling (χ = 0) does not yield an alternating phenotype.  

Rather, all cells reside in the high MPK-1*/high lateral signal state.  Thus, our model 

accurately predicts the 1º 2º 1º 2º 1º 2º phenotype as observed experimentally in let-

60(gf) mutants.  Further, it demonstrates that lateral coupling is an essential mechanism 

to achieve this alternating phenotype. 

 

2.6 Enhanced Segregation on the Fate Plane 

Even in the absence of coupling (χ = 0), it is possible to distinguish cells based on 

their position along the lateral signaling axis (Figure 2.7A). The P5.p cell acquires the 

highest lateral signal, due to its position next to the P6.p, the cell with greatest MPK-1 

activity.  These results suggest that the inductive signal-mediated bias of lateral signaling 

(Figure 2.2, arrows marked 
2xk  and 

3xk ) is sufficient to establish some degree of 

segregation of precursor cells on the fate plane. 

 

Importantly, for coupled systems (χ > 0), the extent of fate segregation is 

amplified (Figure 2.7A).  Increasing the value of χ reduces the lateral signal in both the 

P6.p and P4.p cells; concomitantly, an increase in coupling strength reduces the MPK-1 
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activity in the P5.p cell. Suppressing the lateral signal and MPK-1 activity in P6.p and 

P5.p cells, respectively, polarizes these cells destined to become 1º and 2º cells, 

respectively. 

 

To gauge more quantitatively the dependence of fate segregation on coupling 

strength, we calculated the disparity in MPK-1* and lateral signal activity between P6.p 

(presumptive 1º) and P5.p (presumptive 2º) cells for a wide range of inductive signal 

(IP6.p) and coupling strength (χ) (Figure 2.7B and Figure 2.7C). As noted earlier, 

establishing differences in MPK-1* and lateral signal between P6.p and P5.p requires 

inductive signal.  For low inductive signals (IP6.p < ~10−3), fate specification is not 

observed.  Notably, for low to moderate coupling, an increase in coupling strength 

increases the segregation of the presumptive 1º and 2º cells with respect to both the 

MPK-1 signal and lateral signal (Figure 2.7B and Figure 2.7C, respectively).  However, 

at extremely high values of χ, even the basal level of constitutive lateral signaling 

suppresses MPK-1 activity.  Since the perception of inductive signal is required for fate 

specification, extremely high coupling ablates fate specification entirely.  Thus, our 

model predicts that moderate coupling enhances the segregation of fates determined by 

two signals, one involving a soluble inductive factor LIN-3 and the other transmitted by 

lateral cell-cell interactions via Notch-Delta signaling. 
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Figure 2.7. The effect of coupling on segregating two fate-determining signals in a 
six-cell array 
(A) The position of P3.p-P6.p vulval pre-cursor cells is depicted on the fate plane. The 
cell array was simulated with IP6.p = 10−2. The filled circle denotes the P6.p cell, and the 
empty circles mark the remainder of the cells (P5.p, P4.p and P3.p) in the order indicated 
by the arrowhead.  The lateral coupling strength was varied as χf   = χ/χº = 0 (solid), 1 
(dashed) and 10 (dotted).  (B and C) The disparity in MPK-1* (B) and lateral signals (C) 
between the presumptive 1º and 2º cells was quantified for a wide range of inductive 
signal and coupling strengths.  The disparity in MPK-1* signal is the value of mP5.p 
subtracted from the value of mP6.p.  For the disparity in lateral signal, a similar calculation 
was performed with the difference now computed in the value of lat. 
 
 

2.7 Parameter Values 

Values for the dimensional model parameters were chosen based on available 

experimental data in other systems as outlined below (Table 2.1).  The associated 

reference values of dimensionless parameter groups are listed in Table 2.2. 
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Table 2.1. Dimensional parameters of the model and their typical values  
Molar units were converted to molecules per cell assuming a volume of cell of 10 pL. 

Parameter Value Units 
+
mk  1.7 × 10−4 ( ) 11 mincellmolecules/ −−  
−
mk  1.7 × 10−4 ( ) 11 mincellmolecules/ −−  

TPh  5 × 103 cellmolecules/  

Tmpk  104 cellmolecules/  
mInd  105 cellmolecules/  

+
nk  1.3 × 102 1mincellmolecules/ −⋅  
−
nk  2 × 10−2 1min −  

1xk  8.3 × 10−1 1min−  

2xk  3 × 10−6 ( ) 11 mincellmolecules/ −−  

3xk  1.2 × 103 1mincellmolecules/ −⋅  

indMK  2.5 × 103 cellmolecules/  

latMK  104 cellmolecules/  
 
 

Table 2.2. Dimensionless groups of the model and their reference values 

Parameter Description Reference 
Value 

χ  
*

*

time scale of constitutive deactivation of mpk-1
time scale of lateral signal-mediated deactivation of mpk-1

 1.0 

ψ  
*

*

time scale of constitutive deactivation of mpk-1
time scale of mpk-1 -mediated deactivation of lateral signal

 2.8 × 102 

μ  
*

*

time scale of constitutive deactivation of mpk-1
time scale of induced activation of mpk-1

 2 × 102 

dλ  
*time scale of constitutive deactivation of mpk-1

time scale of constitutive deactivation of lateral signal
 2.4 × 10−2 

sλ  
*time scale of constitutive deactivation of mpk-1

time scale of constitutive synthesis of a characteristic amount of lateral signal
 3.9 × 10−4 

mκ  dimensionless threshold for activation of lateral signal by mpk-1* 2.5 × 10−1 

lκ  dimensionless threshold for mpk-1* inhibition by lateral signal 2.5 × 10−1 
 
 

+
mk  is a lumped activation constant of MPK-1 based on a more detailed 

biochemical mechanism of MAPK activation [26].  It was estimated from the rate 

constant for the formation of activated MAPK from MEK*-MAPK complex and the 
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equilibrium constant for MEK*-MAPK complex formation. −
mk  is the lumped rate 

constant with which phosphatases deactivate MPK-1*. Likewise, its value was estimated 

from data available for MAPK*-Phosphatase complex formation [26]. No upregulation or 

downregulation of constitutive phosphatases was modeled, thus phosphatase levels are 

constant at ( )TPh . The maximum number of morphogen:morphogen-receptor complexes 

mInd  and the total number of MPK-1 molecules Tmpk  are estimated from the total 

number of EGFR molecules per cell and the total number of ERK molecules per cell, 

respectively [26]. 

 

+
nk  is the constitutive rate of lateral signaling generation. This process it thought 

to be limited by synthesis of ligand LAG-2 or receptor LIN-12. We use a numerical 

estimate for +
nk  based on the rate of EGF receptor synthesis [27].  −

nk  is the rate of 

constitutive deactivation of lateral signaling. Deactivation of lateral signaling occurs via 

two mechanisms: LAG-2:LIN-12 complexes dissociate or the cytoplasmic tail of LIN-12 

is cleaved upon association with LAG-1 transcription factor. We assume that cytoplasmic 

LIN-12–LAG-1 complexes have a finite lifetime after which they are degraded by the 

proteosomal pathway. Therefore, the kinetic parameter _
nk  is set to a value between the 

rate of LAG-2–LIN-12 complex dissociation and the rate of proteosomal degradation of 

the cyto-LIN-12–LAG-1 complex. No experimental data are available about the lifetime 

of these complexes, thus base parameter estimates on the EGF-EGFR system are used 

[27]. 
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1xk  is the rate constant of MPK1* deactivation induced by lateral signaling. Thus 

it lumps both the lateral signal-mediated upregulation of MPK-1* phosphatases and the 

action of those phosphatases on MPK-1*. This rate constant is equivalent to that of 

constitutive phosphatases, except it incorporates the characteristic level of lateral signal-

induced phosphatase expression. Therefore, we take ( )TPh
1

−= mx kk . 
2xk  is the rate 

constant of lateral signaling deactivation due to MPK-1*-mediated endocytosis of LIN-12 

receptors. The appropriate value for the kinetic parameter 
2xk  is then taken to be the rate 

constant for receptor/complex endocytosis adjusted for the fraction of active MPK-1*. 

3xk  is the rate constant for MPK-1*-induced lateral signal generation. In cells with high 

inductive signaling, it defines the maximal rate at which lateral signaling is generated in a 

neighboring cell. 
3xk  represents an induced process, thus we set its the value to almost 

one order of magnitude larger than the constitutive rates of gene expression. 

 

indMK and 
latMK  are parameters associated with induced transcriptional events. 

Their values are unknown, but reasonable choices could be T0.25(mpk )
indMK =  and 

3 2 T0.25[ /( mpk )]
latM x xK k k= , i.e., 25% of the characteristic levels for inductive and lateral 

signaling, respectively. 

 

2.8 Robustness of Improved Gradient Perception in Coupled Systems 

We show here that for any parameter values, QQc > for a two cell system at 

steady state. At steady state the dimensionless inductive signal is (from Equation 2.4 in 

the text): 
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Using the definition for the gradient comparator, showing that QQc >  is equivalent to 

showing that: 
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Since in the coupled case χ > 0, one needs to show that: 
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If 21 II >  then the induced lateral gradient is inverted with respect to the inductive 

gradient, i.e., 21 ll <   in either the presence or absence of lateral coupling. For example, in 

the absence of lateral coupling, if 21 II >  then: 
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But, from Equation 2.9 in the text: 
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With 21 mm >  and ( )mg  being a one-to-one mapping, then 21 ll < . 

For 21 II >  then:  
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Therefore, for 1 2I I>  and any parameter choices (obviously 0≠μ  for inductive 

signaling to exist), 
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2.9 Slight Asymmetry in VPC Array 

P6.p is the precursor cell closest to the anchor cell, the source of LIN-3 inductive 

signal (Figure 2.1). The VPC array is not symmetric with respect to this cell.  While P4.p 

receives lateral signals from two neighbors (P3.p and P5.p), the corresponding cell on the 

other side of the array (P8.p) has only one neighbor (P7.p).  Thus, we expect that P8.p 

will display lower lateral activity than its counterpart P4.p.  Figure 2.9 shows the position 

of P6.p, P7.p, and P8.p on the fate plane, analogous to that shown for P6.p, P5.p, P4.p 

and P3.p in Figure 2.7A.  Comparing the two figures confirms that P8.p displays lower 

lateral activity than P4.p.  Meanwhile, the lateral signal levels in P5.p and P7.p are 

similar, indicating that these activities are primarily determined by interaction with the 

P6.p cell.  These observations indicate that the response of P3.p – P6.p is similar 

quantitatively to the response of the other half of the VPC array. 
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Figure 2.8. Position of P6.p–P8.p of wild-type and mutant alternating phenotypes on 
the fate plane 
The position of P6.p, P7.p and P8.p on the fate plane in wild-type and mutant alternating 
phenotypes is shown for the same conditions as of Figure 2.6 in the manuscript. Here, the 
filled circle denotes P6.p and empty circles mark P7.p and P8.p in the direction of the 
arrows. Wild-type phenotype (μ = μ°, blue) is shown for IP6.p = 10−3 (dashed) or 
IP6.p=10−2 (solid) at χ = 100. Alternating mutant phenotype at IP6.p = 10−2 (μ = 10 μ°, red) 
is shown for χ = 0 (dashed) or χ = 100 (solid). 
 
 

 
Figure 2.9. Position of P6.p–P8.p VPCs on the inductive and lateral signal map 
The position of P6.p, P7.p and P8.p cells are depicted on the fate plane.  This plot 
complements Figure 2.7A, which shows the response of P3.p – P6.p cells.  Together, 
Figure 2.9 and Figure 2.7A reveal the response of the entire VPC array.  Here, the filled 
circle denotes P6.p and empty circles mark P7.p and P8.p in the direction of the arrows. 
The lateral coupling strength was varied as χf  = χ/χº = 0 (solid), 1 (dashed) and 10 
(dotted).  
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CHAPTER 3: TOWARD MODEL VALIDATION: FLUORESCENCE IMAGING 
OF LIVE WORMS 

 

3.1 Abstract 

The C. elegans vulva is patterned from a set of six vulva precursor cells that 

respond to the graded concentration of EGF-like LIN-3 factor.  Our mathematical model 

predicts that cell-cell coupling between adjacent precursor cells enhances perception of 

the LIN-3 gradient.  Specifically, a gradient in extracellular LIN-3 across two adjacent 

precursor cells must be converted into a difference in the intracellular MAP kinase signal 

(MPK-1) in order for neighboring cells to choose distinct cell fates.  Our model predicts 

that organisms with intact cell-cell coupling mechanisms will better achieve this 

extracellular-to-intracellular gradient conversion than mutant organisms in which cell-cell 

coupling has been perturbed.  As an initial step toward experimental validation of our 

model predictions, we describe here several experimental procedures that we have 

explored for quantifying MPK-1 activity using a fluorescent reporter in live worms 

cultured both in standard and microfluidic platforms. 

 

3.2 Introduction 

The development of the nematode C. elegans entails one embryonic stage and 

four larval stages L1 through L4.  Hatched embryos roam on agar plates with sinusoidal 

movements.  Upon proceeding from one larval stage to the next, the animal becomes 

quiescent in its motion and sheds off the cuticle surrounding the body for about two 

hours, a period known as molt.  For example, the L1 molt follows the first larval stage 

L1, before the animal enters the second larval stage L2.  The time length of the larval 
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stages (including molting period) is 16, 9, 9, and 11 hours for L1, L2, L3 and L4 stages, 

respectively (at 20 °C).  Hence, after 45 hours from hatching the animal is a young adult 

[1].  Growth is slightly faster at 25 °C, with the animal becoming a young adult after 36 

hours from hatching [2]. 

 

The vulva of the nematode C. elegans  is derived from six Pn.p vulva precursor 

cells (VPCs) aligned along the antero-posterior axis of the body.  These cells are born 

eight hours posthatching, in the L1 larval stage [1].  Upon receiving the LIN-3 (EGF-like 

protein) from the anchor cell in the gonad (see Figure 2.1 or 4.5 for graphical 

representation), the VPCs exit their elongated G1 phase [3] and specify and commit to 

undertake vulval fates.  The anchor cell is specified from either one of the Z1.ppp or 

Z4.aaa cells during mid- to late-L2 stage [4, 5].  The Z1.ppp and Z4.aaa are born at the 

beginning of the L2 stage [1]. 

 

 
Figure 3.1. Events associated with specification of vulval precursor cells 
The worm has four larval stages L1-L4.  The vulval precursor cells (VPCs) that form 
worm vulva are specified in the period from mid-L2 to early-L3 by the LIN-3 signal 
released by the anchor cell (AC).  The AC is randomly specified from one of the Z1.ppp 
or Z4.aaa cells. The time scale corresponds to animals grown at 20 °C. 
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Vulval precursor cells undertake the 1°, 2°, and 3° vulval fates through the 

interplay of LIN-3 inductive signaling and LIN-12 lateral signaling [6].  These two 

signaling networks are coupled by negative regulators [7].  One important finding from 

our modeling analysis of this regulatory network is that of the coupling between 

inductive and lateral signaling in the vulva precursor cells may amplify the extracellular 

LIN-3 gradient into steeper gradient in the intracellular MAP kinase signal (see Chapter 2 

and [8]).  In mathematical terms, gradient amplification is represented by this inequality: 

*
P6.p

*
P5/7.p coupled

P6.p

P5/7.p coupled

mpk-1ln mpk-1
1

LIN-3ln LIN-3

cQ

⎛ ⎞
⎜ ⎟
⎝ ⎠

= >
⎛ ⎞
⎜ ⎟
⎝ ⎠
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Importantly, gradient amplification is limited to certain parameter values, 

including certain LIN-3 gradients.  Whether wild-type organisms operate with these 

parameter values is unknown.  Meanwhile, we identified a second, closely related 

property of gradient perception that is robust to changes in all parameter values.  This 

robust property is that the conversion of extracellular LIN-3 gradient into a gradient in 

the intracellular MAP kinase signal will always be better in an organism with intact 

signaling network that couples inductive and lateral signaling pathways.  Ablating this 

coupling will hamper gradient perception.  In mathematical terms, this finding is 

presented by this inequality: 

*
P6.p P6.p

*
P5/7.p P5/7.pcoupled uncoupled
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P6.pP6.p
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⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

, (3.1) 

where mpk-1* refers to the intracellular signal triggered by the extracellular LIN-3. 
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3.3 Experimental Validation Strategy 

To determine whether gradient amplification occurs in wild-type organisms, we 

would have to measure the gradient in extracellular LIN-3 and the gradient in 

intracellular MAP kinase signal.  Visualization of morphogen gradients over tens to 

hundreds of cells has been achieved in several systems using antibody staining methods 

or fusion proteins of GFP and morphogen [9].  Unfortunately, similar approaches have 

been attempted but have not been successful in C. elegans  [10].  Currently there is no 

method for direct measurement of the LIN-3 gradient.  Moreover, our model predictions 

suggest that gradient amplification is not a robust property.  Thus, whether the wild-type 

organism operates with parameter values that produce gradient amplification is unknown.   

 

For these reasons, we turned to quantifying the second, closely related model 

prediction: gradient perception in coupled wild-type animals will always be better than in 

uncoupled mutants.  Importantly, there is no experimental evidence to suggest that 

mutations that uncouple precursor cells would affect the secretion, transport and 

degradation of the LIN-3 signal.  Therefore, the inequality Equation 3.1 simplifies to the 

following: 

*
P6.p

*
P5/7.p coupled

*
P6.p

*
P5/7.p uncoupled

mpk-1ln mpk-1
1

mpk-1ln mpk-1
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⎝ ⎠
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⎛ ⎞
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⎝ ⎠
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Thus, there would be no need for direct measurement of LIN-3 gradient.  Thus, to 

validate this model prediction, we would need: (a) to generate mutant animals in which 
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lateral coupling is eliminated, and (b) to measure the level of intracellular MAP kinase 

signaling. 

 

In order to generate worms with uncoupled pre-cursor cells, one can envision 

three methods.  In the first method, one ablates the LIN-12 protein by introducing a lin-

12(0) null mutation in wild-type worms using genetic manipulation.  This method ensures 

that no lateral signal is ever turned on as the receptor for the signal is knocked out and 

that mutant worms are uncoupled.  However, there are side effects to lin-12(0) mutants, 

one being a double anchor cell in the gonad [5].  While anchor cell ablation is commonly 

performed [4], the LIN-3 gradient of mutant, anchor cell ablated worms will be altered 

compared to the wild-type coupled worms and would not allow us to cancel the log ratio 

of LIN-3 in P6.p and P5/7.p in the equation above. 

 

In the second method, one uses feeding RNAi [11].  If one assumes that 

intracellular biochemistry related to negative lateral feedback coupling does not influence 

gradient formation (for example by affecting receptor expression levels or endocytosis of 

receptor-ligand complexes), then wild-type worms (coupled) and worms exposed to 

RNAi against negative regulators of inductive signaling have the same quasi-steady 

specification extracellular LIN-3 gradients and the log ratio involving LIN-3 in P6.p and 

P5/7.p cancels out in the equation above.  While we originally invalidated this method 

due to need of multiple RNAis and the efficiency of RNAi method, it was recently shown 

[12] that lateral signaling does influence the receptor distribution in P5/7.p.  Hence, in a 

model where the LIN-3 gradient is shaped through release from the anchor cell and 
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endocytosis of LIN-3::LET-23 receptors, this gradient would not be similar in wild-type 

coupled worms and worms exposed to RNAi (uncoupled). 

 

In the third method one measures MPK-1 activity at early and late stages of 

specification and then compares the dynamics.  At early stages of specification, the 

negative regulators of MPK-1 activity are not expressed yet, as lateral signaling ligands 

and MPK-1* target genes are being expressed first.  At such early stages, the gradient in 

MPK-1* activity is equivalent to that of an uncoupled system.  At later stages of 

specification, negative regulators such as ark-1, lip-1, and lst genes have been expressed 

and the measured reporter activity is that of the coupled system. 

 

The activity of MPK-1 in the vulva precursor cells cannot yet be measured 

directly and requires the use of a fluorescent reporter.  Activation of MPK-1 leads to 

phosphorylation of two transcription factors, LIN-1 and LIN-31 [13] .  The gene egl-17 

encodes the C. elegans fibroblast growth factor and this gene is specifically expressed in 

the VPCs at the time of their induction and later on in their descendants in response to 

MPK-1 activity [14].  It has been recently shown that the Ets transcription factor LIN-1 is 

required for expression of the egl-17 gene during vulva induction [15].  The following 

experimental work uses the very sensitive reporter arIs92 that is driven by the egl-17 

promoter and has been shown to detect the gradient in MPK-1 activity [7].  However, 

quantitative correlation between reporter activity and the amount of active MPK-1 (or 

even phosphorylated LIN-1) depends on the half-life of the reporter protein.  CFP half-

life in yeast has been estimated at 72 min [16].  While half-life in the P3-8.p cells of C. 
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elegans may be slightly different, this short half-life should allow for inferring activity 

upstream of reporter from reporter intensity data. 

 

Here we describe four experimental methods that were used to obtain the dynamic 

expression profile of the arIs92 reporter activity during early-L2 to early-L3 stages of 

vulva development of C. elegans  larvae and the advantages and disadvantages that 

emerged. 

 

3.4 Results and Discussion 

3.4.1 Quantitation of CFP Fluorescence Images 

Visualization of individual cells in C. elegans requires 100× DIC and 

fluorescence microscopy.  Figure 3.2 displays a typical set of images acquired for 

quantitation. 

 

 
Figure 3.2. Worm imaging at 100× magnification 
(A) DIC image of a late-L2 worm (as judged by the size of gonad primordium). The 
nuclei of VPCs P4-8.p are indicated with arrows.  (B) CFP fluorescence image of the 
same worm in (A).  Only P6.p cell shows visible reporter fluorescence at this stage. 
 
 

Production of CFP fluorescence images suitable for quantitation requires that 

pixels in the region of interest are not saturated.  Testing several settings of gain and 
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offset on the acquisition camera indicated that for the CFP fluorophore in arIs92 

transgene pixel saturation does not occur when the offset is zero and gain is as high as 

200 digital levels (maximum is 255) if the integration time is kept within 2 seconds (data 

not shown).  To ensure linearity of fluorescence signal with the integration time, images 

were collected at multiple integration times, ranging from 100 ms to 2 seconds (Figure 

3.3).  Prolonged exposure of the fluorophore to incident excitation light is twofold 

deleterious: it photobleaches the fluorophore and it heats up the worm sample.  Hence, 

image collection at different integration times requires to manually open and close the 

incident light shutter on the microscope between exposures.  

 

Measuring CFP reporter fluorescence intensity requires quantitation of acquired 

digital images.  We developed Matlab code that processes a set of digital images as 

follows.  First, the DIC image is loaded and the user can mark the P5-7.p cells.  Then 

each fluorescent image (corresponding to exposure at a different integration time) is 

loaded already having the position of the P5-7.p marked as previously selected from the 

DIC image.  In order to easily select regions of interest corresponding to nuclear 

fluorescence from P5-7.p the image is automatically “autoleveled” such that all 255 gray 

levels are used in the displayed image.  Two to four regions of interest are selected 

corresponding to background fluorescence (usually measured by considering an area of 

similar pixel size as nuclei of P5-7.p, positioned somewhere between the P6.p and P5/7.p 

nuclei) and to fluorescence in the P6.p and P5/7.p nuclei.  Pixel intensity in the regions of 

interest is reported from the original nonautoleveled image.  Analysis of the region of 
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interest includes area and maximum, minimum and mean pixel intensities.  Quantitative 

data from maximum and mean pixel intensities agree (data not shown).  

 

 
Figure 3.3. Measurement of fluorescence intensity in vulval precursor cells 
Analysis of CFP fluorescence in P6.p cell shown in Figure 3.2 (red) vs. background 
fluorescence (black). Pictures at different integration times are taken to avoid pixel 
saturation. y-axis measures maximum pixel intensity over P6.p nucleus based on a 
manually selected region of interest. 
 
 
 The fluorescence level (a.u.) in a cell is reported as the slope of the fluorescence 

intensity in that cell minus the slope of the background fluorescence intensity (Figure 

3.3).  

3.4.2 Dynamic egl-17::cfp-lacZ Expression from Individual Anesthetized Worms Imaged 

at Several Developmental Times 

Comparing reporter activity for the same developmental time in different worms 

requires that these worms are synchronized along their developmental time axes (i.e., 

have the same developmental age) such that each worm is positioned appropriately along 

the time axis.  We have used two synchronization methods: “lay-off and hatch-off” and 

L1 starvation  (see experimental details).  However, we find that there is slight variability 

in the developmental age of the worms produced by these procedures (data not shown).  

Either worms desynchronize from the time of synchronization (L1 stage or hatching) to 
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the time of imaging (L2 stage) or there is enough worm-to-worm variability in the 

“synchronized” population to begin with.  Hence, developmental age needed to be 

inferred on a worm-to-worm basis based on characteristics such as the size of the gonad 

primordium. 

 

Worms are naturally moving sinusoidally on agar foraging for bacteria.  High 

magnification imaging requires that worms are immobile, hence worms are anesthetized 

prior to mounting on slide.  However, the anesthetic can be deleterious to the worms and 

can slow their growth or reduce their viability to experimental manipulation. 

 

Figure 3.4 displays the arIs92 fluorescence dynamics in five worms following 

anesthesia at the indicated starting developmental times (early-, mid-, or late-L2).  After 

imaging at a particular relative developmental time, worms were washed with M9 buffer 

to recover them from anesthesia.  This procedure cannot be repeated very often, hence 

only three or four relative developmental times can be imaged before the worm is not 

viable anymore. 

 

If we compare the early-L2 vs. mid-L2 vs. late-L2 worms, we notice that initially 

fluorescence is very weak and present only in P6.p cell, then it seems to increase in both 

P6p and P5.p or P7.p cells, and then it disappears in P5.p and P7.p while continuing to 

increase in P6.p.  While this is in agreement with previous qualitative results [7], there 

seems to be great variability in the fluorescence levels in these cells.  This variability 

could be due to intrinsic worm-to-worm variations and our imprecise knowledge of exact 
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developmental time of the worm.  Individual worms must ultimately correct for this 

variability such that correctly patterned vulvas are formed each time. 

 
Figure 3.4. Dynamics of MPK-1 reporter activity in VPCs at L2 larval stage from 
single anesthetized worms 
(Middle column) Quantification of fluorescence levels in P6.p (continuous line and 
diamonds) and P5.p (dotted line and triangles) or P7.p (dashed line and squares) cells in 
worms anesthetized at multiple times during their development.  (First and second 
columns) Nomarski and arIs92 fluorescence images of worms at the zero relative 
developmental time reported in the middle column.  (Fourth and fifth columns) Nomarski 
and arIs92 fluorescence images of worms at the last relative developmental time reported 
in the middle column.  Worms were at early-L2 stage (first and second rows), mid-L2 
stage (third and fourth rows), and late-L2 stage (fifth row), respectively for the zero 
relative developmental time reported in the middle column.  Actual developmental times 
(early-, mid-, or late-L2) were determined based on the size of the gonad primordium.  
Levels in the fluorescence images of the second and fifth columns should not be 
compared to one another as brightness and contrast have been adjusted differently for 
clarity. 
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Notice that arIs92 fluorescence intensity in the VPCs during early to mid-L2 

stage (when the gradient is observed in VPCs) is very weak and is expected to have very 

low signal-to-noise ratio.  Figure 3.4 shows that visualization of weak fluorescence in 

P5.p or P7.p cells requires significant changes of image contrast such that 

autofluorescence of the worm body becomes visible. Such changes are not necessary for 

imaging at late-L2 (bottom row of Figure 3.4) or early-L3 (data not shown) stages as 

fluorescence is then visible to the eye without any contrast adjustments.  Although 

subjective to digital camera settings in different laboratories via digital gain and offset, 

this qualitative observation is consistent with published reports using the arIs92 

fluorescence reporter to visualize MPK-1* activity gradient at L2 stage [17, 18].  In our 

analysis, quantitation is performed on raw pixel intensities and should not alter the 

fluorescence levels reported here for different worms if camera settings were the same.  

However, these levels are very low.  In fact, for fluorescence imaging during L2 stage, 

signal-to-noise (reported as the slope of fluorescence intensity in the cell of interest vs. 

the slope of fluorescence intensity of the background—see Figure 3.3) in P7.p cell can be 

as low as 1.2:1 and as high as 2:1.  In P6.p, the signal-to-noise can be as low as 1.5:1 and 

as high as 3:1.  During late L2 and L3 stages, arIs92 fluorescence intensity improves 

such that signal-to-noise ratio can be as high as 4:1.  

3.4.3 Dynamics of egl-17::cfp-lacZ Expression from Multiple Anesthetized Worms 

Imaged at a Single Developmental Time 

Worm length is a quantity with high dynamic range during larval development.  

For example the worm extends from about 350 μm in L2 to about 600 μm in L3 [2].  

Here, we used worm length as a marker of developmental time of individual worms.  We 
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measured fluorescence from multiple randomly picked worms in a synchronized culture 

by imaging anesthetized worms at a single developmental time.  We then measured the 

length of these worms using 10× magnification and aligned them on the “worm length” 

axis (Figure 3.5).  Ordering of the worms along this axis agrees with qualitative judgment 

of developmental age based on size of the gonad primordium.  

 

 
Figure 3.5. Dynamics of MPK-1 reporter activity in VPCs at L2 larval stage from 
multiple anesthetized worms 
Worm length is indicative of the developmental age of the worm imaged. The 
fluorescence level in P6.p and P7.p was measured in sixteen worms at different 
developmental ages. Errorbars indicate standard deviation of three measurements of 
worm length at 10× magnification. 
 
 
 These results show that at inferred (from worm length) early L2 stages 

fluorescence in P6.p cells is low and it is absent from P5/7.p cells.  Fluorescence in P7.p 

cell is only present at intermediate lengths and correlates with low P6.p fluorescence 

(except for the worm at about 400 μm, which shows equal fluorescence levels in P6.p and 

P7.p, a phenomenon ascribed to variability in the position of the anchor cell and the 

gonad).  High P6.p fluorescence occurs for even longer and older worms.  
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3.4.4 Dynamic egl-17::cfp-lacZ expression from individual immobile worms imaged at 

several developmental times 

The previous two subsections illustrate that there actually is a lot of variability 

among worms and that obtaining the complete dynamic profile of egl-17::cfp-lacZ 

transgene expression in the vulval precursor cells requires imaging of single worms over 

elongated periods of time.  We have shown that wild-type worms cannot survive 

exposure to anesthetic over such elongated periods and that repeated mounting and 

unmounting from slides between exposures also reduces worm viability.  

 

There is evidence that wild-type worms mounted on slides and maintained on 

slide can survive and develop normally ([1] and data not shown).  Therefore we decided 

to generate an immobile worm strain that would contain a mutation which does not 

interfere with the process of vulva specification and formation.  

 

The unc-54(e190) is a null allele of the unc-54 gene.  The unc-54 gene encodes a 

muscle myosin class II heavy chain, is expressed in different muscle cell types in the 

worm body, and it is required for locomotion and egg laying. Mutant L1 larvae are able 

to move, but they become slower as they grow older.  Mutant adults are immobile and 

cannot lay eggs due to defects in the uterine and vulval muscles, hence eggs hatch inside 

the mother. 
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We have developed a mutant strain of worms that carries the transgene arIs92 and 

the unc-54(e190) mutation (see materials and methods for details).  Low motility of L2 

larvae makes this strain immobile when mounted on agar slides for imaging.  

 

Figure 3.6 and Figure 3.7 display the fluorescence dynamics over a five-hour 

period of time in worms starting in early-L2 or mid-L2 larval stage (the stage has been 

inferred from the size of the gonad primordium and whether the posterior distal tip of the 

primordium was posteriorly positioned with respect to P7.p VPC).  Interestingly, the 

worm at early-L2 stage (Figure 3.6) displays arIs92 fluorescence in the P5-7.p cells 

before the time of anchor cell specification.  A common feature of reporter fluorescence 

dynamics in these worms (middle panels in Figure 3.6 and Figure 3.7) is that 

fluorescence levels do not show a clear increasing or decreasing trend over the five-hour 

time window of imaging.  While fluctuations could be accounted for by slight changes in 

focus during imaging (confocal microscopy should address this issue), the lack of a trend 

poses a conundrum. 
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Figure 3.6. ArIs92 reporter activity dynamics at early-L2 larval stage in unc-54 
worms 
(Top row) Nomarski and arIs92 fluorescence imaging of an early-L2 worm at zero 
minutes relative developmental time.  (Middle row) Dynamics of quantified fluorescence 
levels in P6.p (continuous line and diamonds), P5.p (dotted line and triangles), or P7.p 
(dashed line and squares) over a five-hour time period.  (Bottom row) Nomarski and 
arIs92 fluorescence imaging at the end of the imaging period corresponding to about 290 
minutes of relative developmental time. 
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Figure 3.7. ArIs92 fluorescence dynamics at mid-L2 larval stage in unc-54 worms 
(Top row) Nomarski and arIs92 fluorescence imaging of a mid-L2 worm at zero minutes 
relative developmental time.  (Middle row) Dynamics of quantified fluorescence levels in 
P6p (continuous line and diamonds) and P7.p (dashed line and squares) cells over a   
five-hour time period.  (Bottom row) Nomarski and arIs92 fluorescence imaging at the 
end of the imaging period corresponding to 300 minutes of relative developmental time. 
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 To solve this conundrum, we tested whether worms imaged on-slide for 

prolonged time develop a vulva at all. For yet another early-L2 worm we observed the 

same fluctuating stationary fluorescence dynamics over a period of five hours (Figure 

3.8, second row).  After imaging, the worm was viable and was recovered and returned to 

an agar plate.  The next day, after about 1700 minutes from start of the imaging session,  

this worm showed a vulva corresponding to mid to late-L3 stage (Figure 3.8, fourth row).  

This huge delay in vulva development suggests that on-slide imaged worms arrest 

development and that development resumes upon return to normal culturing conditions, 

albeit not immediately. 
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Figure 3.8. Worms maintained on microscope slide take longer to develop 
(First row) Nomarski and arIs92 fluorescence imaging of a mid-L2 worm at zero minutes 
relative developmental time.  (Second row) Dynamics of quantified fluorescence levels in 
P6.p (continuous line and diamonds) or P7.p (dashed line and squares) cells over a     
five-hour time period. Isolated diamond quantifies fluorescence at 1700 minutes of 
relative developmental time, averaged over the four P6.pxx granddaughters presented in 
the fourth row.  (Third row) Nomarski and arIs92 fluorescence imaging at the end of the 
imaging period corresponding to about 300 minutes of relative developmental time.  
(Fourth row) Nomarski and arIs92 fluorescence imaging one day after the imaging 
session, corresponding to about 1700 minutes of relative developmental time.  (Fifth row) 
Nomarski and arIs92 fluorescence imaging two days after the imaging session. Levels in 
the fluorescence images of the second column should not be compared to one another as 
brightness and contrast have been adjusted differently for clarity. 
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In order to ascertain this delay on a shorter developmental time scale, we 

continuously imaged on-slide an early-L3 worm (developmental stage inferred from size 

and structure of gonad) for four hours and asked whether we observe the first division of 

the induced VPC cells.  Figure 3.9 (middle row) recapitulates the results in Figure 3.6 to 

Figure 3.8 with respect to fluorescence dynamics, namely fluorescence level in VPCs 

fluctuates during the imaging period rather than showing a clear increasing or decreasing 

trend. 

 
 

 
Figure 3.9. ArIs92 reporter activity dynamics at early-L3 larval stage in unc-54 
worms 
(Top row) Nomarski and arIs92 fluorescence image of an early-L3 worm, corresponding 
to zero minutes relative developmental time in the middle row.  (Middle row) Dynamics 
of quantified P6.p fluorescence levels over a four hour time period.  (Bottom row) 
Nomarski and arIs92 fluorescence imaging at the end of the imaging period 
corresponding to 240 minutes of relative developmental time. 



 74

The observed delay is not due to the worm being dead. Similar to the worm in 

Figure 3.8, this worm was recovered and imaging the following day showed that vulva 

forms normally (data not shown). 

 

In order to further confirm this delay in development, we asked whether worms 

briefly imaged at early-L3 stage, but maintained on agar plates display the same 

phenomenon.  Figure 3.10 displays three such worms, briefly imaged at early-L3 stage 

(based on size and structure of gonad) and then returned to the agar plate for a period of 

300 to 400 minutes, and then briefly imaged again.  Such worms should display VPC 

daughters after 210 minutes and VPC granddaughters after 360 minutes (see Figure 3.1). 

Figure 3.10 shows that these worms do develop normally and reach the two- and four-cell 

stage of P5-7.p division at the appropriate time.  Furthermore, notice the variability in the 

fluorescence levels in these worms at early-L3 stage (relative developmental time zero in 

each worm).  As explained before, lack of precise knowledge of developmental time in 

each worm and intrinsic worm-to-worm variability contributes to this variability.  

Fluorescence levels in P6.p progeny should not be compared as dilution due to cellular 

division acts on top of the original worm-to-worm variability. 

 

These results thus show that maintaining the unc-54 strain of worms on slide for 

continuous imaging delays their development.  Possible reasons include reduced oxygen 

availability or lack of nutrition due to limited foraging for bacteria. 

 



 75

Imaging using immobile worms add to the results of the previous section by 

further showing that fluorescence quantitation at L2 stage has a very small signal-to-noise 

ratio (Figure 3.6 to Figure 3.8), with this ratio improving for fluorescence images of 

worms in L3 stage (Figure 3.9 and Figure 3.10). 

 
Figure 3.10. Development on agar plates occurs faster than on microscope slides 
(Top, middle and bottom rows)  Three early-L3 stage worms briefly mounted on 
microscope slide for imaging at two developmental time points about 300 to 400 minutes 
apart.  (Two left columns) Nomarski and fluorescence images of the three worms at the 
early developmental time point.  (Two right columns) Nomarski and fluorescence images 
of the three worms at  the late developmental time point.  (Middle column) Quantification 
of fluorescence (in P6.p or averaged over its descendants) at the indicated times 
corresponding to the left or right columns. Fluorescence levels in the images of the 
second and fifth columns should not be compared to one another as brightness and 
contrast have been adjusted differently for clarity.  
 
 

3.4.5 Imaging Worms Trapped in a Microfluidic Device 

The previous subsections illustrated that continuous monitoring of signaling 

molecules guiding worm development requires experimental imaging conditions where 

worms do not lack oxygen and nutrition.  Taking advantage of the possibility of 
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maintaining C. elegans in liquid culture [19] a microfluidic device was designed in 

Professor's Changhuei Yang's lab to allow worm trapping and pinning for imaging. 

 

Figure 3.11 shows a top-view diagram of the microfluidic device and its mode of 

operation.  The design uses control layer (red) valves to allow flow in the flow layer 

(black) (Figure 3.11A) [20].  The worm is trapped at the gratings (Figure 3.11B) where it 

can be pinned down for imaging.  Worms are loaded by closing the valves associated 

with bacterial feed and worm outlet (Figure 3.11C).  Once a worm has been trapped, the 

worm inlet valve is closed and bacterial flow is allowed through the feed lines (Figure 

3.11D).  Bacterial flow is driven by a three-valve peristaltic pump or external pressure.  
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Figure 3.11. Microfluidic device for worm trapping and imaging 
(A) Overall schematic of the microfluidic device with a control layer (red) and a flow 
layer (black).  (B) Worm chamber: the worm is trapped in the line between the gratings 
and can be pinned down by pressurizing the top control layer valve (vertical red 
rectangular contour).  (C) Worm loading: the feed and worm outlet valves are closed 
(black squares) while worm inlet and feed outlet valves are open.  (D) Worm 
maintenance: worm inlet and outlet valves are closed (black squares) and bacteria is 
flowed through the feed lines and exits through the waste lines. 
 
 

We were able to load, maintain, and image worms in the microfluidic device. 

Figure 3.12 shows low magnification imaging of a trapped worm.  Successful worm 

trapping depends on worm age. L1 larvae can pass through the gratings and cannot be 

easily trapped.  Larger worms (L2-L4 stages) are initially partially squeezed through the 

grating (Figure 3.12) but are able to release themselves later on.  Since the height of the 

flow channel needs to be properly controlled for the control layer valves to seal correctly, 

the microfluidic device does not allow flow of young adult or older worms. 
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Figure 3.12. Worm trapping in the microfluidic device 
(A) 10× magnification imaging of worm trapping. (B) 20× magnification imaging of 
another trapped worm. 
 
 

An added advantage of the microfluidic device is the ability to pin down worms to 

immobilize them for high magnification imaging in the absence of anesthetic and without 

the need to generate immobile mutant strains.  Figure 3.13 shows a high magnification 

Nomarski image and the corresponding fluorescence image from the arIs92 reporter of an 

L4 worm.  Fluorescence quantitation can be performed on acquired images (data not 

shown). 

 

 
Figure 3.13. High magnification 100× imaging in the microfluidic device 
Nomarski (A) and fluorescence (B) images of vulva of an L4 stage worm trapped and 
pinned down in the microfluidic device. 
 
 

Obtaining dynamic fluorescence reporter activity over many hours of development 

requires that the worm is pinned during imaging and then released afterwards for several 

times during an experiment.  Hence we asked whether worm viability is altered after a 
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pinning session.  Figure 3.14 shows the same worm imaged in Figure 3.13, but now 

released from pinning.  The image sequence shows that the worm is alive and moving in 

the flow channel. 

 
Figure 3.14. Worms survive in the microfluidic device 
 

Additional work is required to probe elongated worm viability in the microfluidic 

chamber.  There currently does not exist a method of recovering trapped worms from the 

microfluidic chamber.  Future designs could potentially alleviate this problem. 
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3.5 Materials and Methods 

3.5.1 Strain Maintenance 

This study used the strain unc-54(e190) and the transgenic lines unc-4(e120); 

arIs92[egl-17p::cfplacZ, unc-4(+), ttx-3::gfp], him-8(e1489); arIs92[egl-17p::cfplacz, 

unc-4(+), ttx-3::gfp], and unc-54(e190); arIs92[egl-17p::cfplacZ, unc-4(+), ttx-3::gfp].  

Worms were grown in 60 mm Petri dishes, on an OP50 E. coli bacterial lawn on agar. 

Plates of all strains were stored in an incubator at 20 °C.  Worms were passed every two-

three generations as the bacterial lawn depleted on the plate by picking several L1 larvae 

or unhatched eggs and transferring them to a new plate.  

3.5.2 Microscopy 

On-slide imaging was performed on agar (5% w/v in water; BD, Difco Noble 

Agar, Cat. No. 214230) pads prepared using usual protocol [19].  Briefly, a patch of agar 

is made on a glass microslide (Gold Seal, Cat. No. 3011), and a worm is sandwiched 

between the agar pad and a glass coverslip (Fisherbrand Coverglass, Cat. No. 12-542A). 

 

 Worm loading on the pad for anesthetized worms was performed as follows:       

3 μL of M9 (3 g/L KH2PO4, 6 g/L Na2HPO4, 5 g/L NaCl, 1 mM MgSO4) buffer plus    

0.1 mM levamisole (Sigma, L9756) anesthetic or S-basal (5.85 g/L NaCl, 1 g/L K2HPO4, 

6 g/L KH2PO4, 1 mL cholesterol (5 mg/mL in ethanol)) buffer plus 0.1 mM levamisole 

were placed on the agar pad, and then a single worm was transferred from the plate into 

this droplet using a worm pick with a speck of bacteria on the tip.  

For immobile, unc-54(e190), mutant worms loading was performed as follows: 

one first prepares a pad of agar on glass microslide and places 2.5 μL of M9 or S-basal on 
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the pad.  Then a speck of bacteria was placed in the center of a glass coverslip and 0.5 μL 

of M9 buffer or S-basal buffer were dropped on the speck.  A worm was picked from a 

plate with the worm pick and deposited in the bacterial speck.  The coverslip was placed 

on top of the agar pad such that the two droplets fall onto one another.  In this way the 

worm is assured to be located in the middle of a bacterial lawn during imaging.  

 

S-basal buffer is used whenever the worm is kept on slide for a prolonged period 

of time as the animals require cholesterol for molting and other functions.  To prevent 

drying of the agar pad on the slide during prolonged imaging, a droplet of S-basal buffer 

was added around the pad at about 30-minute intervals. 

 

Differential interference contrast (DIC) and cyan fluorescent protein (CFP) 

images of worms were acquired using a Zeiss Axioskop microscope equipped with a 

Hamamatsu Orca-ER C4742-80 digital camera (12 bit, 1×1 bining, 1×  digital gain, low 

light mode) using 10× (Achroplan/0.25 Ph) or 100× (Plan-Neufluar/1.3 oil) objectives.  

Further camera settings: for Figure 3.2 to Figure 3.4 the digital gain was 10 and offset 

was zero; for Figure 3.5 the digital gain was 200 and offset was zero; for Figure 3.6 to 

Figure 3.10 the digital gain was 26 and offset was zero.  Other camera settings 

(integration time) were used as detailed in the section 3.4.1.  Imaging of worms in the 

microfluidic device was performed with a similarly equipped Zeiss Axiovert 200 inverted 

microscope.  Images were captured using Openlab 5.0.2. Using a hemacytometer pixel 

sizes were determined to be: 10× – 8pixels/10μm, 100× – 71 pixels/10μm. Microscopy 

was performed in a room at temperature 21-23 °C. 
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3.5.3 Manufacturing of the Microfluidic Device 

The polydimethylsiloxane (PDMS) microfluidic device was manufactured using 

the standardized protocol of the microfabrication facility at Caltech.  Briefly, the bulk of 

the the chip is made of a 5:1 w:w mix of GE RTV615A and GE RTV615B silicone 

components.  The thin membrane that separates the control and flow layers is made of a 

20:1 w:w mix of RTV615A and RTV615B.  The thick and thin layers are baked in oven 

at 80 °C for 90 and 45 minutes, respectively, following by alignment of the two layers.  

The layers are cut and then bonded by baking in the oven at 80 °C for two hours.  The 

chip is then attached to a glass coverslip (Thomas Red Label, Cat. No. 6663-G67) 

spincoated with PDMS and further baked for two hours. 

3.5.4 Generating the Mutant Immobile Worm Strain 

The transgenic strain unc-54(e190); arIs92[egl-17p::cfplacZ, unc-4(+), ttx-

3::gfp] was generated during this study to allow imaging of CFP fluorescence dynamics 

in single worms without reverting to anesthetic.  This line was obtained by crossing the 

myosin deficient strain unc-54(e190) with the transgenic strain him-8(e1489); arIs92[egl-

17p::cfplacz, unc-4(+), ttx-3::gfp].  The former strain is defective of egg laying, hence 

eggs hatch inside the mother and the mother dies while freeing up the young animals.  

The latter produces a population with an increased occurrence of males due to the him-8 

mutation. Briefly, 3 males of the latter strain were allowed to roam together with 6 or 7 

hermaphrodites of the former strain on an agar plate.  One progeny (such progeny must 

be heterozygous for the him-8 mutation, the unc-54 mutation, and the arIs92 transgene) 

displaying GFP fluorescence (from ttx-3::gfp marker) was picked from the plate, 

transferred to an empty plate and allowed to self.  Twelve of its progeny displaying GFP 
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fluorescence were further selected and plated individually on twelve plates.  Only those 

plates containing a dead mother due to larvae hatching inside and displaying fluorescent 

larvae were kept.  These plates contained mothers that were homozygous for the unc-54 

mutation and the progeny must be at least heterozygous for the arIs92 transgene.  Such 

progeny was passed repeatedly by selecting marker expressing worms until a plate that 

showed only fluorescent hermaphrodites was identified. 

3.5.5 Strain Synchronization 

Two methods of synchronizing the developmental stage of worms were used.  

Synchronization was necessary to produce populations of worms at known 

developmental stages for studies in the microfluidic device or on-slide imaging using 

anesthetic.  The first method takes advantage of the growth arrest of L1 larvae in the 

absence of food.  Upon return to a bacterial lawn such L1 larvae resume development.  A 

plate with many gravid mothers is bleached using a bleach solution (20% v/v bleach in 

water, 0.5M KOH).  The unhatched eggs survive the procedure and are resuspended in 

M9 buffer.  They will hatch in this solution but arrest growth due to lack of food [2].  

Freshly prepared (one- to two-days-old) L1 starved worms reach mid-L2 stage after 24 

hours from plating on the bacteria lawn in agar plates.  The second method is the lay-off 

and hatch-off procedure [21].  Briefly, twenty to thirty gravid adults are transferred to a 

plate and allowed to lay eggs for two hours.  Twenty to thirty eggs are further picked and 

moved to a separate plate.  Twelve hours later unhatched eggs are picked from this plate 

and allowed to hatch on a different plate for one hour.  Those eggs  that hatched (usually 

three or four) during this period will reach L2 molt in 24 hours.  Neither of these 
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synchronization procedures can be applied to unc-54 mutant strain as in this case eggs 

hatch inside the mother and larvae die upon bleaching.  
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CHAPTER 4: PREDICTING PHENOTYPIC DIVERSITY AND THE 
UNDERLYING QUANTITATIVE MOLECULAR TRANSITIONS† 

 

4.1 Abstract 

During development, regulatory signaling networks instruct cell populations to 

form multicellular patterns and structures.  These signaling networks are composed of 

highly interconnected molecular interactions.  Quantitative variations in these molecular 

interactions are likely to produce phenotypic changes, the full range of which is 

impossible to gauge through laboratory genetics.  Meanwhile, evolution may exploit 

“quantitative diversification” as a means to explore phenotypic alternatives while 

maintaining a constant signaling network architecture.  Here, we describe a 

computational approach to quantify and to explore the phenotypic capacity of a 

developmental signaling network and apply it to vulval development in C. elegans.  The 

phenotypes predicted to arise from quantitative variations in the signaling network span 

eleven species in the Caenorhabditis genus, and model analysis reveals the critical 

quantitative changes that must have evolved during the diversification of a common 

ancestor. 

 

4.2 Introduction 

Developmental signaling networks instruct cell populations to form multicellular 

structures and patterns.  Select mutations that perturb these regulatory networks yield 

particular phenotypic alterations [1, 2].  However, the mutant phenotypes uncovered by 

experimental genetics do not capture the full capabilities of a system.  Experimental 

                                                 
† Manuscript prepared for submission by C. A. Giurumescu, P. W. Sternberg, and A. R. Asthagiri. 
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studies are typically constrained to extreme modes of perturbation (e.g., knockout or 

overexpression) and rarely probe potential phenotypic changes due to quantitative 

alterations to signaling pathways.  The regulatory networks that drive developmental 

patterning are extraordinarily complex [3], and quantitative perturbations are likely to 

shift their performance into different regimes, and possibly, render alternative 

phenotypes.  

 

Uncovering the capacity to produce alternative phenotypes due to quantitative 

variations in network performance is especially significant from the standpoint of 

evolution [4].  Closely related species may have evolved by subtle, quantitative changes 

in network interactions rather than large-scale changes to network topology.  Thus, the 

phenotypic capacity gauges the potential for “local” evolutionary diversity. 

 

While the phenotypic capacity of developmental signaling networks is difficult to 

gauge experimentally, a computational framework that is able to predict phenotypes 

based on molecular mechanisms provides a unique and essential platform to explore the 

phenotypic capacity of a particular developmental signaling network.  Therefore, using a 

computational model of C. elegans vulval development [5] (detailed in Chapter 2 and 

Section 4.6), we sought to quantify how many different phenotypes are possible if the 

underlying network were perturbed quantitatively. 

 

The C. elegans vulva develops from an array of six pre-cursor cells (Figure 4.5).  

These cells commit to a spatial pattern of distinct fates with each fate contributing to 
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different aspects of the fully developed vulva.  The patterning process is guided by a 

highly coupled regulatory network involving a spatial gradient in an inductive signal and 

direct cell-cell interactions between neighboring cells.  Our mathematical model encodes 

this regulatory network and predicts the pattern of cell fates.  Distinct from other 

modeling strategies [6, 7], this mathematical model formally encodes the quantitative 

strength of every molecular interaction in the regulatory network, a necessary feature to 

probe quantitative diversification. 

 

4.3 Phenotypic Capacity 

To determine the phenotypic capacity of the vulval signaling network, we varied 

all model parameter values over a broad physiological range (Table 4.1 and Section 4.7).  

For each set of model parameter values, the multicellular phenotype was computed. With 

each phenotype occupying different regions of parameter space, a phase diagram of 

phenotypes has been developed for this multicellular system. 

 
Table 4.1. Dimensionless model parameters 
The model has eight dimensionless parameters associated with the various molecular 
interactions known to contribute to the specification of vulval pre-cursor cells (see 
Section 4.6). 

Parameter Meaning 
I Level of inductive signal at the center of the symmetric gradient 

ΔI Gradient steepness 
χ Strength of lateral inhibition of inductive signaling 
λ Basal level of lateral signal 

φ Upregulation of lateral signaling to neighboring cells by inductive 
signaling 

θ Downregulation of receptors for receiving lateral signals by inductive 
signaling 

κm Threshold of inductive signaling needed to upregulate lateral signaling 
κl Threshold of lateral signaling needed to inhibit inductive signaling 
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Our calculations show that the phenotypic diversity of this system, i.e., the total 

number of distinct phenotypes across the entire parameter space, has an upper limit.  As 

the parameter space is broadened, the number of distinct phenotypes saturates at 

approximately 560 multicellular patterns (Figure 4.1A). This result reveals that the 

developmental network is not constrained to a few outcomes that are most actively 

studied by experimental genetics.  Thus, the wild-type and a handful of well-studied 

mutant phenotypes by no means represents the phenotypic diversity of this system.  

Furthermore, in this six-cell system there are four fates possible to each cell (Section 

4.6.2).  Hence, the theoretical upper limit to the number of phenotypes is 4,096.  Our 

model predicts that the molecular network constrains the system from accessing ~85% of 

the theoretically possible phenotypes. 

 

 
Figure 4.1. Coupled network restricts phenotypic diversity 
(A) The total number of predicted phenotypes saturates upon expanding the volume of 
the parameter space around a central reference point. (B) A histogram depicting the 
number of phenotypes (bars) occupying different fractions of the parameter space.  This 
histogram is compared to a log-normal distribution (filled circles). The occupancy of the 
parameter space follows a log-normal distribution with a positive skew. The model 
predicts that experimentally observed phenotypes (indicated with an arrow) have high 
frequency of occurrence and fall into the positive skew. 
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To better understand how the phenotypes are represented in parameter space, we 

determined the amount of parameter space that gives rise to each phenotype (Section 

3.7).  Phenotypes that occupy a small region in parameter space may be inaccessible 

experimentally, while their counterparts occupying a large fraction of parameter space 

may represent the more tangible outcomes. The distribution of phenotypes in parameter 

space resembles a log-normal distribution (μ=-19.60, σ=4.90) with a slight positive skew, 

suggesting that a small subset of phenotypes occupies a disproportionately large portion 

of the parameter space (Figure 4.1B).  Interestingly, within this positive skew are the 

wild-type phenotype and several well-studied mutants [8, 9].  In addition to these well-

established phenotypes, our model predicts ~35 novel phenotypes that are two standard 

deviations above the mean (Table 4.5).  On the other end of the distribution, there are 19 

phenotypes that are two standard deviations below the mean (Table 4.6).  None of these 

phenotypes are among the well-studied experimentally observed phenotypes.  These may 

be highly unlikely outcomes that would further reduce our evaluation of the phenotypic 

capacity of this system. 

 

4.4 Rendering Mutant Phenotypes 

Having identified phenotypes with the greatest representation within the 

parameter space, a key question is how does one render such phenotypes experimentally? 

The phase diagram of phenotypes allows us to address this question by performing the 

computational equivalent of a random genetic screen [1, 2].  We identify the mutant 

phenotype of interest within the phase diagram and then quantify the single-parameter 

changes (i.e., single mutations) that lead to this outcome starting from the wild-type 
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phenotype (Figure 4.2A; Section 3.8).  These computations yield a probability that an 

increase (or decrease) in an individual parameter will shift the phenotype from wild-type 

to a mutant pattern.  Parameter changes with a higher transition probability have a greater 

likelihood of generating the desired mutant phenotype. 
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Figure 4.2. Model identifies optimal molecular perturbations necessary to generate 
experimentally observed mutant phenotypes 
(A) Schematic for counting phenotype transitions made possible by single mutations.  
Subspaces in the 8-dimensional parameter space are occupied by different phenotypes.  
This diagram portrays a simplified version of the phenotype phase diagram with a single 
parameter Pk isolated on the x-axis and all other parameters denoted on the y-axis.  The 
transition from i j can occur by a change in a single parameter Pk, but the transition i  
j’ cannot.  By counting the number of successful single mutations (i  j) for each 
parameter Pk, we quantify the relative efficacy of each parameter to render a specific 
phenotype transition (W  M) (Section 4.8).  (B), (C) Relative probability of inducing a 
transition from the wild-type phenotype to the 3°3°3°3°3°3° phenotype (B) or to the 
hyperinduced 2°1°2°1°2°1° phenotype (C) by decreasing (filled columns) or increasing 
(open columns) the values of parameters indicated on the x-axis.  The y-axes report the 
mean relative transition probability averaged over a broad combination of threshold 
values for fate-determining signals, and the error bars denote the standard deviation 
(Section 4.8).  The size of the error bar reveals that model predictions are robust to 
variations in the threshold values of fate-determining signals. 
 
 

We first applied this approach to predict the best single-parameter changes needed 

to transform the wild-type organism into a vulvaless mutant.  Vulvaless phenotypes have 

been observed in genetics experiments and occur when all vulval precursor cells acquire 
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the 3o fate.  Our model predictions reveal that the best way to render the 3°3°3°3º3º3º 

phenotype is by decreasing the level of inductive signaling (Figure 4.2B).  This result is 

consistent with experiments in which anchor cell ablation yields the uninduced all-3º fate 

pattern [10].  

 

In the other extreme of phenotypes, mutant worms with multiple vulvae have 

been observed when the inductive signaling pathway is hyperactivated.  In these mutants, 

the vulval precursor cells acquire an intriguing alternating pattern of 2º1º2º1º2º1º where 

each 1o cell produces an invagination [11].  Consistent with experiments, the model 

scores an increase in inductive signal as one of the most prominent ways to yield this 

alternating phenotype (Figure 4.2C).  In addition, it predicts equivalent perturbations that 

would render the same outcome.  Among these equivalent classes of mutations is an 

increase in the threshold of lateral signaling needed to inhibit the MAP kinase pathway 

(κL).  Such a mutation would be performed by decreasing the binding affinity of the 

lateral signaling transcription complex (LAG-1:LIN-12-cyto) to LBS elements in the cis-

regulatory regions of the genes that negatively regulate inductive signaling [12] (lip-1, 

lst-1,2,3,4).  This mutation would require greater lateral signaling to inhibit the inductive 

MAP kinase pathway and would be an indirect way to inflate the inductive signaling 

activity, conceptually consistent with direct hyperactivation of the inductive signaling 

pathway. 

 

Another prediction of the model is that flattening the gradient in soluble inductive 

factor would yield the 2°1°2°1°2°1° phenotype.  This particular prediction is remarkably 
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consistent with what has been recently uncovered about the most classical experimental 

mutation to yield this phenotype.  The loss of lin-15 has been shown to cause the 

secretion of LIN-3 from the surrounding cells, an event that would ablate the gradient 

[13].  

 

An intriguing feature of mutants, such as lin-15(lf) [9, 11] and let-60(gf) [14], is 

that the observed multicellular pattern is variable. In addition to 2º1º2º1º2º1º, the other 

prominent outcome is 1º2º2º1º2º1º.  There are several possible sources of variability [15].  

The quantitative levels and interactions of signaling molecules may differ among wild-

type organisms in which the mutation is performed; thus, their response to a specific 

perturbation may produce different outcomes.  Alternatively, even if two organisms were 

“quantitative clones,” the magnitude of a perturbation being introduced by the mutation 

may vary; for example, the amount of RNAi delivered may be different.  Finally, even if 

the perturbation and the wild-type organisms were exactly the same, the execution of the 

molecular network may deviate due to stochastic effects.   

 

Regardless of the source of variability, the key question we focused on is why this 

variability would produce these two particular outcomes and not others.  We 

hypothesized that in parameter space, variable mutant phenotypes may lie in the same 

general direction from the wild-type phenotype.  That is, because the starting point, the 

extent of perturbation and the execution of a perturbation may differ, the target points in 

parameter space on which these perturbations land will vary but lie within a common 

vicinity.   
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To test this hypothesis, we determined what other phenotypes would be predicted 

by the model upon increasing the inductive signal (Figure 4.3A) or flattening the gradient 

(Section 4.9).  Indeed, the 1°2°2°1°2°1° phenotype is predicted to occur in response to 

both perturbations, revealing that the variable mutant phenotypes lie in the same direction 

in parameter space from the wild-type phenotype.  However, an apparent conundrum is 

that the number of predicted phenotypes is far greater than that observed experimentally 

in C. elegans.  In fact, similar calculations show that phenotypes other than 3°3°3°3°3°3° 

are possible when the level of inductive signal is decreased (Figure 4.3A). 
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Figure 4.3. Hierarchical phenotypic diversity caused by quantitative changes in 
morphogen level 
(A) The relative probability (x-axis) of reaching different mutant phenotypes (y-axis) 
upon decreasing (filled bars) or increasing (open bars) the amount of LIN-3 morphogen 
(Section 4.9). Phenotypes denoted with an asterisk are experimentally observed 
phenotypes as detailed in Figure 4.3C.  (B) The predicted fold change in inductive signal 
necessary to convert the wild-type phenotype into underinduced phenotypes (Fold 
Change in Inductive Signal < 1) and overinduced phenotypes (Fold Change in Inductive 
Signal > 1) (Section 4.9). The phenotypes listed on the y-axis are the same as in Figure 
4.3A and are re-sorted according to the required fold change in inductive signal.  The 
colors correspond to the experimentally observed phenotypes highlighted in Figure 4.3C.  
(C) Summary of experimentally observed phenotypes.  Distinct phenotypes have been 
reported upon increasing or decreasing the level of inductive signal (I) in as many as 
eleven members of the Caenorhabditis genus [16].  The phenotypes are grouped here into 
Classes A, B, C and D according to the amount of perturbation in inductive signal that 
rendered each mutant. Colors indicate a large increase (red), moderate increase (orange), 
moderate decrease (blue) and large decrease (violet) in I.  The fate of the first VPC (P3.p) 
was not reported [16] and is indicated as “x”. 
 
 

4.5 Evolutionary Aspects 

Why then is the remarkably rich set of predicted phenotypes vastly under sampled 

in C. elegans?  One intriguing hypothesis is that our model predicts not only phenotypes 

that arise in C. elegans, but also those occurring in several closely related species that use 
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the same molecular network topology to pattern vulval precursor cells.  Several such 

species have been identified, and recent experiments revealed that tuning the level of 

inductive signal produces distinct species-specific mutants even though the starting wild-

type phenotype is the same [16].  Indeed, the experimentally observed phenotypes 

spanning eleven species in the Caenorhabditis genus (Figure 4.3C) match the ones 

predicted by our model (Figure 4.3A).   

 

Furthermore, the quantitative change in inductive signal needed to render each 

phenotype is also predicted (Figure 4.3B) and is fully consistent with experimental results 

(Figure 4.3C).  In experiments, the 3°3°3°3°3° (Class A) and 1°1°1°1°1° (Class D) 

phenotypes are observed only when inductive signal is strongly decreased or increased, 

respectively; meanwhile Class B (3°2°3°2°3°, 3°2°2°2°3° and 3°3°1°3°3°) and Class C 

(1°2°1°2°1°, 2°2°1°2°1°, 2°2°1°2°2° and 2°1°1°1°2°) phenotypes occur upon moderate 

decrease and increase in inductive signal, respectively.  Our model predicts this 

quantitative hierarchy of phenotype classes as inductive signal is increased or decreased 

from the wild-type starting point (Figure 4.3B).  

 

These results suggest that the parameter space associated with the wild-type 

phenotype actually contains several subspaces, each representing different species 

(Figure 4.4A).  The key question is which subspace of parameter values corresponds to 

each species.  The answer to this question would reveal how the quantitative settings of 

this developmental network have evolved during the emergence of the Caenorhabditis 

genus.   
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Figure 4.4. Quantitative differences predicted to have arisen during the evolution of 
the Caenorhabditis genus 
(A) Schematic for identifying each species within the wild-type parameter space.  All the 
species share a common wild-type phenotype (blue); however, each species renders a 
unique phenotype (light grey) upon moderate increases or decreases in inductive signal.  
The position of the species-specific phenotypes relative to the wild-type phenotype in the 
phase diagram was used to infer the parameter regions associated with each wild-type 
species.  Briefly, we identified the regions within the wild-type space that transition to 
species-specific mutant phenotypes upon increasing or decreasing the inductive signal (x-
axis), while holding all other parameters (y-axis) constant (Section 4.10).  This approach 
reveals how parameters Pk differ among the different species.  (B), (C) The likelihood 
that C. elegans differs from C. remanei (B) or C. briggsae (C) by higher (open columns) 
or lower (filled columns) values for parameters indicated on the x-axis. 
 
 

To address this question, we used the experimental observation that each species 

produces different phenotypes when the level of inductive signal is changed (Figure 

4.10)[16]. For example, C. elegans transitions from the wild-type phenotype 3°2°1°2°3° 
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(WT) to 3°3°1°3°3° when inductive signal is reduced moderately; meanwhile, C. remanei 

forms 3°2°3°2°3° upon intermediate reductions in inductive signal.  In both species, a 

strong reduction in inductive signal produces 3°3°3°3°3°. Similarly, C. briggsae forms 

patterns with adjacent 1° fates upon mild increase of inductive morphogen signal, while 

C. elegans requires a strong increase in morphogen activity to render such outcomes. By 

identifying the subset of wild-type parameter values that produce a WT  3°3°1°3°3°  

3°3°3°3°3° transition versus WT  3°2°3°2°3°  3°3°3°3°3°3° transition upon 

reducing inductive signal, we isolated the C. elegans and C. remanei parameter subspaces 

(Section 4.10). Similarly, by distinguishing between WT  1°2°1°2°1° 1°1°1°1°1° 

transitions from WT  2°1°1°1°2°  1°1°1°1°1° transitions, we segregated the C. 

elegans and C. briggsae subspaces. 

 

Comparing the parameters associated with each species reveals the quantitative 

differences among C. elegans, C. briggsae and C. remanei.  We discovered two potential 

groups of parameters (Figure 4.4B and Figure 4.4C).  The values of the first group may 

be higher or lower in C. elegans relative to C. remanei or C. briggsae.  Thus, these 

parameter values may have increased or decreased as the common ancestor evolved to C. 

elegans, C. remanei and C. briggsae.  In contrast, our model predicts a second class of 

parameters whose values must have changed in a biased manner during the 

diversification that led to C. elegans, C. remanei and C. briggsae. For example, C. 

elegans is likely to produce a weaker lateral signal in response to inductive signaling than 

would C. remanei (Figure 4.4B). Similarly, inductive signaling is predicted to be more 

sensitive to negative regulators in C. elegans than in C. briggsae (Figure 4.4C). In this 
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manner, our model analysis uncovers insights into the quantitative diversification that led 

to several closely related species operating the same network in quantitatively distinct 

ways. 

 

4.6 Computational Model of C. elegans Vulval Development 

4.6.1 Signaling Network and Model Equations 

The vulva in C. elegans and related species develops from a set of equivalent 

vulva precursor cells (VPCs) labeled Pn.p (n = 3 to 8) in Figure 4.5 [17]. These cells are 

arranged linearly along the antero-posterior axis of the body. During the third stage of 

larval development, the VPCs receive a spatially graded EGF-like stimulus (LIN-3) from 

the anchor cell (AC) in the gonad. Binding of LIN-3 to its receptor LET-23 activates the 

MAP kinase MPK-1 and induces their differentiation. In addition to the soluble LIN-3 

signal, juxtracrine interactions through Notch-like receptor LIN-12 contribute to VPC 

differentiation.  Together, the inductive LIN-3 signal and the lateral Notch signal 

establish a pattern of VPC differentiation (3°3°2°1°2°3°) in wild-type organisms (Figure 

4.5). Only the VPCs committed to 1° and 2° fates contribute to vulva formation through 

cell divisions and spatial rearrangements of the daughter cells; meanwhile, the daughters 

of the 3o-committed VPC fuse to the hypodermal syncytium.  
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Figure 4.5. Wild-type patterning of C. elegans vulva 
The anchor cell (AC) stimulates the vulva precursor cells Pn.p with LIN-3 in a graded 
manner. These cells laterally interact with one another through LIN-12 pathway. 
Integration of signaling from LIN-3 receptor LET-23 and LIN-12 receptor results in the 
wild-type pattern of differentiation 3°3°2°1°2°3°. 
 
 

We previously described a mathematical model of the LIN-3/LIN-12 signaling 

network [5].  This model was based on the current understanding of the bidirectional 

coupling between LIN-3 and LIN-12 signaling pathways (Figure 4.6).  To make the 

model tractable, we represented multistage signaling cascades and redundant pathways as 

a single reaction pathway.  This coarse-grained representation completely maintains the 

regulatory logic of the LIN-3/LIN-12 network, while simplifying its mathematical 

representation. 

 

Ordinary differential equations were formulated to track the level of two fate-

encoding signals in each cell i: active MAP kinase (MAPK) molecules ( *
impk ) and 

lateral signal activity ( ilat ).  These equations are: 



 102

 ( ) ( ) ( )( ) ( )
( )

( )

( ) ( ) ( )( )

1

lat

2 3

ind

2*
i i* *

i i T i i22
i

2

i+1 i 1

i i+1 i 1*
i i i 2

2 i+1 i 1

i+1 i 1

d mpk lat
Ind mpk Ph mpk mpk ,

d lat

mpk mpk
d lat

lat mpk lat ,
d mpk mpk

m m x
M

n n x x

M

k k k
t K

k k k k
t

K

ν ν

ν ν

+ −

∗ ∗
−

−+ −

∗ ∗
−

−

= − −
+

⎛ ⎞
+⎜ ⎟

⎝ ⎠= − − +
⎛ ⎞

+ +⎜ ⎟
⎝ ⎠  

(4.1)

 

where νi is the number of neighbors for cell i and the other dimensional parameters are 

described in the legend to Figure 4.6.   

 

 
Figure 4.6: Schematic of molecular interactions within and among VPCs. 
A pair of cells, i and i+1, within the VPC array are shown; in each cell i the inductive 
LIN-3 signal Indi activates MPK-1 in each cell with rate constant  +

mk . The deactivation of 
MPK-1* occurs at a rate determined by the expression level of constitutive phosphatases 
(PhT) and the rate constant  −

mk . The lateral signal mediated by receptor LIN-12 is 
constitutively activated in each cell at rate  +

nk  and degrades linearly with rate constant  −
nk  

(not depicted). The inductive signal upregulates the lateral signal in the neighboring cell 
with rate constant  

3xk  and downregulates it in the same cell with rate constant  
2xk . In 

turn, the lateral signal in each cell deactivates MPK-1* with rate constant  
1x

k  
 
 

In addition, each VPC is stimulated by a local amount of inductive signal, Indi. 

The values for Indi were determined by modeling diffusive transport of the soluble factor 

coupled with linear degradation in the extracellular space.  At steady state, the gradient is 

described by: 
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whose solution is: 

[ ]( ) P6.pInd Ind ,
dk x

Dx e
−

⎡ ⎤= ⎣ ⎦  
(4.3) 

when we require that  [ ]( ) P6.pInd 0 Indx ⎡ ⎤= = ⎣ ⎦ . We rewrite this solution by re-scaling the 

spatial axis, x, in terms of the length of P3.p-P6.p VPC field, L, as follows: 

 
[ ]( ) 3 3

P6.p P6.pInd Ind Ind ,
dk x xL

Dx e I
−

⎡ ⎤ ⎡ ⎤= = Δ⎣ ⎦ ⎣ ⎦  
(4.4) 

where  x  is 0, 1, 2 and 3 for P6.p, P5/7.p, P4/8.p and P3.p, respectively.  Thus, the 

parameters IndP6.p and ΔI specify the local level of inductive signal (Indi).  A change in 

the value of ΔI alters the steepness of the exponential gradient in inductive signal.  

 

The dimensional variables  *
impk  and lati were normalized by their characteristic 

values, mpkT and latT, respectively to yield the following non-dimensional state variables: 
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i i

T T
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Subsequently, dimensional parameters in the model equations were re-arranged to 

identify the following dimensionless parameter groups: 
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Using these non-dimensional quantities, the model equations may be re-written as 

follows:  
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(4.5)

 

 

4.6.2 Framework for Assigning Cell Fates 

The timing of VPC patterning has been studied by ablating the anchor cell (AC) at 

different times during the induction process. Results from these experiments have 

established that the AC (and therefore, the LIN-3 signal that it secretes) is needed for 

approximately 6 hours in order for the VPCs to commit to the 3°3°2°1°2°3° fate pattern 

[10, 18].  Our model calculations show that the fate-determining signals (MAP kinase 

(mi) and lateral (li) signals) reach their steady-state values within 5 hours for reference 

parameter values (detailed below).  Therefore, we worked under the reasonable 

assumption that the steady-state values of mi and li prescribe the fate choice of each VPC.  

For all simulations, the steady-state solution of the dimensionless model equations was 

determined using the initial condition that the levels of inductive and lateral signal are 

zero in all cells.  We note that for steady-state calculations the dimensionless group γ is 

eliminated from model Equation 4.5.  
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The output of each simulation is the dimensionless magnitudes of the fate-

determining signals (mi, li).  These are in turn recast into the dimensional form ( *
impk , 

ilat ) from which fate assignments are determined using the framework that we described 

previously [5].  Briefly, ( *
impk , ilat ) in each VPC is a point in the ( *mpk , lat) fate plane. 

Two orthogonal thresholds, ( *
Thmpk , latTh) segregate the fate plane into four quadrants. 

The dimensional inductive and lateral signals in each cell are compared against their 

respective threshold values, which then translate into 1º, 2º, 3º or m fate quadrants (Table 

4.2). 

 
Table 4.2. Fate assignment based on threshold values 
The dimensional solution to model Equation 4.5 is compared for each of the six VPCs 
against the orthogonal thresholds ( *

Thmpk , latTh) resulting in a pattern of six fates. The 
position of the thresholds in the fate plane can vary, hence the solution to the model 
equations at particular parameter values can lead to different fate patterns. 

* *
i Thmpk mpk≤  i Thlat lat≤  Fate 
Yes No 1º 
No Yes 2º 
Yes Yes 3º 
No No m 

 

4.6.3 Reference Values for Dimensional Model Parameters 

Our model entails three types of parameters: those driving protein degradation, 

those driving gene expression, and those driving bimolecular interactions. For the 

purpose of converting molar concentrations to number of molecules per cell, we assume a 

cellular volume of 10−12 L. 

 

 
nk−  is the rate of constitutive degradation of lateral signaling.  Lateral signaling is 

mediated by complexes of LIN-12-cyto with LAG-1 transcription factor.  Silencing of 
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lateral signaling occurs due to proteosomal degradation of LIN-12-cyto [19]. The mean 

half-life of proteins susceptible to proteolysis has been measured to be approximately 43 

minutes [20].  Therefore, the reference value of parameter  nk− is set to 0.016 min−1. 

 

 
2x

k is the rate constant of lateral signaling destruction due to MPK-1*-mediated 

endocytosis of LIN-12 receptors.  The reference value of  
2x

k  is 2 × 10−6 (molec/cell)−1 

min−1, obtained from the rate constant for receptor/complex endocytosis [21] adjusted for 

the fraction of active MPK-1*. 

 

 
nk+  is the constitutive rate of lateral signaling synthesis. This process it thought to 

be limited by generation of LIN-12 receptors or their ligands. We set the reference value 

for  nk+  at 130 molec/cell/min based on the rate of EGF receptor (EGFR) synthesis [21]. 

 

 
3x

k is the rate constant for MPK-1* induced lateral signal generation through 

transcription of LIN-12 ligands.  
3x

k reference value is set at 1,300 molec/cell/min, which 

is one order of magnitude larger than the constitutive rates of lateral signal synthesis  nk+ . 

This latter estimate is based on tenfold change in promoter activity over the basal value 

[22, 23]. 

 

 
mk+ and  mk−  are bimolecular rate constants describing the activation and 

deactivation of MAP kinase MPK-1. Their reference value was estimated from kcat/KM 
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values for activation and deactivation of MAP kinase by upstream kinases and 

phosphatases, respectively [24-26]. Hence, the reference value for these parameters is 2 × 

10−4 (molec/cell)−1 min−1. 

 

The coupling term  
1x

k  combines protein production by lateral signaling induced 

gene expression and bimolecular reaction between the phosphatase gene products and 

active MPK-1*.  Hence, the reference value is 2 min−1, estimated from the bimolecular 

reaction rate constant  mk−  and characteristic levels of induced phosphatase gene 

expression products which we consider to be 104 molecules/cell.  

 

We consider that there is a constant number of constitutive phosphatase molecules 

deactivating MPK-1* during the vulva specification process, and we take this number to 

be PhT = 5 × 103 molecules/cell. Furthermore, the total amount of MPK-1, active and 

inactive, does not change during this event; hence, we set mpkT = 104 molecules/cell [24]. 

The characteristic level of lateral signal latT is estimated to be on the order of high 

cellular protein copy numbers; thus, we take latT = 105 molecules/cell. Occupied cell 

surface receptor levels vary from 100 to 100,000 receptors/cell [21] therefore take the 

following reference value, IndP6.p = 104 molecules/cell.  

 

Concentration of transcription factors in the sea urchin embryo nucleus has been 

estimated to range from 300 to 10,000 molecules/nucleus [27]. Thus, set reference values 

 
IndMK  = 1,000 molecules/cell and  

latMK  = 5,000 molecules/cell. 
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Table 4.3. Reference values of dimensional parameters  
Reference values for the dimensional model parameters were determined as detailed in 
the text. 

Parameters Reference Value Units 
 

mk+ , mk− 2 × 10−4 (molec/cell)−1 min−1 
 

2x
k 2 × 10−6 (molec/cell)−1 min−1 
 

nk+ 130 molec/cell/min 
 

3x
k 1,300 molec/cell/min 
 

nk− 0.016 min−1 
 

1x
k 2.0 min−1 

 
IndMK 1,000 molec/cell

 

 
latMK 5,000 molec/cell

 

IndP6.p 104 molec/cell
 

mpkT 104 molec/cell 

latT  105 molec/cell 

PhT 5 × 103 molec/cell 
 
 

4.6.4 Reference Values for Dimensionless Parameters 

From the reference values for dimensional parameters, the following reference 

values for dimensionless parameters were computed: 

 2, 2, 0.08, 0.8, 1.25, 0.1, 0.05.m lI χ λ φ θ κ κ= = = = = = =  

To determine a representative value for the gradient steepness, we note that a flat 

gradient would be represented by ΔI = 1. In contrast, the steepest gradient occurs when a 

maximum number of receptors [21] (105/cell) are occupied in the P6.p cell and only a 

single receptor is occupied in the neighboring P5/7.p cell. Thus, the steepest gradient is 

represented by ΔI = 10−5.  The center value for ΔI (Table 4.4) was chosen to approximate 

the geometric mean of these limiting scenarios. 
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4.7 Quantifying Phenotypic Capacity 

In order to explore phenotypes that would result from quantitative variations in 

network performance, we varied each dimensionless parameter about its central value, 

chosen to be near its reference value (Table 4.4).  The parameter space was expanded in a 

step-wise fashion by increasing and decreasing each parameter value by ~3-4 fold (Figure 

4.7).  Thus, the parameter space hypervolume expanded sequentially: 38, 58, 78, 98 and 

ultimately 118. Therefore, at its maximum size, the parameter space contained 11 values 

per parameter (equally spaced on a log scale), spanned 5-6 orders of magnitude for each 

parameter, and represented 118 parameter combinations in total. 

 
Table 4.4. Range of values for dimensionless model parameters 
The center parameter values were placed near the reference parameter values. The 
minimum and maximum values for each parameter are determined upon eleven point 
discretization of each parameter axis as depicted in Figure 4.7. 

Dimensionless 
Parameter 

Center 
Value 

Maximum 
Value 

Minimum 
Value 

I 0.93 5.6 × 102 1.5 × 10−3 

ΔI  6 × 10−3 3.6 × 10-5 
(steepest) 

1              
(most shallow) 

χ 0.93 5.6 × 102 1.5 × 10−3 
λ 5 × 10−2 8.0 2.9 × 10−4 
φ 0.48 2.9 × 102 8.0 × 10−4 
θ 1.61 9.7 × 102 2.7 × 10−3 

κm 6 × 10−2 10.0 3.6 × 10−4 
κl 4 × 10−2 6.5 2.32 × 10−4 
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Figure 4.7. Discretization of parameter axes 
Each parameter axis was discretized at eleven points equally spaced on a log scale. The 
center point along each parameter axis is near the reference value for each parameter. The 
analysis of parameter spaces of different sizes (but at the same discretization of parameter 
axis) was performed by considering increasing numbers of points around the center value 
as indicated by centered double arrows. 
 
 

For each combination of 8 model parameter values, we computed the fate pattern.  

Importantly, the fate of each cell i is determined by whether the amounts of MAP kinase 

and lateral signals in that cell (mpki and lati) exceed threshold levels (mpkTh and latTh, 

respectively; see Table 4.2).  Because these threshold values are unknown, and in fact, 

may be a source of variation in an evolutionary context, we computed fate patterns across 

a broad range of threshold values.  Specifically,   *
Thmpk and latTh were varied across the 

ranges  *
Th0 mpk 10,000≤ ≤  molec/cell and  Th0 lat 100,000≤ ≤  molec/cell, respectively.  

The cumulative number of fates predicted across the 8-dimensional parameter space for 

every combination of threshold values is reported in Figure 4.1A. 

 

Since each phenotype occupies a different amount of the parameter space, we 

quantified how phenotypes are distributed in the parameter space (Figure 4.1B).  The 

number of parameter points associated with each phenotype was tallied at every 

combination of threshold values.  This total level of occurrence of each phenotype was 

divided by the total number of parameter points to yield the Fraction of Parameter Space 

occupied by that particular phenotype.  Phenotypes were binned according to the Fraction 
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of Parameter Space occupied in unit log10 bins (i.e., 1 to 0.1, 0.1 to 0.01, etc). The 

number of distinct phenotypes in each bin is plotted on the y-axis in Figure 4.1B.  The 

distribution of parameter space occupancy was then fit to a log-normal probability 

distribution. There are 35 phenotypes two standard deviations above the mean (Table 4.5) 

and 19 phenotypes two standard deviations below the mean (Table 4.6). 

 
Table 4.5. List of phenotypes two standard deviations above mean 

Phenotype Frequency  Phenotype Frequency 
3° 3° 3° 3° 3° 3° 0.5458  2° 3° 1° 1° 1° 3° 0.0011 
3° 3° 3° 1° 3° 3° 0.1293  2° 2° 3° 3° 3° 2° 0.0011 
1° 1° 1° 1° 1° 1° 0.0967  2° 2° 3° 1° 3° 2° 0.0011 
3° 3° 1° 1° 1° 3° 0.0949  3° 2° m m m 2° 0.0011 
3° 1° 1° 1° 1° 1° 0.0538  2° 2° 1° 1° 1° 2° 0.0009 
2° 2° 2° 2° 2° 2° 0.0146  2° 3° 3° 1° 3° 3° 0.0009 
3° 3° 2° 3° 2° 3° 0.0109  3° 2° 2° 2° 2° 3° 0.0008 
3° 2° 2° 2° 2° 2° 0.0065  2° 2° 2° 1° 2° 2° 0.0007 
m m m m m m 0.0061  2° 3° 3° 3° 3° 3° 0.0007 

2° 2° 2° m 2° 2° 0.0053  3° 1° 3° 1° 3° 1° 0.0007 
2° 2° m m m 2° 0.0052  3° 2° 3° 3° 3° 2° 0.0006 
2° m m m m m 0.0032  3° 2° 3° 1° 3° 2° 0.0006 

3° 3° 2° 2° 2° 3° 0.0028  3° 2° 2° 1° 2° 2° 0.0006 
3° 2° 2° m 2° 2° 0.0022  3° 3° 2° m° 2° 3° 0.0006 
3° 3° 2° 1° 2° 3° 0.0020  2° 1° 1° 1° 1° 1° 0.0005 
2° 2° 2° 3° 2° 2° 0.0014  1° m m m m 1° 0.0004 
3° 2° 2° 3° 2° 2° 0.0013  1° 3° 3° 1° 3° 1° 0.0004 

 
 
Table 4.6. List of phenotypes two standard deviations below mean 

Phenotype Frequency  Phenotype Frequency 
2° 2° 1° 3° 1° 3° 1.21·10-13  2° 2° 1° 3° 3° 2° 5.12·10-15 
m 2° 1° 1° m 1° 1.05·10-13  2° 3° 1° 3° 3° 3° 2.36·10-15 
m 2° m 1° 2° 2° 8.56·10-14  3° 2° m 2° m 2° 2.1·10-15 
1° 2° 3° m 2° 2° 7.86·10-14  2° 2° 1° 2° 3° 2° 8.45·10-16 
1° 2° 1° m 2° 2° 6.18·10-14  3° 2° 1° 2° 3° 2°  7.42·10-16 
2° 2° 1° m 2° 1° 4.36·10-14  2° 2° 1° 3° 3° 3° 3.67·10-16 
m 2° 1° m m 2° 3.48·10-14  2° 2° 1° 2° m 2° 3.38·10-16 
1° 2° 3° 2° 2° 2° 3.46·10-14  3° m 1° 1° 2° 1° 2.72·10-16 
m 2° 1° 1° 1° 1° 1.09·10-14  2° 2° 1° 2° 2° 2° 6.21·10-18 
3° 2° 1° 3° 3° 2° 1.03·10-14    
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4.8 Transition Probability between Phenotypes 

Each phenotype, including the wild type, occupies a subspace within the 8-

dimensional parameter space (Figure 4.2A).  This phase diagram of phenotypes was 

analyzed to address the following question: given a choice of 8 single mutations (i.e., 8 

parameter perturbations), which single-parameter change (i.e., single mutation) would be 

most likely to promote a transition from wild-type (W) to a mutant (M) phenotype?  To 

address this question, we rank ordered the parameters according to their relative 

transition probabilities (Figure 4.2B and Figure 4.2C), computed as described below.  

The same transition probability metric is computed to quantify the single-parameter 

differences that distinguish C. elegans from closely related species (Figure 4.4B and 

Figure 4.4C).  For this analysis, “transitions” between parameter spaces associated with 

C. elegans and another species (C. briggsae or C. remanei) were considered. 

 

For the purpose of this discussion, let Pk denote each dimensionless parameter 

where k = 1 to 8.  Let i denote a point in the W parameter space, and j denote a point in 

the M parameter space (Figure 4.2A).  By scanning through all (i, j) pairs, we determined 

the total number that differ only by a single parameter value.  These pairs represent the 

cases where a single-parameter change can cause a W  M phenotype transition.  

Among this total number of single-mutation pairs, we determined the fraction of 

phenotype transitions that are attributable to an increase in a particular parameter Pk.  

This fraction is the transition probability of W  M phenotype transition by increasing 

Pk.  The same calculation  was conducted for quantifying the transition probability due to 

a decrease in Pk. 
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Importantly, the 8-dimensional phenotype phase diagram will be sensitive to the 

threshold values of MAPK ( *
Thmpk ) and lateral (latTh) signals.  Recall that these 

thresholds determine how fates are assigned (Table 4.2).  To determine the robustness of 

the transition probability to variations in the fate-determining thresholds, we computed 

the transition probability for 25 different threshold combinations spanning the following 

ranges: 

 [ ]
[ ]

*
Th

Th

mpk 1,000;2,000;3,000;4,000;5,000  molecules/cell

lat 10,000;20,000;30,000;40,000;50,000  molecules/ ll

.

. ce

∈

∈  

The y-axes of Figure 4.2B, Figure 4.2C, Figure 4.4B, and Figure 4.4C report the 

mean transition probability computed over all 25 threshold combinations, and the error 

bar denotes the standard deviation.  

 

4.9 Phenotype Diversity from Quantitative Changes in the Level of Inductive Signal 

Using the phenotype phase diagram, we determined all the mutant phenotypes 

that may be rendered solely by increasing (or decreasing) the inductive signal.  Since 

some mutant phenotypes are more prevalent than others, we quantified the likelihood that 

an increase (or decrease) in inductive signal would produce each mutant (M).  To 

quantify this Likelihood of Phenotype Occurrence, we first tallied the total number of 

ways that a change in inductive signal (I) would abolish the wild-type (W) phenotype.  

Among this total, we quantified the fraction that shifted W to a specific mutant M upon 

an increase (or decrease) in I.  This fraction represents the likelihood of producing M 

phenotype by an increase (or decrease) in inductive signal (I).  
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Phenotype assignments must be sensitive to fate-determining threshold values of 

MAPK and lateral signals (Table 4.2).  To quantify the robustness of the Likelihood of 

Phenotype Occurrence to threshold variations, we performed the calculation for 25 

different threshold combinations (Section 4.8).  The mean of the Likelihood of Phenotype 

Occurrence is reported in Figure 4.3A and Figure 4.8A, and the error bars denote the 

standard deviation.  Figure 4.3A shows the mutant phenotypes with the greatest 

Likelihood of Phenotype Occurrence upon an increase (empty) or decrease (filled) in 

inductive signal.  The more complete set of phenotypes, including the ones that occur less 

frequently, are shown in Figure 4.8A.  Similar calculations were performed to determine 

the phenotype diversity due to changes in gradient steepness.  Figure 4.9 shows the 

mutant phenotypes with greatest Likelihood of Phenotype Occurrence upon an increase 

(empty) and decrease (filled) in gradient steepness.  Note the occurrence of 1°2°2°1°2°1° 

and 2°1°2°1°2°1° phenotypes in both Figure 4.3A and Figure 4.9. 

 

In addition to the likelihood of generating a particular mutant phenotype, it is also 

important to gauge the amount of change in inductive signal needed to render each 

mutant.  Some mutant phenotypes may require only small changes, while others may 

require substantial perturbations.  Therefore, we quantified the Fold Change in I needed 

to produce a specific mutant phenotype (M).  For every increase (or decrease) in I that 

produced phenotype M, we kept track of the associated magnitude of change in I.  The 

geometric mean of these magnitudes was computed to give the Fold Change in I.  As 

with other calculations, we examined the robustness of this quantity to variations in fate-
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determining thresholds.  The mean Fold Change in I across a broad range of threshold 

settings is reported in Figure 4.3B and Figure 4.8B, and the error bars represent the 

standard deviation. 

 

 
Figure 4.8. Extended set of phenotypes occurring upon I change 
(A) Ranking of phenotypes according to their likelihood to be reached upon changes in 
the morphogen levels.  (B) Fold changes in I required for reaching these diverse 
phenotypes. 
 
 

 
Figure 4.9. Phenotypic diversity caused by quantitative changes in gradient 
steepness 
Mutant phenotypes with greatest Likelihood of Phenotype Occurrence upon an increase 
(empty) and decrease (filled) in gradient steepness ΔI. 
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4.10 Segregation of Wild-type Parameter Space into Species-specific Regions 

Quantitative perturbation of morphogen levels in several species of 

Caenorhabditis has revealed a plethora of phenotype patterns that the vulva precursor 

cells can attain (Figure 4.3C [16]).  The first striking observation is that the predicted 

phenotypes with the greatest Likelihood of Occurrence upon changing I (Figure 4.3A) 

match those reported in experiments (Figure 4.3C).  Moreover, the model predicts the 

magnitude of change needed to produce each phenotype (Figure 4.3B); these quantitative 

predictions again match the quantitative hierarchy of phenotypes observed in experiment 

(Figure 4.3C). 

 

A key experimental observation is that changes in inductive signal produce 

species-specific phenotypes [16].  Figure 4.10 highlights the progression of phenotypes 

observed in C. elegans, C. briggsae and C. remanei along the inductive signal axis.  We 

used these experimental observations to segregate the wild-type space into species-

specific regions using the methodology described on the next page. 
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Figure 4.10. Summary of phenotypes observed experimentally in Caenorhabditis in 
response to changes in the level of inductive signal 
The red, blue and green arrows denote the progression of phenotypes reported by Felix 
[16] in C. elegans, C. briggsae and C. remanei, respectively, as the level of inductive 
signal (I) is increased. Phenotypes associated with C. elegans have also been documented 
in several other reports [9, 28].  Classes A, B, C and D are described in the legend to 
Figure 4.3C.  Here, we have labeled the phenotypes within classes B and C as N, P, M, R 
and S in order to distinguish species-specific phenotypes.  The wild-type phenotype is 
labeled W.  Phenotypes were not reported in C. remanei upon increasing inductive signal 
above the wild-type level [16]; therefore, green arrows are not drawn to the right of the 
wild-type phenotype. 
 

First, we designated each phenotype with a letter code (Figure 4.10), so that a 

string of characters or a word may be used to represent the phenotype progression of each 

species.  Phenotypes that are not described in Figure 4.10 were designated “O”.  For 

example, following the lines for C. elegans in Figure 4.10, one word is APWRD.  Using 

this nomenclature, we identified the words that are consistent with the fate progression 

observed experimentally in C. elegans, C. briggsae and C. remanei (Table 4.7). 

 
Table 4.7. Characteristic words associated with each species 
Words are formed from letters designated for each phenotype (Figure 4.10) in order to 
represent the experimentally observed, species-specific phenotype progressions along the 
inductive signal (I) axis (Figure 4.10).  

Species Words assigned 

C. elegans AW, APW, AWR, APWR, AWRD, APWRD, WRD, WR, PW, 
PWRD, PWR 

C. briggsae AMW, AWSD, AWS, APWSD, APWS, WSD, WS, PWSD, PWS 
C. remanei (A)NW* 
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Next, we determined the word associated with every point in the wild-type 

parameter space.  To construct the word, we varied the value of I from its minimum to 

maximum while holding all other parameter values constant.  As the I-axis was traversed, 

we recorded each phenotype with its character designation, thereby yielding a 11-

character word (11 characters because of the discretization of the I-axis).  The length of 

these words was then condensed by eliminating adjacent repeats of a character.  For 

example, APPPOWOSSDD would become APOWOSD (Figure 4.11).  Since “O” 

phenotypes include cases where VPCs are designated as “m” fate (a fate whose 

experimental equivalent remains to be elucidated), we removed “O” from the predicted 

words.  In the example, APOWOSD would become APWSD.  Thus, at the end of this 

step, every point in the wild-type parameter is associated with a word that characterizes 

how the phenotype would change when I is increased or decreased.  

 

Finally, we compared the predicted words associated with each point in wild-type 

parameter space with the experimentally observed phenotype progressions/words of C. 

elegans, C. briggsae and C. remanei.  In this manner, we identified the regions within the 

wild-type parameter space associated with each species. We find that C. elegans 

represents 41.01±7.90%, C. briggsae represents 3.71±1.95%, and C. remanei represents 

41.31±8.20% of all wild-type space points.  The remaining 13.97±2.25% of wild-type 

space points represent words that are inconsistent with experimental results for these 

three species. 
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Figure 4.11. Illustration of translation of phenotypes along morphogen axis to words 
A sample wild-type space point that leads to 3°3°3°3°3°3°, 3°3°3°1°3°3° and 
2°3°2°1°2°3° phenotypes and 3°2°2°1°2°3°, 3°2°1°1°1°2° and 2°1°1°1°1°1° phenotypes 
upon decreasing and increasing morphogen levels, respectively, is translated to its 
corresponding word according to the procedure detailed in the text. 
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CHAPTER 5: RECOMMENDATIONS 
  

5.1 Recommended Future Directions 
 

The work conducted in this thesis offers quantitative insights into how the 

interplay between LIN-3/EGF inductive signaling and LIN-12 lateral signaling in the 

vulval precursor cells leads to robust fate specification and gives rise to multiple vulva 

phenotypic patterns.  An important future direction for modeling will be to extend beyond 

the time period of fate specification and to include events associated with fate execution 

and further division and terminal fate specification of vulva precursor cells progeny 

(Figure 5.1).  Modeling the terminal differentiation of VPCs will allow predictions of the 

detailed division patterns that occur subsequent to 1°, 2° and 3° fate specification [1, 2]. 

 

P5.p P6.p P7.p

A    B1 B2 C    D            E      F         F      E        D     C    B2 B1 A    

P5.p P6.p P7.p

A    B1 B2 C    D            E      F         F      E        D     C    B2 B1 A     
Figure 5.1. Pattern of terminal differentiation of vulva precursor cells 
Seven types of cells (A, B1, B2, C, D E and F) represent the twenty-two cells that form 
the worm vulva. 
 

Cells in a terminally differentiated vulva belong to seven classes of cells: A, B1, 

B2, C, D, E, and F.  Each cell type has a specific pattern of gene expression [3].  

However, only three signaling pathways regulate formation of this diverse set of classes 

of cells: Ras, Notch [1] and Wnt [4] signaling.  Little experimental mechanistic detail is 

currently available about the Wnt signaling contribution to vulval patterning [5]. 
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The modeling formalism developed in Chapter 2 assigns one fate to one 

biochemical marker (see Table 4.2 for fate plane definition).  However, in the case of the 

terminally differentiated vulval cells, there are seven distinct cell types specified by only 

three signaling pathways. It is clear that signaling integration in the cytoplasm or at the 

level of cis-regulatory networks must occur to increase fate diversity.  Further modeling 

efforts could include such aspects of signal integration.  In fact available experimental 

results may offer hints on constructing a mapping from the biochemical markers of Ras, 

Notch, and Wnt signaling to the seven cell types.  It is known that mutations in the Wnt 

receptors LIN-17 and LIN-18 lead to an inversion of polarity of terminal cell fates 

displayed by P7.p descendants (wild-type pattern DCB2B1A is inverted to AB1B2CD) [6].  

Construction of the mapping would entail a binning of combinations of three signals 

(Ras, Notch and Wnt), potentially made distinguishable using time and space markers, 

into seven bins (the fates) in such a way that no two bins are the same.  The time markers 

would be the action of signaling at one, two, four or later vulval cell stages. The space 

marker would be the restriction of the action of a particular signal on a specific set of   

P5-7.p descendants. 

 

Our definition of the fate plane (Chapters 2 and 4) can be further improved.  

Currently, our model does not account for isolated vulva precursor cells undertaking a 2° 

fate at intermediate levels of inductive signaling [7]. A definition of fate thresholds as 

illustrated in Figure 5.2 would allow for such situations.  
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Figure 5.2. Improved definition of fate plane 
 
 The quantitative-diversification modeling approach developed in Chapter 4 could 

potentially be used to infer differential Caenorhabditis species response to molecular 

perturbations in the vulva patterning network.  A direct application of the species-specific 

wild-type parameter space segregation results of Chapter 4 could be directed toward 

inferring the mutant vulval phenotypes that should be observed experimentally upon 

increases in inductive signaling in C. remanei. 

 

From a computational perspective, a modeling approach based on differential 

equations and state-space formalism [8, 9] could be used in this system to allow for the 

dynamic nature of molecular interactions in an ON/OFF fashion (as in the case of 

spatially segregated species). While ordinary differential equations offer the advantage of 

allowing quantitative perturbation of model parameters, it has the disadvantage of 

requiring a fixed model structure which assumes that molecular interactions of a 

particular type occur throughout the entire period of system dynamics. The state-space 

approach allows for variable model structure depending on the value of the state variables 

in the system, essentially circumventing the need for partial differential equations 

encoding spatial information about molecular species  
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