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Abstract 

 

This dissertation describes the study of two important aspects of integration in 

microfluidics: optics and biochemistry. In optics integration, two types of miniaturized dye 

lasers, namely the solid-state polymer dye lasers and optofluidic dye lasers were 

demonstrated. Both of the dye lasers possess a resonant cavity with circular grating 

geometry, and they are suitable to serve as low-threshold, surface-emitting coherent light 

source in microfluidic networks. The mass production and large scale fabrication of such 

low-cost dye laser arrays can be realized by the well developed nanoimprint and soft 

lithography, making this technology attractive for various biochemical applications. In 

biochemistry integration, a microfluidic system was developed to fully utilize the 

complexity of microfluidic circuits to process single cells and extract gene expression 

information in a parallel manner. The work presented here explored both the optics and 

biochemistry integration in microfluidics, which are the key issues for further development 

of complete “lab-on-a-chip” systems.  
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Chapter 1 

Introduction 

 

1.1 Overview 

1.1.1 Optics in microfluidics 

The field of microfluidics continues to become an important area with novel applications in 

biotechnology [1]. The most important goal for microfluidics is to achieve a complete 

“lab-on-a-chip” system, which is capable of performing biological and chemical 

experiments normally carried out in a standard full-size laboratory. While efforts are made 

to develop the microfluidic system to realize more functionality for various biochemical 

reactions, the integration of optical components into microfluidic systems becomes more 

and more indispensable.  

Optical detection and spectroscopic analysis are important in most micrototal analysis 

systems (μTAS) [2]. Currently a majority of microfluidic systems are based on external 

light sources. However, the coupling of optical signals in and out of the devices, typically 

by optical fibers, remains one of the major challenges in integrated optics. By making 

on-chip light sources, we can eliminate the optics alignment, which greatly reduces the 

complexity of the system. Therefore, the integration of miniaturized active light sources 

such as lasers into microfluidic systems becomes an attractive approach for biological and 

chemical processes.  
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We are very interested in the miniaturization and integration of dye lasers into 

microfluidic systems because of their broadband tunablity, low cost, and easy fabrication. 

Dye lasers have been widely used as tunable, coherent light sources for spectroscopic 

analysis in the visible wavelength region (from 400 nm to 900 nm) during the past 30 years 

[3]. Miniaturized dye lasers, which can be integrated in lab-on-a-chip microsystems, would 

similarly have numerous applications. For applications in biochemical analysis in 

microfluidic systems, a surface emitting laser is more useful than other lasers because of its 

stacked substrate structure. Therefore, we choose a circular grating structure as the laser 

resonator design to produce low-threshold surface emitting lasing. The laser operating 

characteristics can be significantly improved by the two-dimensional nature of the 

resonator structure. 

Two types of miniaturized dye lasers with the circular grating geometry are 

demonstrated in this thesis: solid-state and optofluidic dye lasers. For the solid-state dye 

laser, the laser dye is doped in the polymer forming the laser resonator, and it is fabricated 

using nanoimprint lithography. For the microfluidic dye laser, the laser dye is dissolved in 

an organic solvent and flowed through a microfluidic channel with laser resonator 

embedded, and it is realized by soft lithography. They can produce high-intensity and 

narrow-linewidth lasing with a well-defined output beam.  

The well developed nanoimprint and microfluidics technology provide a convenient 

way of mass production and large-scale fabrication of low-cost dye laser arrays with a wide 

wavelength output range. It is also straightforward to build on-chip dye lasers with 

waveguides to replace the optical fibers necessary for the integrated optics. The 

miniaturized dye lasers can serve as surface emitting coherent light sources, which are very 

important in various biochemical applications, such as laser-induced fluorescence and 

spectroscopy.  

 

 



 

 

3
1.1.2 Biochemistry in microfluidics 

As we study the optical integration in microfluidic systems towards fully functional 

“lab-on-a-chip” system, we are exploring more capabilities of the microfluidic system in 

the field of biochemical analysis. Lab-on-a-chip devices have the potential to revolutionize 

biochemistry by allowing complicated biochemical procedures to be performed on a small 

microfluidic chip. Single-cell processing is one of the major applications of microfluidics 

that can take advantage of its nanoliter fluid handing abilities.  

A microfluidic approach that can extract gene expression information from individual 

single cells is described in this thesis. The integrated process: cell capture/lysis, mRNA 

isolation/purification, and cDNA synthesis/purification for single human embryonic stem 

cells is implemented on a microfluidic device. With the improved design of the 

microfluidic circuit, a parallel processing of dozens of cells with 100% efficiency can be 

achieved.  

The gene expression of human embryonic stem cells (hESC) is a critical aspect for 

understanding the normal and pathological development of human cells and tissues. 

Current bulk gene expression assays rely on RNA extracted from cell and tissue samples 

with various degree of cellular heterogeneity. These “cell population averaging” data are 

difficult to interpret, especially for the purpose of understanding the regulatory relationship 

of genes in the earliest phases of development and differentiation of individual cells. Here, 

we report a microfluidic approach that can extract total mRNA from individual single cells 

and synthesize cDNA on the same device with high mRNA-to-cDNA efficiency. This 

feature makes large-scale single-cell gene expression profiling possible. Using this 

microfluidic device, we measured the absolute numbers of mRNA molecules of three genes 

in a single hESC. Our results indicate that gene expression data measured from the cDNA 

of a cell population is not a good representation of the expression levels in individual single 

cells. Within the G0/G1 phase pluripotent hESC population some individual cells did not 

express all of the 3 interrogated genes in detectable levels. Consequently, the relative 

expression levels, which are broadly used in gene expression studies, are very different 
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between measurements from population cDNA and single-cell cDNA. The results 

underscore the importance of discrete single-cell analysis, and the advantages of a 

microfluidic approach in stem-cell gene expression studies. 

 

1.2 Thesis organization 

The thesis is organized as follows: Chapter 2, Chapter 3 and Chapter 4 focus on the optics 

integration of the microfluidic system, and Chapter 5 highlights the biochemistry aspect of 

the microfluidic system.  

Chapter 2 extensively studies the modeling of circular grating resonators using 

transfer matrix method. An analytical model is developed to locate the resonance in a 

circular grating resonator. Both the parameters from solid-state and optofluidic dye lasers 

have been applied to the analytical model, and the simulation results are compared with 

experimental data. Chapter 3 describes the fabrication of solid-state polymer dye lasers 

using nanoimprint lithography. The detection result of the surface emitting dye laser with a 

circular grating geometry is discussed. Chapter 4 presents the fabrication of optofluidic dye 

lasers using soft lithography. A hybrid material system is introduced to make functional 

microfluidic laser devices. Chapter 5 demonstrates the use of microfluidic system as a 

platform to perform single-cell gene analysis. Chapter 6 concludes the thesis with an 

outlook of the future work for integration of optics with microfluidics for various 

biochemical applications. 
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Chapter 2 

Modeling of circular grating structure by 
transfer matrix method 

 

2.1 Introduction 

2.1.1 Circular grating 

Laser (Light Amplification by Stimulated Emission of Radiation) is composed of a gain 

medium and a resonant optical cavity [4]. The gain medium amplifies the beam by 

stimulated emission, and the resonant cavity provides the feedback necessary for the lasing 

operation. For our solid-state and optofluidic dye lasers in Chapter 3 and Chapter 4, we 

choose the circular grating resonator as laser cavities for their unique two-dimensional 

nature and enhanced lasing performance.  

In particular, we use the second-order circular grating distributed feedback (DFB) 

structure as the resonant cavity. The distributed feedback scheme indicates that the gain 

material is directly implemented in the grating structure. The circular grating DFB structure 

satisfies the second-order Bragg condition,  effBragg n , where Bragg  is the emission 

wavelength, effn  is the effective index of the waveguide mode, and   is the grating 

period, with an inner cavity providing a quarter- or half-wavelength shift similar to the 

classical DFB case.  
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Figure 2.1: Diagram of a circular grating resonator design. The scheme illustrates the 

second-order Bragg diffraction including (1) normal diffraction to the grating surface 

(first-order) and (2) in-plane feedback (second-order). 

 

The second-order grating is used to obtain surface emission, because it not only 

couples counter-propagating radial waves (via second-order Bragg reflection), but also 

induces coupling of radially propagating waves into the direction normal to the grating 

surface (via first-order Bragg reflection). Fig. 2.1 shows a cut-away diagram of a typical 

circular grating resonator. The corrugations in the grating structure provide both distributed 

feedback and output coupling of the guided optical mode via second-order and first-order 

Bragg scattering.  
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2.1.2 Transfer matrix method 

To understand the resonant behavior of the circular grating, a theoretical analysis is 

necessary. There are many methods for modeling circular optical resonators. Most of the 

models are based on couple mode theory [5-9], which is more suitable for analyzing 

circular grating structure with shallow trenches and a modest light confinement. In this 

chapter, we present a transfer matrix method for analyzing circular grating structure with 

deep etched trenches. The deeper trenches of the structure lead to stronger in-plane 

effective index modulation, therefore the resonator can confine light in a smaller volume.  

The transfer matrix method [10] is a straightforward method for analyzing optical 

structures composed of an arbitrary number of dielectric layers. When the dielectric 

properties are taken into account and the boundary conditions are satisfied, a transfer 

matrix can relate the electromagnetic field on either side of an optical region. Therefore, a 

complex structure can be modeled by simple matrix multiplication of basic subcomponents. 

The transfer matrix method is suitable to analysis of various resonant optical cavities, such 

as multi-section Fabry-Perot, DBR, DFB, and VCSEL geometries [11]. For our application, 

we are interested in utilizing transfer matrix method for the analysis of structures with 

cylindrical symmetry. 

In this chapter, we derive a transfer matrix method appropriate for description of the 

optical modes of circular grating microcavities. The electromagnetic modes of cylindrical 

multilayer structures are analyzed in terms of propagating waves, i.e., Hankel functions. In 

this chapter, the theoretical analysis follows the calculations of [12] and [13]. Using this 

transfer matrix method based 2-D cylindrical model, the spectrum information of the cavity 

modes can be obtained to analyze the energy confinement in the circular grating structure. 
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2.2 Transfer matrix analysis 

2.2.1 Maxwell’s equation 

To solve the wave equation, we define E


 and H


 as the vector electric and magnetic 

fields in the circular grating structure, and they are represented by ),,( EEE rz  and 

),,( HHH rz  in cylindrical coordinates. In our 2-D model, we simplify the circular Bragg 

grating to infinite cylinders, and consider the system invariant in the z direction. Therefore, 

the electrical field and magnetic field can be expressed as tierE ),(


 and tierH ),(


.  

The Maxwell’s equation is given below in its differential form 

0

0









H

E

EiH

HiE













                          (2.1) 

where   and   are the magnetic permeability and dielectric permittivity in the grating 

structure, and   is the angular frequency of the electromagnetic field.  

At all layer interfaces, the tangential components of the electric and magnetic field E


 

and H


 must be continuous. The system is invariant in z direction, therefore the solutions 

can be decomposed into two distinct polarizations: transverse electric (TE) and transverse 

magnetic (TM). We need to explore the general solutions of the Maxwell’s equations for 

the cylindrical symmetry, i.e., Hankel functions, and use them to solve the optical modes 

based on the transfer matrix method.  
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We can derive the Helmholtz equation from Maxwell’s equation and solve it for the 

cylindrical coordinate.  

  022 













H

E
k 



                          (2.2) 

where k  is the wavenumber in the grating structure and satisfies  22 k . 

Expressing the Helmholtz equation in cylindrical coordinates, we have 

0
1

)(
1 2

2

2

2

2

2





































H

E
k

zrr
r

rr





.               (2.3) 

Because the system is invariant along the z coordinate, the separation in z components and 

in a transversal part is possible. Let 222
zT kkk  , where Tk  and zk  represent the 

component for the polar and z coordinates, respectively. 

If we apply the following variable separation to Eq. (2.3), 

)()(),(

)()(),(







rRBrH

rRArE

z

z                        (2.4) 

the equation becomes 

0)()(
)()()(1

)(
)(

)( 2
2

2

22

2














 TkrR
r

rR

r

rR

rr

rR 

 .       (2.5) 

The equation can be separated into two parts with only dependence on r  and  , and 

each part can be solved on its own. 

2
2

2
22

2

22 )(

)(

1)(

)(

)(

)(
mkr

r

rR

rR

r

r

rR

rR

r
T 


















       (2.6) 
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The solution of 0)(
)( 2

2

2



 



m  is either  

            


















ime

lmm

lmm

)(

)(),sin()(

),cos()(

2
1 .                (2.7) 

The equation below is known as the Bessel differential equation 

0)(
)(

)(

)(

)(
222

2

22










mkr
r

rR

rR

r

r

rR
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Therefore, the general solution of the time harmonic electromagnetic field is the 

Hankel function, which is a linear combination of Bessel and the Neumann function, 

)()()(

)()()(
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mmm

mmm




                    (2.9) 

)1(
m  and )2(

m  are the first-kind and second-kind Hankel functions, respectively, m is 

the azimuthal order, mJ  is the Bessel function, and mN  is the Neumann function.  

The solutions of variable separated equations can be inserted into Eq. (2.4),  

for the TE mode, 





0

)2()1( )]()([),(
m

im
mmmm

j
z errrH  .            (2.10) 

for the TM mode, 





0

)2()1( )]()([),(
m

im
mmmm

j
z errrE  .            (2.11) 
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2.2.2 Transfer matrix method 

The schematic circular grating laser structure is shown in Fig. 2.2. The circular grating 

structure consists of N  infinite cylindrical concentric layers. Each layer consists of 

alternating dielectric materials with refractive indices In  and IIn . 

 

Figure 2.2: Schematic representation of a circular grating structure, with grating period , 

duty cycle  /wdc , effective indices In  and IIn , cavity radius 121 ,,, Nrrr  . 
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Our goal is to describe the field propagating in a cylindrical waveguide structure 

shown in Fig. 2.2. Due to the 2-D nature of the problem, the field solutions can be 

decomposed into TE and TM polarizations, for which the field in the plane is entirely 

characterized by ),,( EEH rz and ),,( HHE rz , respectively. The present cylindrical 

geometry suggests we expand the fields using first-kind and second-kind Hankel functions, 

)1(
m  and )2(

m , which are linearly independent and represent the inward and outward 

propagating circular (Hankel) waves.  

We are mainly considering the TE polarization, since the perpendicular pumping light 

on the grating surface will cause almost pure excitation of TE waves [23]. As described in 

the previous chapter, the general TE solutions of the Maxwell’s equations in each layer j  

can be expressed as a linear combination of im
jm erkn )( 0

)1(  and im
jm erkn )( 0

)2(  for 

each mode  ,,1,0 m , jn  is the effective refractive index in each layer j . 

The H -field is expressed as 
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Based on Maxwell’s equations, EinH j  2
0 , 
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)1(
m  and )2(

m  are the derivative of )1(
m  and )2(

m , respectively. 

 

Similarly, for TM polarization, the E -field is expressed as 
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Based on Maxwell’s equations, HiE 0 , 
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2.2.3 Transfer matrix method coefficients 

At the interface between the thj  and thj )1(   layers, located at jrr  , the tangential 

fields components ( HEz ,  for TM polarization; EH z ,  for TE polarization) must be 

continuous. The coefficients calculations of Transfer Matrix below are based on TE 

polarizations.  
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The relationship between the coefficients ),( j
m

j
m  , ),( 11  j
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m   can be expressed by 
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where  j
m

j
m ba ,  are the complex conjugates of j

m
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m ba , . 
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with the index ratio 
j

j

n

n 1 ,  
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For TM polarization, the only difference is the index ratio 
1


j

j

n

n
 . 

 



 

 

15
We can obtain an overall transfer matrix relating the inner cavity to the outmost ring 

by multiplying the transfer matrices for each layer. For 1,,2,1  Nj  ,  
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The overall transfer matrix N
mT  takes the form  
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In order to find resonant modes, we can assume 11
mm   , since every incoming 

wave can be considered as an outgoing one after crossing the z axis. The power in each 

layer j  can be defined as 
22 j

m
j
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Therefore the ratio of the electromagnetic power confined in the center ring 1
mP  to 

that in the outmost ring N
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So the Power ratio mR  between the center ring and the outmost ring can be expressed 

as the function of the wavelength by transfer matrix elements N
mA  and N

mB , 
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The power ratio can give us an estimation of the resonance peak of the cavity modes 

in the absence of any source input, which helps us to have a good understanding of the 

energy confinement in our circular grating structures. 

 

We can also estimate the field in the microcavity with the assumption 11
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Therefore, in the TE polarization, we can write the H-field as a function of N
mA  and N

mB  
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Similarly, in the TM polarization, we can express the E-field as 
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2.3 Simulation results 

2.3.1 Index Matching 

In order to introduce the finite vertical component of the waveguide grating into our 

transfer matrix formalism, we use the effective index approach. In this method, two 

characteristic cross sections, the groove and the tooth, form two different slab waveguides, 

providing effective indices In  and IIn  for the corresponding layers in our transfer matrix 

model.  

The effective index approximation for the solid-state circular grating dye laser model 

is illustrated in Fig. 2.3. The laser waveguide consists of the top cladding (air), the 

dye-doped polymer film (PMMA), and the lower cladding (Cytop), with the refractive 

indices of 0.1an , 49.1fn , 34.1cn , respectively. The variance between 1effn  and 

2effn  is caused by the different thickness of polymer film in the groove and the tooth.  

 

Figure 2.3: Effective index approximation of solid-state dye laser. 
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In the solid-state circular grating laser structure, the core thickness (the polymer 

thickness) is 1 um, and the grating trench depth is 400 nm, which gives the thickness of the 

two slab waveguides as 11 t m  and 6002 t nm . We can calculate the effective index 

using the 1-D multilayer waveguide solver [14]. The effective index of the tooth section is 

4791.11 effn , and the effective index of the groove section is 3403.12 effn . 

Similarly, the effective index approximation for the optofluidic circular grating dye 

laser model is illustrated in Fig. 2.4. The laser waveguide consists of the top cladding 

(PDMS), the liquid gain medium (dye solution), and the lower cladding (PFPE), with a 

refractive index of 40.1tn , 54.1dn , 34.1ln , respectively. The thickness of the 

two slab waveguides can be assumed as 6.11 t m  and 12 t m . The resulting 

effective index of the tooth section is 5321.11 effn , and the effective index of the groove 

section is 4007.12 effn . 

 

 

Figure 2.4: Effective index approximation of optofluidic dye laser. 
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2.3.2 Cavity resonance 
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Figure 2.5: The power ratio in circular grating with period of 440 nm for m=0,1,2. 

 

For the solid-state dye laser, the corresponding parameters are introduced to the transfer 

matrix method. We first choose the grating period to be 440, and the duty cycle to be 0.5. 

The effective indices are 48.1In  and 34.1IIn , respectively. The overall diameter of 

grating is 200 µm, which gives the grating layer number 250N . In Fig. 2.5, we plot the 

power ratio between the center ring and the outmost ring for different modes 2,1,0m . 

We observe a pronounced resonant peak at 1m , but no peaks at 0m  or 2m .  
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Figure 2.6: The power ratio in circular grating with period varying from 400 nm to 450 nm. 

 

Fig. 2.6 shows the resonance peak corresponding to circular gratings with period from 

400 nm to 460 nm. From the simulation results we can see that the cavity resonant modes 

fulfill the second-order Bragg condition  effBragg n . The resonant peak for grating with 

a period of 440 nm matches very well with the experimental results in Chapter 3, which 

proves that the transfer matrix method is a powerful tool to reveal the spectrum information 

of the cavity modes.  

 



 

 

21

580 590 600 610 620 630 640
10

-1

10
0

10
1

10
2

Wavelength []

P
ow

er
 R

at
io

 [
ar

b.
 u

ni
ts

]

 

 

600nm depth

400nm depth

 

Figure 2.7: The power ratio in circular grating with two groove depths. 

 

For the optofluidic dye laser, the main different grating parameters are their effective 

refractive indices. Due to the liquid configuration in fluidic dye laser, it is difficult to 

retrieve the exact waveguide thickness; here we assume the channel height is 1.6 µm. With 

a 400 nm groove depth, we obtain 53.1In  and 43.1IIn , if the depth increases to 600 

nm, then we have 53.1In  and 40.1IIn . In Fig. 2.7, we compare the power ratio for 

these two sets of parameters for m=1. We can see that the resonance in 400 nm deep 

gratings is considerably weaker than that in the 600 nm deep gratings. Therefore, the low 

refractive index contrast between the dye solution and the cladding can be compensated for 

by the deeper grating trenches. 
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Figure 2.8: The power ratio in circular grating with period varying from 400 nm to 440 nm. 

 

Fig. 2.8 shows a series of resonance in the circular grating with period varying from 

400 nm to 440 nm for m=1. The effective refractive indices are 53.1In  and 40.1IIn , 

respectively. The duty cycle is 0.5, and the grating layer number is 250N . The resonant 

peak for grating with period of 400 nm is also very close to the experimental results in 

Chapter 4. 
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2.3.3 Electromagnetic field plot 
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Figure 2.9: The 1-D graph of the normalized mj
zH ,  field in circular grating for m=0,1. 

 

 

Figure 2.10: The 3-D graph of the normalized mj
zH ,  field in circular grating for m=0,1. 
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We can have a better understanding of the electromagnetic field in the circular grating by 

plotting the normalized mj
zH ,  field expressed by Eq. (2.32) for m=0 and m=1. Fig. 2.9 

plots the 1-D graph of the mj
zH ,  field, and Fig. 2.10 plots the 3-D graph of the mj

zH ,  field. 

The graphs illustrate the electromagnetic field distribution of some fundamental modes in 

the microcavity.  
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Chapter 3 

Nanoimprinted circular grating dye laser 

 

3.1 Introduction 

Within recent years the development of polymer dye lasers has progressed to higher levels 

of performance and functionality. The most attractive advantages of polymer dye lasers 

include low-cost processing, wide choice of emission wavelengths, and easy fabrication on 

flexible substrates. Several waveguide dye lasers have been studied with emission 

wavelengths ranging from ultraviolet to near infrared [15]. By simply changing the 

fluorophore doped in the polymer, these lasers can be used as the tunable sources for 

various applications, including spectroscopy [16].  

The 1-D distributed feedback (DFB) structure is a widely employed resonator 

geometry, and has been previously demonstrated for polymer lasers [17]. Operating 

characteristics can be significantly improved within 2-D structures. Here, we choose a 

circular grating distributed feedback structure to obtain low threshold operation, a 

well-defined output beam, and vertical emission perpendicular to the device plane. 

Although surface emitting circular grating lasers using semiconducting polymers have been 

previously demonstrated by Bauer et al. [18] and Turnbull et al. [19], their lasers were 

fabricated by depositing the organic gain material onto prepatterned dielectric substrates, 

limiting the depth and the accuracy of the shape of the grating.  
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Figure 3.1: The general nanoimprint process. 

 

For better geometric control, we choose nanoimprint lithography [20] as a direct 

patterning method. A hard mold is used to transfer patterns with high fidelity into target 

polymers, and this technique has become an attractive approach to define nanofabricated 

optical resonator structures. Conjugated polymer lasers fabricated by hot embossing have 

been studied by Lawrence et al. [21], and 1-D DFB lasers based on organic oligomers using 

a room temperature nanoimprint method were reported by Pisignano et al. [22, 23].  

The basic idea of nanoimprint lithography is to press a mold with nanostructures on its 

surface into a thin layer of resist on a substrate, followed by the removal of the mold. The 

general nanoimprint process is illustrated in Fig. 3.1. This step creates a thickness contrast 

and duplicates the nanostructures in the resist film. During the imprint process, the resist is 

heated to a temperature above its glass transition temperature. At this temperature, the 

resist, which is thermoplastic, becomes a viscous liquid and can be deformed into the shape 

of the mold.  
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Figure 3.2: Schematic diagram of a nanoimprinted circular grating dye laser chip. 

 

In this chapter, we report a circular grating distributed feedback laser fabricated on 

dye-doped poly(methylmethacrylate) (PMMA) films, as illustrated in Fig. 3.2. The laser 

was fabricated on a glass substrate using a low-cost and manufacturable nanoimprint 

method. Surface emission lasing with single frequency at 618 nm and a linewidth of 0.18 

nm was measured from the polymer dye laser exhibiting a threshold value of 1.31 μJ/mm2. 

The laser operation characteristics of the circular grating resonator are improved through 

the high accuracy and aspect ratio nanoimprint pattern transfer. Moreover, the mold can be 

re-used repeatedly, providing a convenient way of mass production and large-scale 

fabrication of low-cost polymer dye laser arrays.  
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3.2 Materials 

3.2.1 PMMA 

PMMA (poly(methylmethacrylate)) is a well-known highly transparent thermoplast. In our 

laser device, we chose PMMA to be the dye host matrix as well as the nanoimprint 

material. PMMA was selected as the polymer matrix because of its solubility of the dye 

molecules, as well as its low absorption at the wavelength for activating the dye molecule. 

Using PMMA in nanoimprint lithography is very common due to its good mold release 

properties and small shrinkage under large changes of temperature and pressure [24]. The 

building block for PMMA is shown in Fig. 3.3.  

 

Figure 3.3: The monomer building block of PMMA. 

 

3.2.2 Organic dye 

The organic laser dye we use in the laser device is Rhodamine 640 (Exciton). This laser 

dye has excellent stability for its large quantum efficiency and relatively long life time 

before bleaching. We chose Rhodamine 640 to match its absorption peak with the cavity 

resonant frequency. The organic molecular structure is depicted in Fig. 3.4. To dope the 

organic dye molecules into the polymer, we mixed PMMA with chlorobenzene, methyl 

isobutyl ketone, ethanol, and Rhodamine 640 to make a 30 mM solution.  
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Figure 3.4: Rhodamine 640 molecule structure. 

 

3.2.3 Cytop 

Cytop is a low refractive index perfluoropolymer; its molecular structure is shown in Fig. 

3.5. This cyclic fluoro-polymer, poly(1,1,2,4,4,5,5,6,7,7-decafluoro-3-oxa-1,6-heptadiene) 

is made by Asahi chemicals and used in the electronics industry. It is a hard but amorphous 

material with Tg ~ 1080 °C. We chose Cytop as a cladding material because of its low 

refractive index (n=1.34). The material system of PMMA and Cytop has previously been 

used for commercial polymer optical fibers and simple waveguides [25].  

 

Figure 3.5: Cytop molecule structure. 
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3.3 Laser cavity design 

 

Figure 3.6: General design of a circular grating distributed feedback structure. 

 

The circular grating structure proposed [6] and demonstrated [26] by Erdogan and Hall 

provides a natural 2-D extension of the basic DFB structure. It allows feedback to be 

applied in all in-plane directions, and the second-order grating couples the emitted radiation 

perpendicularly out of the surface of the sample. Fig. 3.6 shows a general design of a 

circular grating distributed feedback structure. A theoretical analysis of circular grating 

lasers is described in detail elsewhere [7-9, 27, 28] predicting that only the radial 

propagating components define the modes in the circularly symmetric grating.  

The design parameters of the circular gratings fabricated are selected based on 

electromagnetic mode calculations and experimental results. A grating period of 440 nm is 

chosen to match the second-order Bragg condition. The center defect is a 440 nm diameter 

gain region. The 400 nm groove depth is defined to ensure maximum confinement, 

whereas the 200 µm overall diameter of the circular grating and the 50% duty cycle are 

used to reach the maximum coupling strength [29].  
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3.4 Fabrication process 

3.4.1 Imprint mold fabrication 

In our experiments, silicon dioxide (SiO2) was used as the mold material. The grating 

pattern was defined by electron beam lithography on a LEICA EBPG 5000+ e-beam writer. 

8% 495K PMMA was spun on a SiO2 substrate for 1 min at 4500 rpm and baked for 15 

min at 170 °C, which formed a 400 nm thick resist layer. The PMMA was exposed by 

electron beam at 100 keV and 800 μC/cm2 with proximity correction. Development of 

patterned PMMA film was carried out in a 1:3 MIBK:IPA (methyl isobutyl ketone and 

isopropanol alcohol) solution for 1 min. The pattern was subsequently transferred from 

PMMA into SiO2 substrate via reactive ion etching (RIE) using fluorine chemistry (CHF3). 

The condition of RIE was 20 sccm, 60 mTorr of CHF3 at 110 W for 15 min. Finally the 

PMMA residue was removed by sonicating the wafer in Chloroform for 2 min. The SiO2 

etching rate in the CHF3 RIE process is 30 to 35 nm per min. Fig. 3.7 is the SEM image of 

the cross section of an etched SiO2 grating with the etched depth of 400 nm. The schematic 

fabrication procedure for the nanoimprint hard mold is illustrated in Fig. 3.8.  

 

Figure 3.7: The SEM image of the cross section of an etched SiO2 grating. 
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Figure 3.8: Schematic fabrication procedure for the circular grating nanoimprint hard mold. 

(a) The original wafer with 500 nm SiO2 on top of silicon substrate. (b) PMMA is spun on 

the sample for subsequent e-beam lithography steps. (c) The PMMA is exposed by e-beam, 

and the circular grating pattern is completely transferred into PMMA after developing the 

exposed resist. (d) The pattern is transferred into the SiO2 via CHF3 RIE etch, and the 

PMMA residue is removed after dry etch. 
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The SEM images of both the top view and the angled view of an etched SiO2 mold 

of circular grating are shown in Fig. 3.9. The grating period is 440 nm, with a center defect 

of 440 nm and an overall diameter of 200 µm. The trench depth is 400 nm. 

 

 

Figure 3.9: SEM images of (a) the top view and (b) the angled view of SiO2 mold. 

(a) 

(b) 
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3.4.2 Laser chip fabrication 

The laser chip consists of three layers, the substrate, the cladding, and the polymer matrix. 

PMMA was selected as the polymer matrix because of the solubility of the dye in PMMA, 

as well as its low optical absorption within the wavelength range for activating the dye 

molecules, and its excellent properties for nanoimprint lithography. 

To construct the dye laser, a glass substrate (SiO2) was spin-coated with Cytop, a 

low-refractive-index material (n=1.34) as the lower cladding to ensure the vertical optical 

confinement. After an oxygen plasma treatment to improve the adhesion of Cytop to the 

PMMA, dye-doped PMMA (n=1.49) was spun on top of the Cytop layer to serve as the 

gain medium.  

The Cytop and PMMA preparation process for the nanoimprint process is summarized 

in Fig. 3.10. We began the fabrication process by depositing a 5 µm thick layer of Cytop 

(CTL-809M, Asahi Glass) on a silicon dioxide substrate. The deposition of the Cytop was 

accomplished via a series of spinning and thermal curing steps to ensure flatness and 

uniformity over the wafer. First, we spun the Cytop on the substrate at 1500 rpm (adhesion 

promoters were not necessary). Next, the Cytop was baked at 65 °C for 60 s, 95 °C for 60 

s, and 180 °C for 20 min. The ramping of the bake temperature was critical in attaining flat 

and uniform surfaces. The spinning and baking steps were then repeated two more times, 

with a final bake at 180 °C for 3 hours. After the chip cooled down, an oxygen plasma 

treatment (Anatech SP100) of the Cytop was necessary for the adhesion of Cytop to 

PMMA. We exposed the oxygen plasma to Cytop at an RF power of 80 W and O2 pressure 

of 200 mTorr for 30 s.  

Next, dye (Rhodamine 640, Exciton)-doped PMMA (30 mM) was spin-coated on top 

of the Cytop layer at 500 rpm for 15 s and then 5000 rpm for 1 min. This produced a 

dye-doped polymer thin film with 600 nm thickness as the gain medium. A prebake at 170 

°C for 2 min before the nanoimprint process ensured solvents were evaporated and 
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improved the adhesion between the Cytop and PMMA. Then the substrate was ready for 

the nanoimprint process to define the laser cavity structure. 

 

 

Figure 3.10: Summary of the Cytop and PMMA substrate preparation process. 

 

 

3.4.3 Nanoimprint process 

Nanoimprint lithography exploits the glass transition of polymers to achieve high-fidelity 

pattern transfer. However, degradation of the light emission efficiency of the organic 

materials during air exposure at high temperatures presents a challenge in nanoimprint 

lithography [30]. To solve this problem, a modified nanoimprint method is used to prevent 

this degradation of the dye-doped PMMA film by sealing the mold and the PMMA 

substrate into a curable polymer during the imprinting process.  
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Figure 3.11: Schematic nanoimprint process of circular grating polymer dye laser. 

 

During the nanoimprint process, a mold release reagent such as 

1H,1H,2H,2H-perfluorodecyl-trichlorosilane (Alfa Aesar) was also deposited on the dye 

from the vapor phase to reduce the resist adhesion to the mold. Then, the mold was pressed 

into the PMMA film by using an automatic mounting press machine (Buehler SimpliMet 

1000) at a temperature of 150 °C (above PMMA’s glass transition temperature) and a 

pressure of 1200 psi. After sample cooling, the mold could be easily separated from the 

patterned polymer laser chip. The nanoimprint process is schematized in Figure. 3.11. 
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Figure 3.12: SEM images of (a) the SiO2 mold and (b) the imprinted PMMA film. 

 

Fig. 3.12 shows the SEM images of the mold and the imprinted PMMA. From these 

pictures, we can observe that the structure on the SiO2 mold is faithfully replicated on the 

PMMA substrate surface with high resolution. Photoluminescence spectra confirm that 

there is no degradation of the luminescence performance of the polymer. 
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3.5 Results and discussion 

 

 

Figure 3.13: Measurement setup for polymer dye laser device. 

 

The polymer laser chip was optically pumped with 6 ns Q-switched Nd:YAG laser pulses 

at 532 nm wavelength, focused through a 20X objective to the top side of the chip. A 10X 

microscope objective was used to collect the emission from the bottom side of the chip and 

deliver it to a fiber coupled CCD-array-based spectrometer with 0.1 nm resolution (Ocean 

Optics HR4000). The measurement setup is shown in Fig. 3.13. 
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Figure 3.14: Nanoimprinted circular grating DFB dye laser spectrum. The measured 

linewidth is 0.18 nm. Inset: Polymer laser chip excited by Nd:YAG 532 nm laser pulse. 

 

A typical single-frequency lasing spectrum is shown in Fig. 3.14. The lasing 

wavelength is 618.52 nm, and the measured linewidth is 0.18 nm. Lasing occurs near the 

Bragg resonance, determined by the equation  effBragg nm 2 , where 2m  is the order 

of diffraction, effn  is the effective refractive index of the propagation mode, and   is the 

grating period. The linewidth near threshold is measured as 0.20 nm, which results in a 

cavity quality factor (Q) of over 3000.  
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Figure 3.15: The output laser power vs. the absorbed pump energy curve. The threshold 

pump fluence is 1.31 μJ/mm2. 

 

Fig. 3.15 shows the variation of the output laser power as a function of absorbed pump 

energy. With the absorbed threshold energy of 41.3 nJ, the threshold pump fluence is 

estimated to be 1.31 μJ/mm2. This pump intensity is well within the reach of commercial 

high power blue laser diodes (LDs), enabling a self-contained LD pumped device. The 

polymer laser is pumped from the surface of the chip and the lasing emission is collected 

from the back side of the chip. The transparency of the substrate, the size and geometry of 

the laser cavity, and the low threshold match well with the output beams of high power 

LED and LD. Therefore the replication-molded ring geometry represents a very promising 

structure for the construction of compact LED or LD pumped portable dye lasers. 
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Figure 3.16: (a) Far-field image of the emission pattern recorded by a CCD camera. (b) 

Circular grating DFB laser far-field radiation patterns through a linear polarizer with 

different orientation angles. The laser emits an azimuthally polarized, well-confined 

circular beam.  

 

Fig. 3.16 (a) represents the far-field image of the emission pattern recorded by a CCD 

camera, and Fig. 3.16 (b) shows the far-field radiation patterns of the laser passing through 

a linear polarizer with different orientation angles. The laser is expected to be azimuthally 

polarized [31], as illustrated in the polarization patterns. The azimuthal polarization also 

results in a zero electrical field (a dark spot) at the center of the laser [26]. In the lasing 

process, many spatial modes can be excited with their mode thresholds very close to each 

other [7]. The fundamental mode is normally the favored one, because higher order modes 

do not overlap well with the gain region.  
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We observe decreases in the laser emission with increasing exposure time. This 

result is consistent with previous studies on polymer DFB structures [32]. The lifetime of 

polymer dye laser can last over 106 shots of pump laser pulse, and if the characterization of 

the device is carried out under vacuum to inhibit photo-oxidation, the lifetime can be 

further extended [33]. Because of the low cost of materials and fabrication, replication 

molded devices are disposable and may not require a long lifetime. In the future, we plan to 

make an optofluidic version [34, 35] of the circular grating dye laser which allows us to 

constantly change the dye to increase the device lifetime and to tune the wavelength [36]. 

 

3.6 Summary 

In summary, we have demonstrated a surface emitting polymer dye laser with a circular 

grating distributed feedback structure realized by nanoimprint lithography. We have 

achieved excitation thresholds as low as 1.31 μJ/mm2 and FWHM linewidths of 0.18 nm. 

The technique described here enables the fabrication of low cost, high quality and mass 

producible laser arrays, which may be deployed as compact and inexpensive coherent light 

sources for lab-on-a-chip applications such as sensing and spectroscopy. Future work will 

be focused on improving the laser cavity Q values with better electromagnetic design, 

optimizing the dye concentration, and fabricating smoother surfaces. The ultimate goal is to 

reduce the lasing threshold to enable the use of LEDs as integrated and inexpensive pump 

sources for on-chip polymer lasers. 
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Chapter 4 

Optofluidic circular grating dye laser 

 

4.1 Introduction 

The field of optofluidics, which is the integration of optics and microfluidics, has attracted 

great interest for its novel implementation in biotechnology [37]. Among the new class of 

optofluidic devices, On-chip liquid dye lasers allow the integration of coherent light 

sources with other microfluidic and optical functionalities, and provide possibilities for 

building more complete “lab-on-a-chip” systems. These optically pumped devices consist 

of microfluidic channels with an embedded optical resonator, and a liquid laser dye is used 

as active gain medium.  

There are many unique properties of the miniaturized liquid dye lasers in microfluidic 

systems. First, compared to solid-state dye lasers, the liquid gain medium in microfluidic 

dye lasers makes the changing of dye easier, which is very helpful for improving the lasing 

performance. For example, the photo-bleaching of the dye is significantly reduced by a 

regenerating flow of dye through the lasing cavity inside the microfluidic channel. Second, 

the microfluidic circuits include valves, and pumps allow the mixing of different solvents 

with dyes. Therefore, the tuning of lasing wavelength can be achieved by modifying the 

refractive index of the dye solution or changing the dye concentration. Third, the flexibility 

and versatility of microfluidic fabrication enables the large-scale integration of laser arrays 

in compact devices with more functionality. All these advantages make it possible to build 
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on-chip tunable coherent light sources useful for many applications in biochemical 

analysis, such as laser-induced fluorescence and spectroscopy.  

Distributed feedback (DFB) laser resonators have been proven to be particularly 

suitable for optofluidic devices because of their low threshold lasing operation features. A 

DFB microfluidic dye laser was first demonstrated by Balslev et al. [38] who used a 

high-order Bragg grating in an 8 μm thick polymer film to obtain feedback. Single-mode 

lasing with a threshold fluence of approximately 20 μJ/mm2 was obtained due to mode 

selective losses in the multimode structure where light was not guided in the fluidic 

segments. Li et al. [34] realized a 15th-order DFB laser using low refractive index 

poly(dimethylsiloxane) (PDMS) and a high refractive index liquid core. A record low 

lasing threshold fluence of 8 μJ/mm2 was obtained. Gersborg-Hansen et al. realized a 

third-order distributed feedback laser fabricated in a poly(methylmethacrylate) (PMMA) 

integrated microfluidic device [35].  

The tuning of lasing wavelength is also an attractive feature of optofluidic dye lasers. 

Galas et al. have demonstrated the integration of PDMS-based microfluidic circuits with 

microfluidic dye lasers to tune the laser wavelength [39]. Tunable output in microfluidic 

dye laser by changing index and concentration was also investigated by Gersborg-Hansen 

et al. [36]. Li et al. reported a mechanically tunable dye laser [40]. Vezenov et al. 

fabricated an edge emitting dye laser in PDMS based on a liquid-liquid (L2) waveguide 

and studied its lasing tuning range [41].  
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Figure 4.1: Schematic diagram of an optofluidic circular grating dye laser chip. 

 

In this chapter, we present a surface emitting optofluidic dye laser with circular 

grating distributed feedback (DFB) structure. We choose the circular grating DFB structure 

as the laser cavity to achieve low-threshold, high-efficiency operation, and vertical 

emission out of the device plane. The schematic diagram of our microfluidic circular 

grating dye laser is shown in Fig. 4.1. The laser chip is a hybrid microfluidic device made 

of poly(dimethylsiloxane) (PDMS) and perfluoropolyether (PFPE). A microfluidic channel 

with the circular grating structures embedded is filled with dye solutions. The gain medium 

is a 2 mM solution of Rhodamine 6G in a benzyl alcohol and methanol mixture with 

refractive index of 1.53. The PDMS forms the microfluidic channel and serves as the upper 

cladding of the cavity. The lower cladding material is PFPE, which also forms the circular 

grating that provides the feedback necessary for the laser action.  
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4.2 Materials 

4.2.1 PDMS 

The most commonly used polymer in soft lithography to make microfluidic devices is 

poly(dimethylsiloxane) (PDMS). PDMS is a silicone elastomer and has many advantages 

for making microfluidic devices. It is optical transparent in a broad range of spectra (240 

nm–1100 nm). It can be used to fabricate nanoscale structures by simple replica molding 

technique because of its high elasticity and intrinsically low adhesion properties [42], and it 

has easy and superior bonding property to many materials [43]. Also PDMS is low cost (~ 

$20/kg), biocompatible, and safe to use [44]. 

The PDMS replication molding process is usually composed of three steps: (1) 

pouring or spin coating of PDMS prepolymer onto the structured master, (2) thermal curing 

to cross-link the polymer, (3) peeling-off of cured PDMS from the master. The structured 

PDMS can be utilized in a further process through bonding with other plates, such as 

silicon, glass, plain PDMS, and other structured PDMS. 

Soft lithography is currently the most useful technique for patterning 500 nm or larger 

features [45]. However, the replication resolution is limited by the most commonly used 

PDMS formulation (Sylgard 184, Dow Corning) due to several reasons. First, its low 

Young’s modulus (~ 1.5 Mpa) caused high aspect ratio features to deform or collapse [46]. 

Second, its surface energy (~ 22–25 mN m-1) is not low enough for fabrication that requires 

high fidelity [47]. Third, its poor solvent resistance leads to a swelling issue when exposed 

to most organic solvents [48].  

Several variants of PDMS such as h-PDMS [49] and hν-PDMS [50], have been 

reported to improve the resolution and fidelity in soft lithography. The h-PDMS with short 

cross-linkers has a relatively high modulus (~ 9 MPa), but its elongation at break is much 

lower than that of 184-PDMS. It can be used effectively by a composite bilayer patterning 

method. The combination of a thin layer of h-PDMS with a thick backing of 184-PDMS 
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successfully improved the replication resolution down to 50 nm [46]. The hν-PDMS is a 

photocurable version of PDMS with a modulus of ~ 4 MPa; the photopatterning in 

nanostructure fabrication prevents the distortion during the thermal curing process. 

hν-PDMS is easier to handle since its elongation at break is much higher than that of 

h-PDMS, and it can also achieve the patterning of high aspect ratio, submicron features. 

There are also other ways to improve the resolution of replication molding for 

184-PDMS. The use of 184-PDMS as high-resolution mold material was reported by 

Bender et al. [51], the resulting PDMS reached a modulus of ~ 3 MPa and a surface 

hardness of 50 Shore A. The resolution can be further increased by a pressure-assisted 

molding [52] or a diluted PDMS material [53]. However, these processes require baking of 

PDMS at 130 °C, which fully cures the PDMS and prevents its further bonding with 

another PDMS layer, and therefore is not advantageous for our optofluidic dye laser device 

fabrication.  

 

4.2.2 PFPE 

The photocurable perfluoropolyether (PFPE) has been reported by DeSimone et al. as an 

alternative material for microfluidic devices [54] and nanoimprint lithography [47]. This 

(PFPE-DMA) has a modulus of ~ 4 MPa and a very low surface energy (~12 mN m-1). 

More importantly, this material is solvent resistant and chemically robust to most organic 

solvents. These characteristics are very attractive for the fabrication of microfluidic devices 

that require higher fidelity pattering and more functionality. The main problem with the 

PFPE is the fact that it is hard to bond two layers of PFPE. By adding different terminal 

chemical groups to the layers that tend to react with each other, some improvement was 

achieved in the bonding. However, the synthesis of this fluoropolymer is very complicated 

and the yield is usually low, the small quantities of PFPE have prevented us from extensive 

testing of this polymer.  
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The use of a commercially available form of PFPE (CN4000, Sartomer Company, 

Inc., MW=1000 g mol-1) is reported by Trong et al. [55]. This PFPE is a fluorinated 

acrylate oligomer which has the backbone of fluorinated polyether with acryloxy 

(CH2=CH−COO−) as ending functional groups instead of methacryloxy groups in the 

reported PFPE-DMA. This material is cross-linked under UV illumination to form an 

elastomer with a high modulus (10.5 MPa), a low surface energy (18.5 mN m-1), and a low 

refractive index (1.341).  

With the higher young’s modulus of the PFPE, we can achieve replication of higher 

resolution and higher aspect ratio features, which give rise to the optical confinement of the 

grating structure. The refractive index of PFPE (n=1.341) is even lower than that of PDMS 

(n=1.406), which makes it more suitable to serve as a cladding material for our laser 

device. 

However, the bonding of PFPE remains a problem. Experiments have been conducted 

to test the bonding by partially curing the material, but the results are not very promising.  

Also the PFPE is too brittle to punch holes through, unlike PDMS. All these disadvantages 

of PFPE prevent it from being used in simple and conventional multilayer soft lithography 

to make microfluidic devices. 

To successfully fabricate microfluidic channels with the sub-200 nm laser cavity 

structures embedded, we not only expect the soft lithography material to have high 

replication resolution, but also require a superior bonding property of the material. 

Therefore, our optofluidic dye laser is composed of two layers, a stiff layer (PFPE) 

supported by a flexible layer (PDMS). This composite bilayer patterning method combines 

the most attractive features of both materials, and it is very useful in defining functional 

microfluidic devices with nano-scale optical structures embedded. 
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4.2.3 Laser dye and solvents 

The organic laser dye we use in the laser device is Rhodamine 6G, which is also known as 

Rhodamine 590 Chloride (Exciton). The molecule structure of Rhodamine 6G is depicted 

in Fig. 4.2. Use of this dye as amplifying medium in lasers is very common due to its large 

quantum efficiency and relatively long lifetime against bleaching.  It is extensively used in 

tunable lasers in the visible wavelength for many applications, such as spectroscopy. There 

are other dyes in the Rhodamine family with different wavelength, such as Rhodamine B 

and Rhodamine 101. We chose Rhodamine 6G to match its absorption peak with the cavity 

resonant frequency. The stimulated singlet state absorption and emission cross sections are 

illustrated in Fig. 4.3.  

 

Figure 4.2: Rhodamine 6G molecule structure.  

 

Figure 4.3: Cross sections of stimulated singlet state absorption and emission for 

Rhodamine 6G in ethanol.  
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Because of the swelling issue of PDMS for most organic solvents [48], the choice of 

the solvents for the dye molecules is very limited. The commonly used dye laser solvents 

which are also compatible with PDMS are listed below: methanol, water, ethanol, ethylene 

glycol, glycerol, dimethyl sulfoxide (DMSO), and benzyl alcohol. Table 4.1 shows the 

refractive indices of these organic solvents. The available refractive index range is from 

1.33 to 1.54. To obtain the highest refractive index contrast, we used a 20:1 mixture of 

benzyl alcohol and methanol which has a refractive index close to 1.53. The addition of 

methanol is mainly to assist the dissolving of the dye molecules. The PDMS-compatible 

solvents can be mixed to produce laser dye solvents with different refractive indices, thus 

providing a convenient way to achieve wavelength tuning in optofluidic devices. 

 

Table 4.1: Refractive indices of PDMS-compatible solvents 

Solvent Refractive Index* 
Methanol 1.33 
DI Water 1.333 
Ethanol 1.36 

Ethylene Glycol 1.43 
Glycerol 1.473 
DMSO 1.478 

Benzyl Alcohol 1.54 
*At room temperature, sodium D line 589.3 nm 
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4.3 Laser cavity design 

4.3.1 Circular grating distributed feedback structure 

 

 

Figure 4.4: General design of an optofluidic circular grating DFB dye laser cavity. 

 

The circular grating distributed feedback (DFB) structure used in our optofluidic devices is 

basically the same as the one in the nanoimprinted solid-state dye lasers. Instead of doping 

the dye molecules in the resonator structure, laser dye is dissolved in the organic solvents. 

Fig. 4.4 shows a general design of an optofluidic circular grating DFB dye laser cavity. The 

upper cladding and the lower cladding is PDMS (n=1.406) and PFPE (n=1.341), 

respectively.   

The circular grating structure provides a natural 2-D extension of the basic DFB 

structure. The corrugations in the grating structure provide both distributed feedback and 

output coupling of the guided optical mode. Theoretical analysis of circular grating lasers 

predicts that only the radial propagating components define the modes in the circularly 
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symmetric grating. Second-order gratings are used to obtain surface emission, because 

the first-order Bragg reflection from a second-order grating can phase match radially 

propagating waves to vertically propagating plane waves, as illustrated in Fig. 4.5.  

 

 

Figure 4.5: Illustration of the Bragg diffraction in the second-order circular grating. 

First-order Bragg reflection induces coupling to vertical propagating waves, and 

second-order Bragg reflection leads to in-plane feedback.  

 

The design parameters of the circular gratings fabricated are selected based on 

electromagnetic mode calculations and experimental results. Grating periods varying from 

400 nm to 440 nm are chosen to match the second-order Bragg condition. We use a deeper 

grating trench to compensate for the low refractive index contrast between the dye solution 

and the cladding. The 600 nm groove depth is defined to ensure maximum confinement, 

whereas the 200 μm overall diameter of the circular grating and the 50% duty cycle are 

used to reach the maximum coupling strength.  
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4.3.2 Flow channel design 

In the optofluidic laser chip, the microfluidic channel filled with dye solution serves as the 

optical waveguide for the laser operation. We choose the waveguide to be 1.6 μm high, and 

the flow channel width is 12 μm. The waveguide’s thickness is larger than that of the 

solid-state circular grating dye laser, but it can still effectively confine the light within the 

gain medium. 

Due to the innate softness of PDMS, channels with aspect ratio higher than 20:1 tend 

to collapse. The overall diameter of the circular grating is 200 μm, so the height of the 

channel on top of the grating should be at least 10 µm. However, such a high channel 

cannot form an effective waveguide, since the excess dye in the microfluidic channel 

creates large background noise during optical pumping.  

There are two methods to solve this problem. The first one is making a control valve 

on top of the grating area by multilayer soft lithography developed by Steven Quake’s 

group and Axel Scherer’s group at Caltech [56]. The principle of the two-layered 

microfluidic circuit is shown in Fig. 4.6. The push-down valve is assumed to control the 

thickness of the flow channel by applying pressure. However, the pressure controlling leads 

to uneven surface on top of the flow channel and may not accurately maintain the desired 

thickness of the waveguide.  

 

  

Figure 4.6: PDMS microvalves (push-down version). Source: www.fluidigm.com 
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Figure 4.7: Microscope graph of microfluidic flow channel. Left: flow channel covering the 

grating area. Right: flow channel filled with dye solution. 

 

The other way to make a 1.6 μm high channel over a 200 μm diameter area is more 

simple and straightforward. Support pillars were fabricated within flow channels to avoid 

bowing of the extremely wide PDMS channels. Fig. 4.7 shows a microscope graph of 

microfluidic flow channel with little posts (5 μm diameter) fabricated inside. The spacing 

between posts is around 30 μm to ensure the proper aspect ratio in between posts. Although 

the channel aspect ratio (1.6:200) highly exceeds the allowed range (1:20), the flow 

channel does not collapse and can be filled with dye solution. Since the height of the flow 

channel is relatively small, the flow rate of the dye solution in the channel is reduced, but it 

is still enough for the circulation of dye during lasing operation. 
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4.4 Fabrication process 

4.4.1 Mold fabrication 

To define our circular grating structure, silicon dioxide (SiO2) was used as the mold 

material. In order to obtain a deep, steep-sided grating profile, we chose a deep reactive ion 

etching (DRIE) process to etch SiO2. DRIE is a highly anisotropic etching process for 

creating deep trenches in substrates with relatively high aspect ratio. The DRIE etching in 

SiO2 requires the use of higher selective material, i.e., the Cr, as the etching mask. 

The original wafer was 1 μm of SiO2 on top of Si substrate. First, 20 nm of Cr was 

evaporated on the wafer using a thermal evaporator, then 2% 950K PMMA was spun on 

top of the Cr layer for 1 min at 3000 rpm and baked for 15 min at 170 °C, which formed a 

100 nm thick resist layer. The grating pattern was defined by electron beam lithography on 

a LEICA EBPG 5000+ e-beam writer at 100 keV and 900 μC/cm2 with proximity 

correction. Development of patterned PMMA film was carried out in a 1:3 MIBK:IPA 

(methyl isobutyl ketone and isopropanol alcohol) solution for 1 min. Next, the wafer was 

immersed in chromium etchant (CR-7, Cyantek) for 10 s to remove the Cr underneath the 

exposed PMMA pattern. The remaining PMMA was removed by methylene chloride.  

The pattern was subsequently transferred from Cr into SiO2 substrate via deep reactive 

ion etching (DRIE) using C4F8. The SiO2 etching rate in the C4F8 DRIE process is 5 nm per 

second. The schematic fabrication procedure for the soft lithography hard mold is 

illustrated in Fig. 4.8.  
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Figure 4.8: Schematic fabrication procedure for the circular grating hard mold. (a) The 

original wafer with 1 µm SiO2 on top of Si substrate. (b) Cr is evaporated on the sample. (c) 

PMMA is spun on top of the Cr for subsequent e-beam lithography steps. (d) The PMMA 

is exposed by e-beam, and the circular grating pattern is completely transferred into 

PMMA after developing the exposed resist. (e) The Cr underneath the exposed pattern is 

removed by wet etch, and the remaining PMMA is also removed. (f) The pattern is 

transferred into the SiO2 via DRIE etch. 
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Figure 4.9: The SEM images of the cross section of etched SiO2 gratings. (a) A cut-away 

view of the gratings. (b) Deeply etched trenches in the circular grating structure. 

 

The SEM image of the cross section of etched SiO2 gratings is shown in Fig. 4.9. (a) is 

a cut-away view of the gratings indicating an excellent anisotropic profile with a depth of 

600 nm; (b) shows the deeply etched trenches with vertical and smooth side walls in the 

(a) 

(b) 
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circular grating structure. The SEM images of both the top view and the angled view of 

an etched SiO2 mold of circular grating are shown in Fig. 4.10.  

 

 

 

Figure 4.10: SEM images of (a) the top view and (b) the angled view of the SiO2 mold. 

(a) 

(b) 
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4.4.2 Laser chip fabrication 

The optofluidic dye laser device is fabricated by conventional multilayer soft lithography 

techniques. The chip consists of two layers, the grating layer and the flow layer. The 

grating layer is made of PFPE supported by a flexible PDMS backbone, and it is bonded to 

the thin layer of PDMS with flow channels inside. 

In our experiments, we used a commercially available form of PFPE. It is a 1 wt% 

mixture of a photoinitiator, Darocurr 4265 (Ciba Specialty Chemicals), and a fluorinated 

acrylate oligomer, CN4000 (Sartomer Company, Inc., MW=1000 g mol-1). Mixing the two 

chemicals for 2 hours followed by filtering the mixture through a 0.22 μm syringe filter 

produced a photocurable liquid resin. Exposing the material the under UV (365 nm) for 1 

hour cured the material.  

The fabrication of the hybrid material laser chip started with aligning a thin PDMS 

layer on top of the grating mold to cover most of the mold except the grating areas. Then 

the PFPE was spincoated (2000 rpm for 1 min) on the mold, followed by UV exposure for 

1 hour to cure the material. After peeling of the thin PDMS layer, a new PDMS prepolymer 

(5:1 RTV A:B) was poured onto the PFPE layer and degassed in a vacuum chamber for 30 

min, then the prepolymer was partially cured at 80 °C for 30 min. This process formed a 

support layer for the composite PFPE/PDMS structure. The PFPE/PDMS layer was peeled 

from the grating mold and bonded to another PDMS layer with the flow channel. Finally, 

the device was baked at 80 °C for 3 hours to ensure bonding between the two layers. The 

bonding between PFPE and PDMS is not very strong, but the adhesion is sufficient for the 

laser chip operation. The fabrication process of the hybrid PFPE/PDMS laser chip is 

illustrated in Fig. 4.11. 
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Figure 4.11: Fabrication process of the hybrid PFPE/PDMS laser chip. 

 

The SEM images of SiO2 mold with circular grating structure and its replica in PFPE 

are shown in Fig. 4.12. The image of PFPE was obtained using an environmental SEM 

(ESEM) operating at a water vapor pressure of 0.98 Torr in the chamber, and an 

accelerating potential of 5 kV, in order to mitigate charging effects from the nonconductive 

polymer samples. From the ESEM image we can see that the structure on the SiO2 mold is 

faithfully replicated on the PFPE with high resolution, and there is no lateral collapse 

between the grating lines even with aspect ratios above 3:1.  

 

 

 



 

 

61
 

 

Figure 4.12: (a) SEM images of SiO2 mold. (b) ESEM images of PFPE replica. 
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4.5 Results and discussion 

 

 

 

Figure 4.13: Measurement setup of optofluidic dye laser chip. 

 

The optofluidic dye laser chip was optically pumped with 6 ns Q-switched Nd:YAG laser 

pulses at 532 nm wavelength, focused through a 20X lens to the top side of the chip. A 10X 

microscope objective was used to collect the emission from the bottom side of the chip and 

deliver it to a fiber coupled CCD-array based spectrometer with 0.3 nm resolution (Ocean 

Optics USB2000). The fluidic control tubing connected to a pressure source was used to 

circulate the dye solution in the flow channel. The measurement setup of optofluidic dye 

laser chip is shown in Fig. 4.13. 
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Figure 4.14: Optofluidic circular grating DFB dye laser spectrum. Inset: The output laser 

power vs. the pump energy curve.  

 

A typical single-frequency laser spectrum, measured from one of the circular grating 

dye lasers, is shown in Fig. 4.14. The lasing wavelength for this device is 581.13 nm, and 

lasing occurs near the Bragg resonance, determined by the equation  effBragg nm 2 , 

where 2m  is the order of diffraction, effn  is the effective refractive index of the 

propagation mode, and   is the grating period. In this laser, with the grating period of 

410 nm, the effn  is 1.42, which is close to the effective index simulation result of the 

waveguide. The laser is azimuthally polarized, and only the fundamental mode exhibits 

here because it overlaps most efficiently with the gain spectrum of Rhodamine. The 
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optofluidic dye laser is pumped from the surface of the chip, and the lasing emission is 

collected from the back side of the chip.  

The inset shows the variation of the output laser power as a function of pump energy, 

the threshold pump fluence is estimated to be 6 μJ/mm2. This relatively low pump 

threshold is within the reach of high power laser diodes operating in pulsed mode. In order 

to realize light-emitting diode pumped optofluidic dye lasers, however, further reduction of 

the dye laser threshold is required. The small size and surface emitting geometry of the 

laser cavity also provide a simple but efficient scheme to construct laser arrays with 

geometrically controlled emission wavelengths, pumped with a single wavelength source. 

The decrease in the laser emission with increasing exposure time was observed during 

laser operation. Since the typical photo-bleaching time of Rh6G is ~ 50 ms under pump 

intensities required for laser threshold (~ 100 kW/cm2), circulating the dye solution with an 

appropriate flow rate prevents the dye molecules from photo-bleaching under pulse 

operation. Therefore, the optofluidic version of the circular grating dye laser allows us to 

constantly change the dye to increase the device lifetime. 

Due to the small size (~ 200 μm) of the laser geometry, it is convenient to construct 

laser arrays with different grating periods in the same chip. The whole chip can be excited 

simultaneously to achieve parallel operation of the laser arrays. The grating periods vary 

from 400 nm to 440 nm with a spacing of 5 nm so that the resulting lasing wavelengths are 

within the gain spectrum of the laser dye Rhodamine 6G. Different laser dyes with 

separated absorption peaks can also be introduced in multiple flow channels to expand the 

emission spectral range.  

The microfluidic compatibility of the laser chip also suggests that we can achieve 

wavelength tuning by mixing two solvents with different refractive indices. The mixing and 

delivery of dye solutions can be implemented in a microfluidic chip using pneumatic valves 

and pumps. 
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4.6 Summary 

In this chapter, we demonstrate a second-order circular grating distributed feedback 

structure embedded in an optofluidic dye laser system. We obtain surface emitting single 

frequency lasing at a relatively low pumping threshold. To construct these circular grating 

dye lasers, we have developed a hybrid PFPE/PDMS soft lithography technique that 

enables the fabrication of low cost, disposable, and high quality dye laser arrays. This 

polymer heterostructure also provides a convenient method for fabricating optofluidic 

device with nano-scale optical structures embedded within traditional PDMS flow 

channels. Parallel lasing operation and automatic wavelength tuning can also be achieved 

using the microfluidic circuit. The construction of compact and inexpensive coherent light 

sources fully integrated with microfluidics provides an efficient approach to realize 

complete “lab-on-a-chip” systems.  
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Chapter 5 

Microfluidic device as a platform for 
single cell biochemical analysis 

 

5.1 Introduction 

5.1.1 Microfluidic device as a platform for biochemical analysis 

Over the decade of its existence, the rapid development of polydimethylsiloxane 

(PDMS)-based microfluidics and its components have found many useful applications in 

biotechnology. The now-established techniques in microfluidics not only include 

microchannels with pneumatic valves, pumps, mixers, and other specialized structures,  

but also enables large-scale-integration of thousands components in a single chip. There are 

many successful applications in biochemistry, such as cell sorting and cytometry, nanoliter 

PCR, protein crystallization, DNA sequencing, nucleic acids extraction and purification, 

immunoassays, cell studies, and chemical synthesis.  

In this chapter, we focus on how to use microfluidic systems to extract gene 

expression information on single cells. Microfluidic devices fabricated by multilayer soft 

lithography possess the ability to manipulate fluids on the nanoliter scale. Therefore, they 

provide an ideal platform to improve single-cell gene expression profiling by manipulation 

of a single cell in nanoliter reactions. Cells can easily be isolated in a high-throughput 

manner, with highly concentrated cDNA being generated using a solid phase synthesis 
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approach. Then the cDNA can be extracted and realtime quantitative PCR can be 

performed outside of the chip to amplify the target genes and measure their molecule 

numbers. 

 

 

5.1.2 Significance of single-cell gene analysis 

The fundamental challenge for stem-cell gene expression study is that stem cells are 

extremely rare in the context of numerous differentiated and mature cells, and there is no 

definitive marker for the isolation of a homogenous pure stem cell population. There is 

especially a lack of markers to distinguish closely related stem cells and progenitor cells. 

Many stem-cell gene expression profiling studies have by default used heterogeneous 

populations of stem cells and progenitor cells. Data obtained from these 

population-averaging expression profiles reflect the sum of all the subpopulations. Without 

knowing the relative percentages of stem cells and progenitor cells in the interrogated 

population, these gene expression profiles, which are the sum of all expression profiles 

from various cell types, are very difficult to interpret and not sufficiently informative. Even 

if the percentages are known, variation in the expression profiles among individual stem 

cells in different phases of the cell cycle would not be detectable by these current methods. 

Single-cell transcriptome analysis can overcome this hurdle and provide precise 

information on stem cell gene regulation as revealed in individual, separately analyzed 

cells.  

Single-cell gene expression profiling from early embryos has suggested the transient 

expression of critical regulatory genes, again underscoring the importance of systematical 

single-cell expression profiling [57, 58]. Currently, multiple-color florescent-activated cell 

sorting (FACS) has limited utility for isolation of pure stem cell populations due to a lack 

of discriminating cell markers. Single-cell gene expression profiling studies with laser 
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capture microdissection (LCM) [59-68], patch-clamp analysis [58, 69, 70], and in situ 

mRNA amplification [69, 71] have been reported, but analysis of a large number of cells 

has proven to be very difficult with these methods. Single-cell whole genome microarray 

gene expression screening [60, 61, 72] and single-cell cDNA library construction [57, 73, 

74] also have been conducted on a limited number of cells. While these studies demonstrate 

the potential value of single-cell gene expression profiling, they also show the limitation of 

these methods when processing a large number of samples. Material loss and low 

biochemical reaction efficiency (mRNA capture and RT reaction) are other major 

challenges for single-cell analysis. A single mammalian cell contains 20–40 pg of total 

RNA [75, 76], but only 0.5–1.0 pg of mRNA (105 to 106 mRNA molecules) [77]. 

Therefore, detecting single-cell mRNA is difficult with current methods.  

The microfluidic device described here significantly increases the mRNA-to-cDNA 

processing efficiency ~ 5-fold to 54% compared to bulk reactions (~ 12%) [78, 79]. With 

this device, we measured the absolute copy number of three genes in individual single 

hESCs and compared these data to those obtained from cDNA of FACS-sorted hESCs in 

G0/G1 phase. Our results indicate that the hESC colony is a heterogeneous cell population 

and many single cells do not express all three of the interrogated genes. This result suggests 

that pluripotent hESC colonies are not homogeneous cell populations, rather they are a 

highly heterogeneous cell population regulated by different gene networks. Besides 

stochastic factors of individual cells, heterogeneity of cells with respect to cell cycle and 

other factors may be a major contributor to observed variations in mammalian single-cell 

gene expression.  
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5.2 Design of microfluidic devices for single-cell analysis 

5.2.1 First generation of microfluidic chip 

Previous work which has been done by Joshua Marcus in the Quake laboratory [81] 

provided a starting point for the design of a microfluidic single-cell gene analysis device. 

The integrated process of cell capture/lysis, mRNA isolation/purification, and cDNA 

synthesis/purification is implemented in a multilayer microfluidic chip.  

 

 

Figure 5.1: 20X single-cell mRNA extraction microfluidic device filled with food dye. 
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The first generation of microfluidic single-cell mRNA extraction microfluidic chip 

is shown in Fig. 5.1. All flow channels are filled with yellow food dye, multiplexer control 

channels are filled with red dye, control channels are in green dye. After loading cell 

suspension from the cell input inlet, single cells are captured in cell lysis module (Inset 1) 

within the flow channels (blue). The pump valves are green, the separation valve is black, 

and the lysis buffer is yellow. A captured single hESC is labeled with a fluorescent dye 

(green) and shown in Inset 2. Cell lysis is performed by opening the portion valve and 

pumping to mix lysis buffer (yellow) with the captured cell (blue). The resulting cell lysate 

is pushed through oligo-dT beads columns for mRNA capture. Oligo-dT beads are stacked 

into columns by closing the sieve valve while loading bead suspension. Inset 3 shows six 

stacked oligo-dT bead columns next to the sieve valve. After washing beads with buffers, 

RT reaction master mix is flowed through the bead columns to synthesize cDNA from the 

captured mRNA at 40 C. After RT reaction, beads with attached cDNA are pushed to 

collection wells (Inset 4) by opening the sieve valve. The beads are recovered by cutting 

the wells off the chips and centrifuging a flipped-well in a microcentrifuge tube. 

 

 

5.2.2 Second generation of microfluidic chip 

The output efficiency of the first generation of microfluidic chip is considerably low 

because the cells are randomly loaded in each reaction chamber. We intend to improve the 

efficiency of the gene analysis on the microfluidic platform to achieve real single-cell 

analysis. In order to achieve this goal, the chip design can be changed to implant 

multiplexer in both the cell loading and mRNA extraction parts of the device. Therefore, 

the second generation of microfluidic chip shown in Fig. 5.2 can carry out single-cell gene 

analysis in a 32X parallel manner. Although we do not greatly increase the number of cells 

to be processed, efficiency of 100% of single-cell processing can be achieved by the 

improved design.  
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Figure 5.2: 32X single-cell gene profiling microfluidic device filled with food dye. 

 

In the 32X single-cell microfluidic processor, all flow channels are filled with yellow 

dye, control channels are filled with green dye, multiplexer control channels are filled with 

red dye, and the cell loading portion is in blue dye. First the cell suspension is flowed 

through the cell loading portion, and the captured single cell can be individually pushed to 

the cell lysis module (Inset 1) by operating the corresponding valve in the multiplexer 

(Inset 2). 32 reactions can be carried out in one microfluidic device. Cell lysis is performed 

by opening the portion valve and pumping to mix lysis buffer (yellow) with the captured 

cell (blue). The resulting cell lysate is pushed through oligo-dT bead columns (Inset 3) for 

mRNA capture. The following RT reaction and cDNA synthesis are the same as the 

process in the previous version of microfluidic chip.  
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5.3 Materials and methods 

5.3.1 Mold fabrication 

All photomasks were designed with AutoCAD software, and printed at a resolution of 

20,000 dots per inch on transparency films (CAD/Art services). We used both the control 

mold and flow mold to define device features. The control mold with 24 um high features 

was fabricated with a single step using SU8-2025 (Microchem, USA). The flow mold was 

fabricated with three lithographic steps. First we defined the 10 um high column 

construction flow channels with SU8-2010 (Microchem, USA). Then the 12 um high 

output, bead, and buffer delivery channels were fabricated using SPR220-7 (Shipley, 

USA). In addition, a hard bake process at 200 °C facilitating channel rounding was 

necessary for valve closure. The last step was to construct the 40 um high cell loading 

channels with AZ-50 (Clariant). In all optical lithography processes, mold exposures were 

under UV light on a MA6 mask aligner. 

 

5.3.2 Device fabrication 

The microfluidic devices were fabricated by multilayer soft lithography with the silicone 

elastomer polymethylsiloxane (PDMS, General Electric). Each device employs push-up 

valve geometry and consists of a three-layer elastomeric structure. 

The molds were first exposed to chlortrimethylsilane (TMCS, Aldrich) vapor for 2 

min to promote elastomer release after the baking steps. For the flow layer of the device, a 

mixture of PDMS (5 parts A: 1 part B) was poured onto a flow mold. After degassing, the 

flow molds were baked for 45 min at 80 °C. For the control layer of the device, a mixture 

of PDMS (20 parts A: 1 part B) was spun on the control mold at 1800 rpm and baked for 

30 min at 80 °C. The flow layer was separated from the flow mold and flow channel access 

holes were then punched. Next, the flow and control layers were aligned and baked for 45 



 

 

73
min at 80 °C. The two-layer structure was peeled from the control mold with control 

channel access holes punched, and was mounted to another thin PDMS layer made by 

spinning 20:1 PDMS mixture on a blank wafer. After baking for 3 hours at 80 °C, the 

three-layer structure was bonded to a clean microscope slide and baked overnight at 80 °C. 

 

5.3.3 Microfluidic station 

Fig. 5.3 shows the setup of the microfluidic system. The microfluidic valves within the 

device are controlled by individual pressure regulators (Fluidigm, USA) and are interfaced 

via 23 gauge stainless steel tubing (New England Small Tube) and tygon tubing (VWR). 

An NI-DAQ card through a Labview interface (National Instruments) was used to control 

the pressure regulators.  

 

Figure 5.3: The setup of the microfluidic device for single hESC mRNA extraction. (a) The 

system includes a microscope, a computer to control air pressure with pressure regulators, 

and a heating plate. (b) A typical microfluidic chip.  
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5.3.4 Synthesis of cDNA from hESCs 

 

 

Figure 5.4: Merged image of immunofluorescent-stained (Oct-3/4) and light microscope 

images from a pluripotent hESC colony. The hESC colony was labeled with mouse α 

human Oct-3/4 IgG and PE-conjugated rabbit anti-mouse IgG antibodies. Only cells in the 

center of the hESC colony expressed Oct-3/4.The intensity of the labeling indicates the 

Oct-3/4 positive cells expressed Oct-3/4 at different levels. The spontaneous differentiated 

cells around the colony do not express Oct-3/4. 

 

Fig. 5.4 shows the human embryonic stem cell (hESC) colonies for microfluidic analysis. 

The centers (100 to 200 cells) of hESC colonies from feeder-free cultures (matrigel) were 

mechanically picked up with a 25 gauge needle. The cells were disassociated into 

single-cell suspension with trypsin. After being labeled with a DNA-selective dye for living 

cells, Vybrant DyeCycle Green (Invitrogen, USA), FACS was performed to isolate cells in 

G0/G1 phase based on DNA content. These isolated cells were pooled to extract total RNA 

with Trizol LS (Invitrogen, USA), or loaded into the microfluidic device for processing. 

Typically, 150,000 FACS-sorted cells were pooled for Trizol RNA extraction, and 2,000 to 

5,000 cells were used for microfluidic experiments. To compare the efficiency of bench-top 
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bulk assays to microfluidic assay, the same biochemical reagents were used for the bulk 

assay and the microfluidic device.  

Single-cell lysis, mRNA capture, and RT were performed in the same microfluidic 

device to convert mRNA into cDNA. Dynabeads with oligo (dT)25 (Invitrogen, USA) were 

used to capture mRNA. Sensiscript RT kit (Qiagen, USA) was used for converting 

captured mRNA to cDNA. The oligo (dT)25 sequence in Dynabeads serves as both mRNA 

capture sequence and primer for cDNA synthesis. After oligo (dT)25 beads with attached 

cDNA were flushed to the collection wells, the wells were cut off from the chip. 

Centrifugation was used to transfer the beads from individual wells into PCR tubes. These 

beads with attached cDNA from individual cells were subjected to realtime qPCR for 

measurement of molecule numbers of interrogated mRNA in IQ5 (Bio-Rad, USA).  

 

5.4 Operation of microfluidic device 

The process flow in the single-cell microfluidic processor is shown in Fig. 5.5. The 

processor captures mRNA from 20 single cells separately and simultaneously, and then 

converts it into individual cDNA. The lysis buffer was loaded into the flow channels until it 

reached the waste outlets, so as to leave no air bubbles in the channel. Oligo (dT)25 beads 

(Invitrogen, USA) were then loaded, and columns were built serially by addressing flow 

lines individually with the multiplexer control channels, while keeping the sieve valve 

actuated. Once columns were built, excess beads still present in the flow channels were 

flushed with the lysis buffer to the constructed columns. A single-cell suspension was then 

loaded. By adjusting cell concentration and flow rate, a single hESC was captured in an 

individual cell-lysis module. Cells were then lysed chemically by mixing cells with the 

lysis buffer in the ~ 10 nl ring. Mixing occurred by executing a peristaltic pump sequence 

[80, 81]
 
with control channels. Cell lysates were then pushed via pneumatic pressure over 

the affinity columns to captured mRNA with oligo (dT)25 beads. After washing the 

columns with a first strand synthesis buffer, the reverse transcription (RT) master mix was 
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introduced. Once the RT master mix filled the flow channels, first strand synthesis was 

then carried out by heating the processor to 40 °C on a thermal microscope stage. The oligo 

(dT)25 beads served as both primers (oligo (dT)25
 
sequences and a solid phase support. The 

RT reaction mixture (99 ul) was flowed over the columns for 45 min until the RT reaction 

was completed at a flow rate of ~ 20 μm/s. Upon completion of the RT reaction, the waste 

valves were closed, and collection valves were opened. The beads were sent to collection 

wells by opening the sieve valves and flowing columns of the processor in a serial manner 

with a PCR buffer. The fluid multiplexer was used to push beads in each of the 20 reaction 

channels individually. Beads were collected by cutting the collection wells off the device 

and centrifuging the beads into PCR tubes.  

 

 

Figure 5.5: The process flow in the single-cell microfluidic processor. 

 



 

 

77

5.5 Results and discussion 

5.5.1 Device efficiency 

Single-cell measurement of mRNA is difficult. One difficulty results from the loss of 

material during the steps of single-cell capture, lysis, mRNA isolation, and cDNA 

synthesis. Unlike the DNA molecule, mRNA is very susceptible to degradation by widely 

existing RNase. Therefore, it is essential to carry out the cDNA first strand synthesis on the 

same device immediately after mRNA capture. Another difficulty in measurement is the 

low mRNA-to-cDNA efficiency, mRNA capture (~ 40–50%) and RT reaction (~ 20%) [78, 

79] in bulk assays. 

In order to measure the absolute number of molecules of mRNA with standard curves, 

the mRNA-to-cDNA efficiency of the processor must be obtained. An artificial Poly-A 

RNA standard (Affymetrix, USA) was used to compare the input mRNA copy number to 

the cDNA copy number which was measured by qPCR at the end of the processes. This 

RNA standard contains known amounts of artificial RNAs with poly-A tails from 4 B. 

subtilis genes, lys, phe, thr, and dap. The lys gene was used as RNA standard for 

calculation of mRNA-to-cDNA efficiency. A standard curve was generated with a known 

amount of lys DNA at 10-fold dilutions. The mRNA capture and RT reaction were carried 

out at both conventional micro-liter level and at nanoliter scale with the microfluidic 

processor.  

In the conventional reaction, a 50 μl RT reaction was carried out after capturing 4 μl 

of artificial mRNA (7.3 nM) with 30 μl oligo (dT)25 beads, as instructed by the 

manufacturer. One microliter of the RT product (corresponding to 2.16×108 molecules of 

lys artificial mRNA) was used for realtime quantitative PCR (qPCR) detection. Based on 

the standard curve, the final detected molecule number was 2.5+ 0.5×107 molecules (Table 

5.1). The processing efficiency of a conventional microliter scale reaction is 12%. To 

compare the efficiency of conventional and microfluidic approaches, the same artificial 

RNA sample was introduced into the cell capturing chamber, processed into cDNA and 
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detected with realtime qPCR. Each of the 20 cell-capture chambers in the microfluidic 

device has a volume of 3.4 nl, resulting in 1.84×106 molecules of input lys artificial mRNA.  

The qPCR detected absolute lys cDNA molecule number is 1.0+ 0.3×106 with the 

standard curve. The total processing efficiency was 54% which is approximately 5 times 

the efficiency of the conventional approach. A series of 10-fold dilutions of the artificial 

RNA were used and verified that the processing efficiencies of both approaches do not vary 

significantly in different concentrations of the input artificial RNA. The standard deviations 

of both bench-top and microfluidic reactions were also calculated and are similar (Table 

5.1). The small standard deviation of the 20 reactions in the same device indicates 

consistent processing efficiency among the 20 reaction chambers.  

 

 

Table 5.1: Microfluidic device increasing mRNA capture and reverse transcription (RT) 
efficiency. Known amounts of artificial lys mRNAs in a mixture with 3 other polyA 
artificial RNAs were processed with traditional microliter scale reaction or with 
microfluidic device in nanoliter scale. A standard curve was generated with a known 
amount of lys DNA for the detection of cDNA molecule numbers (y = -3.5547X + 39.538  
R2 = 0.99). Molecule numbers of lys cDNA were calculated from the standard curve with 
real-time PCR threshold cycles. Processing efficiencies were calculated by dividing the 
measured cDNA molecule numbers to the input mRNA molecule numbers.  

 

 
Input lys RNA 

(molecule umber) 
Threshold 

Cycle 
Detected cDNA 

(molecule number) 
Efficiency (%) 

Microliter Reaction 
(Bench-top) 

2.16×108 
13.22+0.37 

(n = 20) 
2.6 + 0.6×107 12 % 

Nanoliter Reaction 
(Microfluidic) 

1.84×106 
18.15+0.46 

(n = 20) 
1.0 + 0.3×106 54 % 
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Figure 5.6: Measuring absolute molecule numbers of three genes in single hESC with 

multiplex quantitative PCR. (a) Standard curves are generated with known amounts of 

plasmid DNA containing the full sequence of the genes. The curves cover from 2 to 2x106 

copies of the respective genes. With our primer design, all the curves overlap each other, 

and indicate similar PCR efficiency. The insert is the representative amplification cures of 

the B2M genes from 2 to 2x106 copies in 10-fold dilution. (b) The multiplex quantitative 

PCR amplification curves obtained from cDNA of hESC colonies are plotted with curves 

obtained from cDNA of a representative hESC. Because the standard curves of the three 

genes are very similar, these amplification curves show that the expression ratio of B2M 

and Nodal is similar in population cDNA and this single-cell cDNA. However, the 

expression of Fzd4 and Nodal is very similar in this particular single hESC, but very 

different in the hESC population. Unlike this single hESC, some single hESC do not 

express all three genes. This result suggests the heterogeneity of hESC and underscores the 

importance of single-cell analysis. 

 

(a) (b) 
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5.5.2 Gene expression of single hESC cells 

Conventional gene expression studies were carried out with RNA extracted from cell 

populations. To investigate whether the gene expression of a cell population is a reasonable 

sum of the expressions of individual cells, the expression levels of three genes were 

measured by two approaches: with pooled cDNA from the hESC population and with 

cDNA from individual hESCs.  

Based on the mRNA-to-cDNA efficiency calculated above, the molecule numbers of 

three mRNA in single hESCs were measured. Standard curves were constructed with 

known amounts of full-length B2M, Fzd 4, and Nodal cDNA. The three standard curves 

overlap each other, indicating similar qPCR efficiency for each set of the primers (Fig. 5.6). 

These standard curves have a range of 2 to 2×106 molecules that allows the direct 

comparison of the expression levels of these three genes from their amplification curves 

(Figure 3B). The minimal detectable level is 4 molecules (2/54%) for our microfluidic 

processor, and 17 molecules (2/12%) for bulk assays with these standard curves.  

The pluripotent hESC colonies are often considered and treated as a homogenous 

population. However, our data indicate that this is not the case. As Figure 3B shows, the 

absolute expression levels (mRNA molecule number) measured from cDNA equivalents to 

1,000 cells are not even close to 1,000 fold of the levels measured from a typical 

single-cell. With cDNA equivalent to 1,000 G1/G0 phase hESC, the absolute molecule 

numbers of B2M, Nodal, and Fzd4 are 6,034+660, 402+55, and 69+19, respectively. 

However, the distributions of molecule numbers of these 3 genes are diverse in single 

hESCs (Fig. 5.7). Among the 54 interrogated single hESCs, 14.8%, 37% and 37% of hESC 

did not express detectable levels (less than 4 copies) of B2M, Fzd4 and Nodal respectively. 

The expression of B2M ranged from 4 to 76 copies, with the majority between 30 and 50 

copies. The expression of Fzd4 and Nodal ranged from 6 to 548 copies, and 22 to 504 

copies respectively. All cells expressed at least one of the 3 genes. 
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A Single-hESC Expresses Fzd4 and Nodal
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Figure 5.7 Expression of B2M, Nodal, and Fzd4 in a single hESC. (a) A single-hESC 

expresses both Nodal and Fzd4, but does not express B2M in a detectable level. (b) A 

single hESC expresses only Nodal. The mRNAs of B2M and Fzd4 are undetectable. (c), 

(d), and (e) show the distribution of the B2M, Fzd4 and Nodal in a single hESC. Among 

the 54 interrogated single hESC, 14.8%, 37%, and 37% of cells (indicated by black strait 

pattern) do not express detectable levels (less than 4 copies) of B2M, Fzd4, and Nodal, 

respectively. The distribution pattern of expressions is narrower in B2M compared to the 

other 2 genes. The discontinued distribution of Nodal and Fzd4 suggest a high 

heterogeneity of the 54 cells. 

(b) 

(c) (d) (e) 

(a) 
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Many gene expression studies, such as microarray or quantitative PCR, are based on 

the relative expression level of genes with normalization to a housekeeping gene which is 

assumed to have similar expression in all samples. Our data show that even the relative 

expression level of the three genes are very different between measurements derived from 

cDNA of a cell population and separately from individual cells. In the measurement from 

population cDNA, the expression level of Fzd4 is approximately 8-fold lower than the 

expression of Nodal after being normalized to B2M. However, in a representative single 

hESC, the expression levels of Nodal and Fzd4 are very similar after normalization with 

B2M (Fig. 5.7).  

 

5.6 Conclusions 

Microfluidic devices that are designed to manipulate nanoliter amounts of reagents provide 

a desirable platform for single-cell gene expression processing. As our data indicate, 

capturing mRNA and converting it to cDNA in a microfluidic device not only consumes 

significantly less reagents, but most importantly increases the efficiency of biochemical 

reactions. The microfluidic device described has a mRNA-to-cDNA efficiency 5 times 

better than the corresponding bench-top reactions. Previous studies showed a 40–55% 

mRNA capture efficiency of oligo (dT)25 [78], and ~ 20% RT efficiency [79] in 

conventional bench-top reactions. The 12% overall efficiency of our bulk assay is 

consistent with these previous studies (55% × 20%). With our microfluidic device, the 

mRNA-to-cDNA processing efficiency is 54% (5-fold better than bulk assay). This finding 

indicates a very efficient mRNA-to-cDNA processing that may be due to the nanoliter scale 

reaction. This mRNA-to-cDNA efficiency is similar to the previously reported efficiency 

from other microfluidic devices [82].  
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Due to the nanoliter scale nature of the microfluidic device, the input number of 

mRNA in conventional reaction and microfluidic reaction is ~ 100-fold different when the 

same RNA standard is used. To rule out the possibility of RNA concentration in processing 

efficiency, serial 10-fold dilutions of the RNA standard were used for the same 

experiments. The mRNA-to-cDNA efficiencies are not significantly different for either 

bench-top or microfluidic reactions. Therefore, the high mRNA-to-cDNA efficiency is a 

desirable characteristic of microfluidic devices. With this 54% processing efficiency, the 

microfluidic device described potentially can detect 2 mRNA copies of interrogated genes.  

In our device, there are 20 individual single-cell processing reactors for 

simultaneously processing. The standard deviation of threshold cycles of the 20 reactors is 

small (0.37) and similar to those from conventional reactions (~ 0.5). These data indicate 

that the processing efficiencies among the 20 reactors are very similar. Similar results are 

also obtained in multiple lots of devices. This aspect is critical for comparing results from 

individual cells intra- and inter-device.  

With this device, we profiled the expression of three genes in hESC. Our data 

indicated that even for FACS-sorted G1/G0 phase hESC, the expression data from 

population cDNA can not be used to estimate the gene expression level in individual cells. 

Approximately 10–15% of individual cells do not express one of the three interrogated 

genes. Therefore, the population averaging effect distorts the expression levels of the three 

genes in bulk assays conducted with population cDNA from hESC colonies. Because the 

population averaging effects are not the same for all three genes, the relative expression 

levels are also distorted. The qPCR with cDNA from 1,000 hESC indicates that Nodal is 

expressed approximately 8 times higher than Fzd4 after normalization to B2M. However, 

in individual cells the expressions of these genes are very diverse. The difference observed 

in pooled cDNA may be due to the different number of cells expressing the respective 

genes.  

It has been reported that gene expression is highly variable at the single-cell levels 

[83, 84]. A speculation is that the high variability is due to experimental variation. In the 
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present study, we showed that experimental variation may not be the main factor. The 

stochastic gene expression behavior of single cells (biological noise) has been reported in 

various studies of prokaryote cells [85-89]. Biochemical processes such as transcription, 

translation, RNA and protein degradation have been thought of as the primary contributors. 

However, heterogeneity of the mammalian cell populations may be a factor related to the 

observed expression variations in single-cell analysis of mammalian cells. When gene 

expression studies are conducted at the single-cell level, we must recognize that no two 

cells are identical. In a particular mammalian cell population, two cells are always different 

in cell cycle, differentiation stages, and environmental stimulation. The variation of gene 

expression at the single-cell levels is expected, and the reason may be due to stochastic 

expression fluctuation, or to heterogeneity of the cell populations. In mammalian cells 

which are regulated by more complex gene networks than yeast and bacteria, cell 

heterogeneity may be the major contributor of variation of gene expression at single-cell 

levels.  
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Chapter 6 

Summary 

 

Microfluidics is increasingly being used in many areas of biotechnology to achieve reduced 

reagent volumes, improved performance, parallelism and integration. In this thesis, we 

presented the construction of both the solid-state and optofluidic dye lasers as active light 

sources in microfluidic system, and studied the biochemical compatibility of the 

microfluidic system. The work we demonstrated here represents two important aspects of 

integration in microfluidics: optics and biochemistry. Through the nanofabrication 

technology, the useful implementation of biotechnology in microfluidic devices will 

continue to increase.  

The miniaturized dye lasers with circular grating resonant cavities have many 

attractive lasing performance features, such as low threshold operation, surface emission, 

and well-defined output beam. Typical laser thresholds achieved are well within the reach 

of commercial high-power laser diodes, thus enabling the construction of portable laser 

devices using compact laser diodes as the pump source.  

There are many microsystem analyses in the field of biochemistry that require the use 

of coherent light sources. For example, fluorescence actuated cell sorters (FACS), 

fluorescence-based DNA sequencers, and laser-induced fluorescence spectrometers are 

some of the applications that can utilize the dye laser system. The scheme for making 

highly parallel multiplexed biosensors and scanning free spectrometer on chip using 

tunable laser arrays is very straightforward and promising. With the development of an 
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integrated microfluidic spectroscopy system, the creation of a true lab-on-a-chip is very 

close to reality.  

Microfluidic devices that are designed to manipulate nanoliter amounts of reagents 

provide a desirable platform for single-cell gene expression processing. The single cell 

analysis presented here provides an example of using microfluidic circuits to perform 

various biochemical experiments. The system can be further developed to accommodate 

many other related biochemical process, such as PCR and microarray, which can utilize the 

miniaturized light sources to construct compact detection systems. The combination of 

miniaturized light source, imager, appropriate filters, and microfluidics allows the creation 

of a powerful experimental tool.  

In summary, the work described in this thesis presents an important step towards 

completely integrated microfluidics with optical functionality and biochemical 

compatibility. The full potential of microfluidics integration has yet to be explored, with 

novel materials and improved fabrication techniques, we believe that new implementations 

in microfluidics with useful biochemical applications can be achieved.  
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Appendix A 

Fabrication Recipes for Microfluidic 
Single Cell Processor 

 

A.1 Photolithography processes 

A.1.1 SU8-2010 10 μm / SPR220-7 15 μm / AZ-50 40 μm flow mold 

1. Spin SU8-2010 at 3000 rpm for 1 min with an acceleration of 15.  

2. Soft bake mold for 1 min / 3 min at 65 °C / 95 °C.  

3. Expose mold for 20 s on MA6 mask aligner.  

4. Post bake mold after exposure for 1 min / 3 min at 65 °C / 95 °C.  

5. Develop in SU8 developer.  

6. Once developed, hard bake mold at 150 °C for 2 hr.  

7. Expose mold to HMDS vapor for 2 min.  

8. Spin SPR220-7 at 1500 rpm for 1 min with an acceleration of 15.  

9. Soft bake mold for 90 s at 105 °C.  

10. Expose mold under a positive transparency mask for 100 s on MA6 mask aligner.  

11. Develop mold in MF-319 developer and rinse under a stream of H2O.  

12. Hard bake 2 hr at 200 °C.  

13. Expose mold to HMDS vapor for 90 s.  

14. Spin AZ-50 at 1600 rpm for 1 min with an acceleration of 15.  

15. Soft bake mold for 2 min / 5 min at 65 °C / 115 °C.  

16. Expose mold under a positive transparency mask for 150 s on MA6 mask aligner.  
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17. Develop mold in 3:1 H2O:2401 developer. Rinse mold under a stream of H2O.  

18. Once developed, hard bake 3 hr at 200 °C.  

 

 

A.1.2 SU8-2025 23 μm control mold 

1. Spin SU8-2025 at 3000 rpm for 1 min with an acceleration of 15.  

2. Soft bake mold for 2 min / 5 min at 65 °C / 95 °C.  

3. Expose mold under a negative transparency mask for 30 s on MA6 mask aligner.  

4. Post bake mold after exposure for 2 min / 5 min at 65 °C / 95 °C.  

5. Develop in SU8 developer.  

6. Once developed, bake mold at 95 °C for 1 min to evaporate excess solvent.  

 

 

A.2 3-layer PDMS device fabrication (push-up valves) 

1. Prepare 5:1 GE RTV A : RTV B (mix 1 min, de-foam 5 min).  

2. Expose flow mold to TMCS vapor for 2 min.  

3. Pour 30 g 5:1 GE RTV A : RTV B on respective flow mold.  

4. Degas flow mold under vacuum.  

5. Bake flow mold for 45 min at 80 °C.  

6. While flow mold is de-gassing, prepare 20:1 GE RTV A : RTV B (mix 1 min., de- 
foam 5 min.).  

7. Expose control mold to TMCS vapor for 2 min.  

8. Spin 20:1 RTV mix at 1800 rpm for 60 s with a 15 s ramp.  

9. Let RTV settle on control mold for ~ 30 min before baking for 30 min at 80 °C. 

10. Bake control mold for 30 min at 80 °C.  

11. Cut devices out of flow mold and punch holes with 650 μm diameter punch tool 
(Technical Innovations #CR0350255N20R4).  
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12. Clean flow device with transparent tape and align to control mold.  

13. Bake 2-layer device for 45 min at 80 °C.  

14. While 2-layer device is baking, prepare 20:1 GE RTV A : RTV B (mix 1 min, de- 
foam 5 min) to spin on blank silicon wafer.  

15. Expose blank wafer to TMCS vapor for 2 min.  

16. Spin 20:1 RTV mix on a blank wafer at 1600 rpm for 60 s with a 15 s ramp.  

17. Bake blank wafer for 30 min at 80 °C.  

18. Cut out 2-layer device from control mold, punch holes with 650 μm diameter 
punch tool (Technical Innovations #CR0350255N20R4). Also punch the 2 mm big holes 
using the big punch tool (Technical Innovations # CR0830655N14R4).  

19. Clean with tape and mount on blank wafer. Check for debris and collapsed valves. 

20. Bake 3-layer RTV device for 2 hr at 80 °C.  

21. Cut 3-layer device out, clean with tape and mount on a clean glass slide. Check for 
collapse.  

22. Bake finished device overnight at 80 °C.  
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Appendix B 

Single Cell Preparation Recipes 

 

B.1 Culture of human embryonic stem cell 

 

The hESC line (H9) was obtained from the WiCell Research Institute (Madison, WI) 

and maintained as instructed [90]. Undifferentiated hESCs were cultured on an irradiated 

(5,500 rads) layer of mouse embryonic fibroblast (MEF) feeder cells in 6-well plates or in 

matrigel-coated plates with MEF-conditioned medium. To avoid contamination of mouse 

cells from the MEF, hESC colonies were dissected and transferred to matrigel-coated plates 

before using for microfluidic processing.  

MEF were prepared from the embryos of 13–14 day pregnant CF-1 mice (Charles 

River Labs) and stocks were cryopreserved until required for culture of hESCs. hESCs 

were consistently observed as large clumps that appeared on the matrigel-coated surface, 

consistent with the published observations of others. Periodic karyotyping confirmed their 

human diploid chromosomal character. After injection into severe combined 

immunodeficient (SCID) mice, these cells produced teratomas which include tissues of 

ectodermal, mesodermal, and endodermal origin. Immunostaining of the hESC colonies for 

alkaline phosphatase and with antibodies specific for SSEA-4, TRA-1-60, TRA-1-81, or 

Oct-3/4 confirmed the pluripotency of these cells.  
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B.2 Standard curves for PCR amplification 

 

Human fetal brain cDNA (Invitrogen, USA) and cDNA generated from poly-A RNA 

control kit (Affymetrix, USA) were used as templates to obtain quantitative PCR 

amplicons. Quantification of the PCR amplicons was performed by gel densitometry with 

DNA ladders (Norgen, Canada). These amplicons contain the majority of the cDNA 

sequence of the respective genes and were used for generating standard curves for qPCR. 

The lys standard curve was generated with a known amount of a 846 bp fragment of the lys 

cDNA. The primers for the amplification were: cagtcaacccttaccgcatt (forward) and 

acatggacaggaggcatttc (reverse). 

Three sets of primers were used to amplify 905bp, 982bp, and 890bp fragments of 

B2M, Nodal, and Fzd4, respectively from human brain cDNA (Invitrogen, USA). The 

primer sets were:   

B2M: ggcattcctgaagctgaca (forward) and ccagattaaccacaaccatgc (reverse);  

Nodal: cttcctgagccaacaagagg (forward) and cagactccactgagcccttc (reverse);  

Fzd4:  gggacgtctaaaatcccaca (forward) and ggcagtggagatgaaacaca (reverse).  
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B.3 Quantitative PCR  

 

Four sets of multiplex Taqman primers and probes were designed with Beacon 

Designer (Premier Biosoft International, USA). 

B2M: aattgctatgtgtctgggtttcatcc (forward), gcttacatgtctcgatcccacttaac (reverse) and 

acaaagtcacatggttcacacggcaggca (probe-FAM); 

Nodal: catacatccagagtctgctgaaacg (forward), atcagaggcacccacattcttcc (reverse) and 

cccaccgagtcccttccacttgttgtgcc (probe-Cy5); 

Fzd4: cgaccccatccgcatctcc (forward), acattggcacataaacagaacaaagg (reverse) and 

ccagaacctcggctacaacgtgaccaaga (probe-Hex);  

Lys: ggccggttttgtgttagcag (forward), gcggttcatcatcttccgtataac (reverse) and 

ccgaaacctcctccaagattcagcacct (probe-FAM).  

Multiplex quantitative PCR was performed with IQ-5 (bio-rad, USA) and Quantitect 

Taqman PCR kit (Qiagen, USA) for B2M, Nodal, and Fzd4. The qPCR of lys was 

performed independently from the multiplex qPCR. 
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