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Appendix A

Derivation of the spin-relaxation
equations from the full master
equation

In this appendix we illustrate the method we have used in deriving equations of motion

for spin operators using the interaction-frame master equation for the spin-resonator

system:
d

dt
ρ =

1

i~
[Hs + V, ρ] + Λρ. (A.1)

We assume that the resonator’s ringdown time τh is so short that the resonator

functions as a reservoir, remaining near thermal equilibrium during its interaction

with the spins, and we derive a coarse-grained derivative ∆ hIzi /∆t, where

∆tÀ τh. (A.2)

In addition to satisfying (A.2), the time step ∆t must be short compared to the time

required for relaxation of hIzi.

We use time-dependent perturbation theory to evaluate the coarse-grained deriv-

ative to lowest order in the coupling constant g. To motivate the approach, we first

recall that a master equation of the form

d

dt
ρ (t) = Lρ (t)
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can be transformed into an integral equation:

ρ (t) = ρ (0) +

Z t

0

Lρ (t1) dt1.

Replacing the density matrix ρ (t1) appearing in the integrand by an integral equation

for ρ (t1) yields

ρ (t) = ρ (0) +

Z t

0

Lρ (0) dt1 +
Z t

0

Z t1

0

L (Lρ (t2)) dt2 dt1.

Repeating the process of substituting an integral equation for the time-dependent

integrand yields a series expansion in which successive terms depend on higher powers

of the superoperator L.

An analogous process can be used to obtain a series expansion of ∆ hIzi /∆t.

We use (A.1) to find the instantaneous derivative d hIzi /dt, and this derivative is

transformed to an integral equation for hIzi. Time-dependent quantities appearing

in the integrand are themselves replaced by integral equations, and the process is

repeated to yield a series expansion for hIzi. Terms of high-order in the coupling

constant g are discarded, and the remaining integrals are evaluated to yield an explicit

formula for ∆ hIzi /∆t.

In carrying out this procedure, we will use the following equations:

hIzi (t) = hIzi (0) +
Z t

0

(−ig)

I+a

† − I−a
®
(t1) dt1, (A.3)

I+a
† − I−a

®
(t) = e−t/τh


I+a

† − I−a
®
(0) (A.4)

+ e−t/τh
Z t

0

et1/τh (−4ig)

Iza

†a
®
(t1) dt1

+ e−t/τh
Z t

0

et1/τh2ig hI−I+i (t1) dt1,
Iza

†a
®
(t) = e−2t/τh


Iza

†a
®
(0) (A.5)

+ e−2t/τh
Z t

0

e2t1/τh
µ
2nth
τh

¶
hIzi (t1) dt1 +O (g) ,

hI−I+i (t) = hI−I+i (0) +O (g) . (A.6)
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These are derived by transforming derivatives obtained from (A.1) into integral equa-

tions. Replacing t in (A.3) by ∆t gives

∆ hIzi
∆t

=
hIzi (t)− hIzi (0)

∆t

=
−ig
∆t

Z ∆t

0


I+a

† − I−a
®
(t1) dt1. (A.7)

From (A.4), we obtain an integral equation for

I+a

† − I−a
®
(t1) which is substituted

into the integrand of (A.7):

∆ hIzi
∆t

=
−ig
∆t


I+a

† − I−a
®
(0)

Z ∆t

0

e−t1/τh dt1

+
−ig
∆t

(−4ig)
Z ∆t

0

e−t1/τh
Z t1

0

et2/τh

Iza

†a
®
(t2) dt2 dt1

+
−ig
∆t

(2ig)

Z ∆t

0

e−t1/τh
Z t1

0

et2/τh hI−I+i (t2) dt2 dt1.

Continuing in this way, we obtain

∆ hIzi
∆t

=
−ig
∆t


I+a

† − I−a
®
(0)

Z ∆t

0

e−t1/τh dt1

+
−ig
∆t

(−4ig)

Iza

†a
®
(0)

Z ∆t

0

e−t1/τh
Z t1

0

et2/τhe−2t2/τh dt2 dt1

+
−ig
∆t

(−4ig)nth hIzi (0)
Z ∆t

0

e−t1/τh
Z t1

0

et2/τh
¡
1− e−2t2/τh

¢
dt2 dt1

+
−ig
∆t

(2ig) hI−I+i (0)
Z ∆t

0

e−t1/τh
Z t1

0

et2/τh dt2 dt1 +O
¡
g3
¢
,

which is evaluated as

∆ hIzi
∆t

=
τh
∆t

¡
1− e−∆t/τh

¢
(−ig)


I+a

† − I−a
®
(0) (A.8)

+
1

∆t

∙
τ 2h

µ
1

2
− e−∆t/τh +

1

2
e−2∆t/τh

¶¸¡
−4g2

¢ 
Iza

†a
®
(0)

+
1

∆t

∙
τh∆t+ τ 2h

µ
−3
2
+ 2e−∆t/τh − 1

2
e−2∆t/τh

¶¸¡
−4g2

¢
nth hIzi (0)

+
1

∆t

£
τh∆t− τ 2h

¡
1− e−∆t/τh

¢¤ ¡
2g2
¢
hI−I+i (0) +O

¡
g3
¢
.
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Equation (A.8) is correct to second order in the coupling constant, regardless of

the relative sizes of τh and ∆t. In the case where τh ¿ ∆t, negligible error is in-

troduced by considering the resonator to be uncorrelated with the spins and in a

thermal state at the beginning of the time step. A similar approximation is made in

the general derivation of the master equation given in reference [7], where it is shown

that correlations present at the beginning of the time step make a contribution to the

motion only during a time period of order τh. Since the initial spin-resonator corre-

lations decay almost immediately on the scale of the time step ∆t, these correlations

do not make a significant contribution to the motion of hIzi during ∆t. Relaxation

of hIzi depends on the new correlations which develop continually during ∆t, and the

contribution of these correlations is not affected by the approximation of treating the

resonator and spins as initially uncorrelated. This approximation yields


I+a

† − I−a
®
(0) = hI+i (0)


a†
®
th
− hI−i (0) haith

= 0,
Iza

†a
®
(0) = hIzi (0)


a†a
®
th

= hIzi (0)nth,

from which it follows that

∆ hIzi
∆t

=
1

∆t

∙
τ 2h

µ
1

2
− e−∆t/τh +

1

2
e−2∆t/τh

¶¸¡
−4g2

¢
nth hIzi (A.9)

+
1

∆t

∙
τh∆t+ τ 2h

µ
−3
2
+ 2e−∆t/τh − 1

2
e−2∆t/τh

¶¸¡
−4g2

¢
nth hIzi

+
1

∆t

£
τh∆t− τ 2h

¡
1− e−∆t/τh

¢¤ ¡
2g2
¢
hI−I+i .

Since τ 2h is negligible compared to τh∆t, we can discard terms in (A.9) proportional

to τ 2h and obtain an equation of motion for hIzi:

∆ hIzi
∆t

= −4g2τhnth hIzi+ 2g2τh hI−I+i

= R0 (nth + 1) hI−I+i−R0nth hI+I−i . (A.10)
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Appendix B

Relative magnitudes of the rate
constants for lifetime and secular
broadening

Section 2 of chapter 2 presents the interaction-frame equations for resonator-induced

transverse relaxation. In the case where the magnetic field B (θ) is approximated to

second order in θ, the equations can be expressed in the form

d

dt
hIxi = − (Rlifetime +Rsecular) hIxi−R0

¿
1

2
(IxIz + IzIx)

À
,

d

dt
hIyi = − (Rlifetime +Rsecular) hIyi−R0

¿
1

2
(IyIz + IzIy)

À
,

where

Rlifetime = g2τh (2nth + 1)

=

µ
γ

2

dBx

dθ

¶2 ~
2Ihωh

τh (2nth + 1)

and

Rsecular =
1

2
f2τhnth (nth + 1)

=
1

2

µ
γ
d2Bz

dθ2
~

2Ihωh

¶2
τhnth (nth + 1) .
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We estimate the relative magnitude of Rlifetime and Rsecular for the example resonator

described by table 5.3. Section 5.1 of chapter 5 shows that the field can be expressed

as

B (θ) = Ba +Bh

µ
3

2
θ, 0, 1− 3θ2

¶
, (B.1)

where Bh is the magnitude of the resonator’s field at the spins. Equation (B.1)

implies that

dBx

dθ
=
3

2
Bh,

d2Bz

dθ2
= −3Bh,

which yields
Rsecular
Rlifetime

=
4nth (nth + 1)

(2nth + 1)

~
Ihωh

.

For the example resonator, we have

Ih = 6.3× 10−33 kgm2 ,

ωh = (2π) 628MHz ,

nth = 0.052,

and
Rsecular
Rlifetime

≈ 10−14.

Note that the rate constant Rsecular becomes comparable to Rlifetime at tempera-

tures high enough that
Rsecular
Rlifetime

≈ 2nth
~

Ihωh

is of order unity or greater. Using the high-temperature approximation

nth ≈
kBT

~ω
,
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we find that this occurs when

T & Ihω
2
h

2kB
,

which is of order 109K for the example resonator.



205

Appendix C

Longitudinal relaxation when the
resonator’s field is inhomogeneous

In this appendix, we remove the constraint that the resonator’s field is uniform across

the sample. The method used in Appendix A to obtain a series expansion for

∆ hIzi /∆t can be extended to this more general problem in a natural way. We

first consider a problem in which the spins all experience the same field but are not

perfectly resonant with the mechanical oscillator. We define the frequency offset β

by

ω0 = −ωh + β.

As in Appendix A, a series expansion for ∆ hIzi /∆t is obtained by repeatedly replac-

ing time-dependent integrands with integral equations. The expansion is in powers

of the coupling constant g as well as the offset β. Term of order g3 or higher are dis-

carded, but the series in β is not truncated, since we wish to allow for the possibility

that β À g.

Including the frequency offset in the spin Hamiltonian introduces an additional

term into the integral equation (A.4), while leaving (A.3), (A.5), and (A.6) unchanged.
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The full set of integral equations needed for the derivation is

hIzi (t) = hIzi (0) +
Z t

0

(−ig)

I+a

† − I−a
®
(t1) dt1 (C.1)


I+a

† − I−a
®
(t) = e−t/τh

Z t

0

et1/τh (iβ)

I+a

† + I−a
®
(t1) dt1 (C.2)

+ e−t/τh
Z t

0

et1/τh (−4ig)

Iza

†a
®
(t1) dt1

+ e−t/τh
Z t

0

et1/τh (2ig) hI−I+i (t1) dt1
I+a

+ + I−a
®
(t) = e−t/τh

Z t

0

et1/τh (iβ)

I+a

† − I−a
®
(t1) dt1 (C.3)

Iza
†a
®
(t) = nth hIzi (0) +O (g) (C.4)

hI−I+i (t) = hI−I+i (0) +O (g) . (C.5)

Note that the we have used the approximations


Iza

†a
®
(0) = nth hIzi (0)

and


I+a

† − I−a
®
(0) = hI+i (0)


a†
®
th
− hI−i (0) haith

= 0,

which introduce negligible error provided τh ¿ ∆t. After two iterations of replacing

time-dependent integrands by integral equations, we obtain

hIzi (t) = hIzi (0) +
£
−4g2nth hIzi (0) + 2g2 hI−I+i (0)

¤
×Z t

0

e−t1/τh
Z t1

0

et2/τh dt2 dt1

+ (−ig) (iβ)2
Z t

0

e−t1/τh
Z t1

0

Z t2

0

et3/τh

I+a

† − I−a
®
(t3) dt3 dt2 dt1,

where terms of order g3 or higher have been discarded. Repeating this process yields
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a series expansion for hIzi (t):

hIzi (t) = hIzi (0) +
£
−4g2nth hIzi (0) + 2g2 hI−I+i (0)

¤
× C, (C.6)

with

C =

Z t

0

e−t1/τh
Z t1

0

et2/τh dt2 dt1+ (C.7)

(iβ)2
Z t

0

e−t1/τh
Z t1

0

Z t2

0

Z t3

0

et4/τh dt4 . . . dt1+

(iβ)4
Z t

0

e−t1/τh
Z t1

0

Z t2

0

Z t3

0

Z t4

0

Z t5

0

et6/τh dt6 . . . dt1 + · · · .

Note that the expansion given by equations (C.6) and (C.7) includes arbitrarily high

powers of the offset β. To estimate C, we replace t in (C.7) by ∆tÀ τh and evaluate

the integral:

C ≈
¡
τh∆t− τ 2h

¢
− (βτh)2

¡
τh∆t− 3τ 2h

¢
(C.8)

+ (βτh)
4 ¡τh∆t− 5τ 2h

¢
+ · · ·

Although the factors (τh∆t− 3τ 2h) and (τh∆t− 5τ 2h) are each close to τh∆t, the ap-

proximation of replacing (τh∆t− jτ 2h) by τh∆t will be invalid for high-order terms in

the series (C.8). Provided that |βτh| is sufficiently small that C is well approximated

by a sum of the initial terms for which

τh∆t− jτ 2h ≈ τh∆t,

we obtain

C ≈ τh∆t
£
1− (βτh)2 + (βτh)4 − · · ·

¤
≈ τh∆t

1

1 + (βτh)
2 . (C.9)
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Equations (C.6) and (C.9) yield

∆ hIzi
∆t

= [R0 (nth + 1) hI−I+i−R0nth hI+I−i]
1

1 + (βτh)
2 . (C.10)

In the case where the resonator’s field varies across the sample, we define at spin

k a local coordinate frame such that the static field is directed along the z-axis and

the resonator’s field is confined to the xz-plane. The spin operators Iz,k, I+,k, and

I−,k are defined relative to the local frame. Under the rotating wave approximation,

the two terms of the Hamiltonian which act on the kth spin are ~ (−ωh + βk) Ik,z and

~gk
¡
I+,ka

† + I−,ka
¢
, where (−ωh + βk) and gk are the respective Larmor frequency

and coupling constant for the kth spin. We define the lab-frame operator I 0z by

I 0z =
X
k

Iz,k.

The derivation of equation (C.10) can be adapted to the problem of finding an ex-

pression for ∆ hI 0zi /∆t in this more general case, and we find that

∆ hI 0zi
∆t

= −
X
k

4g2kτhnth

1 + (βkτh)
2 hIz,ki+

X
k

X
j

2gjgkτh

1 + (βkτh)
2 hI−,jI+,ki ,

which reduces to (C.10) if all spins experience the same frequency offset and the same

coupling to the resonator.
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Appendix D

Derivation of the semiclassical
equation for longitudinal relaxation

In deriving a semiclassical equation for longitudinal relaxation, we note first that

the steps used in Appendix A to obtain the equation (A.10) from the set of integral

equations (A.3) through (A.6) are purely mathematical; given a similar set of integral

equations for the semiclassical system, the same steps could be performed to yield

an equation analogous to (A.10). We therefore proceed by defining semiclassical

variables analogous to those appearing in the quantum mechanical integral equations

of Appendix A, and we will use standard rules of calculus, in combination with some

physical reasoning, to obtain integral equations for the semiclassical system. In

order to simplify notation, we drop the superscript c used to distinguish semiclassical

variables from analogous quantum operators.

The equation of motion of a semiclassical spin I is

d

dt
I = γI×B, (D.1)

while the motion of a driven torsional resonator with coordinate θ and momentum pθ

is governed by the equations

d

dt
θ =

1

Ih
pθ −

1

τh
θ, (D.2)

d

dt
pθ = −Ihω2hθ −

1

τh
pθ + f (t) , (D.3)
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where f (t) is the driving torque. The interaction energy between spins and resonator

is

W = −μ ·B (θ) ,

where

μ = γ~I

is the magnetic dipole associated with the spins. The driving torque exerted by the

spins is

−∂W
∂θ

=
dBx

dθ
μx.

and the total torque f (t) acting on the resonator is

f (t) =
dBx

dθ
γ~Ix (t) +N (t) ,

where N (t) is the thermal torque.

Semiclassical analogs of the raising and lowering operators for the spin and the

resonator are defined in the same way as the quantum operators:

a =
1√
2

Ãr
Ihωh
~

θ + i

r
1

Ihωh~
pθ

!
,

a† =
1√
2

Ãr
Ihωh
~

θ − i

r
1

Ihωh~
pθ

!
,

I+ = Ix + iIy,

I− = Ix − iIy,

and we move to the "semiclassical interaction frame" by multiplying these variables by

exponentials which cancel the time-dependence associated with the fast, unperturbed
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motion:

ã = eiωhta, (D.4)

ã† = e−iωhta†,

Ĩ+ = eiωhtI+,

Ĩ− = e−iωhtI−.

The right side of equation (D.1) is expressed in terms of these interaction frame

variables, and the quickly oscillating terms are discarded, as in the rotating-wave

approximation. Simplification of the resulting equations yields

d

dt
Iz = −ig

³
Ĩ+ã

† − Ĩ−ã
´

(D.5)

and
d

dt
Ĩ+ = −2igIzã. (D.6)

The first-order approximation to B (θ) is used in calculating these derivatives:

B (θ) =

µ
dBx

dθ
θ, 0, Bz

¶
.

The derivative of ã is found by differentiating (D.4), substituting (D.2) and (D.3) into

the derivative, expressing the resulting equation in the interaction frame, and using

the rotating-wave approximation:

d

dt
ã = − 1

τh
ã− igĨ+ +

i√
2Ihωh~

eiωhtN . (D.7)

The product rule of elementary calculus, in combination with equations (D.5),

(D.6), and (D.7) is used to obtain integral equations similar to equations (A.3) through

(A.6) of Appendix A. In order to obtain equations which do not include the thermal

torque N , an average is taken over the statistical ensemble, and correlations between

spin variables and the thermal torque acting on the resonator are neglected. The
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quickly fluctuating thermal torque N can be considered an impulse which acts on the

resonator during the short correlation time of the torque, and the impulse response

of the resonator appears as a weak correlation between the resonator motion and the

torque. The thermal motion of the resonator is thus a sum of decaying responses to

many uncorrelated impulses, with each impulse response contributing only weakly to

the motion. Correlation between the instantaneous thermal torqueN (t) and the spin

motion depends on the spins’ response to the small fraction of the resonator motion

which results from the impulse occurring at time t, and can thus be neglected.

We obtain in this way the differential equations

d

dt
hIzi = −ig

D
Ĩ+ã

† − Ĩ−ã
E
, (D.8)

d

dt

D
Ĩ+ã

† − Ĩ−ã
E
=
1

τh

D
Ĩ+ã

† − Ĩ−ã
E
− 4ig


Izã

†ã
®
+ 2ig

D
Ĩ−Ĩ+

E
, (D.9)

d

dt

D
Ĩ−Ĩ+

E
= O (g) , (D.10)

which yield integral equations analogous to (A.3), (A.4), and (A.6). Note that these

equations are unchanged if they are transformed from the interaction frame to the

lab frame, since

Ĩ+ã
† = I+a

†,

Ĩ−ã = I−a,

Izã
†ã = Iza

†a,

Ĩ−Ĩ+ = I−I+.

Since the integral equations being derived are valid in both frames, we simplify nota-

tion by dropping tildes from the variables.

The semiclassical analog of (A.5) is

d

dt


Iza

†a
®
= − 2

τh


Iza

†a
®
+

1

Ihωh~
hIzpθNi+O (Ω) . (D.11)

In evaluating hIzpθNi, we note that the resonator evolves under the influence of



213

distinct torques which are associated with the spins and the reservoir fluctuations, so

we may write pθ as a sum of the two terms:

pθ = p
(S)
θ + p

(R)
θ .

Here p(S)θ and p
(R)
θ give the resonator’s response to the respective torques associated

with the spins and the reservoir. Since the spins and the damping torque N are

considered uncorrelated, both I and p
(S)
θ are statistically independent of the thermal

torque N , and we can write

hIzpθNi ≈
D
Izp

(S)
θ

E
hNi+

D
Izp

(R)
θ N

E
=
D
Izp

(R)
θ N

E
.

Similarly, we may neglect correlations between Iz and the thermal function p
(R)
θ N :

hIzpθNi ≈ hIzi
D
p
(R)
θ N

E
.

In order to obtain an explicit expression for the thermal average
D
p
(R)
θ N

E
, we

consider a resonator which interacts only with a reservoir, simplifying notation by

dropping the superscript ‘R’ from the resonator momentum. The correlation between

the momentum and the thermal torque can be found by considering the derivative

dEh/dt, where

Eh =
1

2Ih
p2θ +

Ihω
2
h

2
θ2

is the resonator energy. Substituting the equations of motion (D.2) and (D.3) into

the expression
d

dt
Eh =

1

Ih
pθ

d

dt
pθ + Ihω

2
hθ

d

dt
θ

gives
d

dt
Eh =

−2
τh

Eh +
1

Ih
pθN ,

where N (t) is the thermal torque acting on the resonator. Taking the mean value of
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both sides yields
d

dt
hEhi =

−2
τh
hEhi+

1

Ih
hpθNi .

Since

hEhi = kBT ,

we have d hEhi /dt = 0 and

hpθNi =
2Ih
τh
hEhi .

Defining

nc =
hEhi
~ωh

,

we may express (D.11) as

d

dt


Iza

†a
®
= − 2

τh


Iza

†a
®
+
2

τh
nc hIzi+O (g) . (D.12)

Converting (D.8), (D.9), (D.10), and (D.12) to integral equations and using these to

derive a coarse-grained derivative equation yields the semiclassical relaxation equation

d hIzi
dt

= −2R0nc hIzi+R0 hI−I+i .
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Appendix E

Longitudinal relaxation due to
coupling between product-state
populations

Section 4 of chapter 3 presents a heuristic argument for the idea that if product states

can be chosen as eigenstates, and if the spin-resonator interaction does not induce

couplings between populations and coherences, then spin-spin correlations make no

contribution to the relaxation of hIzi. To formalize this argument, we note first that

the spin-resonator interaction Hamiltonian (2.11) couples product-state populations

ρaa and ρcc only if eigenstates |ai, |ci differ by exactly one spin flip. The rate constants

Γc→a, Γa→c for population transfer have the same value as they do for transfer between

the two states of a single spin interacting with the resonator.

Consider the changes in populations which occur during a time step ∆t. All

such changes can be accounted for by summing the population transfers associated

with the set of transition probabilities Γn→m. These population transfers may be

considered to occur in any order we choose, and each Γn→m couples two states which

differ by exactly one spin flip. We initially focus attention on spin 1, and we take Z1

to be the set of all Γn→m which couple eigenstates differing by a flip of this spin. We

will show that if all population transfers associated with Z1 occur, and if these are the

only transfers that occur, then hIz,1i relaxes exactly as if spin 1 were an isolated spin

interacting with its own resonator, while hIz,ji is unchanged, for j 6= 1. By defining

Zj to be the set of all Γn→m which couple eigenstates differing by a flip of spin j, and
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then sequentially applying all population transfers associated with Z2, Z3, and so on,

we find that during ∆t each spin has relaxed toward its thermal population as if it

were interacting with its own resonator.

To establish this argument, we must show that if all population transfers associ-

ated with Γn→m ∈ Zk occur, and if these are the only transfers that occur, then hIz,ki

relaxes as if spin k were an isolated spin interacting with a resonator, while hIz,ji is

unchanged, for j 6= k. Group the product eigenstates into pairs, with the eigenstates

of each pair differing by a flip of spin k, and let |+βi, |−βi denote the respective

eigenstates of pair β for which spin k is oriented parallel and antiparallel to Bz. In

addition, let ρ(+β), ρ(−β) denote the respective populations of states |+βi, |−βi, and

define

ρ+ =
X
β

ρ(+β),

ρ− =
X
β

ρ(−β).

Population transfers associated with Zk cause ρ(+β) and ρ(−β) to evolve during the

time step ∆t exactly as if they were the populations of an isolated spin interacting

with the resonator. Indeed, arguments similar to those used in deriving equation

(2.29) show that population is transferred from ρ(+β) to ρ(−β) at rate R0nthρ(+β) and

from ρ(−β) to ρ(+β) at rate R0 (nth + 1) ρ(−β). It follows that ρ+ and ρ− evolve under

the same differential equations as the populations of an isolated spin relaxing due to

its interactions with a resonator:

d

dt
ρ+ = −R0nthρ+ +R0 (nth + 1) ρ−,

d

dt
ρ− = −R0 (nth + 1) ρ− +R0nthρ+,

and since hIz,ki can be expressed as

hIz,ki =
1

2
ρ+ −

1

2
ρ−,
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these transitions cause hIz,ki to relax as if it were an isolated spin.

Note that for each pair β, the sum

ρβ ≡ ρ(+β) + ρ(−β)

does not change during these transitions, and that for j 6= k, we have

hIz,ji =
X
β

λz,j ρβ,

where λz,j is the eigenvalue of Iz,j for the two states in pair β. Since ρβ does not

change during these transitions, hIz,ji remains constant. This establishes our claim

that direct coupling between populations, in the absence of any coupling between

populations and coherences, causes hIzi to relax exponentially with rate constant Rh

to thermal equilibrium with the resonator.
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Appendix F

Transverse relaxation due to
coupling between product-state
coherences

Although section 5 of chapter 3 shows that the damping constant for a coherence be-

tween product states increases with the size of the sample, transfer between product-

state coherences can yield exponential transverse relaxation with rate constant Rh/2,

regardless of the size of the sample. In particular, suppose that the single-quantum

coherences are grouped into sets Zk, where the coherences in set Zk are between

states which differ by a flip of spin k. Recall that in section 3 of chapter 3, we argued

that the transfer between coherences ρcd and ρab that is characterized by Rabcd will

be suppressed if the frequency difference |ωab − ωcd| is perturbed to a value larger

than 2πRabcd. We show here that if the frequency differences between coherences

within each set Zk are small enough that transfers within Zk are preserved, while

transfers between coherences belonging to Zk and other coherences are suppressed

by frequency differences, then the transverse relaxation induced by the resonator is

exponential with rate constant Rh/2.

In demonstrating this result, we first define sk to be the sum of all coherences

within Zk:

sk =
X

ρab∈Zk

ρab,
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and we claim that

hIx,ki =
1

2
sk. (F.1)

Equation (F.1) can be established by expanding the density matrix as

ρ =
X

ρab |ai hb| ,

and writing Ix,k as

Ix,k =
1

2
(I+,k + I−,k) .

For coherences ρab belonging to Zk, we have one of two possibilities:

Tr {ρabI+,k |ai hb|} = ρab,

Tr {ρabI−,k |ai hb|} = 0,

or

Tr {ρabI+,k |ai hb|} = 0,

Tr {ρabI−,k |ai hb|} = ρab,

while for coherences ρcd not belonging to Zk, we have

Tr {ρcdI+,k |ci hd|} = Tr {ρcdI−,k |ci hd|} = 0.

Summing over the coherences belonging to Zk, we obtain equation (F.1).

Since

hIxi =
X
k

hIx,ki ,

it suffices to show that
d

dt
sk = −

1

2
Rhsk (F.2)

if transfers within Zk are preserved while transfers between coherences belonging to Zk

and other coherences are suppressed. Two types of couplings contribute to (d/dt) sk.
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First, coupling constants Rabab contribute terms of the form

Rababρab = −
1

2

ÃX
n6=a

Γa→n +
X
n6=b

Γb→n

!
ρab. (F.3)

Equation (F.3) can be written as

Rababρab = −
1

2
(Γa→b + Γb→a) ρab −

1

2

ÃX
n6=a,b

Γa→n +
X
n6=b,a

Γb→n

!
ρab (F.4)

= −1
2
Rhρab −

1

2

ÃX
n6=a,b

Γa→n +
X
n6=b,a

Γb→n

!
ρab. (F.5)

In going from (F.4) to (F.5), we used the fact that the rate constants Γm→n for transfer

of population between product states which differ by a single spin flip are the same

as for the two states of a single-spin system.

Assume that coherences in Zk are coupled only to other coherences belonging to

the same set. These couplings are associated with processes in which two transitions

|ai → |ci and |bi → |di occur, with both transitions involving a flip of spin j 6= k

in the same direction. Without loss of generality, we assume that both transitions

involve a flip up of spin j:

I+,j |ai = |ci ,

I+,j |bi = |di .

The product of matrix elements which contributes toRcdab is hμ, b |V | ν, di hν, c |V |μ, ai.

We first demonstrate that the matrix elements hν, d |V |μ, bi and hν, c |V |μ, ai have
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the value

ν
¯̄
a†
¯̄
μ
®
:

hν, d |V |μ, bi =

ν, d

¯̄
I+a

†¯̄μ, b®
= hd |I+| bi


ν
¯̄
a†
¯̄
μ
®

= hd |I+,j| bi

ν
¯̄
a†
¯̄
μ
®

= hd|di

ν
¯̄
a†
¯̄
μ
®

=

ν
¯̄
a†
¯̄
μ
®
.

Since similar steps can be used to obtain hν, c |V |μ, ai =

ν
¯̄
a†
¯̄
μ
®
, we have

hν, c |V |μ, ai = hν, d |V |μ, bi

and

hμ, b |V | ν, di hν, c |V |μ, ai = |hν, c |V |μ, ai|2

= |hν, d |V |μ, bi|2 .

It follows from (3.6) and (3.9) that

Rcdab = Γa→c = Γb→d

=
1

2
(Γa→c + Γb→d) .

We can thus write (F.5) as

Rababρab = −
1

2
Rhρab +

X
Zk

−Rcdabρab, (F.6)

where the sum is over all coherences in Zk except ρab. Equation (F.6) can be in-

terpreted to mean that the evolution governed by the coefficient Rabab of the master

equation includes a contribution associated with the "intrinsic decay "of ρab, for which
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the rate constant is Rh/2, and a contribution associated with transfers from ρab to

other coherences belonging to the set Zk. If we sum the derivatives of all coherences

in Zk, all contributions of the form ±Rcdabρab and ±Rabcdρcd cancel, and the only

remaining terms have the form − (Rh/2) ρab or − (Rh/2) ρcd. It follows that equation

(F.2) holds, i.e., transverse relaxation induced by the resonator is exponential and

has rate constant Rh/2.
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Appendix G

Comparison between the use of an
optimal filter and least-squares
fitting

Unknown parameters in a measured signal are often estimated by least-squares fitting,

rather than by applying an optimal filter. In this section, we compare the two

methods of data analysis for signals of the formGm0 (t), withm0 (t) a known function.

The signal and the noise are assumed to be continuous functions of time, and errors

arising from digitization of the signal are neglected. We show that if the noise

is white, least-squares fitting yields the same value of G as that obtained from an

optimal filter. If the noise is not white, however, the two methods in general yield

different values of G, and the least-squares fit corresponds to an estimate made using

a non-optimal filter.

Given a function f (t) = m (t) +n (t), the least-squares fit is the function Gm0 (t)

that minimizes the integral

kf −Gm0k2 =
Z ∞

−∞
[f (t)−Gm0 (t)]

2 dt. (G.1)

If the functions f (t) and m0 (t) belong to a Hilbert space such as L2, the problem

of finding G can be cast in geometric language. The set of scalar multiples of

m0 (t) constitutes a one-dimensional subspace, and the least-squares fit Gm0 (t) is
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the projection of f (t) onto this subspace. Indeed, Gm0 (t) will be given by

Gm0 (t) = m0 (t)
hm0, fi
km0k2

,

where

hm0, fi =
Z ∞

−∞
m0 (t) f (t) dt

and

km0k2 =
Z ∞

−∞
m2
0 (t) dt.

We see that least-squares fitting produces the amplitude estimate

G =

R∞
−∞m0 (t) f (t) dtR∞
−∞m2

0 (t) dt
. (G.2)

(Note that under the standard convention, which has n (t) 6→ 0 as t→ ±∞, it is not

true that f (t) belongs to L2 (R). This is merely a matter of convention, however.

If we limit the domain of integration for equation G.1 to a finite interval [a, b] that

includes all times t for which m0 (t) is non-negligible, then f (t) and m0 (t) can be

assumed to belong to L2 [a, b].)

We compare equation G.2 to the estimate that would be obtained using an optimal

filter. The signal f (t) is passed through the filter K having transfer function

K (ω) = c
M∗
0 (ω)

Sn (ω)
.

The amplitude estimate X is given by

X =
φ

μ0
,
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where

φ =
1

2π

Z ∞

−∞
K (ω)F (ω) dω

= c
1

2π

Z ∞

−∞

M∗
0 (ω)

Sn (ω)
F (ω) dω (G.3)

and

μ0 = c
1

2π

Z ∞

−∞

M∗
0 (ω)

Sn (ω)
M0 (ω) dω. (G.4)

If the noise is white, then the constant term Sn can be taken outside the integrals of

equations G.3 and G.4, and we find that

φ =

Z ∞

−∞
m0 (t) f (t) dt

and

μ0 =

Z ∞

−∞
m2
0 (t) dt.

The amplitude estimate obtained in this way is

X =

R∞
−∞m0 (t) f (t) dtR∞
−∞m2

0 (t) dt
,

which is identical to the value obtained with a least-squares fit. We conclude that

using a least-square fit is equivalent to using a filter which is optimal for extracting

the signal from white noise. In the case where Sn (ω) varies over the spectral width of

m0 (t), the least-squares fit does not take account of the structure of Sn (ω), whereas

the optimal filter does.
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Appendix H

Spectral density in signal-to-noise
ratio estimates

In this appendix, we introduce the spectral density as a tool to be used in SNR

calculations. Recall that in analyzing the variance of a measured amplitude due to

noise superimposed on the signal, we considered a noisy signal

f (t) = m (t) + n (t) ,

where m (t) is the useful signal and n (t) is the noise. When f (t) is passed into filter

K, the output function is

φ (t) = μ (t) + ν (t) ,

where μ (t) and ν (t) would be the respective outputs if m (t) and ν (t) were passed

throughK individually. The amplitude estimate, denoted byX and given by equation

(4.2), differs from the actual amplitude by a term proportional to ν (t0), where t0 is

a time determined by the filter’s transfer function. (If we do not care about whether

the filter is causal, then t0 can be chosen arbitrarily. In section 1 of chapter 4, for

instance, we set t0 = 0.) To calculate SNR, we divide the mean value hXi by the

standard deviation of X, which can be calculated if the variance ν (t0) is known.

In the context of calculating SNR, the spectral density is used only as a tool for

calculating this variance.

Since ν (t0) is obtained by passing the noise n (t) through a filter, one natural
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approach might be to calculate the frequency components of n (t) and then use the

filter’s transfer function to determine the frequency components of ν (t). This ap-

proach presents a technical difficulty, however, since the function n (t) is convention-

ally assumed not to approach zero as t → ±∞. As a result, the Fourier transform

of n (t) is not defined. Fortunately, we merely need the variance of ν (t0), not the

frequency components of ν (t). An alternate approach to obtaining this variance

can be used if we assume that n (t) is stationary and has zero mean, with K linear

and time-invariant. An outline of this approach introduces the spectral density in a

simple way.

The assumptions on n (t) and K guarantee that ν (t) is also stationary and has

zero mean [19]. The variance of ν (t0) is represented by the notation hν2i, and it is

given by Cν (0), where

Cν (t) = hν (t) ν (0)i .

Our strategy will be to calculate Cν (0) in terms of the correlation function Cn (t),

which is defined similarly to Cν (t):

Cn (t) = hn (t)n (0)i .

We define the spectral densities Sn (ω), Sν (ω) to be the respective Fourier transforms

of Cn (t) and Cν (t):

Sn (ω) =

Z ∞

−∞
e−iωtCn (t) dt,

Sν (ω) =

Z ∞

−∞
e−iωtCν (t) dt.

Reference [19] shows that

Sν (ω) = |K (ω)|2 Sn (ω) , (H.1)

where the transfer function of K is denoted by K (ω). If the correlation function
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Cn (t) has been previously derived, then equation H.1 can be used to calculate hν2i:


ν2
®
= Cν (0)

=
1

2π

Z ∞

−∞
Sν (ω) dω

=
1

2π

Z ∞

−∞
|K (ω)|2 Sn (ω) dω.

This integral can in principle be evaluated, since the transfer function |K (ω)| is as-

sumed to be known, while the spectral density Sn (ω) can be calculated from knowl-

edge of Cn (t).

This short introduction to the spectral density includes the ideas needed to un-

derstand its use as a tool in calculating SNR. The mean-square magnitude of the

unfiltered noise is expressed as a sum over Fourier components of the noise’s cor-

relation function. Filtering the noise modifies these Fourier components, and the

mean-square magnitude of the filtered noise is calculated as a sum over the modified

Fourier components.
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Appendix I

Statistics of a classical resonator

In this appendix we derive an expression for the spectral density of the thermal

torque exerted on a classical torsional oscillator in equilibrium with a reservoir. The

first section provides a shortened derivation of the correlation function of a classical

oscillator, adapted from a derivation originally given by McCombie [47], as well as

formal justification for an assumption made by McCombie. The second section

derives the spectral density of the thermal torque.

1 Correlation function of the oscillator’s coordi-

nate

McCombie shows that the correlation function for a classical torsional resonator is

[47]

Cθ (t) ≡ hθ (t) θ (0)i

=

θ2
®
e−|t|/τh

µ
cosωdt+

1

τhωd
sinωd |t|

¶
, (I.1)

where

Ihθ̈ (t) +
2Ih
τh

θ̇ (t) + kθ = N 0 (t) (I.2)
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is the Langevin equation of motion that governs the resonator,


θ2
®
=

kBT

k

is the mean-square thermal displacement, and

ωd =

s
k

Ih
− 1

τ 2h

is the frequency of the freely-running damped resonator. From (I.1) it follows that

the spectral density Sθ (ω) of the thermal fluctuations is

Sθ (ω) =
4kBT

τhIh

Ã
1

(ω2 − ω2θ)
2
+ 4ω2/τ 2h

!
. (I.3)

A significant assumption behind McCombie’s derivation of (I.1) is that "subse-

quent to any given instant the history of the random couple is quite independent

of the fluctuation in the deflection at that instant" [47]. Stated in mathematical

notation, McCombie’s assumption is

hN 0 (t0) θ (t)i = 0, t < t0.

In investigating this assumption, we note first that the resonator’s equation of motion

(I.2) can be integrated [48] to give a formal expression for θ (t):

θ (t) =
1

Ih

Z t

−∞
e−(t−t

0)/τh
sinωd (t− t0)

ωd
N 0 (t0) dt0. (I.4)

Inspection of this equation shows that θ (t) retains a memory of the fluctuating torque

N 0 (t0) for a period on the order of the ringdown time τh, since N 0 (t0) in general

contributes to the integral when (t− t0) /τh is on the order of unity. Torques exerted

after time t do not directly contribute to θ (t), so we do not expect them to be

correlated with θ (t). These statements can be demonstrated formally by calculating

hN 0 (t0) θ (t)i. If we consider the torque to vary so quickly that its correlation function
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is approximated as

hN 0 (t)N 0 (t0)i = σ2N 0δ (t− t0) ,

with σ2N 0 the variance of N 0, and δ the Dirac delta function, then we can use equa-

tion (I.4) to find hN 0 (t0) θ (t)i. Changing the variable of integration in (I.4) to t00,

multiplying by N 0 (t0), and taking the mean of each side gives

hN 0 (t0) θ (t)i =

⎧⎨⎩
σ2
N0
Ih

sinωd(t−t0)
ωd

e−(t−t
0)/τh, t0 < t

0 t < t0
(I.5)

Equation (I.5) shows that the resonator coordinate θ (t) is correlated with N 0 (t0)

when t0 precedes t by a time on the order of τh. Intuitively, we can say that the

resonator retains a memory of the torques exerted on it in the past during a period

whose length is on the order of τh, but it has no knowledge of the torques that will

be exerted on it in the future, since the reservoir itself has no memory.

It is now simple to derive the correlation function Cθ (t). We multiply the

Langevin equation

Ih
d2

dt
θ (t) +

2Ih
τh

d

dt
θ (t) + kθ (t) = N 0 (t)

by θ (t0), with t0 < t, and take the mean value of each side. Since hθ (t0)N 0 (t)i = 0,

we find that

Ih
d2

dt2
hθ (t0) θ (t)i+ 2Ih

τh

d

dt
hθ (t0) θ (t)i+ k hθ (t0) θ (t)i = 0.

The solution to this differential equation in t is

hθ (t0) θ (t)i =

θ2 (t0)

®
e−(t−t

0)/τh

∙
cos (ωd (t− t0)) +

1

τhωd
sin (ωd (t− t0))

¸
, t > t0.

(I.6)

Since θ (t) is a stationary random process, equation (I.6) depends only on the differ-



232

ence between t0 and t. We can thus consider t0 = 0 and write

hθ (0) θ (t)i =

θ2
®
e−t/τh

µ
cosωdt+

1

τhωd
sinωdt

¶
, t > 0. (I.7)

Alternatively, we can choose t = 0 to obtain

hθ (t0) θ (0)i =

θ2
®
e−|t

0|/τh
µ
cosωd |t0|+

1

τhωd
sinωd |t0|

¶
, 0 > t0. (I.8)

Equations (I.7) and (I.8) can be combined in the form

Cθ (t) = hθ (t) θ (0)i =

θ2
®
e−|t

0|/τh
µ
cosωdt+

1

τhωd
sinωdt

¶
,

which is the desired result.

2 Spectral density of the thermal torque

The thermal torque N 0 and the angular displacement θ are considered to be ergodic,

stationary random processes with zero mean. For each sample function N 0 (t), there

is an associated sample function θ (t) giving the displacement of the resonator driven

by N 0 (t). For a given pair N 0 (t), θ (t), we define truncated functions N 0
T (t) and

θT (t) which have as their domain some large interval [−T, T ] and which coincide

respectively with N 0 (t), θ (t) on this interval. The spectral density of N 0
T (t) and

θT (t) will be denoted by SN 0,T (ω) and Sθ,T (ω), respectively. In addition, CN 0 (t),

and SN 0 (ω) denote the respective correlation function and the spectral density of N 0,

while Cθ (t) and Sθ (ω) are defined analogously for θ. Our goal in this section is to

find an expression for SN 0 (ω), the spectral density of the thermal torque.

If N 0
T (t) is given by

N 0
T (t) =

∞X
n=1

N 0
n cos (ωnt+ φn) ,
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with ωn = πn/T , then

θT (t) = θini (t) +
∞X
n=1

θn cos (ωnt+ ψn) ,

where

θn =
N 0

n

Ih

1q
(ω2n − ω2θ)

2
+ 4ω2n/τ

2
h

. (I.9)

Here Ih, ωθ, and τh are the resonator’s moment of inertia, frequency, and ringdown

time, respectively. The function θini (t) is included because the resonator’s response

to the driving torque during the interval [−T, T ] depends on the initial state of the

resonator at time t = −T ; that is, θini (t) corresponds to the ringing down of an

undriven resonator. If the time interval is sufficiently large compared to the ringdown

time τh, then θini (t) will make a negligible contribution to the Fourier components

of θT (t), which we may consider to be given by θn. From equation I.9, we conclude

that

Sθ,T (ωn) =
|θn|2

2T

=
|N 0

n|
2

2T

1

I2h

³
(ω2n − ω2θ)

2
+ 4ω2n/τ

2
h

´
= SN 0,T (ωn)

1

I2h

³
(ω2n − ω2θ)

2
+ 4ω2n/τ

2
h

´ .
In general, the spectral density of a random process can be obtained by calculating

the spectral density of truncated functions such as N 0
T (t) and θT (t), averaging over

the ensemble, and then taking the limit as T →∞ [19]:

Sθ (ω) = lim
T→∞

hSθ,T (ω)i ,

SN 0 (ω) = lim
T→∞

hSN 0,T (ω)i .
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We find that

Sθ (ω) =
1

I2h

³
(ω2 − ω2θ)

2
+ 4ω2/τ 2h

´ lim
T→∞

hSN 0,T (ω)i

=
SN 0 (ω)

I2h

³
(ω2 − ω2θ)

2
+ 4ω2/τ 2h

´ . (I.10)

It follows from (I.10) and (I.3) that

SN 0 (ω) =
4IhkBT

τh
.

The single-sided spectral density SsN 0 of the fluctuating torque is

SsN 0 = 2SN 0 (ω)

=
8IhkBT

τh
. (I.11)
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Appendix J

Contribution of the induced
electric field to the resonator’s
kinetic energy

Movement of the magnetic mechanical resonator will cause the magnetic field in the

space surrounding the resonator to vary with time, and the oscillating magnetic field

will induce an electric field. The energy of the induced electric field is proportional to

the square of the magnet’s angular velocity, and may thus be considered to contribute

to the resonator’s kinetic energy. A simple argument suggests that this contribution

is negligible for a radio-frequency nanoscale resonator. Note first that the resonator’s

magnetic field Bh (x, t) can be estimated using the quasistatic approximation, since

the wavelength of light at a typical resonator frequency of 500MHz is many orders of

magnitude larger than the dimensions of the resonator [49, 50]. A quasistatic esti-

mate of Bh (x, t) is obtained by dropping the displacement current from the Maxwell

equation

∇×B = μ0J+ μ0ε0
∂E

∂t
(J.1)

and calculating B as if it were generated by a static current distribution

∇×B = μ0J.

Note, however, that if the displacement current is removed from equation (J.1), then

the magnetic field cannot exchange energy with the electric field unless J is changed
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by the induced electric field. In the case where B is generated by the bound current

of magnetic material, then there is no mechanism for energy exchange between the

magnetic and electric fields. Conservation of energy therefore implies that if the

quasistatic approximation is valid, the energy of the induced electric field is negligible

compared to the energy of Bh (x, t).

We used a simple example resonator model to make a numerical estimate of the

ratio

r =
Telec
Tmech

,

where Telec is the energy of the induced electric field, and Tmech is the mechanical

kinetic energy. A Halbach cylinder [43] is a circular tube of magnetic material for

which the arrangement of magnetization produces a nominally uniform magnetic field

within the tube and zero field outside of the tube. The simplicity of this magnetic

field facilitates an estimate of the electric field induced by the rotation of the cylinder

around its axis. For this estimate, we used an equation similar in form to the Biot-

Savart law:

E (x, t) =
−1
4π

Z ∂B
∂t
(x0, t)× (x− x0)
|x− x0|3

d3x0, (J.2)

where Bh (x, t) is calculated using the quasistatic approximation. We assumed

Ro

Ri
= 3,

where Ri, Ro are the respective inner radius and outer radius of the Halbach cylinder,

as well as a remanent magnetization of

μ0M = 1.5T ,

and a magnetic density equal to that of iron. For the ratio r we obtained a scale-

invariant expression with the approximate value

r ∼ 10−15.
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The contribution of the energy of the induced electric field to the kinetic energy of a

nanoscale magnetic mechanical oscillator is therefore negligible.
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Appendix K

General formula for the magnetic
spring constant

For a magnetic mechanical oscillator whose magnetization remains constant in a ref-

erence frame fixed in the oscillator, a simple formula for the magnetic spring constant

can be obtained. A magnetic dipole μ in a static applied field Ba has energy

U = −Baμ cos θ, (K.1)

where θ is the angle between μ and Ba. For small θ, (K.1) can be approximated as

U = −Baμ+
1

2
Baμθ

2,

which is the potential energy of a harmonic oscillator with magnetic spring constant

kmag = Baμ. (K.2)

In the case where a soft magnetic oscillator moves in a large applied field, the

magnetization can be considered to remain continuously aligned with the applied

field, so that

θ ≈ 0

throughout the motion. Naive use of equation (K.1) would suggest that in this case,

magnetic energy makes no contribution to the oscillator’s spring constant. This
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conclusion is incorrect, however, since (K.1) only takes account of the interaction

between the magnetization and the applied field, without including the magnetostatic

energy associated with the interaction between dipoles at different points within the

magnetic material.

In this appendix, we derive a formula for the magnetic spring constant in the

general case where magnetization can change as the oscillator moves. We begin by

considering the Hamiltonian for a nonrelativistic system of particles evolving in an

external electromagnetic field [51]. The vector and scalar potentials for the electro-

magnetic field are each expressed as the sum of a dynamical variable and an externally-

determined function associated with the applied field. The particles evolve under

the action of the total electromagnetic fields E, B, and act as sources for the fields

E0, B0 associated with the dynamical variables. In the case where the applied field

is purely magnetic, the Hamiltonian for the system is [51]

H =
X
α

1

2ma
(ṙα)

2 −
X
α

μa ·B (rα) + VCoul +HR. (K.3)

Here rα and μa are the respective position and magnetic moment of particle α, and

the Coulomb energy VCoul is given by

VCoul = εαCoul +
X
α>β

qαqβ
4πε0 |rα − rβ|

,

with qα the charge on particle α, and εαCoul the "self-energy" of its Coulomb field.

The Hamiltonian HR governs the dynamical fields E0 and B0:

HR =
1

2

Z
ε0 (E

0
⊥)
2
+
1

μ0
(B0)

2
d3x. (K.4)

In equation (K.4), E0
⊥ denotes the transverse electric field. Excitation of the trans-

verse electric field can be interpreted as quanta in electromagnetic modes.

If the system can be characterized with sufficient accuracy by a single pair of

conjugate dynamical variables θ and pθ, and if the terms in (K.3) can be separated
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into two distinct expressions U and T , with U depending only on θ, and T depending

only on pθ, then an "effective potential energy" U and an "effective kinetic energy"

T can be defined. Note that if the system is considered to be semiclassical, with

dynamical variables represented by functions rather than operators, thenH = U+T is

a constant of the motion. Since a change∆T will be accompanied by a corresponding

change −∆U , we see that U and T conform to our expectations for kinetic and

potential energy. In particular, if θ is an angular coordinate, and if U and T can be

approximated as

U =
1

2
khθ

2,

T =
1

2
Ihθ̇

2

for some constants kh, Ih, then we can consider the system to be a torsional harmonic

oscillator with spring constant kh and moment of inertia Ih.

In the case where the system of particles governed by (K.3) is a magnetic mechan-

ical oscillator, we define

U = −
X
α

μα ·B (rα) + VCoul +
1

2μ0

Z
(B0)

2
d3x,

T =
X
α

1

2mα
(ṙα)

2 +
1

2

Z
ε0 (E

0
⊥)
2
d3x.

We argued in Appendix J that the contribution of the electric field to the kinetic

energy of a nanoscale magnetic oscillator is negligible, and so we assume that T can

be approximated as X
α

1

2ma
(ṙα)

2 =
1

2
Ihθ̇

2.

We seek a formula for the contribution made to U by the magnetic energy Umag.

Note first that VCoul is responsible for magneto-crystalline anisotropy, as well as ex-

change interactions, and can therefore affect Umag. To simplify the discussion, we

assume that these forms of energy do not contribute significantly to the oscillator’s

potential. The field B0 generated by the oscillator’s magnetization can be expressed
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as the sum of an averaged field Bh and an internal field Bi:

B0 = Bh +Bi.

The field Bh (r) is calculated by treating the ferromagnetic material as a continuum

described by the magnetization M, while Bi (r) corrects Bh (r) by subtracting the

contribution made by the continuum in the immediate vicinity of r and by adding

the actual contribution of the sources in this region. These approximations allow us

to write Umag as

Umag = −
X
α

μα · (Ba +Bh +Bi) +
1

2μ0

Z
(Bh +Bi)

2 d3x

= −μ ·Ba −
X
α

μα ·Bh +
1

2μ0

Z
B2
h d

3x (K.5)

−
X
α

μα ·Bi +
1

μ0

Z
Bi ·Bh d

3x+
1

2μ0

Z
B2
i d

3x,

where μ is the oscillator’s net dipole moment.

We next observe that the integral of B2
h can be simplified using the vector identityZ

V

P · (∇×Q) d3x =
Z
V

Q · (∇×P) d3x+
Z
S

(Q×P) · da, (K.6)

where P and Q are vector functions, V is a volume of integration, and S is the

surface of V . We let Ah denote the vector potential of the bound current density

Jh = ∇ ×M, and we apply (K.6) repeatedly, noting that in each case the surface
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integral vanishes:

1

2μ0

Z
B2
h d

3x =
1

2μ0

Z
Bh · (∇×Ah) d

3x

=
1

2μ0

Z
Ah · (∇×Bh) d

3x

=
1

2μ0

Z
Ah · μ0Jh d3x

=
1

2

Z
Ah · (∇×M) d3x

=
1

2

Z
M · (∇×Ah) d

3x

=
1

2

Z
M ·Bh d

3x. (K.7)

If we replace the sum

−
X
α

μα ·Bh

appearing in (K.5) by an integral over the volume of magnetic material, the sum of

the second and third terms in (K.5) can be expressed as

−
X
α

μα ·Bh +
1

2μ0

Z
B2
h d

3x = −
Z
M ·Bh d

3x+
1

2μ0

Z
B2
h d

3x

= −
Z
M ·Bh d

3x+
1

2

Z
M ·Bh d

3x

= −1
2

Z
M ·Bh d

3x,

and we obtain

Umag = −μ ·Ba −
1

2

Z
M ·Bh d

3x (K.8)

−
X
α

μα ·Bi +
1

μ0

Z
Bi ·Bh d

3x+
1

2μ0

Z
B2
i d

3x.

An alternative form which may be more convenient for some purposes is found by
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using (K.7) to replace the second term of (K.8) by an integral over B2
h:

Umag = −μ ·Ba −
1

2μ0

Z
B2
h d

3x (K.9)

−
X
α

μα ·Bi (rα) +
1

μ0

Z
Bi ·Bh d

3x+
1

2μ0

Z
B2
i d

3x.

In using equations (K.8) or (K.9) to analyze a device, it is natural to make the

simplification of assuming that terms which depend on the internal field Bi do not

vary during the motion. We can show that this assumption is consistent with a

simple classical model by expressing Bi (r) as

Bi (r) = Bnear (r)−Bavg (r) ,

where Bnear (r) is the contribution to the magnetic field at r made by particles in

the immediate vicinity of r, and Bavg (r) is the contribution made by treating these

particles as a continuum. In order to estimate Bnear, we consider a model in which

Bnear is generated by a distribution of classical magnetic dipoles. Reference [49]

points out that for most materials, the total electric field acting on a particle due to

contributions from nearby electric dipoles distributed either randomly or at lattice

sites throughout the material can be considered to be approximately zero. Since

magnetic and electric dipole fields have the same functional form, we assume that a

similar result holds for Bnear, so that the only nonzero contribution to Bnear comes

from magnetic fields within each magnetic dipole.

For a current distribution localized in a sphere of radius R centered at the origin,

we have Z
r<R

B d3x=
2μ0
3

μ, (K.10)

where B is the field generated by the current distribution, and μ is its dipole moment

[49]. Since this result holds for an arbitrarily small sphere surrounding a magnetic

dipole, we can consider the field of the dipole to have a delta function contribution
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at the dipole, so that

Bnear (r) ≈
2μ0
3

X
α

μαδ (rα) . (K.11)

Averaging the near field given by (K.11) yields

Bavg (r) =
2μ0
3
M. (K.12)

From (K.11) and (K.12), we obtain

Bi (r) ≈
2μ0
3

X
α

μαδ (rα)−
2μ0
3
M (r) . (K.13)

We can use (K.13) to simplify (K.8). It follows from (K.13) that

1

μ0

Z
Bi ·Bh d

3x = 0.

If we assume that for a ferromagnetic dipole μα located at rα, both μα ·M (rα) and

|M (rα)| remain constant as the oscillator moves, then the remaining terms

−
X
α

μα ·Bi (rα)

and
1

2μ0

Z
B2
i d

3x

appearing in (K.8) are constant and can be discarded. The oscillator’s potential

energy can therefore be expressed as

Umag = −μ ·Ba −
1

2

Z
M ·Bh d

3x, (K.14)

or, equivalently, as

Umag = −μ ·Ba −
1

2μ0

Z
B2
h d

3x.



245

The magnetic spring constant kmag is given by

kmag =
d2Umag
dθ2

.

As a check on (K.14), we note that it is closely related to the expression

E = −M ·H (K.15)

which is frequently used in the literature of magnetic materials for the energy of a

magnetizationM in a averaged field H. In the case of ferromagnetic materials, |M|

can be considered constant on a microscopic scale (since to a first approximation the

direction but not the magnitude of M varies between domains and within domain

walls), and (K.15) can be written as

E = − 1
μ0
M ·B+M ·M

= − 1
μ0
M ·B+ constant,

which differs only by an additive constant and a proportionality constant from the

energy expression

E = −M ·B. (K.16)

If we had naively used (K.16) to obtain a potential energy expression for the oscillator,

taking care to avoid double counting of spin-spin interactions, we would have obtained

the same expression derived more carefully in this discussion.
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Appendix L

Spring constant and moment of
inertia of a torsion beam

The spring constant and moment of inertia of a torsion beam can be most naturally

obtained from the Lagrangian for the fundamental mode, which can be derived from

the Lagrangian that governs arbitrary motions of the beam. For this analysis, we

consider a simple rectangular beam, and we suppose that the z-axis lies along the

central axis of the beam. Let φ (z, t0) be the angular displacement of the beam at

position z and time t0. (The time is denoted by t0 to distinguish it from the thickness

t of the beam.)

Note first that the elastic potential energy U of the beam is [52, 53]

U =
1

2
C

Z l

0

µ
∂φ

∂z

¶2
dz. (L.1)

The constant C is known as the torsional rigidity of the beam. The explicit definition

of C depends on the assumption that the displacement uz (x, y, z) in the direction of

the z-axis is proportional to ∂φ/∂z, that is, there is a function ψ (x, y) such that

uz = ψ ∂φ/∂z. The integral

Z Z µ
x2 + y2 + x

∂ψ

∂y
− y

∂ψ

∂x

¶
dx dy,

taken over the cross section of the beam, is called the torsional constant of the beam.

(Formulas for torsional constants are available in reference [54].) If we denote the
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torsional constant by J , then C is given by

C = GJ,

where G is the beam’s modulus of rigidity.

The kinetic energy T of the beam is [52, 53]

T =
1

2
ρbIp

Z l

0

µ
∂φ

∂t0

¶2
dz. (L.2)

Here Ip is the polar moment of inertia of the cross section:

Ip =

Z Z ¡
x2 + y2

¢
dx dy.

Note that equation (L.2) neglects the kinetic energy due to motion along the beam’s

axis, and that both (L.1) and (L.2) depend on the condition R∂φ
∂z
¿ 1, where R is

the maximum transverse dimension of the rod. This condition is necessary in order

to achieve consistency between the assumption that strains are infinitesimal and the

assumption that ux = −yz ∂φ∂z and uy = zx∂φ
∂z
, where ux and uy are the displacements

along the x-axis and y-axis, respectively. These assumptions on ux and uy lead to

strains which depend on the products x∂φ
∂z
and y ∂φ

∂z
.

The Lagrangian L = T − U can be used to derive a wave equation:

ρbIp
∂2φ

∂ (t0)2
+
1

2
C
∂2φ

∂z2
= 0.

For a rod of length l fixed at both ends, the (non-normalized) modes are [55]

sin
³nπ

l
z
´
cos (ωnt

0) , (L.3)

where

ρbIpω
2
n = C

³nπ
l

´2
,
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or

ωn =
nπ

l

s
C

ρbIp
. (L.4)

We write φ in the form

φ (z, t0) =
X
n

qn(t
0) sin(

nπ

l
z),

and observe that the Lagrangian can be written as a sum of Lagrangians governing

independent modes, with mode n characterized by discrete variables qn and q̇n. Fo-

cusing our attention on the fundamental mode, we define q ≡ qn. The Lagrangian L

governing this mode is

L =
1

2

∙
ρbIp

Z l

0

sin2(
π

l
z) dz

¸
(q̇)2 − 1

2

∙
C

Z l

0

³π
l

´2
cos2(

π

l
z)dz

¸
q2,

which simplifies to

L =
1

2

µ
ρbIpl

2

¶
(q̇)2 − 1

2

µ
Cπ2

2l

¶
q2. (L.5)

Equation (L.5) describes a harmonic resonator with spring constant

Kbeam =
Cπ2

2l

and moment of inertia

Ibeam =
ρbIpl

2
.

Note that if the only excited mode is the fundamental, then the variable q gives

the angular displacement at the center of the beam. For a rectangular beam, the

torsional rigidity C and polar moment of inertia Ip are [54]

C = Gwt3
∙
1

3
− 0.21 t

w

µ
1− t4

12w4

¶¸
,

Ip =
1

12
tw
¡
t2 + w2

¢
.



249

We can express the beam’s spring constant and moment of inertia as

Kbeam =
π2Gwt3

2l

∙
1

3
− 0.21 t

w

µ
1− t4

12w4

¶¸
(L.6)

and

Ibeam =
ρbtwl

24

¡
t2 + w2

¢
. (L.7)

Equations (L.6) and (L.7) were derived under the assumption that the elastic

material is isotropic. If the material is a cubic crystal and the beam axis is perpen-

dicular to one of the faces of the cubic cell, similar equations can be derived, with

the modulus of rigidity G replaced by the stiffness constant C44. Reference [14] tab-

ulates adiabatic stiffness constants for several cubic crystals. The magnitude of C44

typically decreases by 10% or less as the crystal is cooled from room temperature to

∼ 0K. For numerical examples, we used the room temperature adiabatic stiffness

constant for Si as a characteristic value of C44 [14]:

C44 = 7.96× 1010N /m2 .
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Appendix M

Eddy-current heating of metallic
cylinders

In this appendix, we present a rough estimate of the temperature increase∆Th caused

by eddy-current heating. Since experimental information regarding the heat conduc-

tivity of nanoscale beams at mK temperatures is not available in the literature, and

since the dimensions of the ferromagnetic cylinders are small enough that the low-

temperature conductivity of the cylinders may be nonlocal, an accurate estimate

cannot be made using results available in the literature. The simplified analysis we

present here illustrates the way in which ∆Th is determined by physical parameters

which depend strongly on the dimensions and temperature of the resonator. Esti-

mates of the order of magnitude of these parameters based on the limited information

available in the literature leave open the possibility that detection sensitivity would

be decreased by the temperature change ∆Th if the magnetic cylinders are metal-

lic. The possibility of eliminating eddy-current heating by the use of semiconducting

ferromagnets is discussed in section 7 of chapter 5.

We first consider eddy currents in a nonmagnetic conducting particle placed in

a uniform alternating magnetic field, and we assume that the mean free path of the

conduction electrons is short enough that Ohm’s law holds. If the dimensions of the

particle are small compared to the skin depth of the conducting material, then we

can expect the fields generated within the particle by the eddy currents themselves

to be negligible compared to the alternating applied field and the Faraday electric
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field induced by it. If the particle is a sphere, the electric field driving eddy currents

within it will consist of circular loops, and surface charges will in general develop on

the surface of the particle. Altering the geometry of the particle does not perturb the

Faraday electric field but leads to an altered configuration of surface charges, with

the result that the circular electric field loops within the particle are perturbed. If a

fixed magnetization is added to the particle and a static magnetic field is present, we

may in general expect additional modifications to the configuration of surface charges

(as in the Hall effect) and the configuration of eddy currents. Provided that the

particle bears some resemblance to a sphere, however, a rough estimate of the power

dissipation associated with the eddy currents can be made by treating the particle as

a nonmagnetic spherical conductor.

If the mean free path of the electrons is at least as large as the dimensions of the

particle, the conductivity becomes nonlocal, since most electron trajectories would

sample a variety of different electric fields. An electron in a trajectory that crosses a

loop of the electric field lines, for instance, would be accelerated in different directions

during different portions of the trajectory, and the current at each point in the par-

ticle would depend on an integral over all points of all trajectories. We might guess

that eddy currents within the particle would be weakened by the nonlocal nature of

the conductivity, since many of the trajectories would have an electron experiencing

accelerations during different portions of the trajectory which do not add construc-

tively. Note, however, that when the conductivity becomes nonlocal, heating of the

particle by the Faraday electric field may not be correlated in a simple way with the

size of the eddy currents. It is the kinetic energy donated to individual electrons

during their trajectories which contributes to heating, not the kinetic energy asso-

ciated with the net current at a given point. Even if the net current is negligible

because the contributions from different trajectories do not add constructively, the

acceleration of electrons by the induced electric field as they move along trajectories

might lead to a temperature increase in the metal.

For the example resonator presented in table 5.3, each of the magnetic cylinders

has a length of 40 nm and a diameter of 55 nm. In a reasonably pure conductor at
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a temperature of a few Kelvin or below, the mean free path of an electron in the

bulk metal would be significantly larger than the dimensions of the cylinder. The

mean free path of an electron in room-temperature bulk iron is about 5 nm [56], for

instance, and this can increase by orders of magnitude at low temperatures, when

the scattering of electrons by phonons is "frozen out." At temperatures below a few

Kelvin, the conductivity of a normal conductor does not depend on temperature;

its value depends instead on the extent to which electrons are scattered by surfaces,

lattice defects, impurities, and the like. A high concentration of scattering centers

would be needed within the ferromagnetic material to yield a mean free path which

is small on the scale of the curving electric field lines within the magnetic particles of

the resonator.

If the resistivity of the cylinders is high enough that the mean free path of the

electrons is smaller than the dimensions of the cylinders by a factor of ∼ 10 or more,

an analysis of eddy currents based on Ohm’s law is relevant. In order to illustrate

the eddy-current heating which could occur in this case, we assume a mean free path

of 4 nm for the electrons. Note that if the mean free path is reduced below this value,

both the conductivity and eddy-current power dissipation will decrease, and so wemay

consider this heating estimate to be a "worst-case" estimate for the regime in which

Ohm’s law holds. In converting the mean free path into a resistivity, we assume that

conductivity is proportional to mean free path, and we note that the mean free path

and resistivity for Fe at room-temperature are 4.75 nm and 9×10−8Ωm, respectively

[56]. The resistivity ρ corresponding to a mean free path of 4 nm in Fe is therefore

ρ = 9× 10−8Ωm 4.75
4.0

= 10.7× 10−8Ωm .

The skin depth [49] associated with this resistivity at frequency 630MHz is

δ = 6.6μm ,

which is much larger than the dimensions of the magnetic particle.



253

Smythe has derived a general expression for eddy currents induced in a conducting

sphere by a uniform alternating magnetic field in the quasi-static regime [57]. For a

nonmagnetic particle whose radius r is small compared to the skin depth, Smythe’s

expression for the power dissipation in the particle reduces to [58, 59]

Pdiss =
πr5ω20B

2
1

15ρ
,

where B1 and ω0 are the magnitude and frequency of the alternating field, ρ is the

resistivity of the particle, and r is its radius. We model each ferromagnetic particle

as a sphere of radius r = 25nm, and we assume continuous irradiation by a resonant

field (frequency ω0/2π = 630MHz) strong enough to give protons a Rabi frequency

of 20 kHz:

B1 = 2 (2π) 20 kHz /

µ
267.5× 106

sT

¶
= 9. 395 4× 10−4T .

We find that the power deposited in each particle is

Pdiss = 2. 627 1× 10−19W . (M.1)

For a long, thin beam with rough surfaces but no scattering centers within the

crystal, the predicted thermal conductance is [60, 61]

K =
2π2k4B
15~3vs

lA

L
T 3, (M.2)

where L and A are the length cross-sectional area of the beam, vs = 4500m / s is

the speed of sound in silicon, T is the temperature, and l is the phonon mean free

path length. A recent experimental test of the low-temperature thermal conduc-

tance of nanoscale Si beams of cross section 130 nm×200 nm found that although

the conductance varied as T 3 above T = 1.4K, the temperature dependence was less

strong below this temperature and appeared to flatten out at the lowest temperature
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(∼ 0.5K) at which a measurement was taken [60]. Temperature dependence weaker

than T 3 was also observed at temperatures between 20K and 60K for beams of width

37 nm and 22 nm [62].

Although these departures from the predicted T 3 dependence are promising for

our purposes, they are not well understood, and there is no experimental information

on the temperature dependence of thermal conductivity below ∼ 0.5K. In estimat-

ing the thermal conductance of the resonator’s beam, we therefore start from the

expression which was found to be valid above 1.4K [60]:

Kcond = 2.6× 10−11T 3
W

K
. (M.3)

From equation M.2, we see that if the mean free path did not depend on the dimen-

sions of the beam or the temperature, then at 10 mK the value of thermal conductance

for a section of the resonator beam stretching from the sample to the bulk substrate

is

Kcond = 2.6× 10−11T 3
W

K

µ
2.5μm

3.5μm /2

¶µ
50 nm×50 nm
130 nm×200 nm

¶
= 3. 571 4× 10−18W

K
. (M.4)

The mean free path obtained by comparing (M.3) to (M.2) was ∼ 600 nm [60]. In a

simplified model which assumes that phonon scattering occurs only at the surface of

the beam, and that a fraction p of the phonons incident upon a surface is reflected

specularly, while the remainder are scattered diffusely, the mean free path can be

written as [61]

l =
1 + p

1− p
l0,

where l0 is the mean free path in the case where no specular reflection occurs. For

a circular cross-section of diameter d or a square cross-section of side d, we have

l0 = d and l0 = 1.12d, respectively. We might therefore guess that if the cross-
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section corresponding to equation (M.3) were scaled down from 130 nm×200 nm to

50 nm×50 nm, the mean free path would decrease by a factor between 2 and 4. Due

to lack of experimental information regarding either the size dependence or the tem-

perature dependence of the phonon mean free path for nanowires ≤ 1.4K, however,

we will use equation (M.4) for our estimate of eddy-current heating rather than at-

tempting to incorporate this guess into the estimate. Combining equations (M.1)

and (M.4) yields a temperature difference of

∆Tbeam =
Pdiss
Kcond

= 75 mK (M.5)

between the center of the resonator beam and each of its ends.

An estimate of the temperature gradient across the magnet-silicon interface can

also be made. For interfaces between bulk solids, simplified theories of thermal

boundary resistance have been shown to agree with experiment at low temperatures

down to ∼ 100 mK [63]. The acoustic mismatch theory and the diffuse mismatch

theory estimate the probability of phonon transmission across the boundary in the

respective limits of specular reflection and diffuse scattering at the boundary. These

theories are found to yield similar values for the thermal resistance RBd, and in the

case of interfaces between Si and transition metals, RBdT
3 is typically found to lie in

the range 10 to 20K4 / (W / cm2) [63]. Setting

RBd =
15

T 3
K4

W / cm2
,

T = 10 mK

we obtain

∆Tboundary = PdissRBd/A (M.6)

= 0.166K . (M.7)



256

In (M.6), A represents the area of the flat surface of each ferromagnetic cylinder.

Equations (M.5) and (M.7) depend on the assumption that the temperature dif-

ferences ∆T are small enough that a single value of T ≈ 10 mK can be used to

characterize the beam and the magnetic particle. Since the temperature differences

we obtained are roughly an order of magnitude greater than 10 mK, this assumption

is clearly invalid. A simple correction can be made by assuming that the T ≈ 25

mK, which yields

∆Tbeam = 4. 7 mK,

∆Tboundary = 11 mK.

Since increasing the temperature from 10 mK to 25 mK decreases the polarization

from 0.91 to 0.54, and increases the thermal noise in the resonator, the estimates

we have made of thermal and electric conductivity suggest that sensitivity could be

decreased by the temperature change ∆Th. The use of semiconducting ferromagnetic

material such as EuO may therefore be preferred, since the resistivity of the cylinders

would be orders of magnitude larger than the values we used for this estimate [38].
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Appendix N

Correlation function of the
mechanical coordinate during
cooling by hyperpolarized spins

This appendix derives the symmetric autocorrelation function C (t) of the resonator’s

mechanical coordinate during cooling by hyperpolarized spins, required for the analy-

sis in section 7 of chapter 7. In deriving a formula for C (t), we will need a general

expression for hθi (t). We define

ηα =
1 +

q
1− 8 hIzi∞ (gb)

2

2gb
i, (N.1)

ηβ =
1−

q
1− 8 hIzi∞ (gb)

2

2gb
i, (N.2)

and

ω0k = ωh + gRe (ηk) , (N.3)

1/τ 0k = 1/τh − g Im (ηk) , (N.4)
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for k = α, β. The general solution to the system of differential equations given by

(7.46) and (7.47) is

hai (t) = p exp [− (iω0a + 1/τ 0a) t] + q exp
£
−
¡
iω0β + 1/τ

0
β

¢
t
¤
, (N.5)

hI+i (t) = pηα exp [− (iω0a + 1/τ 0a) t] + qηβ exp
£
−
¡
iω0β + 1/τ

0
β

¢
t
¤
, (N.6)

p =
ηβ hai (0)− hI+i (0)

ηβ − ηα
, (N.7)

q =
−ηα hai (0) + hI+i (0)

ηβ − ηα
. (N.8)

Given the general expression for hai (t), we can write hθi (t) as

hθi (t) =
r

2~
Ihωh

Re {hai (t)} . (N.9)

The method presented in reference [8] can be used to express the correlation

function C (t) as

C (t) = hθ (t)i ,

where the initial conditions which determine hθ (t)i are calculated as if the density

matrix at time t = 0 were

ρ (0) =
1

2
(ρ∞θ + θρ∞) ,

with ρ∞ the steady state density matrix of the spin-resonator system. From equations

(N.5) through (N.9), it follows that it is sufficient to find formulas for

p =
1

2 (ηβ − ηα)
{ηβ haθ + θai∞ − hI+θ + θI+i∞} ,

q =
1

2 (ηβ − ηα)
{−ηα haθ + θai∞ + hI+θ + θI+i∞} .

We show below that the steady-state expectation values hθ2i∞, hpθθ + θpθi∞, hIxθi∞,
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and hIyθi∞ can be approximated as


θ2
®
∞ =

~
Ihωh

µ
n∞ +

1

2

¶
, (N.10)

hpθθ + θpθi∞ = 0, (N.11)

hIxθi∞ = 0, (N.12)

hIyθi∞ = −K∞/ (γdBx/dθ) , (N.13)

where n∞ is given by (7.28) and K∞ by equation (7.24).

The formula for hIyθi∞ can be estimated by noting from (7.39) that in the absence

of the rotating-wave approximation, the rate K at which quanta are transferred from

spins to oscillator is given by

K = −γdBx

dθ
hIyθi . (N.14)

Equations (N.10) through (N.12) can be obtained by deriving the equations of motion

for selected operators using the master equation (7.9), setting derivatives to zero, and

solving the resulting set of equations. The equations of motion which are needed are

d

dt


θ2
®
= − 2

τh

½
θ2
®
− ~

Ihωh

µ
n+

1

2

¶¾
(N.15)

+
1

Ih
hpθθ + θpθi−

dBx

dθ

~γ
Ihωh

hIyθi ,

d

dt
hpθθ + θpθi = −

2

τh
hpθθ + θpθi− 4Ihω2h


θ2
®
+ 4~ωh

µ
a†a
®
+
1

2

¶
(N.16)

+ ~γ
dBx

dθ

µ
hIxθi−

1

Ihωh
hIypθi

¶
,

d

dt
hIyθi = −

1

τ1
hIyθi− ωh hIxθi+

1

Ih
hIypθi (N.17)

− dBx

dθ

~γ
2Ihωh


I2y
®
+

dBx

dθ

γ

2


θ2Iz

®
,

d

dt


I+a

† + I−a
®
= − 1

τ1


I+a

† + I−a
®
. (N.18)
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From (N.18), we obtain

0 =

I+a

† + I−a
®
∞

=

r
2Ihωh
~

hIxθi∞ +
r

2

~Ihωh
hIypθi∞ ,

from which it follows that

hIypθi∞ = −Ihωh hIxθi∞ . (N.19)

Setting the left sides of (N.16) through (N.15) to zero and making the assumption

that 
θ2Iz

®
∞ ≈


θ2
®
∞ hIzi∞

yields the following solution for hθ2i∞:

Ihωh
~

µ
1 +

1

ω2hτ
2
h

+
1

2ω2hτcτ1

¶ 
θ2
®
∞ = n∞

µ
1 +

1

ω2hτhτ∞
− 1

ω2hτhτc
+

1

2ω2hτcτ1

¶
+
1

2

µ
1 +

1

ω2hτ
2
h

+
1

2ω2hτcτ1

¶
+

1

hIzi∞

µ
I2y
®
∞ −

N

4

¶
1

2ω2hτcτ1
.

Each of the decay times τh, τc, τ1, and τ∞ can be assumed to be much longer than

the period of the resonator; if we assume in addition that


I2y
®
∞ ≈ N/4,

then we obtain the solution (N.10) through (N.12).

In the regime where τh is short and the coupling is strong (4τh/τc > 1), the
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correlation function C (t) can be written as

C (t) = exp (−t/2τh) cos (ωht)× (N.20)©
θ2
®
∞ cos (dt)−

¡
c1

θ2
®
∞ + c2 hIyθi∞

¢
sin (dt)

ª
, t > 0,

d =
³p

4τh/τc − 1
´
/2τh,

c1 = 1/
p
4τh/τc − 1,

c2 = −
r

2~
Ihωh

2gτhp
4τh/τc − 1

,

and in the limit of strong coupling (4τh/τc À 1), this reduces to

C (t) ≈ exp (−t/2τh) cos (ωht)
©
θ2
®
∞ cos (dt)− c2 hIyθi∞ sin (dt)

ª
, t > 0 (N.21)

≈ ~
Ihωh

n∞ exp (−t/2τh) cos (ωht)
n
cos (dt)−

p
τh/τc sin (dt)

o
, t > 0 (N.22)

d ≈ 1/√τhτc.

(In making this simplification we have also assumed n∞ À 1/2 and n∞ À nc.) The

expression in curly brackets is a sinusoidal function which can be written as

cos (dt)−
p
τh/τc sin (dt) = (1 + τh/τc) cos (dt+ φ) . (N.23)

We obtain

C (t) =
~

Ihωh
n∞

µ
1 +

τh
τc

¶
exp (−t/2τh) cos (ωht) cos (dt+ φ) , t > 0 (N.24)

=
~

Ihωh
n∞

µ
1 +

τh
τc

¶
exp (−t/2τh)× (N.25)

cos ((ωh + d) t+ φ) + cos ((ωh − d) t− φ)

2
, t > 0.




