
166

Chapter 7

Cooling a single mode with
hyperpolarized spins?

1 Hyperpolarized spins as a cold bath

The simulations presented in chapter 6 are based on the assumption that all modes of

the mechanical oscillator are cooled to ∼ 10 mK by a dilution refrigerator. An alter-

native approach would be to extract energy from the single resonant mode, thereby

cooling it to a temperature below that of the sample and the oscillator’s remaining

modes. A promising method for removing energy from a single mode is to use nega-

tive feedback to reduce the amplitude of the mode’s thermal motion. Such "feedback

cooling" of a single mechanical mode from a base temperature of 2.2K down to 3 mK

has been demonstrated experimentally [42].

We have considered the possibility of using cold spins to absorb the mode’s energy.

If a stream of hyperpolarized xenon nuclei passes by a warm mechanical oscillator

whose frequency is resonant with the Larmor frequency of xenon, the spin-resonator

interaction governed by the Hamiltonian (2.11) would cause the resonator to be cooled

toward the spin temperature of the xenon. The scheme of using hyperpolarized spins

to cool a resonator was particularly interesting to us because of the possibility of

detecting entropy exchange between spins and resonator at sizes substantially larger

than nanoscale. Numerical examples such as those presented in section 6 of chapter

5 suggest that a nanoscale resonator is needed to achieve measurable cooling of a spin
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system; we investigated the possibility that cooling of a larger resonator by many

hyperpolarized spins might be detectable.

In studying the system consisting of a warm mechanical oscillator coupled to hy-

perpolarized spins, we begin with a heuristic example in which the spins are modelled

as a cold bath which damps the oscillator. The oscillator is also coupled to a warm

bath, and the master equation for the damped oscillator is

d

dt
ρ =

1

i~
[Hosc, ρ] + Λhρ+ Λcρ, (7.1)

where Hosc is the Hamiltonian for the undamped oscillator, and Λh, Λc are the super-

operators associated with damping by the warm and cold baths, respectively. The

formula for the relaxation superoperator associated with damping of a harmonic os-

cillator by a thermal bath [8] allows us to write Λh explicitly as

Λhρ = −
nh + 1

τh

£
a†a, ρ

¤
+
+ 2

nh + 1

τh
aρa† (7.2)

− nh
τh

£
aa†, ρ

¤
+
+ 2

nh
τh
a†ρa,

where nh is the number of quanta the resonator would have in equilibrium with the

warm bath, and τh would be the ringdown time of the resonator if only the warm bath

were present. By replacing nh and τh by analogous quantities nc and τc associated

with the cold bath, we obtain an explicit expression for Λc. Letting Λ∞ denote the

sum Λh + Λc, we find that

Λ∞ρ = −
n∞ + 1

τ∞

£
a†a, ρ

¤
+
+ 2

n∞ + 1

τ∞
aρa†

− n∞
τ∞

£
aa†, ρ

¤
+
+ 2

n∞
τ∞

a†ρa,
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where

1

τ∞
=
1

τh
+
1

τc
, (7.3)

n∞ =
τhnc + τcnh
τh + τc

. (7.4)

The system consisting of the resonator in contact with two baths is formally equivalent

to a system in which only a single bath is present, with τ∞ the ringdown time of the

oscillator and

T∞ =
~ωh

kB ln (1 + 1/n∞)

the temperature of the bath. The spectral density of the thermal torque can be

obtained by substituting τ∞ and n∞ into equation (4.41):

SN 0 =
4Ih~ωh
τ∞

µ
1

2
+ n∞

¶
=
4Ih~ωh
τh

µ
1

2
+ nh

¶
+
4Ih~ωh

τc

µ
1

2
+ nc

¶
. (7.5)

We can interpret (7.5) to mean that the thermal torque responsible for introducing

noise into the measurement is additive. Adding a cold bath will therefore not decrease

the thermal torque exerted by the warm bath.

This argument highlights the possibility that the modification of a resonator’s

ringdown time by the cold spins could mitigate the advantages associated with cooling

a single mode, but the model we used to obtain (7.5) is not in general correct for a

system in which hyperpolarized spins flow past a mechanical resonator. Equation

(7.1) describes relaxation associated with two baths, each of which acts independently

of the other. However, we found in section 2 of chapter 2 that the rate constant for

energy flow between spins and resonator depends on τh, that is, on the coupling

between the resonator and the warm bath. Since energy exchange between spins

and resonator depends on the collective properties of the spins, resonator, and warm

bath, it is problematic to represent the cold spins as an independent cold bath.

Section 2 of this chapter presents a model based on the interaction Hamiltonian
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for the spin-resonator system, and sections 3 through 7 use this model to analyze

the system. In summarizing here the results of this analysis, we use T2 to denote a

transverse spin decay time that can include contributions from ordinary transverse

relaxation as well as from the flow of spins into and out of the region of space where

the Larmor frequency is resonant with the mechanical oscillator. Our attention is

focused on the regime where

τh ¿ T2, (7.6)

that is, the regime where the fluctuations of the resonator coordinate limit the mag-

nitude of the spin-resonator correlations which can develop. In section 3, we find

that the steady-state number of quanta n∞ in the cooled resonator can in fact be

calculated using equation (7.3), which we obtained above by treating the spins as a

cold bath. In the regime defined by (7.6), the constant τc appearing in (7.3) is

1

τc
≡ 2g2τh hIzi∞ . (7.7)

By way of contrast, the rate constant which governs cooling of spins by a single

resonator at zero Kelvins is

R0 = 2g
2τh. (7.8)

Since (7.7) is larger than (7.8) by a factor of hIzi∞, these equations suggest the pos-

sibility that entropy flow between spins and resonator might be most easily observed

by performing an experiment in which hyperpolarized spins cool a resonator. Section

4 presents numerical examples to characterize the regime in which cooling may be

possible, however, and for these examples, g2 scales so strongly with size that cooling

becomes negligible at size scales of order 10μm or larger.

Since (7.3) can be used to calculate n∞, it is tempting to conclude that the cold

spins can be treated as a cold bath. Section 5 shows, however, that in the numerical

examples where substantial cooling is possible, the spins and resonator are so strongly

coupled that one cannot distinguish a mechanical mode or a spin mode. Instead,

the two modes of the spin-resonator system include equal contributions from the
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spins and the mechanical resonator. It is only in the limit of weak spin-resonator

coupling and short T2 that (7.7) can be used to calculate the decay time of the

mechanical mode. In general, the mechanical response to an external torque is also

incorrectly predicted by the model which treats the hyperpolarized spins as a cold

bath. Indeed, in the case where (7.6) holds, the mechanical resonator could be

considered a device for transducing an external mechanical torque at frequency ωh

into precessing magnetization of hyperpolarized spins, since the energy donated by

the external torque ends up as transverse spin excitation. For sufficiently strong

spin-resonator coupling, however, we find that a resonant mechanical response can

be obtained by driving the mechanical oscillator at one of the two eigenfrequencies

ωh ± d of the spin-resonator system, where d ≈ 1/√τhτc.

Section 7 uses the symmetric autocorrelation function for the oscillator’ mechan-

ical coordinate to characterize quantitatively the mechanical fluctuations. Equation

(7.5) is obtained in the limit of weak spin-resonator coupling and short T2. In the

regime where (7.6) holds and substantial cooling is possible, the strong spin-resonator

correlations which are responsible for cooling make a large contribution to mechanical

fluctuations. As a result, the mechanical thermal noise is not decreased by the cou-

pling to the hyperpolarized spins; indeed we find that when n∞ À 1/2 and n∞ À nc,

the thermal torque at the eigenfrequencies ωh ± d becomes larger than it would be

at ωh in the absence of the hyperpolarized spins. In this regime, as well as in the

regime where the spins behave as a cold bath, the noisy thermal torque acting on the

resonator is not decreased by the presence of the cold spins.

2 Model of the spin-resonator system

In analyzing a system consisting of a damped mechanical resonator and hyperpolar-

ized spins which flow past it, we will use the master equation

d

dt
ρ =

1

i~
[H0 + V, ρ] + Λhρ+ Λsρ, (7.9)
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where H0, V , and Λh are given respectively by (2.6), (2.11), and (2.25):

H0 = ω0Iz + ωh

µ
a†a+

1

2

¶
,

V = g
¡
I+a

† + I−a
¢
,

Λhρ = −
nh + 1

τh

£
a†a, ρ

¤
+
+ 2

nh + 1

τh
aρa† (7.10)

− nh
τh

£
aa†, ρ

¤
+
+ 2

nh
τh
a†ρa.

(Note that for consistency with the notation used in section 1 of this chapter, we have

used nh rather than nth to denote the thermal number of quanta in the warm bath

which damps the resonator.) In order to reveal the fundamental properties of the

spin-resonator system without complicating the analysis, we will assume that spins

are perfectly resonant with the mechanical oscillator within a certain region of space

but far off resonance outside of this region. The spin operators Iz, I+, and I− act

only on the spins in the resonant region.

The superoperator Λs governs the decay of I due to spin-spin interactions, spin-

lattice interactions, and the flow of spins into and out of the resonant region. For

our purposes, it is sufficient to approximate the effects of Λs in an ad hoc way by

assuming that it causes relaxation of hIzi toward a hyperpolarized value PN/2 with

a time constant denoted by T1, and relaxation of transverse magnetization toward

zero with a time constant denoted by T2. In addition, we assume that Λs causes

relaxation of

I+a

† − I−a
®
toward zero, with time constant T2. These assumptions

can be formally expressed as

Tr {(Λsρ) Iz} = −
1

T1

µ
hIzi−

1

2
PN

¶
, (7.11)

Tr {(Λsρ) I±} = −
1

T2
hI±i , (7.12)

Tr
©
(Λsρ)

¡
I+a

† − I−a
¢ª
= − 1

T2


I+a

† − I−a
®
. (7.13)

The relaxation of hIzi toward the hyperpolarized value PN/2 can be associated with

the flow of spins through the resonator, and so T1 is determined by the flow rate. In
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the case where the transverse decay described by equation (7.12) is due to the flow

of spins, equation (7.13) can be motivated by the idea that the flow of spins during

∆t causes a fraction of the spins in the cavity to be reset to the state having


I+a

† − I−a
®
= 0.

More generally, equation (7.13) can be motivated by first considering the way

in which the oscillator’s relaxation superoperator Λh contributes to the equation of

motion of a product G
¡
a, a†

¢
F (I), where g

¡
a, a†

¢
is a function of the oscillator’s

raising and lowering operators, and F (I) is an arbitrary spin operator. Using the

cyclic property of the trace, we can express the term

Tr
©
(Λhρ)G

¡
a, a†

¢
F (I)

ª
in the form

Tr
©
ρ
£
Λ0hG

¡
a, a†

¢¤
F (I)

ª
,

where

Λ0hG = −
nh + 1

τh

£
a†a,G

¤
+
+ 2

nh + 1

τh
a†Ga

− nh
τh

£
aa†, G

¤
+
+ 2

nh
τh
aGa†.

can be obtained from Λhρ by respectively replacing
£
a†a, ρ

¤
+
,
£
aa†, ρ

¤
+
, aρa†, and

a†ρa by
£
a†a,G

¤
+
,
£
aa†, G

¤
+
, a†Ga, and aGa†. Consider an example in which G = a.

Since

Λ0ha = −
1

τh
a,

we find that

Tr {(Λhρ) aF (I)} = −
1

τh
haF (I)i .

Similarly, since

Λ0ha
†a = − 2

τh

¡
a†a− nh

¢
,
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we have

Tr
©
(Λhρ) a

†aF (I)
ª
= − 2

τn

¡
a†a− nh

¢
F (I)

®
.

These observations regarding Λh support the use of equation (7.13) as a simple way

to include the effects of spin relaxation in the model of the spin-resonator system. If

we assume that the spin relaxation can be characterized by a superoperator of the

form

Λsρ =
X
k

fk (I) ρ gk (I) , (7.14)

for some spin operators fk (I), gk (I), then the contribution of spin relaxation to the

equation of motion for

I+a

† − I−a
®
is given by

Tr
©
(Λsρ)

¡
I+a

† − I−a
¢ª
= Tr

©
ρ (Λ0sI+) a

† − ρ (Λ0sI−) a
ª
,

where

Λ0sF (I) =
X
k

gk (I)F (I) fk (I) .

Equation (7.12) makes the assumption that the contribution of Λs to the equation of

motion for hI±i is

− 1
T2
hI±i = Tr {(Λsρ) I±}

= Tr {ρΛ0sI±}

= hΛ0sI±i ,

which suggests the additional assumption

Λ0sI± = −
1

T2
I±. (7.15)

Equation (7.13) follows from the assumptions (7.14) and (7.15).
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3 Steady-state number of quanta in the resonator

Equations of motion for expectation values can be obtained by multiplying both sides

of the master equation (7.9) by an operator and taking the trace. The following

interaction-frame equations can be obtained in this way:

d

dt


a†a
®
= K − 2

τh

¡
a†a
®
− nh

¢
, (7.16)

K ≡ −ig

I+a

† − I−a
®

(7.17)

d

dt
hIzi = −

1

T1

µ
hIzi−

1

2
PN

¶
+K, (7.18)

d

dt


I+a

† − I−a
®
= − 1

τ1


I+a

† − I−a
®
− 4ig


Iza

†a
®
+ 2ig hI−I+i , (7.19)

1

τ1
≡ 1

τh
+
1

T2
. (7.20)

Note that K represents the rate at which hIzi changes due to the spin-resonator

interaction. Equation (A.10) of Appendix A gives a formula for this rate in the

limiting case where the time constants T1 and T2 are long, with τh so short that the

resonator is only weakly perturbed from thermal equilibrium:

∆ hIzi
∆t

= −4g2τhnh hIzi+ 2g2τh hI−I+i . (7.21)

By using (7.16) through (7.20) to do a steady-state calculation, we can lift this restric-

tion on T1 and T2, and allow for the possibility that the resonator’s state is strongly

perturbed from equilibrium with the thermal reservoir. Setting the left side of (7.19)

equal to zero and using (7.17) to eliminate

I+a

† − I−a
®
gives

K∞ = −4g2τ1

Iza

†a
®
∞ + 2g

2τ1 hI−I+i∞ . (7.22)

(Note that throughout this chapter, the subscript "∞" indicates a steady-state value.)

The similarity between (7.21) and (7.22) is striking. The switch from τh in (7.21)

to τ1 in (7.22) is due to the fact that the superoperator Λs has been included in the

model, and τ1 is replaced by τh in the limit of long T2. In both equations, the first
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term on the right-hand side of the equation characterizes stimulated emission and

absorption by the spins, while the second term on the right-hand side characterizes

spontaneous emission.

We assume that hIzi is sufficiently large, and that the spins interact with the

resonator for a short enough period that


Iza

†a
®
∞ ≈ hIzi∞


a†a
®
∞ .

For simplicity, we also assume that the flow of spins through the cavity is fast enough

that the resonator-induced spin-spin correlations discussed in section 4 of chapter 3

remain weak: 
I2x + I2y

®
≈ N/2, (7.23)

where N is the number of spins interacting with the oscillator. These approximations

allow us to express K∞ as

K∞ = −
2

τc

¡
a†a
®
∞ − nc

¢
, (7.24)

nc ≡
1

2

µ
N

2 hIzi∞
− 1
¶
, (7.25)

τc ≡
¡
2g2τ1 hIzi∞

¢−1
. (7.26)

Note that equation (7.25) defines nc to be the number of quanta in the resonator

when it is at the steady-state "spin temperature," that is, the temperature defined

by the values of N and hIzi∞. In the steady state, equation (7.16) can be expressed

as

0 = − 2
τc

¡
a†a
®
∞ − nc

¢
− 2

τh

¡
a†a
®
∞ − nh

¢
, (7.27)

where nc and nh are the equilibrium values of

a†a
®
at the respective temperatures

associated with the spins and the warm bath. It is natural to interpret equation

(7.27) as implying that 2/τc is a rate constant for the relaxation of

a†a
®
toward the

equilibrium value nc determined by the "spin temperature," just as 2/τh is the rate

constant for relaxation of

a†a
®
toward the value nh. As in the simpler analysis
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presented in section 1, the steady-state number of quanta in the resonator can then

be expressed as 
a†a
®
∞ =

τhnc + τcnh
τh + τc

. (7.28)

The rate constant 2/τc characterizes the cooling of the resonator by many cold

spins, while the rate constant R0 characterizes the cooling of spins by a single res-

onator at zero Kelvins:

2

τc
= 2g2τ1 (2 hIzi∞) , (7.29)

R0 = 2g
2τh. (7.30)

In the case where T2 À τh, spin relaxation does not play a significant role in disrupting

the development of spin-resonator correlations, and τ1 ≈ τh. Under these conditions,

the rate constants given by (7.29) and (7.30) differ by the factor 2 hIzi∞, which can

be considered the "effective number of spins at zero Kelvins" which are cooling the

resonator. In considering numerical examples such as those presented in section 6 of

chapter 5, we have found that R0 achieved values of ∼ 1/ s when the dimensions of

the resonator’s magnets are of order 100 nm or less. The presence of the additional

factor 2 hIzi∞ in equation (7.29) suggests the possibility of observing the exchange of

entropy between spins and resonator at larger size scales, and in section 4 we present

a numerical example to characterize the regime in which substantial cooling could be

observed.

Additional support for the interpretation of 2/τc as a rate constant for cooling

may be obtained in the case where the spins pass by the resonator quickly enough

that they are only weakly perturbed from the hyperpolarized state. In this case, the

method of coarse-graining introduced in Appendix A can be used to derive a formula

for

K ≡ −ig

I+a

† − I−a
®

which is correct to second order in the coupling constant g. Equations (7.18) and

(A.4), as well as equations of motion for I−I+ and Iza
†a, are converted to integral
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equations. (In determining the contribution of Λs to these equations, we assume for

simplicity that the flow of spins past the resonator causes

Iza

†a
®
and 1 hI−I+i to

relax with time constant T1 = T2.) We express K as an iterated integral and we

evaluate the integral over a time step ∆t which is long compared to τh and T1. Since

∆t is long compared to the period of time during which spin-resonator correlations

survive, we can neglect initial spin-resonator correlations. Making the approximation

(7.23) then yields the expression

K = −2g2τ1 (PN)
¡
a†a
®
− nc

¢
, (7.31)

which implies that

2g2τ1 (PN)

is the rate constant for relaxation of

a†a
®
toward equilibrium with the spins. Note

that this rate constant differs from that of (7.29) in replacing 2 hIzi∞ by the hyper-

polarized value of 2 hIzi. This discrepancy is a result of the use of second-order

perturbation theory in calculating the rate constant. Roughly speaking, we can say

that changes in hIzi due to interaction with the resonator are at least second-order

in g. If we replace PN in (7.31) by an expression which includes effects which are

second-order or higher in g, the resulting expression will include terms of 4th order

or higher in g. Since the derivation of (7.31) only considers terms up to second order

in g, it cannot incorporate the relaxation of hIzi to hIzi∞.

At this point it may be tempting to conclude that the cold spins act as a bath

characterized by ringdown time τc and temperature

Tc =
~ωh

kB ln (1 + n−1c )
. (7.32)

Although this approach yields the correct values for

a†a
®
∞, the analysis in sections

5 through 7 shows that this model yields incorrect predictions for decay times of the

spin-resonator modes, the resonator’s response to a driving torque, and the mechan-

ical fluctuations. Section 5 shows that in the regime where substantial cooling has
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occurred, with τh ¿ T2, the spins and resonator are so strongly coupled that it is not

possible to distinguish a mechanical mode or a spin mode.

4 Numerical example of cooling

This section presents a numerical example based on a simplified model in which

polarized liquid xenon flows through a Halbach cylinder [43]. A Halbach cylinder

is a circular tube of magnetic material for which the arrangement of magnetization

produces a nominally uniform magnetic field within the tube and zero field outside

of the tube. The Halbach cylinder is chosen to yield a simple, optimistic estimate of

the size scale at which polarized spins could substantially cool a resonator, since the

nominally uniform field inside the cylinder would allow a relatively large volume of

cold spins to interact with the resonator. For this estimate, we set aside questions

having to do with the technical feasibility of the experiment (e.g., questions about

fabrication of the Halbach cylinder or its thermodynamic stability at small sizes).

Our goal is simply to give a rough characterization of the regime in which polarized

spins passing near a mechanical resonator could have a non-negligible effect on its

temperature.

Consider a Halbach cylinder having inner radius Ri, outer radius Ro, and length

3Ri, with magnetization 1.5T /μ0. The cylinder is mounted on a torsional beam

which runs parallel to the cylinder’s axis and has width and thickness equal to the

cylinder’s inner radius. The torsional beam length is adjusted to the value neces-

sary for resonance with the Larmor frequency of xenon in the field generated by the

Halbach cylinder. We suppose that xenon with a natural composition of isotopes

fills half the volume of the cylinder and that the polarization of 129Xe entering the

cylinder is [44]

P = .70.

The triple point of xenon occurs at 0.81 atm and 161K, and the boiling point of

xenon at 1 atm is 165K; within this temperature and pressure range the density of
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Cylinder Dimensions τh Th T∞ ωh/2π
Ri = 500 nm, Ro = 1μm, L = 1.5μm 290μs 300K 104K 11MHz
Ri = 500 nm, Ro = 600nm, L = 1.5μm 1.3ms 300K 9K 3MHz

Table 7.1: Resonators cooled by hyperpolarized spins

liquid xenon is approximately 22.6 kmol /m3 [45], and we assume this density for our

estimate. If the resonator’s quality factor is Q = 10, 000, then we obtain the results

shown in table 7.1, where

T∞ =
~ωh

kB ln (1 + n−1∞ )
, (7.33)

n∞ ≡

a†a
®
∞ .

(Decreasing the ratio Ro/Ri between the outer radius and the inner radius causes T∞

to decrease continually toward T∞ ≈ 8K as Ro → Ri.)

The transverse decay time of liquid xenon has been measured at 1300 s [46], which

allows us to consider T2 to be determined by the rate at which spins flow through the

cylinder. For the resonators of table 7.1, the rate at which quanta are donated to the

spins is such that hIzi changes by 0.6% or less during a time period of length τh, and so

we consider the interaction time between a spin and the resonator to be substantially

larger than τh without contradicting our assumptions that

Iza

†a
®
∞ ≈ hIzi∞ n∞ and

I2x + I2y
®
≈ N/2. The disruption of spin-resonator correlations is thus primarily due

to the thermal torque which acts on the resonator, and

τ1 ≈ τh.

The value of T∞ scales sharply with resonator size. Scaling up the first cylinder

in table 7.1 by a factor of 10 and the second by a factor of 100 while retaining the

assumption that Q = 10, 000, gives steady-state temperatures near 300K, as shown

in table 7.2. (Note that scaling the Halbach cylinder does not change the field at the

spins, and so the frequency, quality factor, and ringdown time are all held constant

as we scale up the resonators in table 7.1.)
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Cylinder Dimensions Th T∞
Ri = 5μm, Ro = 10μm, L = 15μm 300K 294K
Ri = 50μm, Ro = 60μm, L = 150μm 300K 297K

Table 7.2: Scaled-up spin-resonator systems

It may be considered surprising that cooling becomes negligible at size scales of

∼ 10μm, since one might have guessed that the presence of the term 2 hIzi∞ in (7.29)

would permit cooling to be observed at larger size scales. The nature of the scaling

can be clarified by noting that

2

τc
= 2g2τh (2 hIzi∞)

=
~
2

µ
γ
dBx

dθ

¶2
τh
ωh

∙
hIzi∞
Ih

¸
. (7.34)

In these numerical examples, the two terms which vary as the resonators scale up are

grouped in square brackets on the right side of (7.34). The torsional beams make a

negligible contribution to the moment of inertia Ih in these examples, and we need

only consider the cylinder’s moment of inertia in estimating Ih. Since the shape of

the cylinder does not change during the scaling, we have

Ih ∼ r5,

hIzi∞ ∼ r3,

where r is a characteristic dimension of the cylinder, such as the inner radius. It

follows that
2

τc
∼ r−2

in these examples. It is the strong scaling of g2 with size which causes the cooling

to become negligible as the resonator is scaled up to have dimensions of order 10μm.

(Note that although in our example, the size dependence of g2 is determined solely

by the moment of inertia, similar scaling is obtained for a translational resonator. In

this case, the moment of inertia would be replaced by a mass, and the scale-invariant
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Cylinder Dimensions 2/τh 2/τc
Ri = 500 nm, Ro = 1μm 7000 s−1 13, 000 s−1

Ri = 5μm, Ro = 10μm 7000 s−1 130 s−1

Table 7.3: Dependence of rate constants on size

term dBx/dθ would be replaced by a gradient scaling as r−1.) Table 7.3 shows how

the rate constants 2/τc and 2/τh depend on size for the example resonator having

Ro/Ri = 2.

5 Modes of the spin-resonator system

In estimating a "steady-state temperature" T∞ based on the expectation value n∞,

we did not consider the question of whether the cooled oscillator "continues to look

like a mechanical oscillator" in the regime where T∞ differs substantially from Th.

In this section, we answer that question by studying the modes of the spin-resonator

system. Although most of our results will be derived from the master equation (7.9),

the nature of the system can initially be clarified using a model in which spins and

resonator are coupled by the lab-frame Hamiltonian

Hsh = −γ~
dBx

dθ
Ixθ,

rather than the interaction-frame Hamiltonian

V = g
¡
I+a

† + I−a
¢
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obtained using the rotating-wave approximation. The lab-frame equations of motion

are

d

dt
hθi = hpθi

Ih
− hθi

τh
, (7.35)

d

dt
hpθi = −Ihω2h hθi−

hpθi
τh

+ γ~
dBx

dθ
hIxi , (7.36)

d

dt
hIxi = −ω0 hIyi−

hIxi
T2
, (7.37)

d

dt
hIyi = ω0 hIxi−

hIyi
T2

+ γ
dBx

dθ
hIzθi , (7.38)

d

dt
hIzi = −

1

T1

µ
hIzi−

PN

2

¶
− γ

dBx

dθ
hIyθi . (7.39)

Note the formal similarity between the equations for the oscillator variables hθi, hpθi

and those of the transverse spin variables hIxi, hIyi. Indeed, we can write second-

order differential equations for hθi and hIxi which highlight the formal similarity:

d2

dt2
hθi+ 2

τh

d

dt
hθi+

µ
ω2h +

1

τ 2h

¶
hθi = γ~

Ih

dBx

dθ
hIxi , (7.40)

d2

dt2
hIxi+

2

T2

d

dt
hIxi+

µ
ω2h +

1

T 22

¶
hIxi = ωhγ

dBx

dθ
hIzθi . (7.41)

For sufficiently large hIzi and short interaction time between each spin and the

resonator, we can approximate hIzθi by hIzi hθi and consider hIzi to be approximately

constant. Under these conditions, the evolution of the variables hθi, hIxi is formally

equivalent to that of two coupled oscillators, and interpreting the motion in this way

can lead to an intuitive understanding of the system. We define the moment of

inertia If of the formal oscillator associated with the variable hIxi to be

If =
~

ωh hIzi∞
,
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and we rewrite (7.40) and (7.41) as

Ih
d2

dt2
hθi+ 2Ih

τh

d

dt
hθi+ Ih

µ
ω2h +

1

τ 2h

¶
hθi = γ~

dBx

dθ
hIxi , (7.42)

If
d2

dt2
hIxi+

2If
T2

d

dt
hIxi+ If

µ
ω2h +

1

T 22

¶
hIxi = γ~

dBx

dθ
hθi . (7.43)

The coupling between the two formal oscillators is associated with the potential func-

tion

V1 = −γ~
dBx

dθ
hIxi hθi . (7.44)

Note that a potential function of the same form is obtained when two linear harmonic

oscillators are coupled by a spring. For instance, let x1 and x2 represent the coordi-

nates of two linear oscillators, and suppose that they are coupled by a spring whose

potential energy is

A (x1 − x2)
2 = Ax21 +Ax22 − 2Ax1x2. (7.45)

In (7.45), the terms Ax21 and Ax22 can be considered to modify the potential wells

of the individual oscillators, while the term −2Ax1x2 couples the two oscillators.

We can therefore visualize the spin-resonator system as consisting of two oscillators

coupled by a spring.

In order to obtain tractable solutions for the evolution of the system, we must

replace (7.35) through (7.38) with equations obtained under the rotating-wave ap-

proximation. The master equation (7.9), in combination with the approximations

hIzai ≈ hIzi hai ,

hIzi ≈ constant

≡ hIzi∞ ,
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yields a linear equation in the two variables hai, hI+i:

d

dt
hai = −

µ
iωh +

1

τh

¶
hai− ig hI+i , (7.46)

d

dt
hI+i = −

µ
iωh +

1

T2

¶
hI+i− 2ig hIzi∞ hai . (7.47)

We look for a steady-state solution to equations (7.46) and (7.47) of the form

hai (t) = e−(iω
0+1/τ 0)t hai (0) , (7.48)

hI+i (t) = e−(iω
0+1/τ 0)t hI+i (0) , (7.49)

hI+i (0) = η hai (0) . (7.50)

A motivation for this ansatz is the fact that steady motion of the oscillator creates a

sinusoidal transverse field; in the limit of weak spin-oscillator coupling, we expect the

response of the spins to be similar to the linear response described by the steady-state

solutions to the Bloch equations. Substituting (7.48) through (7.50) into (7.46) and

(7.47) yields a solution for η, ω0, τ 0. We obtain

η =
1±

q
1− 8 hIzi∞ (gb)

2

2gb
i, (7.51)

1

b
≡
µ
1

τh
− 1

T2

¶
, (7.52)

and

ω0 = ωh + gRe (η) , (7.53)

1/τ 0 = 1/τh − g Im (η) . (7.54)

The physical content of these equations can be clarified by writing (7.53) and

(7.54) in a more explicit form. Define

s ≡ 8 hIzi∞ (gb)
2
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and consider two cases. For s ≤ 1, we have

ω0 = ωh, (7.55)

1

τ 0
=
1

2

µ
1

τh
+
1

T2

¶
±
√
1− s

2

µ
1

τh
− 1

T2

¶
, (7.56)

while for s > 1, we have

ω0 = ωh ±
√
s− 1
2

µ
1

τh
− 1

T2

¶
, (7.57)

1

τ 0
=
1

2

µ
1

τh
+
1

T2

¶
. (7.58)

Equations (7.55) through (7.58) can be understood as natural results for a system of

two coupled oscillators. In the limit of strong coupling between the oscillators (that

is, large g or large hIzi∞) or similar dissipation rates for the two oscillators (that is,

large |b|), energy can be exchanged between the oscillators quickly enough that the

net dissipation rate is just the average of 1/τh and 1/T2. The ratio |hai / hI+i| that

characterizes the relative excitation of the spins and the resonator is equal for the two

modes, so neither mode can be specifically considered to be the mechanical mode. In

the limit of weak coupling or dissimilar dissipation rates, equation (7.56) shows that

the ringdown times for the two modes approach τh and T2 as g → 0. The solution

with ringdown time ∼ τh has larger excitation in the mechanical oscillator than the

solution with ringdown time ∼ T2.

In section 4, we presented numerical examples in which resonators were cooled by

hyperpolarized spins from the ambient temperature of 300K to temperatures of 100K

or less. The results obtained in the current discussion imply that for these numerical

examples, the spins and resonator are so strongly coupled that it is not possible to

distinguish a mechanical mode or a spin mode. Indeed, we will now show that the

value s = 1, which corresponds to the disappearance of distinct spin and mechanical

modes, occurs when

T∞ ≈
4

5
Th.
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Note first that when one of the decay times τh, T2 is much longer than the other, the

term s which determines the form of the modes can be written in a simpler way, since

in this case

b ≈ min {τh, T2} .

We find that

s ≈ 4τ1
τc
,

where the rate constant 2/τc for cooling of the resonator by the spins is given by

(7.29), and τ1 is defined by (7.20). When τh ¿ T2, as in the numerical examples of

cooling that we considered, the transition to the strong-coupling regime occurs when

4τh
τc
≈ 1. (7.59)

Equation (7.59) implies that

n∞ =
τhnc + τcnh
τh + τc

≈ 4
5
nh,

where we have assumed that 4nh À nc. If

n∞ À 1,

if follows that

T∞ ≈
4

5
Th, (7.60)

since

T∞
Th

=
ln (1 + 1/nh)

ln (1 + 1/n∞)

≈ n∞
nh
.

Substantial cooling of the resonator by cold spins therefore requires that the coupling
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be strong enough to transform the mechanical mode into a mode which includes sig-

nificant contributions from both mechanical motion and spin precession. Consistent

with this observation is the fact that for the numerical example in which Th = 300K

to and T∞ =∼ 100K,

s ≈ 8.

In section 1 we analyzed the spin-resonator system using a simple model in which

the cold spins were represented by a cold bath whose properties were not affected

by the warm bath. This model is incorrect in the general case, for two reasons.

First, the theory supporting the use of a linear, time-independent superoperator to

describe relaxation due to coupling with a reservoir [7] is valid only in the limit of

weak coupling with the reservoir. As a result, it is only in the limit of weak-spin

resonator coupling (s ¿ 1) that the cold spins might be expected to behave as a

cold reservoir. Second, the rate constant 2/τc, which characterizes the resonator’s

relaxation toward equilibrium with the spins, depends on τh, that is, on the coupling

between the resonator and the warm bath. Except in the limiting case where 2/τc is

independent of the resonator’s coupling to the warm bath, it is incorrect to represent

the spins as a reservoir which acts independently of the warm bath. This limit

corresponds to the condition T2 ¿ τh, since this condition guarantees that it is spin

relaxation rather than the ringdown time τh that limits the lifetime of spin-resonator

correlations. In the regime defined by

s¿ 1, (7.61)

T2 ¿ τh, (7.62)

however, we might expect to recover the results obtained from equation (7.1) to be

valid. Indeed, replacing
√
1− s by 1 − s/2 in (7.56) and using condition (7.62) to

simplify the resulting expression shows that the decay time of the mechanical mode
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is

1

τh
+ 2g2T2 hIzi∞ =

1

τh
+
1

τc

≡ 1

τ∞
,

which agrees with equation (7.3), the result obtained by treating the cold spins as an

independent thermal bath.

6 Response of the system to a torque acting on

the resonator

In order to determine how the coupling to the hyperpolarized spins modifies the res-

onator’s sensitivity as a detector of an external torque, we will calculate the system’s

response to a torque acting on the resonator. An external torque f (t) corresponds

to a term −f (t) θ added to the oscillator’s Hamiltonian Hosc in (7.9), so that the

equations governing hθi and hI+i become

d

dt
hai = −

µ
iωh +

1

τh

¶
hai− ig hI+i+ i

r
1

2Ih~ωh
f (t) , (7.63)

d

dt
hI+i = −

µ
iωh +

1

T2

¶
hI+i− 2ig hIzi∞ hai . (7.64)

We consider the case where

f (t) = Fe−iωt (7.65)

and we look for a steady-state solution of the form

hai (t) = Aωe
−iωt, (7.66)

hI+i (t) = ηω hai (t) = ηωAωe
−iωt. (7.67)
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The solution for Aω and ηω can be expressed as½
(ω − ωh) f (ω) +

i

τd (ω)

¾
Aω = −

r
1

2Ih~ωh
F , (7.68)

ηω =
2g hIzi∞

(ω − ωh) + i/T2
, (7.69)

where

f (ω) ≡ 1− 1

τcτ1
©
(ω − ωh)

2 + 1/T 22
ª , (7.70)

1/τd (ω) ≡
1

τh
+

1

T2τcτ1
©
(ω − ωh)

2 + 1/T 22
ª . (7.71)

The content of (7.68) becomes clearer if we compare it to the formula obtained in

the case where the coupling constant g is zero:

½
(ω − ωh) +

i

τh

¾
Aω = −

r
1

2Ih~ωh
F . (7.72)

Although (7.72) is an unusual way to describe the steady-state response of the oscil-

lator, it is straightforward to verify that in the limit of weak coupling to the reservoir,

it yields the familiar steady-state expression for hθi (t). We may calculate the me-

chanical response to a torque at frequency ωh as if the ringdown time were

1

τd
=
1

τh
+ 2g2T2 hIzi∞ . (7.73)

At frequencies ω 6= ωh, the resonator responds as if its ringdown time were τd (ω) and

the driving torque were off resonance by (ω − ωh) f (ω).

In the case where (7.62) holds, we recover the expression τ∞ obtained by treating

the spins as a cold bath:

1

τd
=
1

τh
+ 2g2τ1 hIzi∞

=
1

τ∞
.
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For the numerical examples we considered in section 4, however, the resonator’s linear

response will be considerably weaker at resonance than it would be for a mechanical

oscillator with ringdown time τ∞, since

1

τd
=
1

τh
+ 2g2T2 hIzi∞

À 1

τh
+ 2g2τh hIzi∞

≈ 1

τ∞
.

A physical interpretation of this conclusion is that in the presence of the cold spins

with long relaxation time, energy initially donating to the resonator by the driving

torque is efficiently transferred onward to the cold spins, since the long relaxation

time of the spins allows for a strong resonant response to the driving of the spins by

the mechanical resonator. The transverse spin magnetization then exerts a torque on

the resonator which counteracts the external torque and prevents a large mechanical

response from developing.

The correctness of this interpretation can be demonstrated formally by considering

the steady-state form of equation (7.63):

−iωAω = −
µ
iωh +

1

τh

¶
Aω − igηωAω + i

r
1

2Ih~ωh
F . (7.74)

The four terms in (7.74) represent distinct physical contributions which must cancel

in the steady state. The last term on the right side of the equation represents the

external torque, while the term − (iωh + 1/τh)Aω represents the torques associated

with the potential well and the damping by the warm bath. The term −iωAω can

be interpreted as an "inertial torque." The remaining term, −igηωAω, characterizes

the torque exerted on the resonator by the spins. The torque associated with the

imaginary part of −igηω may be interpreted as modifying the resonator’s potential

energy, since it oscillates in phase with the torque exerted by the potential well, and

it is responsible for replacing the term (ω − ωh) in (7.72) by (ω − ωh) f (ω) in (7.68).

The torque associated with the real part of −igηω acts in phase with the damping
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torque exerted by the warm bath, and it can be considered to damp the mechanical

motion, causing τh to be replace by τd (ω). Equation (7.69) shows that the value of ηω

is peaked around ω = ωh, and in the case where T2 is long, the peak value of ηω will be

large. This peak value will be associated with a large transverse magnetization which

exerts a damping torque on the resonator. Even in the case where the condition

1

τc
= 2g2τh hIzi∞

¿ 1

τh

implies that cooling will be negligible, a sufficiently large value of T2 will guarantee

that during steady-state driving, most of the energy donated to the spin-resonator

system by an external torque acting on the resonator will take the form of spin exci-

tation. In the regime where T2 À τh, the mechanical resonator could be considered

a device for transferring an external torque at frequency ωh into excitation of hyper-

polarized spins.

Although the mechanical response to a driving torque at ωh becomes weak when

T2 À τh, equations (7.70) and (7.71) allow for the possibility of a resonant mechanical

response at frequencies which are out of resonance with the spins. This occurs at

frequencies ω sufficiently far from ωh that the damping torque exerted by the spins is

negligible, but close enough to ωh that the resonator’s potential function is modified

by the spins, yielding

(ω − ωh) f (ω) = 0.

Under these conditions, the mechanical response has the same amplitude that it would

if the spins were absent and the driving torque were at frequency ωh. To demonstrate

this formally, note that when

(ω − ωh)
2 À 1

T 22
, (7.75)

the resonator responds as if its ringdown time were

1

τd
=
1

τh

µ
1 +

1

T2τc (ω − ωh)
2

¶
, (7.76)
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and the driving torque were off resonance by

(ω − ωh) f (ω) = (ω − ωh)

µ
1− 1

τcτh (ω − ωh)
2

¶
. (7.77)

When ω satisfies

(ω − ωh)
2 À 1

τcT2
(7.78)

in addition to (7.75), then

τd ≈ τh. (7.79)

If

τc ≤ T2, (7.80)

then condition (7.75) automatically holds when (7.78) does, and we assume that this

is the case, since τc ≥ T2 À τh would otherwise imply that cooling is negligible. The

condition T2 À τh then allows us to chose ω such that (7.75) and

1

τcτh (ω − ωh)
2 ≈ 1 (7.81)

are both satisfied. Equation (7.77), (7.79), and (7.81) then imply that the resonator

responds as if the spins were absent and ω were resonant with the mechanical fre-

quency. Note that in the limit of strong-coupling, defined by sÀ 1, equation (7.81)

is satisfied at the frequencies of the two modes of the system.

As an illustration, we consider the example resonator of table 7.1 which is cooled

from Th = 300K to T∞ = 104K. The rate at which quanta are donated to the

spins is such that hIzi changes by 0.1% during a time period of length τh, and so we

may choose the flow rate such that the interaction time between spins and resonator

is T2 = 50τh, without invalidating the assumption that the spins are only weakly

perturbed from the hyperpolarized state during their interaction with the resonator.

Since

τh ≈ 2τc,
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conditions (7.78) can be expressed as

(ω − ωh)
2 À 1

25τ 2h
,

and the zero of f (ω) occurs at

(ω − ωh)
2 ≈ 2

τ 2h
. (7.82)

When ω satisfies (7.82), the mechanical response has the same magnitude that if would

have if the spins were absent and ω were resonant with the mechanical frequency.

7 The cooled mode as a sensitive detector?

Equation (7.5), obtained by modelling the spins as a cold bath, predicts that the noisy

thermal torque which acts on the resonator will not be diminished by the presence

of the cold spins. To investigate the validity of this result, we use the symmetric

correlation function

C (t2 − t1) =
1

2
hθ (t2) θ (t1)− θ (t1) θ (t2)i

to evaluate the thermal fluctuations of a system. We assume that the mechanical

fluctuations during driving by an external torque can be estimated using the steady-

state correlation function during cooling in the absence of a external torque. As

support for this approach, we note that our model of the spin-resonator system has

yielded a linear system, and that the motion of such a system under the influence

a driving force or torque is the sum of the steady-state driven motion plus motion

identical with that of the undriven system.

The details of the derivation, as well as the general formula for C (t), are presented

in Appendix N. In the limit where (7.61) and (7.62) hold, we recover the results

obtained by treating the cold spins as a thermal bath: the correlation function

reduces to that of an oscillator which has ringdown time τ∞ and is at temperature
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T∞. The examples we considered in which cooling was substantial had T2 À τh and

sÀ 1, and in this regime, C (t) can be expressed as

C (t) ≈ exp (−t/2τh) cos (ωht)
©
θ2
®
∞ cos (dt)− c2 hIyθi∞ sin (dt)

ª
, t > 0 (7.83)

≈ ~
Ihωh

n∞ exp (−t/2τh) cos (ωht)
n
cos (dt)−

p
τh/τc sin (dt)

o
, t > 0 (7.84)

≈ ~
Ihωh

n∞

µ
1 +

τh
τc

¶
exp (−t/2τh)× (7.85)

cos ((ωh + d) t+ φ) + cos ((ωh − d) t− φ)

2
, t > 0,

where

d ≈ 1/√τhτc,

c2 = −
r

2~
Ihωh

2gτhp
4τh/τc − 1

,

with φ a phase constant that can be evaluated using equation (N.23). (In making

this simplification, we have also assumed n∞ À 1/2 and n∞ À nc.)

In the absence of the spin-resonator coupling, the correlation function would be

C1 (t) =
~

Ihωh
nh exp (−t/τh) cos (ωht) , t > 0. (7.86)

By comparing (7.83) through (7.85) with (7.86), we can give a physical interpretation

of the spins’ effect on the mechanical fluctuations in this regime. From (7.84),

we see that in cooling the resonator, the spins reduce the instantaneous correlation

C (0) = hθ2i from (~/Ihωh)nh to (~/Ihωh)n∞, the same value it would have for an

oscillator at temperature T∞. The coupling to the spins also slows down the decay

of the correlations, since the time constant in the exponential term increases from

τh to τ 0 = 2τh, the decay constant for each of the spin-resonator modes. Since the

modes of the system have frequencies ωh ± d, the correlations oscillate at these two

frequencies rather than at frequency ωh, as shown by equation (7.85). Note that

the resonant mechanical response will be observed at these frequencies, since they
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satisfy equation (7.81). Finally, we see from (7.83) and (7.84) that although the

spin-resonator correlations characterized by hIyθi∞ do not contribute to C (0), they

are converted to correlations in θ within a time t = π
√
τhτc/2. The contribution made

by the correlation hIyθi∞ increases the amplitude of C (t) by a factor of 1+ τh/τc, as

can be seen from equation (7.85).

The significance of the term hIyθi∞ can be understood by noting from (7.39) that

in the absence of the rotating-wave approximation, the rate K at which quanta are

transferred from spins to oscillator is given by

K = −γdBx

dθ
hIyθi .

The energy exchange characterized by K is mediated by fluctuating fields which

induce correlations Iy (t1) θ (t1). The instantaneous value of these correlations can

be viewed as a fluctuating random variable, and the conversion of this fluctuating

variable into fluctuating values of θ (t1) θ (t2) and θ (t2) θ (t1) can make a significant

contribution to the mechanical fluctuations. Since the term n∞ (1 + τh/τc) appearing

in (7.85) can be written as

n∞

µ
1 +

τh
τc

¶
= nh +

τh
τc
nc,

we can consider the effective number of quanta in the resonator to be greater than nh

for purposes of estimating the mechanical fluctuations. Although the instantaneous

correlation hθ2i∞ has the value characteristic of a cooled oscillator, the amplitude of

C1 (t) is not decreased by the cooling process.

The conditions T2 À τh and s À 1 guarantee that the mechanical response to

torques at the frequencies ωh ± d is that of a resonant mechanical oscillator with

ringdown time τh. At these frequencies, the spectral density of the thermal torque

can therefore be written as

SN =

µ
4I2hω

2
h

τ 2h

¶
Sθ,

where the spectral density Sθ for position is found by taking the Fourier transform
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of C (t), and where the difference between ω2h and (ωh ± d)2 has been neglected. We

can obtain Sθ by noting that the spectral density obtained from a correlation function

of the form

A exp (−t/τ) cos (ωat)

yields a spectral density which can be approximated as

A
τ

1 + τ 2 (ω − ωa)
2

provided that τωa À 1 and |ω − ωa| ¿ ωa. Since the phase factors φ in (7.85) have

negligible effect on the spectral density, Sθ can be written as the sum of two terms,

each having the form

~
2Ihωh

n∞

µ
1 +

τh
τc

¶
2τh

1 + 4τ 2h (ω − ωi)
2 ,

where ωi = ωh ± d is a frequency of one of the modes of the spin-resonator system.

We find that at each of these frequencies

Sθ ≈
τh~
Ihωh

µ
nh +

τh
τc
nc

¶
,

SN ≈
4Ih~ωh
τh

µ
nh +

τh
τc
nc

¶
. (7.87)

The spectral density of the mechanical fluctuations and the thermal torque at fre-

quencies ωh ± d are thus larger than they would be at ωh in the absence of the

hyperpolarized spins.

In conclusion, the use of hyperpolarized spins to cool a mechanical resonator does

not improve its sensitivity as a detector of an applied torque, since the mechanical

thermal noise, characterized by equation (7.87), is not decreased by the coupling to

the hyperpolarized spins; indeed, we have found that when n∞ À 1/2 and n∞ À nc,

the thermal torque at the eigenfrequencies ωh ± d becomes larger than it would be

at ωh in the absence of the hyperpolarized spins. In this regime, as well as in the

regime where the spins behave as a cold bath, the noisy thermal torque acting on the
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resonator is not decreased by the presence of the cold spins.




