
116

Chapter 5

Resonator design

1 Description of the resonator and the detection

scheme

Figure 5.1 shows a resonator that we propose to use for NMR study of nanoscale

samples. The design has a spin sample placed between magnetic cylinders, with the

sample enclosed by a silicon "paddle" which separates the two cylinders. Torsional

motion of the beam causes the magnetic "sandwich" to rotate, and a transverse field

at right angles to the beam develops as a result of the rotation. Since the sample

rotates with the sandwich, there is no relative motion between the spins and the

magnetic cylinders. The field at the spins changes as the resonator moves, however,

and so the spins are coupled to the mechanical coordinate.

The mechanical resonator can be used to polarize spins and detect their spec-

trum at low temperatures. Between transients, the resonator induces longitudinal

spin relaxation. At mK temperatures, the spin-lattice interactions which restore

the spins to thermal equilibrium between transients become "frozen out," and the

time constant T1 for relaxation to equilibrium increases by orders of magnitude over

the room temperature value. Slow relaxation of the spins to thermal equilibrium

translates to a pathologically long delay between transients, which makes acquisition

of many transients impractical. Resonator-induced longitudinal relaxation replaces

spin-lattice relaxation as a means of restoring the spin system to equilibrium between
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Figure 5.1: Torsional resonator for force-detected NMR spectroscopy. The sample
is “sandwiched” between ferromagnetic cylinders, and it rotates with the sandwich
about the axis of the torsional beam. The transverse spin dipole couples to the me-
chanical coordinate through the oscillating transverse field generated by the rotating
sandwich.

transients.

In addition to inducing longitudinal relaxation, the resonator can be used to de-

tect the NMR spectrum. The BOOMERANG scheme for force-detected NMR spec-

troscopy [2, 13, 21, 22] detects a single point of the free-induction decay for each

measured transient. In this scheme, a conventional NMR pulse sequence is applied

to the spins, and the spins then precess freely for a period of time without being

coupled to the resonator. At time t1 during the FID, a component hIx (t1)i of the

sample’s transverse spin is measured by using this component to drive the mechanical

resonator. For the resonator shown in figure 5.1, this scheme could be realized by

moving the Larmor frequency out of resonance with the mechanical frequency during

the NMR pulse sequence and the period of free spin precession, and then performing

a π/2 pulse to store hIx (t1)i along z while the Larmor frequency is brought back into

resonance with the mechanical frequency. An additional π/2 pulse returns hIx (t1)i

to the transverse plane, at which point it is spin-locked. The spin-locked transverse

dipole exerts a driving force on the mechanical resonator, and the resulting mechan-
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ical motion is detected. Analysis of the mechanical motion yields a measurement

of hIx (t1)i . By repeating the measurement for a range of values t1, a record of the

spins’ time evolution is obtained, and Fourier analysis yields an NMR spectrum.

This measurement scheme extracts information by analyzing the mechanical re-

sponse to torques exerted by the spin sample. It is therefore essential that the applied

radiofrequency (RF) field not drive the resonator during the spin-locking. This goal

can be achieved by applying the RF in pulses along the length of the torsion beam.

A magnetic field directed along the length of the beam does not drive the torsional

motion, so an ideal applied field would drive only the spins without imparting motion

to the resonator. If imperfections in the fabricated structures cause the resonator to

be driven by the applied RF, the mechanical response to the spins can be separated

from the mechanical response to the applied RF by applying the spin-locking field in

pulses. Between pulses, excitation which has been imparted to the resonator by the

applied field will decay quickly on the time scale required for decay of the precessing

transverse spin dipole. After the excitation due to the applied field has decayed, the

mechanical motion observed up to the beginning of the next RF pulse will be due to

driving by the spins. (Pulsed spin-locking of a solid sample is discussed in reference

[26].)

Detection of the torsional motion might be accomplished by means of a single-

electron transistor (SET). A scheme for SET detection of translational mechanical

motion has been demonstrated experimentally at a level of sensitivity near the quan-

tum limit [25]. Mechanical motion changes the state of the SET by modulating the

gate capacitance. This scheme might be adapted for the detection of torsional mo-

tion by capacitively coupling electrodes to the magnetic sandwich, with the coupling

designed in such a way that the capacitance is modulated by the mechanical motion.

The resonator design shown in figure 5.1 can be modified for purposes of magnetic

resonance imaging. Figure 5.2 shows a resonator design which is appropriate for

imaging a small sample. The sample is placed a hole in the silicon paddle, and the

gradient created by the magnetic cylinder selects a resonant section of the sample for

imaging. Scanning the applied field shifts the position of the resonant section being
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Figure 5.2: Torsional resonator for force-detected NMR imaging. The cylinder creates
a field gradient which selects a resonant slice of the sample for imaging, and the
transverse spin dipole couples to the mechanical coordinate through the oscillating
transverse field generated by the moving cylinder.

detected and allows imaging of the sample.

2 Selection of the resonator design

The resonator design shown in figure 5.1 was selected after alternative designs were

considered. Three types of mechanical motion were considered: 1) Radial motion

of a magnet along a line connecting the magnet to the spins, 2) Horizontal motion

of a magnet placed above the spins, and 3) Rotation of a hollow magnet or an array

of magnets around an axis passing through the spins. The figure of merit used to

compare different designs was the magnitude of the coupling constant g defined by

equation (2.9). Since the rate constant for longitudinal relaxation of a single spin is

Rh = 2g
2τh (nth + 1)

∝ g2,
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the magnitude of g characterizes the efficiency with which a particular form of me-

chanical motion can cool spins. We found that the cooling efficiency of these three

types of motion was similar, with the magnitude of g varying by a factor of order

unity between resonator designs.

The choice to use a torsional resonator was motivated by the fact that spins can be

coupled to torsional mechanical motion without the need for relative motion between

the sample and nearby magnets. Surface friction between nearby moving parts can

decrease cooling efficiency as well as detection sensitivity, since damping decreases

the magnitude of the mechanical response to forces or torques exerted by the spins.

Relative motion between the sample and nearby moving parts is unavoidable if the

mechanical motion is translational, but it can be eliminated by the use of a torsional

resonator. This can be seen by noting first that the spins drive the resonator only if

mechanical motion modulates the interaction between the spins and moving magnets.

If both the sample and the magnets move in unison along a straight line, with no

relative motion occurring between sample and magnets, the spin-magnet interactions

are not modulated by the motion. By way of contrast, consider an idealized example

in which an array of magnets creates a uniform field at the spin sample. If both

the magnets and the sample are rotated together, with no relative motion occurring

between sample and magnets, the spins experience a rotating field, and the interaction

between the spin degrees of freedom and the magnet array is modulated as the array

rotates. Use of a torsional resonator therefore eliminates the need for relative motion

between the sample and nearby moving magnets.

Two types of torsional resonators were considered. In addition to the design

shown in figure 5.1, we studied a design in which the sample is placed at the center

of a short magnetic tube, with the axis of the tube aligned with the applied field.

The tube’s axis rotates out of alignment with the applied field as the resonator moves

out of equilibrium position. The design of figure 5.1 was selected instead in order to

create a more homogeneous field at the spins.

Our initial estimates of g were based on a simplified model in which the ferro-

magnetization of the resonator rotates with the resonator itself, regardless of the
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magnitude of the static applied field. Calculations of g based on this model sug-

gested that for the size scale at which efficient cooling might be achieved, nanoscale

mechanical resonators would have frequencies corresponding to the Larmor frequency

of hydrogen in a large applied field. Since a large applied field would tend to keep

the ferromagnetization aligned with the applied field rather than rotating with the

resonator, the simplified model we were using was of doubtful validity in the regime

of interest, and we considered instead a model in which the magnetization remains

continually aligned with the applied field as the resonator moves. As discussed in

section 5.1, we found that the strength of the spin-resonator coupling was increased

by the switch from a model which assumed infinitely hard magnetic materials to a

model which assumed soft magnetic materials. Section 4 discusses the validity of

our assumption that the magnetization remains aligned with the applied field as the

resonator moves.

3 Condition for resonance between the spins and

the resonator

Efficient energy transfer from spin to resonator can only occur if the precession fre-

quency of the spins is resonant with the mechanical frequency. In deriving the inter-

action Hamiltonian in section 1 of chapter 2, the resonance condition was expressed

as

ω0 = −ωh, (5.1)

since ωh is positive by definition, and since

ω0 = −γBz

is negative in the common case where B is parallel to the positive z-axis yields and γ

is positive. Note, however, that the sign of −γBz depends on the choice of coordinate

axes; if the coordinate axes are rotated so that the z-axis is directed opposite B, the
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sign of −γBz changes, while the physical resonance between spins and mechanical

oscillator is unchanged. It follows that the resonance condition could be written as

ω0 = ±ωh, (5.2)

with the sign determined by the choice of reference frames rather than by the physical

nature of the problem.

In designing a device for which spin precession is resonant with mechanical motion,

we express (5.2) as

ω20 = ω2h, (5.3)

or equivalently

γ2B2
z =

kh
Ih
, (5.4)

where kh and Ih are the respective spring constant and moment of inertia. If the

mechanical energy and the energy of the electromagnetic field energy both vary as the

resonator moves, then the kh and Ih will each include a contribution associated with

the electromagnetic field as well as a contribution associated with the mechanical

motion. Appendix J shows by means of a numerical example that the contribution

to Ih associated with the electromagnetic field is negligible. An expression for the

electromagnetic contribution to kh is derived in Appendix K. This contribution

is determined by the dependence of magnetostatic energy Umag on the resonator’s

coordinate, where

Umag = −μ ·Ba −
1

2

Z
M ·Bh d

3x. (5.5)

In (5.5), Ba is the applied field, Bh is the resonator’s magnetic field, and M, μ are

its respective magnetization and dipole moment. The magnetic spring constant kmag

is given by

kmag =
d2Umag
dθ2

. (5.6)

In general, both terms on the right side of (5.5) can contribute to kmag, but

simplifications are possible in two limiting cases. For a sufficiently hard magnetic
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material or a sufficiently weak applied field, M remains constant within a reference

frame fixed in the resonator. In this case, the second term on the right side of (5.5)

does not depend on the resonator coordinate θ and may be dropped for purposes of

finding kmag. If the applied field lies along the positive or negative z-axis and the

dependence of μz on θ is given by

μz (θ) = μz cos θ,

equation (5.6) becomes

kmag = μzBa,z. (5.7)

In the opposite limit, the applied field is sufficiently large that μ remains aligned with

Ba as the resonator moves, and it is the second term of (5.5) which determines kmag,

since μ ·Ba is constant. In this limit, kmag is a constant which does not depend on

the exact value of Ba:

kmag =
d2

dθ2

½
−1
2

Z
M ·Bh d

3x

¾
. (5.8)

The resonance condition (5.4) can be written in the form

γ2 |Ba +Bh|2 =
kbeam + kmag

Ih
, (5.9)

where kbeam is the spring constant of the elastic suspension. The applied field may

be considered the variable determined by the solution of this equation. In evaluating

resonator designs, we used (5.7) or (5.8) as the magnetic spring constant. Finite-

element software (Maxwell 3D v11, Ansoft Corporation, Pittsburgh) was used to

compute the magnetic spring constant given by (5.8).

In general, equation (5.9) has more than one solution. If the magnetic spring

constant is given by (5.7), for instance, there are always two solutions to (5.9). In

the examples we considered, one of the solutions corresponded to an applied field

which was sufficiently large that protons at 10 mK would be highly polarized in the
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field. We used this solution in our initial comparison of different resonator designs.

4 Model of the resonator’s magnetization

The resonator was modelled as having uniform magnetizationM which remains con-

tinually aligned with the applied field Ba. In this section we justify that approxi-

mation using analytic expressions for the demagnetizing field which is present within

uniformly-magnetized spheroids of soft magnetic material. In keeping with our use

of the notation Bh for the resonator’s field, we also will use Bh to denote the field of

a given spheroid.

4.1 Uniform magnetization

The field Bh within a uniformly-magnetized spheroid is itself uniform and is given by

[27]

Bh = −μ0 (NaMx, NaMy, NcMz) + μ0M. (5.10)

Here the x-axis, y-axis, and z-axis coincide with the spheroid axes of length a, a, and

c, respectively, and Na, Nc are constants which depend only on the ratio r = c/a [27].

In the limiting case where r → 0 (thin disc), we have

Na → 0,

Nc → 1,

while in the case r→∞ (long rod), we have

Na → 1/2,

Nc → 0.
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Equation (5.5) gives the magnetostatic energy Umag of the spheroid:

Umag = −μ ·Ba −
1

2

Z
M ·Bh d

3x.

Consider the problem of finding the shape which minimizes the magnetostatic energy

of a spheroid of a given volume and magnetization in the absence of an applied field.

From (5.10), we have

Umag = −
1

2
μ0

Z
M ·Md3x+

1

2
μ0

Z ¡
NaM

2
x +NaM

2
y +NcM

2
z

¢
d3x,

and since the constants Na, Nc are nonnegative,

Umag ≥ −
1

2
μ0

Z
M ·M d3x.

The minimum magnetostatic energy

Umin = −
1

2
μ0

Z
M ·M d3x

is achieved, for instance, in the limiting case of a arbitrarily long, thin rod, with M

lying along the axis of the rod. We can use Umin as an estimate of the minimum

magnetostatic energy which can be achieved by a given volume of magnetization

M. The term −μ0 (NaMx, NaMy, NcMz) appearing in (5.10) can be considered a

"demagnetizing field," since it raises the energy of a uniformly-magnetized structure

above Umin and introduces the possibility that the low-energy configuration ofMmay

be nonuniform.

The field required to saturate a magnet to a state of uniformmagnetization is often

characterized in terms of the demagnetizing field which exists within the magnet [27].

If the magnetization is nonuniform due to demagnetizing fields within the magnet,

application of an external field stronger than the demagnetizing fields is expected

to saturate the magnet [27]. Since the demagnetizing field within the ferromagnetic
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cylinders of the mechanical resonator is at most of order

μ0M ≤ 2T ,

it is reasonable to model the mechanical resonator’s magnetization as uniform when

the applied field is of order 10T or more, as in the examples we have considered.

Even in the absence of an applied field, exchange interactions will produce uniform

magnetization in a sufficiently small particle. Since exchange energy is increased

whenM varies over small distances within a magnet, the exchange energy associated

with variation in M across a nanoscale magnet eventually becomes larger than the

magnetostatic energy associated with uniform magnetization [28], with the result

that the low-size limit for multidomain particles is in the range 20-800 nm [29]. Both

the dimensions of the resonator’s ferromagnetic cylinders and the magnitude of the

applied field suggest that the magnetization should be modelled as uniform.

4.2 Magnetization constant in the lab frame

In addition to considering the resonator’s magnetization to be uniform, we model it

as remaining continually aligned with the applied field. The error associated with

this simplifying assumption can be estimated by using equations (5.10) and (5.5) to

estimate the angle by which M would rotate away from Ba during the mechanical

motion. As in section 4.1, we consider a uniformly magnetized spheroid for which

the x-axis, y-axis, and z-axis coincide with the spheroid axes of length a, a, and

c. The applied field Ba lies in the xz-plane at an angle θ from the z-axis. Let φ

denote the angle between M and the z-axis when M is oriented so as to minimize

magnetostatic energy. We wish to derive an expression for φ (θ), the angle by which

the magnetization rotates away from the spheroid z-axis when the applied field is

rotated through angle θ.

We can find φ by minimizing the energy Umag given by equation (5.10), or equiv-



127

alently, by minimizing Umag/V , where V is the volume of the spheroid:

Umag
V

= −M ·Ba −
1

2
M ·Bh.

Since the demagnetizing H-field is given by

Hd = − (NaMx, 0, NcMz)

= − (NaM sinφ, 0, NcM cosφ) ,

we have

Bh = μ0M ((1−Na) sinφ, 0, (1−Nc) cosφ)

and

−1
2
M ·Bh =

1

2
μ0M

2
£
(Na −Nc) sin

2 φ+ (Nc − 1)
¤
.

The angle betweenM and Ba has magnitude |θ − φ|, and so

M ·Ba =MBa cos (θ − φ) .

Dropping from the expression for E/V any terms which do not vary with φ, we obtain

Umag/V =
1

2
μ0M

2 (Na −Nc) sin
2 φ−MBa cos (θ − φ) .

Making the definition

Ku ≡
1

2
μ0M

2 (Na −Nc)

allows us to write the energy density as

Umag/V = Ku sin
2 φ−MBa cos (θ − φ) . (5.11)

Stationary points occur when

0 =
∂

∂φ
(Umag/V ) = 2Ku sinφ cosφ−MBa sin (θ − φ) . (5.12)
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We can consider the equation

2Ku sinφ cosφ =MBa sin (θ − φ)

to define φ (θ), and implicit differentiation can be used to derive a series expression

for φ (θ). Defining

A =
2Ku

MBa
,

we find that the first and second derivatives of φ evaluated at θ = 0 are

φ0 (0) =
1

A+ 1
, (5.13)

φ00 (0) = 0.

The second order Taylor series for φ (θ) is

φ (θ) ≈ θ

A+ 1
. (5.14)

In the case where M = 2.3T /μ0 and Ba = 15T, with the ratio of spheroid axes

r = c/a of order 2, for instance, equation (5.14) predicts that M rotates away from

the applied field through an angle roughly 5% of the angle θ between the spheroid

and Ba.

The calculations we have presented do not include dynamic effects: the magnet

is held motionless in a static field, and the low-energy orientation ofM is found. In

reality, the orientation of the applied field (as seen from a reference frame fixed in

the magnet) will be changing at a frequency on the order of 500MHz. However,

simple estimates can be used to show that in this range of frequencies, the problem of

finding the state of the magnetization can be treated as a static one. In investigating

dynamic effects on the evolution of M, we consider a lab frame which has the z-

axis aligned with the field. Within this reference frame, each ferromagnetic dipole

experiences a static applied field and a varying field due to the changing orientation

of the resonator. A first correction to the model in which all fields are static can be
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made by supposing that ferromagnetic dipoles experiences a static field along z and

a transverse field oscillating at around 500MHz. We can estimate the importance of

dynamic effects by comparing the AC susceptibility of the particle at this frequency

to the DC susceptibility. This model problem is equivalent to experiments done

in studying ferromagnetic resonance (FMR), and results from the literature of this

field show that the resonator’s AC susceptibility at this frequency is very close to

its DC susceptibility. Ferromagnetic resonance peaks occur in a higher range of

frequencies than NMR peaks, due to the larger gyromagnetic ratio of the electron,

and the linewidths observed in FMR experiments are typically only a small fraction

of the resonance frequency [30]. Frequencies of ∼ 500MHz are far enough from

FMR resonance frequencies that the AC susceptibility of the resonator’s ferromagnetic

cylinders can be considered equal to the DC susceptibility in this frequency range.

5 Strength of the spin-resonator coupling

5.1 Effect of soft magnetic material on the coupling strength

Figure 5.3 shows the configuration of M in the resonator’s ferromagnetic cylinders

when the "sandwich" shown in figure 5.1 has rotated through a substantial angle. The

angle of rotation is highly exaggerated in order to highlight the difference between

the configurations for hard and soft magnetic materials. Hard magnetization rotates

with the cylinders, while soft magnetization remains aligned vertically with the field.

Examination of this figure might initially suggest that the spin-resonator coupling,

which is proportional to the transverse field linear in θ, will be weak if soft magnetic

materials are used, since it might appear that a larger transverse field will develop if

the magnetization rotates with the cylinders.

Finite-element simulations have shown, however, that the soft oscillator in figure

5.3 has the larger transverse field. A rationalization for this result can be seen in

figure 5.4. The magnetization in the soft magnetic material can be expressed as the

sum of two components, one parallel to the cylinder axis and one perpendicular to
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Hard oscillator Soft oscillator
Figure 5.3: Comparison of magnetization orientation for hard and soft magnetic
materials. The ferromagnetic cylinders are those of the oscillator in figure 5.1 after
it has rotated through a substantial angle about its torsional axis. The orientation
of the cylinder magnetization for hard and soft magnetic materials is shown.

it. The fields generated by these two components add constructively at the location

of the spins. The field generated by each of the components can be rationalized by

replacing each of the four cylinders on the right side of the figure by a single dipole

which has the same orientation as the cylinder’s magnetization. The field lines of

these dipoles give a qualitative estimate of the contribution that each cylinder makes

to the field at the center of the sandwich.

The ideas expressed in figure 5.4 can be demonstrated analytically if the cylinders

in the figure are replaced by two identical spheroids (either prolate or oblate). Sup-

pose that the sandwich has rotated through an angle θ away from the vertical applied

field Ba. If the magnetization M remains aligned with Ba, then we can consider

the resonator field at the spins to be the superposition of two fields, one generated

by magnetization M cos θ aligned along the sandwich axis, and the other generated

by magnetization M sin θ aligned at right angles to the axis. Reference [31] gives

analytic expressions for the fields external to uniformly magnetized ellipsoids, and it

can be shown that that the magnetization aligned with the sandwich axis generates
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Field at center:

Transverse field:

Magnetization:

= +

Figure 5.4: Comparison of the transverse field for hard and soft magnetic materials.
The ferromagnetic cylinders are those of the oscillator in figure 5.1. In the case
where the cylinders are composed of soft magnetic material, the transverse field which
couples to the nuclear spins can be expressed as the sum of two components that add
constructively. If the cylinders are composed of hard magnetic materials, only the
first of these components is present. As a result, soft magnetic materials yield a
strong coupling to the spins.
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at the spins a field B1 parallel to itself, while the magnetization at right angles to the

resonator axis generates a field B2 antiparallel to itself. Expressed in the unrotated

Cartesian components of the lab frame, these two fields are

B1 = Bh cos θ (sin θ, 0, cos θ) ,

B2 =
1

2
sin θ (cos θ, 0,− sin θ) .

From these formulas we obtain

dBx

dθ
=
3Bh

2
cos 2θ

and
d2Bz

dθ2
= −3Bh cos 2θ.

Evaluating at θ = 0 gives

dBx

dθ
=
3Bh

2
, (5.15)

d2Bz

dθ2
= −3Bh. (5.16)

By way of contrast, a magnetically hard sandwich would have

Bx (θ) = Bh sin θ,

Bz (θ) = Bh cos θ,

as well as

dBx

dθ
= Bh,

d2Bz

dθ2
= −Bh

at θ = 0. We see that switching from an ideal magnetically hard resonator to an

ideal magnetically soft resonator increases the magnitude of dBx/dθ by a factor of
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3/2, and the magnitude of d2Bz/dθ
2 by a factor of 3. The factor of 3/2 in (5.15) is

due to the fact that the contribution to dBx/dθ made by B2 is half the size of the

contribution made by B1.

The data from finite-element simulations is consistent with the hypothesis that

(5.15) and (5.16) continue to be valid for the configuration of soft magnets shown

in figure 5.3, which contains two cylinders rather than two spheroids. The finite-

element software package Maxwell 3D v11 (Ansoft Corporation, Pittsburgh) was used

to calculate Bx (θ) and Bz (θ) after rotating the sandwich axis away from the applied

field up to 5 ◦ in steps of 1 ◦, and curve-fitting was used to estimate dBx/dθ and

d2Bz/dθ
2. These calculations were done for each sandwich geometry tested during

the optimization described in section 6, and for geometries in which cylinders of

diameter 100 nm and height 50 nm were separated by distances ranging from 5 nm

to 50 nm. For each geometry that was simulated, the data points for Bx (θ) lay

essentially on a straight line, and the value of dBx/dθ obtained by curve fitting was

within about 1% of the computed value of 3Bh/2. Substantial random residuals

were seen when quadratic curves were fitted to computed plots of Bz (θ) in order to

estimate d2Bz/dθ
2, which may be used to rationalize the fact that computed values

of d2Bz/dθ
2 differed from −3Bh by up to 15%. Adopting the hypothesis that (5.15)

and (5.16) are valid for resonators of the type shown in figure 5.1 allows us to express

the field B (θ) to second order in θ as

B (θ) = Ba +Bh

µ
3

2
θ, 0, 1− 3θ2

¶
.

5.2 Upper bound on the torque between the spins and the

resonator

Since detection sensitivity is enhanced if the torque acting between spins and res-

onator is increased, an estimated upper bound on the attainable torque per spin is

helpful in evaluating resonator designs. A simple estimate can be made using the

model introduced in section 5.1, which replaces the resonator’s two cylinders with
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spheroids. Since the strength of the spin-resonator torque is given by

G = μx dBx/dθ,

it follows from equation (5.15) that largest possible torque will be obtained when

dBx/dθ reaches its maximal value.

The formulas given in reference [31] can be used to express G in the form

G/μx = μ0MVKgeom,

where V is the volume of the magnetic material, and Kgeom depends on the shape of

the spheroids as well as the distance between them. Given the constraints that M

and V are fixed, and that a gap must exist between the two spheroids, the maximal

value of G/μx can be found by optimizing Kgeom. We found that G/μx achieves its

maximal value in the limiting case where the spheroids become arbitrarily long and

thin. The maximal value is independent of the volume of the spheroids and is given

by

(G/μx)max = 3μ0M . (5.17)

For the example resonator presented in table 5.3 of section 6, the value of μ0M is

2.3T, and the limiting value of G/μx is 7T, which is larger by a factor of 4 than the

value calculated for the resonator.

Note that when the spheroids are nearly touching, the dependence of G/μx on

shape anisotropy of the spheroids is weak. If the spheroids are prolate, and if the

long axis of each is just twice the length of the short axes, for instance, the value

of G/μx is 83% of the limiting value given by (5.17) when the separation between

spheroids is negligible. Even in the case where the shape anisotropy is zero and the

resonator is composed of two spheres separated by a negligible gap, we have G/μx

equal to 67% of the upper limit.
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6 Optimization of example resonators

Two different optimizations of the magnetic "sandwich" shown in figure 5.1 were

performed. For the first optimization, the separation S between the ferromagnetic

cylinders and the diameter D of the sandwich were constrained by

S ≥ 50 nm , (5.18)

D ≥ 100 nm , (5.19)

and for the second optimization, S and D were constrained by

S ≥ 25 nm , (5.20)

D ≥ 50 nm . (5.21)

Both optimizations had the same constraints on the width w and thickness t of the

rectangular cross-section of the torsional beam:

w ≥ 50 nm ,

t ≥ 50 nm ,

and the silicon paddle separating the two ferromagnetic cylinders was constrained to

have the same diameter as the cylinders. The resonator’s ringdown time was fixed

at τh = 6μs during the optimizations.

In characterizing the sensitivity associated with a particular choice of dimensions

for the magnetic sandwich, the beam dimensions which maximize the SNR formula

(4.50) were found, where the decay time of the spin-locked signal was fixed at 1 s. This

optimization was performed before we had investigated the way in which resonator-

induced relaxation affects the lifetime of a spin-locked signal. For all of the resonators

we considered, the time-constant 2/Rh for resonator-induced decay of the spin-locked

signal was greater than 1 s. Our optimization can therefore be considered to in-

corporate an assumption that factors other than resonator-induced relaxation limit
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the period of time during which spin-locking can be performed. Since (4.51) shows

that SNR is independent of all resonator parameters other than ωh/Th in an ideal

spin-locking field, an alternative approach to designing the resonator would be to

minimize acquisition time using expressions given in section 7 of chapter 4.

The optimal beam must have

w = t = 50nm .

This can be seen by noting that, given a resonator of frequency ωh and a beam

with width or thickness greater than 50 nm, we could decrease the beam’s moment of

inertia without changing ωh by switching to a shorter beam that has a 50 nm×50 nm

cross-section; this decrease in the moment of inertia would increase the resonator’s

sensitivity. The optimization of beam dimensions for a given magnetic sandwich

therefore involved varying the beam length l in steps of 100 nm to find the optimal

frequency ωh. The applied field Ba was then chosen to satisfy the resonance condition

determined by beam length.

In performing the optimizations, we assumed a sample consisting of a single spin

1/2. As a result, the instrument noise characterized by Sinst (ω) was substantially

larger than the spin noise. The optimal geometry of the magnetic sandwich was

not sensitive to the changes in Adet. The same geometry was obtained when the

motion detection was assumed to be quantum-limited or to have a noise temperature

TN = 18TQL. (The quantum-limited noise temperature TQL is discussed in section

4.3 of chapter 4.)

Sensitivity is in general optimal when the cylinders are as close together as pos-

sible. Decreasing the separation between the magnets improves SNR in two ways:

1) The resonator’s moment of inertia is decreased, which decreases Sinst (ω), and 2)

The field Bh at the center of the sandwich is increased, which increases the size of

the torque acting between spins and resonator, since this torque is proportional to

dBx

dθ
=
3

2
Bh. (5.22)
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Length L Diameter D Beam length Single-shot SNR 1/Rh Ba

35 nm 100 nm 1600 nm 0.109 3.6 s 14T

Table 5.1: Selected parameters for a resonator optimized with a separation of 50 nm
between magnetic cylinders.

Length L Diameter D Beam length Single-shot SNR 1/Rh Ba

40 nm 55 nm 2200 nm 0.236 0.91 s 20T

Table 5.2: Selected parameters for a resonator optimized with a separation of 25 nm
between magnetic cylinders.

(Equation (5.22) is explained in section 5.1.) It was this observation which motivated

us to perform optimizations with different constraints on the separation S. The

optimal designs associated with the different constraints (5.18) and (5.20) were found

by varying the diameter D and the length L of each ferromagnetic cylinder in steps

of 5 nm, while keeping the separation S between them fixed at the minimum value.

The two dimensions D and L were varied until the SNR given by (4.50) reached

its maximum value. For each choice of cylinder dimensions, the Maxwell 3D v11

software package (Ansoft Corporation, Pittsburgh) was used to calculate Bh and

dBx/dθ. Magnetic spring constants were not calculated, since initial numerical tests

found the magnetic spring constant to be negligible compared to the elastic spring

constant.

Tables 5.1 and 5.2 show the results of the two optimizations. The values of single-

shot SNR assume detection of a single spin which has been cooled by the resonator

to a temperature of 10 mK. Quantum-limited motion detection is included in the

estimate by setting

Adet = 1/2.

For each of these designs, SNR changes by less than 1% in response to a change

of 5 nm in L or D within the constraints set by (5.18) through (5.21). Note that

constraint (5.21) may be considered superfluous, since the optimal design in table 5.2

is not limited by this constraint.

Amodified version of the resonator presented in table 5.2 will be used for numerical
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examples. The applied field of 20T can be reduced without significantly changing

the resonator’s sensitivity. We modified the design by lowering the applied field and

simultaneously increasing the beam length until SNR has decreased by 5% from the

optimal value given in table 5.2. This procedure yields an applied field of 14T and a

beam length of 3.5μm for the example resonator. Tables 5.3 and 5.4 give additional

details regarding the resonator. In table 5.4, equation (4.50) is used to calculate the

the SNR for detecting hIx (t1)i at an instant when

hIx (t1)i =
PN

2
.

In evaluating SNR, we use the assumption

T1ρ = 1 s

which defined the optimization. The alternative assumption that resonator-induced

relaxation is responsible for decay of the spin-locked signal would yield

T1ρ = 2/Rh = 1.5 s .

Note that the entry "N at spin-noise limit" in table 5.4 gives the number of spins

N at which the spin noise equals the instrument noise. This number is a natural

measure of the instrument noise associated with the resonator, since instrument noise

becomes dominant as the number of spins is decreased below this number. Note as

well that the volume 4.4 nm3 in table 5.3 represents a cylinder of diameter 2 nm and

height 1.4 nm within which the field of the magnetic sandwich differs by no more than

25 kHz from the field Bh at the center of the sandwich. An ice sample filling this

volume would contain ∼ 300 protons. Note that this sample is sufficiently small to

satisfy the condition that guarantees that oscillatory energy exchange between spins

and resonator will be suppressed. Since the number of thermal quanta nth ¿ 1, we
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Magnet length L 40 nm
Magnet diameter D 55 nm
Separation S between magnets 25 nm
MagnetizationM 2.3T /μ0
Magnet density 7900 kg /m3

Beam cross-section 50 nm×50 nm
Beam length 3.5μm
Beam stiffness constant C44 7.96× 1010N /m2

Density of beam and paddle 2.33× 103 kg /m3
Sandwich moment of inertia 2.1× 10−33 kgm2
Beam moment of inertia 4.2× 10−33 kgm2
Frequency ωh/2π 628MHz
Ringdown time τh 6.0μs
Quality factor 11, 800
Applied field 13.6T
Resonator field Bh 1.1T
Transverse derivative dBx/dθ 1.6T
Coupling constant g 313 s−1

Rate constant 1/Rh 0.77 s
Sample polarization P 0.91
Volume where |∆ω| ≤ 25 kHz 4.4 nm3

Resonator temperature Th 10 mK
Thermal quanta nth 0.05

Table 5.3: Parameters for the optimized example resonator.

Quantum limited detection (TN = TQL) TN = 18TQL
SNR for a single spin 0.224 0.0602
N when SNR = 1 6 spins 18 spins
N at spin noise limit 7 spins 112 spins
SNR at spin noise limit 1.2 4.8

Table 5.4: Sensitivity of the optimized example resonator.
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can use (2.16) to verify that such oscillations are suppressed:

g
√
N =

¡
313 s−1

¢√
300

≈ 5.4× 103 s−1

¿ 330× 103 s−1

=
2

τh
.

The frequency offset 25 kHz was chosen based on an estimate that sample spins

having a frequency spread of 50 kHz could be rotated uniformly by RF pulses. Note

that line broadening proportional to the field inhomogeneity across the sample can

be eliminated, for example, by the use of pulse sequences which select zero-quantum

coherences or multiquantum heteronuclear coherences whose frequency does not shift

in response to an offset in a static applied field [32]. Note as well that equation (2.26)

implies that spins whose Larmor frequency is out of resonance with ωh by 25 kHz are

cooled more slowly by the resonator between transients. An offset of

β = 2π × 25 kHz

from resonance decreases the cooling rate by a factor of

1

1 + (βτh)
2 ≈ 0.5.

7 Use of non-metallic magnetic material

A requirement of the scheme we have proposed is that the mechanical resonator be

exposed to RF magnetic fields during the NMR pulse sequence as well as during

spin-locking. If the ferromagnetic material of the cylinders is metallic, eddy currents

will be induced in the metallic cylinders by the RF fields. Appendix M presents an

example which illustrates the way in which the resulting temperature change ∆Th

is determined by physical parameters which depend strongly on the dimensions and
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temperature of the resonator. Estimates of the order of magnitude of these para-

meters based on the limited information available in the literature leave open the

possibility that the temperature change ∆Th could substantially decrease detection

sensitivity if conducting ferromagnetic materials are used.

A possible solution to the problem of eddy-current heating is the use of dielectric

material as the source of the resonator’s field. A natural candidate for such a material

would be an insulator that contains magnetic ions. Even if the material is paramag-

netic rather than ferromagnetic, magnetic ions would remain aligned with the applied

field at low temperatures, yielding time-independent magnetization in the lab frame,

as in the model discussed in section 4. At fields of order 10T and mK temperatures,

ferromagnetic material is not necessarily a requirement for the resonator design or

the numerical examples we have presented.

Ions with partially filled f-orbitals can have relatively large angular momenta,

in part due to the fact that the orbital angular momentum of the tightly-bound f-

orbitals is not quenched by the crystal field. Lanthanide oxides are natural candidates

for non-metallic magnetic materials to be used in force-detected NMR, and EuO is

particularly promising, since it has a large saturation magnetization of 2.41T /μ0 at

0K [33], and since it has been prepared as an epitaxial thin film on Si [34] as well as

in the form of nanocrystals [35, 36]. Although the saturation magnetization of the

nanocrystals and epitaxial thin films were not measured, the Curie law susceptibility

of the nanocrystals showed that each Eu2+ ion in these materials has a moment of

∼ 7 Bohr magnetons [35, 36], as in the bulk compound [33].

At room temperature EuO is a semiconductor with a resistivity many orders of

magnitude larger than that of metals, and the resistivity increases as the temperature

is lowered [37]. At temperatures below 77K, EuO is ferromagnetic [33]. Doping

with excess Eu causes a metal-insulator transition to occur around the Curie temper-

ature, but low-temperature bulk resistivities observed by Shapira and coworkers for

doped EuO were at least three orders of magnitude larger than the room-temperature

conductivity of Fe [38]. Since the power dissipation due to eddy-current heating is

inversely proportional to resistivity, the estimate presented in Appendix M suggests
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that eddy-current heating should be negligible even for the "metallic" form of doped

EuO.


