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Chapter 4

Sensitivity of spin detection by a
nanoscale resonator

1 Definition of signal-to-noise ratio for measure-

ment of an amplitude

Since the term "signal-to-noise ratio" is attached to a variety of different measures

of sensitivity, we begin by defining the measures that we will use and by obtaining

general formulas for signal-to-noise ratio (SNR). In this section and the following

one, we motivate and propose a general definition of SNR which can be used to

compare methods which measure the amplitude of a signal with methods which yield

a continuous record of a signal.

We assume that the measurement of a signal amplitude is performed by passing

the noisy signal through a linear filter. An alternative method often used to extract

information from noisy data is least-squares fitting. Appendix G shows that if the

noise is white, then least-squares fitting yields an amplitude estimate identical to

one obtained from an optimal filter, but for more general types of noise, least-square

fitting yields an amplitude estimate which would be obtained using a non-optimal

filter. Use of a linear filter is therefore the more powerful method of extracting the

signal amplitude.
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The noisy signal entering the filter K can be written as

f (t) = m (t) + n (t) ,

where m (t) is the useful signal and n (t) is the noise. The output of the filter is

φ (t) = μ (t) + ν (t) ,

where μ (t) and ν (t) would be the respective outputs if m (t) and ν (t) were passed

through K individually. The signal m (t) has the form

m (t) = Gm0 (t) , (4.1)

withm0 (t) a known real-valued function andG the unknown constant to be measured.

For simplicity, we refer to G as an amplitude, although the analysis method we

characterize here does not require that G be nonnegative.

Let μ0 (t) be the output obtained by passing m0 (t) through K. Since m0 (t) is a

known function, and the properties of K are assumed to be known, the function μ0 (t)

can in principle be calculated. If it could be arranged that ν (t0) = 0 at a particular

time t0, then G could be found by taking the ratio of the filtered output μ (t0) to the

calculated value μ0 (t0):

G = μ (t0) /μ0 (t0) .

In the general case, where it cannot be arranged that ν (t0) = 0, a reasonable strategy

would be to minimize the value of ν (t0) and then to estimate G as

φ (t0)

μ0 (t0)
= G+

ν (t0)

μ0 (t0)
. (4.2)

The estimate of G obtained in this way is a random variable which will be denoted

by X.

Given this strategy for estimating G, the signal-to-noise ratio (SNR) of the mea-
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surement can be defined as

SNR =
hXi
σX

, (4.3)

where hXi is the mean value of X and σX is its standard deviation. The optimal

filter is the one which minimizes SNR. To determine the characteristics of this filter,

we first seek an explicit formula for σX , or equivalently for the variance σ2X . Since

X is the sum of two random variables G and ν (t0) /μ0 (t0), the variance σ2X can also

be written as a sum:

σ2X = σ2G + σ2noise. (4.4)

Here σ2G is the variance of G, and σ2noise is the variance of ν (t0) /μ0 (t0).

To analyze σ2noise, we assume that n (t) is a stationary random process with zero

mean and that the filter K is linear and time-invariant. These assumptions imply

that the mean value hν (t)i equals zero and that the variance

­
(ν (t)− hν (t)i)2

®
≡
­
ν2
®

is independent of time, with

hXi = hGi , (4.5)

σ2X = σ2G +
hν2i

[μ0 (t0)]
2 . (4.6)

If the filter K is implemented as a causal system, the the time t0 must occur after

the signal m (t) has completely died out. Since we are using K merely as an aid

in estimating sensitivity, however, we consider the filter to be a purely mathematical

operation performed on the signal, rather than a causal filter, and we simplify notation

by setting t0 = 0 and defining μ ≡ μ (0), μ0 ≡ μ0 (0), ν ≡ ν (0), and φ ≡ φ (0). The

most general expression for the signal-to-noise ratio of an amplitude measurement is

then found by substituting equations (4.6) and (4.5) into (4.3):

SNR =
hGip

σ2G + hν2i /μ20
. (4.7)
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Note that the only term in this expression which depends on the choice of filter is

hν2i /μ20. Since σ2G and hν2i /μ20 are both nonnegative, the optimal filter will be the

one giving the maximum value of

r ≡ μ20/
­
ν2
®
.

Reference [18] derives a formula for the transfer function K (ω) of the filter which

maximizes r. Define Cn (t) and Sn (ω) to be the respective autocorrelation function

and double-sided spectral density of the input noise n (t), and letM0 (ω) be the Fourier

transform of m0 (t). We give explicit formulas in order to establish the conventions

we will be using:

M0 (ω) =

Z ∞

−∞
e−iωtm0 (t) dt,

m0 (t) =
1

2π

Z ∞

−∞
eiωtM0 (ω) dω,

μ0 (t) =
1

2π

Z ∞

−∞
eiωtK (ω)M0 (ω) dω,

Cn (t) = hn (t)n (0)i ,

Sn (ω) =

Z ∞

−∞
e−iωtCn (t) dt,­

n2
®
=
1

2π

Z ∞

−∞
Sn (ω) dω,­

ν2
®
=
1

2π

Z ∞

−∞
|K (ω)|2 Sn (ω) dω.

These definitions are discussed in reference [19]. In addition, Appendix H presents an

introduction to the spectral density, specifically tailored to its use in SNR calculations.

The value r which we wish to maximize is

r =

³R∞
−∞K (ω)M0 (ω) dω

´2
2π
R∞
−∞ |K (ω)|

2 Sn (ω) dω
. (4.8)

The Schwartz inequality, applied to an appropriate space of functions such as L2,
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yields ¯̄̄̄Z ∞

−∞
K (ω)M0 (ω) dω

¯̄̄̄2
≤
Z ∞

−∞
|K (ω)|2 Sn (ω) dω

Z ∞

−∞

|M0 (ω)|2

Sn (ω)
dω.

Dividing both sides of the inequality by the denominator of (4.8) gives

r ≤ 1

2π

Z ∞

−∞

|M0 (ω)|2

Sn (ω)
dω. (4.9)

If we take

K (ω) = c
M∗
0 (ω)

Sn (ω)
, (4.10)

then r reaches the maximum value given by the right side of (4.9), since

μ20 = c2

Ã
1

2π

Z ∞

−∞

|M0 (ω)|2

Sn (ω)
dω

!2
(4.11)

­
ν2
®
= c2

1

2π

Z ∞

−∞

|M0 (ω)|2

Sn (ω)
dω. (4.12)

The transfer function K (ω) given in equation (4.10) yields an optimal filter.

This transfer function is particularly simple if the noise n (t) is white, with

Sn (ω) = Sn = constant.

The choice [18]

c = Sn (4.13)

gives

K (ω) =M∗
0 (ω) .

Passing f (t) into the filter produces output

φ (t) =

Z ∞

−∞
f (t0)m0 (t

0 − t) dt0. (4.14)
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The amplitude estimate X is given by

X =
1

μ0

µZ ∞

−∞
f (t0)m0 (t

0) dt0
¶
, (4.15)

and the SNR by

SNR =
hGip

σ2G + Sn/μ0
, (4.16)

where

μ0 =

Z ∞

−∞
m2
0 (t) dt. (4.17)

2 Generalization to measurement of a continuous

signal

Definition (4.7) can be generalized in a natural way to characterize the sensitivity

of measurement in which Q samples of a continuous signal are obtained from each

shot of an experiment. We proceed heuristically by considering an example in which

a real signal s (t) is sampled during a time period T . Two methods of sampling

are used, with each method yielding identical statistical information. Imposing the

requirement that the sensitivity of the two sampling methods be equal leads to a

natural extension of definition (4.7).

The signal s (t) will be sampled at N pre-determined points. Method 1 measures

one point of s (t) per shot, while method 2 measures all N sampled points during a

single shot of the experiment. Assume that normally distributed white noise gives a

sampled point of s (t) a variance σ2j for a single-shot measurement, with j = 1, 2 for

methods 1 and 2, respectively. Let fj (t) denote the averaged measurement of s (t)

obtained using method j, and let Zj denote the number of times that each point is

sampled using method j. Note that method 1 requires NZ1 transients, while method

2 requires Z2 transients.

We seek to define a "single-shot sensitivity" for each method such that the sensi-

tivity for fj is equal to the single-shot sensitivity times the number of transients. In
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the case where the number of sampled points is

N = 1,

applying definition (4.3) to f1 would yield

SNR of f1 =
|mean value of f1|

standard deviation of f1

=
|s|

σ1/
√
Z1
,

which is not proportional to the number Z1 of transients observed. If we square this

expression, however, we do obtain a measure of sensitivity which is proportional to

Z1:

(SNR of f1)
2 = Z1

s2 (t)

σ21
. (4.18)

We can therefore proceed heuristically by generalizing this expression; that is, we

assume that a meaningful measure of sensitivity can be defined which is proportional

to the number of points sampled and which reduces to (4.18) in the case where N = 1.

If N > 1, the sensitivity of f1 is given by

(SNR of f1)
2 =

X
Z1

s2 (t)

σ21
= NZ1

hs2 (t)i
σ21

, (4.19)

where the sum and the average are both taken over the N sampled points. Extending

this to case where σ21 depends on t gives

(SNR of f1)
2 =

X
Z1

s2 (t)

σ21 (t)
= NZ1

¿
s2 (t)

σ21 (t)

À
. (4.20)

Note that the "single-shot sensitivity" of method 1 can then be written as

(SNR of f1)
2

number of transients
=

¿
s2 (t)

σ21 (t)

À
,
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which yields

single-shot SNR of method 1 =

s¿
s2 (t)

σ21 (t)

À
. (4.21)

In seeking a similar expression for f2, consider an example in which σ21 (t) = σ22 (t)

and Z1 = Z2. The statistical information obtained using the two methods can be

considered identical in this case, since each point is sampled the same number of times

with the same distribution of noise. It follows that

(SNR of f2)
2 = (SNR of f1)

2

= NZ1
hs2 (t)i
σ21

= NZ2
hs2 (t)i
σ22

.

The "single-shot sensitivity" of method 2 is then found to be

(SNR of f2)
2

number of transients
= N

hs2 (t)i
σ22

.

The natural extension to the case of time-dependent noise would be

single-shot SNR of method 2 =

s
N

¿
s2 (t)

σ22 (t)

À
. (4.22)

These results can be written in a unified way as

SNRreal =

s
QM

¿
s2 (t)

σ2 (t)

À
, (4.23)

where Q is the number of points sampled per transient, M is the total number of

transients, and the average runs over all sampled points. We have included the

subscript "real" as a reminder that the discussion has so far been limited to real-valued

signals. In extending this definition to the case of a complex signal s (t) = a (t)+ib (t),

we adopt the point of view that in sampling the complex signal, we are seeking

information about a real-valued function, such as the real component of a spectrum.
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In addition, we assume that sampling a point of a (t) or b (t) contributes equally to

the sensitivity with which we can measure this real-valued function. For the purpose

of characterizing the sensitivity of the measurement, we consider the N sampled

complex points equivalent to 2N sampled real points which measure a real-valued

function. We can therefore define the SNR for a method which samples complex

points by letting Q represent the total number of real points sampled per transient,

and by letting the average inside the radical run over all sampled real points:

SNRcomplex =

s
(QM)

1

2N

Xµ
a2 (t)

σ2a (t)
+

b2 (t)

σ2b (t)

¶

=

s
QM

2

¿
a2 (t)

σ2a (t)
+

b2 (t)

σ2b (t)

À
. (4.24)

In (4.24), both the sum and the average are taken over the N sampled points of the

complex function, and σ2a (t), σ
2
b (t) are the variances for respective measurements of

a (t), b (t) without signal averaging.

3 Comparison with a standard definition

We wish to compare (4.24) with a standard definition given by Ernst in reference

[20]. Consider first a nondecaying complex signal s (t) which contains a single Fourier

component that is sampled during a time period T :

s (t) = ske
iωkt, 0 ≤ t ≤ T.

Normally-distributed, channel-independent white noise is assumed, which gives the

measured values of Re s (t) and Im s (t) the same time-independent variance σ2, and

each transient is assumed to yield N sampled complex points. Since Q = 2N and

|s (t)| = |sk|, we have

SNR =
|sk|

σ/
√
NM

. (4.25)
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(To simplify notation, we have dropped the subscript "complex.") For a real spectrum

containing one peak, Ernst defined the SNR as the ratio of peak height to root-mean-

square noise in the real components of the spectrum [20]. In order to compare this

definition with (4.25), we assume that the signal s (t) is "properly phased," that is,

we assume that sk is real and positive. The peak height in our real spectrum is

thus sk. Let x (n) represent the complex noise present in the nth sampled point after

averaging, and let the Fourier components of x be denoted by xm. For each n, the

mean value of |x (n)|2 is 2σ2/M , since the real and imaginary parts of the noise have

the same mean-square value σ2/M after averaging. It follows that*r
1

N

X
|xm|2

+
=

*r
1

N2

X
|x (n)|2

+

=

*s
1

N2

µ
N
2σ2

M

¶+
=
√
2
³
σ/
√
NM

´
.

We see that the root-mean-square noise in the real spectrum is σ/
√
NM , and that

(4.25) can be written as

SNR =
peak height in real spectrum
rms noise in real spectrum

, (4.26)

so that (4.24) agrees with Ernst’s definition for this particular example.

We generalize the example by supposing that s (t) is an arbitrary bounded complex

signal which is sampled at N points within the interval 0 ≤ t ≤ T . Assume as before

that the noise in the measurement is white and independent of channel. In order

to avoid introducing the unnecessary assumption that N complex points are sampled

per transient, we define Z to be the number of averages performed in estimating

each complex point of s (t). The total number of real samples obtained during the

measurement is

QM = 2NZ.
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We have

SNR =

s
ZN

¿
a2 (t) + b2 (t)

σ2

À

=

q ­
|s (t)|2

®
σ/
√
ZN

. (4.27)

Let sk represent the kth Fourier component of s (t), and note that

q ­
|s (t)|2

®
=

r
1

N

X
|s (t)|2

=
qX

|sk|2.

With x (n) and xm defined as in the previous example, we find that the mean value

of |x (n)|2 is 2σ2/Z, and*r
1

N

X
|xm|2

+
=

*r
1

N2

X
|x (n)|2

+

=

*s
1

N2

µ
N
2σ2

Z

¶+
=
√
2
³
σ/
√
NZ

´
.

The root-mean-square noise in the real spectrum is therefore σ/
√
ZN . It follows

that

(SNR)2 =
sum of all squared real and imaginary Fourier components of the signal

mean-square noise in real spectral components
.

(4.28)

Equation (4.28) highlights the difference between Ernst’s definition of SNR and the

one we have proposed. For this example, Ernst’s definition could be obtained from

(4.28) by discarding from the sum in the numerator the squares of all real and imag-

inary Fourier components with the exception of the largest real Fourier component.

We end this section by considering the limitations of our proposed definition.

Note first that the SNR is determined once we know the total number of real-valued
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samples taken, and the average ratio

hRi =
¿
signal magnitude squared
variance in measured value

À
,

where the average is taken over all real-valued samples. For any experiment being

considered, the SNR we obtain will be the same as if we had made QM independent

measurements of a single, real-valued random variable f for which the ratio

mean value of f
standard deviation of f

=
p
hRi.

This observation highlights a condition necessary for the validity of our definition:

the noise in the QM real-valued samples must be statistically independent. If the

noise in different sampled points is correlated (as in the case of spin noise during a

single transient, for instance), then knowledge of these correlations could in general

be used to increase the effectiveness with which information could be extracted from

the measurement; that is, an analysis that takes account of the correlations should

give a higher value of SNR than one which does not. In this case, we would expect

our definition of SNR to underestimate the sensitivity of the measurement.

Another limitation of our definition is that it does not take account of the method

we use in obtaining information from the spectrum; for instance, our definition of

SNR does not specifically tell us how effectively we can obtain the frequency of a

given peak in the spectrum. To highlight this point, we suppose that the signal s (t)

is a decaying exponential which will be sampled at intervals ∆t during some time

interval 0 ≤ t ≤ T . How far toward zero should s (t) be allowed to decay before the

sampling is terminated? In seeking an optimal T , we begin by recalling the definition

of the discrete Fourier transform sk of a function s (n) which is defined on a set of N
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integers:

s (n) =
X
k

sk exp {i (2πk/N)n} (4.29)

sk =
1

N

X
n

s (n) exp {−i (2πk/N)n} . (4.30)

Given a time T0 such that |s (t)| is close to zero for t ≥ T0, we can see from equation

(4.30) that the height of each peak in the spectrum will be decreased by a factor

of 2 if we sample during a period of length 2T0 rather than a period of length T0.

(Doubling the length of the sampling period doubles the value of N appearing in the

denominator on the right side of (4.30), but it does not significantly change the value

of the sum.) In the limit of large T , the height of each peak is proportional to 1/T .

The root-mean-square noise in the spectrum, however, does not decrease as quickly

as the height of the spectrum, as can be seen from the relation

1

N

X
n

|x (n)|2 =
X
m

|xm|2 , (4.31)

where x (n) is the noise in the nth sampled point, and xm is a Fourier component. If

the value of N is doubled, the left side of (4.31) does not change, while the number

of Fourier components xk is doubled. It follows that the root-mean-square noise in

the spectrum, which can be written as

rms spectral noise =

s
1

N

X
m

|xm|2,

varies as 1/
√
T in the limit of long T , and that the peak height becomes arbitrarily

small in relation to the root-mean-square noise as T →∞.

Our definition of SNR claims that the sensitivity of the measurement does not

change as T increases from T0 toward infinity. This can be seen by noting that (4.27)
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gives

SNR =

q ­
|s (t)|2

®
σ/
√
ZN

=

qP
|s (t)|2

σ/
√
Z

,

where the sum is over the N sampled points. Taking additional samples for which

|s (t)|2 ≈ 0 does not affect the SNR.

To understand this property of our SNR definition, note that the ratio in (4.28)

does not change as T → ∞. Although the peak height becomes small relative to

the root-mean-square noise, the sum of the signal’s squared Fourier components does

not become small relative to the mean-square noise. For long T , the statistical

information about each peak is spread over a larger number of Fourier components

separated by very small frequency increments. Although decreasing the peak height

relative to the noise certainly makes the spectrum less pretty, it is not clear a priori

whether a given method for extracting the position of a peak (for example) would

be sensitive to the value of T , provided T is not pathologically long. To answer a

question of this sort, it would be necessary to move beyond the general arguments

we used in characterizing sensitivity and consider particular methods of extracting

information from the spectrum.

4 Signal-to-noise ratio for amplitude detection

4.1 Definition of the signal

The BOOMERANG scheme for force-detected NMR spectroscopy [13, 21, 22] detects

a single point of the free-induction decay (FID) for each measured transient. In this

scheme, a conventional NMR pulse sequence is applied to the spins, and the spins

precess freely for a period of time without being coupled to the resonator. At time

t1 during the FID, a transverse component hIx (t1)i is measured by using hIx (t1)i to
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drive the mechanical resonator. The driven spin component exerts a resonant driving

force on the mechanical oscillator, and the resulting mechanical motion is detected.

Analysis of the mechanical motion yields a measurement of hIx (t1)i . By repeating the

measurement for a range of values t1, a record of the spins’ time evolution is obtained,

and Fourier analysis yields an NMR spectrum. This detection scheme is discussed

in more detail in section 1 of chapter 5. In the current section, we derive a SNR

formula for BOOMERANG detection in the case where the spin-resonator coupling

has the form of equation (2.11).

In applying the SNR formula derived in section 1 to such detection schemes, we

can define the signal m (t) either in terms of the resonator’s position coordinate or in

terms of the torque exerted on the resonator by the spins. The analysis is simpler if

the signal is defined as a torque, since the functional form of m (t) is independent of

the resonator’s ringdown time τh. The driving torque is modulated by spin precession

in the transverse plane, and it decays as hIxi and hIyi relax to zero. In obtaining

a simple sensitivity estimate, we can consider the torque to be a single decaying

sinusoid. However, the functional form of the resonator’s response depends on the

relative lengths of τh and the time period during which the torque is exerted. In

general, hθ (t)i will include an initial period of "ringing up," as well as a delayed

response to changes in the amplitude of the driving torque, and so the functional

form of hθ (t)i will not always be well-approximated by a decaying sinusoid, even

if the driving torque has that form. For sufficiently short τh, negligible error will

be introduced by considering the resonator to be continually driven at steady-state,

and since our analysis of resonator-induced spin relaxation assumed that τh is short

compared to spin relaxation times, there is no inconsistency in analyzing sensitivity

under the assumption of short τh. The assumption of short τh is unnecessary, however,

and we can obtain more general results by defining the signal in terms of the torque

exerted by the spins. (It should be pointed out that although it is convenient for

purposes of sensitivity analysis to define the signal as a torque, it may not be the

preferred method of analyzing experimental data. A practical protocol for data

analysis would need to take account of the details of the experiment.)
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For an experiment involving a macroscopic resonator and a large number of spins,

the torque exerted by the spins is a clearly defined concept, since the resonator’s evo-

lution can be analyzed using classical mechanics, which includes explicit reference to

forces and torques. In the current context, however, we are deriving SNR formulas

which will be used to characterize the sensitivity of a low-temperature, high-frequency

resonator interacting with a small spin sample, and so a quantum mechanical descrip-

tion is needed. In this context, an unproblematic definition of the torque can be made

using the lab-frame master equation for the spin-resonator system:

dρ

dt
= −i [Hosc − γI ·B (θ) , ρ] + Λρ, (4.32)

where the relaxation superoperator Λ is given by (2.25). Evolution equations for the

coordinate hθ (t)i and the conjugate momentum hpθ (t)i can be obtained by multiply-

ing equation (4.32) by θ and pθ, respectively, and taking the trace:

d hθi
dt

=
hpθi
Ih
− hθi

τh
, (4.33)

d hpθi
dt

= −k hθi− hpθi
τh

+

¿
μ · d

dθ
B (θ)

À
, (4.34)

where μ is the sample dipole. Note that in deriving the second equation, we used

the identity

[pθ, F (θ)] = −i~ dF/dθ,

which follows from [θ, pθ] = i~. Equations (4.33) and (4.34) have the same form as the

equations of motion for a classical torsional oscillator driven by a torque
­
μ · d

dθ
B (θ)

®
,

and we can consider this to be the torque exerted by the spins. Approximating

Bh (θ) by an expression first-order in θ as in section 1 of chapter 2 yields the simpler

expression

m (t) = γ~
dBx

dθ
hIx (t)i . (4.35)

Equation (4.35) defines the signal which would be detected in a noiseless experiment.



85

In studying the sensitivity of NMR methods which detect hIx (t)i, we assume that

hIx (t)i =

⎧⎨⎩ hIx (0)i e−t/τs cosωht t ≥ 0

0 t < 0
. (4.36)

Time t = 0 corresponds to the beginning of a detection period during which the

mechanical oscillator experiences a resonant driving torque. The decay time of the

transverse dipole during the detection period is denoted by τs. The signal can be

expressed in the form

m (t) = Gm0 (t) ,

where

G = γ~dBx

dθ
hIx (0)i ,

m0 (t) =

⎧⎨⎩ e−t/τs cosωht t ≥ 0

0 t < 0
. (4.37)

The method developed in section 1 will be used to estimate the sensitivity with which

G can be measured.

4.2 Definition of the noise

Equations (4.3) and (4.4) of section 1 give the SNR of the amplitude estimate X as

SNR =
hGip

σ2G + σ2noise
.

Note first that since

G = γ~
dBx

dθ
hIx (0)i (4.38)

is an ensemble average, it has a definite value, rather than being a random variable,

and so

σ2G = 0.
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The variance of X is equal to σ2noise, which can be calculated if the spectral density

Sn (ω) of the noise is known.

In deriving an expression for Sn (ω), we begin by defining the noisy signal f (t) =

m (t) + n (t). Continuous observation of the resonator yields a measured coordinate

θobs (t). Given θobs (t), in addition to measured values of Ih, ωh, and τh, equations

(4.33) and (4.34) can be used to calculate the driving torque which would cause

the expected value of the resonator’s coordinate to equal θobs (t). This calculated

driving torque is the noisy signal f (t). Equivalently, the noise n (t) can be defined as

the torque which would produce mean displacement δθobs (t) in the resonator, where

δθobs (t) is given by

δθobs (t) = θobs (t)− hθ (t)i ,

and the average hθ (t)i is taken over an ensemble of spin-resonator systems.

Spin fluctuations and the thermal fluctuations in θ are two intrinsic noise sources.

In addition, quantum mechanics imposes limitations on the sensitivity with which

motion can be detected. Section 4.3 presents formulas for the spectral density of the

noise introduced by thermal fluctuations in θ and the noise introduced by the motion

detector. Section 4.4 derives an expression for the spectral density of the spin noise.

4.3 Spectral density of the instrument noise

The evolution of the Heisenberg operator θ (t) is given to first order in θ by the

quantum Langevin equation

Ih
d2

dt2
θ (t) +

2Ih
τh

d

dt
θ (t) + kθ (t) = γ~

dBx

dθ
Ix (t) +N 0 (t) , (4.39)

where N 0 (t) is a fluctuating thermal torque. The quantum Langevin equation for

a damped resonator is derived in reference [23], and a similar derivation can be car-

ried out when θ (t) is coupled to Ix (t). Equation (4.39) shows that the intrinsic

fluctuations θ for the spin-resonator system can be characterized in terms of a ther-

mal torque. The spectral distribution of the thermal torque is calculated using the
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symmetric correlation function

CN 0 (t1, t) =
1

2
hN 0 (t)N 0 (t1) +N 0 (t1)N

0 (t)i ,

which can be expressed as [23]

CN 0 (t1, t) =
2Ih
τh

1

π

Z ∞

0

~ω coth
µ

~ω
2kBTh

¶
cos [ω (t− t1)] dω. (4.40)

Equation 4.40 implies that the double-sided spectral density SN 0 (ω) of N 0 (t) is given

by

SN 0 (ω) =
4Ih
τh
~ω
µ
1

2
+ nth (ω)

¶
, ω ≥ 0, (4.41)

where nth (ω) is the number of thermal quanta in an oscillator of frequency ω at

temperature Th. (Since a double-sided spectral density is an even function of ω, it

suffices to specify its values for ω ≥ 0.)

If ~ωh ¿ kBTh, then (4.41) is closely approximated by the classical expression

SN 0 (ω) =
4IhkBTh

τh
.

At frequencies of order 50MHz or higher and temperatures of order 10 mK, which

are achievable in a dilution refrigerator, mechanical zero-point motion makes a non-

negligible contribution to the intrinsic fluctuations characterized by (4.41), since

nth (ωh) is of order unity or less. In this regime, quantum mechanics imposes limita-

tions on the sensitivity with which hθ (t)i can be measured. In the limit where the

temperature approaches zero Kelvins, the spectral density of the thermal torque is

SN 0 (ω, 0) =
4Ih
τh
~ω
µ
1

2

¶
.

Quantum-limited detection of the oscillator’s motion occurs when the noise added

by the detector is equivalent to the noise resulting from the thermal torque at zero

Kelvins [24]. Letting SQL (ω) denote the spectral density of the quantum-limited

"noise torque," which includes contributions from the thermal torque as well as the
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noise added by the detector, we have

SQL (ω) =
4Ih
τh
~ω
µ
1

2
+
1

2
+ nth (ω)

¶
, ω ≥ 0.

The nature of this quantum limit is clarified by remarks presented in references

[11] and [24]. Achievement of quantum-limited detection sensitivity requires that

the strength of the coupling between oscillator and detector be optimally tuned. For

overly weak coupling, the detector’s response to the mechanical motion becomes small

compared to the detector’s intrinsic fluctuations, while for overly strong coupling, the

"back-action," or perturbation of the mechanical oscillator due to its coupling to the

detector, becomes large relative to the intrinsic mechanical fluctuations characterized

by SN 0 (ω) [24]. The minimal noise added to the signal by an optimal detection

scheme can be interpreted as the zero-point motion of an internal mode of the detector

[11].

In characterizing the performance of a real detector, we let Sinst (ω) denote the

spectral density of "instrument noise," that is, the noise not present in the spin sample

itself, and we assume that Sinst (ω) can be expressed in the form

Sinst (ω) =
4Ih
τh
~ω
µ
Adet +

1

2
+ nth (ω)

¶
, ω ≥ 0. (4.42)

(In practice, this will be equivalent to the assumption that the detector adds white

noise, since Sinst (ω) is flat in the bandwidth of interest for NMR signals.) We could

say that in this case the noise added by the resonator is 2Adet times the quantum limit.

More conventional (but less straightforward) is the use of noise temperature TN , for

which different authors give inconsistent definitions [11, 24]. A simple approach

might be to define TN by the equation

Adet +
1

2
+ nth (ωh, Th) =

1

2
+ nth (ωh, Th + TN) , (4.43)

or

Adet = nth (ωh, Th + TN)− nth (ωh, Th) ,
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where Adet is defined as in (4.42), and where the temperature dependence of nth has

been highlighted by expressing its argument as (ωh, Th). From (4.43) we see that the

noise temperature can be roughly interpreted as the increase in resonator temperature

needed to account for the noise added by the detector. A weakness of this definition

is that the detector’s noise temperature depends on the amount of noise at the input

(i.e., the temperature of the resonator), which implies that noise temperature does

not characterize the "intrinsic" properties of the detector. Differing attempts to

correct this weakness lead to inconsistent definitions of noise temperature.

We follow reference [25] in defining the quantum-limited noise temperature TQL

by

TQL =
~ωh

kB ln 3
. (4.44)

Equation (4.44) is obtained by defining the noise temperature TN in reference to an

oscillator at 0K, so that

Adet = nth (ωh, TN) .

Schwab et al. have reported detection of mechanical motion with [25]

TN = 18TQL,

which gives

Adet = 16. (4.45)

In adding noise to simulations of detected spectra in section 1 of chapter 6, we assume

that the detector has this value of Adet, so that the "noise torque" associated with

thermal fluctuations and detector noise has spectral density

Sinst (ω) =
4Ih
τh
~ω
µ
16 +

1

2
+ nth (ω)

¶
, TN = 18TQL, ω ≥ 0.
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4.4 Spectral density of the spin noise

Superimposed on m (t) is a noise torque T 0 (t) associated with fluctuations of Ix (t).

In quantifying these fluctuations, we use a simple model in which they are treated as a

stationary random process with zero mean during the period in which the resonator’s

position is being monitored. The properties of this random process are calculated

using a high-temperature limit, without consideration of the pulse sequence used

during the NMR experiment. In certain cases, this model could overestimate the spin

noise. Consider, for instance, an experiment in which the longitudinal magnetization

of a highly-polarized sample is rotated by 90 ◦ to lie along the x-axis at the beginning

of the detection period. The variance in Ix at the beginning of the detection period

is then equal to the variance in Iz just before the rotation. If the spin sample is at

a temperature of ∼ 10 mK and is in an applied field of order 10T, the variance in

Iz is significantly less than the high-temperature limit, and the spin noise could be

overestimated as a result.

The spectral distribution of the spin noise can be quantified by means of the

symmetric correlation function

CI (t1, t) =
1

2
hIx (t) Ix (t1) + Ix (t1) Ix (t)i .

Use of the quantum regression theorem [7] in combination with equation (4.36) gives

CI (t1, t) =
­
I2x
®
e−|t−t1|/τs cos (ωh |t− t1|) .

Note that the value of the time constant τs for decay of the transverse spin dipole will

depend on whether the spins precess freely or are spin-locked. For the mean-square

fluctuation hI2xi we use the value N/4, appropriate for a sample of N spins 1/2 in

thermal equilibrium. The symmetric correlation of the spin-noise torque T 0 (t) is in
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this way approximated as

CT 0 (t1, t) =
1

2
hT 0 (t)T 0 (t1) + T 0 (t1)T

0 (t)i

=

µ
γ~

dBx

dθ

¶2
N

4
e−|t−t1|/τs cos (ωh |t− t1|) ,

and the spectral density ST 0 (ω) as

ST 0 (ω) =

µ
γ~

dBx

dθ

¶2
N

4

Z ∞

−∞
e−iωte−|t|/τs cos (ωht) dt. (4.46)

4.5 SNR formula for amplitude detection

In order to simplify the analysis, we will calculate SNR using a filter which is optimal

if spin noise is negligible compared to the thermal torque N 0 (t) and the detector

noise. The transfer function K (ω) is

K (ω) = c
M∗
0 (ω)

Sinst (ω)
,

where Sinst (ω) is given by equation (4.42), andM0 (ω) is the Fourier transform of the

unit amplitude signal defined by (4.37). The curve M0 (ω) has complex Lorentzian

peaks at ±ωh. The magnitude of Sinst varies by at most a few percent over the range

of frequencies for whichM0 (ω) is non-negligible, assuming that ωh/2π is in the range

of 50MHz to 1GHz, with

Th ≥ 10 mK,

τs ≥ 1μs ,

Adet ≤ 103.

We will therefore approximate Sinst (ω) by Sinst (ωh) and consider the noise to be

white. The constant c is chosen as in equation 4.13:

c = Sinst (ωh) .
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When the noisy signal f (t) = m (t) + n (t) is passed into filter K, the output φ (t) =

μ (t) + ν (t) is given by equation (4.14) as

φ (t) =

Z ∞

−∞
f (t0)m0 (t

0 − t) dt0.

The amplitude estimate X is given by equations (4.15) and (4.17):

X =

R∞
−∞m0 (t) f (t) dtR∞
−∞m2

0 (t) dt
.

The SNR formula (4.7) can be expressed as

SNR =
hXiq

σ2inst + σ2spin

,

where σ2inst, σ
2
spin are the respective variances introduced into the measurement by

instrument noise and spin noise:

σ2inst =
1

μ20

µ
1

2π

Z ∞

−∞
|M0 (ω)|2 Sinst (ω) dω

¶
, (4.47)

σ2spin =
1

μ20

µ
1

2π

Z ∞

−∞
|M0 (ω)|2 ST 0 (ω) dω

¶
, (4.48)

μ0 =

Z ∞

−∞
m2
0 (t) dt

≈ τs
4
.

Evaluation of the integrals appearing in (4.47) and (4.48) yields

σ2inst = Sinst (ωh)
4

τs
,

σ2spin =
N

2

µ
γ~

dBx

dθ

¶2
.

The mean value hXi = G is given by equation (4.38):

hXi = γ~
dBx

dθ
hIxi .
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Here hIxi is a mean transverse spin component at the beginning of the time period

during which the torque on the mechanical resonator has the form of a decaying

sinusoid. The value of hIxi depends on the sequences of pulses and delays used to

encode information about the microscopic environment of the spins into the motion

of the transverse spin dipole. For the SNR estimate, we assume that the value of

hIxi at the beginning of the FID is PN/2, where P is the polarization of the spin

sample just before the beginning of the pulse sequence. The time-dependence of hIxi

during the sampled portion of the FID is characterized by the function s0 (t), which

is defined by the equation

hIx (t1)i =
PN

2
s0 (t1) . (4.49)

To characterize the sensitivity of a single measurement of hIxi as a means of detecting

the FID, we use equation (4.21), which can be expressed in this case as

single-shot SNR =
(PN/2)

p
hs20 (t1)iq

σ2inst + σ2spin

.

The single-shot SNR for detection of an FID by measurement of an amplitude hIxi is

single-shot SNR =
(PN/2) (γ~ dBx/dθ)

p
hs20 (t1)iq

Sinst (ωh) (4/τs) + (N/2) (γ~ dBx/dθ)
2
, (4.50)

Sinst (ωh) =
4Ih
τh
~ωh

µ
Adet +

1

2
+ nth (ωh)

¶
.

Note that the spectral density Sinst (ωh) is a double-sided spectral density. Equation

(4.50) could be expressed in terms of a single-sided spectral density Ssinst (ωh) by

making the substitution Sinst (ωh) = Ssinst (ωh) /2.

If the amplitude measurement is performed by spin-locking the transverse spin

dipole, with resonator-induced relaxation responsible for decay of the spin-locked

signal, then the results of section 6 of chapter 3 imply that

τs = 2/Rh,
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provided the spin-locking field is strong enough to average both the internal spin

Hamiltonian and the spin relaxation superoperator associated with spin-resonator

interactions. If, in addition, instrument noise is much larger than spin noise, then

(4.50) can be simplified to yield

single-shot SNR =
(PN/2) (γ~ dBx/dθ)

p
hs20 (t1)ip

Sinst (ωh) (2Rh/τs)

=
PN

p
hs20 (t1)i

4
q¡

Adet +
1
2
+ nth

¢ ¡
nth +

1
2

¢ . (4.51)

In this case, the SNR is independent of the resonator parameters τh, Ih, and dBx/dθ.

We can interpret (4.51) as stating that if the resonator ringdown time, moment of

inertia, and field derivative dBx/dθ are considered to be "knobs" which can be varied,

then changes in transverse relaxation due to lifetime broadening will compensate

exactly for changes in the signal strength and the Brownian noise as these knobs are

turned. The only resonator parameter which appears in the SNR expression is the

thermal number of quanta nth, which is determined by the resonator frequency ωh

and the temperature Th.

5 Signal-to-noise ratio for detection of a continu-

ous signal

If the freely-precessing transverse spin dipole drives the resonator throughout the

FID, then detection of a single transient yields a measurement of the time-dependent

function hIx (t)i rather than a single amplitude hIx (t1)i. In characterizing the sen-

sitivity of this method, we assume that a sampling interval ∆t has been chosen, and

that broadband noise with spectral density Sinst (ωh) is present in the measurement,

with Sinst (ωh) given by equation (4.42). This noise is filtered before the noisy signal

is sampled, and we assume for the sake of simplicity that an ideal bandpass filter elim-

inates all noise outside a frequency range of width (1/∆t)Hz, and that the filtered



95

noise introduces an identical variance σ2 to each real-valued sample.

The definitions of the signal and the noise are similar to those given in sections

4.1 and 4.2. The signal s (t) is defined as the torque which would produce mean

displacement hθ (t)i in the resonator, where the average is quantum statistical. Noise

is present in the measurement due to the fact that

θobs (t) 6= hθ (t)i ,

with θobs (t) the observed displacement. The noisy signal f (t) is defined as the torque

needed to produce a mean displacement equal to θobs (t), and the noise n (t) is given

by

n (t) = f (t)− s (t) .

Detection of a single transient yields a measurement of the driving torque exerted by

the spins throughout the FID, and the signals from two transients can be combined

to yield a complex signal, as in conventional NMR spectrometers. We will consider

s (t) to be complex, with two transients required to sample the full curve s (t).

Using equation (4.27), the signal-to-noise ratio can be expressed as

SNR =

qP
|s (t)|2

σ/
√
Z

,

where the sum is over the sampled complex points, with each point sampled Z times.

We assume that the sampling interval is so short compared to the decay time of

|s (t)|2 that the average appearing underneath the radical can be approximated as an

integral:

X
|s (t)|2 = 1

∆t

X
|s (t)|2∆t

≈ 1

∆t

Z ∞

0

|s (t)|2 dt

≡ 1

∆t

­
|s (t)|2

®
.
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We obtain

SNR ≈

q­
|s (t)|2

®p
σ2∆t/Z

. (4.52)

In the case where instrument noise is the dominant noise source, the variance

introduced by this noise in a bandwidth of (1/∆t)Hz is

σ2 =
Sinst (ωh)

∆t
. (4.53)

Substituting this expression into (4.52) and noting that 2Z transients were observed

yields

single-shot SNR ≈

q­
|s (t)|2

®p
2Sinst (ωh)

. (4.54)

For convenience in comparing the sensitivity of different detection schemes, we express

s (t) in the form

s (t) =

µ
PN

2

¶µ
γ~

dBx

dθ

¶
{sa (t) + i sb (t)} . (4.55)

If

­
|sa (t) + i sb (t)|2

®
=
­
s2a (t)

®
+
­
s2b (t)

®
= 2

­
s2a (t)

®
,

then (4.54) can be written as

single-shot SNR ≈ (PN/2) (γ~ dBx/dθ)
p
hs2a (t)ip

Sinst (ωh)
. (4.56)

6 Comparison of detection sensitivities

6.1 Dependence of sensitivity on the energy in the signal

The signal-to-noise ratios given in equations (4.50) and (4.56) can be compared in the

case where instrument noise is dominant in (4.50). Dropping spin noise from (4.50)
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and taking the ratio of the two expressions gives

µ
single-shot SNR amplitude detection
single-shot SNR continuous signal

¶2
=

hs20 (t1)i
(4/τs) hs2a (t)i

=
hs20 (t1)i hm2

0 (t)i
hs2a (t)i

. (4.57)

Note that hs20 (t1)i is an average over a set of times t1 at which spin-locking was applied

to obtain an amplitude measurement, and the signal s0 corresponds to free spin

precession in the absence of spin-resonator interaction. By way of contrast, the signal

sa appearing in the denominator of (4.57) corresponds to free spin precession in the

presence of coupling to a mechanical resonator. Equation (4.57) can be interpreted as

the ratio of the mean energies in the signals which drive the resonator in the two types

of detection, with the average being taken over all transients. During continuous

detection, the energy in the signal torque is proportional to hs2a (t)i, while during an

amplitude measurement, the resonator is driven by a signal torque proportional to

m0 (t) and having energy proportional to hm2
0 (t)i. The proportionality constant for

the spin-locked signal depends on the value of

hIx (t1)i ∝ s0 (t1) ,

and the average hs20 (t1)i includes the effect of this variation on detection sensitivity.

To further clarify the content of (4.57), we consider an example in which s (t) has

the form of a single decaying exponential with time constant T2:

s (t) =

µ
PN

2

¶µ
γ~

dBx

dθ

¶
exp {(iω0 − 1/T2) t} , t ≥ 0,

with the time constant τs for the decay of m0 (t) given by T1ρ, the time constant for

the decay of a spin-locked signal:

τs = T1ρ.

During amplitude measurements, the value of hIx (t1)i is sampled only at times t1
when the FID has not decayed significantly. For this example, the ratio of equation
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(4.57) can be expressed as

µ
single-shot SNR amplitude detection
single-shot SNR continuous signal

¶2
=

T1ρ/2

T2
. (4.58)

The factor of 2 difference arises from the fact that the initial amplitude of the signal

for continuous detection does not vary between measurements, while the initial signal

amplitude for spin-locked detection varies sinusoidally as t1 is varied between shots.

6.2 Effect of resonator-induced transverse relaxation

Equations (4.57) and (4.58) show that the relative sensitivities of spin-locked detec-

tion and detection of freely-precessing spins are determined by the time constants for

decay of the transverse spin. At mK temperatures, the precessing transverse spin of

a solid sample containing only a few spins (e.g., two or three spins) is expected to

relax slowly in the absence of spin-resonator interactions, since in this case transverse

relaxation depends on spin-lattice interactions which are "frozen out" at low temper-

atures. The coupling between the spins and the mechanical resonator will induce

transverse relaxation, thereby limiting the sensitivity with which the spectrum can be

detected. Consider an example in which the sample contains only a single spin 1/2

and the resonator is at zero Kelvins. If interaction with the mechanical resonator

is the dominant source of transverse relaxation, then it follows from equations (2.22)

and (2.23) that the time constant for transverse relaxation is 2/Rh. The signal s (t)

which drives the resonator is

s (t) =

µ
P

2

¶µ
γ~

dBx

dθ

¶
exp {(iω0 −Rh/2) t} , t ≥ 0,

and the single-shot SNR given by (4.56) evaluates to

single-shot SNR =
P

4
q¡

nth +
1
2

¢ ¡
nth +

1
2
+Adet

¢ , (free precession). (4.59)

Equation (4.59) can be compared with the sensitivity for spin-locked detection
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given by (4.51):

single-shot SNR =
PN

p
hs20 (t1)i

4
q¡

nth +
1
2

¢ ¡
Adet +

1
2
+ nth

¢ , (spin locking),
where N = 1 and

s0 (t1) = cos (ω0t1) .

Note that since the spins and the resonator are out of resonance until the spin-locking

field is applied, the resonator is assumed not to induce transverse relaxation before

spin-locking begins, and so negligible decay in s0 (t1) is also assumed. Since

q
hs20 (t1)i =

1√
2
,

we have
single-shot SNR free precession
single-shot SNR spin locking

=
√
2. (4.60)

Equation (4.60) is consistent with (4.58), since our assumptions have yielded

T1ρ = T2 = 2/Rh.

We next consider examples of two-spin systems in which a 90 ◦ pulse applied to a

system in thermal equilibrium leaves the mean dipole aligned with the x-axis. For

simplicity, the resonator is assumed to be at zero Kelvins. For a two-spin system in

which the dipolar couplings are large compared to the difference in the chemical shift

at the two spins, the energy eigenstates can be approximated as

|pi ≡ |++i ,

|qi ≡ (|+−i+ |−+i) /
√
2,

|ri ≡ |−−i ,

|si ≡ (|+−i− |−+i) /
√
2.
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It follows from equation (3.33) that if the resonator is at zero Kelvins, the signal s (t)

driving the resonator during detection of freely precessing spins can be written as

s (t) /G =
1

2
exp {(iωpq − 1/Tpq) t}+

1

2
exp {(iωqr − 1/Tqr) t} , t ≥ 0, (4.61)

T−1pq = R0,

T−1qr = 2R0.

If the peaks associated with these two coherences do not overlap appreciably, then

1

G2

Z ∞

0

|s (t)|2 dt ≈ (Tpq + Tqr) /2

4
. (4.62)

Note that for a signal s (t) which has two frequency components decaying expo-

nentially with arbitrary time constant T 0, we have

1

G2

Z ∞

0

|s (t)|2 dt = T 0

4
, (4.63)

provided that the frequency difference between the two components is much greater

than 1/T 0. Comparing (4.62) and (4.63), we see that the effective decay time asso-

ciated with (4.61) is

Teff,dd = (Tpq + Tqr) /2

=
3

4R0
.

By comparing this with the time constant 2/R0 for a single-spin system, we see that

the decay time has decreased by 3/8. In the case where the chemical shift offset

of one spin is much larger than the dipolar coupling, equation (3.34) can be used to

obtain a similar result. The effective time constant is

Teff,dd+shift =

µ
2

R0
+

2

3R0

¶
/2

=
4

3R0
,
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which is smaller than 2/R0 by a factor of 2/3.

These examples have shown that resonator-induced transverse relaxation can make

a nonnegligible change in signal lifetime as the sample size is increased from N = 1 to

N = 2. Simulations of resonator-induced transverse relaxation in four-spin systems

are presented in section 2.2 of chapter 6, and those simulations suggest that the

effective decay time of a freely-precessing signal decreases sharply as the number of

dipole-dipole coupled spins is increased above two. By way of contrast, the decay

time of the spin-locked signal does not depend on the size of the sample, provided the

spin-locking field is strong enough to average both the internal Hamiltonian and the

superoperator for resonator-induced relaxation. Ideal spin-locked detection is more

sensitive than detection of free precession, even in the case of the two spin sample

having Teff,dd = 3/ (4R0):

single-shot SNR free precession
single-shot SNR spin locking

=
√
2
p
3/8

=
p
3/4.

As sample size is increased, we may expect that detection of free precession will be

substantially less sensitive than spin-locked detection, even if the number of spins is

small enough that spin locking would not be needed to extend the lifetime of the

signal in the absence of resonator-induced relaxation.

7 Dependence of signal-to-noise ratio and acquisi-

tion time on resonator parameters

In the case where instrument noise is dominant and the spin-locked signal decays

exponentially with rate constant Rh/2, the single-shot SNR is given by (4.51) as

single-shot SNR =
PN

p
hs20 (t1)i

4
q¡

Adet +
1
2
+ nth

¢ ¡
nth +

1
2

¢ .
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Given a sample of N spins and a pulse sequence which yields signal s0 (t1), the

dependence of SNR on resonator parameters can be expressed as

single-shot SNR ∝ Pq¡
Adet +

1
2
+ nth

¢ ¡
nth +

1
2

¢ , (4.64)

P = tanh

µ
~ωh
2kBTh

¶
,

nth =

µ
exp

µ
~ωh
kBTh

¶
− 1
¶−1

.

The only resonator parameter which contributes to P and nth is the ratio ωh/Th of

frequency to temperature. If this ratio is increased, polarization increases and nth

decreases, and both of these changes improve SNR. In general, therefore, sensitivity

improves when the frequency increases or the temperature decreases. However, the

limiting values of P and nth in the high-frequency, low-temperature limit are

P → 1,

nth → 0.

For the example resonator presented in chapter 5, the values

Th = 10 mK, (4.65)

ωh/2π = 630MHz (4.66)

give

P = 0.91,

nth = 0.05.

In this regime, SNR is near the value high-frequency, low-temperature limit.
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Decreasing the ωh/Th by a factor of three (e.g., by increasing Th to 30 mK) gives

P = 0.46,

nth = 0.6.

In the case where the noise added by the motion detector is substantially larger than

the noise associated with the zero-point motion of the resonator (Adet À 1/2), this

change in ωh/Th decreases the right side of (4.64) by a factor of approximately 2. 8.

We see that although the regime defined by (4.65) and (4.66) is near optimal, SNR

is sensitive to changes in ωh/Th within this regime.

The time required to acquire a spectrum is more sensitive to resonator parameters

than the SNR is. Consider a problem in which the time needed per transient is

proportional to 1/Rh; for example, a problem in which both the decay of the spin-

locked signal and the longitudinal relaxation occur during a time proportional to

1/Rh, with the pulse sequence requiring a negligible period of time per transient.

Since the number of transients Z needed to detect hIx (t1)i with acceptable accuracy

at a given point t1 is proportional to 1/ (SNR)2, acquisition time is minimized if the

resonator is designed to yield a minimal value of

1

Rh (SNR)2

or, equivalently, a maximal value of

(SNR)2Rh ∝
P 2¡

Adet +
1
2
+ nth

¢g2τh
∝ P 2

ωh
¡
Adet +

1
2
+ nth

¢ (dBx/dθ)
2

Ih
τh. (4.67)

The dependence of τh on other resonator parameters is poorly understood. If

this dependence is neglected, then (4.67) can be used to analyze the way in which

acquisition time depends on ωh, Ih, and dBx/dθ. The dependence on Ih and dBx/dθ is

simple: acquisition time is proportional to Ih and inversely proportional to (dBx/dθ)
2.
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The dependence of acquisition time on frequency is entirely contained in the function

f (ωh) =
P 2

ωh
¡
Adet +

1
2
+ nth

¢ .
The choice Adet = 16, which is explained in the discussion preceding (4.45), along

with Th = 10 mK, causes f (ωh) to have a maximum around ωh/2π = 450MHz, but

the peak is fairly flat, and the value of f (ωh) stays within 10% of the peak value for

frequencies between 300MHz and 700MHz. If quantum-limited detection is assumed,

the peak is shifted to around 525MHz, while f (ω3) stays within 10% of its peak value

over the range 375MHz to 775MHz.

8 Signal-to-noise ratio for a product of correlated

measurements

Reference [13] presents a SNR analysis for CONQUEST, a scheme in which an NMR

spectrum is obtained by measuring a spin correlation function. The analysis in

this reference does not include thermal noise in the mechanical resonator or noise

added to the measurement during detection of the mechanical motion. In order to

compare quantitatively the sensitivity of different techniques for NMR spectroscopy

of nanoscale samples, we extend the sensitivity analysis of CONQUEST to include

these forms of noise.

8.1 Definition of the signal and the noise

Since we are specifically interested in measurements which could be done with a

nanoscale torsional mechanical resonator coupled to the transverse sample dipole, it

will be convenient to modify the convention established in reference [13] by considering

Ix rather than Iz to be the spin component measured in the CONQUEST experiment.

In particular, we consider that a single shot of the experiment yields a measurement
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of the Heisenberg operator

S2 (t1, 0) = Ix (t1) Ix (0) (4.68)

≡
³
U †
0IxU0

´
Ix, (4.69)

where U0 is the spin-system evolution operator for the time period beginning at time

t = 0 and ending at t = t1. In order to simplify the discussion, we follow reference [13]

in assuming that U0 corresponds to free precession of the sample dipole at frequency

ω, so that

Ix (t1) = U †
0Ix (0)U0

= Ix (0) cosωt− Iy (0) sinωt

= Ix cosωt1 − Iy sinωt1. (4.70)

Spin noise is analyzed in reference [13] by considering that each measurement

is represented by a projection operator which acts on the spin system. In order

to quantify the effects of instrument noise on the measurements, we replace this

model with one in which a period of spin motion governed by the evolution operator

U is sandwiched between two periods of spin-resonator evolution. The resonator is

continuously observed throughout the experiment, with θobs (t) denoting the observed

value of the resonator coordinate.

In proposing a method for quantifying the information available in θobs (t), we are

guided by consideration of the method defined in sections 4.1 and 4.2 for analyzing

the SNR of an amplitude measurement. The noisy signal f (t) was defined as the

torque which would produce expected displacement θobs (t) in the resonator, for all

t, while the "noiseless signal" m (t) was defined as the torque which would produce

expected displacement hθ (t)i in the resonator, where the average is quantum statisti-

cal. The information to be extracted by analysis of f (t) was the amplitude of m (t),

or equivalently, the value m (0) at the beginning of the detection period. In order to

filter out instrument noise, we multiplied f (t) by m0 (t) and integrated, where m0 (t)
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has the same functional form as m (t) but unit amplitude.

For CONQUEST, we propose an analogous method of analyzing SNR. Given

θobs (t), we find the torque g (t) which would produce expected displacement θobs (t) in

the resonator. Our definition of the signal can be motivated by considering equation

(4.39), the quantum Langevin equation for a damped resonator interacting with a

spin sample:

Ih
d2

dt2
θ (t) +

2Ih
τh

d

dt
θ (t) + kθ (t) = γ~

dBx

dθ
Ix (t) +N 0 (t)

≡ T (t) +N 0 (t) .

The operator N 0 (t) is a rapidly fluctuating torque of mean zero, and T (t) can be

identified with the torque exerted by the spins at time t. The noisy torque g (t)

includes contributions from T (t) and N 0 (t), as well as from noise added during the

detection of the resonator’s mechanical motion. Define Ninst (t) to be the torque as-

sociated with instrument noise, including both thermal noise and noise in the motion

detector, and assume that the spectral density of Ninst (t) is given by (4.42). We wish

to obtain from g (t) a measurement of

hIx (t1) Ix (0)i =
µ

1

γ~ dBx/dθ

¶2
hT (t1)T (0)i . (4.71)

If the noiseless signal is defined by

m (t0, t00) = hT (t0)T (t00)i ,

and the noisy signal by

f (t0, t00) = g (t0) g (t00) ,

then the optimal measurement protocol for CONQUEST will be the one which min-

imizes the variance in the estimate of

m (t1, 0) = hT (t1)T (0)i (4.72)
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obtained by filtering f (t0, t00). Error will be introduced in the measurement due to

the presence of the noise:

n (t0, t00) = f (t0, t00)−m (t0, t00) .

8.2 SNR formula

By analogy with the method of data analysis derived in section 1, we seek to express

the signal m (t0, t00) in the form

m (t0, t00) = G1m0 (t
0, t00) ,

where m0 (t
0, t00) is a known function and G1 is the value we wish to estimate. The

estimate of G1 will be given by the random variable

X =

R∞
−∞
R∞
−∞ f (t0, t00)m0 (t

0, t00) dt0 dt00R∞
−∞
R∞
−∞m2

0 (t
0, t00) dt0 dt00

.

In determining the functional form of m (t0, t00), we neglect spin relaxation and fluc-

tuations occurring during the interval 0 ≤ t ≤ t1. It follows from (4.70), (4.71), and

(4.72) that

m (t1, 0) =

µ
γ~

dBx

dθ

¶2 ©­
I2x (0)

®
cosωt1 − hIx (0) Iy (0)i sinωt1

ª
(4.73)

=

µ
γ~ dBx

dθ

¶2 ­
I2x (0)

®
cosωt1, (4.74)

where we have assumed in moving from (4.73) to (4.74) that at time t = 0, the spin

density matrix ρs is a multiple of the identity.

For simplicity, we assume that the spins exert negligible torque on the resonator

during the interval 0 < t < t1, and som (t0, t00) = 0 if either t0 or t00 lies in this interval.

If t0 and t00 lie outside this interval, then m (t0, t00) is proportional to the correlation

function

CI (t
0, t00) = hIx (t0) Ix (t00)i .
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In obtaining an estimate of CI , we let let U (t0, t00) denote the lab-frame evolution

operator for the spins, with U (t1, 0) = U0, the operator appearing in (4.69). Since

we have taken ρs (0) to be a multiple of the identity, ρs (0) commutes with all spin

operators, and CI can be written as

CI (t
0, t00) = Tr {Ix (t0) Ix (t00) ρs (0)}

= Tr {U (0, t0) IxU (t0, 0)U (0, t00) IxU (t00, 0) ρs (0)}

= Tr {U (t00, t0) IxU (t0, t00) Ixρs (0)} . (4.75)

Equation (4.75) implies that CI can be evaluated as the correlation function of a spin

system which is completely disordered at time t00.

If t0, t00 are both less than 0 or both greater than t1, then U is the evolution operator

for the spins as they drive the resonator. For simplicity, we assume that the spins

are spin-locked during this period. A simple method of approximating CI for these

values of t0, t00 is to assume that C̃I , the correlation function in the rotating frame, is

given by

C̃I (t
0, t00) =

­
I2x
®
exp (− |t0 − t00| /T1ρ) ,

where T1ρ is the decay time of Ix during spin-locking. We can then approximate the

lab-frame correlation function as

CI (t
0, t00) =

­
I2x
®
exp (− |t0 − t00| /T1ρ) cos (ωht0) cos (ωht00) , (4.76)

for t0, t00 < 0, and

hIx (t0) Ix (t00)i =
­
I2x
®
exp (− |t0 − t00| /T1ρ) cos (ωh (t0 − t1)) cos (ωh (t

00 − t1)) (4.77)

if t0, t00 > t1. Note that we have assumed that during spin-locking, components of

sample dipole which are not spin-locked decay so quickly that we can neglect their

contribution to the lab-frame correlation function.



109

If t00 < 0 and t0 > t1, we obtain

hIx (t0) Ix (t00)i = hU (t00, t0) IxU (t0, t00) Ixi

=
D
U (t00, 0)U †

0U (t1, t
0) IxU (t

0, t1)U0U (0, t
00) Ix

E
,

with the average taken for a density matrix which is a multiple of the identity. Again,

this is a lab-frame correlation function, and the simplest way to approximate it is to

consider first the correlation function C̃I in a particular rotating frame. For times

during which the spin-locking field is present, the x-axis of this rotating frame is

parallel to the resonant rotating component of the spin-locking field, while the z-axes

of the rotating and lab frames are identical. During the period 0 ≤ t ≤ t1, the axes of

the rotating and lab frames are identical (that is, the rotating frame does not rotate).

In this rotating frame, we can approximate the correlation function by

C̃I (t
0, t00) =

­
I2x
®
cos (ωt1) exp {− (|t0 − t00|− t1) /T1ρ} . (4.78)

Roughly speaking, equation (4.78) expresses the idea that in comparing Ix at times

t00 and t0 within the rotating frame, we average over a set of hypothetical, idealized

measurements, and for each measurement, the following sequence of events occurs:

1) Ix is sampled at time t00, 2) Fluctuations in Ix occur during the spin-locking which

lasts from t = t00 to t = 0, 3) A rotation of the spin system is performed which replaces

Ix (0) with Ix (0) cosωt1 − Iy (0) sinωt1 as the spin component along the x-axis, 4)

Fluctuations in this spin component occur during the spin-locking which lasts from

t1 to t0, and 5) Ix is once again sampled. Our unpolarized system has hIxIyi = 0,

and so the transverse dipole −Iy (0) sinωt1 directed along the x-axis at time t1 makes

no contribution to the average of these hypothetical measurements, while the effect

of the fluctuations occurring during a period of length (|t0 − t00|− t1) is exponential

decay with time constant T1ρ. To obtain the lab-frame correlation functions from

(4.78), we once again assume that components of the sample dipole which are not



110

spin-locked may be neglected, and we write

CI (t
0, t00) =

­
I2x
®
cos (ωt1) exp {− (|t0 − t00|− t1) /T1ρ} cos (ωh (t0 − t1)) cos (ωht

00) .

(4.79)

Note that when t0 < 0 and t00 > t1, we similarly obtain

CI (t
0, t00) =

­
I2x
®
cos (ωt1) exp {− (|t0 − t00|− t1) /T1ρ} cos (ωht0) cos (ωh (t00 − t1)) .

(4.80)

Examination of (4.76), (4.77), (4.79), and (4.80) shows that only in the case where

t0 and t00 lie on opposite sides of the time interval 0 < t < t1 does our approximate

expression for m (t0, t00) contain information about the precession frequency ω of the

spins. In searching for an optimal method of estimating m (t1, 0), we may therefore

simplify the analysis by considering m to be zero in regions where t0, t00 are both less

than 0 or both greater than t1. Making the assumption that t1 ¿ T1ρ, we drop t1

from the exponential factor appearing in (4.79) and (4.80), and we further simplify

notation by redefining m (t0, t00) as

m (t0, t00) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
hT (t0)T (t00 + t1)i (t0, t00) in quadrant II

hT (t0 + t1)T (t
00)i (t0, t00) in quadrant IV

0 otherwise

That is, at points where the correlation function contains spectroscopic information,

we definem as if the time period governed by the evolution operator U had length zero,

which is a natural choice of notation within a model which neglects spin fluctuations

during this time period. Our approximate expression for m (t0, t00) then becomes

m (t0, t00) =

µ
γ~

dBx

dθ

¶2 ­
I2x
®
cos (ωt1) exp (− |t0 − t00| /T1ρ) cos (ωht0) cos (ωht00)

at all points (t0, t00) lying in quadrant II or quadrant IV of the plane. The estimate
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f (t0, t00) of the useful signal is also redefined so that

f (t0, t00) = m (t0, t00) + n (t0, t00) (4.81)

for all points (t0, t00) in the plane, including points at which m (t0, t00) = 0.

The information which we wish to extract from a single shot of a CONQUEST

experiment is an estimate of

G1 ≡
µ
γ~

dBx

dθ

¶2 ­
I2x
®
cos (ωt1) . (4.82)

Our simplified notation for m (t0, t00) allows us to define m0 (t
0, t00) by the equation

m (t0, t00) = G1m0 (t
0, t00) .

The analysis used to find the optimal linear filter for transverse BOOMERANG can

be carried over without substantial modification to show that the optimal estimate

of G1 is given by

X =

R∞
−∞
R∞
−∞ f (t0, t00)m0 (t

0, t00) dt0 dt00R∞
−∞
R∞
−∞m2

0 (t
0, t00) dt0 dt00

(4.83)

if the noise is white.

The noise in the function f (t0, t00) = g (t0) g (t00) will include contributions from

the products T (t0)T (t00) of spin torques, the products Ninst (t
0)Ninst (t

00) of torques

associated with instrument noise, and the products T (t0)Ninst (t
00) and Ninst (t

00)T (t0)

of one spin torque and one torque associated with instrument noise. We shall assume

that the dominant noise source contributing to g (t0) g (t00) comes from the product

Ninst (t
0)Ninst (t

00). This would occur for a problem in which

Z ∞

−∞

Z ∞

−∞
T (t0)T (t00)m0 (t

0, t00) dt0 dt00

and Z ∞

−∞

Z ∞

−∞
T (t0)Ninst (t

00)m0 (t
0, t00) dt0 dt00
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are substantially smaller than

Z ∞

−∞

Z ∞

−∞
Ninst (t

0)Ninst (t
00)m0 (t

0, t00) dt0 dt00,

that is, a problem in which the products T (t0)T (t00) and T (t0)Ninst (t
00) have much

smaller components in the relevant frequency domain than Ninst (t
0)Ninst (t

00). An ex-

ample of such a problem would be the two-spin system of section 1.2 of chapter 6, with

the spectrum detected by the example resonator of table 5.3 and the noise tempera-

ture TN = 18TQL. A more general SNR expression could be obtained by estimating

the spectral densities of the noise contributions due to the products T (t0)T (t00) and

T (t0)Ninst (t
00).

The instrument noise characterized by equation (4.42) is flat within the spectral

range of interest, and so the instrument noise at distinct sampled times t0 6= t00 can be

considered independent. The unfiltered noise n (t0, t00) can therefore be approximated

as the product of two normally distributed random variables, denoted by ninst (t0) and

ninst (t
00):

n (t0, t00) = ninst (t
0)ninst (t

00) .

The correlation function Cn of the noise is defined as

Cn (t
0
1, t

00
1, t

0
2, t

00
2) = hn (t01, t001)n (t02, t002)i

= hninst (t01)ninst (t001)ninst (t02)ninst (t002)i .

Note that the four random variables ninst
¡
t0j
¢
, ninst

¡
t00j
¢
may be considered indepen-

dent, since we are not concerned with the small subset of sampled points at which

two or more of the times are identical. We thus have

Cn (t
0
1, t

00
1, t

0
2, t

00
2) = hninst (t01)ninst (t02)i hninst (t001)ninst (t002)i

= Cinst (t
0
2 − t01)Cinst (t

00
2 − t001) ,

where Cinst (t) is the correlation function of the instrument noise ninst (t). We can
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thus write Cn as a function of two variables:

Cn (t
0, t00) = Cinst (t

0)Cinst (t
00) .

The double-sided spectral density Sn (ω0, ω00) of n is

Sn (ω
0, ω00) = Sinst (ω

0)Sinst (ω
00) ,

where Sinst (ω) is given by equation (4.42).

The variance introduced into the estimate X by instrument noise is

σ2inst =
(Sinst (ωh))

2R∞
−∞
R∞
−∞m2

0 (t
0, t00) dt0 dt00

. (4.84)

Note that noise at points (t0, t00) lying in the first and third quadrants makes no

contribution to the estimate X, since m0 is zero in these regions. SinceZ ∞

−∞

Z ∞

−∞
m2
0 (t

0, t00) dt0 dt00 ≈
T 21ρ
16
,

we have

σ2inst =

µ
4Sinst (ωh)

T1ρ

¶2
. (4.85)

It follows from equations (4.82) and (4.85) that the SNR is

SNRCONQUEST =
(γ~ dBx/dθ)

2 hI2xi cos (ωt1)
(4Sinst (ωh) /T1ρ)

= N

µ
γ~
2

dBx

dθ

¶2
1

4Sinst/T1ρ
. (4.86)

8.3 Comparison of the first-order and second-order methods

In comparing the sensitivity of the "first-order" method which measures a single value

of hIx (t1)i and the "second-order" method which measures hIx (t1) Ix (0)i, we consider

detection at a single point t1 for which cos (ωt1) = 1. If spin-locking is used to detect
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hIx (t1)i, the results of section 4.5 imply that the single-shot SNR is

SNRBOOM = PN
γ~
2

dBx

dθ

s
1

4Sinst/T1ρ
, (4.87)

where the subscript "BOOM" highlights the fact that this method of measuring an

NMR spectrum is a version of the BOOMERANG scheme for force-detected spec-

troscopy in the absence of field gradients [13]. Comparison of (4.86) and (4.87)

shows that for a sample consisting of a single spin with polarization P = 1, we have

SNRCONQUEST = (SNRBOOM)
2 .

In this case, the contribution of instrument noise to the measurement of hIx (t1) Ix (0)i

equals the product of the instrument noise for independent measurements of hIx (t1)i

and hIx (0)i.

More generally, we have

SNRCONQUEST =
1

P 2N
(SNRBOOM)

2

=

µ
SNRBOOM

P 2N

¶
SNRBOOM (4.88)

if instrument noise is dominant. Equation (4.88) may be considered a generalization

of the result that when spin noise is dominant [13],

SNRBOOM = P
√
N ,

SNRCONQUEST =
1p

1 + (1− 2/N)

≈ 1,

since (4.88) holds in this case as well. When (4.88) holds, e.g., when either the spin

noise or instrument noise can be neglected, the second-order method is more sensitive
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than the first-order method provided that

SNRBOOM ≥ P 2N . (4.89)

When instrument noise is dominant, (4.89) can be expressed as

γ~
2

dBx

dθ

s
1

4Sinst/T1ρ
≥ P . (4.90)

Equation (4.90) implies that the second-order method is preferred if the sample polar-

ization P is less than the single-shot SNR for detecting a single spin which is aligned

along the x-axis at the beginning of the detection period.




