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Chapter 2

Description of the nanoscale
spin-resonator system

1 Average Hamiltonian

We begin by obtaining an interaction-frame Hamiltonian for a system consisting of

a torsional mechanical resonator coupled to a collection of isochronous spins that

interact only with the resonator. The field at the spins is the sum of a static applied

field and the field of the magnetic mechanical resonator. Let θ be the resonator’s

angular coordinate, with equilibrium position corresponding to θ = 0, and let Ba and

Bh (θ) represent the applied field and the field of the resonator, respectively. We

define

B (θ)= Ba +Bh (θ)

to be the total field at the spins, and simplify notation by letting B, Bh, and dB/dθ

stand for B (0), Bh (0), and {dB/dθ} (0), respectively. The positive z-axis is chosen

to lie in the direction of B, and the x-axis is chosen so that dB/dθ lies in the xz-

plane; i.e., dB/dθ has nonzero components along only the x-axis and the z-axis. The

Hamiltonian is written in units of rad/s as

H = −γI ·B (θ) +Hosc, (2.1)
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whereHosc is the Hamiltonian for the harmonic oscillator, γ is the gyromagnetic ratio,

and I is the spin operator. In analyzing the Hamiltonian, we approximate B (θ) by

its first-order Taylor series:

B (θ) ≈ B+
µ
dB

dθ

¶
θ. (2.2)

Our first-order approximation to B (θ) is completely characterized by the three con-

stants Bz, dBx/dθ, and dBz/dθ. For oscillators which have

Bz(θ) = Bz(−θ),

the derivative dBz/dθ is zero at θ = 0, and we limit the discussion to oscillators

having this property. The first-order approximation to B (θ) is

Bx (θ) =
dBx

dθ
θ, (2.3)

By (θ) = 0, (2.4)

and

Bz(θ) = Bz. (2.5)

Equations 2.3 through 2.5 allow us to express the Hamiltonian as

H =

µ
−γdBx

dθ

¶
Ixθ +H0,

where H0 would be the Hamiltonian for a system in which the spins and oscillator

are uncoupled:

H0 = ω0Iz +Hosc (2.6)

ω0 ≡ −γBz. (2.7)
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Making the substitutions

θ =
1√
2β

¡
a+ a†

¢
,

Ix =
1

2
(I+ + I−)

yields

H = H0 + g
¡
I+a

† + I−a+ I+a+ I−a
†¢ . (2.8)

In (2.8), I+, I− are the respective raising and lowering operators for the spins, a† and

a are the respective raising and lowering operators for the mechanical oscillator, and

the constants β and g are given by

β ≡
r

Ihωh
~
,

g ≡ −γ
2
√
2β

dBx

dθ
, (2.9)

where Ih is oscillator’s moment of inertia and ωh is the mechanical frequency.

Using the operator exp (−iH0t/~) to switch to the interaction frame and applying

the identities

eiωhta
†aae−iωhta

†a = ae−iωht,

eiω0tIzI+e
−iω0tIz = I+e

iω0t

transforms the Hamiltonian to

H̃ = g
£
ei(ωh+ω0)tI+a

† + e−i(ωh+ω0)tI−a+ e−i(ωh−ω0)tI+a+ ei(ωh−ω0)tI−a
†¤ .

If the gyromagnetic ratio is positive, resonance between the Larmor and mechanical

frequencies corresponds to the condition

ωh = −ω0, (2.10)
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since ωh > 0 and ω0 < 0. At resonance, the average Hamiltonian, which we denote

by V , is

V = g
¡
I+a

† + I−a
¢
. (2.11)

This Hamiltonian is often referred to as the Jaynes-Cummings Hamiltonian. It has

been studied extensively in quantum optics, since it governs the interaction between

a two-level atom and a mode of the electromagnetic field [4]. In the current context,

it can be interpreted as governing an interaction in which one rotating component

of the resonator’s transverse field is resonant with the Larmor frequency and induces

transitions between spin eigenstates. This resonant transverse field can be considered

roughly analogous to the applied transverse field which rotates spins during an NMR

pulse.

The use of the first-order expression (2.2) as an approximation to B (θ) yields a

model in which Bz does not vary as the mechanical resonator moves. The model

excludes physical effects caused by fluctuations in Bz associated with the mechanical

motion, such as the resonator’s contribution to transverse spin relaxation by "secular

broadening" (i.e., transverse relaxation due to fluctuations in the longitudinal field).

To include such effects in our analysis, we expand the field to second order in θ,

limiting the discussion to resonators for which the properties

Bx(θ) = −Bx(−θ)

By (θ) ≡ 0

imply that
d2Bx

dθ2
=

d2By

dθ2
= 0

at θ = 0. The average Hamiltonian in the interaction frame is then

V 0 = g
¡
I+a

† + I−a
¢
+ fIz

¡
a†a− nth

¢
, (2.12)
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where

f = −γd
2Bz

dθ2
~

2Ihωh

and nth is the thermal number of quanta in the resonator. In deriving (2.12), we

have used the interaction frame defined by H0 = ω0Iz + ωh
¡
a†a+ 1/2

¢
, where

ω0 = −γBz + f (nth + 1/2) . (2.13)

The terms proportional to f in (2.12) and (2.13) arise because the value of Bz

depends on the number of quanta in the resonator. In the case where

d2Bz

dθ2
< 0,

for instance, the value of Bz is greatest when the resonator is in equilibrium position,

and motion away from equilibrium decreases Bz. In the interaction-frame Hamil-

tonian, the resonator’s contribution to Bz consists of terms which vary at frequency

±2ωh as well as a time-independent term that depends on the the number of quanta

a†a in the resonator. Fluctuations in a†a away from the thermal value nth correspond

to a fluctuating value of Bz at the spins. In the presence of this fluctuating field,

the mean value of the Larmor frequency is given by (2.13). Using this value of ω0

in defining H0 ensures that hV 0i = 0, where the average is taken over the thermal

reservoir that damps the resonator.

2 Equations of motion for spin operators

2.1 Reduced master equation for the spins

In the case where the sample consists of spins 1/2, evolution under the Hamiltonian

(2.11) can be characterized using results available in the quantum optics literature.

When a single atom interacts with an undamped electromagnetic mode of a resonant

cavity, an initial state function that has n quanta in the mode and that has the
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spin in its excited state evolves in time by periodically exchanging a single quantum

between spin and mode at frequency 2g
√
n+ 1 [4]. When N atoms are present

in the undamped cavity, with all atoms initially excited, the system evolves "quasi-

periodically," as the excitation initially present in the spins is transferred between the

atoms and the resonant mode with a frequency of order [5]

g × field amplitude ≈ g
p
ha†ai, (2.14)

where
­
a†a
®
is the mean number of quanta in the cavity mode, including thermal

quanta and quanta donated by the atoms to the cavity mode. For a cavity at zero

Kelvins, this frequency is of order g
√
N , where N is the number of atoms in the

cavity [5]. If the cavity mode is weakly damped, oscillations in the excitation of

the atoms gradually decay as quanta are dissipated from the mode. Increasing the

strength of the damping eventually suppresses the oscillations, and the atoms decay

monotonically when the rate constant for dissipation of quanta is large compared to

the frequency at which quanta would cycle between atoms and the resonator in the

absence of damping [5]. Since the rate constant for dissipation of quanta can be

written as 2/τh, where τh is the decay time of the mechanical resonator’s position

coordinate (or "ringdown time"), the condition that guarantees oscillations will be

suppressed is

g
p
ha†ai ¿ 2

τh
. (2.15)

In this regime, the evolution of the atomic system can be described by a reduced

master equation which does not explicitly include the resonator’s degrees of freedom

[5], and the resonator can be considered a reservoir which damps the atomic system.

For a resonator at zero Kelvins, the condition (2.15) which allows the use of a reduced

master equation is written more explicitly as [6]

g
√
N ¿ 2

τh
. (2.16)

These results can be carried over directly to a system consisting of spins 1/2 which
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evolve under a spin Hamiltonian Hs while interacting with a damped mechanical

resonator. The evolution of the spin system is governed by the master equation [5]

d

dt
ρs = −i [Hs, ρs]−

1

2
R0 (nth + 1) [I−I+, ρs]+ +R0 (nth + 1) I+ρsI− (2.17)

− 1
2
R0nth [I+I−, ρs]+ +R0nthI−ρsI+,

where

R0 = 2g
2τh.

The anticommutator [·, ·]+ is defined by

[A,B]+ = AB +BA.

Both Hs and the spin density matrix ρs are expressed in the interaction frame in

which the Hamiltonian H0 of equation (2.6) has been eliminated, and the resonator

field is assumed to be identical at all spins. Note that spin-lattice interactions are not

included, since (2.17) is derived by considering an undamped system of atoms which

interact with a damped electromagnetic mode. At very low temperatures, where

the spin-lattice relaxation is "frozen out," equation (2.17) can be used to investigate

the question of whether spin-resonator relaxation governed by the Hamiltonian of

equation (2.11) can efficiently cool the spins toward thermal equilibrium with the

resonator.

Note that (2.17) was derived by adding the term−i [Hs, ρs], which governs unitary

evolution under Hs, to a relaxation superoperator derived under the assumption that

Hs = 0. The discussion in this thesis is limited to the regime in which this step

is valid. To characterize this regime, note first that resonator-induced relaxation

depends on weak correlations which develop between spins and resonator. The

resonator "remembers" an interaction with the spins for a time period of order τh.

In a simple visualization of the relaxation, we can consider that a spin-resonator

correlation survives during a period of order τh and is then annihilated. The new

spin-resonator correlation which then develops is determined by the instantaneous
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state of the spins. Spin relaxation can thus be visualized as occurring during time

periods of order τh, with the relaxation during a given time period depending only

on the state of the spins at the beginning of that period. If the time scale of the

spin evolution associated with Hs is long compared to τh, then there is little error in

adopting the point of view that the spins are at every instant relaxing just as they

would if Hs were absent, while Hs slowly modulates the spin state. In this regime, we

can obtain a master equation by adding the unitary term −i [Hs, ρs] to the relaxation

superoperator Λ derived under the assumption that Hs = 0. During a time step

during which evolution due to Hs is negligible, for instance, such a master equation

correctly predicts that relaxation is governed by Λ, while the presence of the unitary

term allows for the slow modulation of the spin state.

This argument can be formalized by considering the general derivation given in

reference [7] of the master equation for a system A coupled to a reservoir R. The

interaction Hamiltonian can be written as

V = VAVR,

where VA acts on A and VR acts on R. In the absence of the coupling V , the lab-

frame Hamiltonians HA and HR govern A and R, respectively. These Hamiltonians

are eliminated from the evolution equations by a switch from the lab frame to an

interaction frame, and second-order time-dependent perturbation theory is used to

obtain an interaction-frame expression for the evolution of A and R during a time step

∆t. A partial trace is taken over the reservoir degrees of freedom, and the resulting

expression is simplified using the assumption that ∆tÀ τh and the assumption that

the reservoir is only weakly perturbed from thermal equilibrium by the interaction

with A. A similar derivation can be carried out in the case where the switch from the

lab frame to the interaction frame does not completely eliminate the Hamiltonian HA

but rather leaves a "secular" term Hs. A second-order expression for the evolution

of the full density matrix for A and R yields terms quadratic in V , terms which are

proportional to V and Hs, as well as terms quadratic in Hs. A partial trace over the
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reservoir degrees of freedom eliminates the terms which are linear in V , due to the

assumption that the thermal average of VR over the reservoir states is zero. (This

condition can always be achieved by adding a term hVRiVA to the Hamiltonian HA

and then defining V = VAV
0
R, where V

0
R = VR − hVRi.) The terms depending on the

square of V are unaffected by the presence of Hs, and they yield the same relaxation

superoperator that would be obtained in the absence of Hs. The remaining terms

yield a second-order approximation to the unitary evolution of A associated with Hs.

If this second-order approximation is valid throughout the time step ∆t, then the

resulting master equation for A includes the same relaxation superoperator which

would be obtained in the absence of Hs, along with the additional term −i [Hs, ρs].

The relaxation superoperator can therefore be calculated without consideration of Hs

if the evolution associated with Hs is sufficiently slow that it can be approximated

by second-order perturbation theory during the time step ∆t.

We consider a simple example in which Hs = 0. Multiplying the master equation

(2.17) by Iz and taking the trace gives the derivative of hIzi (t):

d

dt
hIzi = R0 (nth + 1) hI−I+i−R0nth hI+I−i . (2.18)

= −R0 (2nth + 1) hIzi+R0
­
I2x + I2y

®
. (2.19)

If only a single spin is present, then

I2x = I2y = 1/4,

and we obtain
d

dt
hIzi = −R0 (2nth + 1)

µ
hIzi−

1/2

2nth + 1

¶
.

This equation describes the exponential relaxation of hIzi toward thermal equilibrium

with the resonator, and the rate constant is

Rh = R0 (2nth + 1) .
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Since Rh = R0 at when nth = 0, we can consider R0 to be the rate constant in the

limiting case T → 0.

The interaction-frame equations of motion for the transverse spin components are

d

dt
hIxi = −

1

2
Rh hIxi−R0

¿
1

2
(IxIz + IzIx)

À
, (2.20)

d

dt
hIyi = −

1

2
Rh hIyi−R0

¿
1

2
(IyIz + IzIy)

À
. (2.21)

For a sample consisting of a single spin 1/2, we have

IxIz + IzIx = IyIz + IzIy = 0,

and

d

dt
hIxi = −

1

2
Rh hIxi , (2.22)

d

dt
hIyi = −

1

2
Rh hIyi . (2.23)

We can interpret the transverse relaxation with rate constant Rh/2 as lifetime broad-

ening associated with the spin transitions induced by the resonator.

2.2 Full master equation for the spin-resonator system

In analyzing resonator-induced relaxation, it is often convenient to use a master equa-

tion which includes the resonator’s degrees of freedom. If the effects of the spin lattice

are neglected, the full master equation for the spin-resonator density matrix ρ in the

interaction frame is [5]
d

dt
ρ = −i [Hs + V, ρ] + Λρ, (2.24)
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where V is the average Hamiltonian (2.11) governing the spin-resonator interaction,

and Λ is the relaxation superoperator for the damped mechanical resonator [8]:

Λρ = −nth + 1
τh

£
a†a, ρ

¤
+
+ 2

nth + 1

τh
aρa† (2.25)

− nth
τh

£
aa†, ρ

¤
+
+ 2

nth
τh

a†ρa.

Equations (2.19) through (2.21) can be obtained for arbitrary values of I from the

full master equation by using a method presented in Appendix A to derive a "coarse-

grained" derivative, i.e., the average rate of change during a time step∆t which is long

compared to τh but short compared to the time needed for spin relaxation. The error

associated with the use of the rotating-frame approximation (i.e., the use of an average

Hamiltonian obtained by neglecting the off-resonant components of the transverse

field) to obtain equations of motion for spin operators can be estimated by replacing

the average Hamiltonian used during the time step ∆t with a Magnus expansion [9].

The average Hamiltonian (2.11) is the zero-order term in this expansion, and the

first-order term is smaller than the average Hamiltonian by a factor of order g/ωh.

The method given in Appendix A can be used to correct the spin equations of

motions to include "secular broadening" associated with the fluctuations in Bz caused

by the mechanical motion. Replacing (2.11) by (2.12) as the interaction Hamiltonian

does not affect the equation of motion for hIzi, but equations (2.20) and (2.21) become

d

dt
hIxi = −

1

2
Rh hIxi−R0

¿
1

2
(IxIz + IzIx)

À
− 1
2
f2τhnth (nth + 1) hIxi ,

d

dt
hIyi = −

1

2
Rh hIyi−R0

¿
1

2
(IyIz + IzIy)

À
− 1
2
f2τhnth (nth + 1) hIyi .

Appendix B uses a numerical example to demonstrate that

f2τhnth (nth + 1)¿ Rh



18

for the low-temperature nanoscale regime of interest. In this regime, (2.11) may be

used as the interaction Hamiltonian, since the corrections introduced by the switch

from (2.11) by (2.12) are negligible.

A similar approach can be used to derive equations of motion in the case where

the spins’ Larmor frequency is separated from the mechanical frequency by an offset

β:

ω0 = −ωh + β.

Appendix C shows that if the spins all experience the same off-resonant field, the rate

of longitudinal relaxation is given by

d hIzi
dt

= {R0 (nth + 1) hI−I+i−R0nth hI+I−i}
1

1 + (βτh)
2 . (2.26)

A rate equation for longitudinal relaxation is also given for the case where the res-

onator’s field varies across the sample. These results can be used to estimate the

sample volume which can be cooled toward thermal equilibrium by a mechanical

resonator.

3 Spontaneous and stimulated transitions

Agarwal has shown that spontaneous emission from a two-level atom into the vacuum

is governed by the operator which is written in our notation as I−I+ [10]. Since (2.18)

can be expressed as

d

dt
hIzi = R0 hI−I+i+R0nth hI−I+i−R0nth hI+I−i , (2.27)

it is natural to interpret the terms R0 hI−I+i, R0nth hI−I+i, and R0nth hI+I−i as

characterizing processes analogous to spontaneous emission, stimulated emission,

and stimulated absorption, respectively. More precisely, the term R0 (nth + 1) and

R0nth hI+I−i are expected to give the respective rates at which the spins donate en-

ergy to an oscillator and receive energy from it.
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The conjecture can be verified using the general formulas derived in reference [7]

for the coefficients of a master equation. The interaction-frame master equation is

written as
d

dt
ρab (t) =

X
c,d

exp {i (ωab − ωcd) t}Rabcd ρcd (t) ,

where ρij is an element of the density matrix expressed in the energy eigenbasis, and

Rabcd is a constant which characterizes the rate of transfer from ρcd to ρab. The

eigenfrequency of spin eigenstate |ai is denoted by ωa, and the difference of two such

eigenfrequencies by

ωab = ωa − ωb.

A spin transition from state |bi to state |ci changes the respective populations ρbb, ρcc
of the states, and Rccbb is the rate constant for this transition. In the case where the

transition b→ c involves the donation of a quantum from the spins to the resonator,

we find by applying the general formulas of reference [7] that

Rccbb = g2 |hc |I+| bi|2
Z ∞

−∞
exp (iωbcτ)

­
a (τ) a† (0)

®
dτ . (2.28)

The correlation function
­
a (τ) a† (0)

®
appearing in the integrand can be approximated

as

­
a (τ) a† (0)

®
=
­
a (τ) a† (0)

®
exp (−iωhτ) exp (−τ/τh)

= (nth + 1) exp (−iωhτ) exp (−τ/τh) .

When the difference frequency ωbc is resonant with the mechanical frequency, the

integrand of (2.28) is equal to (nth + 1) exp (−τ/τh), and we obtain

Rccbb = 2g
2τh (nth + 1) |hc |I+| bi|2 . (2.29)

In the case where the Hamiltonian governing the spins is ω0Iz, the energy eigen-

states can be chosen to consist of angular momentum manifolds, with I+ and I−



20

the raising and lowering operators within each manifold. In this basis, hc |I+| bi is

nonzero only if I+ |bi = |ci, and in this case

|hc |I+| bi|2 = 1

= hb |I−I+| bi ,

and

Rccbb = R0 (nth + 1) hb |I−I+| bi .

Summing over all transitions b→ c for which hc |I+| bi is nonzero shows that the rate

at which quanta are donated to the resonator is

X
hc|I+|bi6=0

Rccbbρbb = R0 (nth + 1) hI−I+i .

Since temperature Th = 0 gives nth = 0, we find that R0 hI−I+i is the rate of sponta-

neous emission, while

R0 (nth + 1) hI−I+i−R0 hI−I+i = R0nth hI−I+i

is the rate of stimulated emission. Similar arguments can be used to demonstrate

that R0nth hI+I−i is the rate at which quanta are donated to the spins, i.e., the rate

of stimulated absorption.

The contribution of spontaneous and stimulated transitions to longitudinal relax-

ation can be highlighted by expressing equation (2.27) in the form

d

dt
hIzi = −2R0nth hIzi−R0

©
hIzi−

­
I2x + I2y

®ª
.

The term proportional to nth is due to stimulated transitions. In the absence of

spontaneous emission, stimulated transitions would cause hIzi to relax exponentially

to zero. The remaining contribution is due to spontaneous emission, which drives

hIzi toward the instantaneous value of
­
I2x + I2y

®
. In the case where a single spin
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1/2 interacts with the resonator, spontaneous emission drives hIzi toward 1/2. In

the general case, spin-spin correlations affect the value of
­
I2x + I2y

®
and hence the

contribution of spontaneous emission to the relaxation of hIzi.

4 Physical interpretation of the cooling process

Reference [7] presents a physical interpretation of the energy exchange which occurs

between a system A and a thermal reservoir R which is weakly-coupled to A and

damps its motion. Two types of processes contribute: 1) Processes in which system

A responds linearly to fluctuations in R, and 2) Processes in which R responds lin-

early to the motion of A and damps this motion. In the case where A is a single atom

and R is an isotropic and homogeneous radiation field, stimulated emission and ab-

sorption are shown to depend on the first type of process, while spontaneous emission

is shown to include equal contributions from both types. In particular, the response

of the atom to vacuum fluctuation and the response of the electromagnetic field to

the motion of the electrons contribute equally to spontaneous emission. The atom

continually loses energy as the radiation field responds to its motion (the "radiation

reaction"), while the atom can either gain or lose energy when acted upon by vacuum

fluctuations. If a two-level atom is in its excited state, vacuum fluctuations and the

radiation reaction both transfer energy from the atom to the field at an equal rate.

When the atom is in its ground state, however, vacuum fluctuations tend to induce

atomic transitions to the excited state, thereby increasing the atom’s energy, while

the energy transfer due to the radiation reaction cancels the effect of the vacuum

fluctuations.

The derivations used in justifying this interpretation can be adapted to yield

a similar interpretation of the energy exchanges between a single spin 1/2 and a

damped mechanical resonator. Consider as an example a problem in which the

initial spin density matrix ρs is diagonal in the product-state eigenbasis. It follows

from (2.17) that ρs will remain diagonal as the spin relaxes, since the derivative of

ρs is itself diagonal. (This can be verified directly using matrix representations of
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I− and I+.) In this case, the mean transverse dipole is zero during the relaxation,

and it is the fluctuations in the transverse dipole which drive the mechanical motion.

The fluctuations are damped as they drive the resonator, and the resulting transfer

of energy from spin to resonator is a mechanical analog of the radiation reaction.

When Th = 0 and the spin is in its ground state, no transitions occur, since spin

fluctuations drive the resonator and donate energy to it at the same rate that zero-

point fluctuations return energy to the spin. If the spin is in the excited state, spin

fluctuations and zero-point motion both contribute equally to spontaneous emission.

This interpretation is consistent with the idea that transverse spin fluctuations

continue to occur even when a system is in its ground state. Consistent with this in-

terpretation is the convention that the mean square fluctuation of a complex operator

T = T1 + iT2 be defined as [11]

|∆T |2 ≡ 1
2

­
TT † + T †T

®
− hT i

­
T †
®

(2.30)

= (∆T1)
2 + (∆T2)

2 .

Under this convention, the mean square fluctuations in the resonator’s complex am-

plitude in thermal equilibrium are

|∆a|2 =
¯̄
∆a†

¯̄2
= nth + 1/2,

while the thermal fluctuations in the transverse spin are given by

|∆I+|2 = |∆I−|2 =
­
I2x + I2y

®
.

For a system consisting of a resonator at Th = 0 and a spin 1/2 in its ground state,

we have

|∆a|2 = 1/2,

|∆I+|2 = 1/2.
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Definition (2.30) is not appropriate in all cases, however. Although a spin 1/2 in

its ground state coupled to a mode at Th = 0 can be visualized as actively exchanging

energy with the mode, no net radiation into or out of the mode will be detectable.

Note also that the results presented in 2.3 imply that the radiation emitted by trans-

verse spin fluctuations is characterized by the operator I−I+, rather than by |∆I+|2.

In studying "radiative transverse fluctuations" of a mechanical oscillator or a spin

system, an alternative to definition (2.30) may be used. If we let T denote the com-

plex operator which removes a quantum from the radiating system (i.e., I+ in the case

of radiating spins or a in the case of a radiating mode), the radiative fluctuations of

the spins and the resonator are characterized by

|∆0T |2 ≡
­
T †T

®
− hT i

­
T †
®
. (2.31)

For a resonator or a spin system in a thermal state, definition (2.31) yields the re-

spective operators

­
a†a
®
= nth,

hI−I+i =
­
I2x + I2y

®
− hIzi .

At zero Kelvins, the radiative fluctuations defined by these operators are zero.

The physical interpretation of energy exchange given in reference [7] can also

be used to explain the appearance of the resonator’s ringdown time τh in the rate

constant

R0 = 2g
2τh. (2.32)

When subject to a time-dependent input x (t), the response y (t) of a linear system

can be expressed as

y (t) =

Z +∞

−∞
x (t0)h (t− t0) dt0, (2.33)

where h (t− t0) gives the response at time t to a unit impulse applied at time t0.

In using (2.33) to explain the appearance of τh in equation (2.32), we consider the
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two types of process which contribute to energy exchange between the spins and the

damped resonator. For processes in which the spins respond linearly to resonator

fluctuations, the linear system of equation (2.33) is the spin sample, the input x (t)

is the fluctuating field of the mechanical resonator, and τh is the correlation time of

x (t). Short τh limits the rate of stimulated emission and absorption by limiting the

time period during which the spins experience the steady periodic field that induces

transitions. For processes in which the damped resonator responds linearly to spin

motion and damps this motion (i.e., the mechanical analog of the "radiation reaction"

mentioned above), the decay time of the impulse response h (t) is τh, and so τh limits

the time period during which the mechanical response can "ring up."

Note that the derivation of equation (2.32) depends on the assumption that τh is

much shorter than the correlation time of the transverse sample dipole, and as a result,

τh is the only correlation time which appears in this equation. If the transverse spin

correlation time is short enough to have a significant effect in determining the time

period during which the linear response of the spins and resonator can accumulate,

then the rate constant R0 must be modified to take account of the effects of spin

fluctuations. This could be done by adding a superoperator for spin relaxation

to the spin-resonator master equation and then performing a derivation similar to

that of Appendix A. The discussion in section 2 of chapter 7 illustrates a method

of including the effects of spin relaxation in an approximate way without using an

explicit expression for the spin relaxation superoperator.

5 Semiclassical model

The motion of spin systems can often be visualized using a semiclassical model in

which each spin component has a definite value at all times. Such a model can be

considered a formalization of the "finger physics" pictures that are used to visualize

spin evolution. We present a semiclassical model of the spin-resonator system which

can be used to visualize the spin-resonator interaction and also to distinguish the re-

laxation governed by (2.18) from so-called radiation damping [12]. The semiclassical
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spin Ic is governed by the equation

d

dt
Ic = γIc ×B, (2.34)

i.e., Ic precesses around the instantaneous field at frequency

ω0 = −γB.

The magnetic dipole associated with Ic is

μc = γ~Ic.

A classical damped mechanical resonator is coupled to the spin system by the Hamil-

tonian

W = −μc ·B (θ) ,

and the torque exerted on the resonator by the dipole is

−∂W
∂θ

=
dBx

dθ
μcx.

Precession of Ic around the applied field causes μcx to vary sinusoidally. The me-

chanical oscillator thus responds to a resonant driving torque, and energy can be

transferred from the spins to the oscillator by this driving torque. The resonant ro-

tating component of the oscillator’s field simultaneously exerts a torque on the spins

and causes spin rotation toward or away from the static applied field. As in the

derivative of the quantum mechanical equations of motion, coarse-grained relaxation

equations can be found by integrating the motion over a time step ∆t which is long

compared to τh but short compared to spin relaxation time.

Appendix D derives an equation of motion for hIczi, where the average is taken
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over a statistical ensemble of spin-resonator systems:

d hIczi
dt

= −2R0
hEc

hi
~ωh

hIczi+R0
­
Ic−I

c
+

®
. (2.35)

In (2.35), Ic+, I
c
− are defined as

Ic± = Icx ± iIcy,

and hEc
hi is the mean thermal energy of the classical resonator. From equation

(2.18), we can obtain a formally equivalent equation for longitudinal relaxation of the

quantum mechanical system:

d hIzi
dt

= −2R0
hEhi
~ωh

hIzi+R0 hI−I+i , (2.36)

where

hEhi = ~ωhnth

can be considered the mean thermal energy of the quantum resonator, with zero-point

energy excluded.

The formal equivalence between (2.35) and (2.36) masks the fact that the commu-

tation properties of the quantum operators can yield distinctly nonclassical relaxation

in the quantum system. Writing the two equations in the form

d hIczi
dt

= −2R0
hEc

hi
~ωh

hIczi+R0
D
(Icx)

2 +
¡
Icy
¢2E

, (2.37)

d hIzi
dt

= −2R0
hEhi
~ωh

hIzi+
©
R0
­
I2x + I2y

®
−R0 hIzi

ª
(2.38)

highlights the failure of the semiclassical model to characterize correctly the sponta-

neous emission which is responsible for polarizing the spins in the quantum system at

low temperatures. As shown in section 3, the terms in curly brackets on the right side

of (2.38) are due to spontaneous emission. Section 4 interprets spontaneous emission

as including equal contributions from the spins’ response to zero-point fluctuations
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of the resonator’s field, and the resonator’s response to transverse spin fluctuations

that are present even in a perfectly polarized sample. Since these phenomena are

not present in the semiclassical model, it is not surprising that spontaneous emission

is not correctly characterized by this model. Equations (2.35) and (2.36) show that

discrepancies between the quantum and semiclassical models can be expected when

hEhi
~ωh

= nth

has order of magnitude unity or less, as well as when
­
I2x + I2y

®
differs significantly

from the value that would be calculated if each spin component had a definite value

simultaneously.

As an illustration, we compare the semiclassical phenomenon called "radiation

damping" with the longitudinal polarization of a spin 1/2 by a cold resonator. Mag-

netization precessing in an inductive coil excites current oscillations within the coil

circuit, and radiation damping occurs when the field generated within the coil by

the oscillating current is strong enough to rotate the magnetization into alignment

with the static applied field, thereby shortening the precession period. In the case

where spins are coupled to a mechanical rather than an inductive resonator, the anal-

ogous phenomenon occurs when the mechanical response to precessing spins creates

a resonant field which rotates the spins.

Abragam has derived a rate equation for radiation damping using a model equiv-

alent to our semiclassical model [12]. Adopting the language and notation of our

semiclassical model, we can say that Abragam derives the rate equation by assuming

that a single semiclassical dipole μc interacts with a classical resonator in which ther-

mal fluctuations can be neglected, i.e., a classical resonator at temperature Th = 0.

The equation of motion for hIczi during radiation damping can therefore be obtained

from (2.37) by setting hEc
hi to zero:

d hIczi
dt

= R0
D
(Icx)

2 +
¡
Icy
¢2E

. (2.39)
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Equation (2.39) implies that d hIczi /dt is zero if the semiclassical dipole is aligned with

the negative z-axis, and that d hIczi /dt takes on its maximum value when the dipole

lies in the transverse plane. This is consistent with the fact that it is the transverse

dipole which drives the mechanical motion and thereby induces the resonant field

responsible for radiation damping.

For purposes of comparison, note that the quantummechanical equation of motion

is
d hIzi
dt

= R0
­
I2x + I2y

®
−R0 hIzi (2.40)

when the resonator is at zero Kelvins. Consider an example in which the spin sample

consists of a single spin 1/2. Since

I2x + I2y = 1/2,

equation (2.40) reduces to

d hIzi
dt

= −R0 (hIzi− 1/2) . (2.41)

The evolution governed by (2.41) is distinctly different from that governed by (2.39).

If the spin is aligned with the negative z-axis, for instance, d hIzi /dt takes on its

maximum possible value, and the derivative decreases linearly as hIzi is increased,

reaching zero when the spin is oriented along the positive z-axis. Since I2x + I2y is a

constant, d hIzi /dt depends only on hIzi. In particular, since a polarized spin 1/2

initially precessing in the transverse plane has the same initial value of hIzi as a spin

which is initially completely unpolarized, the evolution of hIzi is the same in both

cases.

The most striking difference between the semiclassical and quantum models is

that only the quantum mechanical model allows for the polarization of a sample of

spins which all experience the same field. Equation (2.34) implies that the derivative

dIc/dt is perpendicular to Ic, and it follows that this equation of motion describes

rotation of Ic. The magnitude |Ic| cannot change as a result of the spin-resonator
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interaction. The quantum model does allow polarization, as can be seen from equa-

tion (2.41). For a single spin 1/2, relaxation of hIzi toward thermal equilibrium

proceeds independently of Ix and Iy. As we will see in chapter 3, resonator-induced

polarization is also possible for a system of N spins.

6 Polarization of spins using an inductive resonator

Reference [13] demonstrates that mechanical detection of NMR signals is more sensi-

tive than inductive detection for sufficiently small samples, with mechanical detection

typically becoming more sensitive when the sample radius is on the order of tens of

microns to hundreds of microns. We extend this result by presenting a numerical

estimate which suggest that a nanoscale inductive resonator would not efficiently cool

a nanoscale spin sample.

6.1 Rate constant for longitudinal relaxation

An classical LC circuit is governed by the Hamiltonian

H =
p2

2L
+

q2

2C
,

where q is charge, L is inductance, and C is capacitance. The inductive oscillator

has the coordinate q, and the conjugate momentum is

p = Lq̇,

where q̇ is the current flowing in the circuit. For a sufficiently long solenoid, the

solenoid’s field at the spins, which we will denote by By, is

By = μ0nq̇

=
μ0n

L
p,
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where n is the number of turns per unit length. We will assume that the inductive

resonator’s field at the spins can be written in the form

Bs (p) =

µ
0,
dBy

dp
p, 0

¶
,

with
dBy

dp
=

μ0n

L
.

This assumption yields the following Hamiltonian (in units of rad/s) for the spin-

resonator system:

H = ω0Iz + ωh
¡
a†a+ 1/2

¢
− γIy

dBy

dp
p.

Substituting

p = i

r
L~ωh
2

¡
a† − a

¢
and

Ih =
1

2i
(I+ − I−)

into the Hamiltonian gives

H = ω0Iz + ωh
¡
a†a+ 1/2

¢
− γ

2

dBy

dp

r
L~ωh
2

¡
a† − a

¢
(I+ − I−) .

In the interaction frame, the term in the Hamiltonian which survives averaging is

V = −γ
2

dBy

dp

r
L~ωh
2

¡
I+a

† + I−a
¢
. (2.42)

Equation (2.42) shows that for both inductive and mechanical resonators, the

spin-resonator Hamiltonian in the interaction frame takes the same form. For the

inductive resonator, we define

ginduct = −
γ

2

dBy

dp

r
L~ωh
2
.
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Longitudinal relaxation of the spins will be governed by the rate constant

Rinduct = 2g
2
inductτinduct (2nth + 1) , (2.43)

where the ringdown time τinduct of the inductive resonator is given by

τinduct = 2L/R,

with R the resistance in the inductive circuit. Equation (2.43) can be written more

explicitly as

Rinduct = (γμ0n)
2 ~ωh
2R

(2nth + 1) .

6.2 Comparison of mechanical and inductive resonators

In comparing mechanical and inductive resonators, we first consider the way in which

g2 scales with size. If ωh varies as 1/r, we find that

g2mech ∝
1

Ihωh

∝ 1/r4,

and

g2induct ∝
n2ωh
L

∝ 1/r4.

However, if ωh is assumed to be determined by a fixed field which does not vary

during the scaling, we obtain

g2mech ∝ 1/r5,

g2induct ∝ 1/r3.
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At a given frequency, the the strength of the spin-resonator coupling depends more

strongly on size if the resonator is mechanical.

The spin-relaxation rate depends on the resonator ringdown time as well as the

coupling strength, and a quantitative comparison of spin relaxation rates for mechan-

ical and inductive resonators is not possible because the dependence of mechanical

ringdown time on size and temperature is poorly understood. We can, however,

make simple estimates which suggest that inductive resonators would not efficiently

cool spins. The resistance R of a coil is scale invariant if the skin depth is smaller

than the radius of the wire used in the windings of the coil, while R scales as 1/r

in the regime where the current flows uniformly through the wire [13]. Cooling an

exceptionally pure conductor to a temperature of a few Kelvins or below can increase

its conductivity by a factor of up to 106 [14], which would yield a skin depth for

copper of a few nanometers at 200MHz. In order to make an estimate advantageous

to inductive cooling, we assume that R is scale invariant, setting aside the question

of whether a nanoscale inductor of this purity could be fabricated. This assumption

yields

τinduct = 2L/R ∝ r

and

g2inductτinduct ∝ 1/r2. (2.44)

The longitudinal relaxation rate constant Rinduct for the example coils presented in

reference [13] were calculated using the assumption that the resonator’s conductivity

increased by a factor of 106 over that of room-temperature copper due to cooling of

the coil to mK temperatures:

Rinduct ≈ 3× 10−11 s−1 .

These example coils have length and diameter of order 50μm. Scaling down these

dimensions by a factor of 103 under the assumption that (2.44) holds would increase

Rinduct by six orders of magnitude, yielding a rate constant that is negligible compared



33

to the value

Rh ∼ 1 s−1

obtained from numerical examples presented in section 6 of chapter 5.




