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Abstract

In performing goal-directed actions, primates (humans and monkeys) flexibly select

and plan appropriate behavioral responses. However, while a network of frontoparietal

regions are traditionally implicated in the transformation of sensory input from the

environment into these spatial, goal-directed movements, the type of information

encoded in their activity remains nebulous.

This work first addresses the long-standing query as to whether this activity rep-

resents a prospective planning of the upcoming action, or a retrospective sensory

representation of goals. In an fMRI experiment, subjects performed delayed-reach

tasks, in which mnemonic and attentional demands were held constant. BOLD sig-

nals showed that the posterior parietal cortex (PPC) and premotor regions exhibit

activity specifically related to the planning of upcoming actions.

Additionally, to select and plan the optimal action, the expected consequences of

potential responses need to be assessed. To determine whether and how potential

outcomes mold action planning activity, subjects were scanned while they performed

a demanding motor task to obtain monetary gains or losses contingent on their perfor-

mance. Monetary consequences modulated activity throughout the action-planning

network, most significantly in PPC, as well as in reward structures. While reward

areas reflected the expected value of a trial, frontoparietal activity was greatest for

both high expected rewards and losses. Moreover, in frontoparietal areas, subjects

beliefs about the likelihood of possible outcomes influenced BOLD signals, suggesting

that cognitive biases may influence the planning of actions.

Finally, to compare human imaging findings to large body of related monkey elec-

trophysiological experiments, humans and monkeys were scanned while performing
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the same delayed-saccade tasks. Frontoparietal oculomotor-planning areas in mon-

keys and putative homologs in humans evinced coherent response patterns, though

prominent differences in the degree of contralaterality and the hemodynamic responses

between the two species emerged.

In sum, these findings help characterize fundamental aspects of goal-directed ac-

tion planning in both species.
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Chapter 1

Introduction

1.1 Intentional Action

Now thought alone moves nothing; only thought which is
directed to some end and concerned with action can do so.

-Aristotle

Humans perform voluntary actions. Assuming most of these actions are not hap-

hazardly and desultorily generated, they are done according to a purpose—to create

or modify some event, or state of affairs, towards a desired end or goal. The perfor-

mance of a goal-directed action presupposes that the agent has some knowledge about

the goal, the means by which it can be achieved, and a corollary anticipation of the

goal event (Hommel 2003). Implicit in this notion, then, is that he plans the action:

with some comprehension of movement-effect relationships, he selects, specifies, and

prepares an appropriate behavioral response before he executes it.

A distinction between the cognitive operations prior to action and those during

action was first posited by Woodworth (1899), based on his seminal study examining

the use of visual feedback in on-line control of movement. Since Woodworth’s time,

these separate stages have been the subject of much investigation (Beggs & Howarth

1970, 1972; Carlton 1981; Fitts 1954; Keele 1968; Meyer et al. 1988; Vince 1948;

Elliott et al. 2001). Expectedly, a wealth of psychological and theoretical reports

solidified the view that during execution of a movement, an action comes increasingly

under the influence of a “ ‘control’ system, which uses a limited but quickly updated
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visual representation, coupled with visual and proprioceptive feedback, and an ef-

ference copy of the movement plan”(Glover 2004), in order to best ensure accuracy

(Shadmehr 2008).

Strikingly, though, psychophysical findings established also that the initial se-

lection and/or implementation of a motor behavior was influenced, even prior to a

movement’s initiation, by a broad range of sensory and cognitive variables. Experi-

ments with human subjects demonstrated that with an increasing amount of pertinent

information provided in advance, movement reaction times become faster, suggesting

a period of time before movement initiation in which a certain set of parameters are

specified (Rosenbaum 1980; Klapp 1977; Riehle et al. 1994). Similarly, the manner in

which humans initially approach an object is typically influenced by their knowledge

of what they intend to do with the object (Jeannerod 1981, 1984). For example, a

waiter will usually reach for an inverted cup with his thumb facing downwards if he

intends to pour water into it, but he will grab it with his thumb upwards if he is

transferring it to a dishwasher. Psychologists call this the ‘end-state comfort effect,’

when we adopt initially unusual, and perhaps uncomfortable, postures to facilitate

subsequent usage of an object according to our objective. Based on these examples

and a plethora of other studies, psychologists broadly classified the factors relevant

before the execution of an action—for the planning of the action—into a few cate-

gories: 1) the spatial characteristics of and relations between the actor and the target;

2) the non-spatial characteristics of the target influencing the manner in which it is

interacted with or acquired (e.g., its function, weight, fragility, and the coefficient of

friction of its surfaces); and 3) the overarching goal(s) of the action (Glover 2003;

Jeannerod 1988; Rosenbaum 1991).
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1.2 Delayed Response Tasks: Isolating and Study-

ing Action Planning

The desire to unravel these cognitive operations before and leading up to movement,

has spurred an interest in elucidating the neural substrates of action planning, and

in characterizing the computations performed and the precise information encoded

in involved brain regions. In order to isolate these planning processes, experimental

tasks requiring delayed behavioral responses have been employed.

Cue Delay Response

Figure 1.1:

Delayed response task. The subject fixates. An instructive cue (Cue) indicates, in this example,

where the subject should reach. At this time, the subject does not reach. After a Delay, a ‘go’ signal

(here, extinction of central fixation point) tells the subject to execute the previously cued response.

Generally, these tasks present a sensory cue, which provides information requisite

for planning an action, but defers the execution of that action until some later-

presented ‘go’ signal (Fig. 1.1). By imposing a temporal delay between instructive
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cue and a contingent motor response, neural activity underlying either immediate

processing of the sensory cue or action execution can be disambiguated from the in-

tervening phase in which selection and planning of the action occurs. These tasks then

are predicated on the notion that areas which subserve these planning processes will

exhibit sustained activity during the delay until the movement is initiated (Hikosaka

and Wurtz 1983), providing a temporal window during which to analyze these regions.

An example of this is illustrated in Fig. 1.2, showing typical functional MRI

responses of representative sensory, motor, and ‘delay-period’ cortical areas. Two

signals are shown, in dark gray and light gray, corresponding to a typical delayed-

response task and a control task, respectively. In the delayed-response task, a set

of visual cues are presented at time 0, fully specifying where the subject will reach

after the delay period, which lasts 15 seconds; motor execution begins at time 15. In

the control, a set of visual cues are again displayed at time 0; however, these cues

bear no relation to the upcoming movement, the target locations of which will in-

stead be explicitly specified after the delay at the time of movement. Thus these cues

are behaviorally irrelevant, and no planning can occur during the control task delay

period.

In an area primarily concerned with sensory/visual processing, such as V1 (vi-

sual cortex), there is an initial rise in activity due to the cue presentation, which

significantly decays during the delay period before rising again due to the movement

initiation (at which time the subjects sees targets and cursor motion on screen); this

signal profile is similar in both conditions when the cues allow planning and when they

do not (regions in red, mostly comprising areas in occipital cortex, exhibit this pattern

of activity). In areas putatively involved with motor execution, such as M1 primary

motor cortex, there may be a slight blood-oxygenation-level-dependent (BOLD) re-

sponse to the cue presentation, but an expectedly much larger signal increase during

the motor execution phase (after time 15 seconds); again, both the delayed-response

task and the control task generate comparable patterns of fMRI activity (regions in

blue). Finally, the presumptive action planning areas (in green), here exemplified by

superior parietal lobule in posterior parietal cortex, yield a strikingly different signal:
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while there is a response to the cue presentation and motor execution, activity is

sustained throughout the delay period. Furthermore, this level of activity is signifi-

cantly higher when planning can occur (delayed-response task) than when planning

cannot occur (control task). These findings corroborate the proposition that these

delay-period regions exhibit activity bridging cues with contingent motor responses,

when these cues mold the future behavior.
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Figure 1.2:

Representative areas recruited during a delayed response task. Upper left panel (red):

primary visual cortex (V1). Bottom left (green): left superior parietal lobule. Bottom right: primary

motor cortex (M1). Delay period between cue and response in all timecourses is between time 0 and

15. Dark gray curves: typical delayed response task. Light gray curves: control task. See text for

further detail.
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1.3 Neural Regions Involved in Delay Period Ac-

tivity

Sustained delay period activity typically recruits a network of cortical regions in

the frontal and parietal lobes of the brain. Traditionally these cortical regions com-

prise three main areas: supplementary motor area (SMA), premotor cortex (PM),

and posterior parietal cortex (PPC). This section briefly describes these areas—their

anatomical connections and lesion pathology—to provide a cursory overview of their

functional involvement in the generation of action.

Frontal Lobe Areas: Medial Wall (Supplementary and pre-

Supplementary Motor Areas) and Pre-central Gyrus (dorsal

and ventral Premotor)

In general, a variety of experiments indicate that these frontal areas use informa-

tion from other cortical regions to select and/or prepare movements appropriate for

the context of the action. The supplementary motor cortex and premotor cortex

produce movements and contractions following stimulation, and are somatotopically

organized. They project directly to both primary motor cortex and the spinal cord.

However, they receive visual and proprioceptive inputs indirectly, via the parietal and

prefrontal cortex.

Supplementary Motor Area. The removal of the SMA in a monkey reduces

the number of self-initiated or ‘spontaneous’ movements the animal makes, whereas

the ability to execute movements in response to external cues remains largely intact.

Imaging studies suggest that this cortical region in humans functions in much the

same way. For example, PET scans show that the medial wall of the premotor cortex

is activated when the subjects perform motor sequences from memory (i.e., without

relying on an external instruction). In accord with this evidence, single unit recordings

in monkeys indicate that many neurons in SMA begin to discharge one or two seconds

before the onset of a self-initiated movement. Also, this region may play a specific
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role in programming motor sequences, as stimulation of the area produces complex

movements, such as orienting the body or opening and closing the hand (Watts 2004)

The medial wall additionally encompasses the supplementary eye fields (SEF),

which may play an analogous role for eye movements. Lesions in this regions, es-

pecially in the left hemisphere, impair the patient’s ability to make a remembered

sequence of saccades. Patients additionally may have difficulty altering the direction

of saccades from a previously learned sequence (Miller et al. 2005).

Premotor Cortex. As with the medial wall, the precentral gyrus areas comprise

regions with both skeletomuscular and oculomotor behavior functions. The premotor

cortex (PM) subdivision is thought to play a role in the generation of goal-directed

hand movements. Lesions in this region severely impair the ability of monkeys to

perform visually cued conditional tasks, even though they can still respond to the

visual stimulus and can perform the same movement in a different setting. Similarly,

patients with premotor lesions experience problems with voluntary movements that

require sensory guidance. Patients have specific impairments in using sensory (visual,

auditory, tactile) cues to recall previously learned movements, though they have no

problem retrieving the same movements based on spatial cues (Halsband and Freund

1990). Premotor cortex may also be involved in specifying task contingencies for

planning an appropriate response, but from a more arbitrary stimulus-response map-

ping (Watts 2004). The premotor area itself contains subregions (ventral and dorsal),

receiving segregated inputs from parietal regions. Selective inactivations reveal differ-

ential contributions of these subregions to hand movements, for example, temporary

inactivation of monkey PMv causes severe deficits in the grasping component of hand

movements, leaving unaffected the hand transport (Fogassi et al. 2001), whereas PMd

inactivations may impair appropriate sequencing, amplitude, or direction of reaching

movements (Davare et al. 2006).

The frontal eye fields (FEF) are generally considered a part of the premotor area.

As the name implies, the FEF is concerned with eye movements, and may3 pro-

gram the corresponding primary areas so as to guide gaze shifts (Braun et al. 1996;

MacAvoy et al. 1991), in conjunction with the superior colliculus and lower brain-
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stem. It receives projections from the primary and association visual cortices in the

occipital lobe, the auditory association and multimodal visual association areas in the

temporal lobe, and the somatosensory association area, and hence is multimodally

responsive. Damage to the FEF can cause abnormalities in fixation, decreased sen-

sitivity to stimuli throughout the visual field, slowed visual scanning and searching,

inattention and neglect, as well as mislocalization of sounds (Joseph 2000).

Parietal Lobe Areas: Posterior Parietal Cortex

Anatomically, PPC is positioned along the dorsal visual pathway of the brain, also

known as the vision-for-action pathway (Ungerleider and Mishkin 1982; Goodale

1998), located between the visual cortex on the one end and motor cortices on the

other. PPC receives converging sensory inputs from a variety of sources, including

visual, somatosensory, proprioceptive information. As such, this region is ideally

situated to represent targets or goals in the environment, independent of modality.

Lesions of parietal posterior cortex (PPC) do not lead to primary motor or sensory

deficits, but often produce a deficit known as optic ataxia, or impairment of the visual

control of pointing and grasping (Blint 1909). Furthermore, lesions of the left parietal

lobe have been shown to lead fairly consistently to apraxia, a condition in which the

affected person’s ability to voluntarily produce motor actions is altered (Liepmann

1905; Sirigu et al. 1999). These impairments range from an inability to produce a

movement upon instruction to the incapacity to perform complicated sequences of

movements. Unilateral parietal lesions particularly of the right hemisphere generally

produce contralateral neglect, in which the patients appear unable to perceive and

attend to objects, or even one’s own body, in a part of space, despite the fact that

visual acuity, somatic sensation, and motor ability remain intact. Affected individuals

fail to report, respond to, or even orient to stimuli presented to the side of the body

(or visual space) opposite the lesion.

To summarize the involvement of frontoparietal network, this profile of lesion

symptomatology and anatomical connectivity attests to the fact that all of these cor-
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tical regions are clearly necessary for the voluntary generation of action. Regions in

the PPC appear explicitly involved in the perception, processing, and/or transfor-

mation of sensory and spatial information to guide action. The frontal areas play a

fairly direct role in generating movements, though they are more removed from sen-

sory inputs. Moreover, they appear to function as motor associative areas involved

in more arbitrary stimulus-response mapping or internal generation of movement.

1.4 Information Encoded during Action Planning

In forming a plan for a goal-directed action, the goal or intended effects of that

action may be hierarchically defined. At a relatively incipient and abstract level,

an action plan, in following with the traditional formulation of an action ‘intention’

(Kalaska and Crammond 1995; Snyder et al. 1997, 2000), specifies the interaction

with the environment, essentially stipulating the target of the movement and the type

of movement. At this level, the intention can be independent from action execution,

specifying potential movements without actually being acted upon (Calton et al.

2002; Snyder et al. 2000). Progressively more concrete levels expound upon this

plan, providing information about the details of a movement, i.e., precise movement

trajectories and the particulars of the joint angles, and finally the exact set of muscle

activations required to make the movement. For example, my goal may be to imbibe

a cup of highly concentrated coffee, and hence the movement plan would be to reach,

with either my hand or my mouth, for the goblet of chemical energy. Such an objective

requires the transformation of spatiotemporal cues into directed behavior, involving

the extraction of spatial and sensory characteristics of the target, and the spatial

relationship between my body (and hand or mouth) and the target, in order to shape

the motor commands that will best achieve the desired interaction with that target.

1.4.1 Sensory versus Motor Representation

For the accurate implementation of sensorimotor tasks, such as reaching or moving

the eyes towards a spatial target/goal, imaging and electrophysiology explorations
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have irrefutably implicated a network of frontal and posterior parietal regions in de-

lay period activity representation. However, the function and potentially differential

contributions of these regions to sensorimotor transformation remain nebulous. In

particular, the specific role the posterior parietal cortex may play in visuomotor pro-

cesses has been stridently debated. While Mountcastle et al. first demonstrated over

two decades ago that PPC neurons fire during movement of the eyes and limbs to

an illuminated target, the interpretation of that firing activity has been alternatively

conceived to reflect higher-order sensory or attentional processes, or to largely reflect

movement-related function (Mountcastle et al. 1975; Robinson 1978; Eskandar and

Assad 1999). In other words, activity elicited during a ‘sensorimotor transformation’

may signify a retrospective sensory encoding of behaviorally relevant targets, or a

prospective encoding of the movement intentions with respect to those targets.

Single-unit recordings in the lateral bank of the intraparietal sulcus of the macaque

(LIP) spawned the notion that the posterior parietal cortex integrates or selects sen-

sory information, which can then be conveyed to frontal areas when anticipating a

movement (Robinson et al. 1978; Gottlieb et al. 1998). Parietal neurons respond

when a target is placed in its receptive field. This response becomes enhanced when

the target becomes behaviorally relevant, with this enhancement occurring whether

or not a movement to the behaviorally relevant stimulus is generated (Bushnell et

al. 1981; Goldberg et al. 1990). Also, these neurons fire less when a movement is

made towards no target as compared to when the exact same movement acquires a

target (Colby et al. 1996). Drawing on these characteristics in LIP, posterior parietal

areas have been postulated to represent behaviorally salient locations in space, rather

than underlie movement-related activity (Colby et al. 1996). An alternative hypoth-

esis contends that posterior parietal cortex is more directly involved in the formation

of early movement plans. This dispute has been waged on the intricate terrain of

coordinate transformations, and heterogeneous subpopulations specific for different

types of movements. At least in some areas in posterior parietal cortex, sensory input

from the environment is construed in forms useful for preparing coordinated move-

ments. The representation of target locations is in spatial reference frames based on
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visual/retinal coordinates, but also incorporates signals about eye, head, and limb

positions (Buneo and Andersen 2002)—information required for an abstract move-

ment plan specifying where to look or reach. In addition, anatomically segregated

subregions are specialized for the type of movement to be performed, i.e., neurons in

LIP respond when a saccade is being planned to a stimulus, whereas cells in parietal

reach region (PRR) preferentially respond to reaches planned to the same stimulus

(Snyder et al. 2000). Moreover, in conditions where the spatial configuration of the

visual stimulus is held constant, a change in upcoming motor plans can elicit a robust

increase in response (Snyder et al. 1998). Finally, in paradigms in which the target

cue direction is dissociated from the movement direction, neural activity is correlated

more strongly with the motor goal, and not the visual cue (Gail and Andersen 2006).

Taken together, these findings suggest that action plans rather than sensory encoding

may be the jurisdiction of PPC (Mountcastle et al. 1975; Lynch et al. 1977; Snyder

et al. 1997, 2000; Buneo and Andersen 2002).

In contrast, neurons in premotor areas demonstrate a more consistent pattern.

PMd cells also transform the spatial reference frame in which target locations are

represented. Though in PPC subregions reference frames are in visual/eye coordi-

nates, PMd neurons may also encode targets in hand-centered coordinates or by the

relative position of the target, hand, and eye (Batista et al. 2007; Pesaran et al. 2006).

In so doing, these cells represent targets in space at a level even ‘closer’ to the motor

output. Like parietal neurons, neural activity reflects the motor goal more strongly

than the visual cue in paradigms when they are dissociated (Cisek and Kalaska 2002).

However, unlike parietal neurons, when a movement is inhibited, i.e., an instruction is

provided to cancel an impending action plan, neurons cease firing (Cisek and Kalaska

2002). Thus, from results obtained from single-cell investigations, it is possible that

either parietal cortices generate a sensory representation of salient spatial locations

based on which frontal areas create action plans, or that parietal regions represent all

potential action plans and premotor regions more fully elaborate the most probable

or selected plan.

More recently, functional imaging studies have tackled a similar question regard-
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ing alleged human action-planning areas. While PPC and frontal areas both exhibit

prolonged activation during a delay period between an instructive cue and contingent

motor responses, this activation could represent either sustained motor intention, or

sustained visuospatial attention or working memory for the cued location. Studies

which note PPC activation to co-vary with attentional/memory load (Simon et al.

2002), or remain the same whether or not a saccade is generated to the same target

(Brown et al. 2006), have prompted some authors to conclude that PPC is primar-

ily involved in retrospective visuospatial processes. Recently, Curtis et al. directly

addressed the question of whether sustained activity during a delay period between

cue and response reflected retrospective coding of sensory information or prospective

coding of motor intentions, utilizing delay periods long enough to rule out confounds

of cue or motor responses. Curtis et al. (2004) compared delay-period activity in

which a cue indicated either where an upcoming memory-guided saccade should be

directed or where it should not be directed. When metrics were known before the

delay, FEF activation was slightly increased and IPS activity decreased, as compared

to when such information of the upcoming movement was not known. Similarly, after

one response was selected from several pre-cued options, FEF activity sustained un-

til response execution, while PPC activity diminished (Curtis and D’Esposito 2006).

They thus argued for a retrospective, sensory representation in PPC, and for one

more biased towards motor encoding and response preparation in FEF.

With a rationale similar to monkey electrophysiologists, other authors suggest that

effector information is integrated with spatial information in PPC, and thus this area

carries intention-related signals in addition to sensory-related activity (Medendorp et

al. 2005; see discussion of chapter 2 for a full exposition of these studies). Finally, in

a variable delay task, when a cue indicating the probability of upcoming movement

is presented, frontal areas exhibited greater activity the more likely the movement,

whereas parietal regions demonstrated similar activation irrespective of movement

probability. Based on these findings, the authors speculated that parietal activity

may cover a range of potential responses defined by the task settings whereas frontal

activity may focus on a probable movement (Thoenissen et al. 2002). Thus, despite
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the body of both monkey and human studies, the question of whether these brain areas

subserve a retrospective, sensory encoding of salient locations versus a prospective

motor encoding in the preparation of action remains unresolved.

1.4.2 Action Outcomes and Consequences

So far, the action plan was considered at the level of how and where to move to ac-

quire a goal. However, equally important is the issue of selecting or determining the

most appropriate action plan in a particular context. Ultimately, we select and plan

an action in order to attain or maximize a rewarding state. In reaching for the earlier

chalice of caffeine, I did so to attain some consequence I value: to enjoy the flavor,

or to stay awake long enough to write just one more sentence. However, in a natural

environment, a plan of action seldom promises to successfully achieve the desired out-

come, but rather furnishes a possibility of failure and undesired outcomes. Thus all

the outcomes or consequences of an action need to be evaluated, and these anticipa-

tions should be used to discern the optimal action plan in a given circumstance. And

as the rewards of tasks are not constant, the solution cannot be hardwired. Accord-

ingly, action planning cannot solely rely on sensorimotor processes that are merely

more intricate versions of stimulus-response reflexes (Jeannerod 1998), but rather

must utilize expectations and contextual information through cortical top-down or

subcortical-cortical interactions to bias their computations (Frith 2000; Passingham

et al. 2000).

On a slightly tangential note, while the evaluation of an action plan, in terms of its

potential consequences, is a prerequisite for optimal response selection, the processes

of selecting the plan and the actual planning do not obligatorily occur jointly. By

one hypothesis, they may transpire separately, in a modular fashion, where certain

regions underlie valuation of objects and possible goals, and then the action-planning

machinery is steered towards the attainment of the selected goal. Copious studies in

humans and monkeys have speculated that regions such as the orbitofrontal cortex

and striatum (Schultz et al. 2000; Hollerman et al. 2000; Knutson et al. 2000;



14

O’Doherty 2004) attach a value to various goods and actions, representing a large

domain of possible stimuli and responses with one internal measure of utility. These

areas, for example, may guide the frontoparietal network towards a certain end, and

thus action-planning regions need only be concerned with preparing the one behavioral

response provided them.

Alternatively, the action-planning substrates may subserve both processes. At any

given time, many possible actions exist; and in a natural, unpredictable environment,

many of them may be relevant and tenable options. Regions engaged in encoding ac-

tion plans then may represent this range of options and weight them according to their

value or expected outcomes, essentially permitting a competition among intentions

to ensue until one eventually is selected. Indeed, many current models of response

choice propose that for each competing response, evidence accumulates until a deci-

sion threshold is reached (Cisek 2007; Glimcher 2003; Rorie and Newsome 2005). On a

single-cell level, recent neurophysiological findings demonstrated that when there are

two potential movement choices, activity within PPC neurons initially represents both

potential targets, before one diminishes and the other eventually dominates (Scher-

berger and Andersen 2007), consonant with a mutual competition model of selection

(Cisek 2006). From this perspective, competition between conflicting responses is a

crucial process for action selection, analogous to models that propose competition to

be an underlying principle of selection for sensory attention (Desimone and Duncan

1995; Duncan et al. 1997; Itti and Koch 2000). Such competition would require that

these action planning areas bias response representations based on ‘many different

aspects of an animal’s state, e.g., prior probabilities or reward contingencies, as well

as changes in the environment (e.g., new information that alters the weight given to a

particular stimulus)’ (Coulthard 2008), in order to derive the eventual response from

the outcome of competition.

Finally, there is no reason to believe these two approaches are mutually exclusive.

Canonical reward circuitry may valuate stimuli and actions, and additionally, the

action-planning network may exploit this information, and incorporate other relevant

information, in order to bias the selection and preparation of the courses of action
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present at a given time.

Monkey electrophysiological studies that examined neural activity throughout

many structures involved in generating movement supported the proposition that

action-planning areas do encode information pertaining to the value or consequences

tied to actions, consistent with the latter two models. These investigations reveal

modulations of neural activity which generally correlate with the likely selection, or

factors affecting the selection, of an action. Specifically, when a movement was paired

with a fluid reward, posterior parietal areas reflected the sensory information indicat-

ing a particular eye movement will generate a reward (positive outcome), as well as

the probability and magnitude of the associated reward (Glimcher 2003; Shadlen and

Newsome 2001). In addition, premotor regions, prefrontal areas, and the superior

colliculus—all nodes in the oculomotor network—revealed activity that correlated

with the expected value (probability times magnitude) of the fluid reward associated

with the eye movement (Roesch and Olson 2003, 2004; Tanji et al. 2002; Shima et

al. 1998; Basso and Wurtz 1997, 1998; Dorris et al. 1997). Presumably these signals

serve to bias eye movement selection towards maximization of reward. In addition,

behavioral measures indicate that expected value systematically influences not only

selection of eye movements, but also modulates saccade metrics, including amplitude,

velocity, and reaction time (Leon and Shadlen 1999; Takikawa et al. 2002; McCoy et

al. 2003), suggesting further an influence on formation of action plans.

However, in all these studies, both monkey and human, the movements required

a trivial amount of action planning and preparation. For the most part, eye move-

ments and (in humans) key presses were utilized in these studies. Key presses, while

corresponding to the general notion of a stimulus-response mapping, do not neces-

sarily require the conversion of spatial information about the target into a motor

plan. While eye movements do constitute spatial-target directed behaviors, they may

not demand complex reference frame transformations from visual to other effector-

centered coordinates. Therefore, the action planning machinery may not be recruited

heavily. In addition, the simplicity of the responses engendered a negligible proba-

bility of failure, and even for the failures that occurred, no costs and punishments
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were generally imposed. Conversely, many real-life goal-directed behaviors are more

complex. And with increasing complexity comes a significant probability of failure,

which likely leads to some cost or punishment. For example, I might reach for the

grail of bitterly divine C. arabica intoxication, miss, and tip its ascorbic contents

onto my laptop, where currently the only version of my thesis is stored—a potential

penalty that clearly influences whether and how I choose to grab it. Thus, both

the possible rewards and punishments to be incurred impinge upon the evaluation

of actions and the determination of the optimal action plan; yet previous studies of

the rewards associated with action shed no light on this process. Whether and how

rewards and punishments related to complex actions modulate neural representations

in the human frontoparietal network has yet to be established.

In this vein, elucidating those areas specifically recruited in motor encoding, be-

yond mere sensory or spatial representations, and determining whether they addi-

tionally incorporate information as to the expected consequences of the actions they

represent, are both essential for understanding the neural underpinnings of action

planning. However, previous experiments, while delineating these neural substrates,

have not conclusively addressed these issues, leaving amorphous the nature of action-

planning representations.

1.5 Monkey fMRI—The Missing Link

To probe neural activity in humans during the selection, preparation, and monitor-

ing of action, the techniques used most often include EEG and MEG, and imaging

techniques such as PET and fMRI. Each of these methods have their advantages and

disadvantages. However, given its better spatial resolution compared to EEG/MEG

and use of endogenous, nonradioactive contrast as opposed to PET, fMRI is often

employed to delineate the specific subcortical and cortical regions involved with these

processes. In fact, fMRI is currently the most widely used method to map brain areas

and study the neural basis of human cognition (Logothetis 2002).

Nevertheless, while functional imaging can provide indirect measurements of the



17

distributed activities of frontoparietal structures engaged in planning motor responses,

it faces certain limitations in its ability to elucidate the neural computations underly-

ing these processes. It is therefore important to assess how fMRI responses compare

with those reported in the much larger body of monkey electrophysiology litera-

ture. Direct comparisons between human imaging and monkey electrophysiological

studies, however, are hampered for several reasons. First, the relationship of the

hemodynamic response to neural activity is still ambiguous. While electrophysiol-

ogy experiments generally assay firing rates of populations of neurons, recent reports

suggest that BOLD hemodynamic signals may better correlate with local field poten-

tials than firing patterns (Logothetis 2002). In addition, the manner in which neural

inhibition may translate into BOLD signals is still debated (Shmuel et al. 2006).

Second, different time-scales are often used, with considerably longer experiments

employed in imaging paradigms to allow for the lag and sluggishness of the hemody-

namic response. Thus, these dissimilar task durations could promote different signal

dynamics, as well as disparate behavioral strategies. The poorer temporal resolution

of BOLD fMRI, as compared to electrophysiological recording, additionally impedes

appraisal of the relationship between signal profiles reported across the two bodies of

literature. Third, interspecies discrepancies may exist, confounding interpretation of

incongruent findings reported by human imaging versus macaque electrophysiological

studies.

Reconciling findings is further hampered by the inhomogeneity of frontal and

particularly parietal regions. Distinct subpopulations demonstrate varying response

profiles; and given its coarser spatial resolution, imaging studies may conflate effects

from these different subpopulations. Characteristics of subregions are better defined

in monkeys, but mappings between monkey and human subregions have not been con-

clusively established. Thus, even when implications from monkey electrophysiology

and human imaging are taken together, incontrovertible descriptions about human

neuronal response properties cannot be made. Two strategies exist to address this

chasm. One possibility is to directly assess neural firing patterns in humans, through

iEEG or intraoperative single-neuron recording, for example. However, these ap-
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proaches are constrained, as areas of investigation are limited by medical necessity.

Hence, the only remaining and tenable means by which to make veridical assertions as

to the neural activity generating patterns of fMRI activation observed in the previous

experiments is by comparing fMRI findings of humans and of monkeys performing

the same task, and then in turn relating monkey fMRI results to neurophysiological

data.

1.6 Specific Aims

The focus of this thesis is on action planning activity in the human and the macaque.

In both species, variants of delayed response task and time-resolved event-related

fMRI are employed to answer specific questions. In humans, the primary aim is to

characterize the neural representations of action planning at different epochs during

delayed response tasks. In monkeys, the impetus is to develop a new technique that

allows direct comparison of monkey and human studies of action planning, and to

apply this technique to investigations of oculomotor goal-directed actions.

The work presented in Chapter 2 ripostes to a debate that has long raged about

the differential functional contributions of cortical areas engaged in action planning

(see Section 1.4.1). In controlling for attentional and mnemonic demands, we show

that PPC activity carries specific signals reflecting planning and preparation for goal-

directed actions.

In Chapter 3, the question of whether an action’s predicted outcomes are incorpo-

rated in human action planning areas is addressed. Specifically, we required subjects

to perform complex motor responses similar to those used in Chapter 2, with mon-

etary gains and losses imposed as consequences for successful or unsuccessful task

performance. fMRI findings indicate that action planning areas were modulated by

expected gain-loss consequences of actions, reflecting the importance of behaviorally

relevant reward/punishment context in shaping neural activity. In addition, these

data show that subjective beliefs influence the reward context representations in cor-

tical, but not in certain subcortical areas involved in the task, emphasizing distinct
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functional contributions within reward and action-processing circuitry.

To link together large bodies of information on action planning representations

accumulated through monkey electrophysiology and human imaging, a fMRI study in

awake behaving monkeys was conducted, in which event-related analysis of activity

was developed and employed to characterize activation patterns in cortical oculomotor

network. Analogous experiments were conducted on humans, to enable direct cross-

species comparisons. These results, depicted in Chapter 4, demonstrate consistency

between the monkey single-unit physiology and imaging, on one hand, and activity in

monkey areas and human putative homologs, on the other. Importantly, these data

also revealed apparent interspecies differences, with respect to their hemodynamic

responses and the contralateral organization of action planning representations.

In the future, we wish to continue studying reward-modulated action planning

and decision-making in both the human and the macaque. To do so, areas involved

in encoding reward associations, including the putative reward circuitry, need to be

mapped in the monkey. In addition, the ability to detect the temporal evolution

of spatial decisions in different areas needs to be assessed. Therefore, preliminary

macaque fMRI results investigating these issues have been obtained. Appendix 5

describes recent data mapping brain areas which incorporate and learn the rewarding

consequences associated with stimuli. Appendix A1.5 illustrates the time-course of

oculomotor decision-related activity in the saccade-planning network in free-choice

spatial task.

In summary, these findings have helped to characterize human and monkey cere-

bral areas specifically involved in the planning and the evaluation of behavioral re-

sponses, making it an important contribution to the study of response selection,

decision-making, and goal-directed action.



20

References

R. Balint. Seelenlahmung des schauens, optische ataxie, raumliche storung der

aufmerksamkeit. Monatsschrift fur Psychiatrie und Neurologie, 25:51–81, 1909.

M. A. Basso and R. H. Wurtz. Modulation of neuronal activity by target uncertainty.

Nature, 389(6646):66–9, 1997.

M. A. Basso and R. H. Wurtz. Modulation of neuronal activity in superior colliculus

by changes in target probability. J Neurosci, 18(18):7519–34, 1998.

A. P. Batista, G. Santhanam, B. M. Yu, S. I. Ryu, A. Afshar, and K. V. Shenoy. Refer-

ence frames for reach planning in macaque dorsal premotor cortex. J Neurophysiol,

98(2):966–83, 2007.

W. D. Beggs and C. I. Howarth. Movement control in a repetitive motor task. Nature,

225(5234):752–3, 1970.

W. D. Beggs and C. I. Howarth. The movement of the hand towards a target. Q J

Exp Psychol, 24(4):448–53, 1972a.

W. D. Beggs and C. I. Howarth. The accuracy of aiming at a target. some further

evidence for a theory of intermittent control. Acta Psychol (Amst), 36(3):171–7,

1972b.

D. I. Braun, D. K. Boman, and J. R. Hotson. Anticipatory smooth eye movements

and predictive pursuit after unilateral lesions in human brain. Exp Brain Res, 110

(1):111–6, 1996.



21

M. R. Brown, J. F. DeSouza, H. C. Goltz, K. Ford, R. S. Menon, M. A. Goodale,

and S. Everling. Comparison of memory- and visually guided saccades using event-

related fmri. J Neurophysiol, 91(2):873–89, 2004.

M. R. Brown, H. C. Goltz, T. Vilis, K. A. Ford, and S. Everling. Inhibition and

generation of saccades: rapid event-related fmri of prosaccades, antisaccades, and

nogo trials. Neuroimage, 33(2):644–59, 2006.

C. A. Buneo, M. R. Jarvis, A. P. Batista, and R. A. Andersen. Direct visuomotor

transformations for reaching. Nature, 416(6881):632–6, 2002.

M. C. Bushnell, M. E. Goldberg, and D. L. Robinson. Behavioral enhancement

of visual responses in monkey cerebral cortex. i. modulation in posterior parietal

cortex related to selective visual attention. J Neurophysiol, 46(4):755–72, 1981.

J. L. Calton, A. R. Dickinson, and L. H. Snyder. Non-spatial, motor-specific activation

in posterior parietal cortex. Nat Neurosci, 5(6):580–8, 2002.

L. G. Carlton. Processing visual feedback information for movement control. J Exp

Psychol Hum Percept Perform, 7(5):1019–30, 1981.

P. Cisek. Integrated neural processes for defining potential actions and deciding

between them: a computational model. J Neurosci, 26(38):9761–70, 2006.

P. Cisek. Cortical mechanisms of action selection: the affordance competition hy-

pothesis. Philos Trans R Soc Lond B Biol Sci, 362(1485):1585–99, 2007.

P. Cisek and J. F. Kalaska. Simultaneous encoding of multiple potential reach direc-

tions in dorsal premotor cortex. J Neurophysiol, 87(2):1149–54, 2002.

C. L. Colby and J. R. Duhamel. Spatial representations for action in parietal cortex.

Brain Res Cogn Brain Res, 5(1-2):105–15, 1996.

C. L. Colby, J. R. Duhamel, and M. E. Goldberg. Visual, presaccadic, and cognitive

activation of single neurons in monkey lateral intraparietal area. J Neurophysiol,

76(5):2841–52, 1996.



22

E. J. Coulthard, P. Nachev, and M. Husain. Control over conflict during movement

preparation: role of posterior parietal cortex. Neuron, 58(1):144–57, 2008.

C. E. Curtis and M. D’Esposito. Selection and maintenance of saccade goals in the

human frontal eye fields. J Neurophysiol, 95(6):3923–7, 2006.

C. E. Curtis, V. Y. Rao, and M. D’Esposito. Maintenance of spatial and motor codes

during oculomotor delayed response tasks. J Neurosci, 24(16):3944–52, 2004.

M. Davare, M. Andres, G. Cosnard, J. L. Thonnard, and E. Olivier. Dissociating the

role of ventral and dorsal premotor cortex in precision grasping. J Neurosci, 26(8):

2260–8, 2006.

R. Desimone and J. Duncan. Neural mechanisms of selective visual attention. Annu

Rev Neurosci, 18:193–222, 1995.

M. C. Dorris, M. Pare, and D. P. Munoz. Neuronal activity in monkey superior

colliculus related to the initiation of saccadic eye movements. J Neurosci, 17(21):

8566–79, 1997.

J. Duncan, G. Humphreys, and R. Ward. Competitive brain activity in visual atten-

tion. Curr Opin Neurobiol, 7(2):255–61, 1997.

D. Elliott, W. F. Helsen, and R. Chua. A century later: Woodworth’s (1899) two-

component model of goal-directed aiming. Psychol Bull, 127(3):342–57, 2001.

E. N. Eskandar and J. A. Assad. Dissociation of visual, motor and predictive signals

in parietal cortex during visual guidance. Nat Neurosci, 2(1):88–93, 1999.

P. M. Fitts. The information capacity of the human motor system in controlling the

amplitude of movement. J Exp Psychol, 47(6):381–91, 1954.

L. Fogassi, V. Gallese, G. Buccino, L. Craighero, L. Fadiga, and G. Rizzolatti. Cortical

mechanism for the visual guidance of hand grasping movements in the monkey: A

reversible inactivation study. Brain, 124(Pt 3):571–86, 2001.



23

C. D. Frith, S. J. Blakemore, and D. M. Wolpert. Abnormalities in the awareness and

control of action. Philos Trans R Soc Lond B Biol Sci, 355(1404):1771–88, 2000.

A. Gail and R. A. Andersen. Neural dynamics in monkey parietal reach region reflect

context-specific sensorimotor transformations. J Neurosci, 26(37):9376–84, 2006.

P. W. Glimcher. The neurobiology of visual-saccadic decision making. Annu Rev

Neurosci, 26:133–79, 2003.

S. Glover. Separate visual representations in the planning and control of action. Behav

Brain Sci, 27(1):3–24; discussion 24–78, 2004.

M. E. Goldberg, C. L. Colby, and J. R. Duhamel. Representation of visuomotor space

in the parietal lobe of the monkey. Cold Spring Harb Symp Quant Biol, 55:729–39,

1990.

M. A. Goodale and A. Haffenden. Frames of reference for perception and action in

the human visual system. Neurosci Biobehav Rev, 22(2):161–72, 1998.

J. P. Gottlieb, M. Kusunoki, and M. E. Goldberg. The representation of visual

salience in monkey parietal cortex. Nature, 391(6666):481–4, 1998.

U. Halsband and H. J. Freund. Premotor cortex and conditional motor learning in

man. Brain, 113 ( Pt 1):207–22, 1990.

O. Hikosaka and R. H. Wurtz. Visual and oculomotor functions of monkey substan-

tia nigra pars reticulata. iii. memory-contingent visual and saccade responses. J

Neurophysiol, 49(5):1268–84, 1983.

J. R. Hollerman, L. Tremblay, and W. Schultz. Involvement of basal ganglia and

orbitofrontal cortex in goal-directed behavior. Prog Brain Res, 126:193–215, 2000.

B. Hommel. Planning and representing intentional action. ScientificWorldJournal, 3:

593–608, 2003.



24

L. Itti and C. Koch. A saliency-based search mechanism for overt and covert shifts

of visual attention. Vision Res, 40(10-12):1489–506, 2000.

M. Jeannerod. Intersegmental coordination during reaching at natural visual objects.

In J. Long and A. Baddeley, editors, Attention and Performance IX, pages 153–168.

Erlbaum, Hillsdale, NJ, 1981.

M. Jeannerod. The timing of natural prehension movements. J Mot Behav, 16(3):

235–54, 1984.

M. Jeannerod. The neural and behavioural organization of goal-directed movements.

Oxford University Press, New York, 1988.

M. Jeannerod, Y. Paulignan, and P. Weiss. Grasping an object: one movement,

several components. Novartis Found Symp, 218:5–16; discussion 16–20, 1998.

R. Joseph. Neuropsychiatry, Neuropsychology, Clinical Neuroscience. Academic

Press, New York, 2000.

J. F. Kalaska and D. J. Crammond. Deciding not to go: neuronal correlates of

response selection in a go/nogo task in primate premotor and parietal cortex. Cereb

Cortex, 5(5):410–28, 1995.

S. W. Keele and M. I. Posner. Processing of visual feedback in rapid movements. J

Exp Psychol, 77(1):155–8, 1968.

S. T. Klapp. Reaction time analysis of programmed control. Exerc Sport Sci Rev, 5:

231–53, 1977.

B. Knutson, A. Westdorp, E. Kaiser, and D. Hommer. Fmri visualization of brain

activity during a monetary incentive delay task. Neuroimage, 12(1):20–7, 2000.

M. I. Leon and M. N. Shadlen. Effect of expected reward magnitude on the response

of neurons in the dorsolateral prefrontal cortex of the macaque. Neuron, 24(2):

415–25, 1999.



25

H. Liepmann. Die linke hemisphare und das handeln. In Reprinted in Drei Aufsatze

aus dem Apraxiegebiet (neu durchgesehen und mit Zusatzen versehen). 1908., pages

17–50. Von Karger, Berlin, 1905.

N. K. Logothetis. The neural basis of the blood-oxygen-level-dependent functional

magnetic resonance imaging signal. Philos Trans R Soc Lond B Biol Sci, 357(1424):

1003–37, 2002.

J. C. Lynch, V. B. Mountcastle, W. H. Talbot, and T. C. Yin. Parietal lobe mecha-

nisms for directed visual attention. J Neurophysiol, 40(2):362–89, 1977.

M. G. MacAvoy, J. P. Gottlieb, and C. J. Bruce. Smooth-pursuit eye movement

representation in the primate frontal eye field. Cereb Cortex, 1(1):95–102, 1991.

A. N. McCoy, J. C. Crowley, G. Haghighian, H. L. Dean, and M. L. Platt. Saccade

reward signals in posterior cingulate cortex. Neuron, 40(5):1031–40, 2003.

W. P. Medendorp, H. C. Goltz, J. D. Crawford, and T. Vilis. Integration of target and

effector information in human posterior parietal cortex for the planning of action.

J Neurophysiol, 93(2):954–62, 2005.

D. E. Meyer, R. A. Abrams, S. Kornblum, C. E. Wright, and J. E. Smith. Optimality

in human motor performance: ideal control of rapid aimed movements. Psychol

Rev, 95(3):340–70, 1988.

N. Miller and N. Newman. Walsh and Hoyt’s Clinical Neuro-Ophthalmology. Lippin-

cott Williams & Wilkins, Baltimore, 2005.

V. B. Mountcastle, J. C. Lynch, A. Georgopoulos, H. Sakata, and C. Acuna. Posterior

parietal association cortex of the monkey: command functions for operations within

extrapersonal space. J Neurophysiol, 38(4):871–908, 1975.

J. P. O’Doherty. Reward representations and reward-related learning in the human

brain: insights from neuroimaging. Curr Opin Neurobiol, 14(6):769–76, 2004.



26

R. E. Passingham, I. Toni, and M. F. Rushworth. Specialisation within the prefrontal

cortex: the ventral prefrontal cortex and associative learning. Exp Brain Res, 133

(1):103–13, 2000.

B. Pesaran, M. J. Nelson, and R. A. Andersen. Dorsal premotor neurons encode the

relative position of the hand, eye, and goal during reach planning. Neuron, 51(1):

125–34, 2006.

A. Riehle, W. A. MacKay, and J. Requin. Are extent and force independent movement

parameters? preparation- and movement-related neuronal activity in the monkey

cortex. Exp Brain Res, 99(1):56–74, 1994.

D. L. Robinson and M. E. Goldberg. Sensory and behavioral properties of neurons

in posterior parietal cortex of the awake, trained monkey. Fed Proc, 37(9):2258–61,

1978.

M. R. Roesch and C. R. Olson. Impact of expected reward on neuronal activity

in prefrontal cortex, frontal and supplementary eye fields and premotor cortex. J

Neurophysiol, 90(3):1766–89, 2003.

M. R. Roesch and C. R. Olson. Neuronal activity related to reward value and moti-

vation in primate frontal cortex. Science, 304(5668):307–10, 2004.

A. E. Rorie and W. T. Newsome. A general mechanism for decision-making in the

human brain? Trends Cogn Sci, 9(2):41–3, 2005.

D. A. Rosenbaum. Human movement initiation: specification of arm, direction, and

extent. J Exp Psychol Gen, 109(4):444–74, 1980.

D. A. Rosenbaum. Human motor control. Academic Press, New York, 1991.

H. Scherberger and R. A. Andersen. Target selection signals for arm reaching in the

posterior parietal cortex. J Neurosci, 27(8):2001–12, 2007.

W. Schultz, L. Tremblay, and J. R. Hollerman. Reward processing in primate or-

bitofrontal cortex and basal ganglia. Cereb Cortex, 10(3):272–84, 2000.



27

M. N. Shadlen and W. T. Newsome. Neural basis of a perceptual decision in the

parietal cortex (area lip) of the rhesus monkey. J Neurophysiol, 86(4):1916–36,

2001.

R. Shadmehr and J. W. Krakauer. A computational neuroanatomy for motor control.

Exp Brain Res, 185(3):359–81, 2008.

K. Shima and J. Tanji. Role for cingulate motor area cells in voluntary movement

selection based on reward. Science, 282(5392):1335–8, 1998.

A. Shmuel, M. Augath, A. Oeltermann, and N. K. Logothetis. Negative functional

mri response correlates with decreases in neuronal activity in monkey visual area

v1. Nat Neurosci, 9(4):569–77, 2006.

S. R. Simon, M. Meunier, L. Piettre, A. M. Berardi, C. M. Segebarth, and D. Bous-

saoud. Spatial attention and memory versus motor preparation: premotor cortex

involvement as revealed by fmri. J Neurophysiol, 88(4):2047–57, 2002.

A. Sirigu, E. Daprati, P. Pradat-Diehl, N. Franck, and M. Jeannerod. Perception of

self-generated movement following left parietal lesion. Brain, 122 ( Pt 10):1867–74,

1999.

L. H. Snyder, A. P. Batista, and R. A. Andersen. Coding of intention in the posterior

parietal cortex. Nature, 386(6621):167–70, 1997.

L. H. Snyder, A. P. Batista, and R. A. Andersen. Change in motor plan, without

a change in the spatial locus of attention, modulates activity in posterior parietal

cortex. J Neurophysiol, 79(5):2814–9, 1998.

L. H. Snyder, A. P. Batista, and R. A. Andersen. Intention-related activity in the

posterior parietal cortex: a review. Vision Res, 40(10-12):1433–41, 2000.

Y. Takikawa, R. Kawagoe, H. Itoh, H. Nakahara, and O. Hikosaka. Modulation of

saccadic eye movements by predicted reward outcome. Exp Brain Res, 142(2):

284–91, 2002.



28

J. Tanji, K. Shima, and Y. Matsuzaka. Reward-based planning of motor selection in

the rostral cingulate motor area. Adv Exp Med Biol, 508:417–23, 2002.

D. Thoenissen, K. Zilles, and I. Toni. Differential involvement of parietal and pre-

central regions in movement preparation and motor intention. J Neurosci, 22(20):

9024–34, 2002.

L. Ungerleider and M. Mishkin. Two cortical visual systems. In D. J. Ingle, M. A.

Goodale, and R. J. W Mansfield, editors, Analysis of visual behavior. MIT Press,

Cambridge, MA, 1982.

M. A. Vince. Corrective movements in a pursuit task. Q J Exp Physiol Cogn Med

Sci, 1(Pt. 2):85–103, 1948.

R. Watts. Movement Disorders: Neurologic Principles & Practice. McGraw-Hill

Professional, New York, 2004.

R. S. Woodworth. The accuracy of voluntary movement. Psychological Review, 3

(monograph supplement):1–119, 1899.



29

Chapter 2

Roles of Human Posterior Parietal
and Premotor Cortex in Action
Planning

2.1 Summary

The advance planning and preparation of actions is of the highest ecological rele-

vance, as it permits rapid and flexible behavioral responses to environmental stimuli.

To access the neuronal processes underlying planning without being confounded by

action execution or sensory processing, tasks which temporally separate instructive

information from the execution of the contingent motor responses are often used.

However, putative planning activity prior to the response may likewise reflect atten-

tion or a sensory memory of the contextual information previously cued. We thus

devised a time-resolved fMRI experiment that allowed delineating preparatory fMRI

activity specifically related to the planning and the inhibition of right index finger

reaches towards memorized target locations while directly controlling for mnemonic

and attentional demands. Preparatory fMRI activity was most pronounced in the left

superior parietal lobule, but also present in other regions within the posterior parietal

and premotor cortices. Remarkably, parietal and premotor planning thereby consid-

ered both types of targets relevant for reaching—those to be acquired and those to be

avoided.
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2.2 Introduction

The prospective planning of future action is composed of various interacting processes

that range from the specification of a behavioral goal (intention) to the orchestration

of dynamic muscular activity. Intuitively, one might think that the latter specifica-

tion of movement dynamics is at the core of motor planning. However, movements

are initially programmed in an extrinsic (visual) rather than an intrinsic (effector-

specific) reference frame (Morasso 1981; Wolpert et al. 1995), making it difficult to

extract the earliest precursors of our behavior from the neuronal representation of

the sensory context in which they are embedded. In order to come up with such

a distinction, experimenters engaged so-called pre-cuing paradigms with delayed be-

havioral responses (Rosenbaum 1980). These paradigms enable the separation of

planning processes from both (i) the sensory representations they depend on and

(ii) the motor acts they produce. This is realized by briefly providing the sensory

‘context/spatial cue(s)’, relevant for the planning of an upcoming behavior, while

interdicting the actual execution of this behavior until the later presentation of a ‘go

signal’, thereby temporally isolating planning processes within the intervening ‘delay

period’. Thus, sustained neuronal activity recorded during this delay period would

neither refer to the immediate processing of the sensory input nor to the actual move-

ment performance. Rather, sustained activity would reflect isolated processes related

to the planning of an upcoming movement (Hikosaka and Wurtz 1983). Following

this rationale, various groups employed delayed response tasks to expose these oth-

erwise ‘covert’ mental processes attributed to human action planning (e.g., Astafiev

et al. 2003; Brown et al. 2004; Connolly et al. 2002, 2007; Medendorp et al. 2005,

2006; Schluppeck et al. 2006; Thoenissen et al. 2002). Amongst the areas that

were reported to exhibit sustained activity throughout the preparatory delay period

of such tasks, the human posterior parietal cortex (PPC) seemed to play a dominant

role. Situated between the visual and somatosensory cortex, and with connections

to motor cortex, pre-motor cortex, and the aforementioned sensory areas, PPC has

the anatomical prerequisites that qualify it as a candidate structure for visual action
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planning. Moreover, both the properties of neurons within PPC (for review see An-

dersen and Buneo 2002) as well as the symptoms of patients with lesions of this part

of the brain (Karnath and Perenin 2005; Perenin and Vighetto 1988; Rushworth et

al. 2003; Trillenberg et al. 2007) further support this notion.

However, the idea that PPC would primarily contribute to behavior is in sharp

contrast with a long-espoused interpretation of its function in subserving processing

of visuo-spatial sensory information (Robinson et al. 1978; Gottlieb et al. 1998). Fol-

lowing these dichotomous views the analogous question naturally arises as to whether

sustained PPC activity in delayed-response tasks already underlies a prospective plan

for an upcoming movement or, alternatively, merely reflects the processing of retro-

spective sensory information. According to the latter, sustained activity in the PPC

might specifically be explicated by: (i) a sensory memory of contextual cues (e.g.,

Curtis et al. 2004; Curtis and D’Esposito 2006; Mars et al. 2008; Rowe et al. 2000;

Simon et al. 2002; Volle et al. 2005), (ii) a manipulation of such sensory infor-

mation within working memory (e.g., Champod & Petrides 2007) or (iii) a reactive

shift of covert attention that is triggered by the contextual cues (e.g., Kastner et

al. 1999; Corbetta and Shulman 2002). In fact, to date there is no conclusive evi-

dence in favor of prospective action planning in human PPC that would allow an un-

equivocal distinction from the various mnemonic and attentional processes mentioned

above. Towards this end, we devised an experiment that enabled the separation of

movement planning from these latter processes, while monitoring brain activity us-

ing time-resolved, event-related fMRI. Using this approach, we demonstrated that

preparatory processes related to both movement planning and movement inhibition

are already realized at the level of the posterior parietal cortex. Moreover, planning

activity was also present in regions within the pre-motor cortex, while the dorsolat-

eral pre-frontal cortex (DLPFC) seemed rather to be engaged in the maintenance of

retrospective visual memory.
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2.3 Results

Eight human subjects were scanned over three consecutive runs while performing

variants of a delayed-response task. In these tasks, sequences of finger reaches had

to be performed using an fMRI-compatible trackball. While in one of the randomly

interleaved tasks subjects were only required to memorize target locations, in other

tasks the same targets either instructed the goals for an upcoming movement sequence

or, alternatively, they instructed movements that should be inhibited. Hence, by

varying the planning demands across tasks while keeping both the mnemonic and the

attentional requirements constant, we aimed to isolate delay-related fMRI activity

recruited by the preparation of upcoming behavior.

In order to engage movement planning in a subset of trials, subjects performed a

‘classical’ version of the delayed-response task (DRT). In this task movements were

instructed by either two or four cues that were presented before the delay period

(Fig. 2.1A). After the delay, subjects were required to move a trackball-controlled

cursor as fast as possible to each of the remembered cue locations in order to success-

fully complete the trial. Importantly, in this (and each other) experimental condition,

response times were limited in order to encourage advance planning of the required

behavioral response. Furthermore, central fixation was required throughout all trials.

In the second trial type, the ‘non-match to sample task’ (NM2ST), sample cues

signified undesired target locations, and the required motor response was only later

defined by a second set of randomly selected cues that were presented immediately

after the delay period. Subjects were instructed to perform movements towards all

the new targets within the second set, i.e., those targets that were not previously pre-

sented in the first set of sample cues (Fig. 2.1B). This procedure ensured that subjects

could not predict the required sequence of finger reaches during the preparatory delay.

However, subjects could actively inhibit movements to the pre-cued target locations

in order to limit the number of possible movement alternatives in the response phase.

In order to control for retrospective visual spatial memory of the target cues as

well as covert shifts of attention towards these cues, we devised a ‘match to sample
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The behavioral tasks. Each task started with a fixation period of random duration (FIX) which

served as a baseline epoch for our fMRI-analysis. In the following cue period (CUE, durations refer

to the 2/4-target condition, respectively) varying numbers of peripheral targets (empty squares)

were presented. Depending on the task, these targets reflected goals for an upcoming movement (A),

signified undesired locations (B), marked spatial positions that had to be memorized (C) or served as

irrelevant distracters (D). Note that the color of the central fixation spot in the cue period indicated

subjects which of the aforementioned strategies they should pursue in the randomly interleaved

trials. The cue-period was followed by a brief random dot pattern (MASK) which masked putative

after-images of the cue. During the delay period (DEL) subjects were asked to prepare for the

upcoming response (RES): (A) In the DRT movements had to be planned to all remembered target

locations. (B) In the NM2ST subjects should inhibit movements to all pre-cued locations while

performing reaches towards all those targets in the response period that had not been shown before.

(C) In the M2ST subjects just needed to memorize the initial cues in order to perform a delayed

match to sample comparison (MATCH). Importantly, in this task subjects were not able to prepare

or to inhibit specific movements during the delay period since the manual response was ultimately

determined by a randomly generated response screen at the very end of the trial: subjects were

asked to indicate a match/mismatch by reaching towards the white/black targets, respectively. (D)

In an additional condition which controlled for unspecific preparatory activity during the delay (CT)

the initial cues were irrelevant and could be simply ignored. Subjects’ task was to reach towards all

targets that were shown during the response phase. Note that all responses should be performed as

quickly as possible and that the respective time limit for trial completion varied depending on both

the number of targets (2/4) and the planning demands of the task.
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task’ (M2ST). In this trial type, the initial sample cues could neither predict the

required motor response nor could they limit the number of response alternatives.

Instead, subjects simply needed to memorize cue locations in order to compare them

to a second set of cues which was presented after the delay: If both sets were identical

(50% of the M2ST trials), subjects moved the cursor towards the white targets of

a randomly generated third set of response cues. If the two sets differed (50% of

trials), subjects were instructed to move the cursor towards the black targets of the

response set (Fig. 2.1C). Hence, both the memory load and the attentional demands

in the NM2ST were identical to those in the two movement planning conditions.

However, only in the ‘movement planning’ conditions could reaches be either prepared

(DRT) or inhibited (NM2ST). Thus, any brain area that would exhibit greater delay-

related fMRI activity in these conditions would be deemed to participate in movement

planning.

Finally, a ’control task’ (CT) served as an additional baseline control. In this task

the initial cues were irrelevant for the later motor response. Subjects simply moved

the cursor towards the targets that were presented immediately after the delay period

(Fig. 2.1D). This task controlled for unspecific visual responses and unspecific motor

preparation common to all tasks.

Behavioral Performance

In order to guarantee that fMRI activity during the delay period would solely re-

flect the differential contributions of the preparatory, attentional, and mnemonic

processes under investigation, we carefully looked for any task-related differences in

subjects’ behavioral performance, which was monitored throughout the scanning ses-

sions. Representative examples of subjects’ reach- and oculomotor-performance are

given in Supplemental Fig. 2.S1 for each experimental task condition. Importantly,

the number of fixational saccades (Fig. 2.2A), as well as the frequency of eye blinks

(Fig. 2.2B), did not significantly differ for the delay period across task conditions

(2-way ANOVA—task p>0.05 [n.s.]; #cues n.s.; interaction n.s.). Furthermore, while
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Figure 2.2:

Behavioral performance. Estimating the behavioral performance during scanning allowed us to

guarantee that delay-related fMRI activity would not be biased by any systematic differences in the

number of fixational saccades (A) or in the frequency of eye blinks (B). Moreover, performance levels

did not differ between the DRT, NM2ST, and M2ST as indicated by the share of error trials (C).

However, error rates in these conditions were significantly increased as compared to the control task,

as was expected due to the additional mnemonic demands (CT; post-hoc tests: * p<0.05, ** p<0.01,

*** p<0.001). Finally, the reaction times for the manual responses are shown in (D). Importantly,

reaction times in the DRT were significantly shorter as compared to the CT. This signifies that

subjects had used the delay period to pre-prepare the required sequence of finger reaches. Longer

reaction times were detected in the NM2ST and the M2ST since both tasks involved additional

match-to-sample comparisons.
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there was an overall significant effect of the experimental conditions on performance

levels (2-way ANOVA: task p<0.01; #cues n.s.; interaction n.s.; Fig. 2.2C), error

rates were statistically indistinguishable for the memory- and the movement-planning

conditions (post-hoc test, n.s.), with a significant decrease only in the control task

as compared to all other conditions (post-hoc test, p<0.05). Finally, and most im-

portantly, reaction times significantly varied across experimental conditions (2-way

ANOVA: task p<0.001; #cues n.s.; interaction n.s.; Fig. 2.2D): as compared to the

control condition (CT), reaction times in the DRT were significantly decreased by

about 200ms (post-hoc test, p<0.001), signifying that subjects had prepared the

upcoming movement sequence during the delay phase. In contrast, manual reaction

times were significantly higher in the NM2ST and the M2ST (post-hoc test, p<0.001).

However, this was expected, as movement performance in both conditions critically

depended on an additional match-to-sample comparison. In summary, the analysis of

the various behavioral measures asserted that (i) subjects had prepared the pre-cued

movement sequence in the DRT, and (ii) apart from such planning, there was no

difference either in subjects’ behavior during the delay or in their overall performance

levels (except for the control task), indicating a comparable degree of task-difficulty

in the DRT, the NM2ST, and M2ST.

Correlates of Retrospective Visual Memory and Prospective

Motor Planning

Brain activity was analyzed using a region of interest (ROI)-based approach, which

was chosen in order to best account for the anatomical variability across subjects.

By contrasting a linear combination of delay-period fMRI activity across all memory-

and planning-conditions against the corresponding period of the control task, we

were able to functionally define ROIs that showed significant sustained activity in

each individual subject (p(FWE)<0.05). This procedure ensured that the selection

of ROIs was not biased by any particular task’s main component, for instance working

memory in the M2ST or motor planning in the DRT. Across all subjects, the most
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significant delay-related activity was mapped bilaterally in PPC, namely the medial

aspects of superior parietal lobule (SPL) next to the intra-parietal sulcus (IPS). This

activation further spread along the IPS and formed another pronounced cluster of

significantly activated voxels in its most anterior portion (antIPS). Furthermore, there

was a consistent activation in both left and right dorsal premotor cortex (dPM), as

well as the supplementary motor area (SMA). Finally, delayed fMRI-responses were

also present in the dorsolateral prefrontal cortex (DLPFC), mainly associated with an

activation of the left middle frontal gyrus (MFG). While some subjects also appeared

to recruit their right MFG, significant delay activity was not observed in this region in

all of our subjects. Fig. 2.3 illustrates these functionally defined ROIs. The activity

pattern rendered on a canonical brain surface depicts the statistical map obtained

from a second-level group analysis that was calculated across the aforementioned

‘delay contrasts’; this group map is in good spatial correspondence with individual

subjects’ activation patterns (refer to Supplemental Fig. 2.S2).

In order to compare the relative contributions of the various task components to

the sustained fMRI responses within these functionally defined ROIs, we took two

approaches. In a first approach the fMRI-signal timecourse within each ROI for each

individual subject was extracted. For each of these regions and for each experimental

condition an average event-related average (ERA) BOLD timecourse was calculated

across subjects. The resulting ERAs are depicted in Fig. 2.3, all aligned to the onset

of the delay period. Importantly, we did not account for the hemodynamic delay of

the fMRI-signal (about 5–6s time to peak). As expected from the statistical maps, all

ROIs showed an increased level of fMRI activity in the memory- (M2ST, yellow traces)

and the planning-conditions (DRT, green traces; NM2ST, grey traces) as compared

to the control condition (CT, blue traces). This increase occurred immediately after

the cue presentation and continued throughout the delay period, indicating a putative

involvement of these regions in motor planning, retrospective memory, or attention.

Importantly, in most of the ROIs the level of sustained activity systematically varied

across conditions: delay activities were the strongest in the motor planning condition

DRT, response amplitudes were the lowest in the memory condition M2ST, while
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Figure 2.3:
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fMRI activity related to motor planning and visual memory. Significant sustained fMRI

activity related motor preparation, memory, and/or attention was consistently mapped in each

subject’s posterior parietal cortex (SPL, antIPS), premotor cortex (dPM, SMA), and dorsolateral

pre-frontal cortex (DLPFC). This is illustrated by the respective 2nd-level activation-map which is

overlaid on a canonical brain surface. For each of the aforementioned regions of interest (ROIs) that

were separately mapped in each individual subject (MNI coordinates refer to average XYZ location

across subjects, also refer to Supplemental Figs. 2.S2 and 2.S3 for individual maps) as well as for

each experimental condition, the respective fMRI-signal timecourses are depicted (average across

individual subjects’ mean +/- SE): DRT in green, NM2ST in grey, M2ST in yellow, CT in blue.

Timecourses are aligned to the onset of the memory delay, while the solid vertical lines indicate

the average duration of this delay epoch. Broken vertical lines denote the onset of the cues in

the 4/2-target condition at -2.5s/-1.5s, respectively. Subjects’ average %-signal change during the

delay period (+/- SE) is further illustrated by the bars. Asterisks denote a significantly increased

signal-change as compared to the memory-control task (M2ST; * p<0.05, ** p<0.01, *** p<0.001;

corrected for multiple comparisons). Note that significant sustained fMRI-activity related to both

movement planning and inhibition was mapped in parietal and premotor cortex. The pattern of

activity in DLPFC rather seems to reflect its putative role in maintaining visual memory.
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intermediate levels of activity were obtained in the NM2ST. Importantly, this pattern

of activity was most pronounced in the left SPL, the left anterior IPS and the left

dPM. Similar but less robust patterns emerged for the corresponding cortical areas

in the right hemisphere (ipsilateral to the effector) and for the SMA. Interestingly,

only the fMRI responses in the DLPFC did not show any variation across conditions,

indicating a probable involvement of DLPFC in the maintenance of retrospective

visual memory but not in motor planning.

In a second analysis, the beta values were obtained for each of the delay-related

regressors in our single subject analyses and for each ROI. Beta values were normalized

to represent estimates of the percent signal change of the fMRI signal. As with

the ERA timecourses, normalized beta values were then averaged across subjects.

Furthermore, since beta values provided a single estimate of the ‘strength’ of the

delay-related fMRI signal, they were used to perform ROI-based group statistics.

Normalized beta values for each of the experimental conditions and for each ROI are

shown as bars in Fig. 2.3. Note that the beta estimates mirror the relative order of

the BOLD signal amplitudes during the delay period. However, the apparent amount

of signal change captured by the delay period predictors somewhat underestimated

the actual level of fMRI activity during the delay. Presumably, this underestimation

stems from the fact that this activity was already partly captured by the regressors

for the cue response. More importantly, the normalized beta values further support

the previously described patterns of planning-related fMRI activity: Beta values for

the DRT were significantly greater compared to those for the memory condition in the

SPL, antIPS, and dPM, and higher levels of significance were yielded for brain regions

contralateral to the effector (compare asterisks in Fig. 2.3). Furthermore, in these

ROIs the normalized beta values for the NM2ST lay intermediate to those obtained

for the DRT and for the M2ST. Significant differences emerged between the NM2ST

and the M2ST, but only in the left SPL and the right dPM, implying a contribution

of these areas to the inhibition of movements to undesired target locations. Similar

patterns were revealed for the SMA, approaching statistical significance. In contrast,

beta values for the DLPFC were indistinguishable and thus denote fMRI activity
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solely related to visual memory or attention.

2.4 Discussion

The patterns of fMRI activity in the posterior parietal and premotor cortex cannot be

solely explained by factors related to retrospective memory or visual attention, which

were identical across conditions. Instead, they indicate an additional involvement of

these regions in the planning of upcoming goal-directed movements while encoding

both types of targets relevant for action, those to be acquired (DRT) and those to be

avoided (NM2ST). In contrast, fMRI activity within DLPFC was rather consistent

with its putative role in maintaining visual memory (Petrides 2000; Constantinides

2001).

Evidence for Prospective Planning in Posterior Parietal Cor-

tex

The role of the PPC in motor planning is a matter of ongoing debate (Colby and

Goldberg 1999; Andersen and Buneo 2002; Goodale and Milner 1992; Ungerleider

and Mishkin 1982). The idea that this part of the brain may contribute to the gen-

eration of overt behavior originally stems from the pioneering electrophysiological

experiments by Mountcastle and coworkers, who demonstrated that the PPC encom-

passed diverse sets of neurons concerned with various aspects of goal-directed arm-

and eye-movements. However, Robinson and coworkers later noted that the described

PPC activity could be accounted for by task-related sensory or attentional processes

rather than the generation of behavior itself. To date, the most convincing electro-

physiological evidence in favor of a role of PPC in prospective motor planning stems

from studies that could demonstrate effector-specific ‘movement intentions’: in fact,

sustained neuronal firing in certain sub-regions of the PPC distinguishes between the

planning of an eye- (area LIP) vsersus a reach- movement (PRR = parietal reach

region) to one and the same remembered target location (Snyder et al. 1997). In
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the latter experiment the attentional and mnemonic demands were identical, while

the only difference in planning related to the way the memorized target had to be

acquired. Following this approach, various research groups performed human imaging

experiments demonstrating effector-specific planning within regions of both posterior

parietal and premotor cortex (Astafiev et al. 2003; Beurze et al 2007; Conolly et al.

2007; Glidden et al. 2008; Medendorp et al. 2005). However there were confounding

factors remaining which may vary for different effectors and could thus explain the

differential patterns of activity described in these latter studies: task difficulty, the

sensory consequences of movement, the spatial transformations necessary for the ef-

fector being used, and the sensory information relevant when planning an upcoming

behavior (e.g., proprioceptive information about the effector) may largely differ when

using eyes, arms, hands, or fingers. Moreover, imaging effector-specific movement

preparation cannot resolve cases in which planning occurs simultaneously for multi-

ple effectors (Snyder et al. 1997) or in which planning refers to more abstract aspects

of behavior that are effector-independent (global trajectories, sequential order, etc.).

In order to fully access these various levels of movement preparation we chose an al-

ternative experimental approach. We designed a time-resolved fMRI-experiment that

allowed us to temporally isolate planning processes from both cue- and movement-

related fMRI responses, while carefully controlling for subjects’ behavior, task dif-

ficulty, visual memory load and attention. Towards this end, we deployed variants

of a delayed-response task that involved the same effector—speeded finger reaches.

Importantly, the average number of movements required to complete a trial was kept

constant across conditions. Thereby we could rule out any unspecific movement

preparation that could bias our results. Indeed, unspecific preparatory activity was

present in the PPC and in premotor cortex, as these regions displayed delay-related

activity in the CT that differed from baseline (Fig. 2.3). In order to additionally

control for retrospective visual memory and attention we used a match-to-sample

task (M2ST). Most importantly, this task did not allow subjects to predict the later

response based on the pre-cued target locations while it was equally demanding with

respect to the number of targets that had to be attended to and maintained in visual



44

working memory (compare Fig. 2.2C). A randomized and asymmetric arrangement

of the potential target cues further prevented subjects from merely exploiting verbal

memory strategies. The M2ST was presented randomly interleaved with two planning

conditions: while in the DRT a specific sequence of finger-movements was instructed

by the same initial cues, the NM2ST specified undesired target locations towards

which movements should be avoided. In these and all other experimental conditions

subjects were instructed to perform out-and-back movements in either a clockwise

or counterclockwise fashion. This strategy should minimize any need for spatial up-

dating and serial-order processing during sequential movement preparation. This is

of importance since we did not want to bias our results by prompting preparatory

processes specifically required for movement sequences. On the other hand, requir-

ing multiple out-and-back finger reaches should guarantee a highly demanding and

long-lasting movement preparation in order to justify the rather lengthy delay epochs.

That such a preparation actually took place could be demonstrated by significantly

reduced reaction times in DRTs as compared to the CTs. Accordingly, all areas that

showed significantly increased levels of fMRI activity in the DRT were considered

regions engaged in motor planning.

Such preparatory fMRI activity in the DRTs was most pronounced in the PPC

(SPL, antIPS) but also present in premotor cortex (dPM, SMA). Moreover, in both

SPL and dPM this activity was more strongly represented in corresponding regions

of the left hemisphere (i.e., contralateral to the effector). The localization of these

movement-planning areas is in good spatial correspondence with previously described

parietal and pre-motor foci that are attributed to goal-directed reaching and pointing

(Astafiev et al. 2003; Beurze et al 2007; Conolly et al. 2007; DeSouza et al. 2000;

Glidden et al. 2008; Medendorp et al. 2005; Rowe et al. 2000; Volle et al. 2005).

Moreover, the region within the left SPL which showed the most robust planning-

related fMRI activity overlaps with a prevailing locus of lesion in optic ataxia patients

(Karnath and Perenin 2005; Trillenberg et al. 2007). These patients have severe

difficulties in reaching towards peripheral visual targets, i.e., in performing the same

behavior that was required by our task.
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Yet, SPL and all other parietal and pre-motor ‘planning areas’ also exhibited sus-

tained fMRI activity in the M2ST which cannot be directly explained by movement

planning. Moreover, except in the SMA, the level of this sustained BOLD response

was significantly higher in the 4-targets as compared to the 2-targets condition (com-

pare supplemental Fig. 2.S3). The nature of this residual fMRI-activity remains to be

revealed. This residual may be related to covert shifts of attention (e.g., Kastner et

al. 1999; Corbetta and Shulman 2002). It also could relate to the maintenance or ma-

nipulation of visual information within working memory (Curtis, Rao and D’Esposito

2004; Curtis and D’Esposito 2006; Mars et al. 2008; Rowe, Toni et al. 2000; Simon

et al. 2002; Volle et al. 2005). Moreover, it may reflect a preparatory set for action

(Cavina-Pratesi et al. 2006) or other forms of motor attention (Rushworth et al.

1997). Finally, the elevated levels of fMRI activity in the M2ST might simply reflect

subjects’ arousal due to higher task demands as compared to the baseline condition

(CT; compare Fig. 2.2C). While we cannot distinguish between these possibilities,

we can highlight a significant contribution of both premotor cortex and PPC to the

preparation of upcoming behavior.

Default Planning versus Retrospective Visual Memory in PPC

Our experimental approach is not without predecessors. Several groups have previ-

ously tried distinguishing movement intentions from mnemonic and attentional pro-

cesses. However, with respect to PPC function they often arrived at different con-

clusions. Most studies ascribed to PPC the maintenance of visual memory rather

than the planning of upcoming movement, while the latter function was commonly

attributed to the pre-motor cortex. This view was predominantly based on pre-cuing

experiments, in which the actual movement goal was not explicitly specified before

the preparatory delay period. Rather, subjects had to hold various potential cues

in memory, while only later a second cue would specify towards which of the pre-

cued targets a movement should be performed (Curtis and D’Esposito 2006; Mars

et al. 2008; Rowe et al. 2000; Volle et al. 2005). Unfortunately, this approach
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harbors the possibility that subjects prepare all movements that are potentially re-

quired by default (Snyder et al. 1997). The fact that in SPL (as well as in dPM

and SMA) sustained activity was most strongly modulated by the number of targets

in the DRT (compare Supplemental Fig. 2.S3) provides support for this notion (also

compare Medendorp et al. 2006). In addition, we have preliminary evidence that

both PPC and premotor cortex represent alternative movement plans throughout the

delay-phase, even in situations in which only one of these plans ultimately needs to

be executed (Lindner A., Kagan I., Iyer A. and Andersen, R.A. 2008 Prospective cod-

ing of alternative actions in human Parietal and Premotor cortex. 6th FENS Forum

of European Neuroscience). Given these findings, it seems highly likely that, in the

aforementioned studies, sustained PPC activity related to such ‘default plans’ rather

than solely to the maintenance of retrospective visual memory. Interestingly, in two

of these studies (Curtis and Esposito 2006; Volle et al. 2005) the specification of

the final movement goal was followed by a second delay phase, during which fMRI

activity related to preparation of the instructed movement could be assessed. In line

with the idea of default planning, sustained levels of PPC activity decreased in the

second as compared to the first delay period (Curtis and D’Esposito 2006; Volle et

al. 2005), which, accordingly, would be simply due to the fact that a lower number

of movement plans was represented after the required response was specified.

Finally, in an alternative experimental approach, Curtis and coworkers tried to

distinguish prospective planning and retrospective visual memory by comparing de-

lay activity in a delayed-saccade task with a non-match-to-sample task (NM2ST)

comparable to the one used in this study. As will be pointed out in the following

paragraph, the latter condition cannot control for memory-related processes since

it does not rule out the possibility that subjects actively inhibited saccades to the

pre-cued target location(s) in order to limit the number of response alternatives.
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Inhibition as a Constituent Part of Motor Planning

Increased levels of sustained fMRI activity in the NM2ST as compared to the M2ST

point towards a putative contribution of posterior parietal and pre-motor cortex to

the planning of movement even in cases when a specific behavior could no longer

be prepared. Such planning in the absence of immediate movement goals may seem

surprising; however non-match-to-sample tasks like the one used in this study allow

subjects to potentially inhibit movements to undesired, pre-cued target locations.

Within the context of our experiment, preparatory inhibition must be considered a

constituent part of motor planning despite the fact that it cannot elicit an overt behav-

ior: movement inhibition actively reduces the number of response alternatives. Since

behavioral reaction times increase with the number of available behavioral alterna-

tives (refer to Hicks law), inhibition is necessary for tractable and rapid management

of response options. Following this consideration it may not be surprising that regions

exhibiting prospective planning fMRI activity also showed significantly increased lev-

els of sustained fMRI activity in the delay period of the NM2ST. Yet, there might be

alternative interpretations: First, the increased level of sustained fMRI activity could

simply refer to a ‘default-planning’ of movements to all remaining potential target

locations (Snyder et al. 1997; Cisek and Kalaska 2002, 2005). Second, activity could

reflect covert shifts of attention to these default locations. However, both these inter-

pretations can be dispelled since the level of fMRI activity in the NM2ST significantly

increased with the number of undesired target locations, and thus was anti-correlated

with both the default-planning load and the related attentional demands (please refer

to supplemental Fig. 2.S3.).

In fact, recent evidence from primate electrophysiology suggests that pre-motor

neurons in both FEF and pre-FEF show sustained activity that may specify whether

or not a monkey should look at a pre-cued target location (Hasegawa et al. 2004).

Our results are consistent with this finding and further indicate that not only the pre-

motor but also the parietal cortex contributes to such putative preparatory processes

related to movement inhibition. Human imaging studies on the cancellation of pre-
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planned motor responses may further support this notion (e.g., Brown et al. 2006;

Casey et al. 1997; Cavina-Pratesi et al. 2006; Curtis et al. 2005; Garavan et al. 1999;

Watanabe et al. 2002). Note however, that in the aforementioned studies there was an

obvious confound of a planned, pre-potent behavior and its subsequent cancellation,

while in the present study the inhibition of a goal-directed motor behavior can be

demonstrated in isolation (for further discussion see Hasegawa et al. 2004; Snyder

and Lawrence 2004).

Taken together, our results clearly demonstrate that the human PPC is critically

involved in the preparation of upcoming movements while coding for both types of

targets relevant for action—those to be acquired and those to be avoided. Similar to

the manner in which PPC highlights the utility of a planned behavior on the basis

of expected reward (Platt and Glimcher 1999, Musallam et al. 2004) it may likewise

signify the level of action rejection in case of undesired behavioral outcomes.

2.5 Experimental Procedures

Subjects

Eight subjects (5 males, 3 females) participated in the experiment. All of them had

normal or corrected-to-normal visual acuity and all except one subject were right-

handed. The latter subject performed equally well with both her left and right hand.

Participants provided informed consent in accordance with the declaration of Helsinki

and the Caltech Institutional Review Board guidelines. Subjects were reimbursed for

participating in this experiment and received $10 per hour.

Stimulus presentation

All visual stimuli were back-projected onto a translucent screen (22o×16 o visual an-

gle) by using a video projector (800×600 pixels, 60 Hz). Subjects viewed the visual

stimuli via a mirror that was mounted on the head coil of the MRI scanner (viewing

distance 1150mm). Stimuli were generated on a windows PC using Cogent Graphics
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developed by John Romaya at the LON at the Wellcome Department of Imaging Neu-

roscience. For a comprehensive description of the different task instructions please

refer to both the results section as well as Fig. 2.1. The following description will

focus exclusively on common task epochs, their duration, and temporal order, as well

as the geometric aspects of the visual stimuli. In short, each trial started with a ran-

dom fixation period (14000ms, 15000ms or 16000ms) during which a white fixation

cross in front of a background square (size 0.8o×0.8o) was presented on the otherwise

dark screen. This fixation cross always remained visible throughout the whole trial.

The initial fixation period was followed by cue presentation (500ms or 1500ms). The

length of cue presentation was determined by the number of targets being presented—

it was longer for 4 targets than for 2 target trials in order to guarantee comparable

performance rates (compare Fig. 2.2C.). All potential target locations were shown as

equally spaced grey squares (size 0.8o×0.8o, distance 40o angle) that were arranged

on a circle around the fixation spot (5.5o radius). Across trials this overall circu-

lar arrangement was randomly rotated between -10 and 10o. Both the asymmetric

arrangement of the 9 targets as well as their additional rotation prevented subjects

from forming verbal memory strategies. Actual targets were defined as empty squares

(inner black square 0.3o×0.3 o). Cue presentation was followed by a 1000ms mask

to prevent specific after-images of the cues. This mask consisted of 80 randomly

placed white squares that densely covered the relevant central part of the screen (7o

x 7o). Afterwards, there was a delay period of random duration (14000ms, 15000ms

or 16000ms) in which subjects should maintain central fixation on the otherwise dark

screen while preparing for the upcoming response. The comparably long durations of

the cue and delay period were required to allow a time-resolved analysis of preparatory

fMRI activity without being confounded by preceding visual cues. In all conditions,

except the M2ST, the delay period was immediately followed by the response period.

In the response period subjects had to perform the instructed movements as quickly

as possible. Specifically, subjects performed out-and-back finger reaches with their

right index finger. Finger movements were recorded online using an MRI-compatible

trackball (Current Designs, Philadelphia) which was placed in a comfortable reaching
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distance on subjects’ belly. Movements were fed-back visually by a circle (1.65o di-

ameter). This cursor was only visible during the response phase and thus served as a

start signal for the response. However, subjects’ finger movements were continuously

monitored throughout the trial and with a sampling frequency of 60Hz. Importantly

subjects were not allowed to lift their finger from the trackball. The sensitivity of

this interface was thereby adjusted in a way that subjects could easily perform out-

and-back ‘finger-saccades’, i.e., straight, quasi-ballistic finger movements, without the

need for a re-adjustment of the trackball or any related compensatory movements (also

compare supplemental Fig. 2.1). The (invisible) starting position of the cursor was

always re-centered at the beginning of each trial. Finally, subjects were instructed to

perform the instructed sequence of movements as fast as possible in either a clockwise

or a counter-clockwise order, while the time for completing the instructed response

was highly limited. The time remaining was indicated by the cursor itself, which

simply faded until it became invisible at the end of the response period. The length

of this period varied across conditions: the more movements required and the more

cognitive processes presumably being performed, the longer the duration of the re-

sponse phase. The respective times were chosen based on average reaction times and

movement time measures obtained in a pilot study. In the M2ST the response period

was preceded by a MATCH stimulus which had to be compared with the earlier cues

which served as the sample. During the response period of this particular task, two

different sets of randomly selected targets (a set of black and a set of white targets)

served to indicate the outcome of the later match-to-sample comparison: movements

towards white targets would indicate a match whereas movements to black targets

would signify a mismatch. The response period of this and all other tasks was fol-

lowed by another 1000ms random-dot mask and a 2000ms inter-trial interval. During

the latter epoch subjects were allowed to blink or to look anywhere on the otherwise

dark screen. All trials were randomly interleaved. Each subject performed a total of

18 trials per condition; one half of the trials showed only 2 targets while the other

half presented 4 targets (i.e., 9 trials/target number/condition).
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Performance Monitoring and Behavioral Analysis

Our experimental paradigms required subjects to perform finger reaches while main-

taining central fixation. Behavior was registered using an fMRI-compatible trackball

(see above) as well as an fMRI-compatible eye-camera (Resonance Technology Inc.,

USA). Eye movement recordings were realized with the ViewPoint Eye Tracker (Ar-

rington Research Inc., Scottsdale, USA). Eye position was sampled at a frequency

of 60Hz. Further processing of the behavior was performed off-line using Matlab 7.1

(The MathWorks, Natick, USA). In short, eye position samples were filtered using

a 10Hz low-pass filter. Saccades were detected using an absolute velocity threshold

(20o/sec), while blinks were identified as gaps in the eye position records due to lid

closure. As with eye movements, finger movement recordings were expressed in de-

grees of visual angle in order to allow direct comparison. Representative examples

of 2D-finger and eye movement recordings are provided in supplemental Fig. 2.S1A.

Finger movements were low-pass filtered at 24Hz. For reaction time estimates, we

calculated the absolute finger velocity, while the onset of the response was defined

by the time when this velocity exceeded a threshold of 8.1o/sec (compare supple-

mental Fig. 2.S1C). Importantly, in no subject was movement detected during the

delay phase (compare supplemental Fig. 2.S1B). Finally, performance was expressed

by error rates: if the average direction of any individual out-and-back reach within

the sequence would not be located within a 40o arc of the target (20o to either side),

this would result in an error trial. As there were no systematic differences in error

rates across the conditions of interest (DRT, NM2ST, and M2ST—compare results

section), and even in error trials 50% or 75% of the reaches were made into the correct

target bin, we did not treat these trials differently in our fMRI analysis.

Image Acquisition and fMRI Analysis

MRI images were acquired on a 3 Tesla Siemens TRIO scanner using an 8-channel

head coil (Siemens, Erlangen, Germany). For each subject we obtained a T1-weighted

MP-rage anatomical scan of the whole brain (176 slices, slice thickness=1 mm, gap=0



52

mm, in-plane voxel size=1×1 mm, TR=1500ms, TE=3.05ms, FOV=256×256, reso-

lution= 256×256) as well as T2*-weighted gradient-echo planar imaging scans (EPIs:

slice thickness=3.5 mm, gap=0 mm, in-plane voxel size=3×3 mm, TR=2000ms,

TE=30ms, flip angle=90o, FOV=192×192, resolution=64×64, 32 axial slices) for our

fMRI time-series analysis. Overall we obtained 1458 EPIs per subject, which were

collected during three consecutive runs of about 16min length, each. The EPI-volume

completely covered the cerebral cortex as well as most subcortical structures. Only

the more posterior aspects of the cerebellum were truncated in several of our subjects.

Functional image processing was performed using SPM2 (Wellcome Department

of Cognitive Neurology, London). Images of each subject were realigned by using

the first scan as a reference. T1 anatomical images were co-registered to the mean

image of the functional scans and then aligned to the SPM T1-template in MNI space

(Montreal Neurological Institute, mean brain). The resulting non-linear 3D transfor-

mation was applied to all images for spatial normalization. Finally the functional

images were spatially smoothed with a Gaussian filter (7×7×7 mm3 full-width at

half-maximum) and high-pass filtered (cut-off period 128 ms). Functional images

were analyzed both on individual-subject and group levels. In the subject-specific

analysis (first level) we specified a general linear model (GLM) including regressors

for each of our 8 different experimental conditions (4 tasks × 2 target amounts) and

for each task epoch (cue presentation and mask, delay period, response-period). All

regressors were convolved with the default canonical haemodynamic response func-

tion. The inter-trial interval and the initial fixation period were not explicitly modeled

and served as the baseline epoch. On the group-level (second level), contrast images

illustrating delay period activity (compare Fig. 2.3) and target-load effects (compare

Supplemental Fig. 2.S3) were analyzed using a t-test. For all these GLM analyses,

a statistical threshold of p<0.05 adjusted for multiple comparisons was imposed as

the criterion for significance. In addition, we performed an ROI analysis. Towards

this end, normalized beta weights of the delay-period regressors were extracted for

a 3mm-radius sphere around the maxima of local clusters in individuals (i.e., based

on the first level statistics) that (i) overlapped in different subjects, and (ii) showed
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the most significant delay-related fMRI activity across subjects. All ROIs that were

functionally defined by these criteria are depicted in both Fig. 2.3 and Supplemental

Fig. 2.S3. Furthermore, the timecourses of the raw fMRI-signals in each of these

individually mapped ROIs were extracted using the SPM2 Volumes Toolbox by Volk-

mar Glauche (Brain Imaging Lab, Freiburg, Germany). As with the GLM analyses,

image timecourses were high-pass filtered (cut-off period 128 ms) and normalized by

an estimate of baseline activity. This estimate was based on the mean image intensity

5–2sec before delay-period onset, averaged across all experimental conditions, i.e., the

overall level of fMRI activity at the end of the fixation period. In order to come up

with individual event-related averages (ERAs) of trial-related BOLD activity, time-

courses were aligned to the onset of the delay period as specified by the GLMs. Due

to an additional temporal jitter in our design we were able to express the resulting

timecourses at a 1sec temporal resolution. The respective ERAs in Fig. 2.3 and Sup-

plemental Fig. 2.S3 thereby represent an average calculated across the mean ERAs

of each individual subject.
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2.S1 Supplemental Data

Figure 2.S1:

Representative examples of subjects’ performance. Eight examples of the different experi-

mental conditions (4 tasks x 2 sets of target numbers, i.e. 2 or 4) are shown in (A). The position

of the finger-guided cursor (in black) as well as gaze direction are overlaid (blue samples acquired

during the delay phase, green samples were recorded during the response period). Note that in all

conditions, this subject perfectly maintained central fixation throughout the trial. Green squares in

the DRT indicate pre-cued movement goals. Black small squares in the NM2ST indicate undesired

target locations. Red squares show a second set of targets that were presented during the response

period. In the response period subjects should perform movements to those targets of the second

set that did not correspond to the previous cues (i.e. only towards the empty red squares). In the

match-to-sample task (M2ST), small red squares represent the initial cues (sample) while the yellow

squares represent the match stimulus. In case of a match, subjects had to go to the white targets

of the response screen (large black squares). In case of a mismatch, they were required to reach at

the black targets (small black squares). Note that the location of the response targets and the loca-

tion of the match-to-sample targets were completely uncorrelated. In the CT subjects had to reach

towards the targets presented in the response period. These targets are indicated as blue squares.

(B) depicts horizontal (green) and vertical (blue) cursor position for the example in (A), which is

marked with an asterisk (DRT, 4 targets). This subject correctly performed a counter-clockwise

sequence of finger reaches to all the four specified targets. (C) shows the absolute velocity trace of

the same movement aligned to the onset of the response period. The red broken line indicates the

velocity threshold used to determine response onset (red dot). The horizontal (green) and vertical

(blue) eye position traces are shown in (D). Gaps in the eye records result from the rather frequent

eye blinks of this particular subject.
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Figure 2.S2:
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Individual ROIs in parietal and pre-motor cortex. Horizontal slices show subjects’ activation

maps (S1-8) that were used to specify functionally defined ROIs in each individual (reddish regions,

delay-activity contrast, p(FWE)<0.05). The corresponding statistical map of the random effects

analysis across subjects is shown as RE. In addition the bluish regions indicate areas stronger

activated in the motor preparation conditions (DRT and NM2ST) as compared to the conditions

in which such specific preparation was not possible (M2ST and CT). There is an obvious overlap

with the reddish regions mapped using the delay-activity criterion. Note that the z-levels (mm)

of the horizontal sections were selected based on the average level of the bilateral SPL activation

peaks. Despite being centered on these PPC-ROIs the horizontal sections also show large parts of

the task-related pre-motor areas (dPM and SMA).
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Target load-related fMRI-activity. Significant fMRI-activity related to target-load was most

pronounced in subject’s posterior parietal cortex (SPL, antIPS) but also premotor cortex (dPM,

SMA) and dorsolateral pre-frontal cortex (DLPFC) showed significant effects. This is resembled

by the respective 2nd-level activation-map which is overlaid on a canonical brain surface. For all

ROIs within these aforementioned regions as well as for each experimental condition the respective

fMRI-signal time courses are depicted: DRT in green, NM2ST in grey, M2ST in yellow, CT in

blue, solid lines indicate 4-target conditions, broken lines indicate 2-target conditions. Note that

the ROIs correspond to the ones presented in figure 3 of the main article. Time-courses are aligned

to the onset of the memory delay, while the solid vertical lines indicate the average duration of

this delay-epoch. Broken vertical lines denote the onset of the cues in the 4/2-target condition at

-2.5s/-1.5s, respectively. The difference in %-signal change between the 2-target and the 4-target

conditions during the delay period (+/- SE) is additionally shown by the bars. Asterisks denote

a significant differences (* p<0.05, ** p<0.01, *** p<0.001; corrected for multiple comparisons).

Note that the most pronounced differences in target load were obtained in the SPL, notably for the

motor planning conditions. The latter trend was similarly exhibited by pre-motor cortex, especially

by the SMA. Yet, due to the rather limited number of trials per subject and per condition (9 trials),

this distinction between planning- and memory-load awaits further investigation.
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Figure 2.S3:
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Chapter 3

Dissociation of Objective Value
and Subjective Absolute Value in
Striatal and Cortical
Representations of Expected
Action Outcomes

3.1 Summary

For optimal response selection, the consequences associated with an action’s potential

success or failure must be appraised. To determine how these expected consequences

influence the neural representation of action plans, human subjects were scanned while

performing a complex motor planning task, with monetary gains and losses imposed

for correct or incorrect trial completion. At the beginning of each trial, cues specified

required movements and indicated the gains and losses for that trial. Reward struc-

tures reflected the expected value of the action, based on subjects’ actual performance.

In contrast, frontoparietal motor planning regions were more active in high-absolute

value (high expected gains or losses) conditions. Furthermore, this activity depended

on subjects’ beliefs about their performance, being highest for high-gain contexts in

subjects who believed they performed well; and highest for high-loss conditions in those

who believed they performed poorly. These findings suggest that neural representations

of action plans incorporate the subjective absolute value tied to action outcomes.
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3.2 Introduction

The selection of one amongst a repertoire of potential behavioral responses entails

the articulation of both an appropriate goal and the appropriate means to achieve

that goal. In a natural context, however, a plan of action rarely guarantees a specific

outcome. Most actions carry with them a certain probability of success or failure,

and these successes and failures engender certain consequences. Thus to discern

an optimal course of action, the expected consequences of actions—their possible

outcomes and contingencies—must be assessed.

Functional imaging studies in humans have extensively investigated areas differen-

tially responsive to various aspects of choice (Daw et al. 2006; Ernst et al. 2004; Kable

and Glimcher 2007; Hampton et al. 2007), anticipation (Knutson et al 2000, 2001;

Cooper and Knutson 2008; Jensen et al. 2003), and receipt of monetary gains and

losses (Delgado et al. 2000; O’Doherty et al. 2001; O’Doherty et al. 2003; Delgado et

al. 2003; Delgado et al. 2004; Rolls et al. 2008). Predominantly, these inquiries have

emphasized subcortical and prefrontal cortical regions, speculating on their role in an

array of tasks, from facilitating appropriate approach or avoidance behavior to mon-

itoring outcomes in order to adjust future strategies. From this wealth of findings,

considerable knowledge has been gleaned as to how rewards associated with stimuli

are processed and exploited to guide behavior. However, these studies shed less light

on whether and how rewards consequent of response execution mold action-planning

activity, in the areas engaged in transforming sensory inputs into preparatory signals

preceding motor events. A number of previous experiments have passively presented

cues and outcomes, demanding no instrumental response on the part of the sub-

jects to obtain rewards (Berns et al. 2001; McClure et al. 2003; D’Ardenne et al.

2008; Jensen et al. 2007; O’Doherty et al. 2003). Even in paradigms mandating

movements—either as tools to maintain vigilance, signal choice, (O’Doherty et al.

2006; Knutson et al. 2000, 2001; Bray et al. 2007; Breiter et al. 2001; Kable et

al. 2007), or to specifically investigate instrumental action-reward contingencies, the

required responses were unnaturally and trivially easy; thus not prompting any sub-
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stantial motor preparation (Ramnani and Miall 2003; Tricomi et al. 2004; Zink et al.

2004; O’Doherty et al. 2004; Bjork and Hommer 2007).

In recent years, macaque electrophysiological experiments have begun dissecting

the influence of reward contingencies on the process of action selection and planning.

These investigations have identified reward-related factors that bias neural activity

in motor planning frontal and posterior parietal areas, which may in turn dispose the

animal’s selection of which movement to execute. Firing rates in lateral intrapari-

etal area (LIP), the region in the macaque posterior parietal cortex thought to be

involved in processing/encoding oculomotor action plans, have been shown to signify

the weight of sensory input indicating which saccade target is rewarded (Shadlen and

Newsome 2001), the log likelihood that a given eye movement will result in a reward

(Gold and Shadlen 2001), the magnitude and probability of reward associated with a

saccade target (Platt and Glimcher 1999), and the relative desirability of a saccade

with respect to other possible saccade options (Dorris and Glimcher 2004). Infor-

mation about the preference and magnitude of rewards for reach targets has been

decoded from a complementary parietal region involved in reaching (Musallam et al.

2004); and recordings from premotor cortex imply that the motivation to choose and

acquire a saccade target may shape neural responses as well (Roesch and Olson 2004).

While these investigations proffer insight into reward-modulated action planning

activity, the movements employed in these paradigms were still rather undemanding

and simple, as in most human studies examining reward. Conversely, many real-

life goal-directed actions necessitate greater cognitive exertion, demanding effort at

mnemonic, preparatory, and/or execution stages. This complexity generates uncer-

tainty and variability in outcomes. And while the prediction and evaluation of these

potential outcomes clearly pertain to adept behavioral response, little is known about

how related parameters influence the neural activity subserving action planning.

In addition, the corpus of these studies largely assigns absence of reward rather

than explicit punishment as the cost of failure, impeding distinctions between factors

associated with a given action (but see Roesch and Olson 2004). Without explicit

penalties, variables such as value, incentive (i.e., aversion to punishment or the ex-
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pectation of reward), and internal motivation would likely change in step. Finally,

as simple movements render the likelihood of success high and the ability to gauge

performance straightforward, the effects of subjects’ appraisal of probability of out-

comes as opposed to the actual probability of outcomes cannot easily be disentangled.

Thus, it is difficult to infer from previous work how these parameters impinge upon

the neural representations of complex behaviors required in everyday life.

The goals of this study were to ascertain whether and, if so, how expected con-

sequences of complex actions, dependent on human subjects’ performance, modulate

activity of neural substrates engaged in action specification and preparation. Using

fMRI, we investigated the effect of expected monetary reward or punishment in cere-

bral areas recruited in a challenging delayed-response motor planning task. Subjects

were allowed a limited time in which to complete their motor responses, prompting

them to prepare movements in advance. To impose consequences for success and

failure, trials were associated with variable gain-loss contexts, stipulating at the be-

ginning of the trial the amount the subject would gain if she/he performed the task

correctly and lose otherwise. Every trial instructed one correct response, so subjects

unequivocally understood the appropriate action to garner success and maximize re-

ward. Therefore, unlike most prior studies, sizable uncertainty in anticipation of

reward or punishment stemmed entirely from subject’s ability to successfully prepare

and implement the response.

This study reports that the profile of activity throughout several task-relevant

regions manifested modulation due to the gain-loss contexts. However, these struc-

tures evinced divergent roles: Subregions of the striatum encoded the objective value

of this reward context as dependent on both the gain-loss cue and subjects’ actual

performance. In contrast, signal timecourses of frontoparietal cortical regions re-

flected the absolute value associated with an action in the delay period preceding the

response. Moreover, these areas revealed a cognitive, framing effect, responding to

action salience as dictated by subjective estimates of success rather than subjects’

objective performance.
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3.3 Results

Delayed-response tasks are widely employed in electrophysiological and fMRI studies

to elucidate the neural substrates of working memory and motor preparation. By

imposing a delay between instructive visual cues and the contingent motor response,

this task structure permits delineation between neuronal contributions due to sensory,

motor, and intervening preparatory processes. Here, we investigated the influence of

expected monetary consequences on action plans by utilizing a delayed-response task

and imposing upon each trial potential gains and losses.

In this experimental task, subjects moved a trackball with their right index finger

to guide a cursor sequentially to five remembered out of nine possible target locations,

in the exact order in which they were previously cued. Brief cue presentation, high

memory/planning load and constrained response time made successful trial comple-

tion difficult. Subjects thus trained extensively on the task before scanning. This

training helped to minimize learning effects and to stabilize performance during the

experimental session, promoting stable expectations of action outcomes throughout

the task.

The principal events of interest in the task included: first, the presentation of the

gain-loss context cue, followed by the spatial cues; second, the delay period interposed

between visual cue presentation and the motor response; third, the execution of the

motor response; fourth, feedback indicating the gains or losses acquired (Fig. 3.1A).

The gain-loss contexts comprised different combinations of high or low gains and

losses: $0/-$0, $1/-$1, $1/-$5, $5/-$1, and $5/-$5. These combinations enabled pre-

dictions as to the modulation of motor planning signals due to various parameters

of the expected outcome: (i) The possible gains and losses may be reflected in the

prospective monetary return, or ‘value’, of an action. Value is calculated as the sum

of two products 1) likelihood of success (performance) times gains and 2) likelihood

of failure(1-performance) times losses:

value = (performance× gains) + ((1− performance)× losses)
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This parameter predicts the highest and lowest signal amplitudes for positively and

negatively valued conditions, respectively, i.e., a larger signal in high gain/low loss

trials ($5/-$1) than in low gain/high loss trials ($1/-$5) across all performance levels.

(Fig. 3.1B) (ii) The possible gains and losses may be encoded in a manner that

reflects the behavioral import of an action, either through its ability to acquire a

reward or avoid a loss. Indeed, avoiding a loss may in itself be rewarding (Kim et al.

2006) By this rationale, each outcome (gains and losses) may separately contribute

or add in the appraisal of the action, here captured by the ‘stakes’ associated with

the action. The stakes can be expressed as the sum of the absolute value of each

weighted outcome:

stakes = ((performance)× |gains|) + ((1− performance)× |losses|)

Following the stakes parameter, the greatest modulation would be observed in the

high gain/high loss contexts ($5/-$5); the smallest in the low gain/low loss contexts

($1/-$1; $0/-$0) at any level of performance (Fig. 3.1C) (iii) Thirdly, an action’s

import in terms of acquiring reward and avoiding loss may not be a function of the

reward and loss independently, but instead reflect the expected gains or expected

losses. Alternatively stated, the magnitude of deviation from a neutral baseline of

positively- and negatively-valued actions may be more germane to action represen-

tations, reflecting the possibility to procure the expected outcome if it is positive or

preclude it if it is negative (aversive) . This magnitude is the absolute value of the

action’s value:

absolutevalue = |(performance× gains) + ((1− performance)× losses)|

This definition yields disparate predictions of context-dependent modulation for

subjects who perform well (Fig. 3.1D) versus those who do not (Fig. 3.1E): the

conditions with the highest expected gains (at performance levels ¿ 50%) or with the

highest expected losses (at performance levels < 50%) should result in the largest
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Trial structure and hypothetical responses(A) Trial timing and structure. The gain-loss con-

tingencies for the trial were then displayed, follwed by spatial cues briefly specifying the required

movement for the trial. After a delay, subjects performed the motor response, and received immedi-

ate feedback (gain or loss) based on their performance (successful or unsuccessful). (B) Hypothetical

BOLD signals in motor-planning ROIs encoding value. Delay period (marked in gray) signal ampli-

tudes are highest for +$5/-$1, lowest for +$1/-$5. The values associated with each gain-loss context,

and hence the ordering of gain-loss contexts, depends on probability of success (here, performance).

For the purpose of illustration, the ordering depicted here is averaged across all performance levels.

(C) Hypothetical BOLD signals in ROIs encoding stakes. The +$5/-$5 produces the highest signal;

the +$1/-$1 and +$0/-$0 produce the lowest at all performance levels. (D–E) Hypothetical BOLD

signals in ROIs encoding absolute value. Again, the ordering varies dependant on performance level.

For simplicity, the left plot (D) shows the predicted ordering at good performance levels, averaged

over 50–100%. Under a high probability of success, conditions yielding higher gains generate the

larger signal (+$5/-$1, +$5/-$5). On the right panel (E), ordering for bad performance is averaged

over 0–49%, predicting the greatest signal in condition yielding high losses (+$1/-$5, +$5/-$5).
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magnitude deviation from baseline. Therefore, in the context of the current experi-

ment, it is defined here as the outcome-weighted ‘action absolute value’ (hereafter

referred to as absolute value).

Behavioral Results

The 17 subjects who participated in this study achieved drastically different levels of

performance, ranging from 10% to 70% correct responses (see Fig. 3.2A). However,

performance levels across gain-loss contexts were indistinguishable (2-way ANOVA—

subject: p<10e-16; context: p=0.78). To assess if performance changed throughout

the scanning session, trials were evenly divided into 6 successive blocks. No significant

differences in success rates across blocks of trials emerged (2-way ANOVA—subject:

p<10e-16; block: p=0.90), indicating that no learning occurred during the course of

the fMRI experiment.

Across gain-loss contexts, reaction time latencies were indistinguishable (2-way

ANOVA—subject: p<0.001; context: p>0.05[n.s].; Friedmans ANOVA p=n.s). To-

tal movement time to complete responses showed a slight trend, being shortest for

the $5/-$1 condition. This trend did not reach significance (2-way ANOVA—subject:

p<0.001; context: n.s.; Friedmans ANOVA p=n.s). From these observations, individ-

ual subjects’ behavioral measures admit no significant disparities, yielding a relatively

fixed probability of success for each subject during the experimental session.

Subjective Reports

Upon completion of the scanning session, but prior to receiving any feedback about

overall performance and net winnings, all subjects completed a questionnaire. First,

16 of 17 subjects claimed to pay attention to the presented gain-loss contexts; all

subjects reported investing maximal effort on all trials, independent of the gain-loss

context, as instructed (see Experimental Procedures). Based on feedback received at

the end of each trial as to the outcome of that trial, subjects also estimated their

total winnings: whether they had net won money, net lost money, or broken even.
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Given the task structure, net winning required greater than 50% performance on trials

resulting in increments/decrements of total earnings; net losing required less than 50%

performance on these trials. Fig. 3.2A portrays the relationship between perceived

task winnings and subject’s average performance across all trials. The ‘good’ group

claimed a net gain based on their performance during the task (n=11); the ‘bad’ group

claimed net losses (n=6). For comparison, subjects denoted by ‘x’ actually net won

money (n=6) during the scanning session, and those by ‘o’ net lost (n=11). To our

surprise, the objective and the perceived performances were completely uncorrelated.

(Behrens-Fisher two-sampled t-test comparing actual performance of the subjective

good versus subjective bad groups: p=0.70[n.s.]).

Additionally, subjects rated the gain-loss contexts in terms of both subjective mo-

tivation and preference. As the subjects’ likelihood of obtaining gains or losses likely

impacts how they perceive the gain-loss contexts, both their motivation and preference

rankings are presented as a function of their objective and subjective performances.

Fig. 3.2B depicts the mean preference rankings: on the left, the rankings for the

objective good versus objective bad subjects; and on the right, subjective good versus

subjective bad subjects. Intuitively, these rankings should parallel the value associ-

ated with the gain-loss contexts. Accordingly, subjects in all groups most preferred the

high-gain/low-loss context ($5/-$1), and least preferred the converse, low-gain/high-

loss context ($1/-$5). Between the objective good and bad groups, no significant dif-

ferences existed in the rankings of the remaining contexts (2-way ANOVA—context:

F(4,75)=44.4, p<0.05; group: F(1,75)=0, p=1.0[n.s.]; group×context: F(4,75)=0.35,

p=0.85[n.s.]). However, different trends surfaced for the subjective good and bad

groups; the subjective bad group preferred the low-gain/low-loss context over the

high-gain/high-loss context, consistent with the values of these contexts at poor per-

formance (2-way ANOVA—context: F(4,75)=45.5, p<0.05; group: F(1,75)=0, p=1.0;

group×context: F(4,75)=0.80, p=0.50[n.s.]).

Subjects’ motivation rankings (Fig. 3.2C) display an analogous but more strik-

ing trend. Objective good and bad groups show no dissimilarity in ratings (2-way

ANOVA—context: F(4,75)=42.3, p<0.05; group: F(1,75)=0, p=1.0[n.s.]; group×context:
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Figure 3.2:

Subjects Attitudes towards Performance and Contexts.(A) Actual Performance vs Self-

Reported Performance. ‘Good’ subjects reported net winning money; ‘Bad’ subjects reported the

converse. For comparison, ’x’ s are subjects who actually net won money; in ’o’ s, subjects who net

lost money. (B) Subjects’ preference rankings of gain-loss contexts, divided by Objective(left panel)

and Subjective (right panel) Performance. (C) Subjects’ motivation rankings of gain-loss contexts,

divided by Objective (left panel) and Subjective (right panel) Performance.
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F(4,75)=0.21, p =0.94). Groups divided on the basis of subjective performance how-

ever diverge significantly (2-way ANOVA—context: F(4,75)=51.0, p<10e-16; group:

F(1,75)=0, p=1.0[n.s]; group×context: F(4,75)=4.1, p=0.005). Subjective good sub-

jects rated the high-gain contexts ($5/-$1, $5/-$5) equivalently, followed by the low-

gain contexts, indicating they viewed contexts in terms of gains. The subjectively

bad group provided the reverse ranking, i.e., contexts involving high losses were

more motivating than high-gain contexts, congruent with the notion that they be-

lieved themselves more likely to perform a trial incorrectly than correctly. As the

ANOVA statistics indicate, grouping subjects by subjective as compared to objective

performance—specifically through the interaction of gain-loss context and perfor-

mance group—accounts for a greater proportion of the variance in both preference

and motivation rankings.

Neuroimaging Findings

As this study chiefly concerns modulation of motor preparatory/planning activity,

the focus lies primarily upon related BOLD activity during the delay period. Neural

responses to the cue and the feedback are briefly summarized (see supplementary

tables for more detail).

Motor Preparation/Planning ROIs

The primary analysis identified motor planning ROIs as those clusters with the

strongest main effect of the delay period, irrespective of gain-loss context modula-

tion.

By this approach, a group analysis (p(FWE)<0.01, corrected for spatial extent

p<0.05) revealed significant delay period activity in a frontoparietal network puta-

tively engaged in motor preparation/planning. Specifically, this network comprised

bilaterally: multiple peaks in superior parietal lobule (SPL), and along the medial

bank and fundus of the intraparietal sulcus (IPS); precuneus; dorsal premotor cortex;

and pre-supplementary motor area/supplementary motor area (hereafter referred to
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as SMA) (Fig. 3.3a).

Expressed in % signal change relative to the last 4 s of the initial fixation period,

BOLD timecourses of these regions demonstrated four main components, exemplified

in Fig. 3.3b. Temporal alignment in the figure occurs with respect to the delay

period. Vertical lines demarcate delay onset at 0 sec and movement onset at 15 sec;

cue presentation commences 3.7 sec (gain-loss context cue, spatial cue, and mask)

prior to start of the delay period. Event-related BOLD modulations include: (1) a

transient (high-amplitude) signal increase time-locked to the instructive cue, peaking

approximately 6 sec after presentation; (2) a sustained level of activity during the

delay period, but of a smaller magnitude than the earlier cue and the later movement

peak amplitudes; (3) a transient (high-amplitude) signal increase time-locked to the

initiation of movement, again peaking approximately 6 sec after movement onset;

and (4) a (smaller) transient (small-amplitude) increase time-locked to the feedback

(receipt of reward/punishment), sometimes obscured by the larger movement-related

signal.

Of motor-planning ROIs, the left superior parietal lobule (SPL) demonstrated the

most significant delay period activity; SPL BOLD timecourses, sorted by gain-loss

context, are illustrated in Fig. 3.3B. To better isolate delay period modulations

consequent of gain-loss contexts (without residual contributions from the cue epoch,

for example), the corresponding beta values are depicted in Fig. 3.3C. As these beta

values are regression coefficients that represent the ‘weight’ of each predictor in order

to best fit the observed signal, they constitute an isolated estimate of the % signal

change due to each predicted factor, i.e., in this figure, the delay periods under each

gain-loss context. Averaged over all subjects, the preferred high-gain/low-loss (+$5/-

$1) context produced the largest increase in signal. While this tentatively suggests

that the BOLD response may reflect the value associated with the trial, the remaining

gain-loss contexts do not generate levels of activity proportional to their value—

most notably, the beta value associated with the strongly negative context (+$1/-$5)

exceeds those associated with the relatively neutral gain-loss contexts (+$1/-$1 and

+$0/-$0). That both positive- and negative-value contexts engender
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Figure 3.3:

Delay period ROIs and representative timecourse and beta values.(A) Regions exhibiting

significant delay-period activity, across all gain-loss conditions. (p(FWE)<0.01) (B) BOLD signal

timecourses averaged over all subjects, extracted from left superior parietal lobule (SPL), sorted by

gain-loss context. Black lines indicate onset and offset of delay period. (C) Delay period beta values

averaged over all subjects, extracted from left superior parietal lobule (SPL), sorted by gain-loss

context.
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greater activity compared to neutral contexts suggests that the absolute value as-

sociated with successful trial completion may play an explicative role in parietal

delay-period responses.

In order to elucidate any relationship between task performance and delay-period

activity, subjects were segregated on the basis of their earnings: those who net won

money (‘objective good’) and those who did not (‘objective bad’) (see Fig. 3.2A.

The ‘objective good’ group of subjects yielded no clear order of delay period beta

values. The ‘objective bad’ group exhibited a pattern similar to that of the whole

group result, with the positive-value context (+$5/-$1) highest, and the negative-

value context (+$1/-$5) greater than the neutral contexts (Fig. 3.4A. This partition

on the basis of objective performance explains no more of the variance in delay period

beta values than does considering gain-loss contexts alone (2-way ANOVA—context:

F(4,75)=4.0, p<0.05; group: F(1,75)=0.11, p>0.05; group×context: F(4,75)=0.10,

p>0.05).

Alternatively, subjects can be divided according to subjective estimates of their

own performance. This criterion furnished a dichotomous classification: those who

believed they had done well on the task and net won money (‘subjective good’) and

those who believed they had not (‘subjective bad’) (see Fig. 3.2). Delay-period

beta values (Fig. 3.4B) disclose a significant interaction between gain-loss con-

text and subjective perfornance (2-way ANOVA—context: F(4,75)=4.7, p=0.002;

group: F(1,75)=1.0, p=0.4, context×group: F(4,75)=9.7, p=0.003). For the ‘sub-

jective good’ group, the beta values of +$5 contexts exceed those of the +$1 con-

texts, with the highest produced by the +$5/-$1. For the ‘subjective bad’ group,

the negative-value context garners a larger hemodynamic response than the positive-

value context, which in turn produces a larger response than more neutral contexts.

Collectively considered, these findings concur with the absolute value predictions for

both subjective good and bad performance (refer to Fig. 3.1). To better observe the

task-dependent modulation of activity throughout the trial, Fig. 3.4C renders the

BOLD timecourses for the subjective good and bad performance groups.
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Figure 3.4:

SPL beta values and timecourses by performance. Delay-period beta values for (A) Objective

Good and Bad subjects, and (B) Subjective Good and Bad subjects, sorted by gain-loss context.

(C) BOLD timecourses for Subjective Good (left panel) and Bad (right panel) subjects.
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Figure 3.5:

Delay Period ROI BOLD timecourses for Subjective Good subjects (left panel) and Subjective

Bad subjects (right panel) for motor planning ROIs (A) Precuneus, (B) IPS, near its junction with

POS, (C) PMd, and (D) SMA/pre-SMA. Black lines indicate onset and offset of delay period.
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The profile of BOLD activity in SPL echoed that in other motor planning ROIs.

Fig. 3.5 portrays the analogous timecourses, for subjective good and bad sub-

jects, for (Fig. 3.5A) left precuneus; (Fig. 3.5B) left intraparietal sulcus, close

to parieto-occipital sulcus; (Fig. 3.5C) left dorsal premotor area; and (Fig. 3.5D)

pre-SMA/SMA. Throughout this frontoparietal network, neural activity developed

similarly, likely reflecting a modulation of BOLD responses by the absolute value

tied to task completion; however, parietal areas revealed the most significant context-

dependent responses.

To further corroborate these findings, a second set of group analyses were con-

ducted to directly probe context-dependent modulations resonant with value, stakes,

or absolute value. (Additional variables were tested; see Experimental Procedures.)

These analyses further assessed the import of objective versus subjective performance

estimates. On a first level, individual-subject general linear models (GLMs) employed

a single regressor for each task epoch. For the cue, delay, and response epochs, an

additional regressor captured the hypothesized parametric modulation of the signal

due to gain-loss contexts. For the ‘objective performance’ models, these hypothe-

sized modulations for each subject were determined by their objective performance

(either good or poor); for ‘subjective performance’ models, by their subjective per-

formance estimate (either good or poor). (See Experimental Procedures, table 1 for

values used for these hypothesized modulations.) On the second level, a group anal-

ysis exclusively utilized contrast images from individual subjects which assessed this

parametric modulation regressor.
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FIGURE 6

Figure 3.6:

Statistical maps for delay period and ‘performance-weighted’ absolute value. Voxels

revealing significant main effect of the delay period, in red (p(FWE)<0.01); and voxels revealing

significant parametric modulation of absolute value, based on subjective performance, in green

(p(FDR)<0.05). Voxels in orange are overlap for both contrasts, i.e., p(FWE)<0.05. Regions

corrected for spatial extent, significant for both contrasts, are circled.

By this approach, statistical analyses of the delay period elucidated all voxels with

significant gain-loss modulation, independent of a main effect of the delay period. For

(2nd-level) GLMs predicated upon stakes or value (either rooted in objective or sub-

jective performance estimates), this contrast produced no significant voxels (up to

a voxel level threshold of p(unc)<0.05). Conversely, absolute value models based

on subjective performance (p(FDR)<0.05, corrected for spatial extent p(cor)<0.05)

yielded significant clusters, rendered in green in Fig. 3.6. Models of absolute value

based on objective performance also highlighted a subset of these clusters, but these
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voxels did not survive the statistical threshold criteria. Confirming the results from

our previous analysis, frontal and parietal areas show significant modulation depen-

dant on subjective performance-related absolute value (see also Supplementary Table

3.S3). Superimposed on the related statistical map in Fig. 3.6 are the motor plan-

ning ROIs, which exhibited a significant main effect of the delay period (red). The

overlap suggests that these main motor planning ROIs were also the regions most

significantly encoding expected-outcome-related information.

Neural Responses to Spatial and Gain-Loss Contextual Cues

As the contextual cue supplies gain-loss information, areas engaged in processing

the cue are potentially necessary for predicting the outcome of specific action plans.

However, due to brief and contiguous viewing of spatial and contextual cues, BOLD

responses to the individual cues could not readily be distinguished. Hence, they were

modeled as one task epoch (‘cue’). Regions exhibiting a significant response to the

spatial and contextual (gain-loss) cue presentation (p(FWE)<0.01) encompassed sub-

cortical structures including the thalamus and the striatum; and cortical clusters in

bilateral precuneus, supplementary motor area, SPL, dorsal premotor cortex, middle

occipital gyrus, posterior cingulate, and left lingual and fusiform gyri.

Of these cue-activated ROIs, a small subset—the thalamus, caudate, and precuneus—

additionally revealed a significant parametric modulation due to the gain-loss context.

Presumably, those areas not parametrically modulated are more involved in general

sensory or mnemonic processing of the cue, rather than in encoding specific conse-

quences or contingencies signified by the gain-loss context. (See Supplementary Table

?? for all cue ROIs showing modulation, and Supplementary Table ?? for all regions

demonstrating a significant modulatory effect independent of a main cue effect.) Con-

sistent with previous findings (Knutson et al. 2000, 2001), thalamic and caudate cue

activity demonstrated similar modulatory trends, reflecting the value indicated by the

gain-loss contexts. Furthermore, modulation of cue activity in these areas correlated

best with the value based on objective performance of subjects (thalamus right [15

-27 12], t = 3.94 for objective value parametric modulation; caudate left [-3 15 0], t
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= 4.36 for parametric and right [3 15 6], t = 4.40 for objective value parametric mod-

ulation). Caudate BOLD timecourses for objective good and bad groups are shown

in Fig. 3.7.

In the timecourses presented on the left panel, the good performance ‘weights’ the

gains of the gain-loss contexts, leading to high signal amplitudes in both the high-

gain/high-loss (+$5/-$5) context (comparable to the high-gain/low-loss context), and

in the low-gain/high-loss context (higher than $0/-0). Conversely, averaged over the

objective bad subjects, where performance now weights the losses more, these contexts

show relatively lower signal amplitudes. [For direct comparison with signals in motor

planning ROIs, caudate timecourses for subjective good and bad groups are shown

in Supplementary Fig. 3.S1.]

To discern other reward-related areas that may exhibit cue responses, the statis-

tical threshold was eased (p(FDR)<0.01); additional voxels in the orbitofrontal cor-

tex then showed similar objective-value-related modulation approaching significance

(right [6 51 -6; 3 54 -12], t = 3.48, 3.50 for objective value parametric modulation).

Additional clusters in the caudate, while they did not reveal a main effect of the

cue, did demonstrate robust modulation during the cue epoch. A subset of these

clusters showed modulation consistent with objective value, as with the cue-activated

caudate ROIs . However, the remaining clusters displayed BOLD patterns resonant

with subjective absolute value. Voxels of peak absolute-value-related modulation

in the caudate generally lay more dorsolaterally than voxels with value-modulated

activity. [For a comprehensive list of clusters showing modulation of the cue epoch,

see Supplementary Table 3.S2.]
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Dorsal striatal BOLD signal timecourses for Objective Good subjects (left panel) and Objective

Bad subjects (right panel). The timecourse over the entire trial duration is presented on top; the

cue epoch (from -4sec to +8sec, with 0sec denoting onset of cue gain-loss context cue) is depicted

below. Black line indicates onset of cue presentation.
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Neural Responses to Outcome (Feedback)

Areas which process feedback/outcome of events offer information important for the

comparison of actual versus predicted outcomes, and for the development of future

expectations. In this experiment, feedback of monetary gains and losses at the end

of each trial elicited significant cortical and subcortical activation (p(unc)¡0.001, cor-

rected for spatial extent p<0.05). In accordance with prior studies, bilateral ventral

striatum (left [-9 6 -3; -6 9 0], t = 6.10; right [6 6 -3], t = 5.16), bilateral putamen

(left [-12 9 -6], t = 5.67; right [15 9 -6], t = 6.39), and caudate (left [-6 6 6], t = 5.27)

showed a greater BOLD response to gain as compared to loss outcomes (Delgado et

al. 2003; Wrase et al. 2007). Regions within the inferior frontal gyrus (right [36 27

27], t = 5.25), medial prefrontal and anterior cingulate (left [0 33 9], t = 5.50; right

[12 39 21], t = 5.75), and inferior parietal (left [-51 -54 51], t = 6.33; right [51 -54

48], t = 5.65) displayed similar reward-related signals. Additionally, BOLD changes

scaling both positively with the magnitude of the rewards and inversely with the

magnitude of punishments on each trial were observed in medial orbitofrontal cortex

(right [6 51 -6], t = 4.29) and caudate (right ([-3 18 0], t = 3.80) (O’Doherty et al.

2001; Delgado et al. 2003). Punishments produced greater BOLD responses than

did rewarding outcomes in precentral (left [-27 -15 69], t = 4.15; right [24 -24 72], t

= 3.80) and postcentral (right [33 -36 69], t = 4.50) gyri. No voxels demonstrated

activity positively correlated with the magnitude of punishment.

3.4 Discussion

To determine which aspects of an action’s reward contingencies appertain to action

planning, human subjects were scanned while performing a motor planning task with

monetary consequences, contingent on task performance. Importantly, task demands

were of sufficient complexity to generate a range of performance levels and robustly

recruit motor planning network, leading to several novel findings. First, we found that

though subjects performed at a consistent success level throughout the experiment,
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their perceived performance was poorly correlated with their actual performance; fur-

thermore, subjective performance estimates better accounted for their attitudes to-

wards gain-loss contingencies. Secondly, our findings show robust differential BOLD

activity related to these gain-loss contingencies. As there was no evidence of be-

havioral differences between gain-loss contexts, BOLD modulation likely reflected

subjects’ evaluation of predicted monetary consequences of their actions. Specifi-

cally, our imaging findings demonstrated a dissociation within a widespread network

recruited during the task: areas primarily responding to the contextual/spatial cues,

such as subregions of the striatum, encoded the value as a function of subjects’ actual

performance. Conversely, cortical motor planning regions, most notably the poste-

rior parietal cortex, assimilated the expected absolute value of a motor plan during

the delay period. This absolute value was not predicated upon actual performance,

but rather upon subjects’ perceived performance, suggesting that subjective cognitive

biases may play a significant role in the planning of action.

Involvement of Canonical Reward Structures in Encoding Re-

ward Context

Frontostriatal reward circuitry demonstrated significant responses to the cue and

outcome epochs of the task, but showed no sustained delay period/motor planning

activity. Prior imaging studies investigating these regions do not generally employ

delay periods long enough to unambiguously disentangle neural signals generated in

these task epochs. However, the profile of orbitofrontal and striatal BOLD activity

here corresponds to single-unit investigations (Schultz et al. 2000; Kobayishi et al.

2007; Samejima et al. 2005; Hikosaka et al. 2000). In addition, regions in the striatum

and orbitofrontal cortex revealed similar reward-contingent modulation throughout

the task. During cue presentation, signal modulation paralleled the value predicted by

the cue. Both structures differentiated between rewarding and punishing outcomes,

consonant with their purported role in utilizing feedback in the control of motivated

behavior (Delgado et al. 2000; O’Doherty 2001). Our findings coherently contribute
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to the idea that frontostriatal areas may process information relevant for guiding goal-

directed action, but do not directly participate in planning and preparing movements.

Of frontostriatal structures, the caudate exhibited the most significant modula-

tion in response to the reward-predicting/spatial cue. Comparable striatal evaluation

of reward-predicting cues has been documented in human and nonhuman primates.

(Schultz et al. 2000; Kawagoe et al.1998; Cromwell et al. 2003; Apicella et al. 1991;

Gold 2003; Knutson et al. 2000; Delgado et al. 2003). The dorsal striatum, par-

ticularly the caudate, plays a critical role in establishing associations between an

(goal-directed) action and its outcome, and the current value of the outcome (Dickin-

son and Balleine 1994; Balleine and Dickinson 1998; Tricomi et al., 2004; Haruno et

al. 2004; O’Doherty et al. 2004; Hikosaka et al. 2006; Tremblay et al. 1998; Kawagoe

et al. 2001; Shidara et al. 1998), underscoring its involvement with feedback-sensitive

goal-directed actions (Haruno and Kawato 2006; Levy and Dubois 2006). However,

previous experiments that sought to elucidate factors influencing the valuation of

action have done so by manipulating predominantly stimulus-outcome associations;

and factors, such as risk, uncertainty, probability, and mean (expected) value were all

externally manipulated (e.g., varied by the experimenter). Extending these findings,

reward structures also incorporate an estimation of response completion and outcome,

the likelihood of which is governed by the subject’s performance.

Interestingly, in this paradigm where objective and subjective estimates of perfor-

mance diverged drastically, striatal computations of value mostly relied upon subjects’

objective performance. The ventral and dorsal striatum receive dense dopaminergic

innervation, which has been proposed to carry a prediction error signal (Montague

et al. 1996; Schultz 1997; O’Doherty et al. 2003). This signal, which may veridically

reflect the error between actual and predicted occurrences, might in turn be exploited

by the striatum, underlying its role in the learning of selection preferences on the basis

of obtained rewards and punishments (McClure et al. 2003, 2004; Tobler et al. 2006;

Hollerman et al. 1998).

In addition to a value-encoding population, a subset of voxels in the dorsal stria-

tum, though not exhibiting significant responses to the cue presentation irrespective
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of reward context, showed significant absolute-value-related modulation during this

cue period. Tonically active striatal neurons, which respond to both positive and

negative predictive cues but not neutral stimuli (Ravel et al. 2003), could conceiv-

ably account for our observed BOLD signal reflecting absolute value modulation but

no main cue effect. Furthermore, voxels demonstrating absolute-value-related BOLD

activity tended to cluster more dorsolaterally in the caudate than those showing value

modulation (see Supp Tables 3.S1 & 3.S2).

Anatomical examinations of basal ganglia connectivity expose several parallel

corticostriatal subloops subserving different functions (Nakano 2000; Selemon and

Goldman-Rakic 1988): Ventromedial striatal areas, to which more limbic roles have

been ascribed, receive projections from orbitofrontal and anterior cingulate cortices

(Selemon and Goldman-Rakic 1988); conversely, afferents from association cortices,

including dorsolateral prefrontal and posterior parietal cortex, terminate in more dor-

solateral regions of the striatum. In this study, orbitofrontal cortex activity resembled

that of the ventromedial striatum, whereas more central and dorsolateral areas of the

caudate displayed modulation similar to that of the motor-planning network. Our

data thus poses the question of whether distinct basal ganglia-cortical loops differen-

tially process and utilize reward context-related information in order to bias cortical

action planning.

Role of Motor Planning Regions in Encoding Action Out-

comes

Neural correlates of action planning that may be subject to reward modulation were

recently delineated by us in separate studies (see Chapter 2). The delayed-response

task variants employed in those studies elucidated a frontoparietal network, includ-

ing SPL, SMA, and PMd, with substantial delay-period activity. Control conditions

ensured that delay-period activity in these areas could not be explicated solely by con-

current processes such as visuospatial attention or working memory. These regions—

most significantly SPL—showed greatest activity in conditions requiring that spatial
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cues be encoded with respect to a motor plan: either as targets to be acquired or to

be avoided.

In the current investigation, these neural substrates of action planning displayed

modulation of delay-period activity due to gain-loss consequences. Cortical BOLD

patterns insinuate cognitively modulated absolute value representations, speaking to

differential involvement of this frontoparietal network in the representation of pre-

dicted action outcomes as compared to that of putative reward structures. Our

results reveal that, throughout motor-planning regions of interest, signal amplitudes

for trials in which actions could either endow high gains or high losses surpassed those

in more neutral trials; the high-gain/low-loss (highest valued) context stimulated the

most activity in subjects who believed themselves more likely to succeed, whereas the

low-gain/high-loss (lowest valued) context produced the greatest response in subjects

who believed themselves more likely to fail.

Action Planning in Posterior Parietal Cortex

Clusters throughout the superior parietal lobule exhibited the most significant de-

lay period activity, consistent with our previous work, and also best exemplified

context-dependent modulation of this activity. These clusters—in particular those

most significantly demonstrating this modulation (independent of the main delay

period)—closely correspond to areas in PPC localized as a putatiave human homolog

of the parietal reach region (PRR) (Glidden et al., submitted). Similarly, recordings

in the macaque have shown that, before the monkey performs a reach, PRR demon-

strates activity related to expected value of the outcome (Musallam et al. 2004).

These findings in PPR may speak to a general role of PPC in encoding expected

outcomes of actions as a facet of action plans. Accordingly, a plethora of monkey

electrophysiology studies have examined how expected reward influences neural ac-

tivity in PPC, with a particular focus on visuo-oculomotor behavior. Firing rates

in LIP, the region of PCC thought particularly devoted to the representation of eye

movements, reflect behaviorally relevant information in saccadic paradigms probing

target detection, expected value, relative utility, and internal choices (Shadlen and
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Newsome 1996; Platt and Glimcher 1999; Coe et al. 2002). In demonstrating and

characterizing outcome-related modulation in human PPC, our data augments these

previous findings, and extends their interpretation by considering PPC responses to

penalties in combination with rewards.

Dorsal Premotor Cortex Activity in Delayed-Response Tasks

Another region traditionally implicated in cognitive aspects of action planning and

preparation is the dorsal premotor cortex (PMd). In the macaque premotor area, the

question of value versus motivation encoding has been investigated through single-

cell recordings (Roesch and Olson 2004). In this decision-making study, monkeys

made saccades to indicate their choice between targets yielding either a punishment

or a fluid reward. Neurons in premotor cortex fired robustly in anticipation of both

large rewards and punishments, a finding deemed reflective of ‘motivation.’ The pre-

dictions of motivation as put forth by those authors would coincide with those of

absolute value and stakes/risk as defined in our experimental framework. Given this

correspondence, human dorsal premotor areas manifested the same trend (here, ab-

solute value), albeit not significantly. In previous recordings of macaques performing

multiple movements, premotor neurons fired less robustly when the monkey made

memorized sequential button presses than when he made the same number of visu-

ally guided independent button presses (Tanji 2001). The task design used in this

study, involving sequential memorized ‘reaches’, thus may not optimally drive pre-

motor areas; given an alternative motor paradigm, greater activity and modulation

may be revealed in PMd.

Action Planning: Attention versus Reward Modulation

As objects or events that carry rewarding and punitive consequences are behaviorally

salient, the possibility that reward-related modulation may develop as an epiphe-

nomenon of attention has been raised. As both high-gain and high-loss contexts

induce activity in frontal and parietal regions, a possible explicative role of atten-

tion or arousal cannot be entirely ruled out (Maunsell 2004; Bendiksby and Platt
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2006). Certain features of this experiment, however, argue against attention as solely

accountable. Cognitive modulation, dependent on higher-order beliefs and expecta-

tions, render a simple form of attention linking objects or features to reward unlikely.

Furthermore, all subjects received instructions to perform maximally on all trials.

According to post-experimental surveys, subjects claimed to have followed directions,

working to the best of their abilities irrespective of the gain-loss context. Supporting

this claim, no subject showed significant differences in accuracy across context/trial

types. Given the level of task difficulty, presumably subjects deployed full and compa-

rable attentional resources in all trials, reaching a ceiling of performance. Outcome-

related modulation therefore more likely corresponds to actual valuation of the action

plan rather than attention or motor variables.

The Influence of Subjective Biases on Motor Planning Activity

An added dimension in the exposition of motor planning activity stems from the

unexpected impact exerted by subjects’ perceived performance upon delay-period

BOLD signals. In this study, subjects’ ‘conception of acts, outcomes and contin-

gencies’ (Tversky and Kahneman 1981) deviated from objective likelihood of out-

comes. The greater importance of perceived as opposed to actual performance, in

explicating both subjective attitudes and neural data, attests to a strong framing

effect. That attitudes and beliefs about the likelihood of outcomes affect behavior

or decision-making is not surprising. Psychologists have long posited that humans

exploit certain heuristics or simplifying beliefs under conditions when available infor-

mation is incomplete or overly complex (Tversky and Kahneman 1974). However, in

our experimental scenario, variability in outcomes stems from subjects’ abilities and

all information necessary to track performance is provided. Nonetheless, our results

suggest that motor-planning regions seem more susceptible to subjective beliefs than

areas primarily engaged with appraising reward-predicting cues or feedback.
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Implications for Response Selection

Collectively taken, lesion, electrophysiology, and imaging studies highlight the func-

tion of PPC in integrating relevant, non-sensory information with sensory- and movement-

specific representations, asserting its role in decision making related to action. More-

over, recent studies advocate PPC’s capacity to simultaneously encode competing

motor plans (Lindner A., Kagan I., Iyer A. & Andersen, R.A. 2008 Prospective cod-

ing of alternative actions in human Parietal and Premotor cortex. 6th FENS Forum of

European Neuroscience). Incorporating expected consequences into these action rep-

resentations renders PPC a suitable substrate for response selection. In this context,

the absolute value linked to performing an action may constitute the most pertinent

determinant when choosing among response options.

Expectations about outcomes, derived from generalizations of precedent predictive

relationships, are especially relevant for resolving a current course of action. Cognitive

biases can distort these expectations or generalizations; if they thereby also distort

activity in those regions encoding action representations, they likely contribute to

suboptimal response selection. It may form one of the ways in which people deviate

from rationality in their goal-directed behaviors (Kahneman et al. 1982; Gilovich et

al. 2002), taking action that is contrary to logic or self-interest.

3.5 Experimental Procedures

Subjects

Seventeen subjects (7 males, 10 females), ranging from 17–27 years old, participated in

the experiment. All subjects were right-handed and exhibited normal or corrected-to-

normal visual acuity. Participants provided informed consent in accordance with the

Caltech Institutional Review Board guidelines. Subjects received a $15 recompense

for completing all training and scanning, in addition to their earnings during the

experiment.
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Experimental Setup and Behavior

Subjects lay supine on the scanner bed and viewed the task backprojected onto a

mirror, attached to the headcoil, subtending 21.6o visual angle. Subjects positioned a

fiber optic trackball (Current Designs, Pennsylvania) upon their stomach, holding the

device in place with their right hand and adjusting exact placement for comfort. All

subjects used their right index finger to make ‘finger reaches’, manipulating the track-

ball to correspondingly move the cursor on the screen. These trackball movements

were recorded, and analyzed on-line in MATLAB.

The experimental task required subjects to dissociate arm and eye movements,

demanding central visual fixation throughout each trial (subjects could make eye

movements during the intertrial interval). An infrared eye camera (Resonance Tech-

nologies, California) placed inside the headcoil monitored eye movements during all

scanning sessions. Recorded eye behavior (ViewPoint Software, Arrington Research,

Arizona) was then analyzed offline in MATLAB.

Experimental Tasks

Fig. 3.1A depicts in detail the task structure and timing. Each trial began with an

initial fixation period (approximately 15s, jittered between 14 and 16 seconds). The

gains and the losses were then presented, above and below the fixation point, respec-

tively, for 1500ms. Next, the spatial cues were presented (1200ms). Nine squares,

radially equidistant from the fixation spot, were presented. To prevent subjects from

memorizing a set number of locations, two configurations of squares, rotated 20o with

respect to one another, were interleaved across trials. Of these nine squares, five

were ‘hollow’ (containing an inner black square), denoting them as targets for the

upcoming finger reaches. In addition, these five square targets varied in size, specify-

ing the order (from smallest to largest) in which the subjects should move to them.

A visual mask (80 randomly placed white squares) displayed for 1000ms erased any

iconic/visual memory of the targets. The ensuing delay period, during which sub-

jects were reminded of the gains and losses for the trial, lasted approximately 15
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seconds, again jittered between 14 and 16, complementary to the baseline fixation

duration to ensure all trials were of equal length. Penultimately, the response screen

appeared, serving as the ‘go’ signal, with nine identical squares in the same locations

as the squares during presentation of the spatial cues/targets. A ring cursor was

also shown, centered on the fixation point. At this time, subjects moved the cursor

in a center-out fashion (from center to target, back to center, to next target, etc)

sequentially to the five targets, in the order previously instructed, and were allowed

10 seconds in which to complete the task. Finally, subjects received feedback: the

gain amount if they successfully acquired all targets; the loss amount otherwise.

This experiment utilized five gain-loss contexts: +$0/-$0, +$1/-$1, +$1/-$5,

+$5/-$1, and +$5/-$5. Each gain-loss context trial type occurred 6 times per run,

producing a total of 30 trials per run; the order of trial types was pseudorandomized

and counterbalanced. Subjects trained extensively, performing 5 practice runs outside

the scanner and 1 practice run within the scanner. They then completed 2 runs dur-

ing scanning. To promote constant performance throughout the task, subjects were

additionally instructed to ‘do their best’ on all trials, irrespective of the gain-loss

context. Given this instruction and exhaustive practice, individual subjects’ perfor-

mance on the task during scanning remained stable (see Results). Each subject’s

mean performance is therefore taken as their fixed probability of success.

These contexts permitted predictions of neural activity in brain areas encoding pa-

rameters/statistics related to the action’s expected consequences. An action’s value,

defined here as performance (likelihood of success) times the gains plus likelihood of

failure (or 1-performance) multiplied by the losses—value = (performance×gains)+

((1 − performance) × losses)—stipulates a particular ordering of contexts. Across

all levels of performance, the greatest modulation would be observed in the +$5/-$1

context, the lowest in the +$1/-$5 context, and the order of the remaining conditions

dictated by the performance level (Fig. 3.1B). Action ‘performance-weighted’ abso-

lute value, in the framework of this experiment,is tantamount to the absolute value of

the action’s value, thus yielding disparate context-dependent modulation depending

on performance—absolutevalue = |(performance× gains) + ((1− performance)×



97

losses)|. For good performance levels (above 50%), +$5/-$1 produces the largest

signal amplitude; for poor performance levels (below 50%), +$1/-$5 generates the

largest signal amplitude; at all performance levels, neutral contexts (+$0/-$0 and

+$1/-$1) engender the smallest amplitude (Fig. 3.1D). Finally, the ‘stakes’ associ-

ated with an action could be expressed as the probability-weighted sum of the absolute

value of each outcome. Across all performance levels, an area responsive to this pa-

rameter would show the largest signal increase under the +$5/-$5 context, and the

smallest signal under the more neutral contexts +$1/-$1 and +$0/-$0 (Fig. 3.1c).

stakes = ((performance)× |gains|) + ((1− performance)× |losses|).

Immediately after the scanning session and before ascertaining any information

about their actual performance or net winnings, subjects answered a questionnaire:

(1) whether they paid attention to the gain-loss contexts; (2) whether they had per-

formed well on the task (net made money); performed poorly (net lost money); or

roughly broke even (approximately 50% performance). Moreover, they ranked the

five gain-loss contexts with respect to preference (under which context trial types

they preferred working, from most to least) and motivation (under which context

trial types they wanted to perform well, from most to least). Including all training

and scanning sessions, subjects had viewed each of the gain-loss contexts 42 times.

Thus, while meticulous calibration procedures were not utilized to determine sub-

jects’ attitudes (such as preference), we believe the subjects’ extreme familiarity with

the limited number of gain-loss scenarios was adequate for an ordinal ranking of those

few contexts.

Functional and Anatomical Imaging

Echo-planar functional images were acquired in a Siemens 3 Tesla Trio scanner at

Caltech’s Brain Imaging Center, using an 8-channel head coil. The scan volume

provided full coverage of cortical and (subcortical) structures in 32 axial slices, though

it did not cover the cerebellum in its entirety (slice thickness=3.5mm, gap=0mm, in-

plane voxel size=3×3mm, TR=2000ms, TE=30ms, flip angle=90o, FOV=192×192,

resolution=64×64). Subjects completed 2 runs, each 1487s in duration. Anatomical
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images were acquired using a T1-weighted MP-RAGE sequence with the same head

coil used for functional image collection. The whole brain volume was scanned in 176

slices (slice thickness=1mm, gap=0mm, in-plane voxel size=1×1mm, TR=1500ms,

TE=3.05ms, FOV=256×256, resolution=256×256).

Data Preprocessing and Analysis

Functional data preprocessing, conducted through SPM5 (Wellcome Department of

Imaging Neuroscience, Institute of Neurology, London, UK), included slice scan time

correction, 3D motion correction, and linear trend removal. Mean EPI images were

coregistered to whole-brain high resolution T1-weighted structural image (1×1×1mm)

acquired for all subjects. Anatomical images were spatially normalized to a standard

T1 template; the same normalization parameters were then applied to all functional

images. All EPIs received additional intensity normalization, spatial smoothing (7mm

Gaussian kernel), and temporal high-pass filtering (0.005Hz).

After data preprocessing, two whole-brain, across-subject analyses were performed:

(1) ‘ROI’, delimiting brain regions of interest for each epoch of the task, allowing char-

acterization of BOLD modulation due to gain-loss contexts in those regions; and (2)

‘hypothesis-driven’, exposing all regions that display a predicted modulation due to

gain-loss contexts. The ROI-based approach defined motor planning areas on the

basis of the linear combination of all delay period covariates, i.e., under all gain-loss

contexts. Areas involved in cue processing were delineated similarly (significant pos-

itive beta value for all cue predictors). The ‘ROI’ analysis utilized a general linear

model (GLM, Friston et al 1995) incorporating 21 total predictors of interest: the cue

period for each gain-loss context (5 cue predictors); delay period for each gain-loss

context (5 delay predictors); response period for each gain-loss context (5 response

predictors); and outcome period for each magnitude of reward or punishment (6 out-

come predictors: +$5, -$5, +$1, -$1, +$0, -$0). These boxcar predictors were con-

volved with the canonical hemodynamic response function. Statistical comparisons

of the BOLD activations related to these different events, based on a group random

effects with a statistic threshold at p(FWE) ¡ 0.001, determined the relevant regions
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of interest (ROIs). From these ROIs, beta values and BOLD signal timecourses were

extracted from each subject; for both measures, the means across subjects are pre-

sented. This method thus conservatively highlighted regions manifesting a consistent

deviation from baseline during the delay (or cue) period without biases imposed by

any predetermined hypothesis as to the modulation expected during this task epoch.

In contrast, the second, hypothesis-driven method is predicated upon explicit sup-

positions as to BOLD signal modulation. This analysis encompassed a distinct GLM

for each relevant reward-related statistic or parameter (e.g., value, stakes, absolute

value, etc.). These GLMs employed only four main predictors, one for each epoch

of the task: cue, delay, response, and outcome. Additional predictors for the first

three epochs modeled the modulation due to each trial’s gain-loss context, orthog-

onalized with respect to the main epoch predictor. A final predictor also reflected

modulation of the outcome epoch due to magnitude and valence of feedback. Ta-

ble 3.1 contains the order across gain-loss contexts employed for each parameter of

interest. For value, absolute value, and stakes, different orders for good and bad

performance were utilized; these orderings were drawn from averaging over 50–100%

performance (good) or 0–50% performance levels (poor). Thus, in ‘objective perfor-

mance’ models, subjects were assigned ‘good’ parametric modulation orders if they

net won money; and ‘poor’ otherwise. Similarly, in ‘subjective performance’ mod-

els, subjects were assigned ‘good’ parametric modulation orders if they believed they

had net won money; and ‘poor’ otherwise. For objective performance, an additional

GLM, using ordering of contexts determined by each subject’s actual performance,

was also run. However, since subjective estimates can most conservatively be grouped

as ‘above 50%’ or ‘below 50%’, all results reported here use this binary grouping for

both objective and subjective performance models, permitting better comparison be-

tween subjects’ actual and perceived performances. Models for ‘gains’ and ‘losses’

were also conducted to capture valence-selective modulations, addressing the possi-

bility that separate systems respond to rewards and punishments. Additional models

reflected (1) subjects’ motivation ratings, (2) subjects’ preference ratings, and (3)

‘variance’ in the outcomes. Finally, pairwise interactions of all aforementioned fac-
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Value Absolute Value Stakes Gains Losses
Good Bad Good Bad Good Bad

+$5/-$1 1 1 1 3 2 2 1 2
+$5/-$5 2 4 2 2 1 1 1 1
+$1/-$5 5 5 3 1 2 2 2 1
+$1/-$1 3 3 4 4 3 3 2 2
+$0/-$0 4 2 5 5 4 3 3 3

Table 3.1: Ordering of Gain-Loss Contexts for Parametric Modulation

tors were also modeled, to see if they better accounted for observed neural activity.

All orders were mean-corrected for use as hypothesized parametric modulation. Only

those models significantly accounting for BOLD activation patterns are discussed.

To account for observed BOLD modulations that may be ascribed to behavior,

performance-related regressors were included in all models, capturing (1) success (1

for successful trial completion, 0 otherwise), (2) reaction time latencies for each trial,

and (3) total time required for motor response on each trial.

These predictors were convolved with the canonical hemodynamic response func-

tion. A group random effects analysis, with a statistic threshold at p(FDR)<0.05,

disclosed voxels whose BOLD activations during the cue and delay epochs signifi-

cantly correlated with these parametric modulations, independent of a main effect

(significant beta value) for the task epoch.
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3.S1 Supplemental Data
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Figure 3.S1:

Dorsal striatal BOLD signal timecourses for Subjective Good subjects (left panel) and Sub-

jective Bad subjects (right panel). The timecourse over the entire trial duration is presented, with

black line indicating onset of gain-loss contest cue presentation.
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Figure 3.S2:

Orbitofrontal cortex (OFC) BOLD signal timecourse. Upper graph depicts timecourse over

the entire trial duration; below is the feedback epoch (from -4sec to +10sec). Black line at time 0

corresponds to onset of feedback epoch.
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Region Name MNI Coordinates Peak t-
Stat

x y z
Cue ROIs, with significant parametric modulation:
Value, Objective Performance
Thalamus L -15 -12 18 4.36

R 15 -27 12 3.94
Caudate L -3 15 0 4.70

R 3 15 6 4.40
Gains
Precuneus L 0 -75 39 3.83

R 15 -66 24 4.14
Delay ROIs, with significant parametric modulation:
Absolute Value, Subjective Performance
Supplementary Motor
Area/Pre-SMA

0 6 54 3.93

Precuneus L -6 -69 54 3.85
R 9 -69 54 5.40

Superior Parietal L -18 -72 54 4.82
Insula R 33 21 3 4.47
Superior Occipital L -27 -75 36 3.77

R 27 -78 43 4.05
Inferior Parietal R 45 -45 45 4.81

Table 3.S1: All listed regions are significant (voxel p(FWE)<0.01, corrected for spatial
extent p<0.05) for the main task epoch (either cue or delay period). In addition, they
exhibit significant (voxel p(FDR)<0.05, corrected for spatial extent p<0.05) parametric
modulation for that task epoch. Regions are listed under the model (parametric modulation
regressor) for which they reach significance; t-statistics are for the parametric modulation
regressor.
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Region Name MNI Coordinates Peak t-
Stat

x y z
Cue: Value, Objective Performance
Caudate L -9 18 0 4.59

R 6 15 0 5.20
Thalamus L -12 -18 18 6.12

R 9 -6 18 5.38
Hippocampus R 33 -39 6 5.36
Calcarine L -27 -63 18 6.07

R 33 -60 12 5.99
Inferior Frontal gyrus L -45 15 33 5.63
Cue: Value, Subjective Performance
No clusters show a significant modulation of the cue epoch
consistent with value of gain-loss contexts, as derived
from estimates of subjective performance.
Cue: Absolute Value, Objective Performance
No clusters show a significant modulation of the cue epoch
consistent with absolute value of gain-loss contexts, as derived
from estimates of objective performance.
Cue: Absolute Value, Subjective Performance
Caudate L -9 21 0 3.92

R 18 21 12 5.03
21 6 18 4.75
21 9 21 4.70
18 24 0 4.15

Thalamus R 12 -15 18 5.61
Cuneus L -6 -90 24 6.63
Inferior Parietal L -27 -60 42 4.95
Middle Occipital L 30 -72 24 4.93
Cue: Stakes
Calcarine L -9 -72 15 4.88
Cue: Gains
Precuneus L -9 -42 3 5.34
Cue: Losses
No clusters show a significant modulation of the cue epoch
consistent with potential losses of the gain-loss context.

Table 3.S2: All listed regions are significant (voxel p(FDR)<0.05, corrected for spatial
extent p<0.05) for parametric modulation regressor of the cue epoch.
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Region Name MNI Coordinates Peak t-
Stat

x y z
Delay: Value, Objective Performance
No clusters show a significant modulation of the delay epoch
consistent with value of gain-loss contexts, as derived
from estimates of subjective performance.
Delay: Value, Subjective Performance
No clusters show a significant modulation of the delay epoch
consistent with value of gain-loss contexts, as derived
from estimates of subjective performance.
Delay: Absolute Value, Objective Performance
No clusters show a significant modulation of the delay epoch
consistent with absolute value of gain-loss contexts, as derived
from estimates of subjective performance.
Delay: Absolute Value, Subjective Performance
Superior Parietal L -15 -72 54 5.13

R 12 -75 51 7.72
Precuneus L -3 -75 48 4.70

R 12 -75 54 6.89
Insula R 30 24 3 5.31
Inferior Parietal R 45 -45 39 5.22
Supplementary Motor
Area/Pre-SMA

6 6 54 4.99

Delay: Stakes
No clusters show a significant modulation of the delay epoch
consistent with stakes of gain-loss contexts, as derived
Delay: Gains
Frontal Operculum R 48 6 24 5.02
Precentral R 54 0 30 4.21
Delay: Losses
No clusters show a significant modulation of the delay epoch
consistent with potential loss of gain-loss contexts.

Table 3.S3: All listed regions are significant (voxel p(FDR)<0.05, corrected for spatial
extent p<0.05) for parametric modulation regressor of the delay epoch.
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Region Name MNI Coordinates Peak t-
Stat

x y z
Outcome: Reward > Punishment
Ventral Striatum L -9 6 -3 6.10

-6 9 0 5.75
R 6 6 -3 5.16

Caudate L -6 6 6 5.27
Putamen L -12 9 -6 5.67

R 15 9 -6 6.39
Insula-Caudal Orbitofrontal L -36 18 -15 7.22
Insula L -30 18 6 4.95
Inferior Parietal L -51 -54 51 6.33

R 51 -54 48 5.65
Anterior Cingulate L 0 33 9 5.50

R 12 39 21 5.75
Inferior Frontal Gyrus R 36 27 27 5.25
Orbitofrontal L 0 48 -6 6.46
Outcome: Large Reward($5)> Small Reward($1)>
Small Punishment(-$1)>Large Punishment(-$5)
Middle Frontal Gyrus L -48 12 45 5.67
Inferior Frontal Gyrus R 30 33 0 4.47
Orbitofrontal R 6 51 -6 4.29
Caudate R -3 18 0 3.80
Outcome: Punishment>Reward
Precentral Gyrus L -27 -15 69 4.16

R 24 -24 72 3.80
Postcentral Gyrus R 33 -36 69 4.50
Outcome: Large Punishment(-$5)>Small Punishment(-$1)>
Small Reward($1)>Large Reward($5)
No clusters show a significant modulation of the outcome
epoch that scales positively with magnitude of punishment.

Table 3.S4: All listed regions are significant (voxel p(unc)<0.001, corrected for spatial extent
p<0.05) for parametric modulation regressor of the outcome epoch.
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Chapter 4

BOLD/fMRI Delay Period Signals
in Monkeys and Humans: Spatial-
and Non-Spatial Specific Signals

4.1 Summary

Delayed-response paradigms are used extensively in monkey electrophysiology and hu-

man fMRI studies to dissociate visual and motor events and to investigate working

memory, attention, and movement planning. However the exact relationship between

these studies is not clear due to differences in species, techniques, and trial dura-

tions. Here we directly compare fMRI activation in monkeys and humans with the

same tasks: delayed visually and memory-guided saccades. Extending previous mon-

key fMRI studies that utilized block design, we developed event-related analysis of

BOLD timecourses to delineate responses from different trial epochs. Delay-period

activity in discrete frontal, parietal, and temporal areas revealed two types of cognitive

signals: spatially-specific, strongly contralateral cue and memory/planning activity,

and non-specific movement preparation. Consistent patterns were found in human

functional homologs but contralaterality was less pronounced. These results elucidate

BOLD activity distribution, temporal dynamics, and tuning differences in human and

macaque cortical circuits subserving oculomotor goal-directed actions.
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4.2 Introduction

The maintenance and processing of information no longer available from sensory in-

put is important for a diverse array of activities involving the transformation of spa-

tiotemporal cues into goal-directed actions. To investigate these processes, delayed

or memory response paradigms have been used extensively in monkey electrophysiol-

ogy(Bruce and Goldberg 1985; Gnadt and Andersen 1988; Hikosaka and Wurtz 1983;

Funahashi et al. 1989; Mazzoni et al. 1996; Snyder et al. 1997), and more recently in

human functional magnetic resonance imaging studies (Brown et al. 2004; Connolly et

al. 2003, 2005; Curtis et al. 2004; Curtis and D’Esposito 2006; Courtney et al. 1998;

Medendorp et al. 2005, 2006; Rowe et al. 2000; Schluppeck et al. 2006). In particu-

lar, memory-guided saccade or reach tasks were utilized to dissociate between visual,

mnemonic, and motor response phases, and to investigate mechanisms of short-term

memory, attention, and movement planning. Collectively taken, the results obtained

from both bodies of studies concur: brain activations in human imaging studies cor-

respond to putative homologs of monkey frontal and parietal fields, with timecourses

typically consisting of relatively transient responses to the cue and motors events and

persistent delay activity between them.

However, the exact relationship between human imaging and monkey electrophys-

iological studies of delayed responses is ambiguous due to differences in techniques and

time-scales. First, the link between hemodynamic blood-oxygenation-level-dependent

(BOLD) fMRI signals measured in human experiments and the firing of single neu-

rons recorded in monkeys is far from being fully explicated, even in primary sensory

areas of anaesthetized animals (Kayser et al. 2004; Logothetis et al. 2001). Second,

most human imaging experiments utilize much longer trials (tens of seconds) than

monkey electrophysiology experiments (usually less than 5 s). For example, a typical

memory delay ranges between 10 and 15 s in human fMRI as compared to 0.5–2 s in

monkey experiments. Therefore, the dynamics of underlying neural signals may vary

between these conditions. Additionally, the difference in trial durations and possibly

other cognitive factors may result in dissimilar mnemonic and preparatory strategies
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employed by the two species. Third, different neuronal populations in monkey frontal

and parietal areas exhibit disparate levels of cue, motor, and delay activity; how the

net activity of these subpopulations would translate into BOLD ‘activation’ in mon-

key fMRI experiments similar to human fMRI studies is unknown. The comparison of

fMRI activation patterns in monkeys and humans would greatly facilitate a search for

functional homologies and corresponding network architecture. Finally, there seems

to be a discrepancy between results obtained with human imaging and monkey elec-

trophysiology. Recent human fMRI reports showed contralateral tuning of cue and

memory, but not saccade, responses in the parietal and frontal cortex (Schluppeck et

al. 2006; Srimal and Curtis 2007). Contralaterality in the human brain seems less

profound than would be expected from monkey single-cell recordings, leaving open

the question of whether this discrepancy owes more to inter-species or methodolog-

ical differences. This is important because hemispheric contralaterality constitutes

a major organizational principle of space representation. Hence, analagous monkey

fMRI studies are necessary in order to provide a solid link between large bodies of

data accumulated with the two methods, and to better interpret BOLD activity in

terms of neuronal responses.

Several groups have recently applied fMRI in alert monkeys, predominantly fo-

cusing on various aspects of visual perception during passive fixation (e.g., Denys

et al. 2004; Dubowitz et al. 1998, 2001; Nelissen et al. 2006; Pinsk et al. 2005;

Sawamura et al. 2005; Tsao et al. 2003; 2006; Vanduffel et al. 2002). In addition,

two previous monkey fMRI studies mapped saccade-related activation patterns us-

ing blocks of closely-spaced visually guided saccades (Baker et al. 2005; Koyama et

al. 2004), demonstrating a distributed network of frontal-parietal-occipital cortical

structures associated with saccadic eye movements. However, a monkey fMRI study

of delayed-response tasks, potentially comparable to electrophysiological and human

event-related imaging experiments and that hence addresses the aforementioned is-

sues, has not yet been attempted.

We therefore sought to provide the first direct comparison between monkeys and

humans performing the same delayed visually and memory-guided saccade response
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tasks, using a high-field 4.7 T vertical MRI scanner for monkeys and a 3 T scanner

for humans. Extending previous monkey fMRI studies that utilized block design,

we developed and applied an event-related approach similar to human imaging and

monkey electrophysiological studies. This approach enabled the extraction of BOLD

signal timecourses and the delineation of responses from different epochs within the

task sequence—initial fixation, visual cue, delay period, saccade execution, reward ex-

pectation, and acquisition. In this study, we focused upon activation patterns during

delay/memory periods that precede visually and memory-guided eye movements, and

systematically analyzed the spatial tuning and relative contribution of each response

component across many cortical areas. In both species, we found spatially specific

contralateral signals that reflect maintenance and retrieval of working memory and/or

specific motor plan, as well as non-specific preparatory signals when no information

about upcoming movement direction was available. In addition to frontal and pari-

etal areas traditionally implicated in delayed oculomotor tasks, regions situated in

superior temporal sulcus showed a similar signal profile. We show that contralateral-

ity tuning is stronger in monkeys than in humans, and that dynamics of the BOLD

response differs between species

4.3 Results

Two monkeys and 11 human subjects were scanned with BOLD-sensitive functional

MRI sequences while they performed two oculomotor tasks under real-time behavioral

control: the memory-guided saccade task (memory trials) and the deferred visually

guided saccade task (direct trials, Fig. 4.1A, B). Memory and direct trials, and differ-

ent saccade directions were randomly interleaved. A detailed account of the subjects’

training, behavior and task performance is given in Supplemental Data. An event-

related design with long and sometimes variable delays separated contributions from

different intervals in the trial and distinguished between rightward and leftward sac-

cade directions (Fig. 4.1C). Thus event-based spatial statistical activation maps and

BOLD timecourses could be extracted from the actual EPI volume data.
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Oculomotor tasks, behavior, and event-related design. (A) Timeline of events in memory-

guided (memory) and deferred visually-guided (direct) saccade trials. Gray shaded area denotes

memory delay period in memory trials and corresponding fixation delay period in direct trials.

In memory trials, subjects remember the location of the cue and prepare a specific movement in

advance. In direct trials, subjects can only mobilize non-specific readiness to make a saccade. Aside

from visual effects of the cue, the difference between memory and direct trials would reflect these

cognitive processes. Note that subjects were allowed to move their eyes during the wait for reward

and intertrial interval (ITI) periods, causing strong activation in visual and oculomotor areas, evident

in the first part of the baseline fixation (see Figs. 4.4, 4.5). (B) Example of eye position and trial

event recordings in one (memory) trial in monkeys. Gray shaded area denotes the memory delay

period. Upper panel: eye position. Saccades are denoted by inverted triangles above eye position

traces. Note two corrective saccades that followed instructed the memory saccade, a characteristic

behavior in both monkeys (see eye movement recordings and behavior). Lower panel: trial states,

triggers from scanner (repetition time TR 1 s for each volume), and trigger for the liquid reward

dispenser. Because of very long trials and thus a relatively small number of trials (∼200/session),

each reward was large: ∼1 ml. (C) Model predictors for the GLM computation in monkeys after

convolution with the monkey HRF (see D). Memory trial predictors are shown. Direct trials had

fixation delay and saccade, but no cue, predictors. Different directions were modeled with separate

predictors. Only predictors of interest for the current study are shown. Human predictors had the

same structure, but were convolved with a standard Boynton HRF (see D). (D) Standard single

gamma Boynton HRF function used for monkeys: δ=1, τ=1, n=3 (solid line), and for humans:

δ=2.5, τ=1.25, n=3 (dashed line). The monkey HRF rises and returns to the baseline faster than

the human HRF time to peak 3 and 5 s, respectively. Different HRFs (e.g., a difference of 2 gamma

functions, that includes stimulus undershoot) were tried, which resulted in very similar activation

maps.
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Hypothetically, these time-courses should approximate the dynamics of the un-

derlying neuronal population activity. This study primarily concerns responses in

cortical areas (Fig. 4.2A), first presenting results from monkey experiments and then

from analogous human experiments.

Spatial Distribution of Cue, Delay, and Saccade Activity

Fig. 4.2B shows main cortical regions activated by the visual cue in memory trials

(no cue was present in direct trials). To demonstrate the consistency between two

monkeys, activation maps are separately illustrated for each subject. Cue activation

maps overlapped significantly with a more extensive network of saccade-activated

areas (Fig. 4.2C). Regions showing memory delay activation comprised a subset of

cue and saccade responsive areas (Fig. 4.2D).

Saccade activation maps resembled those of earlier studies using block design ex-

periments (which compared blocks of continuous fixation versus series of saccades;

Baker et al. 2006; Koyama et al. 2004), confirming the ability to elicit robust activa-

tion patterns with the event-related approach of this study. These maps corroborated

the activation of areas reported in the above fMRI studies during saccade execution—

namely, dorsal and ventral premotor cortex. In addition, consistent saccade activa-

tion in the medial parietal area MP (7m) and in the posterior cingulate sulcus (area

23a) was revealed, in agreement with electrophysiological reports (Dean et al. 2004;

Thier and Andersen 1998). Interestingly, areas 24b/a of the anterior cingulate sulcus

showed significant activation as well. Neurons in anterior cingulate respond during

oculomotor tasks in the context of performance monitoring, reinforcement learning,

and reward processing (Ito et al. 2003); the observed activation during repetitive and

well-learned tasks is surprising. Conceivably, after long demanding delays monkeys

more actively monitored their responses, associating correctly performed saccades

with the upcoming reward.

Many regions in FEF, SEF, anterior cingulate (preSMA/SMA/area 24c), LIP,

caudal and mid sts (MT, MST, FST, TPO), PO, and in striate and extrastriate
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visual areas were more strongly recruited by memory saccades than by direct sac-

cades (Fig. 4.5). In frontal and parietal areas, stronger activation may reflect greater

memory-related and/or performance-monitoring processing. However, in addition to

oculomotor processes underlying saccade preparation and execution, ‘saccade’ acti-

vation includes visual activation elicited by the peripheral target appearance, visual

‘motion’ stimulation during saccadic eye movement, and acquisition of the target.

Visual activation following memory saccades may differ from the direct saccade ac-

tivation since in the former case: (1) the confirmation target became visible 500 ms

after the acquisition of the remembered cue location, and (2) monkeys often made ad-

ditional corrective saccades before and following target re-appearance. Consequently,

many early visual areas showed increased activation for memory saccades. These con-

sideration thus confound the interpretation of the differences between memory and

direct saccade activation patterns.

To extract areas that differentially responded during memory as compared to

fixation delay periods, delay-period activity in memory and direct trials was collapsed

over all directions, similar to work done previously in humans (e.g., Brown et al.

2004). In order to separate the influence of the cue, delay predictors assayed for

statistical maps (for memory>fixation delay contrast) encompassed only the second

part of the delay period (see Fig. 4.1C). Using this approach, only a few small regions

showed increased activity during memory trials (Fig. 4.2D): frontal—FEF, dlPFC,

SEF, and area 24c in anterior cis; posterior parietal—LIP. In monkey R several areas

in sts, including putative area TPO (or STP) located in the dorsal bank of mid sts,

also displayed increased memory activation (in monkey G, whose brain was longer

in the vertical dorsal-ventral dimension, the functional slice package did not extend

ventrally enough to cover the comparable sts region, and neighboring areas did not

show this effect, explained in more detail later).
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Figure 4.2:
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Spatial distribution of cue, memory, and saccade activity. (A) Schematic of functional slice

package positioning (20 mm, 10x2 mm adjacent slices, 15 angle) used in both monkeys, overlaid on

the sagittal plane of the pilot localizer scan. The same slice package is shown on the 3D reconstruction

of the brain surface (monkey G). Major sulci of interest for this study are depicted: ps—principle,

as—arcuate, ips—intraparietal, sts—superior temporal. (B–D) Cortical areas that were significantly

activated using +cue, +saccade, and memory>fixation delay contrasts, shown in 3 coronal sections.

Activation sites for the cue (B) included frontal eye fields (FEF, areas 8 and 45) in as, dorsal lateral

prefrontal cortex (dlPFC) in ps, dorsal and ventral premotor cortex (PMd, area F2 and PMv,

posterior bank of lower as, areas 44 and F5), supplementary eye fields (SEF), lateral intraparietal

area (LIP) in ips, and areas MT, MST, TPO (STP according to nomenclature of Felleman and Van

Essen 1991), and Tpt in sts. Saccade activation (C), in addition to the areas listed above, also was

detected in anterior and posterior cingulate (cis, acis, and pcis), ventral intraparietal area (VIP)

and (weakly) in medial intraparietal area (MIP) in ips, area 7a in inferior parietal lobule (IPL),

area 7m in medial parietal cortex (MP; Thier and Andersen 1998), areas V3/V3A, PO and LOP

(parieto-occipital and lateral occipital parietal) located at the junction of ips and parieto-occipital

sulcus (pos) and in the fundus of pos, dorsal parietal area (DP) at the junction of ips and lus and

in extrastriate areas V2, V3/V3d, and V4 in the lunate sulcus (lus). EPI signal drop-out caused

by headcap implants cancelled the activation in operculum V1 and in some V1/V2 areas located

in the posterior bank of lus and calcarine sulcus (cas). Memory-related activation (D), without

discrimination to leftward/rightward trials, was localized in FEF and in small clusters in SEF, acis,

LIP, and TPO and Tpt in sts (sts ROIs not shown in the example slices). In monkey G this contrast

did not reach a statistical significance with multiple comparison correction, therefore uncorrected

maps are shown. (E) Map for the cue right versus left contrast for memory trials, shown on axial

sections. (F) Map for the saccade right versus left contrast (direct and memory saccades combined).

In this and all other figures, axial and coronal brain slices are shown using radiological convention

(L=left hemisphere is on the right side). In sagittal slices, left corresponds to rostral/anterior (A).

All monkey brain images are shown in AC-PC bicommissural plane coordinates (AC xyz 0,0,0: x—

left to right, y—posterior to anterior, z—ventral to dorsal). The location of the origin is denoted

by the cross-hair. The number next to each slice shows the coordinate of the section relative to

the AC origin, the number in parentheses is the position in stereotaxic coordinates, relative to the

interaural line. The color bars code significance t-value, the minimal statistical threshold is shown

below. Either Bonferroni (p) or less conservative False Discovery Rate (FDR; Genovese et al. 2002,

denoted by q) correction for multiple comparisons was employed. In (E) and (F), ‘hot’ (red-yellow)

colors denote positive activation for the rightward>leftward contrast, and ‘cold’ (blue-green) colors

- positive activation for the leftward>rightward contrast. **The reconstructed left hemisphere of

monkey G shows cortical distribution of saccade responses
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Maps for the memory delay rightward versus leftward contrast for memory trials. (A)

Localization of ROIs in the frontal cortex in ps and as (lower limb asl, upper asu). Left sequence

of coronal sections going from anterior (bottom) to posterior (top) show designated areas that

had significant contralateral memory activation: dlPFC (area 46d/v), FEF (area 8A), and PMd in

arcuate spur (‘hot’/‘cold’, map as in Fig. 4.2E,F). To the right, several sections show areas that were

active only during cue and/or saccade periods (magenta-brown map: +saccade contrast): areas 44

and 45 in asl, area 8B and PMd in asu. (B) Localization of ROIs in the posterior parietal cortex.

Location of coronal slices across ips portion containing LIP is shown by yellow cross sections on the

sagittal slice. Most posterior (caudal) LIP in the ips branches parallel to the midline was denoted

pLIP and may correspond to area CIP or PIP. Note that anterior portion of LIP (aLIP) is distinct

from AIP, which was not activated in our experiments. (C) Localization of ROIs in parieto-temporal

cortex along superior temporal sulcus (sts). Location of coronal slices along sts is shown by yellow

line sections on the sagittal slice. Areas and subdivisions (zones) are denoted according to Nelissen

et al. (2006) and Saleem and Logothetis (2007). The exact partitioning of MST area is currently

not clear (Van Essen 2004) and may depend on the functional tests used for parcellation (MSTd

and MSTl, Komatsu and Wurtz 1988; MSTc and MSTp, Boussaoud et al. 1990; MSTdp, MSTm,

and MSTl, Lewis and Van Essen 2000). MSTd occupies the anterior dorsal bank of sts. Ventral

part of MSTv, located in the floor of sts, roughly corresponds to MSTl of Komatsu and Wurtz 1988

(Tanaka et al. 1993). MT is located in the posterior ventral bank of sts. More anterior along the

sulcus, superior temporal polysensory (STP) cortex (area TPO) is situated in the dorsal bank of

sts, and further down the sulcus, the temporal-parietal area Tpt is located. In the right ips and

sts of monkey G, only a few voxels reached the minimal statistical significance (p<0.05) for the

leftward>rightward memory delay contrast. Nevertheless, the contralateral delay activity in right

LIP and TPO/Tpt was evident in ERA BOLD timecourses (Fig. 4.5).
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Figure 4.3:
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With all target directions pooled together, most activation patterns were bilat-

erally symmetric, suggesting no hemispheric lateralization of functions involved in

these tasks. Yet, large proportions of neurons in multiple oculomotor areas exhibit

contralateral directional tuning (e.g., Barash et al. 1991b; Funahashi et al. 1989). If

the same is true for the BOLD responses representing a population effect, ipsilateral

(i.e. in the left hemisphere for leftward and in the right hemisphere for rightward

trials) activity would be expected to be less than contralateral activity. To assess the

degree of spatial selectivity on a population level, we generated maps for right vs.

left comparisons for each of the three time intervals of interest: cue, memory delay,

and saccade response epochs. Most areas that exhibited cue and memory activity -

dlPFC, FEF, LIP and several clusters in sts - also showed contralateral preference in

these epochs (Fig. 4.2E - cue; Fig. 4.3 -memory). Selectivity for saccade directions

(either ipsi- or contralateral) was prominent in retinotopically organized visual areas,

and weak preference for contralateral saccades was observed in parietal and frontal

areas (Fig. 4.2F). In the next section we present in-depth analysis of spatial specificity

using time-courses extracted from these areas.

Timecourse of BOLD Activity

The activation maps for different response intervals, established in the preceding

section, suggest that the temporal distribution of BOLD activity varies between dif-

ferent areas. To examine underlying BOLD signal timecourses, event-related averages

(ERA) were computed for the two trial types and for rightward and leftward saccade

directions, resulting in 4 different curves from each functionally and anatomically de-

fined region of interest (ROI). This analysis is similar to constructing a peri-stimulus

time-histogram of neuronal firing. A typical ERA example expressed in %BOLD

change relative to the baseline (last 3 s of the initial fixation period) is shown in

Fig. 4.4A and B for the ROIs localized to the left and right FEF in as, respectively.

The high signal magnitude in all 4 curves in the first few seconds of the initial

fixation period is attributable to the activation caused by saccades and accompanying
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visual stimulation in the preceding ITI. This component could be high or low, de-

pending on area’s response properties (Fig. 4.5). As the trial advances while central

fixation is maintained, the BOLD signal gradually returns to the baseline. At the

time 9.8 s, the 200 ms peripheral cue is flashed in memory trials, and subsequent

memory delay (or a corresponding fixation delay in direct trials) continues for an-

other 10 s (or variable time between 6 and 12 s). Transient time-locked cue responses

typically lasted only up to 5 s, and were often separated by a trough from the rest

of delay period activity, which manifested as a separate peak or as sustained activity

in the late memory period. At time 20 s, the monkey makes an eye movement, and

corresponding saccade response appears as another transient time-locked peak of high

magnitude. This 3-component (cue-delay-saccade) response was characteristic across

many oculomotor areas active in the task, though some areas had only a 2-component

(cue-saccade) or only saccade response (Fig. 4.5). The activation peak subsequent to

saccade response corresponds to the end of target fixation and free eye movements

during reward expectation, delivery, and ITI.
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Figure 4.4:

Event-related averaging (ERA) of trial timecourses and analysis of frontal ROIs. (A)

ERA timecourses from left and right FEF and (B) combined contra-ipsilateral timecourses for bilat-

eral, left and right ROIs. The bilateral combined arrangement is used through the rest of the paper.

Colored rectangles denote corresponding intervals (cue, delay, and saccade) used for estimating mean

response amplitudes and calculating the CS index. Black dashed and solid rectangles—baseline and

late delay, respectively—denote intervals used for calculating the R index. The trough and sub-

sequent peak after the saccade response correspond to the peripheral target fixation and free eye

movement behavior during reward expectation, delivery, and ITI. Note that jaw movement and

licking during reward cause significant field distortions and affect the shape of BOLD responses.

However, this does not occur until 6 s after the instructed saccade and thus saccade responses were

not contaminated by these artifacts. In this and other monkey ERA plots, shaded bands denote

s.e.m across trials.



130

In memory trials, contra- and ipsilateral BOLD signals diverge in the cue and

especially in the memory intervals, the response amplitude being significantly higher

for contralateral than ipsilateral conditions. The activation in the second half of the

memory period reflects planning processes such as spatial working memory for the

recent cue and saccade preparation. In contrast, there was no systematic difference

between contra- and ipsilateral curves in direct trials, since no knowledge about the

direction of upcoming response was available to subjects until the end of the fixa-

tion delay period. To quantify these patterns, timecourses from left and right ROIs

(Fig. 4.4B) were combined, and the mean response strength was calculated to derive

a contraversive selectivity index (CS, Experimental Procedures) for each of the three

intervals of interest (cue, memory/fixation delay, saccade), and for each of the two

trial types. The CS measures the normalized amplitude difference between contralat-

eral and ipsilateral responses in specified intervals. In the example shown in Fig. 4.4,

the memory trial CS is high for cue and memory intervals (0.64 and 0.81, respec-

tively), low for the saccade interval (0.17), and near zero for corresponding periods

in direct trials.

In addition to the activity increase during the memory periods preceding con-

tralateral memory saccades, many areas exhibited a ramping of activity towards the

end of fixation delay period in the direct saccade trials. In this condition subjects

did not know the direction of the upcoming saccade (and could not reliably predict

it because we used 8 or 18 randomized locations). Therefore we hypothesize that it

may reflect a non-specific motor preparation/anticipation. To quantify this effect, a

ramping index (R, Experimental Procedures) was calculated that estimates the activ-

ity prior to the saccade response relative to the fixation baseline, in %BOLD signal

change. Note that in the example in Fig. 4.4, as in many other areas, there was

almost no ramping for the ipsilateral memory trials.
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Figure 4.5:

ERA BOLD trial timecourses in selected frontal, posterior parietal, and parieto-temporal

sts cortical areas. Conventions are the same as in Fig. 4.4B. Blue-marked areas (FEF, dlPFC,

LIPd, Tpt, and TPO) denote ROIs that exhibited the significant contralateral memory delay activity

in both monkeys.
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To characterize the dynamics, relative contributions, and tuning of cue, delay,

and saccade activity, a detailed region-of-interest analysis in the areas defined by the

statistical mapping procedure, in combination with known anatomical landmarks, was

performed (Figs. 4.2, 4.3). For each interval, the strength and the contralaterality

of responses was assessed. In frontal cortex, dlPFC (area 46, along ps), and area

8A (FEF) in upper limb of as (asu) showed strongest contralateral cue and memory

activation and high but weakly contralateral memory saccade responses (Fig. 4.5A;

see Fig. 4.3A for localizations). Area 8B in asu had weaker cue and memory responses,

but these responses exhibited contralaterality. Area 45 in the dorsal bank of asl had

strong contralateral cue, but weaker memory activity, and area 44 in the ventral bank

of asl showed weak cue and mostly saccade activity. Area 6 (F2) in PMd along asu

showed only weak saccade response, but more posterior subdivision of PMd in the

arcuate spur also had contralateral cue and memory responses. In all frontal areas, the

direct saccade response was not spatially tuned, suggesting that weak contralaterality

of memory saccade response could be residually carried over from the delay period.

Non-specific ramping was present in both monkeys in areas FEF, 8B, 45, 44, and

PMd spur. Non-specific ramping was more pronounced in monkey G, but spatially

specific contralateral ramping was comparable between monkeys.

Activation in SEF and more ventrally in preSMA (area F6) was present in both

monkeys, but the BOLD signal time-courses were noisier than in as and ps. This could

be a consequence of lower SNR and partial signal dropouts caused by proximity to

the surface beneath the headcap implant; and also because SEF may not be very

active during simple highly overtrained tasks (Koyama et al. 2004). However, in

both monkeys cue and robust saccade responses were present, and in monkey R both

SEF and preSMA exhibited some contralateral memory delay activity.

In posterior parietal cortex (PPC, Fig. 4.5B; see Fig. 4.3B for localizations), the

lower part of dorsal LIP (LIPd—Blatt et al. 1990; Lewis and Van Essen 2000) in

the posterior third portion of ips exhibited strongest contralaterality in cue and delay

intervals in memory trials. These activation loci correspond well to the histological

verification of recording sites with sustained mnemonic/planning activity (e.g., Gnadt
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and Andersen 1988). There was a systematic gradient of relative cue, memory, and

saccade response amplitudes along the sulcus (i.e., in posterior-anterior direction) and

dorsal-ventrally into the depth of the sulcus: the cue and delay activity progressively

declined while the saccade response remained approximately at the same level (apart

from a weaker saccade response in anterior LIP). Thus, ventrally from LIPd, LIPv

showed weak contralateral cue and memory delay response, but the most ventral LIPv

and/or area VIP in the fundus of ips showed a saccade response but no cue or memory

components. While anterior LIP (aLIP) had weak cue and memory responses, areas

caudal to LIP, such as posterior LIP (pLIP) and LOP, showed even weak cue, almost

no memory, but equally strong saccade responses. In both monkeys, the non-specific

ramping in direct trials was most pronounced in LIPd, but in monkey G it was also

present in aLIP. In both trial types, an initial activation caused by uncontrolled eye

movements/visual stimulation during the preceding ITI was strongest in posterior ips

and diminished towards the anterior portions of the ips.

Since our functional slice package did not include the topmost part of the parietal

lobule (Fig. 4.2A), the upper part of dorsal LIP and most of the surface area 7a

was not covered. Regions in the area 7a located on the lateral surface of inferior

parietal lobule and in the anterior bank of sts exhibited mostly saccade response and

no cue or memory response, consistent with electrophysiological findings (Barash et

al. 1991a; Andersen et al. 1990). In contrast to frontal cortex, all posterior parietal

areas except 7a showed contralateral tuning for both memory and direct saccades.

The most anterior portion of ips (area AIP) was not significantly activated in any of

the three intervals, including saccades (cf. Durand et al. 2007).

In the superior temporal sulcus (sts, Fig. 4.3C, see Fig. 4.5C for localizations), ar-

eas MT and MST showed strong saccade responses and weaker cue responses, but no

or little delay activity (see Constantinidis and Procyk 2004). Ventral MST (MSTv—

Komatsu and Wurtz 1988; Nelissen et al. 2006; Tanaka and Saito 1989) had con-

tralateral tuning for cue but weakly ipsilateral for saccade direction, while dorsal

MST (MSTd) and MT showed contralateral tuning in both intervals. This distinction

may be related to functional differences between two subdivisions of MST: MSTd is
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thought to be specialized for optic flow analysis related to self-movement perception,

while MSTv is involved in processing the motion of discrete objects passing through

the visual field (Logan and Duffy 2005). Alternatively, it can be a consequence of the

retinotopic organization: MSTv mainly represents the peripheral visual field, while

the area adjacent to MSTd as defined by Nelissen et al. (2006) represents the central

field and was included in our delineation of MSTd.

Further down sts, polysensory areas TPO (or STP) and Tpt, located in the an-

terior dorsal bank, also showed strong contralateral cue and weakly contralateral

saccade responses and, unexpectedly, sustained delay activity for contralateral mem-

ory trials. All areas in sts showed some non-specific ramping in direct trials. Area

FST, located in the fundus of sts, was only partially covered by our imaging slices

and is not discussed here.

Response amplitude and contraversive selectivity (CS) in different trial intervals

and the ramping index (R) are summarized across areas in Fig. 4.6. The CS and R

plots should be considered together: since CS is a relative and normalized measure, it

does not reflect the variations in response strength. The ramping index (in %BOLD

change) and the difference between contralateral ramping in memory trials and av-

erage ramping in direct trials can serve as a reference. Although many areas show

contralateral tuning of cue and memory responses, in both monkeys only LIPd, FEF,

dlPFC, and TPO/Tpt displayed contralateral memory delay activity significantly

higher than the non-specific ramping. Cue and memory tuning co-varied, and there

was a correlation between cue and memory response amplitudes (r=0.83, p<0.05), but

no significant correlation between memory and saccade response amplitudes (r=0.42,

p>0.05).

Finally, several medial areas did not show any clear contralateral preference (or

our spatial resolution was not fine enough to dissociate left and right hemisphere

divisions of these midline structures). Therefore we combined corresponding time-

courses with combined rightward, leftward, and additional up/down trials, to probe

for non-specific ramping in anterior and posterior cingulate and in medial preSMA;

however none of these areas exhibited any such trends in direct trials.
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Figure 4.6:

Summary of contraversive selectivity (A) and ramping indices (B) derived from the response

amplitude estimates (C) averaged across two monkeys. Areas that exhibit strong contralateral

memory delay activity are marked in blue.
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Comparison with Human Imaging Data

To directly compare results in monkeys to human imaging data, we conducted mem-

ory/direct saccade experiments in 11 human subjects: 8 subjects were tested with

randomized variable delay periods of 6, 10, 14, and 18 s. Variable delays were em-

ployed to better separate initial cue response from subsequent memory delay activity

(see Schluppeck et al. 2006). Additionally, 3 control subjects were tested with a fixed

14 s delay, to isolate potential behavioral effects of variable delay periods. The results

from the fixed delay experiment corresponded to the results for the same delay in the

variable delay experiment; therefore for brevity we present here only variable delay

data from 8 subjects.

A plethora of areas reported in previous studies (e.g., Astafiev et al. 2003; Brown

et al. 2004; Curtis and D’Esposito 2006) were activated during cue, memory delay and

saccade response periods. Here we focus on several regions in PPC along ips and in

superior parietal lobule (SPL), and human FEF complex, which are considered plausi-

ble candidates for functional homology to monkey areas LIP and FEF. These regions

showed robust cue, saccade, and sustained memory delay activity (Fig. 4.7A,C). Sev-

eral other prefrontal—SEF, dlPFC, pIFG—and inferior parietal and temporal areas—

SMG, STG, and sts—exhibited robust cue and saccade activity and varying levels of

memory activation.

We searched for evidence of contralateral organization in the cue and memory

responses. However, we did not detect a comparable level of contralaterality as in

monkeys using identical techniques (statistical mapping and ROI ERA timecourses,

see Supplemental Results). Most subjects did show some spatial tuning of cue and

memory responses, but the effect was weaker. Often, contralaterality was stronger in

one hemisphere, but weaker, not existent, or even reversed (i.e. ipsi>contra) in the

other. For example, across many task-relevant areas, right cue and memory responses

were stronger than left cue and memory responses in the left hemisphere; while this

still held true in the right hemisphere, less of a difference existed between left and

right signals (Fig. 4.7A, the left dorsal frontoparietal network is more significantly
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Figure 4.7:
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Human imaging results. (A) Brain areas involved in the task. Statistical maps are superimposed

on the inflated averaged brain of 8 subjects following cortex-based alignment. Top left: Saccade-

activated network. Top right: cyan—+saccade contrast, transparency scales with significance of ac-

tivation; yellow-red—memory>fixation delay most significant peaks. Bottom left: Memory>fixation

delay contrast with lower (FDR) threshold. Bottom middle: Memory>fixation delay for leftward

trials (shades of blue) and for rightward trials (shades of red). Purple signifies regions with overlap

for leftward and rightward contrasts. Same representation is used for the +cue contrast (bottom

right). 3D reconstructed partially inflated cortical surface is in neurological convention: left is left.

(B) Example set of ERA contra-ipsi timecourses in 4 delay periods from bilateral ROI in retIPS (av-

eraged across 8 subjects, shaded areas denote inter-subject s.e.m.). (C) ERA gap-plots for cortical

areas involved in the task

activated by maintaining rightward memory (red map); whereas the right hemisphere

is activated by leftward and rightward trials (blue map)). This discrepancy between

left and right hemisphere contralateral biases is consistent with the hypothesis that

the left hemisphere codes predominately for right space, while the right hemisphere,

for both hemi-fields (e.g., Mesulam 1999). But even when present, the tuning was

modest—both hemispheres responded well in left and right trials. In PPC, the

strongest contraversive selectivity was in medial SPL in anterior precuneus (pCu),

putative “retinotopic IPS” (retIPS—Medendorp et al. 2006, Fig. 4.7B), IPS1 and

IPS2 (Schluppeck et al. 2006), and higher visual area V7. Regions IPS3, anterior

IPS, and IPL area SMG exhibited very little tuning.

Human frontal cortex showed even less contralaterality. Medial/superior FEF was

more selective than lateral/inferior FEF. The dlPFC in superior frontal sulcus showed

some residual tuning, and SMA/SEF and pIFG did not show any contralaterality,

despite having some sustained memory responses. The temporal areas located in

superior temporal sulcus and middle temporal gyrus (denoted anterior and posterior

sts), and putative MT/V5 complex showed strong contralaterality for the cue but

very little for the memory, and had minimal sustained memory activity.

As in monkeys, the human oculomotor network also showed the non-spatial specific

ramping of activity towards the end of the fixation delay period in direct saccade trials.

It is most clearly seen in long delay-trials (e.g., Fig. 4.7B) and in combined “gap” plots

(Fig. 4.7C). This effect pervaded all parietal and frontal and some temporal areas that
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were significantly activated in the task. In control regions not involved in the task, the

timecourses did not show any consistent ramping pattern, signifying that this effect

was indeed task related and not an extraneous global artifact (Supplemental Data).

The timecourses in direct trials may also serve as a true baseline for spatially specific

delay activation in memory trials. Figure 4.8 summarizes contraversive selectivity and

ramping in human areas involved in the task, and compares contraversive selectivity

in monkeys and humans in selected ROIs.

Finally, a difference in the timing of hemodynamic BOLD signals was apparent in

the comparison of ERA timecourses between the two species: peak response latency

to cue and saccade events was significantly longer in human than in monkey data,

and the transition from cue to delay period activity was more gradual (Supplemental

Results, Fig. 4.S2, see Discussion).
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Figure 4.8:

Summary of contraversive selectivity (A) and ramping indices (B) derived from the response

amplitude estimates (C) averaged across 8 human subjects. For each subject, ERA timecourses

were extracted using individual GLM ROIs, similarly to analysis in monkeys. (D) Monkey-human

comparison of CS for memory trials in selected ROIs in parietal and frontal cortex (means of 2

monkeys and 8 humans)
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4.4 Discussion

We presented the first event-related fMRI study in monkeys that delineated time-

courses from different epochs within the trial (see Supplemental Discussion for com-

parison with previous studies). This allowed us to quantify relative contributions

of cue-, delay-, and saccade-related BOLD activity across different areas, in a man-

ner similar to monkey electrophysiological studies and recent event-related imaging

studies in humans. Using this approach, we detected delay period ‘cognitive’ signals

that otherwise would be masked by stronger visual and motor events. Owing to this

methodological innovation, our results contain several new findings. Both monkeys

and humans exhibit two different types of delay activity. In memory-saccade trials,

when the upcoming target position was known after the cue, spatial-specific, con-

tralateral signals, which manifested as a separate peak or as sustained activation in

the late part of memory delay period, were observed in areas dlPFC, FEF, LIP, TPO,

and Tpt in monkeys and their putative functional homologs in humans. During fixa-

tion delay in deferred direct saccade trials, when no information about the direction

of upcoming saccade was available but subjects anticipated a movement, non-specific

build-up of activity towards the end of the delay was present in the same areas.

More specifically, our monkey data revealed: 1) stronger contralaterality of cue

and delay period activity in monkeys as compared to humans; 2) a systematic gradient

of cue, memory, saccade, and inter-trial activation along ips; 3) a separation of the

initial cue response from the delay activity in the subsequent memory period; 4) strong

cue response and presence of memory delay activity in sts; 5) contralateral tuning for

memory saccades across most cortical areas, but only in parietal and parieto-temporal

areas for direct saccades.

Finally, our results establish a link between sustained neuronal and BOLD sig-

nals that have been identified during delay periods in frontal and parietal areas of

monkeys and humans. This link has been only assumed previously and had to be

explicitly validated using time-resolved event-related fMRI in monkeys. The com-

parison of BOLD timecourses in monkeys and humans demonstrates differences in
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the underlying hemodynamic response function and/or hemodynamic coupling to the

neuronal activity. Below, these findings are discussed in the context of previous mon-

key electrophysiology and human imaging work.

Contralaterality in Monkeys and Humans

Our results in monkeys demonstrate strong contralateral specificity of cue and mem-

ory period responses, complementing pervasive (but often not systematic) electro-

physiological evidence that a majority of neurons in areas dlPFC, FEF, and LIP have

contralateral receptive fields (Barash et al. 1991b; Ben Hamed et al. 2001; Funa-

hashi et al. 1989; Schall 1991). However, most human fMRI studies, including our

dataset, show markedly less contralaterality. In phase-encoding (not event-resolved)

experiments, the existence of spatial maps in frontal and parietal cortex has been

shown (Hagler and Sereno 2006; Kastner et al. 2007, Schluppeck et al. 2005; Sereno

et al. 2001; Silver et al. 2005), but these findings cannot be attributed to a specific

epoch of a task, and provide no direct measure of tuning strength as compared to

un-tuned activation. A few time-resolved event-related studies reported contralat-

eral specificity of cue and memory responses in frontal but not parietal (Curtis and

D’ Esposito 2006) and in parietal (Schluppeck et al. 2006; Medendorp et al. 2006)

areas, using different variants of delayed response tasks. Our data show weak con-

tralaterality in several human parietal and frontal areas, agreeing with more recent

investigations (Glidden et al. submitted; Srimal and Curtis 2007; see Supplemental

Discussion). In all these human studies, the differential contra-ipsi signal modulates a

larger un-tuned activation, in contrast to monkeys where the ipsilateral delay activity

often stays near baseline level.

Except in early visual areas, the saccade response contralaterality was absent or

very weak in humans (see Schluppeck et al. 2006); however, saccade contralaterality

was present in monkeys, especially in posterior parietal and parieto-temporal areas,

even in regions that were not tuned during the delay period. In monkey FEF and

other frontal areas, direct saccades did not exhibit any contralaterality. Koyama et
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al. (2004) reported statistically significant but weak contraversive tuning for visually

guided saccades, most pronounced in dorsal LIP and FEF in monkeys and in posterior

SPL and FEF in humans. While their task most closely resembled our direct saccade

condition, Koyama et al. used two consecutive saccades in the same direction, so a

possibly greater attentional modulation or movement preparation may have also con-

tributed to the observed contralaterality. The analysis of saccade response periods is

further complicated by potential effects of gain fields (Andersen et al. 1985), since we

required peripheral target fixation (target hold period) for several seconds, in order

to separate effects of the preceding instructed saccade from subsequent return/ITI

saccades. Further experiments specifically designed to test for contralaterality of the

saccade response in specifically adjusted visual conditions (e.g., memory saccade with-

out target confirmation, dark background) will directly address the issue of saccade

response tuning.

We emphasize that the issue of contralaterality is not a mere technical matter of

correlation between neuronal and fMRI data. The contralateral tuning demonstrates

a major organizational principle for perception and action in a primate visual world

that is inherently separated into two hemi-fields by the current gaze axis. In both

monkeys and humans, the two hemi-fields are initially represented in a strict con-

tralateral manner by the opposite hemispheres. The gradual progression from finely

topographically organized early visual areas to a coarser, mainly contralateral, to-

pography of parietal and frontal areas (Felleman and Van Essen 1991) may reflect a

transformation from the ‘local’ visual processing to a ‘global’ representation of action

space. The difference in contralateral tuning between species might stem from a few

causes. The macaque brain is mostly symmetrical (both anatomically and function-

ally), and lesions of left or right hemispheres cause comparable contralateral deficits

(Gaffan and Hornak 1997). The human brain, however, exhibits strong lateralization

of many cognitive functions, most notably verbal processing, but also related to mem-

orizing, selecting, preparing, and executing actions. Right hemisphere lesions cause

a more severe, frequent, and persistent spatial neglect than left hemisphere lesions

(Mesulam 1999). Global (left and right) versus local (left or right) allocation of at-
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tention was found to increase activation in right but not left inferior parietal lobule

(Cicek et al. 2007), while Khonsari et al. (2007) found saccade preparatory signals

only in the left PPC, but execution signals confined to the right PPC. The effects

of TMS over human PPC during memory-guided pointing also revealed hemispheric

asymmetry (Vesia et al. 2006). The leftward bias in the visuospatial attention net-

work (which overlaps with visual-oculomotor areas) during passive fixation has been

reported in both hemispheres (Siman-Tov et al. 2007). It appears that the human

cortex, confronted with new complex tasks, has evolved to become more lateralized

and specialized, losing the original functional symmetry. This may have led to a more

uniform representation of both ipsi- and contralateral fields in frontoparietal areas,

due to more developed inter-hemishperic transfer, or as a result of ‘more abstract’

(less visual, e.g. verbally mediated) representation of space. Therefore, most human

frontoparietal areas respond almost equally to stimuli in either hemi-field, or even

show a bilateral bias to one side of space during the delay period.

The foci of strongly contralateral memory delay activation in monkeys were lim-

ited to specific frontal and parietal sites, while in humans the weakly tuned delay

activity was more widespread, reflecting a more extensive visual-oculomotor network.

Aside from potential technical considerations (i.e., more prolonged response to the

cue in humans), this may imply a training effect (overtrained monkeys versus almost

näıve humans). However, it may also reflect the overall increase in complexity of the

distributed network that evolved to solve difficult tasks, but is still recruited even in

simple eye movement paradigms.

Functions of Spatial-Specific Activation

Within monkey electrophysiology and human imaging fields there is an ongoing de-

bate on the functional significance of delay activity: retrospective storage of visual

information versus prospective coding of a motor plan, as well as on the relative con-

tribution of frontal and parietal areas to each function. In PPC, studies in monkeys

provided evidence for both coding schemes (e.g., Andresen and Buneo 2002; Gold-



145

berg et al. 2002; Mazzoni et al. 1996; Snyder et al. 2000), while human imaging

studies that tried to distinguish between the two possibilities mostly support sen-

sory representation of potential targets (Curtis et al. 2004; Curtis and D’Esposito

2006; Srimal and Curtis 2007; but see Lindner et al. Society for Neurosciences 2006).

The present study does not directly address this issue, since the delay activity in

the memory saccade trials can be attributed both to retrospective coding of the cue

and/or prospective movement preparation. The presence of non-specific preparatory

signals in direct trials, however, can be interpreted as indirect evidence for a role

in movement planning, as it is very unlikely that the same areas would only encode

retrospectively a spatial location in one task but carry preparatory signals in another

task.

One of the most intriguing questions in the current research on goal-directed be-

havior is identification of functional differences between parietal and frontal compo-

nents of the frontal-parietal network involved in the control of visually-guided actions.

More specifically, what are the differences between FEF and LIP in various oculo-

motor tasks (and PMd and PRR for reach tasks)? In the present study, we did not

see pronounced differences between frontal and parietal representations of the delay

activity (see Chafee and Goldman-Rakic 1998). In fact, FEF and LIP timecourse

profiles in each monkey subject were quite similar, suggesting a high level of coher-

ence between these areas (Curtis et al. 2005). More elaborate behavioral tasks are

needed to elucidate possible dissociations between these areas.

Cue and Memory Activation in Monkey Superior Temporal

Sulcus

The observed contralateral cue and especially delay-period activity in sts beyond

MT/MST was perhaps initially unexpected. Neighboring areas in mid (and lower)

sts are traditionally assigned to the ventral ‘what’ visual stream and have not been

implicated in purely spatial memory saccade tasks. However, the inferior temporal

cortex is reciprocally connected to the ventral aspect of the prefrontal cortex (area



146

45 and 12) and to FEF (reviewed in Constantinidis and Procyk 2004). In particular,

area TPO receives projections from prefrontal areas 46/8 and PPC (Padberg et al.

2003), and from medial pulvinar (which in turn connects to FEF; Bos and Benevento

1975). Single-unit and lesion studies of superior temporal polysensory (STP) com-

plex suggested that it is involved in the control of eye movements and visuospatial

coordination (Bruce et al. 1981; Scalaidhe et al. 1995). On the basis of anatomical

and physiological properties, STP and adjacent area PGa have been included in the

spatial vision network (Ungerleider 1995). The activation of inferior sts regions during

memory periods was reported previously for a range of tasks involving memorization

of stimuli features and matching-to-sample (Miller et al. 1993). Recent work suggests

that dorsal ‘action’ and ventral ‘perception’ streams interact in a highly cooperative

manner by creating a distributed shared mechanism for perceptual and oculomotor

decisions (Eckstein et al. 2007). There are also many indications that the temporal

lobe in humans is involved in spatial awareness (Corbetta et al. 2005; Karnath et al.

2001; Watson et al. 1994). Similarly, the ablation of superior temporal gyrus (STG)

in monkeys results in strong neglect (Luh et al. 1986; Watson et al. 1994). Thus, the

collective evidence suggests that many areas along sts may indeed be involved in the

processing and retention of spatial information.

Non-Specific Activation: Comparison with Other Studies

The spatially non-specific activation towards the end of the fixation delay period in

direct saccade trials resembles spatially non-specific but effector-specific activation

in single-unit recordings in monkey PRR and LIP (Calton et al. 2002; Dickinson et

al. 2003), and in FEF (Lawrence and Snyder 2006). Connolly et al. (2002, 2005),

using human fMRI, investigated motor preparation using gap saccade paradigm, in

which location of the target was cued 0, 2, or 4 seconds after the end of the fixation

period. They found a preparatory signal (“preparatory set”) in FEF but not in ips,

in apparent disagreement with our results on direct saccades and direct reaches in

humans (Lindner et al., in preparation), and with single-unit recordings in PRR and
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LIP. The absence of the gap in our task is unlikely to explain the discrepancy, as the

build-up starts before the end of the fixation delay. Notably, Connolly et al. (2005)

found contralateral build-up of activity preceding short-latency saccades, suggesting

that it was not spatially non-specific but rather a predictive (anticipatory) directional

signal. Conceivably, since Connolly et al. used only two (left or right) targets,

subjects may have anticipated the upcoming direction with a high probability and

formed a default motor plan. Since in our data the non-specific preparatory signal

appears at least 6 seconds into the delay period (which incidentally was the duration

of the fixation delay in Connolly et al. experiments), the nature of their FEF-only

preparatory signal may indeed be different. In a more recent study Connolly et al.

(2006) used a deferred saccade task with longer delay periods similar to our direct

saccade condition, and in this context also observed some nonspecific build-up in FEF

and PPC.

Several other human fMRI studies investigated preparatory activity for pro- and

anti-saccades, but in all tasks, the contextual cue (i.e., pro- or anti-) was delivered

in the beginning of the delay period and subjects had to retrieve (and retain) the

memorized instruction (DeSouza et al. 2003; Curtis and D’Esposito 2003; Ford et al.

2005). Therefore, all these studies show strong cue response which may disguise the

preparatory non-specific ramping. The speeded reaction time constraint and online

control with immediate feedback may have also contributed to the strong preparatory

activity in our task.

Dynamics of BOLD signals during memory delay period

One of the salient features of the activity in the delay period in monkeys was a sep-

aration of the initial cue response peak from the subsequent delay activity. This

separation can possibly be explained by hemodynamics, in particular HRF under-

shoot (Buxton et al. 1998; Mandeville et al. 1998) after strong cue activation in the

neuronal population. Many studies have demonstrated very strong cue response in

frontal and parietal areas (e.g., Barash et al. 1991a; Pare and Wurtz 1997). Synchro-
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nized co-activation of many neurons can drive the accompanying BOLD signal quickly

( 3 s time to peak in monkeys) and cause subsequent undershoot. Furthermore, many

LIP cells respond with an initial burst of activity followed by a brief period of in-

activity or lower firing rate, which separates cue responses from subsequent delay

period activity (Bisley et al. 2004; Cui and Andersen 2007). Therefore, both actual

neuronal dynamics and hemodynamic coupling may underlie the separation of the

cue response. In contrast, the frequently observed separation between memory delay

peak and following saccade response is harder to explain, as most electrophysiological

data show a gradual increase of firing towards the end of the delay period.

Analogous separations did not surface in human BOLD time-courses. The cue

response was not noticeably separated by a trough, and although human data for

long memory periods sometimes show a decline of memory/preparation activity to-

wards the end of memory period, there was no clear delay response peak (Fig. 4.7,

see Schluppeck et al. 2006). However, at the longest (18 s) delays, IPS and FEF hu-

man timecourses provide a hint of separation after the cue. Slower hemodynamic re-

sponses in the human brain may account for these smoother, more gradual timecourses

(Supplemental Data, Fig. 4.S2). The difference in scanning parameters (weaker field

strength, slower TR and larger voxel size, see Experimental Procedures) may also

contribute to this effect, although it is unlikely that the smearing effect caused by the

lower sampling rate is alone responsible for the slower human BOLD time-courses.

Our human data appears similar to data acquired with faster sampling rate (TR 1

s—Brown et al. 2004; Curtis and D’Esposito 2006; Medendorp et al. 2005; TR 1.5

s—Schluppeck et al. 2006). Monkey data collected with TR 2 s in control experiments

showed time-to-peak of cue and saccade responses comparable with the data acquired

using TR 1 s (Supplemental Fig. 4.S3), though the 2 s TR monkey timecourses were

smoother and showed less separation between response components. Therefore, fur-

ther investigation is needed to resolve whether the difference between monkey and

human cue and delay period dynamics could be explained by imaging procedures,

or if this phenomenon reflects actual hemodynamics and/or neurovascular coupling

to the underlying neural activity due to disparities in brain size and vascularization.
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Since no single-cell data are currently available for trials as long as those used here

(see Supplemental Discussion), fMRI-targeted electrophysiological recordings in the

same monkeys using the same tasks will help to address these alternatives.

Comparison between Techniques and Species

The apparent correspondence between activation patterns in monkeys and humans in

previous studies (Koyama et al. 2004; Nakahara et al. 1999; Vanduffel et al. 2002)

and partly in our work is encouraging, although it does not necessarily imply the same

underlying behavioral strategies and neuronal activity. Nevertheless, monkey fMRI

provides a crucial control for the interpretability of human imaging results in terms of

monkey electrophysiology data. Several discrepancies between monkey electrophysi-

ology and human imaging have been identified. For example, in double-step saccade

tasks, human retIPS (a putative homolog of LIP) shows remapping and encodes both

targets (Medendorp et al. 2006), but LIP neurons primarily encode the position of

the first target (Mazzoni et al. 1996). Along the same lines, single neuron recordings

in monkey FEF have demonstrated decreased activity for anti-saccade trials as com-

pared with pro-saccade trials, while fMRI in humans has shown increased activation

in FEF for anti-saccade trials (Everling and Munoz 2000). However, preliminary re-

sults from monkey fMRI are similar to fMRI studies in humans (Ford et al. Society

for Neurosciences 2006). Similarly, perceptual visibility modulation in human fMRI

data sharply contrasts with negative findings in monkey V1, but recent findings by

Maier et al. (Society for Neurosciences 2006) detected the perceptual modulation in

monkey fMRI experiments. These studies purport a complicated relationship between

neuronal and BOLD activity and underscore possible difference between techniques.

Our study presents an opposite example—the variation in level of contralateral tuning

between human and macaque responses does not stem from the discrepancy between

imaging and electrophysiology techniques, and may be attributed to actual species

difference.

Until now, comparative studies on monkey and human functional topography that
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utilized monkey fMRI have focused on spatial mapping and delineation of homologous

areas using block-design tasks. Significant progress has been made using this approach

(for review see Orban et al. 2004). The event-related approach would further facilitate

the direct comparison between imaging studies, on the one hand, and between imaging

and physiology, on the other, by introducing an additional temporal dimension.

Our data also have important implications for the block-design studies apply-

ing other imaging modalities such as positron-emission tomography (PET) and 14C-

deoxyglucose methods (Bakola et al. 2006, 2007; Inoue et al. 2004). Since most

activation would be derived from saccade responses and ITI periods, as compared

to weaker cue and delay responses, the differential spatial activation patterns for

memory-guided versus visually guided conditions may carry only partial information

about the distribution of specific cue, delay, and saccade activity.

The elucidation of putative homologies, or functional correspondence, between

human and monkey dlPFC, FEF, SEF, LIP, and PRR areas has been advanced by

recent human event-related fMRI and TMS studies (Glidden et al. submitted, and

references therein). Still, the direct comparison is difficult, in part because in hu-

mans, besides dlPFC, FEF, SMA/SEF and a host of posterior parietal areas denoted

IPS1, IPS2, ISP3, antIPS, retIPS etc., several other cortical regions show sustained

activation during memory periods and saccade responses (see Brown et al. 2004).

Perhaps a simple one-to-one correspondence cannot be established—instead, several

human (sub-)areas, possibly lateralized (Khonsari et al. 2007), may encapsulate the

functionality of a single monkey area such as LIP. Although tempting, at the mo-

ment we cannot draw strong parallels between activation in monkey sts and specific

loci of activation in humans, as functional homology in sts structures is far from re-

solved. Several human parieto-temporal (e.g., SMG, STG; temporo-parietal occipital

junction) and sts areas showed cue and some sustained memory delay responses, but

more research is needed to characterize the involvement of “non-classical” (i.e., not

belonging to dorsal frontoparietal network) oculomotor areas in delay-period activity

in both species.

In summary, we demonstrated that dynamics of visual, motor, and “cognitive”
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signals can be studied in monkeys using event-related fMRI, making it a powerful

link between human imaging and monkey electrophysiology. The development of this

technique, and the identification of mnemonic and preparatory responses, are im-

portant prerequisites for our ongoing investigations of goal-directed decision-making.

Combined with fMRI-guided electrophysiological recordings in the same monkeys (Lo-

gothetis et al. 2001; Sawamura et al. 2005, 2006; Tsao et al. 2006), and with human

imaging using identical paradigms, these studies present a comprehensive approach

to the investigation of various aspects of primate behavior.

4.5 Experimental Procedures

Monkeys

All surgical and animal care procedures were done in accordance with NIH guidelines

and were approved by the California Institute of Technology Animal Care and Use

Committee.

Experimental Preparation

Two male rhesus macaque monkeys (Macaca mulatta) weighing 4–5 kg were implanted

with MR-compatible plastic (PEEK) headpost embedded in Palacos bone cement

(BioMet) attached to the cranium with short ceramic screws (Thomas Recording),

under general anesthesia. For training and scanning, monkeys sat in a specially

designed vertical MR chair (Bruker), with the head rigidly attached to the chair with

a plastic headholder. Convenient upright sitting position of the animals facilitated

rigorous behavioral training and scanning procedures.

MR Imaging

Monkeys were scanned in a Bruker Biospec 4.7 T/60 cm vertical bore monkey scanner

equipped with a Bruker BGA38S or (in later experiments) a Siemens Allegra AC44

gradient coil using a ParaVision 3.0.2/4.0 platform running on a Linux RedHat 6
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kernel. We used a linear transmitter-receiver birdcage volume RF coil (Bruker) that

allowed whole-head homogeneous coverage. The signal-to-noise ratio (SNR, mean

signal/s.d. noise) was in the range of 80–130. First- and second-order shimming

of the B0 field was performed with the FASTMAP algorithm along 6 projections

through a 40 mm cubic volume inside the brain. Functional images were collected

with BOLD-sensitive T2*-weighted GE-EPI single-shot sequence using TR 1 s, TE

20 ms, 60 flip angle, 200–250 kHz bandwidth, 128×128 matrix, 12.8 cm FoV, 1×1×2

mm voxel and 10 oblique (15o) continuous slices. For registrations with EPI, in-plane

structural images were obtained using T1-weighted IR-RARE or 2D MDEFT-RAGE

during each session; a whole-head high-resolution (0.5/1 mm voxel) T1-weighted 3D-

MDEFT or 2D MDEFT-RAGE scan was obtained in a separate session.

Humans

Human subjects (4 female, 7 male, 20–35 years old) were scanned in a Siemens Trio 3T

scanner after giving informed consent in accordance with the Caltech Institutional

Review Board guidelines. Similar to monkey experiments, the amount of reward

(monetary for the humans) for successfully completed experiment depended on sub-

jects’ performance that was assessed online during scanning for each trial and reported

to subjects after each run. MR images were acquired with Siemens 8-channel phased-

array receiver head coil. Functional images were collected with GE-EPI sequences

using TR 2 s, TE 30 ms, 90o flip angle, 64×64 matrix, 192 mm FoV, 3×3×3 mm

voxel and 30–32 oblique continuous slices. High-resolution T1-weighted MPRAGE

structural scans (1×1×1 mm) were acquired for anatomical localization in the same

session.

Stimulus presentation, task online behavioral control and

data acquisitions

Visual stimuli were presented on 800×600@60Hz LCD goggles (Resonance Technol-

ogy), subtending 30×24o of visual angle using custom OpenGL software. Eye position
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was monitored at 60Hz and 0.5–1o accuracy with an MR-compatible mini-IR cam-

era (Resonance Technology/Arrington Research) and recorded as an analog signal

together with stimulus and timing information and TTL triggers from the scanner.

Online behavioral control and feedback were implemented in a LabVIEW Real Time

platform (National Instruments). Incorrect trials were aborted; successful trials were

rewarded with 0.5–1 ml water drop (monkeys) or monetary reward (humans).

Initially, monkeys were trained on standard oculomotor tasks in regular electro-

physiology isolated chambers (TDK) in actual MRI chairs. The direct (visually

guided) saccade task involved central fixation, after which the fixation point (FP)

was turned off and peripheral target (T), randomly chosen from 8 (11o eccentricity)

or 18 (10o–16o) locations was turned on (Fig. 4.1A). After the subject made a correct

saccade to the T, it stayed on for another 5 s of peripheral fixation and then turned

off. After an additional waiting period the monkey received liquid reward. In the

memory saccade task, after the initial fixation period a peripheral cue appeared for

200 ms while the subject was required to maintain central fixation. The central fix-

ation continued during the subsequent memory period, and following FP offset the

subject was required to saccade to the remembered location of the cue. If the response

was correct, a confirmation T appeared at the same place where the cue had been

presented, and the trial continued as in the direct saccade task. After the monkeys

learned the tasks, we gradually increased the duration of trials until the monkeys

were able to perform trials up to 35 s long with at least 60% success rate. This was

done in order to allow measurements of activity originating from different intervals of

the task, which would not be possible otherwise due to temporal delay and dispersion

of the hemodynamic response.

Prior to imaging experiments, monkeys were habituated to the acoustic noise,

sound-attenuating cushions, and confined space during training sessions inside the

scanner. A video-based motion detection system was used to train monkeys to mini-

mize their body and limb motions, and to track their behavior during scanning. Trials

compromised by motion were aborted and punished with a time-out, during training

and scanning (see Supplemental Data for details). Inclusion of body and limb mo-
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tion signals into behavioral paradigm was a crucial improvement for obtaining stable

high-quality functional data.

During one daily session, monkeys typically completed 4 to 6 functional runs of

20 min each, resulting in a total time of up to 3–4 hours in the scanner (including

shimming, adjustment, and anatomical scans). Human subjects performed a single

10 min training session inside the scanner prior to the start of data collection, fol-

lowed by an anatomical scan and then 4 functional runs of 15 min each, resulting

in total time of up to 1.5 hour in the scanner. Presentation of direct and memory

trials as well as saccade directions was randomized. In monkeys, each daily session

was analyzed separately, and as principal findings were consistent across sessions, all

sessions fulfilling SNR, temporal stability, and behavioral performance criteria were

combined. Altogether, 22 (14 and 8) sessions in two monkeys and 8 sessions in 8

human subjects were analyzed for the main experiment of this study.

Data analysis

Functional data were analyzed in BrainVoyager QX and MATLAB running on a

Fedora Core 5 (64 bit) Linux platform. The first 5 EPI volumes were always excluded

from functional analyses to remove transient effects of magnetic saturation, but were

used for co-registration, since they provide better contrast for anatomical landmarks.

Anatomical T1-weighted scans were processed in BrainVoyager QX and MIPAV. In

monkey experiments, EPI sequences for each run were preprocessed using slice time

correction, linear trend removal and a high-pass temporal filter with 3 cycles per

20 min run cut-off, and 6DOF 3D-aligned to a first volume of the last run in the

session, which was always followed by the in-plane anatomical T1-weighted scan.

The in-plane anatomical scan for each separate session was co-registered to the high-

resolution structural scan in the AC-PC plane, and then EPI runs were aligned to

the AC-PC-registered anatomical scan using rigid body transformations. Automated

alignment procedures were followed by careful visual inspection and manual fine-

tuning based on anatomical landmarks. Using these transformations, 3D volume
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time-courses were computed in AC-PC space using 2×2×2 voxel size and 1000 unit

image intensity threshold (mean image intensity within the brain ranged from 4000

to 6000 units). In human experiments, we used the same preprocessing steps, except

that the high-resolution anatomical scans were also transformed from AC-PC into

Talairach space. Human 3D volume timecourses were computed in Talairach space

using 3×3×3 voxel size and 100 unit image intensity threshold (mean image intensity

within the brain ranged from 500 to 700 units). No additional spatial smoothing was

applied to the fMRI data.

All trial events (except baseline initial fixation period)—cue, fixation/memory

delay, direct/memory saccades, target fixation, and reward delivery—were extracted

and used as predictors for general linear model (GLM) after convolution with hemo-

dynamic response function (HRF) (Fig. 4.1A–C). Events from all trials (successful

and failed) were modeled to account for the overall variance. Fixational saccades

and blinks were also detected, but not used as GLM predictors for final results, since

their inclusion in the GLM did not bring about any significant effect. In monkeys,

each session was analyzed separately to check the consistency of the results, and final

statistical maps were generated using multi-session GLM. Human data were analyzed

both separately using individual-subject GLM and together in across-subject GLMs

(Talairach- and cortex-based aligned, see Supplemental Results).

For the BOLD timecourse event-related averaging (ERA), only successful trials

were accumulated. Importantly, in humans and especially in monkeys, the epochs

of the run affected by body or limb motions were automatically detected and elim-

inated from ERA analysis (Supplemental Data, Fig. 4.S1). ERA time-courses were

constructed using individual baseline estimates for each single trial: mean activity in

the last 3 or 4 s of the initial fixation period for monkeys and humans, respectively

(epoch-based averaging in BrainVoyager). Following initial analyses, we decided to

apply a faster HRF for monkeys as compared to the standard human HRF, because

the difference in BOLD response timing was apparent in BOLD timecourses (Fig.

4.1D; see also Supplemental Data). It is important to emphasize that this manip-

ulation only affects the resulting statistical contrast maps, but has no influence on
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the ERA timecourses, since they were calculated from the actual EPI volume data

without any prior assumptions about the shape of the HRF.

To quantify ERA timecourses, we estimated the mean response amplitude (A) in

several intervals within each ERA timecourse and calculated contraversive selectiv-

ity (CS) and ramping (R) indices (Fig. 4.4B). For monkeys (sampling rate 1 s) the

baseline interval was defined as the last 3 s of initial fixation, cue, and saccade as 3 s

intervals starting 2 s after event onset, and memory/fixation delay as the last 5 sec-

onds of the delay period, or the rest of the delay period for variable delay experiment.

For humans (sampling rate 2 s, variable delay experiment) the baseline interval was

defined as the last 4 s of initial fixation, cue, and saccade as the 6 s intervals starting

4 s after event onset, and memory/fixation delay as the remaining samples of the

delay period (shortest delay 6 s was excluded from this calculation). Mean response

amplitude in these intervals for contralateral and ipsilateral trials was used to calcu-

late normalized CS index: CSnorm = (Acontra - Aipsi) / (—Acontra— + —Aipsi—) (see

“lateralization index” L in Schluppeck et al. 2006). The normalization term, calcu-

lated as the sum of amplitudes across memory and direct trials within each interval,

was chosen in order to facilitate the comparison of relative contraversive selectivity

across different intervals. This (nonlinear) index ranges from -1 to 1, where positive

values indicate contralateral tuning and negative, ipsilateral; CS 0.33 represents the

case for contralateral amplitude being twice as large as ipsilateral response. The

normalization may inflate sporadic differences when all response amplitudes in the

interval are very small, e.g., in the delay period in the area that shows no significant

delay activation.

Ramping index R for each of 4 trial types was calculated as the mean differential

amplitude of the 3-sample intervals centered on the end of the delay period relative

to the baseline. This measure is different from the mean response amplitude for the

delay interval, since it was designed to capture the level of activation immediately

preceding saccade response. R index was measured in %BOLD change. The statistical

significance of the difference between contra- and ipsilateral, and between memory

and direct, timecourses was calculated on sample-by-sample basis using a two-tailed
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t-test (p<0.05).

The spatial extent of regions of interest (ROIs) used for the time-course extraction

was 2.5×2.5×2.5 mm (15.62 mm3) cubic volume for monkeys and 5×5×5 (125mm3)

mm for humans, or less if the span of the statistical activation map limited the amount

of significantly activated voxels around the selected ROI center. Brain coordinates of

ROI centers for monkeys are listed both in AC-PC (bicommissural) and stereotaxic

frames of reference, for comparison with other studies. The angle between the AC-

PC plane and the stereotaxic interaural-lower orbital plane was 0o for monkey R,

and +4o (clockwise) for monkey G. The nomenclature for monkey areas is based

on the stereotaxic atlas by Saleem and Logothetis (2007), unless noted otherwise.

Coordinates for human subjects are listed in Talairach space (Talairach and Tournoux

1988).
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4.S1 Supplemental Data

Supplemental Methods

Body and Limb Motion Detection and Functional Data Selection

At the high magnetic 4.7 T field, and also to some extent at 3 T, the EPI signal is

strongly affected by body, limb and jaw motions of the subject, even when movements

occur far from imaging volume within RF coil (i.e., the head). This is a consequence

of the “off-resonance” effect: body, limb, and jaw, and residual, movements introduce

dynamic local B0 field fluctuations, which lead to strong imaging artifacts such as

changes in EPI intensity, geometric distortion, and signal mislocalization (Supple-

mental Data, Fig. 4.S1). These effects become especially pronounced in the Gradient

Echo (GE) single-shot EPI sequence, which is very sensitive to B0 field inhomogeneity.

To overcome these difficulties in alert monkey experiments, we developed a novel

technique that combined careful monitoring of body, limb and jaw motions, rigorous

training that encouraged monkeys to minimize these motions, and data selection and

post-processing analysis that utilized information about these parameters (Kagan et

al. Society for Neurosciences 2005, 2006, 2007; Lindner et al. Society for Neuro-

sciences 2007). During both training and scanning, monkeys were monitored with

IR-sensitive video cameras (regular security surveillance camera for training in the

rig and miniature MR-compatible CMOS camera inside the scanner). Video feed

was directed to an automatic motion-detection system (Pelco MD 2001, Pinsk et al.

2005) which allows adjustment of motion sensitivity threshold for TTL binary out-

put. This signal was fed into LabVIEW-based real-time behavioral control system as

one of behavioral parameters. The successful completion of the trial and subsequent

reward delivery was contingent not only on the required oculomotor task performance

but also on the absence of body and limb motions during the entire trial. Any time

a noticeable motion occurred, the trial was aborted without reward, auditory and

visual behavioral feedback was delivered and the monkey was punished with 5–10 s

time-out. A new trial started only a few seconds after motion ceased, allowing for
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Supplemental Figure S1
Kagan, Iyer, Lindner and Andersen	  Event-related fMRI of delayed response saccades
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Evaluation of EPI signal-to-noise (SNR) and temporal stability and data selection for

event-related analysis. Examples of 20 min runs (TR 1 s, 1200 volumes) in monkey R (A)

and monkey G (B). Panel (1): single raw EPI slice (first volume), SNR map per voxel (calculated

across the run), mean raw EPI image across the run, and ROIs used for SNR calculation (green—

background noise, red—signal in arcuate sulcus) and temporal timecourse estimation (blue), shown

below. Panel (2): Raw EPI timecourse extracted from the large blue ROI (blue curve) and corre-

sponding low-pass filtered signal (cut-off 0.05 Hz, red curve). Two measures of the timecourse sta-

bility are RMSD (root mean square deviation) = std(ROItimecourse) / (mean(ROItimecourse)/100)

and P2P (peak-to-peak) = (max(ROItimecourse) - min(ROIttimecourse)) / min(ROItimecourse); Panel

(3): high-pass filtered signal calculated as original minus low-pass filtered signal. Panel (4): the

derivative of the high-pass filtered signal, used as an input to an automatic adaptive algorithm that

selected run epochs unaffected by monkey motion (marked by thick red lines). Blue diamonds denote

times of liquid reward delivery. Panel (5): the purple curve shows the monkey body-motion detec-

tion signal, the black curve represents the fluctuations of the central frequency showing off-resonance

changes due to jaw, head, and body motions (see Pfeuffer et al. 2002). Note that body motions and

each reward delivery are accompanied by the central frequency changes (reward delivery effects are

especially pronounced in the run shown for monkey G). The strength of the reward delivery effect

depended on the placement of the reward tube. In the run shown, the tip of the reward tube was

placed slightly away from the monkey mouth, which resulted in residual head shift and vigorous

jaw/licking motions during the reward delivery. The data from this session was not included in the

analysis and is presented here to illustrate detrimental effects of even small motions. Panel (6):

BrainVoyager 3D motion correction parameters—translation and rotation. Jaw and body motions

result in strong shift in phase-encoding (A-P direction), corresponding to the Y translation (Yt)—

the green curve. Note that Yt curve mirrors the central frequency fluctuation timecourse. Panel

(7): Raw-EPI timecourse re-plotted on a full scale.
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MR signal stabilization. Monkeys were trained to sit still during the entire EPI run

(20 min) but were allowed to move in inter-run intervals (when no gradient noise

was present), which typically lasted 1–3 min. Usually, there were no or very few

movement bouts in the beginning of the session, when monkeys’ motivation was high,

and frequency of movements increased during the session, which typically consisted

of 4–6 20-minute runs.

The combined information about change of the raw EPI signal intensity, motion

detection triggers, and motion correction parameters was used to extract data from

epochs that were not contaminated by body and limb movements. This significantly

improved the resulting event-related average timecourses. Further details on effects

of movements, training, behavioral control, and analysis will be presented in a future

technical report (Kagan et al., in preparation).

Stimuli, Eye Movement Recordings, and Behavior

Horizontal and vertical eye position were sampled at 60 Hz, ∼0.15o resolution and

0.5–1o accuracy using ViewPoint with AnalogOut option (Arrington Research) for

online control and recorded in the file at 1 KHz. For offline analyses, eye position was

calibrated to degrees of visual angle and smoothed prior to computation of velocity

and acceleration, which were used for automatic saccade and blink detection with

a custom algorithm. Human eye data recorded in the scanner required additional

removal of gradient and RF pulse interference noise, done with a custom filtering

algorithm.

We were able to reliably detect saccades of ∼1o amplitude, but not smaller fixa-

tional saccades. Two spatial configuration of the targets were used: 8 targets, placed

equidistantly from the fixation point at 11o eccentricity; or 18 targets, 9 right and 9

left of the fixation point, with 3×3 organization of targets placed between 10o–16o)

on either side of the fixation point. Targets (T) and central fixation point (FP) were

0.37o squares. For contralaterality analysis, we sorted trials for the 8 target condition

with saccades made to targets {1,2,3} as rightward and targets {5,6,7} as leftward.

In a subset of experiments, we used a right-left array of 18 targets shown in the right
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panel. The results in both experimental conditions were similar and thus were com-

bined. The central fixation window radius was 3–5o of visual angle, and peripheral

target window radius was 5–7o. Larger target windows were used to accommodate

memory saccade end-point inaccuracy and systematic upward shift (Gnadt et al.

1991). We also allowed transient (<200 ms in monkeys; <400 in humans) deflections

from the fixation window to accommodate blinks that were inevitable with such long

fixation periods.

Timecourses of saccade and blink frequency in direct and memory trials demon-

strate that the amount and distribution of these eye movements in the delay period

(from -10 to 0 s) did not significantly differ between the two trial types(p>0.05 for

both saccades and blinks). The only difference between memory and direct trials is

occurrence of small corrective saccades that followed instructed saccade to the remem-

bered location. Interestingly, both monkeys tended to make two (rather then one)

corrective saccades during the 500 ms period of fixating the remembered location

before T became visible—one in the dark, prior to the appearance of the T, and one

visually guided after T appearance. It is plausible that with first corrective saccade

monkeys tried to use spatial cues such as edges of dimly-illuminated background, or

alternatively, they may have utilized extraretinal (e.g., efference copy) signals.

Human subjects were instructed to make a corrective saccade, if necessary, to ac-

curately acquire the T after its appearance. However, the frequency and distribution

of corrective saccades in humans was less uniform and varied between subjects.

Human Cortex-Based Alignment

To improve anatomical correspondence beyond Talairach space matching by reduc-

ing human inter-subject variability of individual gyri/sulci patterns, we also applied

cortex-based alignment (Fischl et al. 1999; van Atteveldt et al. 2004). Gray/white

matter boundary of each individual hemisphere was segmented and borders of the

two resulting segmented sub-volumes were tessellated to produce a surface recon-

struction. The resultant surface was morphed into a spherical representation, and

the hemispheres were aligned based on the curvature information regarding the gy-
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ral/sulcal folding pattern. The target of the morphing procedure was a dynamical

group average of all included hemispheres. The mapping between the individual

hemispheres was used for the re-alignment of the functional data.

Supplemental Results

Variable Delay Experiment in Monkeys

In addition to the fixed (10 s) delay experiment in monkeys described in the main

text, we also used randomized variable delays—6 s, 8 s, 10 s, and 12 s, similar to

the human experiment. In both monkeys, variable delay data reproduced the main

findings of the fixed delay experiment. In particular, the separation of the cue re-

sponse from the later sustained memory delay activity was apparent. The unspecific

ramping in the direct trials seems to be more pronounced in the variable delay data in

monkey R, possibly because unpredictable GO signal timing facilitated motor “readi-

ness”/attention (especially at the longest 12 s delay).

Timecourse of hemodynamic responses in monkeys and humans

Initial inspection of monkey ERA timecourses revealed that the cue response in mem-

ory trials rises and decays faster than would be expected from a typical (human)

hemodynamic response. Fig. 4.S2 shows inter-species comparison of rightward mem-

ory trial ERAs extracted from left hemisphere ROIs in monkey areas FEF and LIPd,

and two of presumptive functionally homologous human areas mFEF and IPS2. In

monkeys, responses to clearly defined time-locked events (such as presentation of pe-

ripheral cues and saccade execution) reached maximum after approximately 2–3 s,

while in humans the time-to-peak was about 5–6 seconds (corresponding to the typ-

ical BOLD signal latency in human imaging literature). Based on these findings, we

used a faster HRF for the calculation of predictors in monkeys, in order to better

capture the BOLD response dynamics in the GLM (Fig. 4.1D).



164

humans (n=8)
monkey R
monkey G

0 5 10 15 20 25 30
0

1

Time (s)

no
rm

al
ize

d 
%

 B
O

LD
 c

ha
ng

e

FEF / mFEF

0 5 10 15 20 25 30
0

1

Time (s)

no
rm

al
ize

d 
%

 B
O

LD
 c

ha
ng

e

LIPd / IPS2
cue saccade

time to peak

Figure 4.S2:

Comparison of BOLD response timing in monkeys and humans. Upper panel—monkey

FEF, human lFEF, lower panel—monkey LIPd / human IPS2. Contralateral memory trials from

left ROIs are shown. Human data timecourses represent mean of ERAs extracted individually from

each of 8 subjects. Timecourses for 2 monkeys are shown separately. For comparison purposes, to

emphasize relative timing, timecourses from each monkey and the resulting average human time-

courses were normalized so that the amplitude of cue response peak equals 1. Error bars are omitted

for clarity. Cue was presented at time 10 s, ‘Go’ signal for saccade occurred at 20 s. Dashed vertical

lines denote cue and saccade response peaks, horizontal arrows denote time-to-peak (shown only for

LIPd / IPS2).
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Several methodological factors, besides real hemodynamics or neurovascular cou-

pling, may account for the differences between human and monkey BOLD time-

courses. The most conspicuous one is the TR, or sampling rate, of EPI volume

acquisition—1 s for monkeys and 2 s for humans. The longer TR introduces more

temporal smearing at the data acquisition stage. It also smoothes the timecourses

during calculation of ERAs: since the trial events were not synchronized to the on-

set of volume acquisition, it results in a temporal jitter between event onset and

corresponding volume sample. However, these effects are not expected to shift the

time-to-peak estimate, since the offsets between event occurrences and data sampling

times were completely randomized, so that positive and negative offsets average out.

Fig. 4.S3 shows comparison of monkey ERAs extracted from the data acquired with

TR 1 s and 2 s, in the same session. The timecourses acquired with TR 2 s were

indeed smoother, but the time-to-peak of time-locked cue and saccade responses was

between 2 and 4 s, similarly to the TR 1 s data.

Statistical Mapping, ROI definition, and Analysis in Humans

Human imaging data were analyzed in 3 different ways. First, we used individual

subject GLM (similar to analysis of monkey data) and overlaid statistical maps for

the +cue, memory>fixation delay, and +saccade contrasts on the subject’s anatom-

ical scan. The overlapping peaks for memory>fixation delay (or +memory when

the memory>fixation delay contrast did not reach significance, in 3/8 subjects) and

+saccade contrasts in anatomically defined locations using known landmarks were

identified as centers of ROIs for the timecourse extraction (Srimal and Curtis 2007).

The ERA timecourses were extracted separately for each subject and averaged (by

calculating mean of means across trials). Second, an across-subject GLM for fixed

effects analysis (i.e., calculating a combined GLM across all runs and all subjects: a

multi-study, multi-subject GLM in BrainVoyager QX) was conducted, and the same

statistical contrasts applied, in order to confirm the results of the individual ROI anal-

ysis and to compare the two approaches. The resulting timecourses were extracted

by averaging all corresponding trials across all subjects (i.e., with equal weight). The
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Figure 4.S3:

Comparison of BOLD response timing in monkey data collected with TR 1 s (left column)

and 2 s (right column), in areas FEF, LIP and TPO in the left hemisphere of monkey R. The cue was

presented at time 10 s, and the ”Go” signal for saccade occurred at 20 s. Data from one scanning

session area are shown. Light blue traces - memory trials to the right, dark blue traces - memory

trials to the left.
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results of both approaches generally agreed, but the across-subject GLM timecourses

had slightly lower amplitudes. The correspondence between these two approaches

demonstrates the consistency of activations among subjects and the robustness of

our ROI extraction procedure. We also applied a random effects analysis to across-

subject GLM calculation (RFX GLM option in BrainVoyager QX). Even though

n=8 subjects is not enough for proper a random effects analysis, the resulting maps,

although less extensive, corresponded well to the fixed effects GLM maps (not shown),

further confirming that across-subject GLM results were not biased by activations

originating only in few subjects (Fig. 4.S4 shows representative activations from the

across-subject GLM.)

Finally, a cortex-based aligned GLM across subjects was also performed, to see if

the improved co-registration, accounting for the cortical folding pattern variability,

would yield more consistently contralateral maps and/or corresponding timecourses.

However, tuning differences were less evident in the results of the cortex-based as

compared to the Talairach alignment, presumably because of the weak effect on the

individual subject level.

The nomenclature used for the posterior parietal areas is based on recent litera-

ture that delineated several large tentative regions tiling the medial SPL using phase-

encoding topography (Schluppeck et al. 2005; Swisher et al. 2007), and on our own

observation of multiple response peaks in PPC. The first areas that showed significant

memory delay activity were V7 and, more anteriorly and dorsally, IPS1. In agreement

with previous studies, most significant saccade and memory delay activation in pos-

terior (or caudal) ips was found medially and in branches extending towards midline.

The peak of memory activation was located in a small sulcus running medially and

perpendicularly to ips, an area that encompassed IPS2 and retIPS. Originally, the

“retinotopic” IPS (retIPS) was defined functionally in a left/right block design by

Medendorp and colleagues (2006) as the site with the most pronounced contralateral

tuning for memory saccades. Our dataset did not reveal robust bilateral contralat-

eral regions in PPC in individual subjects, using memory delay right>left contrast.

Therefore, in each subject we selected two ROIs in the vicinity of reported coordinates
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for retIPS, one that showed the highest peak for memory>fixation delay or +memory

contrast, and one corresponding to the peak of the relative contribution map for con-

tralateral cue and memory (Fig. 4.S4E). The highest memory delay activation peak,

regardless of contralaterality, was taken as IPS2. Usually, the slightly more lateral

and ventral part of the activation was defined as retIPS; and an adjacent, or overlap-

ping, region as IPS2. Even for the group data, the most straightforward cue and/or

memory right>left contrast did not show significant peaks in this area (Fig. 4.S4D;

the reason is a strong activation for rightward (ipsilateral) targets in right PPC, see

below). Therefore, similar to individual datasets, in across-subject GLM the bilateral

retIPS was defined as the highest activation for the memory>fixation delay contrast

overlapping with contralateral predictor contribution (Fig. 4.S4F). More dorsally and

anteriorly located was IPS3, and further down ips was the anterior IPS. On the medial

wall of SPL, precuneus showed strong and contralateral cue and memory responses.

The detailed inspection of reported coordinates for different PPC regions from

different labs, conducted by Glidden et al. (submitted), showed that retIPS is situated

between, and partially overlaps with, IPS2 and IPS3. Putative human LIP (the

notation is misleading because of its medial branch location), suggested by several

studies (Astafiev et al. 2003; Sereno et al. 2001), also overlapped with IPS2 and

retIPS. Interestingly, Glidden et al. demonstrated that this region (labeled “midIPS”)

shows preferential activation by saccades as compared to reaches, in agreement with

our results showing most significant activation of IPS2 and retIPS in memory delay

and saccade periods. This lends additional support to the analogy of retIPS/IPS2

with monkey LIPd.

However, the exact delineation and terminology of different PPC regions, while

important, is not the main focus of the current study and does not affect our principal

conclusions. By estimating the response amplitude and contralaterality across several

parietal areas involved in the task, both on an individual level and across subjects,

we attempted to present a full spectrum of responses and ensured we did not miss

any significant (contralateral) activation.
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Supplementary statistical maps for (A) +cue left and +cue right contrasts; (B) +memory left

and +memory right contrast. Note stronger and more extensive contralateral activation patterns.

(C) +saccade (both left and right), with same random-effects map superimposed; note overlap of the

two maps. (D) Cue and memory delay right>left contrast (p<0.05 uncorrected), significant differ-

ences are mostly localized to the occipital lobe, V7, and precuneus. (E) 4 axial slices showing relative

contributions of left and right cue and memory delay predictors to variance, in significantly activated

(p(Bonf)<0.001) voxels. Color map ranges from red–yellow—mostly right predictors contribute, to

green—equal contribution, to cyan–blue—mostly left. On these images, left is right (radiological

convention). These maps further demonstrate weak but extant contralaterality of frontoparietal

areas. Note stronger contralaterality in pCu. (F) Memory>fixation delay peaks of activation (with

stringent statistical threshold p(Bonf) <0.001), localized to retIPS, IPS2, and right mFEF ROIs

with most significant spatially specific delay activity (as compared to non-specific ramping in direct

trials).
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Hemispheric and Visual Field Asymmetry in Humans and Monkeys

An ideal contralateral organization assumes that both hemispheres respond in mirror-

symmetrical fashion, manifesting comparable levels of contralateral tuning. We tested

this assumption by separately calculating CS in left and right hemisphere ROIs. In-

terestingly, in both species the left hemisphere exhibited stronger contralaterality.

However, this effect was modest in monkeys, but much more pronounced in humans

(Fig. 4.S5B for monkeys, Fig. 4.S6 for humans). In monkey areas that showed strong

consistent memory delay period activity (LIPd, FEF, dlPFC, Tpt, TPO), the dif-

ference between left and right brain CS for cue and delay (means.d.) was 2411%

and 2413%, respectively, while in human parietal and frontal areas with strong delay

activity (IPS1/2, retIPS, l/mFEF), the difference was 7955% and 11625%.

To quantify the asymmetry in contralateral tuning further, we calculated the

correlation between %CSchange = (CSleft hemi-CSright hemi)/CSleft hemi*100 for the

left hemisphere, and the contralateral response amplitude for the right hemisphere,

in corresponding trial epochs across cortical areas. Strong negative correlations in

monkeys (Spearman r=-0.59 for cue, r=-0.85 for delay, p<0.05, n=21) showed that

only areas that had very little cue and memory delay activity had spuriously large

difference between left and right CS, resulting from random fluctuations in time-

courses (recall that CS is a normalized measure that does not take into account the

absolute amplitude of the responses). In contrast, human areas showed no significant

correlation between %CSchange and response amplitude (r=-0.15, r=-0.13, p>0.05,

n=16), because many areas that had robust cue and memory delay responses also

exhibited a considerable difference between left and right hemisphere tuning.
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Figure 4.S5:

Mean Response Amplitude and Contraversive Selectivity by Hemisphere(A) Mean re-

sponse amplitude in monkey cortical areas. For each area, histogram plot consists of 4 bar groups:

direct–contra, direct–ipsi, memory–contra, memory–ipsi, from left to right, and each group of cue,

delay, and saccade response. (B) Contraversive selectivity (CS) by hemisphere. For each area,

histogram plot consists of 2 bar groups: left and right hemisphere.
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Figure 4.S6:

Contralaterality in human cortical areas in left and right hemispheres. (A) Scatter plots

showing right versus left CS for each subject and each area, for cue and memory delay. Numbers

show how many subjects, out of 8, had CS>0 in each hemisphere. (B) Mean and s.e.m. of CS—each

area histogram plot consists of 2 bar groups: left and right hemisphere.
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Supplemental Discussion

Previous Monkey fMRI Studies

Two previously published reports from Miyashita and colleagues employed a variant

of event-related analysis that used closely spaced short trials and low (>2 s) temporal

resolution, and thus were not able to resolve the dynamics of the BOLD timecourses

within each trial (Koyama et al. 2004; Nakahara et al. 1999). Consequently, only a

single averaged HRF timecourse that collapsed several events related to the cognitive

set-shift was presented in the Nakahara et al. (2001) study; no timecourses were

extracted in the Koyama et al. (2004) study.

Long Delay Periods in Monkey Electrophysiology

As stated in the main text of the paper, most monkey electrophysiology studies

employed relatively short (0.5–2 s) delay periods. However, Fuster and colleagues

(Fuster 1990; Quintana et al. 1988; Zhou and Fuster 1996) used delays up to 18 s in

the context of delayed match-to-sample visual and somatonsensory tasks, but not in

the context of spatial memory; and they also used manual responses. A seminal paper

by Funahashi et al. (1989) compared 1.5, 3, and 6 s memory delays in the memory

saccade task, and they found no conspicuous differences between firing timecourses

during these periods in prefrontal cortex. To our knowledge, the longest memory

period used for recordings during delayed oculomotor task in the parietal cortex was

3 s, in the work of Chafee and Goldman-Rakic (1998). In follow-up experiments we

plan to record single units and LFP activity from frontal and parietal fMRI-identified

ROIs with the same long delays used in our fMRI experiments. This will enable a

more direct comparison of fMRI and neural activity timecourses.

Nature of “cue response”

We suggest that distinct time-locked activation in the early memory period that we

and others refer to as the ‘cue response’ reflects not only initial sensory processing

associated with the incoming visual input, but also subsequent higher-order cogni-
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tive processes such as shift of attention to the cue, inhibition of reflexive saccades

(Cornelissen et al. 2002) and memory consolidation. A direct test of this hypothesis

requires comparison of responses to the same peripheral flash in the condition when

it is behaviorally relevant (such as in memory trials) to a condition where it is behav-

iorally irrelevant (Platt and Glimcher 1997). Arguably, it is difficult to train monkeys

that have previously learned saccade tasks to completely ignore distractor cues, and

to ensure that monkeys do not continue to regard them as potential targets for action.

In a separate set of experiments, we attempted to convey the idea of ‘irrelevance’ for

monkeys’ behavior by using larger cues in a separate task in which monkeys had to ig-

nore the peripheral flash and to continue fixating centrally in order to get a reward; as

compared to regular (smaller) targets for memory-saccade task. These two conditions

were run in separate blocks (rather than interleaved trials). FEF and LIP responses

to smaller but behaviorally-relevant cues tended to be stronger than responses to

larger but behaviorally irrelevant distractors. Similarly, in our recent human fMRI

study, we employed a control condition in which irrelevant cues were visually iden-

tical to behaviorally meaningful cues, and we observed smaller BOLD responses to

the cues in the ‘irrelevant’ context (Lindner et al., in preparation). Together, these

results provide converging evidence that the cue response comprises attentional and

memory-related components, in addition to purely sensory activation (but see Brown

et al. 2004 and Medendorp et al. 2006—irrelevant and relevant cues in these human

fMRI studies seem to evoke very similar responses).

Response Amplitude and Contralaterality in Humans—Comparison with

Other Studies

Two recent fMRI studies of delayed memory saccades also utilized long and variable

delay periods, and specifically investigated spatial tuning properties of cue and delay

period activity in human subjects (Schluppeck et al. 2006; Srimal and Curtis 2007).

Our results generally agree with previous findings, but some quantitative differences

exist. According to similarly calculated contraversive selectivity (CS) indices, we find

∼1.5–2 times less contralaterality in V7, IPS1, and IPS2 as compared to the study
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of Schluppeck et al. Consonant with the Srimal and Curtis data (∼10% difference),

we observed only small differential activation in contralateral trials. This resulted

in CSdelay values ranging from 0.21 in V7 to 0.15 in IPS2 (and 0.24 in retIPS), as

compared to 0.5–0.3 in the Schluppeck et al. data. Akin to their data, V7 had the

strongest contralaterality among the three ips areas, especially for the cue response.

In frontal areas, our data show more contralaterality in medial FEF, while Srimal and

Curtis reported contralateral tuning for lateral FEF and not for medial FEF. Many

other human fMRI studies did not observe any significant contralateral tuning (e.g.,

Khonsari et al. 2007), and topographic phase-mapping experiments demonstrated

only weak contralateral biases (see Schluppeck et al. 2005).

Several possibilities could explain the quantitative difference between our results

and the Schluppeck et al. 2006 results. Schluppeck et al. 2006 extracted timecourses

from pre-selected ROIs that have already been shown to exhibit a topographic organi-

zation, but this procedure is unlikely to be a source of the discrepancy. In their study,

pre-selected ROIs were quite extensive and encompassed comparable regions in our

study. Trivially, the reason for the discrepancy may lie in the substantial variability

of BOLD timecourses across subjects. Schluppeck et al. 2006 used only 4 subjects,

so it’s possible that these subjects happened to exhibit stronger contralaterality (of

course, the same argument may apply to our 2 monkey subjects, although our pre-

liminary data from a third monkey (monkey F) used in a similar memory saccade

task showed similarly strong contralateral memory delay responses).

Finally, for the CS calculation we used actual %BOLD change response ampli-

tude (see Experimental Procedures), while Schluppeck et al. used model fit predic-

tors. This manipulation could not manufacture a contralateral bias, since the model

was linear and predictor-response transformations would not affect the ratio between

contra- and ipsilateral trials. However, it could explain the difference in estimates of

cue-to-delay ratios between our and the Schluppeck et al. studies. In Schluppeck et

al., the delay period activity predictor d was modeled as a constant level spanning the

entire delay period, while cue c was modeled as an instantaneous function. Since the

hemodynamic transfer function acts as a ‘leaky integrator’, the value of d required to
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reach a similar apparent level of BOLD activation as in cue response peak would be

quite low (d<<c). At the moment, it’s unclear whether the assumption of constant

neuronal delay activity commencing immediately after the cue is justified—for exam-

ple, it could be that with such long delays, the delay period activity should be divided

into early cue processing and late maintenance/preparation/recall stages. Therefore,

we chose to report actual %BOLD change values that required no prior assumptions

except an unbiased initial baseline period.

A recent fMRI study by Jack and colleagues (Jack et al. 2007) examined to-

pographic and contralateral organization of human cortical areas using a variant of

a time-unresolved delayed saccade task with closely spaced trials, short delay peri-

ods, and continuous presentation of cue-specific distractors. While the results of this

study cannot differentiate between effects of cue, distractors, and forward-and-return

saccades, they convincingly showed that under these conditions extra-occipital areas

exhibited little visual topography. Instead, discrete parietal and frontal areas mani-

fested some degree of contralateral tuning, but even in most contralateral ROIs, the

ipsilateral response was approximately half as strong as the contralateral response,

resulting in CS ∼0.33 (note that the ‘laterality index’ used by Jack at al. was cal-

culated as L=(Rcontra-Ripsi)/Rcontra, thus L of 0.5 transforms to a CS of 0.33 in both

ours and Schluppeck et al.’s formulations).

Contralaterality and Topography in Human PPC

Despite continuous attempts to characterize the organization of human PPC in terms

of spatial, effector, and task specificity, and possible monkey homologies, the appar-

ent functional and anatomical complexity of parietal areas is far from being resolved.

Here we only briefly mention the spatial tuning aspect of the problem. First, several

groups that used time-unresolved phase-encoding experiments reported anatomically

divergent results: Sereno et al. found a discrete topographic region in medial ips

while Schluppeck et al. (2005) and Silver et al. (2005) showed two larger regions,

IPS1 and IPS2, tiling medial SPL along ips, dorsally and anteriorly from V7. More

recently, Swisher et al. (2007) defined, in addition to IPS1/2, two more areas IPS3/4
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located in the ‘vicinity’ of the topographic area defined by Sereno et al. Addition-

ally, Jack et al. delineated their most contralateral medial ips area, termed ‘MIPS’,

which corresponded reasonably well to the area of Sereno et al.; but they do not find

contralateral tuning in regions that would be termed IPS1/2. Interestingly, in addi-

tion to MIPS, which also roughly corresponds to retinotopic IPS (retIPS) as defined

by Medendorp and colleagues (Medendorp et al. 2006), Jack et al. reported even

stronger contralaterality in anterior precuneus (pCu), in agreement with our results.

Although some differences in tasks may account for these discrepancies, the results

obtained with different tasks in the same studies/labs are usually more consistent than

between labs. Other possibilities include different analyses/software, SNR (due to

field strength, RF coil, and resolution), statistical power, variability between subjects

etc. Most importantly, these discrepancies underscore the limitations of a phase

encoding approach to extra-occipital areas, both in terms of confounding different

visual, motor, and cognitive components, and with respect to methodological issues

(refer to Discussion in Jack et al. 2007 for extensive treatment of the latter).
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Chapter 5

Conclusion

Goal-directed behavior requires the planning and preparation of actions in order to

respond flexibly and dynamically to environmental stimuli. The existence of these

planning processes has long been expounded by psychologists, who recognized that the

manner in which a movement was initiated already reflected the pre-specified infor-

mation about the movement and the intended objective of the movement (Rosenbaum

1980; Jeannerod 1981).

Delayed-response tasks, which temporally separate instructive information from

the execution of contingent motor responses, have been ubiquitously used to dis-

entangle neural activity related to processing the contextual/sensory instructive in-

formation, performing the movement, and the intervening ‘planning the movement’.

However, the debate has long ensued as to the nature of the activity probed during

this ‘delay’ period. This delay-period activity, bridging the cue and the motor re-

sponse, may correspond to a retrospective sensory memory of, or attention to, the

contextual information previously cued; it may also incorporate prospective planning

of upcoming actions. In studying these processes, human imaging studies generally

purport a retrospective role related to attention or working memory in posterior pari-

etal regions, and one more biased towards prospective motor planning in frontal (pre-

central) areas (see Chapter 2). These studies though did not adequately distinguish

between working memory and a ‘default set’ of potential movements; nor between the

preparation to perform a movement and the preparation to inhibit a movement (see

Chapter 2). While controlling for these issues, we designed a time-resolved fMRI



193

experiment that permitted isolation of preparatory fMRI activity, specifically related

to the planning and the inhibition of right index finger reaches towards memorized

target locations. In so doing, preparatory fMRI activity was most robustly demon-

strated in the left superior parietal lobule, though also present in other regions within

the posterior parietal and premotor cortex. Additionally, the activity of these regions

encoded both movements to be performed and those to be inhibited. In essence, then,

action planning areas reflect both types of action goals relevant for behavior—those

to be acquired and those to be avoided.

We utilized a variant of this delayed-response task to investigate the representation

of multiple motor plans (not discussed in depth in this thesis, but see Discussions in

Chapter 2 and 3). In this task, trials either instructed one sequence of movements

(key presses); or presented two potential movement sequences, one of which would

be cued at the end of the delay period. Preliminary results show that both PPC and

premotor cortex activation graded with the number of possible movement sequences

during the delay phase, even in conditions in which only one of these sequences would

ultimately be performed (Lindner A., Kagan I., Iyer A. and Andersen, R.A. 2008

Prospective coding of alternative actions in human parietal and premotor cortex. 6th

FENS Forum of European Neuroscience). These observations suggest that competing

action plans are simultaneously encoded in these regions.

If multiple potential actions are represented concurrently, some mechanism must

exist by which to determine an appropriate, or optimal, one to perform, i.e., the

one that is likely to yield the best outcome. This determination then is presumably

predicated upon an appraisal of the possible consequences of the available behav-

ioral responses. We therefore assessed whether action-planning regions additionally

incorporated such information into the action plans they encode. To do so, human

subjects were scanned while performing a motor planning task, with monetary gains

and losses imposed for correct or incorrect trial completion. Though previous studies

have investigated the encoding of action contingencies (see Chapter 3), our experi-

ment differed in a few respects: (1) the task was sufficiently challenging to produce

a non-trivial probability of incorrect trial completion and (2) the consequence of un-
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successful trial completion was not mere absence of reward, but overt punishment.

Hence, both the monetary gains and the losses were viable consequences to be con-

sidered. Reward structures responded to the contextual cue indicating the gain-loss

contingencies for the movement, and reflected its expected value, based on subjects’

actual performance (their probability of success). In contrast, frontoparietal motor

planning regions were more active during the delay period in conditions of both high

expected gains and high expected losses. Furthermore, this pattern of activity de-

pended more strongly on whether subjects believed they would attain a gain or loss

than on whether they were actually more likely to attain a gain or loss. These find-

ings suggest that subjective beliefs and biases may significantly modulate the neural

representation of action plans.

The impact of cognitive biases on behavior has been the subject of much dis-

cussion (see Discussion, Ch. 3). However, their influence on neural activity in the

frontoparietal network, in the experimental context of a single instructed movement

sequence where subjects receive trial-by-trial (though no cumulative) feedback was

surprising, and deserves further scrutiny. To probe this effect more meticulously, fu-

ture experiments designed to manipulate and control subject’s perceptions of their

performance and track their on-going perceptions throughout the experimental ses-

sion are needed. Additionally, an interesting question would be to explore how these

factors affect behavior in an experimental paradigm where many response alternatives

exist. Such a context of response selection would allow us to assess the respective

contributions of neural activity in frontoparietal regions and in ventromedial striatal

subregions (which appear to track expected outcomes more veridically) in the process

of decision-making.

The human imaging studies presented in this thesis, amongst a plethora of oth-

ers, have sought to unravel the multifarious nature of delay-period activity during

the planning of goal-directed actions. The imaging approach proffers the advantage

of glimpsing the entire brain at once, revealing the involvement and dynamics of

large networks of cortical and subcortical regions. Yet its ability to elucidate neural

processes underlying activations in these tasks is limited. Providing complementary
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information, monkey electrophysiological studies using similar delayed-response tasks

can illuminate single-unit neural firing patterns with much finer temporal resolution.

However, direct generalizations and inferences between these two bodies of literature

are impeded by differences in species, techniques, and trial durations. For instance,

frontoparietal regions recruited by saccade planning exhibit less BOLD contralater-

ality in humans than would be expected based on single-unit studies in monkeys.

Given that contralaterality is a major principle of organization in sensory and mo-

tor systems, this discrepancy is surprising, but whether it stems from methodolog-

ical or species dissimilarities is unclear. To address such issues, fMRI in monkeys,

completing the same tasks as humans, constitutes the necessary link to relate and

reconcile reported findings. We therefore directly compared fMRI activation in mon-

keys and humans under identical experimental task requirements: delayed visually

and memory-guided saccades. In addition, we successfully developed an event-related

approach for the analysis of BOLD signals in alert behaving monkeys, enabling us

to segregate responses from different trial epochs. In monkeys frontal, parietal and

temporal areas, BOLD signals revealed spatially specific, strongly contralateral cue

and memory/planning activity, as well as non-specific movement preparation during

the delay period. These patterns resonated with BOLD profiles in putative human

functional homologs; however, contralaterality was considerably more robust and the

time-course of hemodynamic responses less sluggish in monkeys, suggesting genuine

disparities between the two species.

This characterization of BOLD activity distribution, dynamics, and relative dif-

ferences in human and macaque frontoparietal networks additionally serves as an

indispensable foundation for our current and future studies of action planning and

response selection in the two species. As choosing a target of an action is clearly an

important variable in ultimately specifying a behavioral response, areas that encode

object-reward associations are also relevant in guiding action planning. To map areas

encoding reward associations, without the confound of neural processes related to

movement, monkeys were scanned while making eye movements, either instructed or

freely chosen, to differentially rewarded targets. After the saccade, reward delivery
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was deferred, and activation during the expectation period was monitored. Pilot re-

sults show that the striatum, a putative reward structure, and inferotemporal regions,

thought to subserve aspects of object vision, both encode stimulus-reward associa-

tions. Furthermore, when stimulus-reward associations alter, both regions reflect the

new reward contingencies, though the striatum appears to play a leading role in this

process.

Finally, we are conducting a free-decision variant of the delayed memory-guided

saccade task, in which monkeys can make an eye movement to acquire one of two

equally rewarded targets. Preliminary data demonstrate that during the delay period,

between presentation of target options and the deferred saccade, BOLD signals in

frontal and parietal areas reflect the choice process. In addition, the dynamics of

these signals imply that regions thought to specifically mediate the planning of eye

movements, namely areas LIP and FEF in the posterior parietal and frontal cortices

respectively, evince the monkey’s choice earlier than other subregions in these cortical

areas.

In conclusion, the body of this work has provided insight into the neural sub-

strates of action planning in humans, defining cortical regions which prospectively

encode motor intentions and the consequences of those intentions. In addition, it has

provided fMRI characterizations of homologous reward-encoding and action-planning

structures in humans and macaques. Predicated on these findings, we look ahead to

studying how the expected and experienced outcomes of actions impinge upon action-

planning and decision-making in both species. In addition to conducting these future

imaging experiments in humans and in monkeys, electrophysiological recordings of

the same monkeys performing these same tasks forms the critical next step. With

this last nexus, we can synthesize information about whole brain population dynam-

ics and the neural computations underlying them, furnishing a greater understanding

of the cortical circuits subserving the selection and planning of goal-directed actions.
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Appendix 1—Expected Reward
Modulation of Dorsal and Ventral
Stream Activity in a Goal-Directed
Oculomotor Task

A1.1 Summary

In a constantly changing environment, the ability to associate stimuli with rewards,

and update this association as necessary, crucially underlies flexible goal-directed be-

havior. To investigate areas involved in encoding and updating these stimulus-reward

associations, monkeys were scanned while making eye movements, either instructed

or freely chosen, to acquire different visual targets. Expectedly, action-planning ar-

eas involving regions in frontal and posterior parietal cortices exhibited activity at the

time of the eye movement that reflected the reward associated with the saccade target.

In addition, reward structures such as the striatum, and areas in the temporal cortex

thought to underlie object representations, displayed activity after the movement was

executed in expectation of the reward; further, this activity graded with magnitude of

the reward expected. When stimulus-reward associations were reversed, the activity in

these regions came to reflect the new associations, albeit with differing temporal pro-

files. While BOLD activity in temporal cortex regions changed in step with behavior,

striatal activity represented the updated associations earlier, preceding even behavioral

changes. These findings suggest dissociable roles of object-representation areas and

reward structures in learning and encoding the rewards associated with stimuli.
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A1.2 Introduction

The selection of goals to guide action is strongly determined by the expected utilities

affiliated with environmental stimuli. In a dynamic environment, this selection process

fundamentally relies on the capability to associate a stimulus with a reward, and to

flexibly update this association.

Studies in humans, nonhuman primates, and rodents have implicated putative

cortical and subcortical reward structures in learning and representing the values or

expected outcomes tied to stimuli. Electrophysiological recordings have demonstrated

that orbitofrontal cortex (OFC) may denote the relative value of available rewards

and objects (Tremblay et al. 1999; Schultz et al. 2000), and OFC lesions often lead

to impairments in learning stimulus-reward associations (Schoenbaum et al. 2002;

Bechara et al. 1994, 2000). Similarly, the striatum is thought to play a key role

in both the selection of previously reinforced goals and in learning through positive

reinforcement (Schultz et al. 2000; Tremblay et al. 2000; Hikosaka et al. 1991).

Ablations and pathologies of basal ganglia structures also hamper the acquisition of

new stimulus-reward associations (Swainson et al. 2000; Ragozzino 2007). Moreover,

single-unit recordings suggest that striatal firing rates quickly reflect changes in and

update stimulus-reward contingencies (Pasupathy and Miller 2005).

Cortical networks involved in the control of action also encode reward information

about stimuli. Numerous studies document variables related to expected utility that

influence activity in dorsal stream areas. As ‘where’ areas processing sensory and

spatial information for the guidance of behavior, these cortical regions presumably

incorporate the importance of the stimulus as a target for action, rather than the

value of the object per se (Goodale et al. 1998; Glimcher 2003).

In addition to frontostriatal reward circuitry and action-planning networks, brain

areas involved in visual object representation and recognition would be hypothesized

to reflect reward associations, since information about the value of an object derived

from past experience is critical for the facilitation of effective and rapid goal-directed

behavior. As information regarding the value of objects is accumulated, such infor-
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mation is likely incorporated into long-term neural representations of objects. The

ventral visual or ‘what’ pathway (Goodale et al. 1998), including the inferotemporal

(IT) cortex, is thought to subserve visual object discrimination and recognition, and

its activity may thus reflect reward associations.

Prior work however has not provided a definitive account of reward encoding

in the ventral visual stream. IT cortical lesions can result in the inability to form

object-reward associations; this inability though could conceivably derive from IT’s

role in object recognition. Previous electrophysiological studies in macaques suggest

that polymodal subregions such as perirhinal cortex may encode reward information.

Findings about unimodal visual object areas such as TE remain equivocal, while

reward-related modulation of activity in other parts of the inferotemporal cortex has

not been specifically explored. Thus, whether the temporal lobe further contributes

to coupling of object and reward information is still unclear.

The objective of the current study is to delineate those regions underlying visual

object-reward associations, with a particular focus on the ventral object-vision stream.

Specifically, we aimed to map areas that represent and update object-related reward

expectancy signals using fMRI. To do so, monkeys were scanned while performing

instructed- and free-choice saccade tasks where eye movements were made to acquire

either a small-reward target or large-reward target. We found that areas in the

temporal cortex along the superior temporal sulcus, as well as in the striatum, showed

sustained activity reflecting the expectation of a delayed reward. These expectancy

signals were graded with the magnitude of the reward, as long as the reward-predicting

target (and/or color of target) was visible.

To ensure these responses stemmed from reward associations and not other prop-

erties of the targets, target-reward associations were reversed after the initial associ-

ations were well learned. Preliminary findings from the days immediately following

reversals offer insight into how these areas dynamically update object-reward repre-

sentations. The first brain area to reflect the new object-reward associations was the

striatum, even preceding changes in the monkey’s behavior. However, once the new

associations were evident behaviorally, both striatal and temporal cortical activity
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reflected the updated target-reward associations.

In addition, in reliably mapping brain substrates encoding reward information,

this study serves as an important prerequisite for future reward-based decision-making

studies in the macaque.

A1.3 Results

The experimental paradigm primarily demanded that monkeys saccade to peripher-

ally presented targets to acquire a reward, described in Phase I (Fig. A1.1). Two

variants were conducted chiefly as controls, explained further in Phases II and III

(Fig. A1.2).
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Experimental task and timing. (a) Phase I: Monkeys fixated on a central red square. In

‘Instructed Small’ reward trials (top row), a blue target was presented either 15o to the right or left

of the fixation spot. The monkey immediately saccaded to the target, then returned to the central

fixation for 10 seconds, during which time the fixation square was blue. The monkey then received

0.5 mls of water. In ‘Instructed Large’ reward trials (second row), the same sequence occured,

but the peripheral target (and subsequent fixation square) was green. The monkey received 1.5

mls for successful completion. In ‘Free choice’ trials, blue and green targets were both presented

(randomized right versus left). The monkey could saccade to either, and received the corresponding

amount of water if he successfully completed the trial. (b) Behavior recorded throughout trials.

Saccades, licks, and blinks are portrayed, above a representative timecourse that exhibits BOLD

responses to all task events. For behavior, horizontal lines in task epochs indicate mean number of

saccades/blinks (red), with 95% confidence interval (black lines).
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Phase II and III (A) Phase II: Experimental structure and timing were the same as in Phase I,

but blue targets were now associated with the large fluid reward, and green targets with the small

fluid reward. (B) Phase III: Again, the experimental structure, timing, and stimuli/color-reward

contingencies were the same as in Phase I. After monkeys saccaded and returned to central fixation,

the fixation square remained red, rather than indicating the color of the saccade-acquired target.
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Phase I: Reward Magnitude

Three monkeys were scanned while performing saccade tasks, either making an eye

movement that was (1) instructed to one presented target, or (2) a free choice to

one of two presented targets. The amount of reward associated with each target was

indicated by the color of the target: blue denoted a small amount of fluid; and green, a

large amount. Monkeys saccaded to the target at the time of target presentation, then

subsequently returned to central fixation for ten seconds, after which they received the

reward associated with the saccade target (Fig. A1.1A). The color of the fixation point

during this expectation period prior to reward receipt signified the upcoming reward

(i.e., the fixation point turned the same color as the instructed or chosen target for

that trial). The long expectation period permitted disambiguation of: (1) activity due

to sensory and motor processes during the target presentation and immediate saccade

execution (Target/Saccade epoch), (2) signals deriving solely from expectation of the

reward, the amount of which was determined by the stimulus acquired by the saccade

(Expectation epoch), and (3) signals due to reward consumption and related motion

artifacts produced by this consumption (Receipt epoch).

Given the confounds of the target/saccade and receipt epochs, the imaging find-

ings for these events will be only briefly discussed, summarized in Phase I. Regions

predicted to be recruited during the target/saccade period were considerably distorted

in one monkey (monkey FLO). An additional monkey was therefore scanned for Part

I of the experiment.

Behavioral Findings

Behavioral performance measures attest that all three monkeys grasped the stimulus-

reward associations. Monkeys almost exclusively chose the high-reward target in

free choice trials. In addition, they successfully completed a significantly higher per-

centage of instructed large-reward trials as compared to small-reward trials (p<0.05)

(Fig. A1.3A–C, lowest rows). Reaction time latencies revealed similar inclinations.

Two
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Figure A1.3:

Behavioral findings for Phase I. (A) Monkey HAN (B) Monkey FLO (C) Monkey RED. For

all monkeys—Top Row: Distribution of saccadic latencies in Instructed Small Trials. Second Row:

Distribution of saccadic latencies in Instructed Large Trials. Third Row: Distribution of saccadic

latencies in Free Choice Trials. Bottom Row: Mean performance (percentage of successfully com-

pleted trials) per trial type. The left column represents behavioral data from monkey HAN; the

middle column, monkey FLO; and the right column, monkey RED.

of three monkeys saccaded to instructed large reward targets with shorter laten-
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cies than to instructed small-reward targets (significant in monkeys FLO and RED,

p<0.05) (Fig. A1.3A–C, top two rows). In addition, monkeys showed a slightly in-

creased latency when saccading to the large-reward target in free-choice trials as

compared to the large reward target in instructed trials (significant in two monkeys

FLO and HAN, p<0.05) (Fig. A1.3A–C, second and third rows). This latency dif-

ference may suggest additional processing, such as the comparison of two targets, or

some hesitation in free-choice trials.

Imaging Findings

Target Presentation and/or Saccade Execution. To elucidate areas with sig-

nificant reward-related modulation during the target presentation/saccade execution

epoch, a contrast between instructed large reward and instructed small reward trials

was implemented, The contrast did not specifically assay choice trials, as additional

choice-related activity may be occurring and visual load is unbalanced as compared

to instructed trials (two versus one target at time of presentation). By this contrast,

the target presentation/saccade execution epoch produced significant activations bi-

laterally in frontal, parietal, and temporal cortical regions (voxel level p(FWE)<0.05

for the instructed large>instructed small contrast) (Fig. A1.4A).

Voxels in the arcuate sulcus (FEF/PMd) and in the intraparietal sulcus (IPS)

displayed similar patterns of activity. However, these frontal and parietal regions

could not be reliably detected in all monkeys. Distortions in monkey HAN impeded

accurate characterization and localization of BOLD activity in posterior aspects of

IPS; whereas inhomogeneities and distortions did not permit reliable mapping of

frontal areas/FEF in monkey FLO. These distortions are likely due to proximity

to the monkeys’ headposts. For the monkeys in which reasonable images could be

generated for these regions, the statistical maps are presented in Fig. A1.4A.
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Figure A1.4:

Statistical map and timecourses: Target presentation/saccade execution epoch(A) Sta-

tistical map for Instructed Large Reward Trial > Instructed Small Reward Trial, p(FWE)<0.05.

Coronal sections to best exemplify regions in temporal, frontal, and parietal regions are shown. (B)

BOLD timecourses extracted from superior temporal sulcus (sts), corresponding to the two mon-

keys whose maps are presented. (C) BOLD timecourses extracted from arcuate sulcus (i.e., voxels

in frontal eye fields and dorsal premotor cortex), corresponding to the two monkeys whose maps are

presented. (D) BOLD timecourses extracted from intraparietal sulcus (ips), corresponding to the

two monkeys whose maps are presented. In all timecourse plots, signals in Instructed Large and Free

Choice trials are both compared to Instructed Small trials with a two-sample t-test, at each 1 second

interval. Times at which either instructed large or free choice signals are significantly different than

instructed small signals are indicated with a dot.
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The BOLD signal amplitude in instructed large trials and free choice trials were

both compared to the signal amplitude in instructed small reward trials at 1-second

intervals (time bins) throughout the trial, using a two-sample t-test. Times at which

the signal amplitudes significantly differed are indicated by a dot. (This convention

is used throughout this chapter.) The BOLD timecourses extracted from frontal and

parietal ROIs (Fig. A1.4C,D) demonstrate that the target/saccade event elicited a

peak of activation, modulated by trial type: instructed large and free-choice trials (in

which the large reward was persistently chosen) produced a significantly larger BOLD

signal than did instructed small-reward trials (p<0.05, at most time bins between 2–6

seconds after target/saccade epoch onset).

Voxels in the banks and fundus of the superior temporal sulcus (sts) also exhibited

a robust target/saccade response under this contrast. However, timecourses reveal

less robust modulation of this response due to trial type and/or expected reward

(Fig. A1.4B). While significant voxels lay in several subregions along the banks of sts,

peak activation was in the dorsoposterior section along the sulcus, and corresponded

to areas FST/TPO (Fig. A1.4A, top row).

Expectation. Temporal regions along sts and aspects of the ventromedial stria-

tum displayed prolonged activation between saccadic acquisition of the target and

receipt of reward. The statistical map presents the contrast of instructed large re-

ward greater than instructed small reward activation during the expectation period

(voxel level p(FWE)<0.05) (Fig. A1.5A). For this contrast, the peak of activation

along sts was even further posterior along the sulcus than voxels exhibiting reward-

modulated target/saccade activation, and on the lower bank of the sulcus, in areas

FST/TEO.

Timecourses of BOLD activity in these regions (Fig. A1.5B,C) show significant

modulation due to reward magnitude, with instructed large-reward and free-choice

trials eliciting an increased signal amplitude over small-reward trials as early as the

target/saccade response.
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Figure A1.5:

Statistical map and timecourses: Expectation delay epoch.(A) Statistical map for for In-
structed Large Reward Trial > Instructed Small Reward Trial, p(FWE)<0.05. (B) BOLD time-
courses extracted from superior temporal sulcus (sts), corresponding to the two monkeys whose maps
are presented. (C) BOLD timecourses extracted from the striatum, corresponding to the two mon-
keys whose maps are presented. Times during the trial at which either instructed large or free choice
signals were significantly different than instructed small signals are indicated with a dot (two-sample
t-test).
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Receipt of Reward. While several subcortical and cortical regions should gen-

erate a response to receipt of reward, this task epoch lies particularly susceptible to

distortion in brain images. As the monkeys lick and swallow fluid at the time of re-

ceipt, jaw and tongue motion produce substantial artifacts, particularly throughout

the inferior aspects of the brain (i.e., subcortical regions, orbitofrontal cortex, etc.).

More dorsal areas less affected by motion-induced distortions exhibited some robust

and reproducible activity. Most notably, areas in the banks of the central sulcus (voxel

level p(FWE)<0.05) showed a significant reward-related response (Fig. A1.6A). This

signal amplitude scaled with reward amount, higher with large amounts of fluid re-

ceived and lower for small amounts of fluid received (Fig. A1.6B). Activation in the

central sulcus comprised somatosensory cortex in both monkeys, and extended slightly

into M1 motor cortex in one monkey, ostensibly corresponding to motor and sensory

stimulation due to drinking the fluid reward. However, even in one of these monkeys

(monkey HAN, Fig. A1.6B, left panel), the reward-related response appears more

motion- than hemodynamic-related: (1) the BOLD signal amplitude is suspiciously

large, and (2) onset of signal rise occurs immediately at time of receipt (10 sec)

rather than occurring with the characteristic hemodynamic delay. Thus, considerable

caution is required in interpreting activation during the receipt epoch in this task.
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Figure A1.6:

Statistical map and timecourses: Reward receipt epoch. (A) Statistical map for +Receipt

of reward Epoch. p(FWE)<0.05. Coronal sections to best exemplify regions in S1. (B) BOLD

timecourses extracted from S1, corresponding to the two monkeys whose maps are presented. Times

during the trial at which either instructed large or free choice signals significantly differed from

instructed small signals are indicated with a dot (two-sample t-test).
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Phase II: Reward Magnitude Reversal

The modulation of BOLD responses observed in Part I can conceivably be explained

by differential visual characteristics of the targets, e.g., the color or luminance of the

target. To ensure that such basic visual properties did not give rise to the previous

findings, the stimulus-reward contingencies were reversed. This reversal additionally

provided a window in which to discern areas engaged in learning and updating object-

reward associations.

The color previously indicating a large reward now denoted a small reward (green

now produced the smaller reward), and the previous small reward color (blue) now

indicated a larger reward (Fig. A1.2A). Two monkeys participated in this phase of

the experiment (At this time, multiple reversals have been imposed upon only on

one monkey; both monkeys will be scanned doing more reversals in the future). For

these scanned reversals, no training occurred beforehand, i.e., monkeys were scanned

beginning with the first day of reversed contingencies.

Behavioral Findings

Fig. A1.7A depicts choice behavior of monkeys after stimulus color-reward associ-

ations were reversed. Day 0 denotes the day immediately prior to reversal, when

the old associations were well established and monkeys constantly saccaded to the

large-reward target. On the first day of reversed reward associations (Day 1), they

persistently chose the previously large-, now small-, reward target. By the second day

(Day 2) after reversal, monkeys began to explore the other (now large-reward) target

for the period of a few trials, and then regularly selected the large-reward target.

Finally, by Day 3, monkeys reliably identified and chose the large-reward target.

Trends in performance rates over days post-reversal corresponded to choice be-

havior (Fig. A1.7B). Both monkeys successfully completed a greater percentage of

large-reward than small-reward trials on Day 0. Following reversal, on Days 1 and

2, performance for the instructed, now-small-reward trials equaled if not exceeded

performance in large-reward trials. On Day 3, when monkeys chose the new large-
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Figure A1.7:

Behavioral findings for Phase II. (A) Cumulative choices, as a function of day relative to

reversal (where Day 0 denotes day before reversal, and Day 3 the third day of reversed reward

contingencies). On Days 0 and 3, both monkeys exclusively choose the large-reward target. On Day

1, they perseverate and choose the small (previously large) reward target. On Day 2, they begin

choosing the now-large-reward target. (B) Performance (% successful trial completion) for each trial

type as a function of day (Day 0–3) (C) Saccadic latencies for each trial type as a function of day

(Day 0-3). The left column represents behavioral data from monkey HAN; the right column, monkey

FLO.



214

reward target, performance in instructed large-reward trials once again surpassed

performance in small-reward trials.

Finally, saccadic latencies (in monkey FLO) on Day 0 were shorter for large-

reward trials than for small-reward trials (p<0.05); on Day 1, saccades to small-

reward (previous large-reward) targets were now faster (p<0.05), a tendency which

diminished by Day 2 (Fig. A1.7C, right panel). In monkey HAN no significant changes

in reaction time patterns for instructed trials transpired in the days after reversal

(Fig. A1.7C, left panel); however, for this monkey, no significant latency differences

for large- versus small-reward targets were observed with well-established stimulus-

reward associations (as can be observed on Day 0, or in Phase I).

Imaging Findings

As the reversal phase of the task specifically probed aspects of stimulus-reward en-

coding, neural activity during the expectancy period, without motor confounds, was

the principal focus. Thus, the striatum and regions in the sts (mapped in part I)

constituted our regions of interest. Both monkeys showed similar signal dynamics in

these ROIs. BOLD timecourses separated by monkey, ROI, and day post-reversal are

plotted in Fig. A1.8.

As frontoparietal regions displayed significant modulation in Phase I, elucidat-

ing the effects of reversed contingencies on BOLD activity in this network forms an

important goal of this work. However, severe distortions in these regions in the mon-

keys thus far scanned for this phase of the experiment (HAN and FLO) provide only

one reliable sample (monkey) per region. We are currently scanning an additional

monkey, in order to better speculate on BOLD trends in these areas.

Expectation. On Day 0, both striatal and sts areas exhibited expectancy signals

scaling with the magnitude of anticipated reward, i.e., instructed large and free-choice

trials generated higher signal amplitudes than did instructed small trials (Fig. A1.8A–

D, leftmost panels). On Day 3, by which time choice behavior of both monkeys

indicated that the new stimulus-reward associations had been learned, expectancy-

related activity in both areas again correlated with the magnitude of reward denoted
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BOLD timecourses separated by day relative to reversal. Choice behavior is plotted above

each day for reference. In both monkeys, striatal signals reflected updated reward contingencies a

session earlier than did sts signals. From monkey FLO: (A) extracted from the striatum and (B) sts.

From monkey HAN: (C) extracted from the striatum and (D) sts. For monkey HAN mean percent

signal change (PSC) for the expectation period was further quantified. For each day from Day 0–3,

the differences in mean PSC between trial types (i.e, for Instructed Large minus Instructed Small,

and Free Choice minus Instructed Small) were assessed. Significance of this difference is indicated

above each plot (first p-value). Second, the difference in mean PSC between Instructed Large and

Instructed Small, and between Free Choice and Instructed Small, is plotted as a function of trial

number within each day’s session (each sequential occurrence of each trial type are compared, i.e.,

the first Instructed Large versus the first Instructed Small; the second Instructed Large versus the

second Instructed Small trial, and so forth). A linear regression is plotted to extract trends within

each day’s session; the R2 and p-value for the regression are stated above each plot (see Experimental

Procedures). Times during the trial at which either instructed large or free choice signals significantly

differed from instructed small signals are indicated with a dot (two-sample t-test).
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by the stimuli (Fig. A1.8A–D, rightmost panels). Thus BOLD activation in these

regions tracked the reward amount rather than other characteristics associated with

the stimuli.

Before Day 3, however, activity in striatal and temporal areas evolved asyn-

chronously. Since the monkey’s assessment of and cognitive processes in free-choice

trials can less clearly be interpreted, the difference between instructed large and small

trials, which perhaps better reflects the evolving valuation of the targets, will primar-

ily be discussed. In monkey FLO, striatal responses were higher for large reward

compared to small reward targets on Day 2 (Fig. A1.8B, third panel); however, sts

responses still did not reflect this magnitude difference until Day 3 (Fig. A1.8A, fourth

panel).

Monkey HAN, who began selecting the new large-reward target before monkey

FLO, revealed similar reward-dependent BOLD modulation, but changes manifested

earlier. To better observe trends in neural activity following reversal, mean BOLD

signal amplitude for the expectation epoch is plotted underneath timecourses; differ-

ences between expectation periods in different trial types is assessed across days and

within days (see Experimental Procedures). In sts, the difference between instructed

large and instructed small is not significant on Day 1 of the reversal (p=0.32). On

Day 2 (Fig. A1.8D, third panel), during which choice behavior alters, the difference

between instructed large and small trials reaches significance (p<0.05), and the differ-

ence between free choice trials (where the monkey starts choosing the large reward)

and small trials significantly increases over the course of the day (R2=0.1, p<0.05).

Dynamics of sts activity appear to correspond to choice behavior.

Conversely, striatal activity in instructed large and free choice significantly ex-

ceeded that for small rewards already on Day 1 (p<0.05) (Fig. A1.8C, second panel).

Subsequently (on Day 2), these differences escalated (in terms of signal amplitude

difference and significance); the difference between free choice and instructed small

trials significantly increased over the course of the session (R2=0.22,p<0.05?). In

both monkeys, BOLD signal profiles in the striatum revealed evidence of updated

reward-stimulus associations before behavior manifested these new reward contingen-
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cies; and striatal activity significantly differentiated between instructed large- and

small- reward trials earlier than parallel changes manifested in sts activation.

On Day 0, the striatal signal difference between free choice and instructed small

trials (and less significantly, between instructed large and instructed small trials)

decreased over time, prior to any stimulus-reward reversal or behavioral changes.

This may reflect motivation or subjective value of the reward to the monkey, as he

becomes progressively more sated and less thirsty during the course of the session.

This decrease within the session on Day 0 may constitute a truer baseline for trends

within following days.

Phase III: No Post-Saccadic Color Context

Phase III of the experiment investigated the dependence of reward-modulated ex-

pectancy signals on the presence of the reward-associated visual object/feature. The

task structure and stimulus-reward associations were identical to that in Phase I.

However, Phase III digressed from Phase I in that the color of the fixation spot

during the expectation period remained red (the initial color of the fixation point),

rather than assuming the color of and thereby resembling the saccade target. The

same two monkeys were scanned in this phase of the experiment as in Phase II; thus

frontoparietal regions and target/saccade epoch responses will not be discussed, until

more data is collected.

Behavioral Findings

In free choice trials, monkeys recurrently saccaded to the large-reward target (Fig.A1.9A).

Saccadic latency patterns of monkeys mostly concurred with those from Phase I. How-

ever, as compared to Phase I, monkeys exhibited shorter latencies for free choice trials

relative to instructed large or small trials (Fig.A1.9B–D). Performance rates increased

for all trial types (except free choice-small, as small reward targets were still never

chosen) (Fig.A1.9E). Given this increase in successful trial completion across all con-

ditions, relative differences between performance rates per trial type
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Figure A1.9:

Behavioral Findings for Phase III, with No Post-Saccadic Color Context. (A) Cumula-

tive choices, indicating exclusively large-reward targets were chosen. (B) Distribution of saccadic

latencies in Instructed Large Trials. (C) Distribution of saccadic latencies in Instructed Small Tri-

als. (D) Distribution of saccadic latencies in Free Choice Trials. (E) Mean performance (percentage

of successfully completed trials) per trial type. The left column represents behavioral data from

monkey HAN; the right column, monkey FLO. Behavioral trends for both monkeys are similar to

Phase I, though performance rates are higher.
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were less robust than in Phase I. This improved performance and shorter reaction

times may reflect a greater duration/degree of training on the task prior to scanning,

as compared to Phase I.

Imaging Findings

Expectation. Instructed large compared to instructed small reward trials during

the expectation period (instructed large > instructed small contrast, p(FWE)<0.05)

yielded no significant clusters (Fig. A1.10A). For comparison, timecourses from those

regions in the striatum and sts exhibiting expectation-related activation in Phase I

are shown (Fig. A1.10B,C). These regions did not display any modulation of BOLD

signals during this epoch, i.e., free choice or instructed large reward trials did not

produce a significantly greater signal amplitude than did instructed small reward

trials, demonstrating a lack of reward-magnitude-related effects when the fixation

spot no longer denotes the reward amount. With the current task design, whether

reward-related modulation requires the object indicating reward (e.g, green square)

or solely the color (e.g. green) to be present cannot be determined.
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Figure A1.10:

Profile of activity in ROIs exhibiting a modulation of activity during the expectation

period in Phase I. (A) Statistical map for for Instructed Large Reward trial > Instructed Small

Reward trial: Expectation delay epoch. p(FWE)<0.05. Coronal sections are chosen to exemplify

ROIs from Phase I. (B) BOLD timecourses extracted from superior temporal sulcus (sts) corre-

sponding to the two monkeys whose maps are presented. (C) BOLD timecourses extracted from the

striatum, corresponding to the two monkeys whose maps are presented. Times during the trial at

which either instructed large or free choice signals significantly differed from instructed small signals

are indicated with a dot (two-sample t-test).



222

A1.4 Discussion

In order to identify areas which encode and revise stimulus-reward associations, we

conducted an fMRI investigation of monkeys performing saccades, either instructed

or freely chosen, to differentially rewarded stimuli. Behavioral measures intimate that

monkeys comprehended the stimuli-reward contingencies: in ‘free choice’ trials, they

consistently made saccades to the target predicting the larger reward; in ‘instructed’

trials, they successfully completed a higher percentage of large-reward trials, with

shorter reaction time latencies, as compared to small-reward trials. Thus, the mon-

keys expended more effort in trials in which they could garner more reward.

BOLD activity in the ventral and dorsal cortical streams exhibited greater re-

sponse amplitudes during target presentation and/or saccade execution in the large-

reward trials. Furthermore, ventral stream areas (specifically, areas along the su-

perior temporal sulcus) and the ventromedial striatum revealed sustained activation

throughout the expectation period before reward delivery. The level of this sustained

activity varied with reward magnitude, but only when the reward-predicting stimu-

lus/feature was visible during this period.

After reversal of stimuli-reward contingencies, monkeys initially perseverated and

chose the incorrect (previously correct) stimulus. The first brain area to ‘learn’ the

new reward magnitude being indicated by the stimuli was the striatum. Only later (in

the next experimental session) did this new reward association become apparent in

monkeys’ behavioral patterns (i.e., choice preference, saccadic latencies, and perfor-

mance rates) and in BOLD activity changes in inferotemporal cortex. These findings

suggest dissociable contributions of the basal ganglia and inferotemporal object-vision

areas in the representation of object-reward associations.
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Representations in the Cortical ‘Streams’: What versus Where—

Differences between Ventral and Dorsal Stream Task Involvement

Dorsal (frontal and parietal) and ventral (inferotemporal) stream areas exhibited dif-

ferent patterns of activity throughout this task. First, dorsal stream areas showed sig-

nificantly stronger reward-related modulation during the target/saccade epoch than

did ventral stream regions: instructed large reward and free-choice trials (in which

the large reward was consistently chosen) generated larger signal amplitudes than did

instructed small-reward trials. In addition, dorsal stream and ventral stream areas

evinced different patterns in the expectation period prior to receipt of reward, during

which parietal and frontal regions did not exhibit sustained activity, while temporal

regions did. The purported function of the dorsal cortical ‘where’ pathway in spatial

and sensorimotor processes preceding movement potentially explicates both these dis-

parities: (1) first, while visual, motor, preparatory, and mnemonic processes cannot

be disambiguated in this paradigm, the target/saccade signal observed in IPS and

FEF may reflect saccade-preparatory activity in addition to cue-related processing.

Given the role of frontoparietal areas in subserving motor preparation, they likely

are strongly recruited during this epoch; and as rewarding consequences have been

speculated to bias action planning activity in these regions (Glimcher 2004; Platt and

Glimcher 1999), different rewards associated with saccades possibly leads to enhanced

reward-modulated BOLD signals, as compared to temporal regions in response the

target/saccade event. (2) The observed lack of significant activity during the expec-

tation period in these action-planning areas would be forecasted, since the action has

already been executed and the monkey is simply waiting for reward delivery.

In addition to frontal and posterior parietal cortices, regions along the banks and

in the fundus (namely, FST/TPO) of the superior temporal sulcus, sts, displayed

robust target/saccade-related activity. Anatomical examinations of area FST in the

macaque document its connections to parietal cortex and feedforward projections to

the frontal eye fields; the region is thus often functionally classified as more related
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to dorsal stream areas, with a role in visual motion analysis (Boussaud et al. 1990).

Similarly, area TPO derives inputs from both the dorsal and ventral pathway (Seltzer

and Pandya 1978), and has been strongly implicated in the control of visually guided

saccades (Scalaidhe et al. 1995; Bakola et al. 2007). These activations then are still

consistent with the recruitment of ‘dorsal stream’ regions for saccadic preparation

and execution.

Voxels in sts demonstrating peak activation during the reward expectation phase

were posteriorly located along the sulcus, on its lower bank. Given the spatial res-

olution of the images, these voxels corresponded most closely to area TEO (ventral

stream area), but possibly may have been area FST (dorsal stream area). To ascer-

tain the nature of expectation-related activations, a localizer control was conducted,

where monkeys were scanned while viewing motion stimuli which drive areas FST and

MT. Activation for motion stimuli neighbored, but did not co-localize, with reward

expectation signals (data not shown). Thus, sts activations for the expectation epoch

in the current study are taken to be TEO, or ventral stream.

Ventral Stream Functions in Encoding Stimulus-Reward Associations

The role of IT cortex in visual object representations has long been recognized: Single-

cell recordings in nonhuman primates have consistently revealed differential tuning

of individual neurons in temporal cortex to faces, whole objects, and complex object

form features (Gross et al. 1972; Tanaka 1996; Logothetis and Sheinberg 1996);

analogously, fMRI studies of the ventral object-vision pathway have demonstrated

differential patterns of responses to a variety of categories of objects in the ventral

temporal cortex (Kanwisher et al. 1997; McCarthy et al. 1996; Aguirre et al. 1998;

Gauthier et al. 1999). However, the additional contribution of IT cortex to the

encoding of visual object-reward associations has remained nebulous.

In the current paradigm, regions in inferotemporal (IT) cortex demonstrated re-

ward magnitude-modulated expectancy signals. Additionally, after the reward mag-

nitude contingencies for stimuli were reversed, signal modulations in IT reflected

the updated reward magnitudes of the presented stimuli. This confirmed that these
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BOLD representations tracked the value, rather than other visual attributes, associ-

ated with the targets. Furthermore, reward-related modulation of signals abated when

the fixation square/object during the expectation period was no longer presented in

color, the attribute which dictated the reward association. This finding suggests that

IT signals during this period reflected specifically object/feature-reward associations,

rather than a generalized anticipation of reward. Nonetheless, the possibility that the

diminished signal differences may arise from mnemonic factors cannot be ruled out,

as such long delays prior to reward receipt may impair monkeys’ ability to remember

the upcoming reward.

The principal region in the inferotemporal cortex demonstrating reward-modulated

expectancy signals was TEO, though significant voxels displaying comparable pat-

terns of activity were found along sts. Studies of the connectivity of TEO depict

the area as an important link in the occipitotemporal pathway for object recognition,

sending visual information forward from V1 and prestriate relays in V2–V4 to anterior

inferior temporal area TE (Distler et al. 1993; Seltzer and Pandya 1978). Previous

studies addressing the question of ventral stream object-reward encoding have gener-

ally focused on two subregions in IT, namely the perirhinal cortex and area TE. As a

polymodal region receiving converging inputs from various sensory modalities, limbic

and reward-related areas, the perirhinal cortex is well situated to signify the value

of objects; macaque single-unit studies corroborate that perirhinal neuronal activity

reflects the reward associated with stimuli (Mogami et al. 2006; Liu et al. 2000).

Findings regarding TE, the final unimodal visual stage in the occipitotemporal path-

way, are more ambiguous: while responses reveal considerable stimulus-selectivity,

their modulation due to reward is less certain (Mogami et al. 2006; Liu et al. 2000).

Unfortunately these IT subregions, particularly the perirhinal cortex, could not be

accurately examined in our images due to their location more ventrally in the inferior

temporal cortex, an area particularly prone to distortions and signal drop-outs. In

future experiments, imaging geometry and sequences may be specifically adapted to

optimize IT coverage.
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Inferotemporal Regions in Learning Stimulus-Reward Associations

Unilateral inferior temporal lesions have been clearly shown to cause deficits in visual

association learning in simple visual-reward association tasks (Parker and Gaffan

1998). These deficits may stem from compromised capabilities for visual identification

and memory processes, including storage of visual representations (Cowey et al. 1970;

Meunier et al. 1996; Buffalo et al. 1999) and associations with reward (Daum et al.

1991; Owen et al. 1991). Alternatively, these impairments could derive from a specific

role in learning associations.

The evolution of activity in IT regions (such as TEO) after reversal of stimulus-

reward contingencies in this experiment sheds some light on the involvement of this

region, and possibly those downstream, in learning object-reward associations. Pre-

liminary findings imply that while IT region TEO updated its expectancy-related

signals to reflect the reversed reward associations, this activity changed concomi-

tantly with behavior. An area engaged in learning may be predicted to reflect the

new contingencies prior to changes in behavioral measures. If so, then the temporal

profile of observable IT voxels insinuates that this region did not play a principal

role in learning new stimulus-reward associations. This interpretation concurs with

previous studies which suggest that IT appears to make a noncrucial contribution to

reversal learning and attentional set-shifting (Daum et al. 1991; Owen et al. 1991).

However, the possibility remains that IT does underlie some stage of learning, but its

BOLD activity changes at a similar rate as, or imperceptibly before, behavior alters.

Striatal and Orbitofrontal Cortex Involvement

In both ‘instructed’ and ‘free choice’ trials, the striatum exhibited sustained activa-

tion during the expectation period between saccade execution and receipt of reward.

Moreover, instructed large-reward and free choice trials (on which the monkey chose

the large-reward target almost 100% of the time) generated expectancy signals of

higher magnitude than the instructed small-reward trials. This finding is consistent

with previous studies that demonstrated reward-modulated firing rates in these ar-
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eas in anticipation of reward, after a movement was completed (Schultz et al. 2000;

Hollerman et al. 2000; Simmons et al. 2008).

In our paradigm, reward-modulated striatal neural activity required the presence

of the reward-predicting stimuli/color during the expectation period. Human fMRI

and monkey recording findings have previously shown that anticipatory signals in

the striatum reflect the expected value of the upcoming reward, even when the out-

come was not definitively specified during the anticipation period (Dillon et al. 2008;

Knutson et al. 2001; Ernst et al. 2004). However, our results can only be tenuously

assessed with respect to these reports. Expectation periods employed in most other

experimental paradigms are considerably shorter. The dynamics of BOLD and/or

neural signals as well as the mnemonic abilities and strategies used across these dis-

similar timescales may differ, impeding direct comparison of results. Additionally,

the task variant with the uninformative fixation spot was presented to the monkeys

after a period of extensive overtraining with the original task (with the fixation point

indicating the reward); the monkeys may have therefore experienced some degree of

confusion or uncertainty during the reward expectation period in the new, ‘uninfor-

mative’ condition. As the monkeys were scanned immediately upon switching to this

task, assessing activation patterns after more training may better clarify the basis of

striatal responses in this paradigm.

After reward contingencies were reversed, monkeys learned the new associations

within a few sessions. Striatal activity accordingly reflected the new value predicted

by the stimuli: BOLD responses to previously learned associations rapidly extin-

guished, and acquisition of specific responses to the new stimuli-reward association

soon emerged. Interestingly, these trends in striatal activity following reversal pre-

ceded behavioral changes. These findings resonate with prior electrophysiological

studies of monkeys learning visual stimulus-reward contingencies, in which striatal

neural activity reflected changes in preferred stimuli, before corresponding behavioral

alterations or prefrontal changes in neuronal selectivity became evident (Pasupathy

and Miller 2005). Our data advances the notion that the striatum may rapidly link

object representations with potential reward, and thus aid in adapting existing re-
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ward expectations and behaviors to novel or changing environmental conditions. Such

a general role in reward-based acquisition of stimulus-stimulus or stimulus-response

associations may account for the array of deficits observed with basal ganglia lesions.

As opposed to OFC and PFC lesions, dysfunction of basal ganglia structures lead to

regressive errors in a broad range of tasks involving behavioral shifts and learning

from feedback, where patients explore but do not appear to learn contingencies as

quickly as normal subjects (Knowlton et al. 1996; Swainson et al. 2000). However,

the delay between striatal changes and behavioral changes may also imply the exis-

tence of another link or stage between them, i.e. that the reward associations may

need to be processed or become embedded elsewhere to trigger behavioral changes.

In addition to the striatum, regions in the OFC are typically recruited in visu-

ally guided reward schedule tasks. As single-unit reports have claimed that larger

neural subpopulations in OFC encode cue-reward contingencies during reward antic-

ipation than in the striatum, we would expect to see significant OFC activation in

our paradigm. However, distortions in the ventral frontal lobes due to the proximity

of the eyes and sinuses hindered our ability to reliably detect OFC activity. With

EPI sequences optimized for this region, we may better be able to characterize OFC

involvement in this task in the future.

In summary, we demonstrated the ability to map areas underlying cortical repre-

sentations of both visual action goals and action plans, documented in ventral ‘what’

and dorsal ‘where’ pathways, respectively. Both cortical pathways evinced reward-

related modulation, Furthermore, these results propose a leading role for the striatum

in stimulus-outcome learning. The use of fMRI in the macaque in this experimental

paradigm enabled a unique opportunity to probe for whole-brain patterns and dy-

namics of neural activity during the encoding and learning of stimulus-reward asso-

ciations, and to relate these findings to a larger body of macaque electrophysiological

and lesion studies pertaining to this subject.
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A1.5 Experimental Procedures

Experimental preparation (surgery, training, and scanning) of monkeys, MR imaging

parameters, stimulus presentation, task online behavioral control, and data acquisi-

tion are the same as those described in Chapter 4. In addition to the monitoring of

body and eye movements described previously, an additional infrared camera (same

as used for motion detection) was utilized to monitor the monkeys’ licking. All trials

in which monkeys licked before the receipt of reward (i.e., during the expectation

period or earlier) were aborted. Lick detection and contingent trial abortion were

introduced for two reasons: (1) to minimize the motion-related artifacts before the

receipt of reward period, and (2) some indication existed that monkeys licked more in

anticipation of larger than smaller rewards. In not permitting any licking during the

trial (except receipt), BOLD responses due to differential licking rather than reward

expectation can be ruled out. Fig. A1.1B shows behavior recorded throughout trials

(saccades, licks, blinks).

Experimental Task

As Fig. A1.1 portrays, monkeys began each trial by fixation on a central fixation

‘point’, drawn as a red square. After 10 seconds of fixation, a peripheral cue was

flashed for 200ms. In one-third of trials, a blue square target was presented, indicat-

ing a small (0.5ml) reward (Instructed Small-Reward Trials). In one-third of trials,

a green square target was presented, indicating a large (1.5ml) reward (Instructed

Large-Reward Trials). In the last third of trials, both a blue square and a green

square were shown, providing monkeys with a choice of which target to acquire (Free

Choice Trials). All targets were located at 15o on the horizontal meridian (i.e., 15o

to the right or left of the fixation point; and in free choice trials, one was presented

to the left and one presented to the right). Once monkeys made a saccade to a tar-

get, they immediately returned to central fixation for 10 more seconds. During this

period, the central fixation square assumed the color of the target that the monkey

had just acquired, thus reminding the monkey throughout of the upcoming reward
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amount. Finally, the monkey received water at the end of this period.

In Phase II (Fig. A1.2), the experimental timing and structure were identical,

except that the reward contingencies were reversed: blue targets now denoted a large

amount (1.5ml) of fluid reward, and green targets a smaller (0.5ml) reward. For

subsequent reversals, the color-fluid amount relationships were exchanged.

In Phase III (Fig. A1.2B), the experiment proceeded as in Phase I (including the

same reward contingencies). However, after monkeys returned to central fixation,

the fixation point during the expectation period (delay between saccade and reward)

continued to be presented in red, rather than in the color of the saccade-acquired

target.

Data Analysis

Functional data were analyzed in SPM and MATLAB. The first 5 EPI volumes were

always excluded from functional analyses to remove transient effects of magnetic

saturation, but were used for co-registration, since they provide better contrast for

anatomical landmarks. Anatomical T1-weighted scans were processed in SPM. EPI

sequences for each run were preprocessed using slice time correction, linear trend

removal and a high-pass temporal filter with 3 cycles per 20 min run cut-off, and

6DOF 3D-aligned to a first volume of the last run in the session, which was always

followed by the in-plane anatomical T1-weighted scan. The in-plane anatomical scan

for each separate session was co-registered to the high-resolution structural scan in the

AC-PC plane, and then EPI runs were aligned to the AC-PC-registered anatomical

scan using automated alignment procedures (involving rigid body transformations).

No spatial smoothing was applied to the data.

All trial events (except baseline initial fixation period)—target/saccade, delay be-

fore reward receipt (expectation period), and reward receipt—were extracted and

used as predictors for general linear model (GLM) after convolution with hemody-

namic response function (HRF) (defined for monkeys, see Chapter 4). Each session

was analyzed separately to check the consistency of the results, and final statistical
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maps were generated using multi-session GLM.

For the BOLD timecourse event-related averaging (ERA), only successful trials

were accumulated. Importantly, the epochs of the run affected by body or limb

motions were automatically detected and eliminated from ERA analysis. ERA time-

courses were constructed using individual baseline estimates for each single trial:

mean activity in the last 4 seconds of the initial fixation period. To assess signifi-

cance of BOLD signals, a two-sample t-test was used to compare the means of signal

amplitude (percent signal change) of a given two trial types at each second time bin.

The trial types being compared are specified in each figure.

To better quantify the evolution of neural activity following reversal, two analyses

were conducted. First, to track changes in neural activity across days, activity during

the expectancy period in different trial types was determined as a function of day.

For each day from Day 0–3, the differences in mean percentage signal change (PSC)

between trial types (i.e, for instructed large minus instructed small, and free-choice

minus instructed small) were assessed. Second, mean PSC during the expectancy

period was plotted for each trial throughout the experimental session for Days 0 to

3. The difference in mean PSC between instructed large and instructed small, and

between free choice and instructed small, is plotted as a function of trial number

during the day’s session (each sequential occurrence of each trial type are compared,

i.e., the first Instructed Large versus the first Instructed Small; the second Instructed

Large versus the second Instructed Small trial, and so forth). A linear regression is

plotted to extract trends within each day’s session (see Experimental Procedures).

As an initial attempt to characterize trends in BOLD timecourses, this analysis has

as of now been performed on only one monkey. After more reversal sessions have

been scanned, the complete analysis will be conducted across both monkeys.
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Appendix 2—Frontoparietal
Timecourses Reflect Decision in a
Free-Choice Oculomotor Task

A2.1 Summary

In everyday life, we are usually free to make decisions among several options available

to us. When external cues do not explicitly signify the ‘best’ option, we generally rely

on internal biases to make a decision and plan a corresponding behavioral response.

In this study, we sought to investigate neural correlates of such internally generated

choices. To do so, monkeys were scanned while they performed a variant of a delayed

response task, in which they made memory-guided saccades, either to one instructed

previously cued target, or to one freely chosen among two previously cued targets.

While results are still tentative, our findings thus far demonstrate no areas prefer-

entially recruited during choice as compared to instructed trials. However, putative

saccadic planning frontoparietal areas, which were recruited during the delay period

before the saccade, showed an evolution of directional selectivity during the delay cor-

responding to upcoming choice. In addition, regions in frontal and parietal cortices

evinced this ‘choice’ at different times, suggesting dissociable contributions of these

areas in the selection and planning of impeding actions.
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A2.2 Introduction

Explorations of decision-making typically focus upon and characterize externally

guided choices. In these paradigms, the variables governing choice behavior, such

as sensory/perceptual information, conditional rules, and reward reinforcement, are

externally determined; hence behavior is exogenously controlled and extremely pre-

dictable. However, in a natural milieu, internal biases and attitudes also come to

bear upon the generation of behavior and selection of goal-directed actions.

A small number of studies have directly probed the neural correlates of inter-

nally generated decisions. Monkey electrophysiology experiments (Scherberger et al.

2007; Watanabe et al. 2007; Pesaran et al. 2008) have permitted monkeys to freely

choose a spatial target, holding external parameters, such as expected value, reward

magnitude, and visual stimulus configurations, constant. In these single-unit record-

ings, neural activity in dorsolateral prefrontal cortex and a subregion of posterior

parietal cortex have been shown to exhibit directional selectivity prior to movement

that indicated the monkey’s upcoming choice. Imaging studies in humans, both PET

and fMRI, have similarly allowed subjects to choose either when or where to make

a movement (Jenkins et al. 2000; Milea et al. 2007; Khonsari et al. 2007). These

imaging findings have generally emphasized a preferential engagement of dorsolateral

prefrontal cortex, posterior parietal cortex, and supplementary motor areas in free

choice as opposed to instructed conditions.

These previous experiments, however, face limitations in characterizing the in-

volvement and relative contributions of areas engaged in free-decision tasks. Mostly,

single-unit recordings have as of yet not elucidated the relative dynamics of a dis-

tributed network of task-relevant regions, focusing instead on one or two cortical

regions (but see Coe et al. 2002). While human imaging studies can address this

drawback, prior studies have not employed event-related analysis, making it difficult

to unequivocally ascribe activation to specific cognitive processes related to decision-

making, or to track temporal evolution of activity that may correspond to choice.

We therefore sought to investigate the neural substrates of voluntary decision-



242

making, response selection, and motor planning with a delayed saccade task, using

high-field fmri in awake behaving monkeys. The goals of this study were to dissoci-

ate visual cue events from subsequent selection and planning of motor response, and

then to investigate dynamics of multiple brain areas involved in saccade selection. To

do so, monkeys performed delayed eye movements either to an instructed target, or

to one of two possible targets. Though monkeys did exhibit spatial biases in target

choice behavior, they did not perseverate, but rather picked both targets throughout

the experimental sessions. Pilot data indicate that the frontoparietal network tradi-

tionally recruited in delayed-response tasks showed increasing directional selectivity

of BOLD signals in the delay period of choice trials, reflecting the monkey’s upcom-

ing choice. Furthermore, the dynamics of this choice-related activity suggests that

LIP and FEF may exert a leading role in oculomotor decision-making. Currently, we

are conducting this study on additional monkeys to confirm these preliminary results,

and will soon begin testing humans on the same task to better generalize our findings.

A2.3 Results

To investigate regions either specifically recruited for choice processes or whose activ-

ity mirrors the monkey’s evolving decision, monkeys were scanned while performing

a variant of a delayed-oculomotor response task.

In ‘instructed’ trial types, one peripheral target was flashed, and after a delay,

monkeys saccaded to its remembered location. In ‘free-choice’ trial types, two targets

were presented symmetrically (left-right) around the fixation point. After a delay, the

monkey saccaded to one of the previously indicated targets. Targets were identical,

with respect to visual properties and associated fluid reward, differing only in their

location; in addition, they were placed equidistantly from the fixation point.
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Figure A2.1:

Task structure and timing. After a period of central fixation, peripheral cues were flashed: one

in ‘instructed’ trials, and two in ‘choice’ trials. After a delay, monkeys executed a saccade (either

to the instructed cue, or to either of the choice cues). After an additional waiting period, they were

provided fluid reward for successful trial completion.

Behavioral Findings

When presented with two left-right symmetric targets, monkeys chose both targets,

but with unequal frequency. Fig. A2.2A plots number of choices at each spatial loca-

tion, depicting a proclivity for right target selection amongst most pairs of targets for

both monkeys. Fig. A2.2B,C segregate targets into right (9 targets) or left (9 targets),

and shows cumulative choice history of both monkeys over all scanned sessions. The

deviation from the unity/diagonal in choice history (Fig. A2.2B) more clearly demon-
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strates that both monkeys, but particularly monkey G (bottom panel), saccaded with

a consistent rightward bias. However, unlike previous studies (Scherberger and An-

dersen 2007; Coe et al. 2002), cues were not experimentally manipulated, e.g. with

different reward schedules or onset times, to promote equitable selection of both left

and right targets. Thus, choice ratios can be more cleanly be attributed to internal

factors.

A B C

Figure A2.2:

Choice behavior of both monkeys. (A) For all target locations, the number of saccades made is

presented, divided by instructed or choice trial types. Collapsing all targets by hemisphere (i.e., right

or left), a cumulative history of choices made to both hemifields is presented (B) as a function of

trial number and (C) within each experimental session. Upper row: monkey R; Lower row: monkey

G
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Instructed and free choice trials prompted similar saccadic reaction times. How-

ever, slightly longer latencies were consistently observed in choice trials, on the order

of 5ms in monkey R and 10ms in monkey G slower than in instructed trials. Though

small, these differences in reaction times reached significance (p<0.05) in both mon-

keys (Fig. A2.3).

*

A

B

C

Figure A2.3:

Reaction times for Instructed and Choice trials. (A) Distribution of reaction times for

instructed trials. (B) Distribution of reaction times for choice trials. (C) Mean reaction time for

instructed trials (blue) and choice trials (red), as a function of experimental session. Left column:

monkey R; Right column: monkey G
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Neuroimaging Findings

As neural correlates of the evolving decision-process is our interest, the focus of this

analysis lies upon the delay period: the interval between presentation of the targets,

and the saccade indicating the decision made. The cue epoch receives only brief

description.

Choice versus Instructed Activation

Two methods were adopted to examine choice-related BOLD responses. The first

approach probed for all areas preferentially engaged by decision trials over instructed

trials. In this contrast (Choice > Instructed), no regions demonstrated significant

activation, either for the cue epoch or for the delay period.

Neural Activity during the Delay Period

The second approach exploited the contralateral nature of responses in many areas re-

cruited during the delay period, characterized in Chapter 3. Specifically, contralateral

action-planning/delay period activity should differentiate between a saccade planned

to a left or right target in choice trials. As contralaterality is necessary to observe

choice-related activity in this paradigm, regions of interest (ROIs) were delineated

as those areas manifesting significant contralateral delay period activations, in the

instructed trial type. In accordance with prior findings (see Chapter 4, delay period

activation in the macaque), this contrast elucidated significant voxels along the ar-

cuate sulcus (e.g. frontal eye fields, dorsal premotor areas), the intraparietal sulcus,

and dorsolateral prefrontal cortex (Fig. 4.3), contrast delay period right > left, for

both monkeys).

To examine the BOLD signal profiles from these ROIs, timecourses were extracted

bilaterally (from left and right hemispheres) for a given region, sorted by trial type and

direction (left or right) of saccade (as an example, see Fig. A2.4E). For presentation,

timecourses were then collapsed across hemispheres, and shown sorted both by trial

type, and by contra- versus ipsilaterality of saccade. Fig. A2.4 depicts BOLD
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A

B

C

D

E

Figure A2.4:

BOLD timecourses from monkey R for delay-period ROIs exhibiting contralaterality.

All trials are grouped by direction (ipsilateral and contralateral) and trial type (instructed or choice),

collapsed over both hemispheres for each ROI. (A) Dorsal premotor cortex, (B) Dorsolateral pre-

frontal cortex, (C) Frontal eye fields, (D) Lateral intraparietal area (LIP). In (E), representative

BOLD timecourses are separated by right and left hemisphere for LIP.
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timecourses from monkey R for (A) dorsal premotor cortex, (B) dorsolateral pre-

frontal, (C) frontal eye fields, and (D) lateral intraparietal area (along intraparietal

sulcus). In all regions, signal amplitude in instructed contralateral trials was signif-

icantly higher than in instructed ipsilateral trials, as expected given the criteria for

defining ROIs.

Timecourses for contralateral and ipsilateral choice trials were coincident at the

start of the delay period, immediately after cue presentation. Directional selectivity

evolved, with signals diverging and contralateral choice trials displaying higher signal

amplitudes than ipsilateral choice trials. This increased contralateral activity during

the delay period implies that a choice was made before the go signal.

Activation in choice trials lay intermediate to instructed trials: contralateral choice

trials generated a smaller BOLD signal than contralateral instructed trials, while ip-

silateral choice trials produced a larger signal than did ipsilateral instructed trials.

That contralateral activity remained lower than in instructed trials insinuates po-

tential competition between targets in opposite hemifields. The increased ipsilateral

choice activity (as compared to instructed) may additionally suggest that two poten-

tial motor plans are present though the end of the delay period.

The BOLD signal amplitude in contralateral choice trials was compared to the

signal amplitude in ipsilateral choice trials at 1second intervals (time bins) throughout

the trial, using a two-sample t-test. Times at which the signal amplitudes significantly

differed are indicated by a dot. By this assessment, the point at which activity

diverges in free choice trials varies by ROI. In both dorsolateral prefrontal cortex and

dorsal premotor cortex (Fig. A2.4A,B), significant directional selectivity manifests

only in the last few seconds of the delay period. In contrast, in areas LIP and

FEF (Fig. A2.4C,D), signal timecourses in contralateral and ipsilateral choice trials

deviated earlier in the delay period, within the first half of the delay period, and

within the first few seconds in LIP. These regions may reflect the evolving choice

sooner than other frontal and parietal subregions.

In the second monkey, BOLD patterns disclosed a similar, but not quite as lucid,

trend. Areas LIP and FEF, where significant directional selectivity evolved, showed
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similar patterns as in monkey R. Ipsilateral choice trials again generated a higher am-

plitude signal than did ipsilateral instructed trials; and contralateral choice produced

signals equal to or less than those in contralateral instructed. Divergence

inst. contra
choice contra
inst.  ipsi
choice ipsi

] p < 0.05

A

B

Figure A2.5:

BOLD timecourses from monkey G for delay-period ROIs exhibiting contralaterality.

All trials are grouped by direction (ipsilateral and contralateral) and trial type (instructed or choice),

collapsed over both hemispheres for each ROI. (A) Frontal eye fields, (B) Lateral intraparietal area

(LIP). Dorsolateral prefrontal and dorsal premotor ROIs did not show significant divergence in choice

trials; see Results for further discussion of these regions.

in choice trials again occurred later in FEF than in LIP (Fig. A2.5A,B). However,

in dorsal premotor cortex (PMd), no divergence was apparent in choice trials. As

this region in monkey R only demonstrated directional selectivity towards the end

of the delay period, PMd may only weakly reflect the evolving oculomotor decision.
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Dorsolateral prefrontal cortex, even in instructed trials, exhibited weak contralater-

ality (Fig. 4.3), diminishing the divergence that could be discerned in choice trials

altogether.

Responses During the Cue Period

As the cue epoch represents possible options to be encoded, and decision processes

may already commence, it in principle constitues an interesting epoch to be analyzed.

However, the cue presentation conflates sensory, mnemonic, and possibly decision

processes; additionally, as the number of cues presented varied between instructed and

free choice conditions, sensory and attentional demands presumably differ between

these conditions. Therefore, comparisons will be briefly made within choices of contra-

and ipsiversive trials.

Regions of interest were defined as those areas exhibiting a significant contralateral

response during the cue period in instructed trials. This assessment yielded significant

voxels in areas FST and TPO in the temporal cortex, along the superior temporal

sulcus (but only in monkey R; see Fig. 4.3). Choice trials demonstrated significant

directional selectivity early, as soon as the cue response onset (at 2–3 seconds after

cue presentation) (Fig. A2.6A,B). However, as with most responses in frontal and

parietal regions, signal amplitudes in choice trials were intermediate to those observed

in instructed trials, with contralateral responses again less in choice as compared to

instructed trials. This further corroborates the notion that some competition or

mutual inhibition between simultanously presented cues may be transpiring.

These preliminary findings across two monkeys show some consistent tendencies.

However, more sessions are required to clarify response patterns. An additional mon-

key, where contralaterality through these frontal and parietal regions is robust, would

help confirm trends noted thus far. In addition, a greater number of trials in each

monkey would allow left and right hemispheres to be analyzed separately with ade-

quate statistical power. For example, Fig. A2.4E proposes the possibility that left and

right LIP may evince contralaterality at different times. Independent examination of

these regions would potentially reduce noise in the signals, and constitute the most
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conservative approach to characterizing signal dynamics.

inst. contra
choice contra
inst.  ipsi
choice ipsi

] p < 0.05

A

B

Figure A2.6:

BOLD timecourses from monkey R for ROIs exhibiting contralaterality during the cue

as well as the delay period. All trials are grouped by direction (ipsilateral and contralateral)

and trial type (instructed or choice), collapsed over both hemispheres for each ROI. Areas (A) FST,

and (B) TEO, along the superior temporal sulcus
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A2.4 Discussion

In the present study, we examined neural regions that may be engaged by the ocu-

lomotor decision process of selecting where to look. To do so, we assessed profiles

of BOLD activation in free-choice delayed-saccade tasks. Variables such as sensory

characteristics, visuomotor associations, and reward schedule were not varied exter-

nally. Instead, monkeys were provided identical visual stimuli/cues, and all choices

were equally valid. Under these conditions (i.e, the absence of external choice cues

and equal expected value for all choices in a given trial), differential BOLD activ-

ity reflected an internal selection bias and/or the consequent choice. In the current

experiment, no regions exhibited greater delay period activation in free-choice as com-

pared to instructed trials. However, during the delay period in choice trials, regions in

frontal and parietal cortices showed a gradual increase in directional selectivity (i.e.,

contralaterality), reflecting the evolving decision and associated motor planning. Ac-

tivity in choice trials was intermediate to instructed contralateral and ipsilateral trials,

suggesting either competition between presented targets and/or co-existence of two

potential motor plans. Finally, the dynamics of contralateral BOLD activity in these

regions suggest that frontal and parietal subregions may play distinct roles in the

spatial goal-directed decision process.

fMRI Activity for Chosen versus Instructed Movements

The analysis in this study utilized an event-related approach, focusing primarily on

the delay period to minimize confounds of cognitive processes occurring during cue

presentation or movement execution. While human imaging reports of free-choice

tasks have not employed a comparable analysis, neurophysiological studies in mon-

keys have adopted experimental approaches similar to the current study. Recordings

from the dorsolateral prefrontal cortex (dlPFC), though over a much shorter delay pe-

riod, reported that saccades to receptive field targets produced more spiking activity

when the saccade was instructed rather than chosen; however, instructed saccades to

non-receptive field targets generated less activity than chosen eye movements to the
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same targets (Watanabe et al. 2007). These firing rate patterns concur with trends

observed here: all ROIs, including dlPFC, reveal levels of BOLD activation for chosen

trials intermediate to instructed contraversive and ipsiversive trials. These findings

raise the possibility that simultaneous competing plans may be maintained in condi-

tions where multiple options exist. Evidence of simultaneous neural representations of

multiple motor plans has been documented in our earlier work (Lindner A., Kagan I.,

Iyer A. and Andersen, R.A. 2008 Prospective coding of alternative actions in human

Parietal and Premotor cortex. 6th FENS Forum of European Neuroscience). How-

ever, these motor plans coexisted during trial epochs when more than one movement

option was cued and valid, before one was externally instructed as the appropriate

response. Here, potential competing plans are still represented, even after selection

of one of them has become apparent. Alternatively, neural activity for one option

may be completely suppressed after the activity for the other reaches some decision

‘threshold,’ as competition models of response selection have contended (see Introduc-

tion, Chapter 1). However, with variability in decision times or uncertainty during

the delay period, BOLD timecourses for ipsilateral targets averaged over all choice

trials may remain higher than the signal amplitudes observed in ipsilateral instructed

trials.

During both the cue and delay period, no areas demonstrated significantly higher

activity in choice over instructed trials. Conversely, previous fMRI and PET analyses

(Jenkins et al. 2000; Khonsari et al. 2007; Milea et al. 2007) have disclosed greater

BOLD activation for chosen versus instructed movements in an array of motor as-

sociation/planning areas. Particularly, Khonsari et al. and Milea et al. utilized an

experimental task closely resembling the one employed here, and reported a specific

recruitment of dorsolateral prefrontal cortex (dlPFC) and posterior parietal cortex

in choice trials. However, the inconsistencies between their findings and those pre-

sented here may stem from the differences at the time of cue presentation. In these

human imaging studies, visual load/stimulation was balanced during presentation of

cues; however, in the present study, to easily convey trial type demands to the mon-

key, only one peripheral target was presented in instructed trials, whereas two were
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presented in choice trials. Inhibitory competition between the two simultaneously

presented cues may have lowered the net signal observed in choice versus instructed

trials. Currently, we are conducting similar experiments in which visual stimulation

is held constant across trial types, both in monkeys and in humans. These studies

will permit more direct comparison and hopefully reconciliation of these disparate

findings.

Evolution of Decisions in Action Plans

This study extends our previous work, in which cortical regions recruited by saccade-

planning/memory tasks were identified and characterized (described in Chapter 4).

In particular, these regions comprised a frontoparietal network traditionally impli-

cated in oculomotor and mnemonic processes, including FEF, area 8, dlPFC, LIP,

and other voxels along the intraparietal sulcus, as well as a few areas along the supe-

rior temporal sulcus. Importantly, in monkeys, these areas all exhibited some degree

of contraversive selectivity, with each hemisphere yielding greater delay period activ-

ity for saccades directed to the contralateral side. Our current analysis exploited this

feature to probe activity related to saccade selection in the oculomotor network. In

free choice trials, the divergence in signal for contraversive versus ipsiversive saccades

served as an indicator, marking when the animal’s saccade decision manifested in a

given region.

Results thus far suggest significant directionally selective divergence in activity

occurs earlier in LIP and FEF, areas specifically involved in the planning and gener-

ation of eye movements, as compared to PMd and dlPFC. In addition, LIP signals

demonstrated a significant difference between contraversive and ipsiversive free-choice

trials before FEF activity did in both monkeys. Thus, the BOLD signal timecourses

extracted from these ROIs provided some evidence of dissociable roles between task-

relevant regions. The finding that directional selectivity evolved later in choice trials

in all regions may again reflect uncertainty and variability in decision times.

An electrophysiological study conducted by Coe et al. (2002) explicitly considered
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the question of which oculomotor planning regions first demonstrated decision-related

activity. In monkeys performing a decision-making task, firing rates for receptive field

and non-receptive field targets deviated at approximately the same time in both ar-

eas LIP and FEF. Therefore, Coe et al. concluded that these areas reflected ‘choice’

concomitantly, doing so later than other regions such as SEF, which the authors spec-

ulated played a leading role in the decision-making process. In addition, firing rate

patterns deviated for receptive field and non-receptive field targets before the targets

were presented, leading to their supposition that anticipatory activity in these areas

may play a role in biasing the monkeys’ later decision; in contrast, no anticipatory ac-

tivity emerged in BOLD patterns in the current study. The discrepancies between our

results and those of Coe et al. may arise from a few factors. First, while cue locations

were randomized in this study, Coe et al. repetitively placed targets in and diamet-

rically opposed to the cell’s receptive field. This predictability may have produced

greater anticipatory activity than observed here Secondly, the onset of differential

activity in SEF cannot readily be assessed in our paradigm. Given the level of dis-

tortion/noise, the spatial resolution afforded by our images, and the medial/midline

location of SEF, contralaterality cannot reliably be observed, precluding accurate de-

lineation of contra- vs. ipsi- time of divergence. Thirdly, with respect to relative FEF

and LIP activity, methodological differences may lead to disparities. FEF cells (as

well as posterior parietal subregions) tend to display a rather heterogeneous set of

responses to task events in delayed- or memory-saccade tasks (Wurtz et al 2001); the

net population activity translating into a BOLD signal may not echo the firing rate

pattern of a smaller sample of neurons. In addition, complicated reward-adjusting

algorithms in Coe et al.’s task may have engendered more processing to understand

and predict task contingencies. Depending on the nature of these processes and the

regions subserving them, the dynamics of activity in a distributed network may shift

relative to those gleaned in our experiment.
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Cue Responses and Choice

Temporal subregions, such as FST and TEO, showed robust BOLD activation during

the cue epoch. Peaks of cue activity in these subregions exposed a contralateral bias

in instructed trials. Additionally, cue responses displayed directional selectivity in

free choice trials. In our previous work, signals in areas FST and TEO scaled with

the exogenously determined value or reward of saccade targets. These rewards, in

turn, biased the monkey’s decision in trials where they were allowed to choose between

targets (See Appendix 5). Correspondingly, the same areas differentiated between

visually identical cues, contingent upon selection as a saccadic target based on internal

biases. These findings bolster the conception that the neural representations of objects

incorporate the behavioral relevance of objects, whether that relevance is internally

or externally endowed.

In summary, studies currently being conducted, controlling for confounds of un-

balanced visual stimulation and target load, will better probe for regions specifically

engaged by the choice process. However, preliminary findings already indicate that

the choice of a behavioral response, and the attendant planning of that response, can

clearly be discerned from patterns of activity in the frontoparietal action-planning

network. With more data collected from more monkeys, we hope to better assess

the differential roles that these areas may play in the representation and evolution of

saccadic choice-related acitivity.

A2.5 Experimental Procedures

Experimental preparation (surgery, training, and scanning) of monkeys; MR imaging

parameters; stimulus presentation, task online behavioral control and data acquisition

are the same as those described in Chapter 4. In addition to the monitoring of body

and eye movements described previously, an additional infrared camera (same as used

for motion detection) was utilized to monitor the monkeys’ licking. All trials in which

monkeys licked before the receipt of reward (i.e., during the expectation period or
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earlier) were aborted. Lick detection and contingent trial abortion were introduced for

two reasons: (1) to minimize the motion-related artifacts before the receipt of reward

period, and (2) some indication existed that monkeys licked more in anticipation of

larger than smaller rewards. In not permitting any licking during the trial (except

receipt), BOLD responses due to differential licking rather than reward expectation

can be ruled out.

Experimental Task

Initial central fixation lasted for 10 seconds, after which time cues were presented

for 200msec. In ‘instructed trials’ (top row), one peripheral cue was flashed. In

‘choice’ trials (bottom row), two peripheral cues were flashed, left-right symmetric

with respect to the fixation point. Monkeys were required to maintain fixation during

cue presentation. After a 10s delay, the fixation point extinguished, serving as a ‘go’

signal. For successful trial completion in ‘instructed’ trials, monkeys were required

to saccade to the previously indicated cue; for ‘choice’ trials, they were permitted to

saccade to either of the previously flashed targets. However, in both trial types, only

500ms was allowed for saccade execution, prompting advance decision and planning

of the response. Monkeys maintained fixation at the cue location for 500ms, at which

time the cue reappeared to serve as confirmation of correct trial completion. The cue

remained on-screen for 4.5 secs (requiring continued fixation), then disappeared; after

an additional; 5secs, reward was delivered.

A spatial configuration of 18 possible targets was used; see Experimental Proce-

dures, Chapter 4, for detailed description.

Data Analysis

Functional data were analyzed in BrainVoyager QX and MATLAB running on a

Fedora Core 5 (64 bit) Linux platform. The first 5 EPI volumes were always excluded

from functional analyses to remove transient effects of magnetic saturation, but were

used for co-registration, since they provide better contrast for anatomical landmarks.
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Anatomical T1-weighted scans were processed in BrainVoyager QX and MIPAV. In

monkey experiments, EPI sequences for each run were preprocessed using slice time

correction, linear trend removal, and a high-pass temporal filter with 3 cycles per

20 min run cut-off, and 6DOF 3D-aligned to a first volume of the last run in the

session, which was always followed by the in-plane anatomical T1-weighted scan.

The in-plane anatomical scan for each separate session was co-registered to the high-

resolution structural scan in the AC-PC plane, and then EPI runs were aligned to

the AC-PC-registered anatomical scan using rigid body transformations. Automated

alignment procedures were followed by careful visual inspection and manual fine-

tuning based on anatomical landmarks. Using these transformations, 3D volume

time-courses were computed in AC-PC space using 2×2×2 voxel size and 1000 unit

image intensity threshold (mean image intensity within the brain ranged from 4000

to 6000 units).

All trial events (except baseline initial fixation period)—instruced/choice cue, in-

struced/choice delay, instructed/choice saccades, target fixation, and reward delivery—

were extracted and used as predictors for general linear model (GLM) after convolu-

tion with hemodynamic response function (HRF). Events from all trials (successful

and failed) were modeled to account for the overall variance. Fixational saccades

and blinks were also detected, but not used as GLM predictors for final results, since

their inclusion to GLM did not bring about any significant effect. Each session was

analyzed separately to check the consistency of the results, and final statistical maps

were generated using multi-session GLM. The faster ‘monkey’ HRF was used for GLM

analysis (described in Fig. 4.S2).

For the BOLD time-course event-related averaging (ERA), only successful trials

were accumulated; the epochs of the run affected by body or limb motions were au-

tomatically detected and eliminated from ERA analysis (see Supplementary Data,

Fig. 4.S1 for more detail). ERA time-courses were constructed using individual base-

line estimates for each single trial: mean activity in the last 3 or 4 s of the initial

fixation period. To assess significance of BOLD signals, a two-sample t-test was used

to compare the means of signal amplitude (percent signal change) of a given two trial
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types at each second time bin. The trial types being compared are specified in each

figure.
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Appendix 3—Published Work

A3.1 Components of bottom-up gaze allocation

in natural images

Abstract

Recent research [Parkhurst D., Law K., and Niebur E., 2002. Modeling the role of

salience in the allocation of overt visual attention. Vision Research 42 (1) (2002)

107-123] showed that a model of bottom-up visual attention can account in part for

the spatial locations fixated by humans while free-viewing complex natural and arti-

ficial scenes. That study used a definition of salience based on local detectors with

coarse global surround inhibition. Here, we use a similar framework to investigate the

roles of several types of non-linear interactions known to exist in visual cortex, and of

eccentricity-dependent processing. For each of these, we added a component to the

salience model, including richer interactions among orientation-tuned units, both at

spatial short range (for clutter reduction) and long range (for contour facilitation),

and a detailed model of eccentricity-dependent changes in visual processing. Subjects

free-viewed naturalistic and artificial images while their eye movements were recorded,

and the resulting fixation locations were compared with the models’ predicted salience

maps. We found that the proposed interactions indeed play a significant role in the

spatiotemporal deployment of attention in natural scenes; about half of the observed

inter-subject variance can be explained by these different models. This suggests that

attentional guidance does not depend solely on local visual features, but must also

include the effects of interactions among features. As models of these interactions be-
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come more accurate in predicting behaviorally-relevant salient locations, they become

useful to a range of applications in computer vision and human-machine interface de-

sign.

Vision Research 45(18):2397-416.

http://www.sciencedirect.com/science? ob=ArticleURL& udi=B6T0W-4G9GN35-1& user=

10& rdoc=1& fmt=& orig=search& sort=d&view=c& acct=C000050221& version=

1& urlVersion=0& userid=10&md5=66169a408bec4c11a4c1d41d52346c89
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A3.2 What do we perceive in a glance of a real-

world scene?

Abstract

What do we see when we glance at a natural scene and how does it change as the glance

becomes longer? We asked naive subjects to report in a free-form format what they

saw when looking at briefly presented real-life photographs. Our subjects received no

specific information as to the content of each stimulus. Thus, our paradigm differs

from previous studies where subjects were cued before a picture was presented and/or

were probed with multiple-choice questions. In the first stage, 90 novel grayscale pho-

tographs were foveally shown to a group of 22 native-English-speaking subjects. The

presentation time was chosen at random from a set of seven possible times (from 27

to 500 ms). A perceptual mask followed each photograph immediately. After each

presentation, subjects reported what they had just seen as completely and truthfully

as possible. In the second stage, another group of naive individuals was instructed

to score each of the descriptions produced by the subjects in the first stage. Indi-

vidual scores were assigned to more than a hundred different attributes. We show

that within a single glance, much object- and scene-level information is perceived by

human subjects. The richness of our perception, though, seems asymmetrical. Sub-

jects tend to have a propensity toward perceiving natural scenes as being outdoor

rather than indoor. The reporting of sensory- or feature-level information of a scene

(such as shading and shape) consistently precedes the reporting of the semantic-level

information. But once subjects recognize more semantic-level components of a scene,

there is little evidence suggesting any bias toward either scene-level or object-level

recognition.

Journal of Vision 7(1):10.

http://journalofvision.org//7/1/10/
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