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ii



to proofread my thesis; and Dr. Andrei Martinez–Finkelshtein for writing

me a letter of recommendation and serving on my thesis defense committee.

Other than members of the mathematical community, I thank my family,

my grandparents, my aunt Pauline, my uncles John and Luke, all of whom I

spent a lot of time with when I grew up. I also thank my godparents Carmen

and Aaron, for their care and encouragement since I was born.

I am most grateful to my parents, Martha and Paul, and my sister Clau-

dia. They have been immensely patient with me throughout my life and

have always given me priority in all matters. I thank my mother for always

being on my side when I grew up, her company meant a lot to me. I thank

my father for fostering a very harmonious and loving family, and for always

having me on his mind. I thank my sister Claudia for being my best friend,

the best travel companion and for being tolerant of her roommate of eighteen

years. Being with my family is a profound source of happiness in my life.

I am especially grateful to my aunt Pauline, uncle Cecil, and my cousins

Jeff and Celine. We have walked through the ups and downs of life together.

Finally, I thank the Hangseng Bank Hong Kong for awarding me a full

scholarship to attend Princeton University (2000-2004).



Abstract

This thesis consists of three parts.

Part 1 starts with an introduction to orthogonal polynomials, to be fol-

lowed by some well-known theorems pertinent to the results we shall discuss.

It also states the new results that are going to be proven in Parts 2 and 3.

In Part 2, we consider a sequence of paraorthogonal polynomials and

investigate their zeros. Then we introduce paraorthogonal polynomials of

the second kind and prove that zeros of first and second kind paraorthogonal

polynomials interlace.

In Part 3, we consider the point mass problem. First, we give the point

mass formula for the perturbed Verblunsky coefficients. Then we investigate

the asymptotics of orthogonal polynomials on the unit circle and apply the

results to the point mass formula to compute the perturbed Verblunsky co-

efficients. Finally, we present two examples, one on ∂D and one on R, such

that adding a point mass will generate non-exponential perturbations of the

recursion coefficients.
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Chapter 1

Notations

In this thesis, we present results in two areas of orthogonal polynomials

- paraorthogonal polynomials and point perturbation - in Chapter 2 and

Chapter 3 respectively.

Before we get to the main results, we provide a very brief introduction

into the area of orthogonal polynomials (abbreviated as OP in the remaining

discussions).

Orthogonal Polynomials on ∂D Let µ be a probability measure on the

unit circle ∂D = {z ∈ C : |z| = 1} with infinite support. We form the inner

product 〈 , 〉 and the norm in L2(dµ) as follows:

〈f, g〉 =

∫
∂D
f(z)g(z)dµ(z) (1.0.1)

‖f‖ = 〈f, f〉1/2 (1.0.2)

2



By the Gram–Schmidt process, we orthogonalize 1, z, z2, . . . to obtain

the sequence of monic orthogonal polynomials (Φn)∞n=1, with Φn(z) being the

unique monic polynomial that is orthogonal to polynomials of order ≤ n−1.

For m ≥ 0, we define Φ∗m(z) to be the polynomial

Φ∗m(z) = zmΦm(1/z) (1.0.3)

Note that for z ∈ ∂D, Φ∗n(z) = znΦn(z). Therefore, for j = 1, . . . , n,

〈zj,Φ∗n(z)〉 = 〈Φn(z), zn−j〉 = 0 (1.0.4)

which explains why Φ∗n(z) is the unique polynomial of degree ≤ n which is

orthogonal to z, . . . , zn (up to multiplication by a constant). Moreover, it is

easy to deduce that

‖Φn‖2 = ‖Φ∗n‖2 =

∫
Φ∗n(eiθ)dµ(θ) (1.0.5)

Since Φn+1(z) − zΦn(z) is a polynomial of degree at most n and it is

orthogonal to z, z2, . . . , zn, it is a multiple of Φ∗n(z). In fact, orthogonal

polynomials satisfy the well-known Szegő recursion relations:

Φn+1(z) = zΦn(z)− αnΦ∗n(z) (1.0.6)

Φ∗n+1(z) = Φ∗n(z)− αnzΦn(z) (1.0.7)



αn is called the nth Verblunsky coefficient of dµ. Notice that αn = −Φn+1(0).

By rearranging (1.0.11) above, we have

zΦn(z) = Φn+1(z) + αnΦ∗n(z) (1.0.8)

Consider the norm of each side of (1.0.8). Since Φ∗n(z) is a polynomial of

degree at most n, it is orthogonal to Φn+1(z). Moreover, we know that

‖zΦn‖2 = ‖Φn‖. Therefore, the norm of the left hand side is ‖Φn‖2 while the

norm of the right hand side is ‖Φn+1‖2 + |αn|2‖Φn‖2. Upon regrouping, that

becomes

‖Φn+1‖2 =
(
1− |αn|2

)
‖Φn‖2 (1.0.9)

Inductively,

‖Φn+1‖2 =
n∏
j=0

(
1− |αj|2

)
(1.0.10)

Since ‖Φn‖2 > 0, this implies |αn| < 1.

Now we see that for every probability measure µ there correspond a family

of Verblunsky coefficients (αn)∞n=0 ∈ C∞. In fact, the converse is also true:

Theorem 1.0.1 (Verblunsky’s Theorem). Let (βj)
∞
j=0 be a sequence in C∞.

Then there is a unique measure µ with Verblunsky coefficients (βj)
∞
j=0.

Hence, there is a bijection between any probability measure with infinite

support on ∂D and its family of Verblunsky coefficients.

If we let ϕn(z) = Φn(z)/‖Φn‖ be the orthonormal polynomial of order n,



then the Szegő recursion relations become:

ϕn+1(z) = (1− |αn|2)−1/2 (zϕn(z)− αnϕ∗n(z)) (1.0.11)

ϕ∗n+1(z) = (1− |αn|2)−1/2 (ϕ∗n(z)− αnzϕn(z)) (1.0.12)

Such recursion relations can be expressed in matrix form:

ϕn+1(z)

ϕ∗n+1(z)

 = (1− |αn|2)−1/2

 z −αn

−zαn 1


ϕn(z)

ϕ∗n(z)

 (1.0.13)

Together with the fact that ϕ0(z) = ϕ∗0(z) = 1, we have

ϕn+1(z)

ϕ∗n+1(z)

 = An(z)An−1(z) · · ·A0(z)

1

1

 ≡ Tn(z)

1

1

 (1.0.14)

where

An(z) = (1− |αn|2)−1/2

 z −αn

−zαn 1

 (1.0.15)

and Tn(z) is called the Transfer Matrix. These An(z)’s will play a major role

in Part 3.

The Szegő function, which will be involved in Theorem 2.0.8, is defined

as follows

Definition 1.0.1. If dµ = w(θ) dθ
2π

+ dµs and
∑∞

j=0 |αj|2 < ∞, the Szegő



function is defined as

D(z) = exp

(
1

4π

∫
eiθ + z

eiθ − z
logw(θ)dθ

)
(1.0.16)

The well-known Szegö’s Theorem asserts the following equality

∞∏
j=0

(1− |αj|2) = exp

(∫ 2π

0

log(w(θ))
dθ

2π

)
(1.0.17)

Hence, if (αn) is `2, logw(θ) is integrable and D(z) defines an analytic func-

tion on D. For a thorough discussion of the Szegő function, the reader may

refer to Chapter 2 of [46].

For a more detailed introduction to orthogonal polynomials on the unit

circle, the reader should refer to [20, 46, 47, 48, 50].

Orthogonal Polynomials on R Let dγ be a probability measure on R.

We can define an inner product and norm on L2(R, dγ) as in (1.0.1) and

(1.0.2), except that in this case it does not involve any conjugation. By

the Gram–Schmidt process, we can orthogonalize 1, x, x2, . . . and form the

family of monic orthogonal polynomials, (Pn(x))∞n=0. Upon normalization,

we obtain the family of orthonormal polynomials, (pn(x))∞n=0.

Note that xPn(x)− Pn+1(x) is a polynomial of degree at most n, we can

express it as

xPn − Pn+1 =
n∑
j=0

β
(n)
j Pj (1.0.18)



where βj = 〈Pj, xPn〉/‖Pj‖2. Moreover, observe that

βj = 〈Pj, xPn〉 = 〈xPj, Pn〉 = 0 (1.0.19)

for 0 ≤ j ≤ n− 2; and

βn−1 =
〈xPn−1, Pn〉
‖Pn−1‖2

=
‖Pn‖2

‖Pn−1‖2
> 0 (1.0.20)

If we let

an =
‖Pn‖
‖Pn−1‖

(1.0.21)

bn =
〈xPn, Pn〉
‖Pn‖2

(1.0.22)

then by (1.0.18) above, we deduce that the orthogonal polynomials satisfy

the following three-term recursion relation:

xpn(x) = an+1pn+1(x) + bn+1pn(x) + anpn−1(x) (1.0.23)

(an)∞n=0 and (bn)∞n=0 are called the recursion coefficients of the measure dγ.

Furthermore, by iterating (1.0.21), one gets:

‖Pn‖ = anan−1 · · · a1 (1.0.24)

which implies that the recurrence relation for the orthonormal polynomials



is

xpn(x) = an+1pn+1(x) + bn+1pn(x) + anpn−1(x) (1.0.25)

For more on orthogonal polynomials on the real line, the reader may refer

to [14, 46].



Chapter 2

Summary of Results

Paraorthogonal polynomials were introduced at least as early as in [24]. An

(n+1)th degree paraorthogonal polynomial is of the form (up to multiplication

by a constant):

Hn+1(z, βn, dµ) = zΦn(z)− βnΦ∗n(z) (2.0.1)

with βn ∈ ∂D; Φn(z) being the nth monic orthogonal polynomial associated

with dµ, and Φ∗n(z) = znΦn(1/z).

Paraorthogonal polynomials have a lot in common with orthogonal poly-

nomials on the real line (pn(x))∞n=0. For instance, a paraorthogonal polyno-

mial has simple zeros on the unit circle while pn(x) has simple zeros on the

real line.

We shall consider a specific family of paraorthogonal polynomials (hn(z, λ))∞n=0,

9



defined for some fixed λ ∈ ∂D as:

hn(z, λ) := (1− λz)Kn−1(z, λ) (2.0.2)

where

Kn−1(z, λ) =
n−1∑
j=0

ϕj(λ)ϕj(z) (2.0.3)

It will be clear in the proof that this definition of hn(z) is consistent with

the definition given in (2.0.1).

It has been proven by Cantero–Moral–Velázquez [11] and Golinskii [22]

that zeros of hn(z, λ) and hn+1(z, λ) strictly interlace. In fact, this interlacing

property is shared by pn(x) and pn+1(x).

With the same λ that defines hn(z, λ), we introduce paraorthogonal poly-

nomials of the second kind, sn(z, λ), and prove that zeros of hn(z, λ) and

sn(z, λ) (with the exception of λ) strictly interlace. This resembles the fact

that the zeros of pn(x) and qn(x) strictly interlace.

We prove four results concerning hn(z, λ), hn+1(z, λ), sn(z, λ) and sn+1(z, λ).

The first result is as follows:

Theorem 2.0.2 ([53]). Suppose z0 ∈ ∂D distinct from λ and δ = dist(z0, supp(dµ))

strictly positive. Then in the open disk around z0 with radius

ρ =
δ3

8 + δ2
(2.0.4)

either hn or hn+1 (or both) has no zero inside, with the possible exception of



λ. Furthermore, if L = dist(λ, supp(dµ) > 0, then the radius could be taken

as:

ρ′ =
δ2L

8 + δL
(2.0.5)

Note that when L > δ, ρ′ > ρ, hence (2.0.5) improves (2.0.4).

There is a related conjecture concerning double limit points which was

proposed in [22] and proven in [12]. The result says that the set of double

limit points of hn coincides with supp(dµ), except at most the point λ. In

other words, if dist(z0, supp(dµ)) > 0, then for any sequence of integers I,

there exists a subsequence I ′ ⊂ I and εI > 0 such that for n ∈ I ′, either hn

or hn+1 (or both) has no zero in the open disk B(z0, εI).

However, Theorem 2.0.2 is clearly stronger because we found an explicit

radius ρ for which the double zero result holds (2.0.4) and the result does

not depend on n.

The second result we prove is the following:

Theorem 2.0.3 ([53]). The zeros of hn and sn strictly interlace, that is,

between any two zeros of hn (or sn), there is one and only one zero of sn (or

hn respectively) in between.

Theorem 2.0.3 is an analogue of the following well-known fact that zeros

of the first and second kind orthogonal polynomials on the real line strictly

interlace.

At the same time when Theorem 2.0.3 was proven, Simon [46] demon-



strated another way of proving the result using the theory of rank one per-

turbations of unitary operators. He made the observation that the CMV

matrix associated to sn is just the original one with the signs of αj and βn−1

reversed, and it is unitarily equivalent to one where the signs are not reversed

but the first column has opposite sign.

The main tools of the proof are the two real-valued functions σn and ηn

which we will define in (4.2.3) and (4.2.4). They were used in [11] to prove

that zeros of hn and hn+1 interlace, but the method employed in our proof is

different.

The remaining two results concerning paraorthogonal polynomials are:

Lemma 2.0.1 ([53]). Suppose z0 is an isolated point in supp(dµ). Then

δ̃ = dist(z0, supp(dν)) > 0 (2.0.6)

and in the ball around z0 with radius

ρ̃ =
δ̃2|z0 − λ|

8 + |z0 − λ|δ̃
(2.0.7)

either sn or sn+1 (or both) has no zeros inside.

Theorem 2.0.4 ([53]). Suppose z0 is an isolated point of supp(dµ) and δ̃ is

as defined in (2.0.6). Then in the open disk around z0 with radius

ρ̃ =
δ̃2|z0 − λ|

8 + |z0 − λ|δ̃
(2.0.8)



either hn or hn+1 (or both) has at most one zero inside.

Theorem 2.0.2 and Theorem 2.0.4 are analogues of the following results

of Denisov–Simon [17]:

Theorem 2.0.5. Let δ = dist(x0, supp(dµ)) > 0. Suppose an+1 is the recur-

sion coefficient as given by xpn(x) = an+1pn+1(x) + bn+1pn(x) + anpn−1(x).

Let rn = δ2/(δ +
√

2an+1). Then either pn or pn+1 (or both) has no zeros in

(x0 − rn, x0 + rn).

Theorem 2.0.6. Let x0 be an isolated point of supp(dµ) on the real line.

Then there exists d0 > 0 so that if δn = d2
0/(d0 +

√
2an+1)), then at least one

of pn and pn+1 has no zeros or one zero in (x0 − δn, x0 + δn).

This concludes Part 2 of this thesis.

Part 3 is dedicated to the point mass problem. Suppose dµ is a probability

measure on the unit circle and 0 < γ < 1. Let dν be the probability measure

formed by adding a point mass ζ = eiω ∈ ∂D to dµ in the following manner

dν = (1− γ)dµ+ γδω (2.0.9)

Our goal is to investigate the Verblunsky coefficients of ν.

The history of the problem is as follows. The earliest work related to

adding point masses was done by Wigner–von Neumann [52], where they con-

structed a potential with an embedded eigenvalue. Later, Gel’fand–Levitan



[18] constructed a potential V so that − d2

dx2
+ V has a spectral measure with

a pure point mass at a positive energy and was otherwise equal to the free

measure. A more systematic approach to adding point masses to a potential

was then taken by Jost–Kohn [25, 26].

Unaware of the Jost–Kohn work and of each other, Uvarov [51] and Nevai

[38] discovered the formulae for adding point masses for orthogonal polyno-

mials on the real line. They found the perturbed polynomials, and Nevai

computed the perturbed recursion coefficients.

Jost–Kohn theory for orthogonal polynomials on the unit circle appeared

previously in Cachafeiro–Marcellán [7, 8, 10], Marcellán–Maroni [32], and

Peherstorfer–Steinbauer [33]. In particular, if dν and dµ are as defined in

(2.0.9), Peherstorfer–Steinbauer [33] proved that boundedness of the first

and second kind orthonormal polynomials of dµ at the pure point ζ implies

that limn→∞ αn(dν) − αn(dµ) = 0, but they did not establish any rate of

convergence. We are going to prove more quantitative results concerning

α(dν) than that.

The first result that we present is the following point mass formula:

Theorem 2.0.7. [55] Suppose dµ is a probability measure on the unit circle

and 0 < γ < 1. Let dν be the probability measure formed by adding a point

mass ζ = eiω ∈ ∂D to dµ in the following manner

dν = (1− γ)dµ+ γδω (2.0.10)



Then the Verblunsky coefficients of dν are given by

αn(dν) = αn + ∆n(ζ) (2.0.11)

where

∆n(ζ) =
(1− |αn|2)1/2

(1− γ)γ−1 +Kn(ζ)
ϕn+1(ζ)ϕ∗n(ζ) (2.0.12)

and

Kn(ζ) =
n∑
j=0

|ϕj(ζ)|2 (2.0.13)

and all objects without the label (dν) are associated with the measure dµ.

In fact, when we proved Theorem 2.0.7, we were totally unaware of the

following formula found by Geronimus [20]:

Φn(z, dν) = Φn(z)− Φn(ζ)Kn−1(z, ζ)

(1− γ)γ−1 +Kn−1(ζ, ζ)
(2.0.14)

Years after Geronimus proved (2.0.14), a similar formula for the real case

was rediscovered by Nevai [38], and the same formula for the unit circle

case was rediscovered by Cachafeiro-Marcellan [10]. Unaware of Geronimus’

result and the fact that Nevai’s result also applies to the unit circle, Simon

reconsidered this problem independently using a totally different method

(see Theorem 10.13.7 in [47]). However, a more useful form of his result

(see formula (5.0.7) in Section 5) is disguised in his proof and it lays the

foundation for Theorem 2.0.7.



Now that we have the point mass formula, we will demonstrate its first

application to the point mass problem. Before we state the results, it is

necessary that we introduce the notion of p-generalized bounded variation

which is the class of sequences defined as follows:

Definition 2.0.2. We say that a sequence (αn)∞n=0 is of p-generalized bounded

variation if each αn can be decomposed into p components

αn =

p∑
k=1

βn,k (2.0.15)

with βn,k ∈ C and there exist ζ1, ζ2, . . . , ζp ∈ ∂D such that for each 1 ≤ k ≤ p

∞∑
n=0

|ζkβn+1,k − βn,k| <∞ (2.0.16)

We denote by Wp(ζ1, ζ2, . . . , ζp) the class of sequences (αn)∞n=0 that satisfy

(2.0.15) and (2.0.16).

In particular, when p = 1 and ζ1 = 1, then it becomes the conventional

bounded variation. This is why we gave the name p-generalized bounded

variation.

For the sake of simplicity, we shall write dµ ∈ Wp(ζ1, ζ2, . . . , ζp) if the

family of Verblunsky coefficients of dµ is in the class Wp(ζ1, ζ2, . . . , ζp).

Now we are ready to state the first two results:

Theorem 2.0.8. [54] Let ζj = eiωj ∈ ∂D, 1 ≤ j ≤ p be distinct. Sup-

pose we have a measure dµ with dµ ∈ Wp(ζ1, ζ2, . . . , ζp) such that for each j,



(βn,j)
∞
n=0 ∈ `2. The following two results hold:

(1) For any compact subset K of ∂D\{ζ1, ζ2, . . . , ζp},

sup
n;z∈K

|Φ∗n(z)| <∞ (2.0.17)

(2) The following limits are continuous at z 6= ζ1, ζ2, . . . , ζp

Φ∗∞(z) = lim
n→∞

Φ∗n(z) = D(0)D(z)−1 (2.0.18)

ϕ∗∞(z) = lim
n→∞

ϕ∗n(z) = D(z)−1 (2.0.19)

and the convergence is uniform on any compact subset K ⊂ ∂D\{ζ1, ζ2, . . . , ζp}.

Moreoever, dµs is a pure point measure supported on a subset of {ζ1, ζ2, . . . , ζp}.

Theorem 2.0.9. [54] Suppose dµ0 ∈ W1(1) and (αn(dµ0))∞n=0 ∈ `2. We add

m distinct pure points zj = eiωj , ωj 6= 0, to dµ0 with weights γj to form the

probability measure dµm as follows

dµm =

(
1−

m∑
j=1

γj

)
dµ0 +

m∑
j=1

γjδωj (2.0.20)

under the conditions that 0 < γj and
∑m

j=1 γj < 1. Then

dµm ∈ Wm+1(1, z1, z2, . . . , zm) (2.0.21)



and

αn(dµm) = αn(dµ0) +
m∑
j=1

zj
ncj
n

+ En (2.0.22)

where cj = zj|D(zj, dµ0)|2D(zj, dµ0)−2 are constants independent of the weights

γ1, γ2, . . . , γm and of n; and

En = En(z1, z2, . . . , zm, γ1, γ2, . . . , γm) = o

(
1

n

)
(2.0.23)

Furthermore, for z ∈ ∂D\{1, z1, z2, . . . , zm}, ϕ∗∞(z, dµm) is continuous and

is equal to (1−
∑m

j=1 γj)
−1/2D(z, dµ0)−1.

Remark: Note that dµma.c. is just (1−
∑m

j=1 γj)dµ0a.c. and that
∫

eiθ+z
eiθ−z

dθ
2π

=

1. Hence, D(z, dµm) = (1−
∑m

j=1 γj)
1/2D(z, dµ0).

Theorem 2.0.8 is a generalization of the following result:

Theorem 2.0.10 (Nevai [39], Nikishin [40]). Suppose
∑∞

j=0 |αj|2 <∞ and

∞∑
j=0

|αj+1 − αj| <∞ (2.0.24)

Then, for any δ > 0, supn;δ<arg(z)<2π−δ |Φ∗n(z)| < ∞ and away from z = 1,

we have that limn→∞Φ∗n(z) exists, is continuous and equal to D(0)D(z)−1.

Furthermore, dµs = 0 or else a pure point at z = 1.

The reader may refer to Theorem 10.12.5 of [47] for the proof of Theorem

2.0.10.



In addition to Nevai, Uvarov and Simon’s result mentioned earlier, we

use Prüfer variables as the main tool to prove that limn→∞Φ∗n(z) exists in

Theorem 2.0.8. Prüfer variables are named after Prüfer [41]. Their initial

introduction in the spectral theory of orthogonal polynomials on the unit

circle was made by Nikishin [40] with a significant follow up by Nevai [39].

Both [39] and [40] had results related to Theorem 2.0.10 and they arrived at

the result by essentially the same proof. Later, Prüfer variables were used as

a serious tool in spectral theory by Kiselev–Last–Simon [28] and Last–Simon

[31].

Most recently, in [46] (Example 1.6.3, p. 72) Simon considered the mea-

sure dν with one pure point:

dν = (1− γ)
dθ

2π
+ γδ0 (2.0.25)

He proved that the n-th degree orthogonal polynomial of dν is as follows

Φn(z) = zn − γ

1 + (n− 1)γ
(zn−1 + zn−2 + · · ·+ 1) (2.0.26)

and since αn = −Φn+1(0),

αn(dν) =
γ

1 + γn
≈ 1

n
+

1

γn2
+O

(
1

n3

)
(2.0.27)

Here is a sketch of Simon’s proof: he considered Ln, the (n + 1) × (n + 1)

matrix defined as (Ln)jk = cj−k, where cj =
∫
e−ijθdµ(θ) is the j-th moment



of the measure. It is well-known that if Φn(z) = anz
n + an−1z

n−1 + · · ·+ a0,

δn = (0, 0, . . . , 0, 1) and 〈 , 〉 being the Euclidean norm,

(a0, a1, . . . , an) =
〈
δn, L

−1
n δn

〉−1
L−1
n δn (2.0.28)

Therefore, the aim is to compute L−1
n . By (2.0.25), cn = (1 − γ)δn0 + γ.

Let Pj be the j × j matrix which is j−1 times the matrix of all 1’s, so it is a

rank one projection. Ln could be decomposed as

Ln = (1− γ)1 + (n+ 1)γPn+1 (2.0.29)

From (2.0.29), one could deduce that the inverse of Ln is

L−1
n = (1− γ)−1(1− Pn+1) + (1 + nγ)−1Pn+1 (2.0.30)

Unfortunately, the method used to prove the result above no longer gives

such a nice result when there are two pure points. For instance, we won’t have

the decomposition as in (2.0.29), because Ln will be a rank m perturbation of

(1−
∑m

j=1 γj)1 instead, so the computations will be much more complicated.

Besides, this method only works for adding one point to dθ/2π but fails for

more general measures.

After considering measures with `2 Verblunsky coefficients of bounded

variation in Part 2, we turn our attention to probability measures on ∂D

with asymptotically periodic Verblunsky coefficients of p-bounded variation



in Part 3. The essential spectrum of these measures consists of a finite

number of bands and gaps and our goal is to understand the effect of adding

a point mass to a gap in the essential spectrum.

We start with asymptotically identical Verblunsky coefficients. We present

a new method to compute the asymptotics of ϕn(z) in the gap of the spec-

trum (see formulae (7.4.54) and (7.4.55)). Applying that to the point mass

formula, we prove the following result:

Theorem 2.0.11. [56] Let (αn)∞n=0 be the Verblunsky coefficients of the prob-

ability measure dµ on ∂D such that

αn → L ∈ D\{0} (2.0.31)
∞∑
j=0

|αj+1 − αj| <∞ (2.0.32)

Let GL be the gap of the essential spectrum (not including the endpoints).

We add a pure point z = eiθ ∈ GL to dµ to form dν as in (2.0.9). Then

either one of the following is true:

1. If µ(z) > 0, then |ϕn(z)| decreases exponentially, ∆n(z)→ 0 exponen-

tially fast, and αn(dν)− αn(dµ) is exponentially small.

2. If µ(z) = 0, then



(a) limn→∞∆n(z) exists, and

∆∞(z) ≡ lim
n→∞

∆n(z) = h(z)1/2

[
(z − 1)− h(z)1/2

2L

]
(2.0.33)

where

h(z) = (z − 1)2 + 4z|L|2 (2.0.34)

and we choose the branch of logarithm such that (1)1/2 = 1.

(b) Furthermore, |∆∞(z) + L| = |L| and

lim
n→ ∞

αn(dν) = Leiω (2.0.35)

where

cosω =
2 sin2

(
θ
2

)
− |L|2

|L|2
(2.0.36)

sinω =
2 sin

(
θ
2

)√
|L|2 − sin2

(
θ
2

)
|L|2

(2.0.37)

(c) (∆n)n is of bounded variation, i.e.,

∞∑
n=0

|∆n+1(z)−∆n(z)| <∞ (2.0.38)

A few remarks about Theorem 2.0.11:

(i) Since αn → L 6= 0, this measure has the same essential spectrum as the

measure dµ0 with Verblunsky coefficients αn(dµ0) ≡ L, which is supported



on the arc Γ|L| as defined in (2.0.45).

(ii) Case (1) is a special case of Corollary 24.3 of [49], where Simon proved

that varying the weight of an isolated pure point in the gap will result in

exponentially small perturbation to αn(dµ).

(iii) By (2c), adding a pure point to the gap will preserve the bounded vari-

ation property of (αn)n. Hence, we can add a finite number of points induc-

tively and generalize the result to finitely many pure points in the gap.

Next, we will generalize the technique developed in the proof of Theorem

2.0.11 and prove the following result about measures with asymptotically

periodic Verblunsky coefficients:

Theorem 2.0.12 ([56]). Let (βn)n be a periodic family of Verblunsky coef-

ficients of period p, i.e., βn = βn+p for all n, and let dµβ be the measure

associated to it. Let Γβ be the union of open arcs which are the interiors

of the bands that form ess supp(dµβ). Suppose the measure dµ has Verblun-

sky coefficients (αn)n that are asymptotically p-periodic of bounded variation,

i.e.,

lim
n→∞

αn(dµ)− βn = 0 (2.0.39)

∞∑
n=0

|αn+p − αn| <∞ (2.0.40)

Now we add a pure point ζ ∈ ∂D \ Γβ as in (2.0.9). Then one of the



following is true:

1. µ(ζ) > 0, then for each fixed 0 ≤ j < p, limk→∞∆kp+j(ζ) = 0 exponen-

tially fast.

2. µ(ζ) = 0, then for each fixed 0 ≤ j < p, limk→∞∆kp+j(ζ) exists and

∞∑
k=0

|∆(k+1)p+j −∆kp+j| <∞ (2.0.41)

Then we will prove the following result where (αn)n is not necessarily of

bounded variation:

Theorem 2.0.13. [56] Let ζ ∈ ∂D and µ(ζ) = 0. Suppose limn→∞ ζ
nαn = L.

Then

lim
n→∞

ζn∆n = −2L (2.0.42)

As a result,

lim
n→∞

ζnαn(dν) = − lim
n→∞

ζnαn(dµ) (2.0.43)

Next, we use Theorem 2.0.13 to prove Corollary 2.0.1 below to illustrate

the non-exponential rate of convergence of ∆n(ζ) towards its limit. One

might have guessed that the convergence should be exponentially fast, but

we will show that it is not the case!



Corollary 2.0.1. Let αn = L+ cn, where L < 0, cn ∈ R and cn → 0. Then

∆n(1) = −2L− 2cn + o (cn) . (2.0.44)

There are many papers about measures supported on an interval/arc, and

about the perturbation of orthogonal polynomials with periodic recursion

coefficients. For example, the reader may refer to [4, 16, 33, 37, 3, 2, 15].

Bello-López [4] extended the well-known work of Rakhmanov [42, 43, 44]

and proved the following: let 0 < a < 1 and θa = 2 arcsin(a). If dµ is

supported on the arc

Γa = {z ∈ ∂D|| arg(z)| > θa} (2.0.45)

such that w(θ) > 0 on Γa, then limn→∞ |αn| = a. Bellos–López’s result

is restricted to measures that are absolutely continuous on the arc, and it

was later extended to measures with infinitely many mass points outside the

a.c. part of the support (see for example, [3] and Theorem 13.4.4 of [47]).

However, unlike Theorem 2.0.11, these results do not tell us whether ∆n(z)

approaches a single point.

In [33], Peherstorfer–Steinbauer considered the situation where dµ is an

absolutely continuous measure on supp(dµ) = Γa with w(θ) satisfying the



Szegö condition on Γa, i.e.,

∫
Γa

logw(θ)
sin( θ

2
)√

cos2(
θ|α|

2
)− cos2( θ

2
)
dθ > −∞ (2.0.46)

They proved that if we add a finite number of pure points to the gap to form

the measure to dτ , then limn→∞ αn(dτ) exists and the limit has norm |a|.

In Section 7.8, we are going to work out an example that demonstrates

the existence of a large class of measures with Verblunsky coefficients αn → L

of bounded variation that fail the Szegő condition (2.0.46).

Given such a result for orthogonal polynomials on the unit circle, one

would expect a similar result for the real line. In [37], Peherstorfer–Yuditskii

gave the following result: for any Jacobi matrix J whose spectrum is a fi-

nite gap set with the a.c. part of the spectral measure satisfying the Szegö

condition, then there is a unique Jacobi matrix J∞ in the isospectral torus

such that the orthogonal polynomials of J and J∞ have the same asymp-

totics away from the spectrum as n → ∞. In particular, this implies that

the Jacobi parameters of J converge to the parameters of J∞ as n→∞.

We conclude the thesis by presenting the following result:

Theorem 2.0.14 ([57]). There exists a purely absolutely continuous measure

dγ0 supported on [−2, 2] with no eigenvalues outside of [−2, 2], such that if

we add a pure point x0 ∈ R\[−2, 2] in the following manner

dγ̃(x) = (1− β)dγ0(x) + βδx0 β > 0 (2.0.47)



it will result in non-exponential perturbation of the recursion coefficients

an(dγ0) and bn(dγ0).

This example is of particular interest because of the following: in 1946,

Borg [5] proved a well-known result concerning the Sturm–Liouville problem

that, in general, a single spectrum is insufficient to determine the potential.

Later, Gel’fand–Levitan [18] showed that in order to recover the potential

one also needs the norming constants.

Norming constants correspond to the weights of pure points and it is

known that in the short range case (in orthogonal polynomials language,

an− 1, bn → 0 fast), varying the norming constants will result in exponential

change in the potential.

Moreover, when considering the effect of varying the weight of discrete

point masses on orthogonal polynomials (both on R and ∂D), Simon proved

that it will result in exponential perturbation of the recursion coefficients

(see Corollary 24.4 and Corollary 24.3 of [49]).

All the results mentioned above lent to a few experts the intuition that if

the recursion coefficients an → 1 and bn → 1 fast, then adding a pure point

will result in exponential change in the recursion coefficients. However, that

was proven to be wrong by Theorem 2.0.14 above.



Part II

Paraorthogonal Polynomials
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Chapter 3

Background

3.1 Properties

A major difference between orthogonal polynomials and paraorthogonal poly-

nomials lies in the fact that αn ∈ D is determined uniquely by the measure,

while βn ∈ ∂D could be chosen arbitrarily on the unit circle. These dif-

ferences give rise to the following properties of paraorthogonal polynomials

which are not shared by Φn(z):

1. Zeros in ∂D Unlike orthogonal polynomials which have zeros strictly

inside the unit disk, paraorthogonal polynomials have zeros in ∂D. To see

that it suffices, to note that

∣∣∣∣zΦn(z)

Φ∗n(z)

∣∣∣∣ = 1⇔ z ∈ ∂D (3.1.1)
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Recall that all the zeros of Φn(z) lie in D. Moreover, since Φ∗n(z) =

znΦn(1/z̄) and Φ∗n(0) = 1, Φ∗n(z) is non-vanishing on D. Therefore, the func-

tion g(z) = zΦn(z)/Φ∗n(z) is analytic in a neighborhood of D. Furthermore,

|g(z)| = 1 on ∂D, so the maximal modulus principle implies that |g(z)| < 1

on D. In other words,

|Φn(z)| ≤ |Φ∗n(z)| z ∈ D (3.1.2)

and equality is attained if and only if z ∈ ∂D.

2. Orthogonality An n-th degree paraorthogonal polynomial is orthog-

onal to {z, z2, . . . , zn−1} because both zΦn−1(z) and Φ∗n−1(z) are orthogonal

to z, . . . , zn−1. However, we note that Hn is never orthogonal to 1 or zn

because

〈1, Hn〉 = (αn−1 − βn−1)‖Φn−1‖2 6= 0 (3.1.3)

〈zn, Hn〉 =
(
1− βn−1αn−1

)
‖Φn−1‖2 6= 0 (3.1.4)

3. Representation Suppose λ is a zero of Hn(z, βn−1). We prove that Hn

could be represented using the reproducing kernelKn(z, λ) =
∑n

j=0 ϕj(z)ϕj(λ)

and a constant C as follows:

Hn(z, βn−1) = C(z − λ)
n−1∑
j=0

ϕj(z)ϕj(λ) = C(z − λ)Kn−1(z, λ) (3.1.5)



The argument is related to Szegő [50] when he proved the Christoffel–

Darboux formula. It goes as follows: since λ is a zero of Hn, Hn(z) =

(z − λ)h(z) for some polynomial h of degree n − 1. By the orthogonality

of Hn against {z, . . . , zn−1}, 〈zh, zm〉 = 〈λh, zm〉 for 1 ≤ m ≤ n − 1, which

implies that λ〈zm−1, h〉 = 〈zm, h〉. Applying this formula recursively, we

conclude that

〈zm, h〉 = λm〈1, h〉, for 0 < m ≤ n− 1 (3.1.6)

When m = 0 the argument is trivial. If ϕs(z) =
∑s

j=0 ajz
j, then for

0 ≤ s ≤ n− 1,

〈ϕs, h〉 = 〈1, h〉
s∑
j=0

ajλj = 〈1, h〉ϕs(λ) (3.1.7)

If we express h(z) using Fourier series,

h(z) =
n−1∑
j=0

〈ϕj, h〉ϕj(z) =
n−1∑
j=0

〈1, h〉ϕj(λ)ϕj(z) = 〈1, h〉Kn−1(z, λ) (3.1.8)

4. Simple Zeros Let λ and h(z) be defined as above. By (3.1.8), 〈h, 1〉 = 0

implies h = 0, hence 〈h, 1〉 6= 0 . In addition, ϕ0 = 1 implies Kn−1(λ, λ) > 0.

Therefore h(λ) = 〈h, 1〉Kn−1(λ, λ) 6= 0. This shows that zeros of paraorthog-

onal polynomials are simple.

5. Linear Independence The argument for property (3) above also tells

us that a paraorthogonal polynomial could vanish at one arbitrary point on



the unit circle, and that particular zero fixes the remaining ones. Therefore,

two paraorthogonal polynomials of the same degree are linearly independent

if and only if all their zeros are distinct.

For a more comprehensive introduction to orthogonal polynomials and

paraorthogonal polynomials, the reader should refer to [48, 46, 50].

3.2 Equivalent Definitions of hn(z)

Fix λ ∈ ∂D. We define the family of paraorthogonal polynomials (hn(z, λ))n

as follows:

hn(z, λ) := (1− λz)Kn−1(z, λ) (3.2.1)

We will soon see that there are three equivalent definitions of hn(z) by

the Christoffel–Darboux formula. The formula says that for yz 6= 1, the

reproducing kernel Kn−1(z, y) could be expressed in the following ways:

Kn−1(z, y) =
ϕ∗n(y)ϕ∗n(z)− ϕn(y)ϕn(z)

1− yz
(3.2.2)

=
ϕ∗n−1(y)ϕ∗n−1(z)− yzϕn−1(y)ϕn−1(z)

1− yz
(3.2.3)



Hence, we have the following three equivalent definitions of hn(z, λ):

hn(z) = (1− λz)
n−1∑
j=0

ϕj(z)ϕj(λ) (3.2.4)

= ϕ∗n(λ)ϕ∗n(z)− ϕn(λ)ϕn(z) (3.2.5)

= ϕ∗n−1(λ)ϕ∗n−1(z)− zλϕn−1(λ)ϕn−1(z) (3.2.6)

By rewriting (3.2.6) in the form of (2.0.1),

hn(z) = −λϕn−1(λ)

(
zϕn−1(z)− λ

ϕ∗n−1(λ)

ϕn−1(λ)
ϕ∗n−1(z)

)
(3.2.7)

we see that the coefficients (βn−1) of this particular family of paraorthogonal

polynomials are

βn−1(hn) = λ
ϕ∗n−1(λ)

ϕn−1(λ)
(3.2.8)

3.3 Paraorthogonal Polynomials of the Sec-

ond Kind

Paraorthogonal polynomials of the second kind arise from orthogonal poly-

nomials of the second kind, namely ψk(z), which are orthogonal polynomials



associated to the measure ν with Verblunsky coefficients

αn(dν) = −αn(dµ) (3.3.1)

The existence of the measure is guaranteed by Verblunsky’s theorem which

says that for any given sequence of complex numbers inside D, there corre-

sponds a measure on the unit circle with such as Verblunsky coefficients.

With the same λ as we used to define hn(z, λ), we define our Paraorthog-

onal Polynomials of the Second Kind sn as follows:

sn(z) = ϕ∗n−1(λ)ψ∗n−1(z) + zλϕn−1(λ)ψn−1(z) (3.3.2)

If we rewrite (3.3.2) in the form of (3.2.7)

sn(z) = λϕn−1(λ)

(
zψn−1(z) + λ

ϕ∗n−1(λ)

ϕn−1(λ)
ψ∗n−1(z)

)
(3.3.3)

we see that the βn coefficient of this family of paraorthogonal polynomials

(sn)n is given by:

βn(sn) = −βn(hn) (3.3.4)

As in the case of hn, we shall see that there are three equivalent definitions



of sn by means of the Mixed Christoffel–Darboux Formulae, which state that:

ϕ∗n−1(y)ψ∗n−1(z) + zyϕn−1(y)ψn−1(z) = ϕ∗n(y)ψ∗n(z) + ϕn(y)ψn(z) (3.3.5)

n−1∑
j=0

ϕj(y)ψj(z) =
2− ϕ∗n(y)ψ∗n(z)− ϕn(y)ψn(z)

1− yz
for y 6= z (3.3.6)

The reader should refer to Chapter 3.2 of [46] for the proof.

By (3.3.5) and (3.3.6), sn(z, λ) has the following three equivalent defini-

tions:

sn(z) = ϕ∗n−1(λ)ψ∗n−1(z) + zλϕn−1(λ)ψn−1(z) (3.3.7)

= ϕ∗n(λ)ψ∗n(z) + ϕn(λ)ψn(z) (3.3.8)

= −(1− λz)
n−1∑
j=0

ϕj(λ)ψj(z) + 2 (3.3.9)



Chapter 4

Proofs

4.1 Proof of Theorem 2.0.2

Before we start the proof, we refer to a theorem about zeros of hn in a gap

of the measure:

Theorem 4.1.1 (Corollary 2 of [11], Theorem 2 of [22], Theorem 2.3 of [46]).

Let an arc Γ = (α, β) on ∂D be a gap in supp(dµ), that is, supp(dµ) ∩ Γ =

∅ and α goes to β counterclockwise. Then for each n, the paraorthogonal

polynomial hn has at most one zero in Γ = [α, β].

If λ is in a gap Γ, since λ is zero of all hn, by Theorem 4.1.1 above, there

are no other zeros of hn or hn+1 in Γ. In other words, if z0 and λ are in

the same gap, in a radius δ = dist(z0, supp(dµ)) around z0 there could be no

zeros other than λ. Since δ > ρ, Theorem 2.0.2 holds. Hence if λ is in a gap,
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it suffices to look at the case when z0 sits in gaps other than Γ. In such a

situation, |z0 − λ| ≥ dist(z0, supp(dµ)).

However, if λ is not in a gap, that is, λ is in the support of a measure,

then clearly |z0 − λ| ≥ dist(z0, supp(dµ)).

Without loss of generality, we may assume that |z0−λ| ≥ δ in this section.

We shall divide the proof into two lemmas:

Lemma 4.1.1. ∣∣∣∣ hi(z0)

Kn−1(z0, z0)1/2

∣∣∣∣ ≥ 1

4
|ϕn(λ)|δ2 (4.1.1)

where i =


n if |hn+1(z0)| ≤ |hn(z0)|

n+ 1 if |hn(z0)| ≤ |hn+1(z0)|

Proof. Suppose |hn+1(z0)| ≤ |hn(z0)|.

First, we give a bound for the L2(µ) norm of ‖(z0 − ·)Kn−1(z0, ·)‖.



By the parallelogram equality and the fact that |ϕ∗n(z0)| = |ϕn(z0)|,

‖(z0 − ·) Kn−1(z0, ·)‖2

= ‖ϕ∗n(·)ϕ∗n(z0)− ϕn(·)ϕn(z0)‖2

≤ 2|ϕ∗n(z0)|2 + 2|ϕn(z0)|2

= 4

∣∣∣∣∣hn+1(z0)− hn(z0)

(z0 − λ)ϕn(λ)

∣∣∣∣∣
2

≤ 4|hn+1(z0)|2 + 4|hn(z0)|2 + 8|hn+1(z0)hn(z0)|
|ϕn(λ)|2|z0 − λ|2

≤ 16|hn(z0)|2

|ϕn(λ)|2|z0 − λ|2

(4.1.2)

Remark: Note that hn+1(z0) − hn(z0) = (1 − λz0)ϕn(λ)ϕn(z0), so it is

impossible that both hn+1(z0) and hn(z0) are zero because ϕ has zeros inside

the unit circle.

On the other hand, we observe that

‖Kn−1(z0, ·)‖ =

(∫
∂D
Kn−1(z0, y)Kn−1(z0, y)dµ(y)

)1/2

= Kn−1(z0, z0)1/2

(4.1.3)

Hence,

‖(z0 − ·)Kn−1(z0, ·)‖2 ≥ dist(z0, supp(dµ))2Kn−1(z0, z0) (4.1.4)



As a result,

dist(z0, supp(dµ))2Kn−1(z0, z0) ≤ 16|hn(z0)|2

|ϕn(λ)|2|z0 − λ|2
(4.1.5)

This proves the case when |hn+1(z0)| ≤ |hn(z0)|.

Now suppose |hn+1(z0)| ≤ |hn(z0)|. The proof could be carried out in a

similar manner, only that after (4.1.2) all appearances of hn will be replaced

by hn+1.

Lemma 4.1.2. Suppose τ is a zero of hn which is distinct from λ. Let

T = dist(τ, supp(dµ)), then

|z0 − τ | ≥
|hn(z0)|

Kn−1(z0, z0)1/2‖hn‖
T (4.1.6)

Proof. Since τ is a zero of hn, g(z) = hn(z)
(z−τ)

is a polynomial of degree n − 1,

so we can express it as

hn(z)

(z − τ)
=

∫
∂D
Kn−1(z, y)g(y)dµ(y) (4.1.7)

By the Schwarz inequality,

∣∣∣∣ hn(z0)

(z0 − τ)

∣∣∣∣ ≤ ‖Kn−1(z0, ·)‖‖g‖ = Kn−1(z0, z0)1/2‖g‖ (4.1.8)



Also note that ‖g‖ =
∥∥∥ hn(z)

(z−τ)

∥∥∥ ≤ ‖hn‖
T

. Therefore,

|z0 − τ | ≥
|hn(z0)|

Kn−1(z0, z0)1/2‖hn‖
T (4.1.9)

Proof of Theorem 2.0.2. Notice that either one of the following must be true:

|hn+1(z0)| ≤ |hn(z0)| (4.1.10)

|hn(z0)| ≤ |hn+1(z0)| (4.1.11)

We observe that

‖hn‖ = ‖ϕ∗n(λ)ϕ∗n(y)− ϕn(λ)ϕn(y)‖L2(dµ(y)) ≤ 2|ϕn(λ)| (4.1.12)

If (4.1.10) is true, combining this with Lemma 4.1.1 and Lemma 4.1.2, we

obtain that:

|z0 − τ | ≥
(
δ2|ϕn(λ)|

4

1

2|ϕn(λ)|

)
T =

δ2T

8
(4.1.13)

Finally, by the triangle inequality,

T = dist(τ, supp(dµ)) ≥ dist(z0, supp(dµ))− |z0− τ | = δ− |z0− τ | (4.1.14)



This gives

|z0 − τ | ≥
δ2(δ − |z0 − τ |)

8
(4.1.15)

and the result follows.

On the other hand, if (4.1.11) is true, then instead of (4.1.12) we use the

definition of hn+1 in (3.2.6) which will give the same bound of ‖hn+1‖ as in

(4.1.12). Hence the same argument applies to hn+1.

Now consider the special case where L = dist(λ, supp(dµ)) > 0. Without

loss of generality, suppose (4.1.10) is true. Since τ and λ are distinct zeros of

hn, we could apply a similar argument as in Lemma 4.1.2 to hn(z)
(z−τ)(z−λ)

and

obtain the following

|z0 − τ ||z0 − λ| ≥
|hn(z0)|

Kn−2(z0, z0)1/2‖hn‖
TL (4.1.16)

Since Kn−2(z0, z0)1/2 ≤ Kn−1(z0, z0)1/2, the desired inequality follows. Now

we combine (4.1.16) with Lemma 4.1.1. The |z0 − λ| term cancels on both

sides and it gives us

|z0 − τ | ≥
δLT

8
(4.1.17)

Again, we use the triangle inequality on T and the result follows. Clearly, if

(4.1.11) is true, we could still apply the same argument to hn+1.



4.2 Proof of Theorem 2.0.3

Proof. According to the definitions of ϕ∗n and ψ∗n,

sn(z) = λnznϕn(λ)ψn(z) + ϕn(λ)ψn(z) (4.2.1)

hn(z) = λnznϕn(λ)ϕn(z)− ϕn(λ)ϕn(z) (4.2.2)

If we define for z ∈ ∂D

σn(z) :=
sn(z)

(λz)n/2
(4.2.3)

ηn(z) :=
hn(z)

i(λz)n/2
(4.2.4)

with Arg((λz)1/2) ∈ [0, π), then σn and ηn are real-valued C∞ functions and

they have the same zeros as sn and hn respectively.

To prove the interlacing condition of Theorem 2.0.3, it suffices to prove

the following:

dηn(eiθ)

dθ
σn(eiθ) < 0 at every zero eiθ of ηn(z) (4.2.5)

We shall prove condition (4.2.5) for n+ 1.

Suppose ζ is a zero of hn+1. By (3.1.5), hn+1 could be expressed by the

reproducing kernel. Hence ηn+1 can be represented as

ηn+1(z) =
1

i(λz)(n+1)/2

−λϕn(λ)

ϕn(ζ)
(z − ζ)

n∑
j=0

ϕj(z)ϕj(ζ) (4.2.6)



The constant −λϕn(λ)

ϕn(ζ)
is obtained by comparing the leading coefficients of the

right hand side of (4.2.6) and that of hn+1 when expressed in terms of (3.2.6).

As a result, the derivative of ηn+1 at ζ is

dηn+1

dz
(ζ) = lim

z→ζ

ηn+1(z)− ηn+1(ζ)

z − ζ
= lim

z→ζ

ηn+1(z)

z − ζ

=
−λϕn(λ)

iϕn(ζ)

(
λ

ζ

)n+1
2

Kn(ζ, ζ)

(4.2.7)

Let ζ = eiθ and z = eiω. By the chain rule,

dηn+1

dω
(θ) = iζ

dηn+1

dz
(ζ)

= −ϕn(λ)

ϕn(ζ)

(
λ

ζ

)n−1
2

Kn(ζ, ζ)
(4.2.8)

Now we go back to
dηn(eiθ)

dθ
σn(eiθ) and compute:

dηn+1(eiθ)

dθ
σn+1(eiθ)

= −ϕn(λ)

ϕn(ζ)

(
λ

ζ

)n
Kn(ζ, ζ)

(
ϕ∗n(λ)ψ∗n(ζ) + λζϕn(λ)ψn(ζ)

)
= −

(
λ

ζ

)n
Kn(ζ, ζ)

(
|ϕn(λ)|2

(
ζ

λ

)n
ψn(ζ)

ϕn(ζ)
+ λζ

ϕn(λ)

ϕn(ζ)
ϕn(λ)ψn(ζ)

)
(4.2.9)

Recall that ηn+1(ζ) = 0, which implies that

ϕn(λ)

ϕn(ζ)
=
ϕn(λ)

ϕn(ζ)

(
ζ

λ

)n−1

(4.2.10)



We then apply this to the second part of the summand in (4.2.9):

(4.2.9) = −
(
λ

ζ

)n
Kn(ζ, ζ)

(
|ϕn(λ)|2

(
ζ

λ

)n
ψn(ζ)

ϕn(ζ)
+

(
ζ

λ

)n
ϕn(λ)

ϕn(ζ)
ϕn(λ)ψn(ζ)

)

= −Kn(ζ, ζ)|ϕn(λ)|2
(
ψn(ζ)

ϕn(ζ)
+
ψn(ζ)

ϕn(ζ)

)

= −Kn(ζ, ζ)

∣∣∣∣ϕn(λ)

ϕn(ζ)

∣∣∣∣2 (ψn(ζ)ϕn(ζ) + ϕn(ζ)ψn(ζ)
)

(4.2.11)

Now we use a formula that relates ϕn and ψn (see Chapter 3.2 in [46]):

ψn(z)ϕn(z) + ϕn(z)ψn(z) = 2 in ∂D (4.2.12)

We apply (4.2.12) to (4.2.11). This gives us the result that at any zero ζ

of ηn+1:

dηn+1(eiθ)

dθ
σn+1(eiθ) = (4.2.9) = −2Kn(ζ, ζ)

∣∣∣∣ϕn(λ)

ϕn(ζ)

∣∣∣∣2 < 0 (4.2.13)

The interlacing theorem is proven.

4.3 Proof of Lemma 2.0.1

We prove Lemma 2.0.1 by stating several lemmas which are similar to those

in the proof of Theorem 2.0.2.

Lemma 4.3.1. Suppose δ̃ = dist(z0, supp(dν)) > 0 and K̃n(x, y) =
n∑
j=0

ψj(x)ψj(y)



is the reproducing kernel with respect to the measure ν. Then

∣∣∣∣ si(z0)

K̃n−1(z0, z0)1/2

∣∣∣∣ ≥ 1

4
|ϕn(λ)||z0 − λ|δ̃ (4.3.1)

where i =

 n if |sn+1(z0)| ≤ |sn(z0)|

n+ 1 if |sn(z0)| ≤ |sn+1(z0)|
.

Proof. The proof is essentially the same as the one of Lemma 4.1.1, except

for a few differences. The L2 norm here refers to the one taken with respect

to ν and hn is replaced by sn.

It is also worth noting that by the definition of sn in (3.3.9),

sn+1(z)− sn(z) = −(1− λz)ϕn(λ)ψn(z) 6= 0 on ∂D (4.3.2)

As a result,

|ψn(z0)| =
∣∣∣∣sn+1(z0)− sn(z0)

(z0 − λ)ϕn(λ)

∣∣∣∣ (4.3.3)

which allows us to proceed in the same way as in the proof of Lemma 4.1.1.

Lemma 4.3.2. Suppose τ̃ is a zero of sn. Let T̃ = dist(τ̃ , supp(dν)), then

|z0 − τ̃ | ≥
|sn(z0)|

K̃n−1(z0, z0)1/2‖sn‖L2(dν)

T̃ (4.3.4)

The proof of this lemma is omitted because it resembles that of Lemma

4.1.2.



Finally, we state the following lemma relating the support of µ and ν:

Lemma 4.3.3. Suppose z0 is an isolated point in the support of µ. Then

δ̃ = dist(z0, supp(dν)) > 0 (4.3.5)

The reader may refer to Chapter 3.2, p. 225 of [46] for the proof.

Next, we are going to finish the proof of Lemma 2.0.1.

Proof. Suppose z0 is an isolated point in the support of dµ which is distinct

from λ. By Lemma 4.3.3, dist(z0, supp(dν)) > 0.

Either |sn(z0)| ≥ |sn+1(z0)| or |sn(z0)| ≤ |sn+1(z0)| is true. Without loss

of generality, we assume that |sn(z0)| ≥ |sn+1(z0)| and use Lemma 4.3.1.

Furthermore, we observe that

‖sn‖ ≤ 2|ϕn(λ)|‖ψn‖L2(dν) = 2|ϕn(λ)| (4.3.6)

Then we combine these results to get

|z0 − τ̃ | ≥
|z0 − λ|δ̃T̃

8
(4.3.7)

Finally, we apply the triangle inequality to T̃ :

T̃ = dist(τ̃ , supp(dν)) ≥ dist(z0, supp(dν))− |z0 − τ̃ | = δ̃ − |z0 − τ̃ | (4.3.8)



This gives us the following inequality which finishes the proof:

|z0 − τ̃ | ≥
δ̃2|z0 − λ|

8 + |z0 − λ|δ̃
(4.3.9)

4.4 Proof of Theorem 2.0.4

Proof. By Lemma 2.0.1, inside the ball B(z0, ρ̃) either sn or sn+1 (or both)

has no zero inside, with ρ̃ given by (4.3.9) above. Without loss of generality,

we assume that sn does not have zeros inside. By Theorem 2.0.3 the zeros

of hn and sn interlace, therefore hn cannot have more than two zeros inside

B(z0, ρ̃).



Part III

Point Perturbation
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Chapter 5

Proof of the Point Mass

Formula

Most of the proof of Theorem 2.0.7 (Lemma 5.0.1, Lemma 5.0.2 and Theorem

5.0.1) follows the methods developed by Simon in the proof of Theorem

10.13.7 in [47]. The proof is concluded by a few observations of ours using

the Christoffel–Darboux formula [55].

Lemma 5.0.1. Let βjk = 〈Φj(dµ),Φk(dµ)〉dν. Then

Φn(dν)(z) =
1

D(n−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣

β00 β0 1 . . . β0n

...
...

βn−1 0 βn−1 1 . . . βn−1n

Φ0(dµ) . . . . . . Φn(dµ)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(5.0.1)
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where

D(n−1) =

∣∣∣∣∣∣∣∣∣∣
β0 0 β0 1 . . . β0n−1

...
...

βn−1 0 βn−1 1 . . . βn−1n−1

∣∣∣∣∣∣∣∣∣∣
(5.0.2)

Proof. Let Φ̃n(dν) be the right hand side of (5.0.1). We observe that the

inner product 〈Φj(dµ), Φ̃n(dν)〉dν is zero for j = 0, 1, . . . , n − 1 as the last

row and the j-th row of the determinant are the same. By expanding in

minors, we see that the leading coefficient of Φ̃n(dν) in (5.0.1) is one. In

other words, Φ̃n(dν) is an n-th degree monic polynomial which is orthogonal

to 1, z, . . . , zn−1 with respect to 〈 , 〉dν , hence Φ̃n(dν) equals Φn(dν).

Lemma 5.0.2. Let C be the following (n+ 1)× (n+ 1) matrix

A v

w β

 (5.0.3)

where A is an n×n matrix, β is in C, v is the column vector (v0, v1, . . . , vn−1)T

and w is the row vector (w0, w1, . . . , wn−1). If det(A) 6= 0, we have

det(C) = det(A)

(
β −

∑
0≤j,k≤n−1

wkvj(A
−1)jk

)
(5.0.4)



Proof. We expand in minors, starting from the bottom row to get

det(C) = β det(A) +
∑

0≤j,k≤n−1

wkvj(−1)j+k+1 det(Ãjk) (5.0.5)

where Ãjk is the matrix A with the j-th row and k-th column removed.

By Cramer’s rule, since det(A) 6= 0,

Ãjk = (−1)j+k det(A)(A−1)jk (5.0.6)

proving Lemma 5.0.2.

Next, we are going to prove the following formula by Simon [47]:

Theorem 5.0.1. The Verblunsky coefficient of dν (as defined in (2.0.10)) is

given by

αn(dν) = αn − q−1
n γϕn+1(ζ)

(
n∑
j=0

αj−1
‖Φn+1‖
‖Φj‖

ϕj(ζ)

)
(5.0.7)

where

Kn(ζ) =
n∑
j=0

|ϕj(ζ)|2 (5.0.8)

qn = (1− γ) + γKn(ζ) (5.0.9)

α−1 = −1 (5.0.10)

and all objects without the label (dν) are associated with the measure dµ.



Proof. Since αn−1(dν) = −Φn(0, dν) and βjk = βkj, by Lemma 5.0.1,

αn−1(dν) =
1

D(n−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣

β0 0 β1 0 . . . βn 0

...
...

β0n−1 β1n−1 . . . βnn−1

−1 α0 . . . αn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
(5.0.11)

Let C be the matrix with entries as in the determinant in (5.0.11) above. It

could be expressed as follows

C =

A v

w αn−1

 (5.0.12)

where A is the n × n matrix with entries Ajk = βkj, v is the column vec-

tor (βn0, . . . , βnn−1)T and w is the row vector (−1, α0, . . . , αn−2). Note that

det(A) = D(n−1), and it is real as A is Hermitian.

Now we use Lemma 5.0.2 to compute det(C). To do that, we need to find

out what A−1 is.

By the definition of ν,

Ajk = (1− γ)‖Φk‖2δkj + γΦk(ζ)Φj(ζ) = ‖Φk‖‖Φj‖Mjk (5.0.13)

where

Mjk = (1− γ)δkj + γϕk(ζ)ϕj(ζ) (5.0.14)



Observe that for any column vector x = (x0, x1, . . . , xn−1)T ,

Mx = (1− γ)x+ γ

(
n−1∑
j=0

ϕj(ζ)xj

)
(ϕ0(ζ), ϕ1(ζ), . . . , ϕ0(ζ))T (5.0.15)

Therefore, if Pϕ denotes the orthogonal projection onto the space spanned

by the vector ϕ = (ϕ0(ζ), ϕ1(ζ), . . . , ϕ0(ζ)), we can write

M = (1− γ)1 + γKn−1Pϕ (5.0.16)

Hence, the inverse of M is

M−1 = (1− γ)−1(1− Pϕ) + ((1− γ) + γKn−1)−1Pϕ (5.0.17)

and the inverse of A is

A−1 = D−1M−1D−1 (5.0.18)

where Dij = ‖Φi‖δij.

Recall that v = (βn0, βn1, . . . , βnn−1)T , which is a multiple of ϕ. Therefore,

(A−1v)j = ((1− γ) + γKn−1)−1 γ Φn(ζ) ‖Φj‖−1ϕj(ζ) (5.0.19)

(5.0.19), (5.0.11) and Lemma 5.0.2 then imply

αn−1(dν) = αn−1 − ((1− γ) + γKn−1)−1 γ ϕn(ζ)

(
n−1∑
j=0

αj−1
‖Φn‖
‖Φj‖

ϕj(z0)

)
(5.0.20)



This concludes the proof of Theorem 5.0.1.

Now we are going to prove Theorem 2.0.7.

Proof. First, observe that αj−1 = −Φj(0). Therefore, αj−1/‖Φj‖ = −ϕj(0).

Second, observe that ‖Φn+1‖ is independent of j so it could be taken out

from the summation. As a result, (5.0.7) in Theorem 5.0.1 becomes

αn(dν) = αn(dµ) + q−1
n γ ϕn+1(ζ) ‖Φn+1‖

(
n∑
j=0

ϕj(0)ϕj(ζ)

)
(5.0.21)

Then we use the Christoffel–Darboux formula, which states that for x, y ∈

C with xȳ 6= 1,

(1− xy)

(
n∑
j=0

ϕj(x)ϕj(y)

)
= ϕ∗n(x)ϕ∗n(y)− xyϕn(x)ϕn(y) (5.0.22)

Moreover, note that q−1
n γ = ((1− γ)γ−1 + Kn(ζ))−1. Therefore, (5.0.21)

could be simplified as follows

αn(dν) = αn +
ϕn+1(ζ)ϕ∗n(0)ϕ∗n(ζ)

(1− γ)γ−1 +Kn(ζ)
‖Φn+1‖ (5.0.23)

Finally, observe that ϕ∗n(0) = ‖Φn‖−1 and that by (1.0.10), ‖Φn+1‖/‖Φn‖ =

(1− |αn|2)1/2. This completes the proof of Theorem 2.0.7.



Chapter 6

`2 Verblunsky Coefficients

From the point mass formula (2.0.11) we could make a few observations

concerning successive Verblunsky coefficients αn+1(dν) and αn(dν): first, we

use the fact that ϕn+1(ζ) = ζn+1ϕ∗n+1(ζ) and rewrite the point mass formula

as:

αn(dν) = αn +
(1− |αn|2)1/2

(1− γ)γ−1 +Kn(ζ)
ζn+1ϕ∗n+1(ζ)ϕ∗n(ζ) (6.0.1)

Let tn be the tail term in the right hand side of (6.0.1) above. Suppose

we can prove that ϕ∗n(ζ) tends to some non-zero limit L as n tends to infinity,

then 1/Kn = O(1/n). Hence,

1

(1− γ)γ−1 +Kn(ζ)
=

1

Kn(ζ)
+O

(
1

n2

)
(6.0.2)
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Besides, (αn)∞n=0 is `2, therefore (1− |αn|2)1/2 → 1. As a result,

αn(dν) = αn + tn ≈ αn +
ζn+1L2

n|L|2
+ o

(
1

n

)
(6.0.3)

Indeed, we shall prove that if ζtn+1− tn is summable, by Theorem 2.0.10,

limn→∞ ϕ
∗
n(z, dµ1) exists away from z = 1. As a result, if we add another

pure point to dµ1, we can use a similar argument to the one above and the

point mass formula (2.0.11) to prove that αn(dν) is the sum of αn(dµ0) plus

two tail terms and an error term.

In general, if we have a measure dµm as defined in (2.0.20), then we

add one pure point after the other and use the point mass formula (2.0.11)

inductively. Therefore, we shall be able to express αn(dµm) as the sum of

αn(dµ0) plus m tail terms, and an error term

αn(dµm) = αn(dµ0) + t1,n + t2,n + · · ·+ tm,n + error (6.0.4)

By an argument similar to the one above, we observe that tj,n is O(1/n) and

zjtj,n − tj,n−1 is small. Of course, the ‘smallness’ has to be determined by

rigorous computations that we shall present in the proof. Nonetheless, these

observations led us to introduce the notion of generalized bounded variation

Wm, and from that we could deduce that limn→∞ ϕ
∗
n(z, dµm) exists.



6.1 Proof of Theorem 2.0.8

The technique used in this proof is a generalization of the one used in proving

Theorem 2.0.10. It involves Prüfer variables which are defined as follows

Definition 6.1.1. Suppose z0 = eiη ∈ ∂D with η ∈ [0, 2π). Define the Prüfer

variables by

Φn(z0) = Rn(z0) exp(i(nη + θn(z0))) (6.1.1)

where θn is determined by |θn+1 − θn| < π. Here, Rn(z) = |Φn(z)| > 0, θn is

real. By the fact that Φ∗n(z) = znΦn(z) on ∂D, (6.1.1) is equivalent to

Φ∗n(z) = Rn(z) exp(−iθn) (6.1.2)

Under such a definition,

log

(
Φ∗n+1

Φ∗n

)
= log(1− αn exp(i[(n+ 1)η + 2θn])) (6.1.3)

For simplicity, we let

an = αn exp(i[(n+ 1)η + 2θn]) (6.1.4)

Now write log Φ∗n+1 as a telescoping sum

log Φ∗n+1(z) =
n∑
j=0

(
log Φ∗j+1(z)− log Φ∗j(z)

)
=

n∑
j=0

log

(
Φ∗j+1(z)

Φ∗j(z)

)
(6.1.5)



Note that for |w| ≤ Q < 1, there is a constant K such that

|log(1− w)− w| ≤ K|w|2 (6.1.6)

Together with (6.1.3), we have

log(Φ∗n+1(z)) = −
n∑
j=0

(aj + L(aj)) (6.1.7)

where |L(aj)| ≤ K|aj|2.

Recall that by assumption, (αn(dµ0))∞n=0 is `2. Therefore, by (6.1.4),

(an)∞n=0 is also `2, thus
∑∞

j=0 L(aj) <∞. As a result, in order to prove that

limn→∞Φ∗n(z) exists, it suffices to prove that
∑∞

j=0 aj exists.

Let

h(k)
n =

n−1∑
j=0

ζk
j
eijη =

ζk
n
einη − 1

ζkeiη − 1
(6.1.8)

Then

h
(k)
n+1 − h(k)

n = ζk
n
einη (6.1.9)

and |h(k)
n | ≤ 2|ζkeiη − 1|−1 (6.1.10)

Let gj = η + 2θj and recall that αn =
∑p

k=1 βn,k. By rearranging the



order of summation, we get

Sn =
n∑
j=0

αje
i(jη+gj) =

n∑
j=0

(
p∑

k=1

βj,k

)
ei(jη+gj) =

p∑
k=1

B(k)
n (6.1.11)

where

B(k)
n =

n∑
j=0

βj,ke
i(jη+gj) (6.1.12)

We are going to sum by parts by Abel’s formula. Suppose (aj)
∞
j=0 is a

sequence, we define

(δ+a)j = aj+1 − aj (6.1.13)

(δ−a)j = aj − aj−1 (6.1.14)

Abel’s formula states that

n∑
j=0

(δ+a)jbj = an+1bn − a0b−1 −
n∑
j=0

aj(δ
−b)j (6.1.15)

Now we apply Abel’s formula to B
(k)
n

B
(k)
n =

n∑
j=0

(δ+h(k))j(ζk
jβj,ke

igj)

= h
(k)
n+1ζk

nβn,ke
ign − h(k)

0 ζkβ−1,ke
ig−1 −

n∑
j=0

h
(k)
j δ−(ζk

jβj,ke
igj)j

(6.1.16)

Note that the term h0ζ
−1
k β−1,ke

ig−1 will be canceled in (6.1.16), without



loss of generality we may assume it to be 0.

We want to obtain a bound for B
(k)
n . Observe that

|βn,k| ≤
n∑
q=1

|βq,k − ζkβq−1,k|+ |β0| ≤ Dk (6.1.17)

where

Dk =
∞∑
q=0

|βq,k − ζkβq−1,k| (6.1.18)

is finite because dµ ∈ Wp(ζ1, ζ2, . . . , ζp).

Next, we use the triangle inequality and |eix − eiy| ≤ |x− y| to obtain

|δ−(ζjkβj,ke
igj)j| ≤ |βj,k(eigj − eigj−1)|+ |ζkβj,k − βj−1,k|

≤ |βj,k(θj − θj−1)|+ |ζkβj,k − βj−1,k|

(6.1.19)

It has been proven for Prüfer variables (see Corollary 10.12.2 of [47]) that

|θn+1 − θn| <
π

2
|αn|(1− |αn|)−1 (6.1.20)

Now recall our assumption that for 1 ≤ k ≤ p, (βn,k)
∞
n=0 is `2, therefore

βn,k → 0, αn → 0, which implies Q = supn |αn| < 1 and C = supn(1 −

|αn|)−1 = (1−Q)−1. For any n we have

|Bn,k| ≤ |ζkeiη − 1|−1

(
2Dk +

π

2

∞∑
j=0

|βj+1,k||αj|(1−Q)−1

)
<∞ (6.1.21)



It follows that supn |Sn| <∞. This proves (2.0.17).

The computations above also show that the sum in the right hand side of

(6.1.16) is absolutely convergent as n → ∞ and the convergence is uniform

on any compact subset of ∂D\{ζ1, ζ2, . . . , ζp}. Therefore, limj→∞ βj,k = 0 for

all 1 ≤ k ≤ p implies that limn→∞Bn,k exists. Thus limn→∞ Sn exists and is

finite. This proves (2.0.19).

Moreover, for each fixed k, (βn,k)
∞
n=0 is `2, (αn)∞n=0 is also `2, hence the

Szegő function D(z) exists and it has boundary values a.e.. Now decompose

dµ = w(θ) dθ
2π

+ dµs. It is well-known that Φ∗n → D(0)D−1 in L2(w(θ) dθ
2π

).

Since Φ∗n → Φ∗∞ uniformly on any compact subset of ∂D\{ζ1, ζ2, . . . , ζp}, the

limit also converges in the L2-sense. Besides, it is well known that D(0) =

limn→∞ ‖Φn‖ =
∏∞

n=0(1− |αn|2)1/2. Hence,

Φ∗∞(z) = D(0)D−1(z) (6.1.22)

ϕ∗∞(z) = D−1(z) (6.1.23)

on ∂D\{ζ1, ζ2, . . . , ζp}.



6.2 Proof of Theorem 2.0.9

We proceed by induction.

Base Case Let any object without the label (dµ1) be associated with the

measure dµ0. First, we start by considering adding one pure point z1 =

eiω1 ∈ ∂D, ω1 6= 1, to dµ0 ∈ W1(1) which has `2 Verblunsky coefficients.

Define ξ̃n(dµ1) as

ξ̃n(dµ1) =
(1− |αn|2)1/2

(1− γ)γ−1 +Kn(z1)
ϕn+1(z1)ϕ∗n(z1) (6.2.1)

where αj = αj(dµ0) and (Φn)∞n=0 is the family of orthogonal polynomials for

dµ0. We want to simplify ξ̃n(dµ0).

Since dµ0 ∈ W1(1) and
∑∞

j=0 |αj|2 <∞, by Theorem 2.0.8, limn→∞ ϕ
∗
n(z1) =

D(z1)−1, which implies 1/Kn(z1) = O(1/n). Hence,

ξ̃n(dµ1) =
(1− |αn|2)1/2

Kn(z1)
ϕn+1(z1)ϕ∗n(z1) +O

(
1

n2

)
(6.2.2)

Moreover, ϕn+1(z1) = zn+1
1 ϕ∗n+1(z1). We can further simplify and obtain

αn(dµ1) = αn + z1
n+1 D(z1)−2

|D(z1)|−2

1

n
+ o

(
1

n

)
(6.2.3)

Let c1 = z1D(z1)2/|D(z1)|2. This proves (2.0.22) for m = 1.

Remark: Note that the error term in the right hand side of (6.2.3) is

dependent on γ1. This is because as γ0 → 0, dµ1 → dµ0 weakly, which implies



that for each n, αn(dµ1) → αn(dµ0). Since the tail term z1
n+1 D(z1)−2

|D(z1)|−2
1
n

in

(6.2.3) is independent of γ1, if the error term is also independent of γ1, then

αn(dµ1) 6→ αn(dµ0).

It remains to show the claimed properties of Φn(dµ1). To do that, it

suffices to show that (αn(dµ1))∞n=0 is `2 and it is in the class W2(1, z1), then

we can conclude by Theorem 2.0.8.

First of all, it is clear that (αn(dµ1))∞n=0 is `2 because (αn)∞n=0 is `2 and

ξ̃n(dµ1) is O(1/n).

Next, we want to show that

∞∑
n=0

|z1ξ̃n+1 − ξ̃n| <∞ (6.2.4)

By (6.2.2), the error term is in the order of O(1/n2). Therefore, this is the

same as showing the following is `1-summable

∣∣∣∣ϕ∗n+2(z1)ϕ∗n+1(z1)(1− |αn+1|2)1/2

Kn+1

−
ϕ∗n+1(z1)ϕ∗n(z1)(1− |αn|2)1/2

Kn

∣∣∣∣ (6.2.5)

We are going to estimate term by term.

• Let ρn = (1−|αn|2)1/2. We estimate the following using the recurrence

relation for orthogonal polynomials:

ϕ∗n+1(z1)− ϕ∗n(z1) = (ρnϕ
∗
n(z1)− αnϕn+1(z1))− ϕ∗n(z1)

= (ρn − 1)ϕ∗n(z1)− αnϕn+1(z1) (6.2.6)



Since ρn− 1 = O(|αn|2), ϕ∗n(z1) = D(z1)−1 + o(1) and 1/Kn = O(1/n),

∣∣ϕ∗n+1(z1)− ϕ∗n(z1)
∣∣ = (O(|αn|2) + |αn|)|D(z1)−1 + o(1)| = O(|αn|)

(6.2.7)

Hence,

∣∣∣∣∣
(
ϕ∗n+1(z1)− ϕ∗n(z1)

)
ϕ∗n+1(z1)(1− |αn|2)1/2

Kn

∣∣∣∣∣ = O

(
|αn|
n

)
(6.2.8)

• If we change n to n+ 1, the same argument still holds. Therefore,

∣∣∣∣∣
(
ϕ∗n+2(z1)− ϕ∗n+1(z1)

)
ϕ∗n(z1)(1− |αn|2)1/2

Kn

∣∣∣∣∣ = O

(
|αn+1|
n

)
(6.2.9)

• Observe that

|(1− |αn+1|)1/2 − (1− |αn|)1/2| = O(|αn|+ |αn+1|) (6.2.10)

Hence,

∣∣∣∣∣
[
(1− |αn+1|)1/2 − (1− |αn|)1/2

]
ϕ∗n+1(z1)ϕ∗n(z1)

Kn

∣∣∣∣∣ = O

(
|αn+1|+ |αn|

n

)
(6.2.11)

• Finally, note that

(
1

Kn+1

− 1

Kn

)
ϕ∗n+1(z1)ϕ∗n(z1)(1− |αn|2)1/2 = O

(
1

n2

)
(6.2.12)



Combining all the estimates above, we have

|z1ξ̃n+1 − ξ̃n| = O

(
|αn|+ |αn+1|

n

)
+O

(
1

n2

)
(6.2.13)

As a result,
∞∑
n=0

|z1ξ̃n+1 − ξ̃n| <∞ (6.2.14)

and by Theorem 2.0.8, the proof of the case m = 1 is complete.

Induction Step We consider dµm as defined in (2.0.20) as a measure formed

by adding a pure point to dµm−1 in the following manner

Let

γ̃j = (1− γm)−1γj (6.2.15)

and

dµm−1 =

(
1−

m−1∑
l=1

γ̃l

)
dµ0 +

m−1∑
l=0

γ̃lδωl (6.2.16)

Then we could write

dµm = (1− γm)dµm−1 + γmδωm (6.2.17)

Recall that 0 <
∑m

l=1 γl < 1, or equivalently,
∑m−1

l=1 γl < 1− γm. Hence,

0 <
m−1∑
j=1

γ̃j = (1− γm)−1

(
m−1∑
j=1

γj

)
< 1 (6.2.18)

Therefore, dµm−1 satisfies the induction hypothesis, so its family of Verblun-



sky coefficients is `2 and dµm−1 ∈ Wm(1, z1, z2, . . . , zm−1). Hence,

lim
n→∞

ϕ∗n(zm, dµm−1) (6.2.19)

exists and is equal to (1−
∑m−1

j=1 γj)
1/2D(zm, dµ0)−1 (see the remark following

Theorem 2.0.9). As a result, we can use a similar argument as in the base

case and deduce that

αn(dµm) = αn(dµm−1) + zm
n+1 |D(zm, dµ0)|2

D(zm, dµ0)2

1

n
+ En

= αn(dµ0) +
m∑
j=1

zj
ncj
n

+ En

(6.2.20)

where cj = zjD(zj, dµ0)2/|D(zj, dµ0)|2, 1 ≤ j ≤ m, are constants indepen-

dent of the weights γ1, γ2, . . . , γm and of n; and

En = En(z1, z2, . . . , zm, γ1, γ2, . . . , γm) (6.2.21)

is in the order of o(1/n). This proves (2.0.22).

By estimating consecutive Verblunsky coefficients in the same way we

did in the base case, we prove that dµm ∈ Wm+1(1, z1, z2, . . . , zm). Thus, we

can apply Theorem 2.0.8 to prove that ϕ∗n(zm) tends to D(zm, dµm)−1. This

completes the proof of Theorem 2.0.9.

Remark: Note that if dµ0 ∈ Wp(ζ1, ζ2, . . . , ζp) and zj 6= ζk for all j, k, we

can use the same arguments as in the proof of Theorem 2.0.9 to prove similar



results, i.e., αn(dµm) is in the form (2.0.22), dµm is inWm+p(ζ1, ζ2, . . . , ζp, z1, z2, . . . , zm)

and that limn→∞ ϕn(z, dµm) = D(z, dµm)−1 for z 6= ζ1, ζ2, . . . , ζp, z1, z2, . . . , zm.



Chapter 7

Asymptotically Periodic

Verblunsky Coefficients

We present another application of the point mass formula.

In the previous section, we considered the probability measure dµ0 with

`2 Verblunsky coefficients of bounded variation, i.e.,

∞∑
n=0

|αn|2 <∞ and
∞∑
n=0

|αn − αn+1| <∞ (7.0.1)

In this section, we consider measures with asymptotically periodic Verblun-

sky coefficients of p-type bounded variation (this term was first introduced

in [23]), i.e., given a periodic sequence βn of period p,

lim
n→∞

αn − βn = 0 and
∞∑
n=0

|αn+p − αn| <∞ (7.0.2)
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First, we handle the special case p = 1, then we generalize the method to

any integer p > 1. It is well-known that any measure satisfying (7.0.2) has

the same essential spectrum as dµβ (the measure with periodic Verblunsky

coefficients (βn)n) which is supported on a finite number of bands.

7.1 Gaps and Periodicity

Before we move on to stating the results, it would be helpful to have a brief

discussion about gaps and periodicity.

By an application of Weyl’s Theorem to the CMV matrix (see Theorem

4.3.5 of [46]), αn → L implies that dµ has the same essential spectrum as

the measure dµ0 with Verblunsky coefficients αn(dµ0) ≡ L (the measure dµ0

is known to be associated with the Geronimus polynomials). Besides, it is

known that dµ0 is supported on the arc

ΓL = [θ|L|, 2π − θ|L|] (7.1.1)

where θ|L| = 2 arcsin(|L|), and dµ0 admits at most one single pure point in

[−θ|L|, θ|L|]. In other words, there is a gap in the spectrum, with at most one

pure point inside.



Moreover, it is known that for eiβ/2 = (1 + L)/|1 + L|,

w(θ) =


1

|1 + L|

√
cos2(θ|L|/2)− cos2(θ/2)

sin((θ − β)/2)
θ ∈ (θ|L|, 2π − θ|L|)

0 θ ∈ [−θ|L|, θ|L|]
(7.1.2)

and

dµs =


0 if

∣∣∣∣L+
1

2

∣∣∣∣ ≤ 1

2

1

|1 + L|2

(∣∣∣∣L+
1

2

∣∣∣∣2 − 1

4

)
δθ,β if

∣∣∣∣L+
1

2

∣∣∣∣ > 1

2

(7.1.3)

The reader may refer to Example 1.6.12 in [46] for a detailed discussion.

Note that αn ≡ L can be seen as a periodic sequence of period one, in fact,

there is a more general result concerning gaps in the spectrum for measures

with periodic Verblunsky coefficients. The precise statement reads as follows

(see Theorem 11.1.2 of [47]): let (βn)n be a periodic family of Verblunsky

coefficients of period p, i.e., βn = βn+p for all n. Let dµβ be the associated

measure. Then {eiθ||Tr(Tp(e
iθ)| ≤ 2} is a closed set which is the union of p

closed intervals B1, . . . , Bp (which can only overlap at the endpoints). Let

B = ∪pj=1Bj (7.1.4)

Moreover, dµs[B] = ∅ and B is the essential support of the a.c. spectrum.

In each disjoint open interval on ∂D\B, dµ has either no support or a single

pure point.



As a result, in both cases that we consider, there are gaps in the spectrum

and when z ∈ ∂D is in one of those open gaps, we have |TrTp(z)| > 2.

The reader may refer to Chapter 11 of [47] for a detailed discussion of

periodic Verblunsky coefficients.

7.2 Tools

For the convenience of the reader, a brief discussion of two major tools used

in the proofs will be presented here.

7.2.1 The Stolz–Cesàro Theorem

One of the very important tools for the computation of the limit limn→∞∆n(ζ)

is the Stolz–Cesàro Theorem, which reads as follows:

Theorem 7.2.1 (Stolz–Cesàro). Let (Γn)n∈N, (Θn)n∈N be two sequences of

numbers such that Θn is strictly increasing and tends to infinity. If the

following limit exists

lim
n→∞

Γn − Γn−1

Θn −Θn−1

(7.2.1)

then it is equal to limn→∞ Γn/Θn.

Proof. First, assume that Γn ∈ R. From the definition of convergence, for

every ε > 0 there is an N(ε) ∈ N such that ∀n ≥ N(ε):

l − ε < Γn+1 − Γn
Θn+1 −Θn

< l + ε (7.2.2)



Since Θn is strictly increasing, we can multiply the last equation with

Θn+1 −Θn > 0 to get:

(l − ε)(Θn+1 −Θn) < Γn+1 − Γn < (l + ε)(Θn+1 −Θn) (7.2.3)

Let k > N(ε) be a natural number. By (7.2.3) above,

(l−ε)
k∑

i=N(ε)

(Θi+1−Θi) <
k∑

i=N(ε)

(Γn+1−Γn) < (l+ε)
k∑

i=N(ε)

(Θi+1−Θi) (7.2.4)

which is equivalent to

(l − ε)(Θk+1 −ΘN(ε)) < Γk+1 − ΓN(ε) < (l + ε)(Θk+1 −ΘN(ε)) (7.2.5)

Without loss of generality, we may assume that Θk > 0 for all large k.

Hence, we can divide the last relation by Θk+1 > 0 to get :

(l − ε)(1−
ΘN(ε)

Θk+1

) <
Γk+1

Θk+1

−
ΓN(ε)

Θk+1

< (l + ε)(1−
ΘN(ε)

Θk+1

) (7.2.6)

Upon rearranging,

(l − ε)(1−
ΘN(ε)

Θk+1

) +
ΓN(ε)

Θk+1

<
Γk+1

Θk+1

< (l + ε)(1−
ΘN(ε)

Θk+1

) +
ΓN(ε)

Θk+1

(7.2.7)



Since Θk →∞, ΓN(ε)/Θk+1 → 0. Hence, tfor all large k we have

(l − ε) < Γk+1

Θk+1

< (l + ε) (7.2.8)

which proves that limn→∞ Γn/Θn = l.

It is easy to see that if Γk = Γ1,k + iΓ2,k, we can separate the real and

imaginary cases and apply the same argument to (Γ1,k,Θk) and (Γ2,k,Θk).

7.2.2 Kooman’s Theorem

Another very useful tool is an application of Kooman’s Theorem to the family

of An(z)’s as defined in (1.0.15). Kooman’s Theorem, adopted for our proof,

reads as follows:

Theorem 7.2.2 (Kooman [30, 29]). Let A be an ` × ` matrix with distinct

eigenvalues. Then there exists ε > 0 and analytic functions U(B) and D(B)

defined on Sε = {B : ‖B − A‖ < ε} such that

(1) B = UBDBU
−1
B , DB commutes with A.

(2) UB is invertible for all B ∈ Sε.

(3) UA = 1, DA = A.

(4) By picking a basis such that A is diagonal, we can have all DB diagonal

with entries being the eigenvalues of B.

Remark: Theorem 7 basically follows the formulation of Theorem 12.1.7 of



[47], except that in [47] the statement was intended for quasi-unitary matri-

ces. However, the same proof also holds when A has distinct eigenvalues.

The original Kooman’s Theorem appeared in Theorem 1.3 of [30]. An

application of Kooman’s theorem to orthogonal polynomials was first made

by Golinskii–Nevai [23]. They applied Kooman’s result to the case when

αn → 0 and
∑

n ‖An+1−An‖ <∞ to prove that w(θ) > 0 a.e. on ∂D, where

w(θ) is the a.c. part of the measure.

7.3 Outline of the Proof

Recall the Szegő recursion relations for orthogonal polynomials on the unit

circle in matrix form:ϕn+1(z)

ϕ∗n+1(z)

 = (1− |αn|2)−1/2

 z −αn

−zαn 1


ϕn(z)

ϕ∗n(z)

 (7.3.1)

Let

An(z) = (1− |αn|2)−1/2

 z −αn

−zαn 1

 (7.3.2)

A∞(z) = (1− |L|2)−1/2

 z −L

−zL 1

 (7.3.3)

If we iterate (7.4.1) and use the fact that ϕ0(z) = ϕ∗0(z) = 1, the Szegö



recursion relations can be expressed as a product of matrices:

ϕn+1(z)

ϕ∗n+1(z)

 = An(z)An−1(z) · · ·A0(z)

1

1

 ≡ Tn(z)

1

1

 (7.3.4)

where

Tn(z) = An(z)An−1(z) · · ·A0(z) (7.3.5)

is known as the Transfer Matrix associated with the measure dµ. In order to

understand the asymptotics of ϕn(z) and ϕ∗n(z), we will study the behavior

of the product in (7.3.4).

First, note that An(z) is hyperbolic for large enough n when z ∈ GL, so

An(z) has distinct eigenvalues. This allows us to apply Kooman’s result (see

Theorem 7.2.2) to the product An · · ·A0 to prove that there exists an integer

N (which only depends on how fast An(z) → A∞(z)) such that there exists

w ≡ w(N) ∈ C2, matrices Gj(z) and diagonal matrices Dj(z) such that:

Tn(z)

1

1

 = GnDnG
−1
n Gn−1Dn−1G

−1
n−1 · · ·DN+1G

−1
N+1GN(z)w (7.3.6)

The matrices Gn and Dn have the properties that

(1) Gj(z)→ G(z) on C, where G(z) is the matrix that diagonalizes A∞(z).

(2) Each Dn(z) is a diagonal matrix with entries λ1,n, λ2,n which are the two

eigenvalues of An(z).

(3) G−1
j+1Gj(z) = 1 +O(‖Aj+1 − Aj‖).



Then in Lemma 7.4.2, we express the right hand side of (7.3.6) as:

GnPn

f1,n 0

0 f2,n


w1

w2

 ; Pn =
n∏

j=N+1

λ1,j (7.3.7)

We will consider two possible situations ((2a) and (2b) of Lemma 7.4.2),

which will correspond to (1) and (2) of Theorem 2.0.11 respectively.

In the former case, we will prove that varying the weight of an existing

point mass will result in a perturbation that is exponentially small.

In the latter case, we will prove that f1,n converges to some f1 6= 0 and

f2,n/f1,n → 0. Moreover, there are constants g1, g2 such that:

ϕn(z) = Pn (f1g1w1 + o(1)) (7.3.8)

ϕn(z)∗ = Pn (f1g2w1 + o(1)) (7.3.9)

Then we are going to use the Stolz–Cesàro theorem as follows. We let

Γn(ζ) = ϕn+1(ζ)ϕ∗n(ζ) (7.3.10)

Θn(ζ) = (1− γ)γ−1 +Kn(ζ, ζ) (7.3.11)



We observe that

(1− |αn|2)1/2 Γn
Θn

= ∆n (7.3.12)

Θn −Θn−1 = |ϕn(ζ)|2 (7.3.13)

Γn − Γn−1

Θn −Θn−1

=
ϕn+1(ζ)ϕ∗n(ζ)− ϕn(ζ)ϕ∗n−1(ζ)

|ϕn(ζ)|2
(7.3.14)

Furthermore, if µ(ζ) = 0,

Kn(ζ, ζ)→ µ(ζ)−1 =∞ (7.3.15)

Therefore, by the Stolz–Cesàro theorem, if the limit in (7.3.14) exists it

will be the same as (1− |L|2)−1/2 limn→∞∆n(ζ).

We will prove that the limit actually exists by plugging (7.3.8) and (7.3.9)

into (7.3.14).

Remark 7.3.1. The original Kooman’s Theorem appeared in Theorem 1.3

of [30]. An application of Kooman’s Theorem to orthogonal polynomials was

first made by Golinskii–Nevai [23]. They applied Kooman’s result to the case

when αn → 0 and
∑

n ‖An+1 − An‖ < ∞ and proved that w(θ) > 0 a.e. on

∂D, where w(θ) is the a.c. part of the measure.



7.4 Proof of Theorem 2.0.11

The proof of Theorem 2.0.11 will be divided into many steps. First, we intro-

duce a few objects and prove a lemma about them (see Lemma 7.4.2). Using

Lemma 7.4.2, we will prove that limn→∞∆n(ζ) exists. Then we compute

that limit explicitly and prove that the sequence (∆n(ζ))n∈N is of bounded

variation.

The matrix An(ζ) and its eigenvalues

Recall the Szegő recursion relations (1.0.11) and (1.0.12). Observe that they

can be expressed in matrix form as follows:

ϕn+1(z)

ϕ∗n+1(z)

 = (1− |αn|2)−1/2

 z −αn

−zαn 1


ϕn(z)

ϕ∗n(z)

 (7.4.1)

Let

An(z) = (1− |αn|2)−1/2

 z −αn

−zαn 1

 (7.4.2)

A∞(z) = (1− |L|2)−1/2

 z −L

−zL 1

 (7.4.3)



It is known (see Theorem 11.1.2 of [47]) that eiθ ∈ GL if and only if

|TrA∞(eiθ)| = (1− |L|2)−1/22

∣∣∣∣cos

(
θ

2

)∣∣∣∣ > 2 (7.4.4)

Since ζ is in the gap, A∞ ≡ A∞(ζ) is hyperbolic, which implies A∞ has

two distinct eigenvalues λ1 ≡ λ1(ζ) and λ2 ≡ λ2(ζ) such that |λ1| > 1 > |λ2|

and λ2 = (λ1)−1 (see Chapter 10.4 of [47] for an introduction to the group

U(1, 1), to which A∞(ζ) belongs).

Let An ≡ An(ζ). Since An → A∞ and |TrA∞| > 2, for some large N1,

|TrAn| > 2 ∀n ≥ N1 (7.4.5)

Hence, for all n > N1, An is hyperbolic and has distinct eigenvalues λ1,n and

λ2,n such that |λ1,n| > 1 > |λ2,n| and λ2,n = (λ1,n)−1.

An(ζ) and Kooman’s Theorem

As seen in Section 7.4 above, A∞ is hyperbolic. Hence, it has distinct eigen-

values and we can apply Kooman’s Theorem (Theorem 7.2.2). By Kooman’s

Theorem, there is an open neighborhood Sε around A∞ and an integer N2

such that

An ∈ Sε ∀n ≥ N2 (7.4.6)



and there exist matrices UAn and DAn such that

An = UAn DAn U
−1
An

(7.4.7)

Perform a change of basis to make A∞ diagonal, i.e., express

A∞ = GD∞G
−1 (7.4.8)

where

D∞ =

λ1 0

0 λ2

 (7.4.9)

By the construction of the function D, DAn is diagonal under this new basis,

so there exists a diagonal matrix

Dn =

λ1,n 0

0 λ2,n

 (7.4.10)

such that

DAn = GDnG
−1 (7.4.11)

Now we define

Gn = UAn G, (7.4.12)

and by (7.4.7), we have the following representation of An:

An = GnDnG
−1
n (7.4.13)



The vector w

Let N be an integer such that

N > max{N1, N2}, (7.4.14)

where N1 and N2 are defined in (7.4.5) and (7.4.6) respectively. Let w be the

vector such that

w =

w1

w2

 = DNG
−1
N AN−1AN−2 · · ·A0

1

1

 (7.4.15)

We prove the following result about w1 and w2:

Lemma 7.4.1. Both w1 and w2 are non-zero.

Proof. First of all, observe that either w1 or w2 must be non-zero, because

both ϕN(ζ) and ϕ∗N(ζ) are non-vanishing on ∂D, and both DN and G−1
N are

invertible.

Now we prove w2 6= 0 by contradiction. Suppose w2 = 0. Observe that

GNw = (ϕN+1(ζ), ϕ∗N+1(ζ))T and |ϕn(ζ)| = |ϕ∗n(ζ)| on ∂D. Hence, w2 = 0

implies that the matrix elements (GN)1 1 and (GN)2 1 satisfy

|(GN)1 1| = |(GN)2 1| (7.4.16)

It will be shown later (see the discussion after (7.4.63)) that |G2 1/G1 1| =

|L| < 1. Since GN → G, (7.4.16) cannot be true if N is sufficiently large. By



a similar argument, we can also prove that w1 6= 0.

Definitions and Asymptotics of f1,n and f2,n

For n > N (N as defined in (7.4.14)), we let:

Pn =
n∏

k=N+1

λ1,k . (7.4.17)

Furthermore, let f1,n and f2,n be defined implicitly by the equation below:

DnG
−1
n Gn−1Dn−1 · · ·DN+1G

−1
N+1GNw = Pn

f1,nw1

f2,nw2

 . (7.4.18)

We are going to prove the following lemma about the asymptotics of f1,n

and f2,n:

Lemma 7.4.2. Let f1,n and f2,n be defined as in (7.4.18). The following

statements hold:

(1) f2,n → 0;

(2) Either one of the following is true:

• (2a) There exists a constant C such that |f1,n| ≤ C|f2,n|. Moreover,

given any ε > 0, there exist an integer Nε and a constant Cε such that

|f2,n| ≤ Cε

(∣∣∣∣λ2

λ1

∣∣∣∣+ ε

)n
, ∀n ≥ Nε. (7.4.19)



• (2b) |f2,n/f1,n| → 0. Furthermore, f1 = limn→∞ f1,n exists and it is

non-zero.

Proof. We prove statement (1) of Lemma 7.4.2. For n ≥ N , let the

left-hand side of (7.4.18) be

w1,n

w2,n

 ≡ w(n) = DnG
−1
n Gn−1Dn−1 · · ·DN+1G

−1
N+1GNw . (7.4.20)

First, we want to show that

‖w(n+ 1)−Dn+1w(n)‖ ≤ C‖An+1 − An‖|Pn| (|f1,n|+ |f2,n|) . (7.4.21)

Note that

w(n+ 1)−Dn+1w(n) = Dn+1

(
G−1
n+1Gn − 1

)
w(n). (7.4.22)

We aim to bound each of the components on the right hand side of

(7.4.22). Since U is analytic on Sε, on some compact subset of Sε there

exist constants η1, η2 > 0 such that

‖Gn −Gn−1‖ ≤ ‖G‖‖UAn − UAn−1‖ ≤ η1‖An − An−1‖ (7.4.23)

and

‖G−1
n ‖ ≤ ‖G−1‖‖U−1

An
‖ ≤ η2. (7.4.24)



Therefore, for η = η1η2,

‖G−1
n+1Gn − 1‖ = ‖G−1

n+1 (Gn −Gn+1) ‖ ≤ η‖An+1 − An‖. (7.4.25)

Moreover, for C1 = max{|w1|, |w2|}, we have the following bounds

sup
n≥N
‖Dn‖ = sup

n≥N
|λ1,n| < 2|λ1|, (7.4.26)

‖w(n)‖ =

∥∥∥∥∥∥∥
f1,nPnw1

f2,nPnw2


∥∥∥∥∥∥∥ < C1|Pn| (|f1,n|+ |f2,n|) . (7.4.27)

Combining all the inequalities above and applying them to (7.4.22), we

have

‖w(n+ 1)−Dn+1w(n)‖ ≤ C2‖An+1 − An‖|Pn| (|f1,n|+ |f2,n|) (7.4.28)

where C2 is a constant. This proves (7.4.21). We shall see why (7.4.21) is

useful as we prove (7.4.30) and (7.4.32) below.

Since Pn+1 = λ1,n+1Pn and w1,n = Pnf1,nw1 , there is a constant C3 such

that

|f1,n+1 − f1,n| =
1

|w1|

∣∣∣∣w1,n+1 − λ1,n+1w1,n

Pn+1

∣∣∣∣
≤ 1

|w1Pn+1|
‖w(n+ 1)−Dn+1w(n)‖.

(7.4.29)



By (7.4.28), this implies

|f1,n+1 − f1,n| ≤ C3‖An+1 − An‖ (|f1,n|+ |f2,n|) . (7.4.30)

Thus, by the triangle inequality,

|f1,n+1| ≤ |f1,n+1 − f1,n|+ |f1,n|

≤ (1 + C3‖An+1 − An‖) |f1,n|+ C3‖An+1 − An‖|f2,n|.
(7.4.31)

By a similar argument, one can prove that there is a constant C4 such

that

∣∣∣∣f2,n+1 −
λ2,n

λ1,n

f2,n

∣∣∣∣ ≤ C4‖An+1 − An‖ (|f1,n|+ |f2,n|) . (7.4.32)

Similarly, by (7.4.32) and the fact that |λ2,n/λ1,n| < 1,

|f2,n+1| ≤ (1 + C4‖An+1 − An‖) |f2,n|+ C4‖An+1 − An‖|f1,n| (7.4.33)

We add (7.4.31) to (7.4.33) to obtain

|f1,n+1|+ |f2,n+1| ≤ (1 + 2C5‖An+1 − An‖) (|f1,n|+ |f2,n|) , (7.4.34)

where C5 = max{C3, C4}.



By applying (7.4.34) recursively, we conclude that

sup
n

(|f1,n|+ |f2,n|) <∞. (7.4.35)

Therefore, (7.4.30) and (7.4.32) imply that |f1,n+1−f1,n| and |f2,n+1−λ2,nf2,n/λ1,n|

are bounded. Furthermore, by the triangle inequality, there is a constant C6

such that

|f1,n+1| ≤ |f1,n|+ C6‖An+1 − An‖; (7.4.36)

|f2,n+1| ≤
∣∣∣∣λ2,n

λ1,n

f2,n

∣∣∣∣+ C6‖An+1 − An‖. (7.4.37)

By applying (7.4.36) and (7.4.37) recursively, we conclude that for any

fixed M such that N ≤M ≤ n,

|f1,n+1| ≤ |f1,M |+ C6

n∑
j=M

‖Aj+1 − Aj‖ ; (7.4.38)

|f2,n+1| ≤
n∏

j=M

∣∣∣∣λ2,j

λ1,j

∣∣∣∣ |f2,M |+ C6

n∑
j=M

‖Aj+1 − Aj‖. (7.4.39)

Without loss of generality, consider n = 2M . Since |λ2,n/λ1,n| → |λ2/λ1| <

1,
∏n

j=M

∣∣∣λ2,jλ1,j

∣∣∣→ 0 as n→∞. Moreover,
∑

j ‖Aj+1 −Aj‖ <∞ implies that∑n
j=M ‖Aj+1 − Aj‖ → 0 as n→∞.

Therefore, |f2,n| → 0 as n→∞. This proves (1) of Lemma 7.4.2.

We proceed to prove statement (2) of Lemma 7.4.2.

There are two possible cases concerning f1,n and f2,n:



Case (1): There exist a fixed integer K and a constant C, |f1,n| ≤ C|f2,n| for

all n ≥ K.

Case (2): For any integer K and any constant M , there exists an integer

nK,M ≥ K such that |f1,nK,M | > M |f2,nK,M |.

Case (1): (7.4.32) implies that for n ≥ max{N,K}, there is a constant

C7 such that

|f2,n+1| ≤
(∣∣∣∣λ2,n

λ1,n

∣∣∣∣+ C7‖An+1 − An‖
)
|f2,n|. (7.4.40)

Therefore, given any ε > 0, there exist Nε and a constant Cε such that

|f2,n| ≤ Cε

(∣∣∣∣λ2

λ1

∣∣∣∣+ ε

)n
∀n ≥ Nε. (7.4.41)

In other words, f2,n decays exponentially fast, hence, so does f1,n. This proves

(2a) of Lemma 7.4.2.

Case (2): Let rn = f2,n/f1,n. First, we want to show that given any

ε > 0 there exists an integer Jε such that |rj| < ε for all j ≥ Jε.

First, we show that both f1,n and f1,n+1 are non-zero, as (7.4.43) below

will involve f1,n and f1,n+1 in the denominator.

By assumption, we are free to choose any M , so we choose an integer M

such that 1/M < ε. Consider any fixed pair (K,M) (we will choose K later



in the proof). We are guaranteed the existence of an integer n = nK,M > K

such that |rn| < 1/M = ε, which also implies that f1,n 6= 0. Furthermore, by

the triangle inequality and (7.4.30),

∣∣∣∣f1,n+1

f1,n

∣∣∣∣ ≥ 1−
∣∣∣∣f1,n+1 − f1,n

f1,n

∣∣∣∣
≥ 1− C3‖An+1 − An‖(1 + |rn|) > 0.

(7.4.42)

Thus, f1,n+1 is also non-zero.

By the triangle inequality,

∣∣∣∣rn+1 −
λ2,n

λ1,n

rn

∣∣∣∣
≤

∣∣∣∣f2,n+1

f1,n+1

− λ2,n

λ1,n

f2,n

f1,n+1

∣∣∣∣+

∣∣∣∣λ2,n

λ1,n

∣∣∣∣ ∣∣∣∣ f2,n

f1,n+1

− f2,n

f1,n

∣∣∣∣
=

∣∣∣∣f2,n+1 − (λ2,n/λ1,n)f2,n

f1,n+1

∣∣∣∣+

∣∣∣∣λ2,n

λ1,n

rn

∣∣∣∣ ∣∣∣∣f1,n − f1,n+1

f1,n+1

∣∣∣∣ .
(7.4.43)

By (7.4.30) and (7.4.32), there exists a constant C8 such that

∣∣∣∣rn+1 −
λ2,n

λ1,n

rn

∣∣∣∣
≤ 1 + |rn||λ2,n/λ1,n|

|f1,n+1|
C8‖An+1 − An‖(|f1,n|+ |f2,n|)

= C8(1 + |rn||λ2,n/λ1,n|)‖An+1 − An‖
|f1,n|
|f1,n+1|

(1 + |rn|).

(7.4.44)



Furthermore, by inverting (7.4.42) one gets

∣∣∣∣ f1,n

f1,n+1

∣∣∣∣ ≤ 1

1− C3‖An+1 − An‖(1 + |rn|)
. (7.4.45)

Then we plug this into (7.4.44) to obtain

|rn+1| ≤
∣∣∣∣λ2,n

λ1,n

rn

∣∣∣∣+
C8(1 + |rn||λ2,n/λ1,n|)(1 + |rn|)
1− C3‖An+1 − An‖(1 + |rn|)

‖An+1 − An‖. (7.4.46)

Let Rn be the second term on the right hand side of (7.4.46). Note that

the quotient in front of ‖An+1 −An‖ is bounded. Hence, for any sufficiently

large K, there exists n ≡ nn,k > K such that |rn+1| < |rn| < ε.

Applying the same argument to rn+1, we can prove that |rn+2| < ε. In-

ductively, |rj| < ε for all large j. This proves |f2,n/f1,n| → 0, the first claim

of (2b) of Lemma 7.4.2.

It remains to show that limn→∞ fn exists. We divide both sides of

(7.4.30) by |f1,n|. Since |rn| → 0,

∣∣∣∣f1,n+1

f1,n

− 1

∣∣∣∣ ≤ C‖An+1 − An‖ (1 + |rn|)→ 0. (7.4.47)

Moreover, log is analytic near 1, so in an ε-neighborhood of 1 there is a

constant E such that

| log z| = | log ζ − log 1| ≤ E|z − 1|. (7.4.48)



By (7.4.47), ∣∣∣∣log

(
f1,n+1

f1,n

)∣∣∣∣ ≤ C‖An+1 − An‖. (7.4.49)

Therefore, the series
∑∞

j=N log (f1,j+1/f1,j) is absolutely convergent. Fur-

thermore, as we have seen in (7.4.42), f1,j 6= 0 for all large j. Thus, log f1,j

is finite and the following limit

lim
n→∞

log f1,n+1 = lim
n→∞

n∑
j=p

(log f1,j+1 − log f1,j) + log f1,p (7.4.50)

exists and is finite. We call the limit limn→∞ f1,n = f1. This proves the

second part of (2b) and concludes the proof of Lemma 7.4.2.

Proof of Theorem 2.0.11. By statement (2) of Lemma 7.4.2, there are

two possible cases:

First Case. This corresponds to (2a) of Lemma 7.4.2. Recall that for

n > N ,

Tn

1

1

 = GnPn

f1,nw1

f2,nw2

 (7.4.51)

and Gn = UAnG → G as n → ∞. Hence, given any ε > 0, there exists a

constant Kε such that

∥∥∥∥∥∥∥Tn
1

1


∥∥∥∥∥∥∥ ≤ ‖Gn‖

n∏
j=N

|λ1,j|

∥∥∥∥∥∥∥
f1,nw1

f2,nw2


∥∥∥∥∥∥∥ ≤ Kε

(∣∣∣∣λ2

λ1

∣∣∣∣+ ε

)n
(|λ1|+ ε)n .

(7.4.52)



This means |ϕn(ζ)| is exponentially decaying. As a result, Kn(ζ, ζ) converges,

µ(ζ) = limn→∞Kn(ζ, ζ)−1 > 0 and ∆n(ζ) → 0 exponentially fast. This

proves claim (1) of Theorem 2.0.11.

Second Case. This corresponds to (2b) of Lemma 7.4.2.

First, we compute limn→∞∆n(ζ) using the asymptotic expressions

of ϕn(ζ) and ϕ∗n(ζ). By definition, Gn → G. Suppose

Gn =

g1,n g′1,n

g2,n g′2,n

→ G =

g1 g′1

g2 g′2

 . (7.4.53)

Since ϕn(ζ) is the first component of the vector GnPn(f1,nw1, f2,nw2)T ,

ϕn(ζ) = Pn
(
g1,nf1,nw1 + g′1,nf2,nw2

)
= Pnf1,n

(
g1,nw1 + g′1,nrnw2

)
= Pn (f1g1w1 + o(1)) .

(7.4.54)

Similarly,

ϕ∗n(ζ) = Pn (f1g2w1 + o(1)) . (7.4.55)

Since Pn →∞, both ϕn(ζ) and ϕ∗n(ζ)→∞. As a result, (Kn(ζ, ζ))n∈N is

a positive sequence that tends to infinity. Hence, we can use the Stolz–Cesàro



Theorem. Let

Γn(ζ) = ϕn+1(ζ)ϕ∗n(ζ) (7.4.56)

Θn(ζ) = (1− γ)γ−1 +Kn(ζ, ζ). (7.4.57)

By (7.4.54) and (7.4.55),

Γn(ζ) = Pn+1Pn
(
|f1|2|w1|2g1g2 + o(1)

)
; (7.4.58)

Θn(ζ)−Θn−1(ζ) = |Pn|2
(
|f1|2|w1|2|g1|2 + o(1)

)
. (7.4.59)

Using (7.4.58), (7.4.59) above and the fact that λ2 = (λ1)−1, we compute

Γn(ζ)− Γn−1(ζ)

Θn(ζ)−Θn−1(ζ)
=
Pn+1Pn − PnPn−1

|Pn|2

(
g1g2

|g1|2
+ o(1)

)

=

(
λ1,n+1 −

1

λ1,n

)(
g2

g1

+ o(1)

)

→
(
λ1 − λ2

)(g2

g1

)
.

(7.4.60)

Since the limit in (7.4.60) exists, limn→∞ Γn(ζ)/Θn(ζ) exists and is equal to

the limit in (7.4.60). It remains to compute g2/g1. Note that

g1

g2

 = G

1

0

 . (7.4.61)



By definition, G is the change of basis matrix for A∞. Therefore, g = (g1, g2)

is the eigenvector of A∞ corresponding to the eigenvalue λ1. It suffices to

solve (A∞ − λ1)g = 0, which is equivalent to

ζ − τ1 −L

−ζL 1− τ1


g1

g2

 =

0

0

 ; τ1 = (1− |L|2)1/2λ1 . (7.4.62)

Since the matrix on the left hand side of (7.4.62) has a non-zero vector

in its kernel, it must have rank 1, so the two rows are equivalent. For that

reason we only have to look at the first row. Furthermore, note that we are

only concerned about the ratio g2/g1, which is constant upon multiplication

of G by any non-zero constant; therefore, by putting g1 = 1 and we deduce

that

g2

g1

=
ζ − τ1

L
. (7.4.63)

Then by (7.4.60),

∆∞(ζ) = (1− |L|2)1/2
(
λ1 − λ2

) ζ − λ1(1− |L|2)1/2

L
. (7.4.64)

We will simplify (7.4.64) further. Let τ2 = (1− |L|2)1/2λ2. Observe that

τ1, τ2 are eigenvalues of the matrix

M(ζ) = (1− |L|2)1/2A∞(ζ) =

 ζ −L

−ζL 1

 . (7.4.65)



The characteristic polynomial of M(ζ) is

fM(y) = (ζ − y)(1− y)− ζ|L|2 = y2 − (ζ + 1)y + ζ(1− |L|2) (7.4.66)

and the eigenvalues of M(ζ) are

y±(ζ) =
(ζ + 1)±

√
(ζ + 1)2 − 4ζ(1− |L|2)

2
. (7.4.67)

We do not know whether y+(ζ) is τ1 or τ2. We decide in the follow-

ing manner: observe that y±(ζ) is continuous with respect to ζ, hence if

|λ1(ζ0)| > 1 for some ζ0 in the gap, we must have |λ1(ζ)| > 1 for all ζ in the

gap. Otherwise, there must be some ζ1 in the gap such that |λ1(ζ1)| = 1,

contradicting the hyperbolicity of A∞(ζ) in the gap.

Since ζ = 1 is in the gap, we plug it into (7.4.67) to obtain

y±(1) = 1± |L| . (7.4.68)

If we choose the branch of square root such that
√
|L|2 = |L|, we have

y+(ζ) = τ1(ζ) and y−(ζ) = τ2(ζ), and

τ1 − τ2 =
√

(z − 1)2 + 4z|L|2. (7.4.69)

Therefore,

∆∞(ζ) = h(ζ)1/2

(
(ζ − 1)− h(ζ)1/2

2L

)
, (7.4.70)



where

h(ζ) = (ζ − 1)2 + 4ζ|L|2. (7.4.71)

This proves statement (2a) of Theorem 2.0.11.

Next, we prove statement (2b) of Theorem 2.0.11. Recall the

result of Bello–López mentioned in the Introduction. Because of it, we expect

limn→∞ |αn(dν)| = |∆∞(ζ) + L| = |L|.

First, observe that for ζ = eiθ,

ζ − 1 = ζ1/2
(
ζ1/2 − ζ−1/2

)
= ζ1/2 2i sin

(
θ

2

)
. (7.4.72)

That implies

h(ζ) = 4ζ

(
|L|2 − sin2

(
θ

2

))
, (7.4.73)

h(ζ)1/2(ζ − 1) = 4i sin

(
θ

2

)√
|L|2 − sin2

(
θ

2

)
. (7.4.74)

Now we consider ∆∞(ζ) + L. Combining (7.4.70), (7.4.73) and (7.4.74),

we have

∆∞(ζ) + L =
i 2 sin

(
θ
2

)√
|L|2 − sin2

(
θ
2

)
+
[
2 sin2

(
θ
2

)
− |L|2

]
L

. (7.4.75)

Since ζ is in the gap GL if and only if |L|2 > sin2( θ
2
),
√
|L|2 − sin2(θ/2)



is real (see Section 7.4 above). Therefore, (7.4.75) implies that

ReL (∆∞(ζ) + L) = 2 sin2

(
θ

2

)
− |L|2 (7.4.76)

ImL (∆∞(ζ) + L) = 2 sin

(
θ

2

)√
|L|2 − sin2

(
θ

2

)
. (7.4.77)

Now that we have successfully separated the real and imaginary part of

L(∆∞(ζ) + L), with a direct computation we can show that

∣∣L(∆∞(ζ) + L)
∣∣ = |L|2. (7.4.78)

It remains to compute the phase. Suppose L (∆∞(ζ) + L) = |L|2eiω.

|L|2 cosω and |L|2 sinω, being the real and imaginary part of L(∆∞(ζ) + L)

respectively, will be given by (7.4.76) and (7.4.77). This proves statement

(2b) of Theorem 2.0.11.

Now we are going to prove that (∆n(ζ))n∈N is of bounded varia-

tion.

First, we note the following estimates:

(1) By the definition of An(ζ), ‖An(ζ)− An−1(ζ)‖ = O (|αn − αn−1|).

(2) By (7.4.30), |f1,n+1 − f1,n| = O(‖An+1(ζ)− An(ζ)‖).

(3) By the definition of Gn in (7.4.12), both |g1,n+1 − g1,n| and |g′1,n+1 − g′1,n|

are O(‖An+1(ζ)− An(ζ)‖).

(4) Since λ1,n, λ2,n are the eigenvalues An(ζ), |λ1,n+1−λ1,n| and |λ2,n+1−λ2,n|

are O(|αn+1 − αn|).



(5) By (7.4.44), |rn+1 − cnrn| = O(‖An+1(ζ)− An(ζ)‖) where

cn =
λ2,n

λ1,n

→ c =
λ2

λ1

(7.4.79)

has norm strictly less than 1. From now on, we will denote all error terms in

the order of O(|αn − αn−1|) as en.

Recall that ∆n(ζ) = (1−|αn|2)1/2Γn(ζ)/Θn(ζ). To prove that (∆n(ζ))n∈N

is of bounded variation, we will consider (1−|αn|2)1/2 and Γn(ζ)/Θn(ζ)

separately.

First, note that

(1− |αn+1|2)1/2 − (1− |αn|2)1/2 = en+1. (7.4.80)

Recall that f2,n/f1,n = rn. Hence, by (7.4.54) and (7.4.55),

Γn(ζ)

(1− γ)γ−1 +Kn(ζ, ζ)

=
Pn+1Pn

(1− γ)γ−1 +Kn(ζ, ζ)
f1,n+1f1,n

(
g1,n+1w1 + g′1,n+1rn+1w2

) (
g2,nw1 + g′2,nrnw2

)

=
λn+1|Pn|2

(1− γ)γ−1 +Kn(ζ, ζ)︸ ︷︷ ︸
(I)

f1,n+1f1,n︸ ︷︷ ︸
(II)

(
g1,n+1w1 + g′1,n+1rn+1w2

)︸ ︷︷ ︸
(III)

(
g2,nw1 + g′2,nrnw2

)︸ ︷︷ ︸
(IV )

.

(7.4.81)

Now we will show that (I), (II), (III) and (IV) of (7.4.81) are of

bounded variation.



We start with the easiest. For (II), note that by estimate (2) above,

f1,n+1f1,n − f1,nf1,n−1 = en + en−1. (7.4.82)

The next term we will estimate is (III). We start by showing that (rn)n∈N

is of bounded variation. Observe that

|rn+1 − rn| ≤ |cnrn + en+1 − cn−1rn−1 + en|

≤ |cn||rn − rn−1|+ en + en+1

...

≤ |cn . . . c1||r1 − r0|+ En + En+1,

(7.4.83)

where

En = O(en + |cn|en−1 + |cncn−1||en−2|+ · · ·+ |cn . . . c2|e1). (7.4.84)

Hence,

∞∑
n=0

|rn+1 − rn| ≤ |r1 − r0|
∞∑
n=1

|cn . . . c1|+ 2
∞∑
n=0

En . (7.4.85)

The first sum on the right hand side of (7.4.85) is finite because |cn| →

|c| < 1. Now we turn to the second sum. Upon rearranging,

2
∞∑
n=0

En = O

(
∞∑
n=0

en[1 + |cn+1|+ |cn+1cn+2|+ . . . ]

)
<∞. (7.4.86)



Then we observe that

(
g1,n+1w1 + g′1,n+1rn+1w2

)
−
(
g1,nw1 + g′1,nrnw2

)
= en+1 +O(|rn+1 − rn|).

(7.4.87)

Therefore, (III) is of bounded variation. With a similar argument we can

prove that the same goes for (IV).

It remains to prove that (I) is of bounded variation. We will make use of

the simple equality

1

an+1

− 1

an
=
an+1 − an
an+1an

. (7.4.88)

As a result, if limn→∞ an = a 6= 0 and (an)n∈N is of bounded varia-

tion, then (1/an)n∈N is also of bounded variation. Thus, it suffices to

prove that ([(1 − γ)γ−1 + Kn(ζ, ζ)]/|Pn|2)n∈N is of bounded variation

and limn→∞[(1− γ)γ−1 +Kn(ζ, ζ)]/|Pn|2 = L > 0.

For the convenience of computation we will define a few more objects

below. First, we let

Λn =


λ1,n if n ≥ N + 1

1 if 0 ≤ n ≤ N

. (7.4.89)

Then by (7.4.17), Pn =
∏n

j=0 Λj. Moreover, recall the definition of f1,n in

(7.4.18), which was only defined for n ≥ N . For 0 ≤ n ≤ N , let f1,n f2,n

be defined implicitly by (7.4.54) and (7.4.55). We will see later that the

introduction of these objects will not affect the result of our computation.



Note that Kn(ζ, ζ) is the summation of n+ 1 terms, so we can express

(1− γ)γ−1 +Kn(ζ, ζ)

|Pn|2
=

γ−1

|Pn|2
+ Tn , (7.4.90)

where

Tn =
n∑
j=1

|ϕj(ζ)|2

|Pn|2
=

n∑
j=1

|f1,j|2|g1,jw1 + g′1,jrjw2|2

|Λj+1 · · ·Λn|2
. (7.4.91)

with the convention that Λj+1 · · ·Λn = 1 when j = n.

Next, we let

Sn =
Kn−1(ζ, ζ)

|Pn−1|2
=

n−1∑
j=0

|f1,j|2|g1,jw1 + g′1,jrjw2|2

|Λj+1 · · ·Λn−1|2
. (7.4.92)

Then

∣∣∣∣(1− γ)γ−1 +Kn(ζ, ζ)

|Pn|2
− (1− γ)γ−1 +Kn−1(ζ, ζ)

|Pn−1|2

∣∣∣∣
≤ 2(1 + γ−1)

|Pn−1|2
+ |Tn − Sn| . (7.4.93)

We will show that each of the two terms on the right hand side of (7.4.93)

is summable.

Since |Λn|−1 → |λ1|−1 < 1,

∞∑
n=0

2(1 + γ−1)

|Pn|2
= O

(
∞∑
j=0

1

|λ1|2j

)
<∞. (7.4.94)



Now we will go on to prove that Tn − Sn is summable. Upon relabeling

the indices of Sn in (7.4.92), we have

Tn − Sn

=
n∑
j=1

[ |f1,j|2|g1,jw1 + g′1,jrjw2|2

|Λj+1 . . .Λn|2
−
|f1,j−1|2|g1,j−1w1 + g′1,j−1rj−1w2|2

|Λj . . .Λn−1|2

]
(7.4.95)

and we will compute term by term.

Let

εj = |g1,jw1 + g′1,jrjw2|2. (7.4.96)

Then by (7.4.95) above,

|Tn − Sn| ≤
n∑
j=1

|f1,j|2|εj − εj−1|
|Λj+1 · · ·Λn|2︸ ︷︷ ︸

(I)

+
n∑
j=1

||f1,j|2 − |f1,j−1|2|εj−1

|Λj+1 · · ·Λn|2︸ ︷︷ ︸
(II)

+
n∑
j=1

|f1,j−1|2εj−1

∣∣∣∣ 1

|Λj+1 · · ·Λn|2
− 1

|Λj · · ·Λn−1|2

∣∣∣∣︸ ︷︷ ︸
(III)

. (7.4.97)

Now we will prove that each of the sums on the right hand side of (7.4.97)

is summable. We will start with (II).

Recall that |f1,j−f1,j−1| = O(‖Aj−Aj−1‖) and that f1,j → f1. Therefore,



for some constant C,

∞∑
n=1

n∑
j=1

||f1,j|2 − |f1,j−1|2|εj−1

|Λj+1 · · ·Λn|2

< C

(
∞∑
n=1

|f1,n − f1,n−1|

)(
∞∑
j=1

1

λ2j
1

)
<∞. (7.4.98)

Since g1,j, g
′
1,j and rj are all of bounded variation and their limits exist

when j goes to infinity, εj is of bounded variation. Hence, there exists a

constant C such that

∞∑
n=1

n∑
j=1

|f1,j|2|εj − εj−1|
|Λj+1 · · ·Λn|2

< C

(
∞∑
j=1

|εj − εj−1|

)(
∞∑
j=1

1

λ2j
1

)
<∞. (7.4.99)

Finally, we will consider (III). Observe that

∣∣∣∣ 1

|Λj+1 · · ·Λn|2
− 1

|Λj · · ·Λn−1|2

∣∣∣∣ =
|Λj|2 − |Λn|2

|Λj · · ·Λn|2
(7.4.100)

and that there exists a constant C independent of j, n such that

|Λj|2 − |Λn|2 =
n−1∑
k=j

(
|Λk|2 − |Λk+1|2

)
< C

n−1∑
k=j

|Λk − Λk+1|. (7.4.101)

Hence,

∞∑
n=1

n∑
j=1

∣∣∣∣ 1

|Λj+1 · · ·Λn|2
− 1

|Λj · · ·Λn−1|2

∣∣∣∣ < C

∞∑
n=1

n∑
j=1

n−1∑
k=j

|Λk+1 − Λk|
|Λj · · ·Λn|2

.

(7.4.102)



Next, we count the coefficient of |Λk+1−Λk| in the sum above. From the

expression, we know that j ≤ k < n. Therefore, the coefficient is

∞∑
n=k+1

k∑
j=1

1

|Λj+1 · · ·Λn|2
=

k∑
j=1

∞∑
n=k+1

(
1

|Λj+1 · · ·Λn|2

)

=

(
k∑
j=1

1

|Λ2 · · ·Λj|2

)(
∞∑

n=k+1

1

|Λk+1 · · ·Λn|2

)
, (7.4.103)

which is bounded above by a constant B independent of k. This implies that

(III) is summable in n.

As a result, ((1− γ)γ−1 +Kn(ζ, ζ)/|Pn|2)n∈N is of bounded variation and

that implies limn→∞[(1− γ)γ−1 +Kn(ζ, ζ)]/|Pn|2 exists. Moreover,

L = lim
n→∞

Kn(ζ, ζ)

|Pn|2
> lim

n→∞

|ϕn(ζ)|2

|Pn|2
> 0. (7.4.104)

This concludes the proof of Theorem 2.0.11.

7.5 Proof of Theorem 2.0.12

We will generalize the method developed in Theorem 2.0.11. First, we define

Bk(ζ) = A(α(k+1)p−1, z) · · ·A(αkp, z); (7.5.1)

B∞(ζ) = A(βp−1, z) · · ·A(β0, z). (7.5.2)

We need to check a few conditions concerning the Bk(ζ)’s. First, note



that there exists a constant C such that

‖Bk+1(ζ)−Bk(ζ)‖ ≤ C

p−1∑
j=0

|α(k+1)p+j − αkp+j| (7.5.3)

Hence,

∞∑
k=0

‖Bk+1(ζ)−Bk(ζ)‖ ≤ C

∞∑
k=0

p−1∑
j=0

|α(k+1)p+j − αkp+j|

= C
∞∑
m=0

|αm+p − αm| <∞
(7.5.4)

Furthermore, since ζ is in the gap, |TrB∞(ζ)| > 2. Since Bk(ζ)→ B∞(ζ),

for all large k, |TrBk(ζ)| > 2. As a result, Bk(ζ) has distinct eigenvalues τ1,k

and τ2,k such that |τ1,k| > 1 > |τ2,k| and |τ1,kτ2,k| = 1. Moreover, τi,k → τi,

where τ1, τ2 are the eigenvalues of B∞(ζ).

Next, observe that for any fixed 0 ≤ j ≤ p− 1,

Tkp+j(ζ) = (Akp+j(ζ) · · ·Akp(ζ))Akp−1 · · ·A0(ζ)

= (Akp+j(ζ) · · ·Akp(ζ))Bk−1(ζ)Bk−2(ζ) · · ·B0(ζ)

(7.5.5)

and Akp+j(ζ)→ A∞,j(ζ), where

A∞,j(ζ) = (1− |βj|2)−1/2

 ζ −βj

−ζβj 1

 ; 0 ≤ j ≤ p− 1 (7.5.6)



By Kooman’s Theorem and a change of basis, we can express

Bn(ζ) = GnDnG
−1
n (7.5.7)

as in (7.4.13), where Dn is a diagonal matrix with entries being the eigen-

values of Bn(ζ), and Gn → G∞, where G∞ is the matrix that diagonalizes

B∞(ζ).

By applying a similar argument as in Section 7.4 to the family of Bn(ζ)’s,

we can show that there exists a non-zero vector w and an integer N such

that

Bn(ζ) · · ·B0(ζ)

1

1

 = Gn(ζ)Pn

f1,n 0

0 f2,n


w1

w2

 , (7.5.8)

where Pn =
∏n

j=N+1 τ1,j. Moreover, we can show that

f1,n → f1; f2,n → f2;
f1,n

f2,n

→ 0. (7.5.9)

Furthermore, by (7.5.5), for each fixed j, we can express Tkp+j(ζ) as

Tkp+j(ζ)v = (Akp+j(ζ) · · ·Akp(ζ))Gk−1Pk−1

f1,k−1 0

0 f2,k−1


w1

w2


(7.5.10)



with the property that

Akp+j(ζ) · · ·Akp(ζ)Gk−1 → A∞,j(ζ) · · ·A∞,0(ζ)G∞ ≡Mj. (7.5.11)

Let

Mj =

m1,j m1,j′

m2,j m2′,j

 . (7.5.12)

Note that for each n, there are two possible expressions for Tn(ζ)v. We

could either write it as in (7.5.10) or as follows

Tkp+j(ζ)v = Akp+j(ζ) · · ·A(k−1)p(ζ)Gk−2Pk−2Fk−2

w1

w2

 (7.5.13)

The reason will be apparent later in the proof.

Consider n = kp+j where 0 ≤ j ≤ p. The asymptotic formulae for ϕn(ζ)

and ϕ∗n(ζ) are of the form

ϕn(ζ) = Pk−1(f1m1,jw1 + o(1)); (7.5.14)

ϕ∗n(ζ) = Pk−1(f1m2,j+pw1 + o(1)). (7.5.15)

The alternate formulae for ϕn(ζ) and ϕ∗n(ζ) are:

ϕn(ζ) = Pk−2(f1m1,p+jw1 + o(1)); (7.5.16)

ϕ∗n(ζ) = Pk−1(f1m2,jw1 + o(1)). (7.5.17)



We define Γn(ζ) and Θn(ζ) as in (7.4.56) and (7.4.57) respectively. Then

Γn(ζ) = |Pk−1|2
(
|f1|2|w1|2m1,j+1m2,j + o(1)

)
, (7.5.18)

Θn(ζ) = |Pk−1|2
(
|f1|2|w1|2|m1,j|2 + o(1)

)
. (7.5.19)

Moreover, observe that

Γn+p(ζ) = |Pk|2
(
|f1|2|w1|2m1,j+1m2,j + o(1)

)
. (7.5.20)

Instead of (Γn − Γn−1)/(Θn − Θn−1) in the proof of Theorem 2.0.11, we

compute

lim
k→∞

Γ(k+1)p+j(ζ)− Γkp+j(ζ)

Θ(k+1)p+j(ζ)−Θkp+j(ζ)

= lim
k→∞

(|Pk|2 − |Pk−1|2) (|f1|2|w1|2m1,j+1m2,j + o(1))

|Pk−1|2|f1|2|w1|2 (|m1,j+p|2 + · · ·+ |m1,j|2 + o(1))

= (|τ1|2 − 1)
m1,j+1m2,j

|m1,j+p|2 + · · ·+ |m1,j|2
.

(7.5.21)

Combining with the fact that limk→∞(1− |αkp+j|2)1/2 = (1− |βj|2)1/2, we

conclude that for each fixed 0 ≤ j < p, limk→∞∆kp+j(ζ) exists.

Finally, by a similar argument as in the proof of Theorem 2.0.11, one

could prove that for each fixed j, (∆kp+j(ζ))k is of bounded variation.



7.6 Proof of Theorem 2.0.13

In this section, ζnαn → L and µ(ζ) = 0 are the only assumptions we need.

No bounded variation of the Verblunsky coefficients is required.

Let

Pn(ζ) = (1− |αn|2)1/2ϕn+1(ζ)ϕ∗n(ζ) (7.6.1)

and Θn(z) be defined as in (7.4.57).

Note that Pn(ζ)/Θn(ζ) = ∆n(ζ). Moreover, since µ(ζ) = 0, Kn(ζ, ζ) →

∞, which allows us to use the Stolz–Cesàro Theorem.

Let ρn = (1 − |αn|2)1/2. Since ζ ∈ ∂D, we can rewrite Pn(ζ), Pn−1(ζ) as

follows:

Pn(ζ) = ρnζ
−1ϕ∗n+1(ζ)ϕn(ζ), (7.6.2)

Pn−1(ζ) = ρn−1ϕn(ζ)ϕ∗n−1(ζ). (7.6.3)

Moreover,

Θn(ζ)−Θn−1(ζ) = |ϕn(ζ)|2 (7.6.4)

and ϕn 6= 0 on ∂D, therefore we could cancel ϕn(ζ) and obtain

ζnPn(ζ)− ζn−1Pn−1(ζ)

Θn(ζ)−Θn−1(ζ)
=
ζn−1(ρnϕ

∗
n+1(ζ)− ρn−1ϕ

∗
n−1(ζ))

ϕn(ζ)
. (7.6.5)



By (1.5.24) and (1.5.43) in [46] respectively,

ρnϕ
∗
n+1(ζ) = ϕ∗n(ζ)− αnζϕn(ζ), (7.6.6)

ρn−1ϕ
∗
n−1(ζ) = ϕ∗n(ζ) + αn−1ϕn(ζ). (7.6.7)

Therefore, (7.6.5) becomes

ζnPn(ζ)− ζn−1Pn−1(ζ)

Θn(ζ)−Θn−1(ζ)
=
ζn−1 (ϕ∗n(ζ)− ζαnϕn(ζ)− ϕ∗n(ζ)− αn−1ϕn(ζ))

ϕn(ζ)

= −(ζnαn + ζn−1αn−1).

(7.6.8)

Since ζnαn → L, the limit of (7.6.8) as n→∞ exists and is equal to −2L.

Moreover, since ζ is not a pure point of dµ, Θn(ζ) is a strictly increasing

sequence that tends to +∞, so we can apply the Stolz–Cesàro theorem and

conclude that ζn∆n(ζ) = ζnPn(ζ)/Θn(ζ)→ −2L. This implies that

ζnαn(dν) = ζnαn + ζn∆n(ζ)→ −L. (7.6.9)

7.7 Proof of Corollary 2.0.1

First, note that αn is real for all n, so by induction on (1.0.11) we have a

closed form for ϕn(1):

ϕn(1) =
n−1∏
j=0

√
1− αj
1 + αj

∈ R. (7.7.1)



Moreover, since αn → L < 0,
√

1−αj
1+αj

> 1 for large j, ϕn(1) is exponentially

increasing towards +∞. Thus, limn→∞Kn(1, 1) = ∞ and µ(1) = 0. By

Theorem 2.0.11, we have ∆n(1)→ −2L.

To prove Corollary 2.0.1, we are going to show that

lim
n→∞

(∆n(1) + 2L)

cn
= −2. (7.7.2)

Observe that by (7.7.1),

(1− |αn|2)1/2ϕn+1(1) = (1− αn)ϕn(1). (7.7.3)

Moreover, Kn(1, 1) is exponentially increasing. Therefore,

∆n(1) + 2L =
(1− αn)ϕn(1)2 + 2LKn(1, 1)

Kn(1, 1)
+ En (7.7.4)

where En is exponentially small.

We shall use the Stolz–Cesàro theorem again to prove that the limit in

(7.7.2) exists and is finite. Let

An = c−1
n

[
(1− αn)ϕn(1)2 + 2LKn(1, 1)

]
; (7.7.5)

Bn = Kn(1, 1). (7.7.6)



First, note that Bn −Bn−1 = ϕn(1)2. Second, note that by (7.7.1),

(1− αn−1)ϕn−1(1)2 = (1 + αn−1)ϕn(1)2. (7.7.7)

Therefore,

An − An−1 =
[
c−1
n (1− αn)ϕn(1)2 − c−1

n−1(1 + αn−1)ϕn(1)2
]

+ c−1
n (2L)Kn(1, 1)− c−1

n−1(2L)Kn−1(1, 1). (7.7.8)

The first sum on the right hand side of (7.7.8) is

[
c−1
n (1− L)− c−1

n−1(1 + L)− 2
]
ϕn(1)2, (7.7.9)

while the second sum is

2L
[
c−1
n ϕn(1)2 + (c−1

n − c−1
n−1)Kn−1(1, 1)

]
. (7.7.10)

Combining (7.7.9) and (7.7.10), we have

An − An−1

Bn −Bn−1

=
[
(1 + L)(c−1

n − c−1
n−1)− 2

]
+ 2L(c−1

n − c−1
n−1)

Kn−1(1, 1)

ϕn(1)2
.

(7.7.11)

Next, we are going to show that Kn−1(1,1)
ϕn(1)2

exists. To do that, we use the



Stolz–Cesàro Theorem again. Let

Cn = Kn−1(1, 1), (7.7.12)

Dn = ϕn(1)2. (7.7.13)

Recall that by (7.7.1), ϕn(1)2 = 1−αn
1+αn

ϕn−1(1)2. Hence,

Dn −Dn−1 =

(
1− αn
1 + αn

− 1

)
ϕn−1(1)2. (7.7.14)

Since Cn − Cn−1 = ϕn−1(1)2, we have

lim
n→∞

Cn − Cn−1

Dn −Dn−1

= lim
n→∞

(
1− αn
1 + αn

− 1

)−1

=
1 + L

−2L
. (7.7.15)

Therefore, Kn−1(1, 1)/ϕn(1)2 = −(1 +L)/2L. By (7.7.11) and the Stolz–

Cesàro Theorem,

lim
n→∞

An − An−1

Bn −Bn−1

= −2 = lim
n→∞

An
Bn

. (7.7.16)

As a result,

∆n(1) = −2L− 2cn + o (cn) . (7.7.17)

This proves Corollary 2.0.1. In particular, if L = −1/2 and cn = 1/n,

we have the rate of convergence of ∆n(1) being O(1/n), which is clearly not

exponential.



7.8 Szegő condition and bounded variation

Both the Szegő condition and bounded variation of recursion coefficients

come up in the study of orthogonal polynomials very often. In this section,

we will show that there is a very large class of measures with Verblunsky

coefficients of bounded variation satisfying αn → L 6= 0 yet failing the Szegő

condition (2.0.46).

Let dγ be a non-trivial measure on R such that for all n,
∫
|x|ndγ <∞.

It is well-known that the family of orthonormal polynomials (pn(x))n∈N

obey the following recurrence relation

xpn(x) = an+1pn+1(x) + bn+1pn(x) + anpn−1(x) (7.8.1)

for n ≥ 0. The reader should refer to [45, 46] for details.

Remark: The reader should be reminded that the an’s and bn’s in [46] are

different from those in [45]! In fact, an+1([46]) = an([45]) and bn+1([46])=

bn([45]). In this paper, we are following the notations of [46].

Now we consider the measure dγ on R which has recursion coefficients

satisfying:

bn ≡ 0, an ↗ 1, (7.8.2)
∞∑
n=1

|an − 1|2 =∞. (7.8.3)

This measure, supported on [−2, 2], is purely a.c., and has no eigenvalues



outside [−2, 2]. Moreover, if we write dγ(x) = f(x)dx, f(x) is symmetric. By

the Killip–Simon Theorem [27], condition (7.8.3) implies that such a measure

fails the quasi-Szegő condition, i.e.

∫
[−2,2]

(4− x2)1/2 log f(x)dx = −∞, (7.8.4)

which is weaker than the Szegő condition

∫
[−2,2]

(4− x2)−1/2 log f(x)dx = −∞. (7.8.5)

Now we consider dγy supported on [−y, y] ⊂ [−2, 2], which is defined by

scaling dγ

dγy(x) = dγ
(
2xy−1

)
, 0 < y < 2. (7.8.6)

Then the a.c. part of dγy(x), supported on [−y, y], is

fy(x) = f(2xy−1)χ[−y,y]. (7.8.7)

It is well-known that

an(dγy) =
(y

2

)
an(dγ), bn(dγy) =

(y
2

)
bn(dγ). (7.8.8)

Now we apply the inverse Szegő map (see Chapter 13 of [47]) to dγy to

form the probability measure µy on ∂D. Under this map, we have dµy(θ) =



wy(θ)
dθ
2π

with

wy(θ) = 2π| sin(θ)|fy(2 cos θ)χ[θy ,π−θy ](θ), (7.8.9)

where

θy = cos−1
(y

2

)
∈
(

0,
π

2

)
. (7.8.10)

For for any g measurable on [−2, 2],

∫
g(x)dγy(x) =

∫
g(2 cos θ)dµy(θ). (7.8.11)

By Corollary 13.1.8 of [47], bn(γy) ≡ 0 if and only if α2n(dµy) ≡ 0.

Moreover, by Theorem 13.1.7 of [47], we know that

a2
n+1(dγy) = (1− α2n−1(dµy))(1− α2n(dµy)

2)(1 + α2n+1(dµy))

= (1− α2n−1(dµy))(1 + α2n+1(dµy)).
(7.8.12)

Note that wy(θ) is supported on two arcs, [θy, π−θy] and [π+θy, 2π−θy],

and we can decompose wy(θ) into

wy(θ) = wy(θ)|[θy ,π−θy ] + wy(θ)|[π+θy ,2π−θy ]. (7.8.13)

Moreover, because γy(x) is symmetric, each of the two components on

the right hand side of (7.8.13) is symmetric along the imaginary axis. Hence,



we can view dµy as a two-fold copy of the probability measure

dνy(θ) = my(θ)
dθ

2π
(7.8.14)

defined on ∂D with

my(θ) = 2wy

(
θ

2

)
χ[2θy ,2π−2θy ] (7.8.15)

(this is also called the sieved orthogonal polynomials, see Example 1.6.14 of

[46]). Hence,

α2k−1(dµy) = αk−1(dνy). (7.8.16)

In other words, the Verblunsky coefficients of dµy are

0, α0(dνy), 0, α1(dνy), 0, α2(dνy) . . . (7.8.17)

Therefore, (7.8.12) becomes

(y
2

)2

a2
n+1(dγ) = (1− αn−1(dνy))(1 + αn(dνy)) (7.8.18)

for n = 0, 1, . . . , with the convention that α−1 = −1.

Now note that dνy is supported on the arc [2θy, 2π − 2θy], so by the



Bello-López result [4] (see also Theorem 9.9.1 of [47]), for ay = sin (θy),

lim
n→∞

|αn(dνy)| = ay , (7.8.19)

lim
n→∞

αn+1(dνy)αn(dνy) = a2
y . (7.8.20)

Since αn ∈ R, αn(dνy) actually converges. Moreover, recall that θy ∈ (0, π
2
)

was defined such that cos(θy) = y
2
. Hence,

ay =
√

1− cos2(θy) =

√
1−

(y
2

)2

. (7.8.21)

We rewrite (7.8.18) as follows

(y
2

)2 a2
n+1(dγ)

1− αn−1(dνy)
− 1 = αn(dνy). (7.8.22)

When n = 0, we have α0 = (y
2
)
a21
2
− 1 < 0. Hence, by an inductive

argument on (7.8.22) we can show that αn < 0 for all n ≥ 0.

Next, we want to prove that (αn(dνy))n∈N is of bounded variation if

(an(dγ))n∈N is. From now on, we let αn = αn(dνy), an = an(dγ) and

c = (y/2)2 < 1.

By (7.8.22) above,

αn − αn−1 =
c(a2

n+1 − a2
n)

1− αn−1

+
ca2

n(αn−1 − αn−2)

(1− αn−1)(1− αn−2)
. (7.8.23)

Therefore, by an inductive argument we conclude that
∑

n(αn(dνy) −



αn−1(dνy)) < ∞ for any 0 < y < 2. Hence for any monotonic sequence

of an → 1 and any 0 < y < 2, there corresponds a family of αn(dνy)’s of

bounded variation that converge to −ay < 0.

Finally, we have to show that my(θ) fails the Szegő condition (2.0.46).

Since f(x) fails the quasi-Szegő condition (7.8.4), it also fails the Szegő con-

dition (7.8.5). Upon scaling, (7.8.5) becomes

∫ −y
y

(log fy(x))
1√

y2 − x2
dx = −∞. (7.8.24)

Finally, by the Szegő map and a change of variables, (7.8.24) is equivalent

to (2.0.46).



Chapter 8

Non-exponential Perturbation

8.1 The Szegő Mapping

It turns out that one can relate measures supported on [−2, 2] with a certain

class of measures on ∂D.

Note that the map θ 7→ 2 cos θ is a two-one map from ∂D to [−2, 2].

Therefore, given a non-trivial probability measure dξ on ∂D that is invariant

under θ → −θ, we can define a measure

γ = Sz(dξ) (8.1.1)

using what is known as the Szegő map, such that for g measurable on [−2, 2],

∫
g(2 cos θ)dξ(θ) =

∫
g(x)dγ(x) (8.1.2)
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Conversely, if we have a probability measure β supported on [−2, 2], we

can obtain a probability measure

dν = Sz−1(dγ) (8.1.3)

on ∂D by what is known as the Inverse Szegő Mapping, such that for h(z)

measurable on ∂D,

∫
h(θ)dν(θ) =

∫
h
(

cos−1 x

2

)
dγ(x) (8.1.4)

There are many interesting results about the Szegő mapping (see Chap-

ter 13 of [47]), but the only relevant one for this thesis is the following by

Geronimus [19] (see also Theorem 13.1.7 of [47]):

Theorem 8.1.1 (Geronimus [19]). Let dξ be a probability measure on ∂D

which is invariant under θ → −θ and let dγ = Sz(ξ). Let αn ≡ αn(dξ),

an ≡ an(dγ) and bn ≡ bn(dγ). Then for n = 0, 1, 2, . . . ,

a2
n+1 = (1− α2n−1)(1− α2n)2(1 + α2n+1) (8.1.5)

bn+1 = (1− α2n−1)α2n − (1 + α2n−1)α2n−2 (8.1.6)

with the convention that α−1 = −1.

We will consider two cases: x0 > 2 and x0 < 2.



8.1.1 Case 1: x0 > 2

Suppose dγ0 is a measure on R with recursion coefficients (an) and (bn)

satisfying

an ↗ 1 bn ≡ 0 (8.1.7)∑
n

|an − 1|2 =∞ (8.1.8)

The measure dγ0 is purely absolutely continuous and symmetrically sup-

ported on [−2, 2], with no pure points outside [−2, 2]. We scale it by a factor

0 < y < 2 to form the measure dγy supported on [−y, y] ⊂ [−2, 2] (we will

show the connection between y and x0 a bit later; see (8.1.9)).

Then we use the Inverse Szegő map on dγy to obtain dµy, a probability

measure on ∂D. By looking at the Direct Geronimus Relations (8.1.5) and

(8.1.6), we will find necessary conditions for αn(dµy) so that both (8.1.7) and

(8.1.8) hold.

Since dγy is supported on [−y, y] ⊂ [−2, 2], we know that dµy is supported

on two identical bands. Besides, dµy is symmetric along both the x- and y-

axes because of the symmetry of dγy and the Szegő map.

Next, we add a pure point at z = 1 to dµy to form the measure dµ̃y and

compute the perturbed Verblunsky coefficients αn(dµ̃y).

Then we use the Szegő map on dµ̃y to obtain the probability measure dγ̃y

on R. Finally, we scale dγ̃y to form the measure dγ̃.



Note that if we have chosen y such that

y

2
=

2

|x0|
(8.1.9)

then we have dγ̃ = (1− β)dγ0 + βδx0 .

As the final step, we show that for some constants Cx0 , Dx0 (both depen-

dent on x0) such that

an(dγ̃) = an(dγ0) +
Cx0
n3/2

+ o

(
1

n3/2

)
(8.1.10)

bn(dγ̃) = bn(dγ0) +
Dx0

n3/2
+ o

(
1

n3/2

)
(8.1.11)

8.1.2 Case 2: x0 < −2

Everything in Case 1 will follow except that we add a point z = −1 to dµy

instead. As we shall see later in the proof, dµy is symmetric both along the

x− and y− axes. Therefore, adding a pure point at z = −1 is the same as

adding a pure point at z = 1 and then rotating the measure by an angle of

π.

For the convenience of the reader, here is a diagram showing all the

measures involved. We will start from the measure dµy, and move along two

directions:

dγ0
scaling←− dγy

Sz−1

←− dµy
add z=1−→ dµ̃y

Sz−1

−→ dγ̃y
scaling−→ dγ̃ (8.1.12)



8.2 The Proof

Let dγ0 be a probability measure on R with recursion coefficients satisfying

(8.1.7) and (8.1.8).

This measure, supported on [−2, 2], is purely absolutely continuous, and

has no eigenvalues outside [−2, 2]. Moreover, if we write dγ0(x) = f(x)dx,

f(x) is symmetric.

Now we scale dγ0 to form the measure dγy defined by

dγy(x) = dγ
(
2xy−1

)
0 < y < 2 (8.2.1)

The measure dγy, supported on [−y, y] ⊂ [−2, 2], is purely absolutely

continuous and the a.c. part of dγy(x) is

fy(x) = f(2xy−1)χ[−y,y] (8.2.2)

which is also symmetric.

It is well known that scaling has the following effects on the recursion

coefficients

an(dγy) =
(y

2

)
an(dγ0) bn(dγy) =

(y
2

)
bn(dγ0) (8.2.3)

Now we apply the inverse Szegő map to dγy to form the probability mea-

sure dµy on ∂D, see figure below:



Figure 8.1: Graph of supp(dµ)

The measure dµy is supported on two arcs, [θy, π−θy] and [π+θy, 2π−θy],

with a.c. part

wy(θ) = wy(θ)|[θy ,π−θy ] + wy(θ)|[π+θy ,2π−θy ] (8.2.4)

where

wy(θ) = 2π| sin(θ)|fy(2 cos θ)χ[θy ,π−θy ](θ)labellasteqn110 (8.2.5)

θy = cos−1
(y

2

)
∈
(

0,
π

2

)
(8.2.6)

By Theorem 8.1.1, bn(dγy) ≡ 0 if and only if α2n(dµy) ≡ 0. Therefore,

we can express the Verblunsky coefficients of dµy as

0, τ0, 0, τ1, 0, τ2, . . . (8.2.7)



with τj = α2j+1. Moreover, by Theorem 13.1.7 of [47], we know that

a2
n+1(dγy) = (1− α2n−1(dµy))(1− α2n(dµy)

2)(1 + α2n+1(dµy))

= (1− τn−1)(1 + τn)
(8.2.8)

Now we will choose a suitable family of τn ∈ R such that the correspond-

ing an(dγy) satisfy both (8.1.7) and (8.1.8).

Observe that by (8.2.8) above,

an+1(dγy)
2−an(dγy)

2 = (1−τn−1)(τn−τn−1)+(1+τn−1)(τn−1−τn−2) (8.2.9)

Therefore, if we have an increasing family of τn < 0 such that

τn ↗ τ∞ = −
√

1−
(y

2

)2

< 0 (8.2.10)

then an(dγy) ↗ y/2 and the corresponding measure dµy has the desired

properties.

In particular, if we let for k ≥ 1

τk = τ∞ −
1√
k

(8.2.11)

then the goal is achieved.

Next, we prove the following lemma:

Lemma 8.2.1. Let dµy be the measure on ∂D with Verblunsky coefficients



as in (8.2.7), where for all large n,

τn = τ∞ −
1√
n

− 1 < τ∞ < 0 (8.2.12)

Then for n = 2m or 2m+1, ∆n(1) (∆n as defined in (2.0.7)) has the following

expansion

∆n(1) = −τ∞ +
1√
m

+ 0 +

(
1 +

1

2τ∞

)
1

m3/2
+ o

(
1

m3/2

)
(8.2.13)

Therefore, if we add a pure point at z = 1 to dµy as in (2.0.9) to form dµ̃y,

then the perturbed Verblunsky coefficients are given by

αn(dµ̃y) =


−τm +

(
1 +

1

2τ∞

)
1

m3/2
+ em n = 2m(

1 +
1

2τ∞

)
1

m3/2
+ em n = 2m+ 1

(8.2.14)

where em = o
(
m−3/2

)
.

Proof. Since all the Verblunsky coefficients of dµy are real, by induction on

the recursion relation (1.0.11),

ϕn(1) =
n−1∏
j=0

√
1− αj
1 + αj

(8.2.15)



By (8.2.7), when n = 2m or 2m+ 1,

ϕ∗n(1) = ϕn(1) =
m−1∏
j=0

√
1− τj
1 + τj

(8.2.16)

This formula will play a crucial role in the computation below.

8.2.1 n is even

First, we compute ∆n(1) when n = 2m using the point mass formula (2.0.11).

Let

An = ϕn+1(1)ϕ∗n(1) (8.2.17)

Bn = (1− β)β−1 +Kn(1, 1) (8.2.18)

Then

lim
m→∞

∆2m(1) = lim
m→∞

(1− |α2m|2)1/2 A2m

B2m

= lim
m→∞

A2m

B2m

(8.2.19)

because α2m = 0 for all m. However, instead of computing this directly, we

use the Stolz–Cesàro theorem.

First, note that τk → τ∞ < 0. Thus,

Bm > Kn(1, 1) > |ϕn(1)|2 →∞ (8.2.20)

by (8.2.16). Hence, it is legitimate for us to use the Stolz–Cesàro Theorem.



Let Kn ≡ Kn(1, 1) and ϕn ≡ ϕn(1). Observe that ϕ2m+1 = ϕ2m and

ϕ2
2m+2 = ϕ2

2m(1− τm)/(1 + τm). Therefore, by (8.2.16),

B2(m+1) −B2m = ϕ2
2(m+1) + ϕ2

2m =
2ϕ2

2m

1 + τm
(8.2.21)

and

A2(m+1) − A2m = ϕ2
2(m+1) − ϕ2

2m =

(
−2τm
1 + τm

)
ϕ2

2m (8.2.22)

As a result,

lim
m→∞

∆2m(1) = lim
m→∞

A2(m+1) − A2m

B2(m+1) −B2m

= −τ∞ (8.2.23)

Next, we will prove that the rate of convergence is

∆2m(1) = −τ∞ +
1√
m

+ o

(
1√
m

)
(8.2.24)

by computing the following limit

lim
m→∞

√
m (∆2m(1) + τ∞) = 1 (8.2.25)

Recall the definition of ∆n(1) and the facts that α2m ≡ 0 and ϕ2m+1ϕ2m =

ϕ2
2m. Thus, the left hand side of (8.2.25) can be expressed as Xn/Yn, where

Xm =
√
m
[
ϕ2

2m + τ∞(1− β)β−1 + τ∞K2m

]
(8.2.26)

Ym = (1− β)β−1 +K2m →∞ (8.2.27)



We use the Stolz–Cesàro Theorem again. First, observe that

Ym+1 − Ym =
1− τm
1 + τm

+ 1 =
2

1 + τm
ϕ2

2m (8.2.28)

Then we compute

Xm+1 −Xm

=

[√
m+ 1

1− τm
1 + τm

−
√
m

]
ϕ2

2m︸ ︷︷ ︸
(I)

+ τ∞

[√
m+ 1K2(m+1) −

√
mK2m

]
︸ ︷︷ ︸

(II)

+ τ∞(1− β)β−1(
√
m+ 1−

√
m)︸ ︷︷ ︸

(III)

(8.2.29)

Note that (III) → 0 as m → ∞. Thus, it suffices to consider terms (I)

and (II) in (8.2.29) above. Observe that

(I)

Y2(m+1) − Y2m

=

√
m+ 1

(
1−τm
1+τm

)
−
√
m

2
1+τm

=

√
m+ 1(1− τm)−

√
m(1 + τm)

2

(8.2.30)

Furthermore,

(II) = τ∞

[√
m+ 1(K2(m+1) −K2m) + (

√
m+ 1−

√
m)K2m

]
(8.2.31)



which implies that

(II)

Ym+1 − Ym
= τ∞

[√
m+ 1 + (

√
m+ 1−

√
m)

1 + τm
2

K2m

ϕ2
2m

]
(8.2.32)

Next, we are going to show that limm→∞K2m/ϕ
2
2m = −1/τ∞ by the

Stolz–Cesàro Theorem. Observe that

lim
m→∞

K2m

ϕ2
2m

=

(
lim
m→∞

ϕ2
2(m+1) − ϕ2

2m

K2(m+1) −K2m

)−1

= lim
m→∞

(
1− τm
1 + τm

− 1

)−1(
1− τm
1 + τm

+ 1

)
= − 1

τ∞

(8.2.33)

Combining (8.2.30), (8.2.32) and (8.2.33), we obtain (8.2.25).

Next, we are going to show that the second order term is zero. In other

words,

∆2m(1) = −τ∞ +
1√
m

+ o

(
1

m

)
(8.2.34)

We do so by proving that

L2 ≡ lim
m→∞

m

(
∆2m(1)− (−τ∞)− 1√

m

)
= 0 (8.2.35)

Let

Pm = mϕ2
2m+mτ∞

(
(1− β)β−1 +K2m

)
−
√
m
(
(1− β)β−1 +K2m

)
(8.2.36)



Then

Pm+1 − Pm =

[
(m+ 1)

1− τm
1 + τm

−m
]
ϕ2

2m + [(m+ 1)−m]τ∞(1− β)β−1

+ (m+ 1)τ∞
[
K2(m+1) −K2m

]
+ [(m+ 1)−m] τ∞K2m

− (
√
m+ 1−

√
m)(1− β)β−1

−
√
m+ 1

[
K2(m+1) −K2m

]
− (
√
m+ 1−

√
m)K2m (8.2.37)

Combining with previous results about Ym+1−Ym and K2m/ϕ
2
2m, we have

L2 = lim
m→∞

Pm+1 − Pm
Ym+1 − Ym

= 0 (8.2.38)

which proves (8.2.34).

Next, we will obtain the third-order term by computing

L3 = lim
m→∞

m3/2

(
∆2m − (−τ∞)− 1√

m

)
(8.2.39)

Let

Jm = m3/2ϕ2
2m +

(
m3/2τ∞ −m

)
((1− β)β−1 +K2m) (8.2.40)



By a similar argument as in (8.2.33),

Jm+1 − Jm =

[
(m+ 1)3/2 1− τm

1 + τm
−m3/2

]
ϕ2

2m

+ (1− β)β−1
[(

(m+ 1)3/2 −m3/2
)
τ∞ − (m+ 1−m)

]
+ (m+ 1)3/2τ∞

[
K2(m+1) −K2m

]
+
[
(m+ 1)3/2 −m3/2

]
τ∞K2m

− (m+ 1)
[
K2(m+1) −K2m

]
− (m+ 1−m)K2m (8.2.41)

which implies that

L3 = lim
m→∞

Jm
Ym

= 1 +
1

2τ∞
(8.2.42)

8.2.2 n is odd

We compute ∆n(1) when n = 2m + 1 using the point mass formula and

(2.0.12). Let An and Bn be defined as in (8.2.17) and (8.2.18). Then

lim
m→∞

∆2m+1(1) = (1− |τ∞|2)1/2 lim
m→∞

A2m+1

B2m+1

(8.2.43)

We will use the Stolz–Cesàro Theorem again. Note that

A2(m+1)+1 − A2m+1 =

(√
1− τm+1

1 + τm+1

1− τm
1 + τm

−
√

1− τm
1 + τm

)
ϕ2

2m (8.2.44)



and because ϕ2m+3 = ϕ2m+2,

B2(m+1)+1 −B2m+1 = 2ϕ2
2m+2 = 2

(
1− τm
1 + τm

)
ϕ2

2m (8.2.45)

Therefore,

lim
m→∞

∆2m+1(1) =
−τ∞(1− |τ∞|2)1/2√

(1 + τ∞)(1− τ∞)
= −τ∞ (8.2.46)

Next, we prove the rate of convergence by computing

lim
m→∞

√
m (∆2m+1(1) + τ∞) = 1 (8.2.47)

Since αn ∈ R, the recursion relation becomes

(1− |αn|2)1/2ϕn+1 = ϕn − αnϕ∗n = (1− αn)ϕn (8.2.48)

Therefore,

∆2m+1(1) =
(1− α2m+1)ϕ2

2m+1

(1− β)β−1 +K2m+1

= (1− τm)
ϕ2

2m

(1− β)β−1 +K2m+1

(8.2.49)

Let

Pm =
√
m
[
(1− τm)ϕ2

2m + τ∞((1− β)β−1 +K2m+1)
]

(8.2.50)

Qm = (1− β)β−1 +K2m+1 →∞ (8.2.51)



Note that

Qm+1 −Qm = K2m+3 −K2m+1 = 2ϕ2
2(m+1) (8.2.52)

and

Pm+1 − Pm =
[√

m+ 1(1− τm+1)ϕ2
2(m+1) −

√
m(1− τm)ϕ2

2m

]
︸ ︷︷ ︸

(I)

+ (1− β)β−1τ∞(
√
m+ 1−

√
m) + τ∞

√
m+ 1 [K2m+3 −K2m+1]

+ (
√
m+ 1−

√
m)τ∞K2m+1︸ ︷︷ ︸

(II)

(8.2.53)

Since (1− τm)ϕ2
2m = (1 + τm)ϕ2

2(m+1),

(I)

Qm+1 −Qm

=

√
m+ 1(1− τm+1)−

√
m(1 + τm)

2
(8.2.54)

Next, consider (II). We compute

lim
m→∞

ϕ2
2(m+1) − ϕ2

2m

K2m+1 −K2m−1

=

(
1−τm
1+τm

− 1
)
ϕ2

2m

2ϕ2
2m

=
−τ∞

1 + τ∞
(8.2.55)

which implies

(II)

Qm+1 −Qm

= −(1 + τ∞)(
√
m+ 1−

√
m) (8.2.56)



Therefore,

lim
m→∞

m (∆2m+1(1)− (−τ∞)) = lim
m→∞

Pm
Qm

= 1 (8.2.57)

Next, we will prove that

∆2m+1 = −τ∞ +
1√
m

+ o

(
1

m

)
(8.2.58)

by showing that

L′2 ≡ lim
m→∞

m

(
∆2m+1 + τ∞ −

1√
m

)
= 0 (8.2.59)

Let

Hm = m(1− τm)ϕ2
2m +

(
mτ∞ −

√
m
)

((1− β)β−1 +K2m+1) (8.2.60)

Hm+1 −Hm = (m+ 1)(1− τm+1)ϕ2
2(m+1) −m(1− τm)ϕ2

2m︸ ︷︷ ︸
(I)

+(m+ 1)τ∞K2m+3 −mτ∞K2m+1︸ ︷︷ ︸
(II)

−
√
m+ 1K2m+3 +

√
mK2m+1︸ ︷︷ ︸

(III)

+ (1− β)β−1(τ∞(m+ 1−m)− (
√
m+ 1−

√
m))︸ ︷︷ ︸

(IV)

(8.2.61)



First, note that

lim
m→∞

(IV)

Qm+1 −Qm

= 0 (8.2.62)

Since (1− τm)ϕ2
2m = (1 + τm)ϕ2

2(m+1), we have

(I)

Qm+1 −Qm

=
(m+ 1)(1− τm+1)−m(1 + τm)

2
(8.2.63)

(II)

Qm+1 −Qm

= τ∞(m+ 1) + (m+ 1−m)τ∞
K2m+1

2ϕ2
2(m+1)

(8.2.64)

(III)

Qm+1 −Qm

=
(−
√
m+ 1 +

√
m)K2m+3

2ϕ2
2(m+1)

+ (−
√
m) (8.2.65)

Hence, L′ = 0 and this proves (8.2.58).

Next, we compute

L′3 = lim
m→∞

m3/2

(
∆2m+1 + τ∞ −

1√
m

)
(8.2.66)

By similar arguments as in (8.2.63), (8.2.64) and (8.2.65), we obtain

L′3 = 1 +
1

2τ∞
(8.2.67)

This concludes the proof of Lemma 8.2.1.

Finally, we apply the Szegő map to this perturbed measure dµ̃y to form



the perturbed measure dγ̃y on [−2, 2], which is defined by

γ̃y(x) = (1− γ)dγy(x) + γδx=2 (8.2.68)

For the sake of convenience, we temporarily denote αn ≡ αn(dµ̃y). Since

bn(dγy) ≡ 0, it suffices to consider

bn+1(dγy) =
1√
n
− 1√

n− 1
+ o

(
1

n3/2

)
=
−1

2n3/2
+ o

(
1

n3/2

)
(8.2.69)

The computation of an(dγ̃y) is more complicated. Recall that

an+1(dγ̃y)
2 = (1− α2n−1)(1− α2

2n)(1 + α2n+1) (8.2.70)

and we know that

an+1(dγy)
2 = (1− τn−1)(1 + τn) (8.2.71)

Therefore, upon solving the algebra, we obtain

an+1(dγ̃y)
2 − an+1(dγy)

2 =
1

2(1 + τ∞)m3/2
+ o

(
1

m3/2

)
(8.2.72)

After scaling, we have

a2
n+1(dγ)− a2

n+1(dγ0) =
2

y2(1 + τ∞)m3/2
+ o

(
1

m3/2

)
(8.2.73)



Bibliography

[1] N. I. Akhiezer, On polynomials orthogonal on a circular arc, Dokl. Akad.

Nauk SSSR 130 (1960), 247–250 [in Russian]; Soviet Math. Dokl. 1 (1960),

31–34.

[2] M. P. Alfaro, M. Bello Hernández, M., Montaner, J. M. and Varona, J.

L., Some asymptotic properties for orthogonal polynomials with respect to

varying measures, J. Approx. Theory 135 (2005), 22–34.
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[13] E. Cesàro and O. Stolz, http://en.wikipedia.org/wiki/Stolz-
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and sequences of Möbius-transformations, J. Approx. Theory 93 (1998),

1–58.

[31] Y. Last and B. Simon, Eigenfunctions, transfer matrices, and absolutely

continuous spectrum of one-dimensional Schödinger operators, Invent.

Math. 135 (1999), 329–367.

[32] F. Marcellán and P. Maroni, Sur l’adjonction d’une masse de Dirac à
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