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A B S T R A C T  

Micro Electret Power Generators 

The taming of electricity and its widespread use allows people to see in the dark, to speak 

to one another instantaneously across the earth, and it allows retrieval of data from 

instruments sent out of the solar system.  It is right to expect that the uses and demand for 

electricity will continue to grow, and to extend the ability to generate electricity; here two 

new micromachined devices for converting mechanical energy into electrical energy are 

presented.  Aided by the wealth of micromachining process technology, generators that 

use an oscillatory motion to modify the physical structure of a capacitor with a built-in 

electric field provided by a permanent electret have been designed, built, and tested.  The 

electret creates an electric field inside the capacitor structure, which induces mirror 

charge at some potential.  The modification of the capacitor then generates an alternating 

displacement current through an external circuit, which provides useful electrical power.  

The electret microphone is a similar well known device for converting pressure waves 

into electrical signals by varying the distance between two charged capacitive plates.  

This work explores and proves feasible the ability to use mechanical forces to change the 

overlapping area of a charged capacitor structure and using mechanical forces to move a 

liquid into the gap of a charged capacitor structure, changing its permittivity to produce 

electricity.  This work demonstrates 2.5mW of power from a 2cm diameter rotary 

generator at 12kRPM and 10μw for a 0.1cm3 linear shaking generator at 60Hz. 
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C H A P T E R  1  

I.  INTRODUCTION 

I came to the California Institute of Technolgy for the purpose of applying my 

background in physics to real world problems, or as I put it in my statement of purpose 

on my application, “I want to build cool stuff.”  I think this thesis is true to that purpose.  

I.1.  SCOPE OF THESIS 

The central focus of this work is the generation of electricity using mechanical forces in 

combination with permanent electrostatic fields.  Electric fields provide a powerful force 

for doing work, which is inversely proportional to the square of the distance between 

charged particles.  To take advantage of this large force, electrostatic devices must be 

made with high precision and small dimensions.  A wealth of technological knowledge 

for producing high-precision, micro-scale, electrical and mechanical system exists in the 

field of micromachining.  The work in this thesis was performed in the Caltech 

Micromachining Laboratory, which provides micromachining equipment and process 

technology expertise necessary to build small electrostatic devices to generate electricity.   

This thesis describes the design, fabrication, and testing of devices which utilize an 

oscillatory motion to modify the physical structure of a capacitor with a built-in electric 

field provided by a permanent electret.  An electret is used as the source of an electric 

field inside the capacitor structure, which induces mirror charge at some potential 

difference on the capacitive plates.  The modification of the capacitor then generates an 
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alternating displacement current through an external circuit, which provides useful 

electrical power.   

Two mechanisms are explored and proven feasible to produce electricity from an 

electrostatic field in two new power generating devices.  First, a device is build that uses 

a rotational torque to modify the overlapping area of a charged capacitor structure.  

Second, a vibrational mechanical force is used to shake a fixed capacitor structure that 

contains an air gap and liquid that can flow into and out of the air gap, which changes the 

strength of an electric field within the charged capacitor structure.  This thesis 

demonstrates 2.5mW of power generated from a 2cm diameter rotary generator at 

12kRPM and 10μw for a 0.1cm3 linear shaking generator at 60Hz. 

I.1.a.  ORGANIZATION 

This thesis is divided into five chapters: Introduction, Electrets, Variable Area Rotational 

Electret Power Generator, Liquid Rotor Electret Power Generator, and Conclusions and 

Future Work.  

The Introduction compares electrical power generation techniques.  This chapter 

introduces the concept of “energy harvesting,” can be a viable method for providing 

electrical energy to remote and portable applications.  Concise arguments are made for 

electrostatic power generators, which rely on the phenomenon of “displacement current.”  

Micro electromechanical systems are explained as an invaluable tool for pursuing 

electrostatic power generators.  Finally the source of funding is explained to give context 
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to the development project followed by the delineation of duties.  Although this project is 

funded as part of a power generation system, the generators described are separate and 

complete systems worthy of an entire thesis.   

Chapter 2 explains “electrets”, which provide the electric field used to generate electricity 

in the generators presented.  This chapter provides examples of electret fabrication, as 

well as the specific micromachining technology used in this work and the unique electron 

implantation system used in the Caltech Micromachining Laboratory.  Measurement 

techniques used to characterize the electret are then explained.  Finally, electrets 

produced for this work are analyzed, and a new fabrication method for producing 

superior uniformity is explained and characterized.  

Chapter 3 covers the world’s first micromachined rotary electret power generator 

(REPG).  Background information is given that sets the stage for applying 

micromachining techniques to produce the REPG.  New theory is development to address 

the design of this new device.  Design and fabrication of several versions of the device 

are presented as well as the experimental results. 

Chapter 4 encompasses the world’s first liquid-rotor electret power generator (LEPG).  

This device originated out of the necessity to improve gap control for a REPG device 

when proposed liquid bearings were argued against due to their effect on the electric field 

of the REPG.  Simple theory exists for insertion of a dielectric into the gap of a capacitor, 

but a theoretical model had to be developed to cover the dynamics involved in the use of 

a system that can be used for power generation.  This theory is then used to design and 
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fabricate LEPG devices.  LEPG devices are tested over a wide range of variables, as well 

as parallel and serial combinations of devices and some non-obvious electrical 

connections that prove advantageous.   

Chapter 5 summarizes the contributions of this work and proposes some future work 

using the insight gained during this course of study.  As with any new area of exploration, 

a great deal of knowledge is learned but much more awaits the eager researchers who 

follow. 

I.1.b.  PROBLEM STATEMENT 

It is commonly accepted that the uses and demand for electricity will continue to grow 

and that new sources of electricity are important to the future of human technological 

progress.  To answer the growing need for electricity, this thesis describes new work in 

the field of generating electricity from mechanical motion by presenting two novel 

micromachined power generators.  
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I.2.  ELECTRICITY 

Of the four fundamental forces of nature: strong force, electromagnetic force, weak force 

and gravitational force, the electromagnetic force is the best understood.  The origin of 

the electric force is the negatively charged elementary particle, the electron, which exerts 

an attractive force towards positively charged protons and a repulsive force towards other 

negatively charged electrons.  Since all stable matter is made of these elementary 

particles, the electric force dominates most observed interactions between materials.   

The magnetic force is a consequence of electrical charge in motion, and consequently the 

electromagnetic force is simply a unified theory for explaining the physical interactions 

of electricity and magnetism.   

Electric and electricity are the general term associated with stationary and moving 

electric charges.  In the past two centuries, humans have become especially adept at 

moving electrical charges. 

I.2.a.  GENERATING ELECTRICITY 

Electricity, being the flow of electrical charge, can be a consequence of human action.  

The first documented case of man made electricity dates back to the ancient Greeks, who 

witnessed electrical force as a result transferred electrons from rubbing amber.  The word 

electron is thus derived from the Greek word “elektron” meaning amber.   
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From the writings of Thales of Miletus it appears that Westerners knew as 

long ago as 600 B.C. that amber becomes charged by rubbing. There was 

little real progress until the English scientist William Gilbert in 1600 

described the electrification of many substances and coined the term 

electricity from the Greek word for amber. As a result, Gilbert is called 

the father of modern electricity. In 1660 Otto von Guericke invented a 

crude machine for producing static electricity. It was a ball of sulfur, 

rotated by a crank with one hand and rubbed with the other. Successors, 

such as Francis Hauksbee, made improvements that provided 

experimenters with a ready source of static electricity. Today's highly 

developed descendant of these early machines is the Van de Graaf 

generator, which is sometimes used as a particle accelerator. Robert 

Boyle realized that attraction and repulsion were mutual and that electric 

force was transmitted through a vacuum (c.1675). Stephen Gray 

distinguished between conductors and nonconductors (1729). C. F. Du 

Fay recognized two kinds of electricity, which Benjamin Franklin and 

Ebenezer Kinnersley of Philadelphia later named positive and negative. 

Insert I-1. Brief history of electricity [1-4] 

Remarkable advances in human understanding of electricity began occurring in the 18th 

century around the time Benjamin Franklin harnessed lightning, which is simply the 

discharge from triboelectrically generated charge in clouds.  Leyden jars were used to 

show capture of electricity.  Work by Ampere, Maxwell, and others have led to well 

understood laws of electricity that were used to develop electromagnetic power 

generators (electrostatic power generators already existed).  Edison pioneered a 

generation and distribution system along with greatly improved light bulbs, which 

cemented the need for electricity in the home. 
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I.2.a.i.   TRIBOELECTRICITY 

The generation of electricity from rubbing two dissimilar things together is known as 

“triboelectricity,” which is the first source of man-made electricity.  Everyone has seen 

examples of triboelectricity in the form of lightning, which is caused by charge transfer 

between air and water.  Children generate triboelectricity by dragging their shoes on 

carpet to build up a charge that allows them to shock a friend.  This method of generating 

electricity is simply the conversion of mechanical energy to electrical energy through 

friction.  This motion causes electrons to be transferred from one material to another, 

causing an excess of electrons on one material and a deficiency of electrons on the other.   

While this is the oldest form of electricity, it is still the least understood.  Modern theses 

on triboelectricity still fail to lead to reliable laws that can quantify or predict the 

outcome of a triboelectric event.  The unpredictability of triboelectricity prevents it from 

being widely used as a source for electrical energy. 

I.2.a.ii.  PHOTOVOLTAIC GENERATION 

In 1906, Albert Einstein published one specific paper on the photoelectric effect that later 

won him the Nobel prize in physics.  The photoelectric effect theory unifies the 

observations that light acts as wave and also as particle.  This theory explains the 

mechanism by which light generates electrons on the surface of metals.  Later, this same 

effect would be used to convert light into useful amounts of electricity for use in 

calculators, street signs, and even remotely piloted Mars exploration vehicles.  Using the 
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energy from the sunshine or indoor lighting as a power source is a convenient way to 

generate electrical power.  

I.2.a.iii.  CHEMICAL GENERATION 

The battery is probably the most recognized device for producing electrical energy.  The 

battery is a chemical system that generates electricity as the byproduct of a chemical 

reaction.  Chemical generation of electricity is limited to the quantity of chemicals in a 

system, but is well known as an effective method to store a large amount of useful energy 

in a small, portable space that can easily be converted to electrical energy. 

I.2.a.iv.  ELECTROMAGNETIC GENERATION 

Thomas Edison and George Westinghouse are responsible for bringing large quantities of 

electrical energy into the homes and businesses of the world, which was accomplished by 

a complicated distribution system and simple electromagnetic power generators.  These 

machines are optimized to exploit the electromotive force generated by a changing 

magnetic field on a wire, an effect first documented by André Marie Ampère.  The 

typical electromagnetic power generator converts rotational mechanical energy, which 

can be supplied by chemical-mechanical energy in the case of a combustion-vehicle, 

thermal-mechanical energy in the case of wind driven a turbine, human-mechanical in the 

case of a generator mounted to a bicycle wheel, or gravity fed as in the case of 

hydroelectric dams.  While effective and well understood, electromagnetic power 
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generators do not scale well to very small dimensions due to the need for many coils of 

wire and the difficulty in maintaining strong magnetic dipoles in small magnets. 

I.2.a.v.  ELECTROSTATIC GENERATION 

Electrical power generation is the production of a useful electrical current at some 

voltage.  Typically, AC current is produced via a varying magnetic field and collecting 

electrical current from loops of wire.  Electrical current can also be generated by a 

chemical reaction, photoelectric effect, triboelectric effect, quantum-thermal effect, or in 

the case of this work by the influence of a purely electric field.   

 
Table I-2. Comparisons of power conversion techniques. 

 

Common alternating current (AC) found in private homes and public buildings provided 

by national power grids is used for operating all manner of electrical devices, the most 
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common being lights and motors.  Machines waste kinetic energy in the form of 

vibration.  AC electricity commonly has a frequency of 60 Hz.  When a motor is operated 

at 60 Hz it will inevitably produce vibrations at this drive frequency and multiples of the 

drive frequency.  Figure I-1 describes the measured vibrations of a simple microwave 

oven with a fundamental mode around 120Hz and roughly a 2
1
ω  displacement[5].  The 

obvious question, then, is “can wasted vibrations be reclaimed for some other use?”    

 
Figure I-1 Measured vibrations from a microwave oven 

I.2.b.  ALTERNATIVE ENERGY 

Since the majority of grid electricity is generated by electromagnetic generators through 

burning of fossil fuels, any other power generation technique is considered “alternative 

energy”.  Harnessing the light, wind, flowing water, thermal gradients, and renewable 

fuels to produce electricity are all example of alternative energy.  Likewise, these sources 

are all renewable since they all can be replenished on a timescale that is short compared 

to a human lifespan.  Interestingly, all of these sources are derived from the energy 

released from nuclear fusion within the sun.  
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A form of alternative energy that is not renewable is nuclear fission since the source of 

this energy, radioactive elements, are changed in a physical manner that is not feasibly 

reversible within a human lifespan.   

I.2.b.i.  PORTABLE ALTERNATIVE ENERGY 

Since chemical cell batteries are the standard for portable electricity, there is an analog to 

alternative energy that is called “portable alternative energy.”  The major disadvantage of 

alkaline and other non-rechargeable batteries is that they cannot be made to contain more 

energy without industrial reprocessing.  Rechargeable batteries require connection to an 

energy source to regain their power, and they have a limited number of cycles before the 

chemistry degrades to the point where industrial reprocessing is also necessary.  Batteries 

are useful because of their large energy density, but they require maintenance. 

Demand for power supplies used in portable products in the United State is projected to 

increase 6.1 percent annually to $10.3 billion in 2008.  Batteries are the standard 

technology for providing portable power, but they have limited lifetimes.  The amount of 

batteries being disposed of in landfills became so great that in 1996 President Clinton 

signed into law the Mercury-Containing and Rechargeable Battery Management Act in 

an effort to reduce the toxicity of landfills and incinerator ash that is caused by the heavy 

metals found in batteries [6].  This act significantly contributes to the recycling of 

batteries, but it has not curbed the dependence on chemical cells for portable energy.  Re-

usable batteries all suffer from limitations that prevent them from being cheaper and/or 

more effective.   

Comment [JSB1]: Finish reference
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In contrast, solar cells used in calculators and watches provide energy by converting an 

external energy source, the sun or indoor lighting, to electrical power.  Furthermore, solar 

cells do not degrade noticeably over the lifetime of the device.  This alternative approach 

to providing portable electrical power can eliminate the dependence on batteries and 

maintenance, which has allowed for new applications, like earth-orbiting satellites, that 

would not otherwise be possible with chemical cell batteries. 

Other small devices can produce electrical energy from kinetic energy from an external 

source, such as human motion.  One example is the Kinetic series of watches by Seiko, 

which store human motion as electrical energy in a capacitor. This solution eliminates the 

need for chemical cells and allows for a watch that can run for an indefinite amount of 

time.  
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I.3.  ENERGY HARVESTING 

“Energy Harvesting” is the term used to describe converting wasted ambient energy into 

useable electrical energy.  For example, bridges vibrate as vehicles travel over them, and 

those vibrations have kinetic energy that could be used for generating electricity.  An 

energy harvester might convert enough of the vibration into electricity to operate a sensor 

and wireless node to monitor the temperature, stress, or humidity on the bridge and relay 

the information to listening posts for analysis. 

Energy harvesters promote innovation by eliminating conventional power supplies.  

Devices that convert the vibrations to usable electricity would allow new applications, 

such as “set and forget” remote sensors that rarely or never need maintenance.  Networks 

of sensors can be dispersed to monitor an area, such as “Smart Dust” [7, 8].   

Natural sources of energy are ubiquitous.  Solar energy, gravitational energy in the form 

of ocean waves and hydroelectric dams, and wind energy are already being harvested to 

produce electricity.   

 
Figure I-2 Electrical power delivered over time from various sources [5]. 
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Harvesting applications must receive some input energy from the environment.  

Assuming the environmental energy is relatively constant, Figure I-2 clearly shows the 

advantages of energy harvesting over time.  Both solar energy (indoors and outside) and 

vibrational energy in the environment may fluctuate within the gray ranges shown in 

Figure I-2, but they never cease as a source of environmental energy. 

The growing field of “energy harvesting” is finding, converting, and utilizing small 

amounts of energy that ordinarily go unnoticed and unexploited.  Energy harvesting is the 

act of taking wasted ambient energy and converting it useful electrical power.  Devices 

that accomplish this are called “energy harvesters” or “power scavengers.”  One common 

example of this is the solar powered calculator. 
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I.3.a.  ENERGY HARVESTING METHODS 

Power Density (μW/cm3) Over one year Over 10 years Over 100 years 

Solar* (Direct Sun) 10000 10000 10000 

Solar* (indoor) 6 6 6 

Thermoelectric(DT=10°C) 15 15 15 

Vibration (Piezoelectric) 100 100 100 

Vibration (Electrostatic) 50 50 50 

Vibration (Electret) 1000 1000 1000 

Biomotion Energy (inside shoe) 330 330 330 

Batteries (Lithium) 45 4.5 0.45 

Hydrocarbon (micro heat engine) 330 33 3.3 

Fuel Cells (Methanol, theoretical) 280 28 2.8 

Table I-3. Power density of various electrical power generators. 

* Flux density measured in (μW/cm2) 

As can be seen in Table I-3, energy can be captured from the environment and does not 

need to be stored in chemical form.  When compared with Figure I-2, it is obvious that 

stored energy is insufficient for devices that are designed to operate independently over 

long periods of time.  The solar power figure is for irradiance, which is the amount of 

light energy incident on a surface per time.  
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Power source  (μW)/cm3 (Joules)/cm3(μW)/cm3/yrStorage needed?Regulation?Available? 

Primary battery  N/A 2,880 90 No No Yes 

Secondary battery  N/A 1,080 34 N/A No Yes 

Micro fuel cell  N/A 3,500 110 Maybe Maybe No 

Ultracapacitor  N/A 50–100 1.6–3.2 No Yes Yes 

Heat engine  1 x 106 3,346 106 Yes Yes No 

Radioactive (63Ni) 0.52 1,640 0.52 Yes Yes No 

Solar (outside)  15,000* N/A N/A Usually Maybe Yes 

Solar (inside)  10* N/A N/A Usually Maybe Yes 

Temperature  40*† N/A N/A Usually Maybe Soon 

Human power  330 N/A N/A Yes Yes No 

Air flow      380‡ N/A N/A Yes Yes No 

Pressure variation  17§ N/A N/A Yes Yes No 

Vibrations  375 N/A N/A Yes Yes No 

LEPG 100 N/A N/A Yes Yes No 

* Measured in power per square centimeter, rather than power per cubic centimeter. 

† Demonstrated from a 5ºC temperature differential. 

‡ Assumes an air velocity of 5 m/s and 5% conversion efficiency. 

§ Based on 1 cm3 closed volume of helium undergoing a 10ºC change once a day. 

Table I-4. Survey of power sources [9, 10]  

The advantages of using stored chemical energy is that the power available is well known 

and the power density is much larger than a power harvesting solution, as can be seen in 

Table I-4.  A primary battery with an energy density of 2,880 Joules/cm3 can deliver 

power up to Watt range for a few seconds, while the energy scavengers can only deliver 

as much power as they can convert during that time, which is in the microwatt range.  

The disparities between power density and energy density drive the development of 

chemical cells toward greater lifetime and energy harvesters towards greater power 

delivery. 
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I.3.b.  SURVEY OF KINETIC ENERGY HARVESTING DEVICES 

Preceding this work are many examples of energy harvesting devices.  Many of these 

devices are built using micromachining tools, while other devices are just small.  The 

physical principles that govern each device are very different, and now the scope will be 

narrowed to better explore the area of interest.  Specifically, the focus of this thesis is on 

converting raw kinetic energy into electrical energy. 

I.3.b.i.  ALTERNATIVE DEFINITION: POWER SCAVENGING 

Power scavenging is the art of harvesting small amounts of energy from the local 

environment without significantly affecting the original environment.  Power scavengers 

are a subset of energy harvesters where the available ambient energy converted is small 

compared to the total energy available so that the presence of the device is not noticed.  

The distinction of a device being a “power scavenger” becomes relevant depending on 

the end application. 

One example of a power scavenger is a kinetic energy harvester mounted in a wristwatch.  

The addition of a power scavenger to the wristwatch should not require any changes to 

the original environment (how much someone shakes their wrist) in order for the 

harvester to operate properly.  The harvester must also have small mass and volume such 

that its presence can go unnoticed.  With these expectations, it is obvious that the 

harvester is not expected to convert all or even most of the available energy to electrical 

power because doing so would interfere with the ability to move the wrist.   
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I.3.b.ii.  FIGURES OF MERIT 

Energy conversion devices convert one form of energy to another, and the typical 

measure of the success of the device is the efficiency: the ratio of the output power to the 

input power.  The second law of thermodynamics can be used to prove that the output 

power can never be greater than the input power, thus efficiency is always 100% or less.  

For any device that delivers electricity, the first metric used to characterize it is 

efficiency.  

However, for power scavenging devices the input energy is much less than the available 

energy.  The measure of efficiency ignores the requirements placed on the design of 

power scavengers, namely that the volume and mass of the generator must be minimized 

for the scavenger to be an attractive power solution.  That is why the most important 

measure that is used in comparing power scavenger devices is the power output divided 

by the volume of the generator, or the power density.  

I.3.b.ii.1.  Linear Energy Harvesters 

For linear power generators, much work has been published exploring the ability of 

different types of power generators to harvest energy from an input force.  Typically, 

linear electromagnetic power generators operate in a resonance mode that is referred to as 

a velocity-damped resonant-generator (VDRG).  Linear electrostatic power generators 

typically operate in either a nonlinear, coulomb-force parametric-generator (CFPG) mode 

or a coulomb-damped resonant-generator (CDRG) mode.  Generator architectures do not 
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have operational maximums at the same frequency, volume, mass, or acceleration, which 

makes comparing them difficult.   

For vibration driven power generators, power output has been shown to scale in 

proportion to the source motion amplitude ( 0Y ), the driving frequency (ω ), and the mass 

of the device ( m ) [11-13].  This is not surprising because the kinetic energy ( KE ) of any 

resonant system is  

 ( )2
0

1 cos( )
2

KE m Y tω ω=  (I.1) 

while power P  is the rate of energy, which is proportional to  

 2 3
0  P Y mω∝  (I.2) 

Mitcheson et al shows that it is reasonable to normalize the theoretical power output by 

the factor in Equation (I.2) for each of the three different types of generator architectures.  

They plot the normalized power output for the VDRG, CDRG, and CFPG for various 

normalized amplitudes and driving frequencies, as can be seen in Figure I-3. 
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Term Definition Significance 

VDRG Velocity Damped Resonant 
Generator Resonant structure, magnetic field based 

CDRG Coulomb Damped Resonant 
Generator Resonant structure, electrostatic based 

CFPG Coulomb Force Parametric 
Generator Non-resonant structure, electrostatic based 

0Y  Drive amplitude 
It is possible for the structural frame of the generator to 

move a large distance while the internal portion has little or 
no relative motion to the frame 

lZ  Maximum internal displacement The moving element inside the generator has limited motion 
relative to the structural frame of the generator 

ω  Drive frequency Frequency of oscillation/rotation 

nω  Resonant frequency Frequency at which a fixed energy input produces maximum 
internal displacement 

cω  nω ω  Ratio of the drive frequency to the resonant frequency. Can 
be greater or less than 1 

m  mass Total mass of the generator including the frame and the 
moving portion 

PLEH Power from a LEH device LEH power is derived from vibrations/impacts 
PREH Power from a REH device REH power is derived from rotation 

NLEH Figure of merit for a LEH device 2 3
0   

LEH
LEH

PN
Y m Vω

=  

NREH Figure of merit for a REH device 2
REH

REH
PN
f V

=  

Table I-5 Power conversion definitions 

 
Figure I-3 Generator architecture comparison 
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Figure I-3 shows the relative strengths and weaknesses of each architecture where cω  is 

the ratio of the driving frequency (ω ) divided by resonant frequency ( nω ) and 0lZ Y  is 

the ratio of the maximum displacement of the moving element inside the generator with 

respect to the frame of the generator ( lZ ) divided by the drive amplitude ( 0Y ).  It should 

be noted that both resonant cases are equally efficient at the resonant frequency of the 

device, while the parametric-generator (CFPG) is best suited for frequencies much below 

the resonant frequency of the device.  Figure I-3 also shows that the CFPG dominates at 

low 0lZ Y  ratios.  For power scavenging devices mounted in applications where the 

driving frequency is not fixed and the drive amplitude is large, as in the case for a 

wristwatch, the best choice is obviously a CFPG. 

In order to compare various linear vibrational energy harvesters on a consistent scale, a 

new figure of merit is defined that normalizes the output power by the quantity in 

Equation (I.2) and also divides by the device volume V since this is parameter is relevant 

to the utility of a power generator.  The units of this figure of merit are 1
Volume  or 1cc− , 

where 1cc is roughly the volume of a sugar cube.  Thus, linear energy harvesters (LEH) 

can be compared with the following figure of merit ( LEHN ) 

 2 3
0   

LEH
LEH

PN
Y m Vω

=  (I.3) 

This figure of merit is proportional to the efficiency of the device divided by the volume.  

It applies to resonant and non-resonant linear energy harvesters alike. 
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I.3.b.ii.2.  Rotational Energy Harvesters 

For rotary power generators used as power scavengers, the driving force is also much 

larger than the kinetic energy converted to electrical power.  Seiko’s Kinetic power 

generator uses a counterweight to convert planar shaking motions to rotation.  While the 

same metrics as above could be applied to describe the merits of the generator, it is more 

convenient to define a figure of merit where the power produced ( REHP ) is divided by 

rotational speed squared ( 2f ) at which it is produced.  Power output on a fixed load 

resistance scales as the square of the speed when the load resistance is less than the load-

matched resistance, which is the typical mode of operation when the load resistance is 

fixed.  Again, since these devices are meant to fit into tiny applications, it is also 

necessary to divide the power generated by the volume of the generator.  This is a fair 

evaluation as long as the driving power remains significantly larger than the power 

harvested.  For rotational energy harvesters (REH) 

 2
REH

REH
PN
f V

=  (I.4) 

The units of this figure of merit are 2

Power
Frequency Volume⋅

, or more 2 1 W Hz ccμ − −  which 

is more appropriate for miniature power generators. 

I.3.b.iii.  ROTARY ELECTROMAGNETIC POWER GENERATORS 

Seiko sells roughly one million watches in its Kinetic series (2001), which are watches 

that harness kinetic energy to power a watch for humans moving in their environment.  
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They have developed a tiny electromagnetic generator, using the same physical principles 

of large-scale generators.    

 
Figure I-4 Diagram of Seiko’s Kinetic line of energy harvesting watches. 

A bottom view of the watch innards in Figure I-4 shows the rotating pendulum that the 

watch encounters.  When the Seiko watch is worn on the wrist, it experiences 

accelerations that drive the pendulum, which spins a magnet in a coil via a 1:100 gearing 

ratio.  This magnet causes alternating magnetic fields to be incident on the generator coil, 

which produces an alternating current at low voltage.  This current is rectified so it can be 

stored on the 0.33 farad capacitor, which is the energy reservoir for the timekeeping 

mechanism.  
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Figure I-5 Exploded Diagram of Seiko’s Kinetic line of energy harvesting watches. 

The exploded view of Figure I-5 allows the gearing mechanism to be seen clearly, as well 

as the other systems in the watch.  Special care is taken to ensure that the system is 

optimized, and the end result is a portable, energy harvesting device with a great deal of 

utility.  Seiko claims to produce up to 40μW with this generator.   
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Figure I-6 Lab test of Seiko’s Kinetic generator.  Speed corresponds to the  

relative rotation of the magnet to the coil.  

The plot in Figure I-6 shows the RMS power generated by a Seiko generator across a 

327Ω load resistor.  For the experiment, the gears from the assembly were removed and 

the magnet rotor (#3 in Figure I-5) was driven in place directly by an external motor from 

600RPM to 11,000RPM.  Speed was measured with a stroboscope, while voltage across 

the load resistor was measured with a Fluke true RMS multimeter.  This test measured 

the production of 45μW at 30Hz.  The volume the generator occupies is difficult to 

measure.  Using only the magnet and the coil as the generator volume, the volume is 

approximately 1cc.  Then, the figure of merit for the generator is 

2 10.05   REHN W Hz ccμ − −= .  The low power produced at low speeds is inherent in rotary 

electromagnetic generators due to winding losses and internal inductance. 
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I.3.b.iv.  LINEAR ELECTROMAGNETIC POWER GENERATORS 

Since MEMS allows for easy design of planar structures, it is no surprise that linear 

electromagnetic power generators have been well explored.  [12, 14] 

 
Figure I-7 Linear electromagnetic power generator developed by Perpetuum [15]. 

The previous linear electromagnetic power generator shown in Figure I-7 was presented 

at the PowerMEMS 2004 conference.  This device is also fabricated using 

micromachining processes [15].  This devices produces current by varying a magnetic 

field on a coil of wire.  The magnets are mounted to a resonant structure that captures 

impulses and/or driven oscillations.  The structure is tuned to resonant at 60Hz for use in 

industrial energy harvesting.   
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Figure I-8 Perpetuum’s 2-terminal power generator package [16]. 

The packaged, 2-terminal version of this power generator shown in Figure I-8 is roughly 

30 cubic centimeters, weighs 50grams, and delivers 4mW at 100Hz (see Figure I-9 for 

power curve) and an acceleration of 0.4g.  Thus, the figure of merit is 13.3 LEHN cc−= .  

 
Figure I-9 PMG0100 Evaluation Model [17]  



28 

 

I.3.b.v.  PIEZOELECTRIC POWER GENERATORS 

The most aggressive development in mechanical energy harvesting devices has used 

piezoelectric materials [5, 10, 18-24].  These materials convert a mechanical stress to an 

electrical polarization, which can then induce a current in an external circuit.  The 

piezoelectric material used is typically lead zirconate titanate (PBT) with a perovskite 

crystalline lattice.  Any piezoelectric material, such as porous electrets [25-29] or lead 

barium titanate [30], can be used providing a compatible machining process exists.  The 

ability of the material to convert mechanical force to electrical energy is limited by the 

efficiency which the piezoelectric material converts force to charge.  A typical example 

of a piezoelectric cantilever is shown in Figure I-10 [31]. 

 
Figure I-10 Piezoelectric cantilever with proof mass for converting vibrations to electricity 
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Although piezoelectric materials and transducers are well explored, novel piezoelectric 

generators have recently been presented in literature, such as the piezoelectric windmill 

presented by Priya et al. [32] in 2005. 

 
Figure I-11 Schematic for piezoelectric windmill power generator 

The generator portion of the piezoelectric windmill is depicted in Figure I-11.  The 

generator is connected to a windmill to provide rotational torque on the windmill shaft 

shown in Figure I-11.  The torque on the shaft causes the connected stoppers to bend the 

piezoelectric bimorphs, which causes electrical polarization of the bimorphs that can be 

used as electricity. 
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I.3.b.vi.  CHARGE SHUTTLE 

More recently, the coulomb force power generator (CPFG) is being realized as the best 

microscale non-resonant power generator system [33].  Simple theoretical arguments 

presented by Mitcheson et al. show that, at low amplitudes, velocity damped resonant 

generators (VDRG), such as electromagnetic power generators, produce much less power 

output than CFPGs by the ratio  

 4CFPG

VDRG

P
P

β
π

=  (I.5) 

Where β  is the breakaway factor—the fraction of the maximum acceleration that the 

mass is able to move relative to the frame.  The geometry of such a design can be seen in 

Figure I-12 

 
Figure I-12 Cross section of a charge shuttle 

This device operates cyclically by charging the mass, applying a force to move the mass 

from the bottom to the top, and finally harvesting the charge at the output which is now at 

higher potential.  This requires external circuitry as shown in Figure I-13. 
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Figure I-13 Drive circuitry for the charge shuttle. 

It is reported that this power generator produces 0.3μJ per cycle at 1Hz, 250μm 

displacement, and a mass of 0.5g.  Therefore, -173,000LEHN cc= , which is most likely a 

gross exaggeration because the total mass and volume of the device were not explicitly 

stated.  Furthermore, the power that is required to operate the circuitry is not reported, 

which is most likely much larger that the power generated. 

I.3.b.vii.  ELECTROSTATIC POWER GENERATORS 

The following two cases are variable gap electrostatic power generators that can be easily 

micromachined [34].  The first case (Figure I-14) is a typical MEMS device in that it is 

essentially 2-dimensional.  It bears strong resemblance to the comb drive electrostatic 

actuator [35] and the capacitive MEMS accelerometer [36, 37]. 



32 

 

 
Figure I-14 In-plane variable gap capacitance micromachined power generator 

 
Figure I-15 Out-of-plane variable gap capacitance micromachined power generator 

The following was reported for the variable gap generator shown in Figure I-14: power 

generated = 116μW/cc, mass assumed to be the density of silicon times the moving mass 

= 0.04g (does not take into account total device mass), frequency = 120Hz, displacement 

= 5.6μm, which yields -151,000LEHN cc= .  This calculation should be revisited when the 

total mass of the device is released. 
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I.4.  DISPLACEMENT CURRENT POWER GENERATORS 

I.4.a.  ORIGIN OF DISPLACEMENT CURRENT 

James Clerk Maxwell coined the term “displacement current” to explain the magnetic 

effects caused by time varying electric fields.  Maxwell’s generalization of Ampere’s 

Law states 

 0 0 0
EB J
t

ε μ μ∂
∇× = +

∂
 (I.6) 

where B  is the magnetic field, 0ε  is the permittivity of free space, 0μ  is the permeability 

of free space, E  is the electric field and J  is the current density.  When 0B = , equation 

(I.6) reduces to  

 0D
EJ
t

ε ∂
= −

∂
 (I.7) 

which is the mathematical definition of displacement current DJ .  

I.4.a.i.  DISPLACEMENT CURRENT IN A CAPACITOR 

Applied to a simple parallel plate air gap capacitor, this construct explains 

mathematically how current can appear to flow through the inside of a capacitor when no 

conduction path exists.   
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Assume the potential across the capacitor is initially zero, that is ( )0 0CV t −= = .  In this 

case, the electric field inside the capacitor is also zero.  Now, an external voltage source, 

SV , and current limiting resistor is applied across the capacitor plates to make an electric 

circuit.  The voltage difference across the resistor causes instantaneous current to flow 

through the resistor and into the capacitor defined by Ohm’s Law as 

 ( ) ( )S CV V t
I t

R
−

=  (I.8) 

When the current reaches the top capacitor plate, it is physically stopped because there is 

no further conduction path.  Yet, somehow, the bottom plate of the capacitor sends the 

same current back around the circuit.  So, even though no conduction path exists through 

the capacitor element, current still flows through the entire circuit.   

This effect exists because any charge q  on the top plate will create a mirror charge q−  

on the bottom plate equal in magnitude but opposite in sign. The simple visualization is 

that charge q  the bottom plate is instantaneously repelled by q  the top plate and, by 

conservation of charge, q−  is left behind.   

From Gauss’s law, any charge q  on the top plate will establish an electric field inside the 

capacitor of  

 
0

( )( )
2  

q tE t
A ε

−
=  (I.9) 
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where A  is the area of the capacitor plate.    The q−  charge on the bottom plate presents 

an additional electric field of the same magnitude in the same direction as that described 

in (I.9).  Thus, the electric field in the capacitor has changed from ( )0 0CE t −= =  to 

 ( )
0

( )
C

q tE t
A ε
−

=  (I.10) 

Charge flowing through the resistor at the rate ( ) ( )q t
I t

t
∂

=
∂

, or described as a volume 

current density into the top plate of the capacitor ( ) ( )I t
J t

A
= , creates an instantaneous 

time changing electric field inside the capacitor equal to  

 ( ) ( )
0

cE t J t
t ε

∂ −
=

∂
 (I.11) 

which is equivalent to equation (I.7).  The current into the capacitor’s top plate is ( )J t , 

the displaced current out of the bottom plate of the capacitor is ( )J t , and now described, 

and the displacement current DJ  describes a fictitious current flowing across the gap in 

the capacitor to conserve charge.  

I.4.b.  DISPLACEMENT CURRENT FOR POWER GENERATION 

The displacement current effect also applies to the current that flows out of any 

conductive plate when the electric field on that plate changes with time.  If the 

displacement current and associated voltage is large enough, an external circuit can be 
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driven by just a metal plate and an impinging time changing electric field.  In essence, a 

displacement current device can be used to generate electrical power.  When the electric 

field is provided by a permanent electric dipole, called an electret, this device is called an 

electret power generator. 

The main elements of the electret power generator are the electret, metal plates, and a 

mechanism to change the electric field on the plates.  The change in capacitance 

( )C t occurs by changing the distance between the plates ( )d t , the overlapping area of 

the capacitor ( )A t , or the permittivity of the capacitor ( )tε  

 AC
d
ε

=  (I.12) 

The electret material inside the generator stores a fixed amount of charge Q , which 

creates mirror charge on the capacitor plates.  The voltage V  of the capacitor is 

 ( ) ( )
QV t

C t
=  (I.13) 

Then, an external circuit is connected and powered by the voltage of the capacitor.  The 

external circuit, whether a light bulb or sophisticated electronics, is represented as a load 

R .  The power that the generator can supply to the load is simply  

 
2VP

R
=  (I.14) 
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I.4.b.i.  VARIABLE DISTANCE ELECTRET POWER GENERATORS 

Changing the distance between two capacitive plates changes the capacitance of the 

structure originally described in Equation (I.12) by 

 ( ) ( )2

1C t A A d dC t
t t d d t d t

ε ε∂ ∂ − ∂ −∂⎛ ⎞= = =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 (I.15) 

When some fixed charge is implanted in a thin layer of dielectric inside the capacitor, it 

will create a voltage on the top and bottom electrodes.  An external circuit can be 

connected to measure the voltage across this capacitor.   

If one of the plates is mounted such that pressure waves will cause one of the plates to 

move, this structure can then be used to measure sound waves.  This is the basic 

operating principle of an electret microphone.  This was the topic for the Ph.D. thesis of 

Wen Hsieh [38] who graduated the Caltech Micromachining Laboratory in 2000.  This 

example of fixed-charge variable capacitance devices in the Caltech Micromachining 

Laboratory provides precedence for the work in this thesis.   

The electret microphone fabricated in the Caltech Micromachining Laboratory was very 

successful.  The voltage output was sufficient for making sensitive acoustical 

measurements as a sensor device.  However, the current output of the electret microphone 

was not sufficient as a power source.   

The one point that should be made about the fixed-charge variable distance capacitor is 

that it should be possible to design the structure to generate a much larger current for the 

same energy input.  Such a power generator would be optimized to produce maximum 
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current at the frequency of largest spectral power density.  This would imply that it would 

also have a narrow frequency of interest, and probably have poor performance as a 

microphone.  This type of device was not pursued as a power generator because the 

maximum capacitance change obtained with this structure is limited to the displacement 

range a support structure could allow, which would need to be considerably large and 

flexible to compete with the following designs. 

I.4.b.ii.  VARIABLE AREA ELECTRET POWER GENERATORS 

Changing the overlapping area of a capacitor changes the capacitance describe in 

Equation (I.12).  Ignoring stray fields, capacitance changes linearly with change in area 

of the capacitor originally described in Equation (I.12) by 

 ( ) ( )C t A tA
t t d d t

ε ε∂ ∂∂ ⎛ ⎞= =⎜ ⎟∂ ∂ ∂⎝ ⎠
 (I.16) 

This linear relationship is much clearer than the microphone case.  By placing a thin, 

charged dielectric on the stationary electrode, a mirror charge is induced.  When the 

overlapping area is zero, all of this charge can be said to reside on the stationary 

electrode.  When the moving electrode overlaps the stationary electrode, charge is induce 

in it too.  The voltage of the two plates will change in time, and this is used to drive an 

external circuit. 
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I.4.b.iii.  VARIABLE PERMITTIVITY ELECTRET POWER GENERATORS 

Finally, the capacitance of Equation (I.12) can be varied by changing the permittivity of a 

capacitor’s air gap.  Ignoring stray fields, capacitance changes linearly with change in 

permittivity of the capacitor originally described in Equation (I.12) by 

 ( ) ( )C t tA A
t t d d t

εε∂ ∂∂ ⎛ ⎞= =⎜ ⎟∂ ∂ ∂⎝ ⎠
 (I.17) 

This linear relationship is also fairly clear.  A capacitor with an air gap has a changing 

permittivity caused by the insertion of another dielectric into the capacitor with time.  

Mirror charge is induced in the electrodes by placing a thin, charged dielectric inside this 

capacitor without taking up a significant portion of the air gap.  When the air gap is 

completely empty, the capacitor will have an induced voltage of  

 0
0

QdV
Aε

=  (I.18) 

When a dielectric material occupies the gap completely, the voltage will be described by 

(I.19) 

 
02 l

QdV
k Aλ ε

=  (I.19) 

 where 0lk ε  is the permittivity of the introduced dielectric and 2
λ  represents half a period 

of cyclic motion.  The AC voltage of this generator is will then have an open-circuit 

peak-to-peak voltage of  
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QdV
A kε
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 (I.20) 

The voltage of the two plates will change in time proportionally to the permittivity of the 

air gap, and this is used to drive an external circuit. 

To extend the ability to generate electricity, two novel micromachined devices for 

converting mechanical energy into electrical energy using electric fields are presented in 

this thesis.   

I.5.  PHYSICAL SCALING 

Micro electro mechanical systems (MEMS) is the term used to describe devices whose 

characteristic dimension is roughly between 0.1x10-6 meters and 100x10-6 meters.  

“Micro” is the System International (SI) prefix meaning 1 x10-6, and is often written as 

1μ, and for measuring distance as 1 μm.  Since the characteristic dimension of a device is 

not always obvious, an alternate denotation for the term MEMS is: any device fabricated 

using microscale processes; typically such processes are complimentary to or were 

developed for the production of integrated circuits (IC).  Both definitions prove useful 

and are described in more detail below. 

I.5.a.  PHYSICS-BASED DEFINITION OF MEMS 

Fundamental physics describes the world in terms of dimensions, fields, forces, energies, 

masses, times, etc.  The interactions of these quantities rarely scale linearly.  Often, 

different types of interactions become dominant depending on the magnitude of the 
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quantities of a system.  By knowing which types of interactions dominate, simplifying 

assumptions can be made to facilitate calculations. 

Engineering advances often come in quantities of length: when all other quantities are 

held constant, increasing or decreasing the lengths in a design often increase the effect of 

ignored terms in nonlinear fashion, which soon produces undesirable effects.  To 

engineers, the Tacoma Narrows bridge is a tragic example of this effect.   

For the layman, it is well known that water runs downhill.  However, a droplet of water 

tossed at wall may stick and appear to defy gravity, whereas a gallon of water tossed at a 

wall will not.  Effects such as surface energy, gravity, temperature, density, and others 

will have an influence on what size of droplet will stick, but for everyday conditions, the 

water will not move if the ratio between the volume and the surface area is significantly 

below a certain quantity.  Arbitrarily, this quantity is called λ , which is related to the 

ratio of the droplet volume to its surface area, as described in Equation (I.21). 
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π
= ∝  (I.21) 

Conversely, the water rolls downhill if the ratio λ  is significantly above some amount.  It 

can then be said that in ordinary conditions, λ  describes the tendency of a droplet to roll 

down a wall.  Formally, λ  is related to inertial energy divided by surface energy.  

Sinceλ  has units of length, λ  is called the “characteristic dimension.”  If the 

characteristic dimension is greater than a certain amount, the physics of motion will 

apply.  If the characteristic dimension is much less that this amount, then surface energy 



42 

 

will dominate the droplet.  It is not a coincidence that the simple number for determining 

which physical mechanism will dominate a droplet thrown at a wall is a unit of length.   

A device can be said to be a micro device if the operating principles require it to have a 

characteristic dimension less than 100x10-6 meters.  Similarly, nano devices operate on 

physical principles that become significant below 100x10-9 meters.  Micro devices are 

used to exploit a wide variety of physics, but the overwhelming majority of devices take 

advantage of mechanical or electrical gains at the microscale, which leads to the term 

micro electro mechanical systems.  The terms “MEMS device” and “micro device” are 

used interchangeably to describe devices that exploit physics of the micro world.  

I.5.b.  PROCESS-BASED DEFINITION OF MEMS 

An alternate derivation of the term “MEMS” can be traced back to the founders of the 

MEMS field, who created layered 3-dimensional devices using additive and subtractive 

processes that were commonly available for creating micro-scale integrated circuits.  

Examples of additive processes are evaporation coating of surfaces with metals or 

polymers and spin-coating liquids onto flat surfaces.  An example of subtractive process 

would be using heated potassium hydroxide to etch into a silicon region.  It is because 

additive and subtractive processes are commonly measured in microns added or removed, 

and the dimensions of surface length perpendicular to these processes, that the term 

“micro” is applied to the final system regardless of the physics of device operation. 
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Since MEMS is a process and materials driven field, the definition based on the scale of 

the process is just as valid as the definition based on physical interactions, and the term is 

used broadly.  Often, both definitions apply to the same device.   

I.5.c.  APPLYING MEMS 

Many MEMS devices are designed to interact with the larger scale world.  For instance, a 

MEMS accelerometer mounted in a vehicle can determine when an impact occurs and to 

what magnitude.  The key to this interaction is proper mounting of the accelerometer to 

the frame of the vehicle so that physical accelerations are transmitted properly.  The 

transferal of large scale mechanical force to a small scale electric field is the operating 

principle of this device. 

MEMS are also the key to observing nanoscale phenomena.  An atomic force microscope 

utilizes a MEMS cantilever with a MEMS-process sharpened tip to trace over and plot 

the three-dimensional world at 10-9 meter (nearly atomic scale) precision.  An SEM uses a 

microscale aperture as a starting point in controlling an electron beam that can detect 

features with nano precision.  

MEMS devices and processes allow new methods of interacting with the world.  The 

Caltech Micromachining Laboratory has all the tools needed build novel devices that 

exploit the physics of the microscale.  
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I.6.  FUNDING  

To understand the origin of this work, it is necessary to explain the context and goals for 

which it is performed.  The project below provides funding in an effort to design and 

build a more efficient device to convert chemical energy to electricity for use in remote 

locations.  The work described thereafter in this thesis can be considered an independent 

system.  

This project began with a proposal to the United States Department of Defense through 

the Defense Agency Research Projects Administration (DARPA) to build a Pulsed 

Chemical-Electret Generator (PCEG), which is a novel MEMS-based electrical power 

generator consisting of a pulsed chemical-thermal reactor (PCTR) that uses non-

pressurized liquid hydrocarbon fuel with no moving parts and an electret generator (EG) 

capable of providing >kV, >100mW power output.  The following description of the 

High-Voltage Micro Power Generation, Chemical Thermal Reactor, Electret Generator is 

nearly verbatim from the original Technical Proposal for BAA 01-09 to explain the 

original motivation behind this project. 
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Figure I-16 Pulsed Chemical-Electret Generator system concept 

Integrated with many innovative MEMS devices, this unique Pulsed Chemical-Electret 

Generator can directly power micro actuators made of piezoelectric or electrostrictive 

materials, which are most efficiently driven in the kilovolt range.  The proposed micro 

power generator (MPG) will charge small energy storage devices (super-capacitors and 

or batteries) intermittently for high power electrical loads and to provide low emission 

signatures during critical operational periods.  Photostructurable ceramic glass material 

will be used for fabricating high efficiency 3D (non-extruded shape) turbines with high 
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temperature capabilities.   In addition to thermal management, chemical species transport 

and reactions will be numerically simulated for design optimization. With the following 

innovative claims, a unique high voltage MPG will be developed for powering MEMS 

actuators and sensors: 

1. No moving parts (neither pumps nor valves) and non-pressurized liquid fueled (no 

pressurized lines and tanks) MEMS pulsed chemical-thermal reactor (PCTR) for 

high efficiency chemical-to-kinetic energy conversion. 

2. Thermal management through fuel evaporation will allow silicon-based materials 

to be used instead of exotic and process-limited materials such as silicon carbide 

(SiC).  

3. Efficient 3D turbines for kinetic energy coupling from the PCTR reactor jet 

streams to the electret generator.  

4. A new electret generator for delivering kV range output based on a newly 

developed thin-film Teflon® electret technology. 

5. Photostructurable ceramic glass for fabricating high efficiency 3D turbine and 

high aspect ratio MEMS. 

6. Magnetic coupling between turbine and power generator without solid coupling to 

allow sealing the high rotational velocity generator in vacuum. A 50% energy 

saving can be achieved by eliminating air drag. 
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7. Numerical simulations of the pulsating flow-thermal-  reacting fields will be used 

for system and component optimization 

The proposed PCTR is a pulsed combustor scalable in size from millimeters-to-

centimeters designed to take full advantage of scaling laws to enhance operating 

efficiency and minimize size (there are no real direct macro world counterpart).  The 

heat generated by combustion will evaporate liquid fuel (and oxidizer if not in natural 

aspirating mode) for the next combustion cycle.  The heat-of-vaporization of the fuel is 

used to control combustion chamber temperature.  This novel PCTR is more than a 

concept; we have already fabricated and performed preliminary tests on a few simple 

prototypes.  The photograph below shows pulsed combustion of a prototype symmetric 

PCTR in natural aspirating mode at three different phase angles during a pulse cycle.  

The combustion channel was 8 x 4.5 x 38 mm. Although many technical challenges still 

exist, feasibility has been demonstrated.  In our view, the proposed PCTR offers the 

benefits of no moving parts (ie, fuel pumps and valves), non-pressurized liquid fuel 

storage (no pressurized lines, more valves, and pressurized tanks), and the ability to burn 

widely-available non-processed hydrocarbon fuels (ie, methanol, JP, diesel, and gasoline) 

while taking full advantage of scaling laws as compared to the current state-of-the-art 

MPGs. 
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Figure I-17 Pulsed combustion of a prototype symmetric PCTR in natural  

aspirating mode at three different phase angles 

High-speed jet streams exhausted from the end of the reactor will impinge on turbines to 

convert linear momentum into rotational motion.  A high-voltage electret generator or 

low-voltage electromagnetic generator (EMG) attached to the turbine axis can provide 

electric power over a wide voltage range. We propose to develop a totally new type of 

electret generator.  EGs have many obvious advantages over EMGs.  First, EGs are 

fundamentally high-voltage, low-current power generation devices and were not available 

in the past for high-voltage applications such as piezoelectric transducers and 

electrostatic/electrostrictive MEMS. Second, with the same power delivery and form 

factor, the proposed EGs will be structurally simpler and much lighter than conventional 

EMGs.  EGs are capacitive machines while EMGs are inductive devices, thus EGs do not 

require heavy and inefficient coil windings found in EMGs.  Also, power leads that are 

needed in capacitive EGs can be thin-film metals on lightweight non-conductive 

substrates such as plastics.  The electret for the proposed EG is a newly-available thin-
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film Teflon® electret, while EMGs will require heavy permanent magnets. Third, the 

proposed EGs are fundamentally more efficient than the EMGs due to their simplicity 

and low mass.  The total energy loss in an EMG includes mechanical loss (friction from 

inertial loads on bearings/commutators and aerodynamic viscous dissipation) and 

electrical loss (resistive loss in the coil windings). Even if the mechanical energy loss 

(bearings and aerodynamics) of the proposed EG is assumed to be the same as in EMGs, 

EGs are more efficient than EMGs because they have minimal resistive losses; they have 

no coil windings.  Serious efforts in developing electret generators in the past never took 

off mainly because of the lack of good electret technology.  Recently, our group has 

successfully developed a new thin-film Teflon® electret technology based on the new 

DuPont spin-on Teflon® (AF Series) that became available only a few years ago.  In fact, 

we have demonstrated a working, high-sensitivity electret microphone out of this 

technology.  As a result, the timing is perfect for using the indispensable long-life-time, 

high-charge-density electret technology for the proposed power generator.  

Photocerams are proposed for fabricating the required high-efficiency, high-temperature 

3D turbine blades.  Photocerams can be patterned using masks with ultraviolet light or by 

using laser direct-write processing.  The latter approach enables three dimensional (3D) 

patterning with resolution approaching 10 microns.  Photocerams have zero porosity, 

good abraded flexural strength (~ 150Mpa) and are inert to reactive gas chemistry.   In 

general, ceramic materials are poor thermal conductors (i.e. thermal conductivity for 

Foturan® glass/ceramic ~1.3- 2.7 W/m.K versus single crystal silicon with 157 W/m.K).  

Our team member has developed a laser direct-write patterning technique for 
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microfabrication of true 3D structures in photocerams.  Their approach utilizes the best 

aspects of direct-write and batch-processing techniques.   The technique uses a merged-

process approach whereby the direct-write step is only used to impregnate the 3D image 

(3D turbine blades) via a volumetric patterning step.  Key aspects are that the resulting 

microstructures can be either left in a semi-ceramic state or converted to a full ceramic 

state. The following figure shows an array of semi-ceramic combustion chambers (left 

picture), two interconnected fluidic microcavities converted to full ceramic state (middle 

picture) and a coupon where only the center portion has been converted to a full ceramic 

state (right picture).    

 
Figure I-18 Semi-ceramic 

combustion chambers 

Figure I-19 Two interconnected 

fluidic microcavities. 

 
Figure I-20 Coupon. 

We have also refined a process for 3D laser direct-write processing of silicon.   The 

process uses a laser-assisted chlorine etch chemistry to remove material at rates of 

~100,000 cubic micrometers per second. We propose to use the novel 3D silicon 

processing capability to fabricate efficient MPG turbines and as a selective area post-

process tool to “tailor” microstructure geometries for enhancing MPG efficiency.      

The proposed chemical power conversion system uses chemical combustion, heat 

transfer, fluid dynamics and electrostatics.  In addition to imbedded MEMS temperature 
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and pressure sensors for combustion diagnostics and studies, a computational virtual 

prototyping tool can provide insight into system operation and aid in the design 

optimization. We propose to adapt existing multi-disciplinary simulation tools, CFD-

ACE+, for computation design and optimization of the complete power generation 

system.  

 
Figure I-21 CFD simulation of a turbine 

CFD-ACE+ is an advanced multi-physics, multi-scale computational package, and it has 

all the essential modules for combustion, combustion instability, turbo machinery, 

electrostatics and electromagnetism.  Chemical power conversion, turbine and electret 

generator operation can be modeled with these modules.  The code can also provide for 

design optimization.  In this study, the existing combustion module will be modified for 

pulsed combustion with special emphasis on thermal inertia and hence operational 

frequency. Maximum amplitude and frequency of temperature variation can be found 

through this process to determine capability of the present concept.  From this, energy 

  Inlet 

Exhaust 
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utilization and efficiency will be estimated. Comparison and validation against 

experimental data will be made for the pulsed combustion model; the computed thermal 

fields will be compared to experimental data.  A systematic parametric study will be 

carried out focusing on system geometry, arrangement of combustor stabilizer, fuel 

efficiency, effective ventilation, etc. CFD analysis will also be used for micro-turbo-

generator design.  Combustor nozzle, turbine blade, and turbine geometry will be 

optimized by the CFD code for efficient conversion of jet flow energy into rotational 

kinetic energy.  Finally, even though the electret generator is not a fluid or thermal 

device, its performance will be analyzed by the existing electrostatics capability in CFD-

ACE+. 

Our unique pulsed combustor will energize a novel high-voltage power generator for 

MEMS sensor and actuator applications.  This innovative MPG consists of four major 

components and will be performed by four groups which have established records in 

successfully developing numerous MEMS components and systems.  

Pulsed chemical-thermal reactor – UCLA  

Electret high voltage generator – Caltech 

3-D laser fabrication – Aerospace Cooperation 

Full system/components simulation – CFDRC 
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While working on rotational power generation, the concept for a linear power generation 

system began to take form.   

 
Figure I-22 Proposed new design for pulsed combustor thermal resonator and shaker generator system.  

The above cartoon (Figure I-22) is the current concept of a system to generate power 

from linear vibration. In this case, the PCTR drives a liquid rotor electret generator 

directly without the use of a turbine.  This system is much simpler that the previously 

described rotational system, and this new concept may prove to have superior efficiency.   

Future work will attempt to integrate the electret power generators covered in this work 

with the PCTR produced by UCLA.  For the purposes of this thesis, the system 

integration work not covered. 
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C H A P T E R  2  

II.  ELECTRETS 

“Electrets” are insulating materials that exhibit a permanent net electrical dipole moment.  

Figure II-1 shows the magnetic field from the familiar bar-magnet and Figure II-2 depicts 

the field generated from what could be termed a “bar-electret.”  Both exhibit a permanent 

dipole field, where field lines emanate from the top and end at the bottom of the bars.  

While many parallels can be drawn between the two cases, some relationships are 

misleading while others are completely false.  The magnetic field shown in Figure II-1 

has approximately the same shape as the electric potential shown in Figure II-2, however, 

the electric field is actually shown in Figure II-3. 

Figure II-1 Contour plot of magnetic field from a bar 

electret. 

 

Figure II-2 Contour plot of electric potential from a 

sheet electret 
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Figure II-3 Streamline plot of electric field from a sheet electret 

The magnet and the electret are established by effective sinks and sources, called north 

and south poles for magnets and positive and negative poles for electrets.  These sinks 

and sources cause a disruption of the neutrality of space and they interact with susceptible 

materials.  In both cases, like poles will repel each other while opposite poles will attract.  

A material such as iron that exhibits characteristic ferromagnetism, can be attracted to 

magnetic fields.  Iron atoms, which individually may initially be magnetically neutral, are 

influenced by a magnetic field and spontaneously align themselves to the field.  Once the 

iron is thus polarized, there is an attractive force between the magnet and the iron that 

depends on the strength of the dipoles.   

Water molecules have permanent electric dipole moments caused by the polarized 

covalent bond between oxygen and hydrogen.  In this case, the oxygen atom strongly 

attracts an electron from each hydrogen atom, which results in a net positive space charge 

on the hydrogen atoms and a net negative charge on the oxygen.  This charge separation 

creates a net electric dipole.   
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II.1.  ELECTRET CLASSIFICATION 

Electret materials exhibit an electric dipole through one or both of the following physical 

mechanisms: polarization and charge storage.  In this thesis, the latter of these effects is 

exploited for power generation because trapped charge electrets have a longer lifetime 

and larger electric dipole moment than purely polarized electrets. 

 
Figure II-4 Heterocharge by polarization 

 
Figure II-5 Homocharge electret with implanted 

electrons 

 

II.1.a.  HETEROCHARGE ELECTRETS 

When electrically polar molecules are present in the bulk of the electret and they align to 

produce a net electric dipole moment, the electret is said to be polarized.  Since the dipole 

has both positive and negative charges, by definition, the electret is termed 

“heterocharged.”  This situation can be produced by heating a dielectric and cooling it in 

an electric field, or it can be the result of implanting positive and negatively charged 

particles in opposites of a dielectric.  
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II.1.b.  HOMOCHARGE ELECTRETS 

Homocharge electrets, as might be expected, involve only one type of charged particle.  

These charged particles or ions are trapped and stored in the dielectric.  It is vital that 

deep charge traps are available for long-term storage and that the material is highly 

insulating to prevent charge migration over time [28, 39-41].  Figure II-5 shows electrons 

implanted into the bulk of the dielectric just below the top surface.  Figure II-2 and 

Figure II-3 were both simulated in FemLab by putting a surface charge on the top of the 

materials and grounding the underside.   
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II.2.  CHARGING METHODS 

There are few different methods to create an electret, but the discussion will focus on 

methods that are relevant to this thesis. 

II.2.a.  TRIBOELECTRIC 

It was noticed that Teflon chips were slightly charged after dicing.  A simple experiment 

confirmed the charging is due to a phenomenon known as triboelectricity, which involves 

charge transfer from a liquid to a solid.  In the experiment, a Teflon chip with a floating 

metal layer and a sealing Teflon layer was run under deionized water for 30 seconds (The 

floating metal layer electret design and process described in Section II.4.a. ). The sample 

was then measured for surface charge density distribution.  This measurement takes 

approximately 10 minutes to perform by hand.  Since most of the charge deposited by the 

triboelectric effect resides on the surface, near-complete decay in charge magnitudes 

were observed on a timescale less than a few hours.  The charge density in Figure II-6 

clearly shows the 4-pole pattern.  Future studies should be considered to determine 

whether this charge can be driven-in into the Teflon by applying an electric field during 

or after triboelectric charging. 



59 

 

 
Figure II-6.Triboelectrically charged Teflon chip 

The resolution of Figure II-6 is not adequate to discern fine details.  The time necessary 

to make this surface scan by hand is 10 minutes.  Doubling the resolution for this scan 

would take 40 minutes to complete, and such a long and tedious scan is sure to increase 

operator error.  A simple solution to this problem is to add a computer controlled x-y 

stage and read in the voltages using a GPIB device, which has since been implemented.  

II.2.b.  BACK LIGHTED THYRATRON FOR ELECTRON BEAM IMPLANTATION 

The back lighted thyratron (BLT) consists of a vacuum chamber partially pressurized 

with helium gas and a high-voltage copper thyratron assembly driven by an external UV 

flashlamp [42].  The thyratron assembly, also called a psuedospark device in literature 

[43], consists of two capacitor plates separated by an insulator with a hole through the 

center of the assembly.  By applying 1-25kV across the capacitor plates, a large electric 
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field builds up inside the empty region.  The field can be kept from breaking down on its 

own by choosing proper voltages and pressures in accordance with the Paschen curve.  

The proper operation point is at a helium pressure of 100-600mTorr and a voltage of 1-

25kV.  

When the thyratron is at the proper voltage and pressure, the UV flashlamp is pulsed, 

causing the copper inside the assembly produces electrons via the photoelectric effect.  

These electrons cause an avalanche effect as they are accelerated towards ground, 

creating a high density pocket of electrons.  Once the pocket of electrons escapes the 

thyratron region, the electric field is no longer sufficient to maintain the avalanche.  The 

process is repeatable in the time it takes to recharge the flashlamp, about 5 seconds.  The 

result is a controlled, high density, pulsed, electron beam.   

Care must be taken such that the applied voltage for a given helium concentration does 

not break down and generate plasma on its own.  Although the majority of electrons 

produced by continuous plasma do not have significant electron implantation energy, a 

large transient pulse is generated at the start which is undesirable because the electron 

dose cannot be controlled.  Implanting more electrons into the Teflon causes electric field 

breakdown inside the bulk of the material, which leads to lower total charge densities. 

The pressure-voltage relationship for self-sparked and induced breakdown form a set of 

Paschen curves.  Between the two curves is the desirable operating range of the BLT, 

roughly centered on 430 mTorr and 11kV. 
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The high density pocket of electrons formed by the psuedospark forms a pulsed beam that 

is accelerated towards the ground plane.  The beam spreads as it travels through space 

due to electron-electron repulsion.  The cross-section of the electron beam is captured by 

a Teflon dielectric placed on the ground plane, which records the spatial distribution of 

charge. Figure II-7 is a plot of the spatial charge density, which appears as a 2-D 

Gaussian in the transverse directions.  At higher voltages, the Gaussian is concentrated 

and the electrons have more kinetic energy. 

 

 
Figure II-7 Charge density of implanted Teflon using the back lighted thyratron 
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The use of a BLT as an electron source is unique to the Caltech Micromachining 

Laboratory.  It is utilized because of the high density of electrons, the speed of the 

electron implantation process, and the large acceleration voltage that allows electrons to 

be stored in deep traps where they will be stable for hundreds of years.  Useful theoretical 

development on the lifetime of implanted charge can be found elsewhere[44]. 

Also critical to the storage of charge is the electron implantation depth.  The electrons 

must be located within the bulk of the dielectric material, or else they can easily be lost to 

surface conduction and humidity.  

 
Figure II-8 Mean charge depth for corona charged FEP Teflon 

The electron implantation depth can be estimated by Monte Carlo simulation [45-49].  

Figure II-8 was derived by the aluminum range divided through by the densities of the 

polymers.  This is very helpful for shallow electron implantation depths because depth 

sounding techniques do no have sufficient resolution to take the necessary measurements. 
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II.3.  MEASUREMENT TECHNIQUES 

To know how strong an electret is, the field that emanates from the material must be 

quantified.  Quantifying the electric field allows for calculation of the implanted charge, 

which is the physical source of the electric dipole.  

II.3.a.  CHARGE DENSITY 

Almost every method to measure the charge within an electret begins by placing the 

electret on a ground plane and then measuring the ground referenced voltage induced on 

a probe above the electret surface.   

The electric field above or below an infinite, two-dimensional plane with uniform surface 

charge density 2
Coulomb  meterσ ⎡ ⎤
⎢ ⎥⎣ ⎦

 surrounded by a dielectric of permittivity  

0
Farad  meterdielectrick ε ⎡ ⎤
⎣ ⎦  can be found using Gauss’ Law to be 

 
02  dielectric

E
k

σ
ε

=  (II.1) 

When this charge plane is placed a distance d  above an infinite ground plane, the voltage 

of the charged plane is simply  

 
02  dielectric

V d
k

σ
ε

=  (II.2) 

A probe placed on or above the electret surface will experience the electric field due to 

charge implanted in an electric and/or due to polarization of the electret.  Subsequently, a 
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voltage will appear on that probe.  It is commonly assumed that the charge implanted in 

the electret resides on the top surface of a dielectric of thickness τ , so that the implanted 

charge density can be calculated by rearranging Equation (II.2) to get 

 02  dielectricV k εσ
τ

=  (II.3) 

Charge densities are calculated by taking surface voltage measurements with a Monroe 

Electronics isoprobe Model 244 with a high resolution 1024AEH probe.  The probe is 

mounted on an x-y-z stage to allow precise measurements of the effective surface charge.  

 
Figure II-9 Isoprobe mounted on X-Y micropositioner 

Minimum observed resolution in x and in y was 254μm, although the resolution of the 

stage was 25.4μm in x-axis and 10μm in the y-axis.  The rotary electret generator that is 

explained in Chapter 3 relies on an electric field that is patterned in the x-y plane, and 
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therefore the effective surface charge densities in x-y only need to be defined the 

dielectric thickness and the voltage of the surface.  Making an infinite plane 

approximation, the isoprobe is sufficient for quantifying the charge implanted. 

II.3.a.i.    ERROR IN DEPTH OF CHARGE 

It is important to note that the distance between the charge layer and the ground plane 

must be assumed.  Figure II-8 shows that electrons implanted into an electret with an 

energy of 10keV will penetrate to an average depth of roughly 1μm.  Without taking this 

into account, using τ =100μm instead of 99μm will produce an error in charge density of 

roughly 1%.  However, the calculated charge is lower by 25% for an electret with 

τ =5μm and a charge layer that is 1μm below the surface.   

The measurement of depth of the implanted charge represents a critical obstacle in 

measuring charge densities accurately.  However, the resolution of charge sounding 

techniques is 1μm, which is not precise enough to locate charge implanted with 10keV 

energy.   

II.3.a.ii.  LATERAL RESOLUTION OF CHARGE 

Assuming the implanted charge density can be approximated to a single depth, the 

patterned electric field from the electrets rarely extend laterally enough, as evidenced by 

Figure II-6 and Figure II-7, to satisfy the infinite plane assumption used to derive 

Equation (II.1).   
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Figure II-10 Charge density measurement used to determine minimum distance between data points. 

The variation of voltage over the surfaces shown in Figure II-6 and Figure II-7 begs the 

question, “What is the lateral resolution of the isoprobe?”  The lateral resolution is 

defined by the spot size of the tool, which geometrically depends on the height above the 

surface during the measurement and the physical aperture of the probe.  By taking 

voltage measurements over the surface every 100μm in the X-axis and 250μm in the Y-

axis, a detailed plot of the surface voltage can be made.   
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Standard Deviation vs. Spacing of measurements
Average Charge Density vs. Spacing of measurements
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Figure II-11 Average charge density and standard deviation when dropping data points from dataset used to 

produce Figure II-10. 

By statistically comparing neighboring data points from the scan of Figure II-10, it was 

determined that a measurement spacing of 1mm would allow both average measurement 

of charge and high contrast as shown in Figure II-12. 

II.3.b.  DEPTH SOUNDING TECHNIQUES 

Laser induced pressure pulses and thermal pulses are often used to measure the depth of 

charge distributions in electrets.  Recently, better engineering techniques allowed 

Mellinger et al. to produce three-dimensional measurements of space charge with vertical 

resolution of 0.5μm and lateral resolution as small as 38μm [50].    
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Figure II-13 Polarization map of a 11 µm thick PVDF film poled with a T-shaped electrode. At z=1μm (top 

graph), the polarization is significantly lower than in the bulk. The arrow indicates the direction of the high-

resolution scan [ibid].   

 

Their measurement of a 7mm x 7mm electret sample using this method and lowering 

lateral resolution to 200μm takes 3.5hours to complete.  This may prove to be a nice tool 

to evaluate the characteristics of an electron implantation beam or, if the beam is already 

well characterized, a tool to evaluate different electret materials and how pre- and post-

processing affects electrets. 
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II.4.  UNIFORMITY 

The power generators that will be described rely on a large electric field to generate 

power. When the back lighted thyratron implants change in a spatial Gaussian 

distribution, steps must be taken to produce a more uniform distribution with large 

electric field.  After attempting some simple beam optics, a second idea came to mind 

that uses the insight gained from the Monte Carlo graph in Figure II-8. 

II.4.a.  FLOATING METAL LAYER ELECTRET 

Electron beam implantation is a well-studied method for implanting electrons within 

dielectrics.  Beam writing can be performed by raster scanning over a dielectric; it takes 

considerable time to implant a sufficient number of electrons while occupying an 

expensive machine for a menial task using this method.  In contrast, a BLT provides a 

pulsed electron source with very large electron doses within ~100ns. Electron 

implantation with the BLT produces a Gaussian distribution over the surface of the 

electret, as in Figure II-7, which is not desirable for providing a uniform electret.  To 

alleviate this problem, a metal layer is deposited on top of a thick dielectric layer, 

patterned to be electrically floating, and then sealed with a thin dielectric layer [51].  The 

floating metal layer provides a reference voltage and therefore an electric field non-

uniformity of less than 1% of the surface as seen in  

Figure II-14.  The electrically floating metal layer is patterned into a circle.  Charge 

outside the metal circle is approximately equal to the Gaussian case of Figure II-7. 
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Figure II-14 Charge implanted in a chip with floating metal layer.   

II.4.a.i.  FLOATING METAL LAYER PROCESS 

The floating metal layer electret is an entirely new structure, invented and implemented 

for this thesis.  The typical process is to thermally evaporate a 500Å layer of aluminum 

on top of a 4μm to 10μm thick dielectric layer of Teflon AF, pattern the metal to be 

electrically floating, and then seal the metal with a 400nm thin dielectric layer of Teflon 

AF.  After the final bake of the top layer of Teflon AF, charge can be implanted as 

previously described. 
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Step 1. Spin thick Teflon AF layer on metallized wafer and bake fully 

 
Step 2. Evaporate 500Å aluminum on top of thick Teflon 

 
Step 3. Spin thin photoresist on top of aluminum layer, develop, etch aluminum 

 
Step 4. Remove photoresist with O2 plasma, spin 400nm thin sealing layer of Teflon AF 

Table II-1 Process flow for floating metal layer electret 

Some difficulties of this process are stress between layers and catastrophic breakdown 

through the dielectric.  It may be possible to fix the first problem with the second.  A 

catastrophic breakdown from the floating metal layer to ground can cause too much 

current to flow in plane within the floating metal layer.  When the metal is cracked, the 

rush of charge may burn up thin sections of metal, which would prevent further charge 

decay towards ground.  Lower surface potentials were consistently observed in non-

cracked layers than in cracked layers after electron implantation. 
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II.5.  CONCLUSIONS 

Previous work in charging micromachined electrets was improved for uniformity by the 

micromachined floating metal electret.  Spatial resolution of charge density was realized 

by use of a 2-axis X-Y stage with Z-adjustment for use with the isoprobe, which was a 

necessary improvement over past techniques due to the large area that must be charged 

and the variation that existed over the area.  Process was also extended to include thicker 

electret materials, which allows for higher surface voltages.   
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C H A P T E R  3  

III.  VARIABLE AREA ROTATIONAL ELECTRET POWER 

GENERATOR 

Knowing that changing the overlapping area of a capacitor can cause a displacement 

current, the MEMS toolbox is searched for a method to solve a problem that has not been 

solved before.  The goal is to efficiently generate power using only electrostatics.   

III.1.  INTRODUCTION 

Electret generators (EG) are a relatively undeveloped class of power generators.  An 

electret generator differs from an electromagnetic generator in that the electromotive 

force is purely electrostatic with no use of magnetic fields.  An electret generator also 

differs from a purely electrostatic generator, sometimes called a charge pump, in that no 

control circuitry is needed to provide an initial electric field or accumulation of electrons 

on the charge shuttle of the purely electrostatic generator.  A third class of electrostatic 

power generator uses a temporarily induced dipole moment in a dielectric, which is 

similar to an alternator in that both require power to set up a temporary field that is 

subsequently used for power generation.  The main advantages that can be exploited in 

using an electret are that the electric field is more practical and useful on the microscale 

than the magnetic field, the processing of electrets is compatible with CMOS technology 

in contrast to magnets, and the permanent dipole of an electret eliminates any overhead 

required by other devices to generate power.  
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III.1.a.  RELATED WORKS 

Rotational electret power generator theory and experiment was first reported by 

Jefimenko [52] and later refined by Tada [53], although Sessler [45] suggests that 

concept may go back to Nazarov in 1954 [54].  A crude, macro-scale electret generator 

with a radius of 45mm was studied by Tada [55].  Maximum reported power output from 

Tada’s (non-micro) electret generator was an uninspiring 1.02mW, which does not 

compare favorably with electromagnetic generators of similar scale.   

 
Figure III-1 First electret power generator. Tada (1992) 

The key to increasing power output of this technology is better precision, which 

micromachining excels at producing.  An optimized micromachined power generator can 

produce power much greater than 10mW using considerably smaller overall device 

dimensions than the 90mm diameter device previously mentioned.  However, 

micromachining requires a compatible electret technology and development of a full 

process flow to build the entire device.   
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III.1.b.  MICROMACHINING ELECTRETS 

As an electret, Teflon can contain charge densities of -5x10-4 C/m2 with a theoretical 

lifetime of hundreds of years (supported by accelerated testing) [44].  Previous work on 

micro electret microphones in the Caltech Micromachining Laboratory used Teflon AF 

1601-S because it is a spin-on dielectric compatible with MEMS process with good 

charge storage characteristics.  For power generators, processing capabilities were 

extended to allow for multiple spins of this material and also patterning using photoresist 

and oxygen plasma.   

Once Teflon is deposited and patterned, it must undergo a polarization or charge 

implantation process to become an electret.  Multiple methods exist to give the Teflon a 

dipole moment as explained in Chapter 2.  Here, a back lighted thyratron (BLT) [42] is 

utilized because of the high density of electrons, the speed of the implantation process, 

and the large acceleration voltage that allows electrons to be stored in deep traps where 

they will be stable for hundreds of years. 
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III.2.  THEORETICAL DEVELOPMENT 

The theories of Jefimenko and Tada are more complex than necessary for this problem.  

A more practical linearized theory can easily be derived as explained below. 

Beginning with the infinite plane approximation, which assumes that the width of the 

electrodes is large compared to the distance between them, a linearized theory is derived 

to describe a rotational electret power generator that acts as a fixed-charge, variable 

capacitance device.  The geometry used in this derivation is that of Figure III-2 and 

Figure III-3. 

 
Figure III-2. Schematic of electret generator (cross-section view). 
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Figure III-3. Perspective view of electret generator showing a 4-pole rotor and stator. 

Charge is assumed to exist just below the surface of the Teflon with a uniform spatial 

density σ .  ( )TeflonQ t  is the charge implanted into the Teflon and only residing in the 

capacitor configuration defined by the overlapping area of the top and bottom plates.  

Therefore,  

 ( ) ( ) TeflonQ t A tσ=  (III.1) 

where ( )A t  is the area of the overlapping top and bottom plates.  The area function will 

not be defined at this point to keep the derivation perfectly generalizable for different 

geometries, which has already proven useful for the seismic electret generator [56]. 
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Conservation of charge in the dotted region of Figure III-2 implies 

 1 2( ) ( ) ( )TeflonQ t Q t Q t= +  (III.2) 

Then, 1( )Q t  and 2 ( )Q t  are the induced mirror charges on the top and bottom plate due to 

the charge implanted in the Teflon.  

The equivalent circuit model of Figure III-4 is derived from the conceptual model of 

Figure III-2.   

 
Figure III-4 Equivalent circuit for variable area electret power generator. 
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The capacitance of the overlapping capacitors is defined by  

 0
1( ) ( )teflonk

C t A t
d
ε

=  (III.3) 

 0
2 ( ) ( )C t A t

g
ε

=  (III.4) 

illustrates how Kirchhoff’s Voltage Law can be used to solve for the output voltage of the 

generator 

 1 2

1 2

( ) ( )( )
( ) ( )

Q t Q tV t
C t C t
−

= +  (III.5) 

Substitution of equations (III.2) and then (III.1) to eliminate Q1(t) and QTeflon(t) from 

equation (III.5) and subsequent collecting of terms yields 

 2

0 0 0

( )( )
( )teflon teflon

Q td d gV t
k k A t

σ
ε ε ε

⎛ ⎞ ⎛ ⎞−
= + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (III.6) 

Examining Figure III-4, the current through the load resistor is defined as 

 2 ( )( ) Q tV t IR R
t

∂
= = −

∂
 (III.7) 

Combining equations (III.6) and (III.7) gives a linear, first order ordinary differential 

equation: 

 2
2

0 0 0

( ) 1 1( )
 ( )teflon teflon

Q t d g dQ t
t K R A t R K

σ
ε ε ε

⎛ ⎞ ⎛ ⎞∂ ⎛ ⎞+ + =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠⎝ ⎠ ⎝ ⎠
 (III.8) 
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The analytical solution to equation (III.8) is obtained by the well known integrating factor 

technique [57]  

The function ( )A t  is purposefully left undefined up till now, which gives the freedom to 

choose ( )A t  to describe many different phenomena.  The most obvious choice for ( )A t  

is to describe the steady state power generated by a rotational power generator, which 

will be shown momentarily.  Another choice for ( )A t  could allow derivation of an 

equation describing the transient properties of the rotational power generator, which has 

never been reported.  Other types of electret power generators can also be described, such 

as a moving mass on springs with a horizontally patterned geometry.  Any function 

describing the change in overlapping area with time can be used with similar result, 

although functions where area does not change linearly with time can complicate the 

simple integral at the end of this derivation. 

For a rotational geometry and constant rotational speed, ( )A t , the overlapping area 

shown in the dotted box of Figure III-2, is defined by the following: 

 

2

2

1 : 0
22( ) for 

1 1  :
22

n r f t tt nf
A t

n r f t tt nf nf

π

π

⎧ < <⎪⎪= ⎨
⎪ < <−⎪⎩

 (III.9) 

From Figure III-3, n is the number of poles, r is the radius of the generator, and t is the 

time.  Examining the symmetry of the generator geometry, the steady state electrical 
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output is expected to have a periodicity of 1
nf

, which is the rotational period divided by 

the number of poles.  Now that ( )A t  is defined, it is possible to solve for the current 

flowing through the resistor 

 0

2
0 0

( )
1

    teflon

d

I t
d gR

n r f K

σ
ε

π ε ε

−
=

⎛ ⎞
+ +⎜ ⎟⎜ ⎟

⎝ ⎠

 (III.10) 

and  

 2( ) ( ) P t I t R=  (III.11) 

for this purely resistive load.  Setting =0P
R
∂
∂

, maximum power is then achieved when the 

load resistance is 

 2
0 0

1
    optimal

teflon

d gR
n r f Kπ ε ε

⎛ ⎞
= +⎜ ⎟⎜ ⎟

⎝ ⎠
 (III.12) 

This gives a load-matched power equation 

 
2 2

0

    
4   

1
optimal

teflon teflon

n r fP
k k g

d d

σ π
ε

=
⎛ ⎞
+⎜ ⎟

⎝ ⎠

 (III.13) 

This result shows that maximum power occurs when σ, n, r, f, and d are maximized.  

Also, Teflonk  and g  should be minimized to yield maximum power.  Each quantity can be 
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improved, however, secondary relationships between variables do exist and limit 

maximization efforts, as explained below. 

III.3.  DESIGN AND FABRICATION 

Product design benefits from iterative design cycles, and the evolution of the rotational 

electret power generators involved many different processes to get to where it is today.  A 

general device design will be explained followed by some specific examples of process 

flows.   

III.3.a.  DESIGN OPTIMIZATION 

The following table lists the constraints that effect the design of the generator.  Some of 

the constraints are due to material limitations, some are defined design parameters, and 

other are due to governing physics.  Design is iterative because improving some 

parameters will affect other design parameters.  It is important to understand the 

relationships between design parameters before beginning the actual design. 
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Variable Increase or 
decrease? 

State of the 
art 

Limitations Other relationships 

σ  Increase 5x10-4C/m2 Breakdown field σ decreases as d increases 

n  Increase 128 Lithography, infinite plane 
approximation 10 ( )r d g

n
π

> + or infinite plane 

approximation fails

r  Increase 1cm Size limitation, 
gap control 

Design constraint 

f  Increase 20kRPM Bearings Design specifies 100kRPM 

d  Increase 10μm Processing techniques σ decreases as d increases 

Teflonk  Decrease 1.93 Already lowest known 
dielectric 

Affects σ and lifetime of charge 

g  Decrease 80μm Bearings, angular alignment

teflon

dg
K

< or gap will dominate 

power generation 

Table III-1 REPG parameters for optimization 

III.3.a.i.  CHARGE DENSITY 

Charge density, σ , should be increased without limit.  Unfortunately, charge is limited 

by the dielectric strength of the material and the trapping ability.  In the case of Teflon 

AF 1601-S, the limit for maxE  is 20V/µm. 

III.3.a.ii.  DIELECTRIC CONSTANT 

Power output increases with decreasing dielectric constant, Teflonk , which is why Teflon 

AF with dielectric constant of 1.93 is chosen.  Teflon is the optimal dielectric since it has 
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the lowest dielectric constant of any known material.  Choosing a different dielectric, 

such as oxide, material may allow storage of more charge but the lifetime of the charge 

will be significantly reduced.  Only gasses and vacuum have better permittivity, and they 

can be included into the Teflon to lower its effective permittivity.   

III.3.a.iii.  GAP SPACING 

Gap spacing, g , should be minimized.  Setting 
Teflon

dg
k

=  allows Equation (III.13) to be 

rewritten as  

 
2 2

0

   
8  optimal
n r fP

g
σ π

ε
=  (III.14) 

While setting 
Teflon

dg
k

 gives 

 
2 2

0

   
4  optimal

teflon

n r fP k
d

σ π
ε=  (III.15) 

Therefore, every effort should be made to decrease gap spacing.  Decreasing gap spacing 

also has a positive effect on the maximum number of poles, which is described in Section 

III.3.a.iv.   However, gap control is found to be the most difficult part of the rotary 

electret power generator, so the first criterion that 
Teflon

dg
k

=  is the most difficult to 

satisfy. 
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III.3.a.iv.  NUMBER OF POLES 

The number of poles, n , should be as high as possible as long as the back-end circuitry 

(light bulb or rectification and/or regulation circuitry) works well at the output frequency 

of the generator.  In the case of 128n =  and 100f kRPM= , the frequency of the 

electrical output would be 213outputf kHz= , which may cause problems if external 

capacitance is not well controlled.   

The real limit of n  is more likely to be the stray electric fields.  If the electrode area is 

confined to where the infinite plane approximation holds, then A  is constrained by n , d , 

and g .   

 
Figure III-5 Used to find the critical width w from gap distance 



86 

 

To neglect the fringing field, the smallest dimension within 90% of the active generator 

area must be ten times larger than the gap distance.  This point is demonstrated using 

values comparable to the first generator.  Since 90% of the effective area of an r = 5mm 

generator is outside r = 1.58mm, the shortest dimension w  (see Figure III-5) is found to 

be 1.2mm by using the number of poles, 4n = , and the law of cosines. Assuming w  

must be ten times larger than g  and it was previously stated that 
Teflon

dg
k

= , then w  need 

only be 22.5µm for a 9µm dielectric thickness.  If g  really was as easy to control, the 

condition would certainly be met.  By using this argument, it is expected to see good 

performance in generators with a few hundred poles. 

III.3.b.  FABRICATION CONSIDERATIONS 

The geometry of Figure III-3 was chosen for the electret power generator to 

accommodate a rotational input and allow for layered, 2-dimensional fabrication 

processes that are standard in the Caltech Micromachining Laboratory.  The rotor and 

stator are fabricated independently and then mounted in a testbed.  The layered 

fabrication allows for extremely flat surfaces to be obtained, which is necessary to obtain 

minimum gap distance to produce maximum power output.   

The rotor consists of a substrate to provide mechanical support and a patterned metal 

electrode.  The stator consists of a substrate, patterned metal, and an electret material.  By 

symmetry, it does not matter if the rotor or stator is rotated while the other piece is held 

still.  
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An external circuit is electrically connected between the electrodes of the rotor and stator. 

This circuit minimally consists of a load resistor to allow current to flow between the 

electrodes and measure the power transferred to the resistor; however, future work will 

replace the resistor with rectifying and conditioning circuitry to produce electrical power 

for specific applications.  

To prevent the rotor and stator from having physical contact with each other, a gap 

distance must be maintained by some mechanism.  A gap is necessary to prevent wear to 

the electret material.  Furthermore, physical contact between the rotor and stator will 

lower the efficiency of the generator when energy is lost due to friction.  The preferred 

method to maintain gap distance is with bearings that allow relative rotation and 

electrical connection to the rotor.  For this reason, air bearings are not used despite some 

favorable characteristics.  

An external rotation must be applied to the rotor.  For this, the rotor is connected to an 

axle that is connected to a motor.  Electromagnetic coupling may be used in the future to 

reduce unwanted radial and axial vibrations caused by physical coupling. 

When assembled, the rotor and stator should face each other with the normal to the 

surfaces being antiparallel.  The centers of the rotor and stator should also align.  Finally, 

the gap distance should be as small as possible according to Equation (III.13).  Any 

deviation in these will cause a loss in power generation.  
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III.3.b.i.  TEFLON PROCESSING 

In previous processing [58, 59], it was determined that a 1.2μm Teflon layer can be spun-

on a flat wafer if the Teflon solution is 6% solids and 94% Fluorinert FC-75, as supplied 

by Dupont.  This thin film initially has a rough surface on the order of +/-25% of the film 

thickness.  A long prebake at 330oC for 15 minutes is necessary to allow the surface to 

reflow to lower the roughness.  Baking at this temperature also has the added effect of 

removing all solvent, which is a necessary step when spinning multiple layers of Teflon.  

Failing to remove all solvent will prevent subsequent Teflon films from adhering to the 

surface. 

Applying HMDS vapor for 3 minutes to the fully baked, spun-on Teflon modifies its 

naturally hydrophobic nature enough for photoresist to be spun on top of the Teflon. 

Further trials proved that spinning Teflon on fully baked Teflon is also possible with use 

of HMDS.  The adhesion between Teflon layers appears to be very good, and often was 

better than adhesion between thermally evaporated aluminum and a thermally oxidized 

silicon substrate.  In the case of a floating metal layer, adhesion between the aluminum 

that was evaporated on top of Teflon is sufficient unless any part of the Teflon-aluminum 

interface is exposed to solvents.  Thus, floating metal layers must be sealed before wet 

dicing or other wet etch steps occur. 

DuPont also supplies an 18% solids version of the Teflon AF 1600-S, but this solution is 

too viscous for conventional spin coating.  A 7.4% solids mixture is made by mixing the 

18% solids version of Teflon with Fluorinert FC-40.  This solution produces spun-on 
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films 9μm thick at 500RPM.  Fluorinert FC-40 has similar electrical characteristics to 

Fluorinert FC-75, but FC-40 has a kinematic viscosity 2.75 times higher than FC-75.  

Furthermore, the 1.2μm film had height fluctuations greater than +/-25% while the 9μm 

film had variations less than 1%.  The main disadvantage of FC-40 is its higher boiling 

point, which means higher temperatures and longer bake times are required to drive off 

all solvent from the thicker Teflon film.  

 
Figure III-6 Table of different Fluorinert solvents, which are used to dilute Teflon AF 1601-S 
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III.3.c.  REPG VERSION 1.0  

The first design had rotors with a radius of 4mm and stators with a radius of 5mm. 

Design size was chosen to maximize available area on a 1cm2 chip, which is the area 

available using the stepper to pattern the substrates.  The rotor is only 4mm in radius so 

that electrical contact to the ground layer of the stator is possible with silver paste.  Since 

only regions where the rotor and stator overlap result in the production of electricity, for 

all practical purposes, reff  = 4mm. 

The number of poles in these experiments, n = 4, was chosen to compare with results 

found in literature.  In Tada’s work [55, 60], the number of poles remains low due to the 

method of making them, namely cutting by hand.  It is preferable to use MEMS 

lithography, which is capable of producing linewidths smaller than 10µm and far 

exceeding the assumptions that fringing fields can be neglected.  This limit will be 

explored later. 

Teflon thickness for REPG v1.0 was 9μm, and in contrast to Tada’s setup, was on the 

stator instead of the rotor.  This configuration was chosen for the ability to test different 

electret thicknesses and charge densities without having to remount the rotor.   

The process flow of a rotor and stator with dielectric is shown in Figure III-7.  Rotors and 

stators for electret generators have a matching number of poles and similar electrode 

geometry.   
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Rotors Stators 

 
 

Evaporate 2000Å aluminum 

 
 

Evaporate 2000Å aluminum 

 
 

Pattern aluminum 

 
 

Pattern aluminum 

 
 

Dice rotors 

 
 

Spin coat 9μm Teflon AF 1601-S 

Figure III-7 Process flow for first version of REPG 

For the rotor, 2000Ǻ aluminum was evaporated onto a quartz wafer and then patterned.  

The wafer was then diced, and one die was diced into an octagonal shape to closer 

approximate a circular rotor.  The rotor is glued to a metal axle on a testbed, and is 

electrically connected to the axle with silver paste.  The rotor should be mounted with its 

plane normal aligned to the long axis of the rotating axle or else the planes of the rotor 

and stator cannot be parallel during rotation.  The rotational plane misalignment angle is 

the angle between the rotor’s normal and the rotational axis and will be discussed further 

in Section III.4.b.ii.  
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Stators are produced by first evaporating 2000Ǻ aluminum onto a quartz wafer.  The 

aluminum layer is patterned and then the wafer is diced into 1cm x 1cm squares.  Then a 

thick layer of Teflon AF 1601-S is spun on individual stators and baked.  After baking, 

the Teflon is implanted with electrons from the back-lighted thyratron.  Finally, a small 

piece of Teflon is removed with a razor blade from a corner of the stator for electrical 

connection by silver past and a wire.  The stator is mounted to a 5-axis micropositioner 

on the testbed.   

 
Figure III-8 REPG V1.0 mounted on testbed version 1.  Photo taken before rotor and stator are aligned. 
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Figure III-9 REPG V1.0 mounted on testbed version 1.  Photo taken after rotor and stator are aligned. 

III.3.d.  REPG VERSION 2.0  

The second REPG design included bulk-etched cavities for producing thick electrets on 

silicon while maintaining the excellent planarity of the silicon wafer.  By spinning 

consecutive layers, it was determined that Teflon can be spin-coated up to about 10μm 

thick before cracking.  However, by first etching a 40μm deep vertical cavity into silicon 

using a deep reactive ion etcher (DRIE) running standard Bosch process, it is possible to 

pour liquid Teflon AF into the cavities and build up a 40μm thick Teflon layer that could 

later be implanted with charge.  This is the bulk-etched electret, which is patented along 

with the electret power generators.  The process for creating these cavities is the 

following: 
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1. Bare ground plane etched in silicon 

2. Liquid Telfon AF 6% poured on surface 

3. Air dry and bake for 30 min at 100 degrees 

4. Plastic reflow, 20 min at 350 degrees on a 
hotplate 

 

5. Scrape off excess 
 

Figure III-10 Process flow for bulk-etched electrets 

The process of Figure III-10 begins by using standard lithography to define the location 

of the trenches in a photoresist mask.  The photoresist then serves as a physical etch 

barrier when the silicon wafer is exposed to the anisotropic, inductively coupled SF6 

plasma etch of the deep reactive ion etcher (DRIE) in what is called the standard Bosch 

process.  The Bosch process is advantageous because it provides for 90o sidewalls, which 

allows for fine patterning of an electret structure.  The Bosch etch process is used to etch 

40μm deep trenches. Then the photoresist is stripped and the wafer cleaned. The last part 

of step 1 is the thermal evaporation of 2000Å of aluminum onto the surface in a 5μTorr 

vacuum, which provides the ground plane for the electret.  Steps 2 though 5 are shown in 
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Figure III-10, and basically require a patient graduate student (or undergraduate student 

in the case of Svanhild Simonson) to perform the operations by hand.  

As can be seen in Figure III-11, the thick layer of Teflon AF is cracked after step 3, 

which is caused by the large volume change as roughly 94% of the liquid evaporates and 

only 6% is left behind.  Figure III-12 demonstrates that reflowing of Teflon AF in step 4 

is possible.   

 
Figure III-11 Bulk-etched Teflon with anchors before reflow step. 

 
Figure III-12 Bulk-etched Teflon with anchors after reflow step. 
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The features inside the channels are anchors to prevent the Teflon from delaminating 

from the silicon during step 5.  The adhesion mechanism of Teflon to a substrate is purely 

mechanical and not chemical.  Therefore, small, deep trenches can be etched into the 

silicon substrate prior to the cavity etch of step 1, which provides greater opportunities 

for the reflowed Teflon to mechanically latch onto the substrate.  The final improvement 

of this process was to perform an extended, isotropic etch of these small deep cavities to 

provide a lock structure for the Teflon to hold onto the substrate.  This improvement was 

subsequently applied to parylene and was more thoroughly explored in the Caltech 

Micromachining Laboratory by Matthieu Liger. 

This electret can also be improved by using the floating metal layer process afterwards. 

III.3.e.  REPG VERSION 3.0  

The purpose of this design was to explore the power generated by larger rotors and 

stators as well as to increase the number of poles of the devices.  This design had rotors 

with a radius of 10mm and stators with a radius of 10mm.  Lithography for this design 

was performed with a Kasper 2100 contact aligner instead of the stepper.  The process 

follows exactly as before with the exception of using the different exposure system.   

The number of poles was varied from n = 4 to 256.  Although the rotors and stators were 

produced, the full range of experiments were not performed because the angular 

misalignment was too large and the gap control not precise enough to compare power 

generated with the number of poles.  
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III.3.f.  REPG VERSION 4.0, 5.0 / PROTOTYPE VERSION 1.0, 2.0 

The goal of the next designs was to eliminate the need for an external testbed.  The next 

design had rotors with a radius of 4.9mm and stators with a radius of 4.9mm, which was 

chosen to be compatible with lithography on the stepper.  The stepper was used for its 

superior alignment abilities, which would be needed for this version.  Process is 

significantly more complicated than previous versions, and requires multiple lithography 

steps as well as new etching and deposition techniques.   

 
Figure III-13 REPG version 4.0.  Cutaway view of final assembled device including bearings. 

A cutaway of the final proposed device can be seen in Figure III-13.  A commercially 

available flanged ABEC 9 bearing was used in the design to provide structural support 
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for the rotor as well as an electrical connection to the rotor electrode.  Process for this 

device was accomplished with a delay mask technique for successive anisotropic etches 

using the DRIE running standard Bosch process.   

While machining the rotors and stators, the design requirement was modified so that the 

radius of the rotors and stators was 10mm.  This could allow for greater power production 

and it more closely matches the design requirements of the DARPA grant discussed in 

Section I.6.   

 
Figure III-14  Stator for REPG version 5.0.  This design incorporated the use of bulk-etched cavities. 

Although some final devices were produced (Figure III-14), it was determined that the 

angular free angle of the bearings was too great to maintain adequate gap control.  No 

successful test was ever performed using these devices. 
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III.4.  EXPERIMENTAL RESULTS 

III.4.a.  CHARGE 

Charge densities are measured with a Monroe Electronics isoprobe Model 244 with a 

high resolution 1024AEH probe as described in Section II.3.a.  The majority of samples 

displayed charge densities of -5x10-4 Coul/m2 as expected.  The bulk-etched electrets had 

charge densities near -1x10-4 Coul/m2, which is significantly below the maximum limit.  

None of the bulk-etched electrets were used for power generation tests. 

Triboelectrically charged samples (charge density shown in Figure III-15) provided 

initially large charge densities in excess of -5x10-4 Coul/m2, but the charge half-life was 

on the order of minutes.  Because the charge is unstable, triboelectrically charged 

samples were not reliable for power generation testing and were not used.    

 
Figure III-15 Charge density measurements of a 4-pole floating metal layer electret that is triboelectrically 

charged 
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III.4.b.  TESTBEDS 

After fabrication of the rotor and stator it is necessary to mount them to an apparatus that 

can supply rotation and maintain tight tolerances for the gap distance and the alignments.  

Power generation experiments using the testbed involve setting the gap distance, driving 

the motor at different speeds, and simultaneous measurement of speed and power output. 

The power lead is connected to a simple op-amp, National Semiconductor LF356, in a 

voltage follower configuration with 1012 Ohm input impedance.  

This high impedance allows load matching by placing different load resistors across the 

power and ground. Power output is measured by two different means: (a) voltage output 

from the amplifier is fed to an HP 54503A 500MHz Digitizing Oscilloscope to observe 

the waveform or (b) voltage output from the amplifier is measured in VRMS with a Fluke 

87III True RMS handheld multimeter.  Power from the generator is simply 
2
RMS

L

V
R .   

While chasing increased power output and reliability, it was necessary to build several 

testbeds.  The key characteristics of a testbed are rotational speed ω , angular 

misalignment of the rotor from the rotor axis statorθ , and precision for positioning of the 

stator in x, y, z, statorψ  and statorφ .  Methods to calibrate the testbeds will be given first 

followed by descriptions of the actual testbeds. 
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III.4.b.i.  ROTATIONAL SPEED 

Several methods of measuring the speed were employed to check for accuracy.  A 

stroboscopic tachometer showed some drift from other measurement techniques, so the 

output waveform from the 4-pole generator was used directly by measuring n = 4 periods 

of the output signal.  The motor used in testbed version 1 and version 3 is a 6-pole motor, 

and confirmation of speed measurements was made by connecting a secondary channel of 

the oscilloscope across the terminals of the motor and verifying that 6 periods of back-

emf of the motor corresponded to 4 periods of the generator. Additionally, the Fluke 

handheld multimeter has an option to measure the frequency of an ac signal, which, as 

expected, reported exactly 4 times larger frequency of the power generated with a n = 4 

generator.  The oscilloscope was the primary source of speed measurements. Pulse width 

modulation was not a viable option to control speed since the motor used draws a current 

up to 30A.   

In testbed version 2, the motor did not have 6 poles, but speed measurements were taken 

from the generator for that version. 

The fourth version of the testbed was not used, but had testing proceeded it would have 

been necessary to measure both the speed from the motor and the speed of the generator.  

This is necessary because the motor would be magnetically coupled to the rotor, and 

synchronization cannot be guaranteed. 
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III.4.b.ii.  ROTATIONAL ANGULAR MISALIGNMENT 

The first testbed exhibited an angular misalignment of 0.46˚ for the rotor, which was 

measured by shining a laser pointer at the spinning rotor and measuring the radius of the 

reflected circle and the baseline distance as shown in Figure III-16.   

 
Figure III-16 Proceedure for measuring angular misalignment 

Because the rotor is fabricated on a glass substrate with excellent flatness, the 

misalignment of the rotor can be determined using a laser, the law of reflection, a ruler 

and simple geometry.   

 
Figure III-17 Law of reflections on laser trajectory used to find angular misalignment 



103 

 

III.4.b.ii.1.  Testbed Version 1 

A 5-axis micropositioner is used for aligning the stator to the rotor. In trying to minimize 

the gap spacing, the stator is lightly crashed into the rotor at one point, but because of 

angular misalignment (measured to be 0.163˚) the far end of the rotor is at least 45.8μm 

away from the stator.  The ground lead of the generator is the ground of the stator and the 

power lead is the chassis of the testbed which is electrically connected to the rotor 

through a bearing.   

 
Figure III-18 Testbed with rotor and stator mounted. 
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III.4.b.ii.2.  Testbed Version 2 

In an attempt to minimize stator angular offset, a spring-loaded ball joint was designed to 

allow for perfect angular alignment of the stator to the rotor (when stopped) by pressing 

the rotor and stator together and then slowly backing-off before turning on the motor.  

The ball joint provides 3-axis rotation, although only 2 axes are required.   

 
Figure III-19 Side view of ball joint 

 
Figure III-20 Inside View of ball joint 
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The stators are mounted with superglue on flat aluminum plates and electrically 

connected to the aluminum plates with silver paste.  The stator plates can be easily 

screwed into the spring-loaded ball-joint.  A 3-axis micropositioner with 80-threads per 

inch (corresponding to 317.5μm/revolution) and larger knobs is used for aligning the 

stator to the rotor in this version.  The rotor is superglued onto the motor’s gear.  Then 

silver paste is used to electrically connect the rotor to the gear, which is electrically 

connected to the chassis.  

The powered wire is connected to the stator’s metal backing plate.  The ground wire is 

connected to the chassis at the bottom of the motor’s mounting block.  The ball inside the 

ball joint is made entirely of Teflon, which prevents electrical connection from the stator 

to the chassis.     

The alignment process is relatively simple.  With the stator slightly withdrawn and the 

motor off, the stator is adjusted with x and y of the 3-axis positioner so that the center of 

the rotor and stator are approximately aligned.  Then, statorψ  and statorφ  are set to zero by 

gently crashing the stator into the rotor a few times to allow the ball joint to settle.  After 

the rotor and stator are parallel, the stator is backed off by approximately 100μm (~120 

degrees rotation) so the motor can be turned on.  The stator is then moved closer to the 

spinning rotor in four ~25μm increments, corresponding to 30 degree increments.  The 30 

degree increments continue until there is slight audible noise emanating from contact 

between the spinning rotor and stator.  The electrical signal is then monitored while x and 

y adjustments are made to maximize the output power signal.  
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An obvious problem with this system is the lack of precision in the angular alignments 

statorψ  and statorφ , which are assumed to be perfect.  In fact, if this system does function as 

well as it should, then that statorψ  matches rotorθ , and statorφ  is assumed to be zero.  This 

ensures that angular misalignment, and thus gap control, has at least twice the error of 

rotorθ  alone.    

 In trying to minimize the gap spacing, the stator is lightly crashed into the rotor at one 

point, but because of angular misalignment the far end of the rotor is at least 80μm away 

from the stator.  The ground lead of the generator is the ground of the stator and the 

power lead is the chassis of the testbed which is electrically connected to the rotor 

through a bearing.  

 
Figure III-21 Side view of testbed with rotor and stator mounted. 



107 

 

The major downfall that was not obvious a priori was that the motor chosen for this 

experiment has significant back EMF coupled into the chassis that prevents good power 

signals from being obtained.  It is because of this reason that power measurements were 

never obtained from this setup. 

 

III.4.b.ii.3.  Testbed Version 3 

Due to the continued problem of angular misalignment and gap control, a final testbed 

was developed to allow modification to the rotor angle while giving good visibility to 

adjust gap spacing.  First, the rotor is mounted to the to the rotor mount, which has 3 

screws with 80TPI pitch to allow for adjustment in statorψ  and statorφ .  By turning a screw 

in 5degree increments, gap spacing and angular misalignment can be adjusted in 4.4μm 

increments.  Now, the laser can be used to adjust the angular misalignment instead of just 

measuring it.  The limits on angular alignment are now dependent on the spot size of the 

laser as it is reflected across a 20foot long baseline and on the flatness of the rotor after 

being mounted.  The rotor is electrically connected to the rotor mount, which is 

electrically connected to the bearing.  The power lead is connected to the bearing using 

silver paste. 
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Figure III-22 Newest testbed for REPG 

The stator is then glued to a flat acrylic piece (not shown), which is attached to the 

housing by 80TPI screws.  This allows the same precision in adjusting the stator as 

adjusting the rotor.  By visual inspection with a 10x microscope, gap distance can be set 

to less than 10μm.   

However, the limiting piece in this setup is still the bearings.  The “thin-section” bearings 

provided by Thin Section Bearings of America, Inc. conform to the highest standard for 

bearings, ABEC 9P.  This means that they have a radial run-out (vibration) less that 

2.54μm.  However, the axial run-out is not specified because it is highly dependent on 

loading.  Using 5lbs. of axial force should give similar run-out characteristics.  At this 
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loading, the maximum recommended speed is 10kRPM to prevent significant wear, 

which is 10x slower than the intended 100kRPM.  This loading will be accomplished by 

using magnets that will also be used to couple torque into the testbed. 

Due to increased interest in the liquid electret power generator, this testbed has not been 

tested.  Furthermore, this testbed is not appropriate for a final device design since it is 

costly, large, and cannot achieve the desired speeds. 

 

III.4.c.  POWER GENERATION TESTS 

III.4.c.i.  REPG V1.0 ON TESTBED VERSION 1 

The first power generation experiments were performed using REPG V1.0 and testbed 

Version 1 described in Section III.4.b.ii.1.  The results are shown below in Figure III-23. 
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Figure III-23 Power output from 3 experimental trials using different load resistances and theoretical power 

of a continuously load matched system. 

The experimental curve shown is a load matched curve using Equation (III.13) with a gap 

spacing of 60µm.  This is very reasonable fit considering that the minimum spacing is 

zero at the crashed edge and 80µm at the far edge.  The other parameters used in the 

theoretical values match the measured values of the generator, which are n=4, r=4mm, 

σ=-2.8x10-4Coulomb/m2, KTeflon=1.93, d=9μm.  The noise in the experimental graphs 

is directly attributable to the stator being crashed into the rotor. This was, however, 

necessary to know the gap spacing exactly.  The generator continues to perform well 

under this condition for the duration of the tests, despite significant wear to the surfaces. 
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III.4.c.ii.  32 POLE REPG V2.0 

Testing of the 32 pole system was also performed on testbed version 1.   
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Figure III-24 Power measured and theoretical vs. rotation for the 32-pole power generator with a 600kΩ 

load, -5x10-4C/m2 charge implanted, 2cm diameter rotor-stator pair, and 4.25μm thick Teflon electret. 

Maximum power achieved, as can be seen in Figure III-24, for the 32-pole system was 

2.37mW at 11.8kRPM for a Teflon thickness of 4.25μm.  Average gap spacing was 

unknown, but presumed to be 40μm since the rotor and stator were made to touch during 

the test and the angular misalignment was measured to be 0.1150 over this 2cm diameter 

rotor.  The decrease in power output at 12kRPM may be due to vibrations caused by the 

motor and the bearings, which produced significant audible noise and vibrations above 

10kRPM.  Fitting for the gap distance for 12.5kRPM gives a gap of 88.5μm, which is 

reasonable.  
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III.4.c.iii.  64 POLE REPG V2.0 

Testing of the 64 pole system was performed on testbed version 3.  Maximum power 

achieve was 20μW at 16.5kRPM for a Teflon thickness of 4.25μm.  The decrease in 

power is unexpected. 
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Figure III-25 Load matching test of a 64 pole generator on testbed version 3 at 2.5kRPM 
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Figure III-26 Power vs. rotation for the 64-pole power generator with a 50.3kΩ load 

For the graph above (Figure III-26), a similar trend to Figure III-24 is seen where the 

power output falls at higher RPM.  In this range, the power is expected to continue to 

increase as 2f , however, the vibrations are known to increase significantly above 

11kRPM.  Further testing would need to be done to separate the gap distance effect from 

any other competing effect that may be decreasing the power output.  



114 

 

III.5.  CONCLUSIONS 

Uniform charge density, gap control, and dielectric thickness are the primary challenges 

of designing and producing an electret generator.  Solutions were engineered to provide 

uniform charge density on thick, micromachine-compatible dielectric. A linearized theory 

was derived to adequately model experimental power measurements. Future work will 

focus on improving gap spacing, increasing the number of poles, eliminating rotor tilt, 

and verifying the charge distribution in the z-axis on charge implanted into a floating 

metal electret. A testbed-less electret generator is being designed to overcome the 

aforementioned difficulties by relying more heavily on the advantages of 

micromachining.   
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Figure III-27 Comparison of power measured from an actual Seiko watch to rotational electret power 

generators. 
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On the brighter side, the core of the results can now be extracted from the 32 pole power 

generator with the data taken from the Seiko watch and see that there is significant gain 

to be made by switching the Seiko electromagnetic power generator out for the rotary 

electret power generator as seen in  Figure III-27. 

By exploiting the micromachining techniques, an electrostatic power generator was built 

that produces more power output than commercial miniature electromagnetic power 

generators. 
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C H A P T E R  4  

IV.  LIQUID ROTOR ELECTRET POWER GENERATOR 

One common example in electrostatics textbooks explains the concept of work with 

respect to inserting a dielectric into a capacitor.  Despite this, a power generator that 

utilizes kinetic energy to move a liquid dielectric into and out of the air gap of a capacitor 

has never been reported until J. Boland and Y.C. Tai published a liquid rotor electric 

power generator in 2004 [61].  

The following story illustrates that necessity is the mother of invention.  After working 

on the world’s first micromachined rotational electret power generators for more than a 

year, it became clear that the key to improving the rotational power generator was in the 

bearings.  As shown in Chapter 3, when the gap spacing between the rotor and stator is 

larger than 
Teflon

d
k , gap spacing is a significant hurdle towards improving power output.  

The idea of mounting the bearings directly between the rotor and stator seemed obvious, 

but bearing balls less than 0.5mm are prohibitively expensive and wear characteristics 

make them undesirable.   

Instead of solid bearings, a fluid journal bearing, such as the gas bearings employed in 

high speed micro turbines, seemed a better approach to solve the gap problem.  The 

difficulty with the rotational electret power generator system is that a single conductive 

contact to the rotor is required to retrieve the generated electrical current.   
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The proposed solution was to use a conductive liquid as a bearing, specifically mercury.  

The mercury would be used in the gap between the rotor and the stator by etching a 

conductive raceway into the rotor and stator just outside the electret material.  After some 

reflection, it was thought that the mercury would distort the electric field and limit power 

generation abilities as shown in Figure IV-1.   

 
Figure IV-1 Femlab modeling of spatial potential from an electret that is modified by a sphere of mercury. 

It was proposed that distinct mercury balls could be used so that the field warping due to 

the metal’s presence could be limited.  The distinction that the mercury could be divided 

into small volumes that might not adversely affect the electric field led to the opposing 

idea that small volumes of fluid could be used specifically to interrupt the electric field, 

which was the key to this invention.   
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The electret generator concept took on a new but familiar form: the generator would have 

a single solid geometry with no moving parts except for a fluid that will change the 

electric field in the gap of the capacitor.  The simplicity was obvious.   

Initially, water was tried as the moving fluid.  The difficulty of this approach is 

associated with the strong electric field produced by the electret, which caused 

electrowetting [62].  This physical phenomenon caused water to wet and stick to Teflon, 

which prevented the relative motion of the liquid to the generator.  To alleviate this, 

mercury was substituted as the moving liquid.  The electrowetting effect is not noticed in 

mercury due to the high conductivity and a surface tension 10 times higher than water.  

This proved successful, and led to the successful tests that follow. 

It is still desired to use liquids other than mercury to fully test the variable permittivity 

theory.  However, in the low frequency shaking of these devices, liquid metal acts as a 

dielectric with infinite permittivity.  The infinite permittivity allows for the gap of the 

capacitor to experience maximum switching, from 0ε  to ∞ .   

While using metals is obviously the most effective material to change the permittivity of 

an air gap, society has a general aversion to mercury.  To attempt to make ecologically 

friendly devices, collections of steel beads were substituted for mercury.  Not 

surprisingly, this arrangement also produces useful power as the beads slosh back and 

forth in the channel like an aggregate fluid.   
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IV.1.  INTRODUCTION 

The generator described in Chapter III converts rotational energy to electrical energy with 

a fixed-charge variable-area capacitor.  Further exploiting the relationship 

 ( ) ( )
QV t

C t
= , (IV.1) 

the work presented here explores a variable-permittivity capacitor utilizing a liquid 

dielectric.  This produces a variable capacitance, as shown in Equation (IV.2).  A device 

concept schematic is shown in Figure IV-2. 

 ( ) ( )t A
C t

d
ε

=  (IV.2) 

 

Figure IV-2. LEPG conceptual image. 

The effects of a variable permittivity are explored theoretically in freshman E&M books 

[63], but those examples typically involve a solid dielectric.  This would quickly destroy 



120 

 

the Teflon surface unless a mechanism is employed to maintain a gap while allowing 

relative motion.  This causes more losses and thus consumes valuable energy.  Instead of 

using solid dielectrics and more processing steps to create micro springs or sliders, this 

novel solution exploits the near-zero friction of a high contact angle liquid on the 

dielectric.  

As mentioned previously, experiments with liquid water stalled when the liquid 

experienced electrowetting.  Using silicone oil to prevent electrowetting would enable the 

use of water, but it is not clear what effect this would have on the required fixed charge 

since it is also used to reduce charge buildup in electrowetting devices.  Mercury is a 

liquid at room temperature, and does not appear to suffer from electrowetting.  It has a 

contact angle of ~150° on Teflon.  Mercury, a conductive liquid metal at room 

temperature, is equivalent to a dielectric with infinite permittivity.  

With negligible friction and heavy mass, the mercury will remain fixed as the capacitor is 

subjected to linear oscillatory motion. Charge that is embedded in Teflon creates a 

permanent electric field, and the relative motion of mercury and the chamber produces an 

alternating current at high voltage. The simplicity of this device allows power to be 

generated without the use of control circuitry, which would consume power.  It is 

unnecessary to know the liquid’s position at any point in time.  Furthermore, the driving 

motion need not be sinusoidal.  For the above reasons this new device can be used to 

harness random, environmental kinetic energy.  
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IV.2.  THEORY 

To model the top and bottom electrodes on the left half of the channel shown in Figure 

IV-2, assume a simple capacitive structure and define 

 ( )1

( )Liquid A t
C t

G
ε α⋅ ⋅

=  (IV.3) 

 ( )2

( )teflon A t
C t

D
ε α⋅ ⋅

=  (IV.4) 

 ( ) ( )( )0
3

1A t
C t

G
ε α⋅ ⋅ −

=  (IV.5) 

 ( ) ( )( )
4

1teflon A t
C t

D
ε α⋅ ⋅ −

=  (IV.6) 

corresponding with Figure IV-3, and use ( )tα  as a unitless quantity to describe the 

relative motion of the capacitors to the liquid. 

 

Figure IV-3. Equivalent circuit for each half of the channel. 
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Assuming sinusoidal motion of amplitude 0X , frequency ω , and an electrode length of 

L , 

 
( )0 1 cos( )

( )
2

tXt
L

ω
α

+
=  (IV.7) 

This equation contains normalization factors to keep the non-dimensional amplitude 

bounded by 0 and 1 at the extremes. 

 

Figure IV-4 Normalized function to describe oscillations of liquid in a channel. 

Kirchhoff’s Voltage Law is then employed 

 31 2 4

1 2 3 4

QQ Q QV
C C C C

= − = −  (IV.8) 

with 1Q , 2Q , 3Q and 4Q  corresponding to the charge stored on respective capacitors. With 

implanted charge ρ  and capacitor area A , charge conservation states 

 ( )1 2Q Q A tρ α+ = ⋅ ⋅  (IV.9) 

 ( )( )3 4 1Q Q A tρ α+ = ⋅ ⋅ −  (IV.10) 
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It follows: 

 
( )

1
2

1 2

1  

1 1

V A t
CQ

C C

ρ α− +
=

+
 (IV.11) 

 
( )

3
4

3 4

1 1 ( )  

1 1

V A t
CQ

C C

ρ α− + −
=

+
 (IV.12) 

By Kirchhoff’s Current Law: 

 2 4 0dQ dQV
R dt dt

− + + =  (IV.13) 

Taking derivatives of (IV.11) and (IV.12) and substitute them into (IV.13). After 

simplifying, an intractable linear first order ODE is obtained.  
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(IV.14) 

As an aside, it is obvious that equation (IV.14) reduces to the well-known RC tank circuit 

when the capacitors are held constant by setting ( )t constα = .   
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The linear, first-order differential Equation (IV.14) does not have a useful closed-form 

solution.  However, it can be solved numerically using built-in ODE solvers in Matlab.  

By setting some values for the capacitances, voltage can be solved numerically and then 

find the power generated by 

 
2VP

R
=  (IV.16) 

 
Figure IV-5 Mathematically defined capacitances over one cycle.  No allowance has been made for stray 

capacitance. 

As can be seen in Figure IV-5, the mathematical definitions of stray capacitance include 

unreasonably low values for capacitance, which are to blame for difficulties in getting 

solutions to the ODE in equation (IV.15).  It is not expected that this theory be complete, 
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but instead the theory should give enough information to guide design of the LEPG 

devices.  

IV.2.a.  USING LIQUID METAL INSTEAD OF LIQUID DIELECTRIC 

While the distortions of the electric field caused by mercury were the impetus for this 

new device, the first approach was to use water as moving liquid inside the capacitor.  

The reasoning was that water is non-toxic and changed the permittivity of the gap from 

the permittivity of free space, 0ε , to the permittivity of water, 080ε .  This significant 

change should be sufficient to both generate power and test the theory of variable 

permittivity.  A third benefit is that water can be used to triboelectrically charge the  

Teflon electret, which would eliminate the fabrication step of implanting electrons and 

eliminate the worry that heat may discharge the electret.  However, water electrowets 

Teflon in the presence of a strong electric field, and the third benefit ensures that water 

cannot be easily implemented in LEPG devices. 

Therefore, the focus was turned back to mercury for simple reason that it will not stick to 

charged Teflon.  The benefit of using mercury is that it provides the maximum possible 

change in permittivity of the air gap by effectively eliminating the gap altogether.  This 

implies that mercury optimizes power generation for this type of device, and no other 

liquid can produce higher power output for the same operating parameters. 

Since mercury can also be used as a low resistance path to electrically connect the top 

electrode to the surface of the Teflon, it can be thought of as a conductor instead of a 
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material to change the permittivity.  In this point, mercury provides a test case to show 

the equivalence of variable permittivity power generators using mercury and variable 

area or variable distance power generators. 
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IV.3.  DESIGN AND FABRICATION 

IV.3.a.  GENERAL CONSIDERATIONS 

In designing a liquid rotor electret power generator, several questions drive the design 

requirements.  Most geometric variables are within the designer’s control, while others 

are dictated by materials.  Understanding the limitations of materials and the relationships 

to the physics of this device are central for success. 

IV.3.a.i.  LIQUID 

As learned from tests with water, liquid dielectric choice is not trivial.  For small volumes 

of mercury, the shape of the liquid remains spherical in the presence of ordinary gravity.   

Therefore, the height ( h ) and width ( w ) of the channel is chosen to be equal to the 

diameter (φ ) of the mercury droplet and a channel length ( l ) that is twice the diameter.  

When a collection of small beads is used instead of mercury, it may be possible to reduce 

the height of the channel.  As long as the height of the channel is a factor of ten larger 

than the electret thickness ( d ), lowering the height of the channel can give better power 

per volume characteristics for the resulting device.   

Furthermore, choice of liquid in combination with desired operating frequency may have 

consequences in the designed geometry for the cavity.  For example, is has been observed 

in high-speed video that beads can get stuck in 90degree corners at 60Hz shaking 

frequency and 1mm peak-peak displacement.  Another example is that mercury can have 
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difficulty occupying corners at low accelerations, which prevents part of the cavity from 

producing useful power.  While rounded channels may give better performance 

characteristics for a single device, rectangular cavities provide for denser packing of 

cavities on a single chip. 

IV.3.a.ii.  CAVITY MATERIAL 

To minimize parasitic capacitance, a low-k dielectric material is chosen to define the 

height of the air gap and to contain the moving liquid.  This material will be called the 

spacer.  Furthermore, the spacer should be able to form a good seal to contain the liquid 

and provide enough strength to withstand the impact of the liquid with the walls.  Thus, 

the spacer material is not only a function of the liquid dielectric choice but also the 

maximum impact energy, which can be determined from the mass of the liquid and high-

speed photography (to determine impact speed and deformation of liquid).  In some 

versions of the LEPG devices, the silicone elastomer Sylgard 184 from Dow Corning is 

used as the spacer material.  This materials is transparent, castable silicone, also known 

as poly(dimethylsiloxane) or PDMS, with good sealing properties and k=2.65.  Several 

disadvantages exist such as poor rigidity and difficulty in removing the material from a 

mold without it tearing.   

Teflon PTFE (k=2) has also been used as a spacer material, but the limitations are that it 

is a difficult plastic to machine and also difficult to mold due to the high melting point 

(327˚C) of the material and the high viscosity of the melted PTFE.  Ongoing work is 
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using Teflon PFA for an injected molded spacer, which has lower melting point, better 

flow characteristics, and higher purity that PTFE. 

IV.3.a.iii.  ELECTRET 

The electret should be simpler in terms of design consideration, but it must not be 

overlooked.  Obviously, the material for the electret should store the maximum amount of 

charge with a long lifetime. The maximum output voltage of the finished device is related 

to the difference in voltage from the implanted charge to the ground electrode (distance 

( )d −Δ ) and the voltage from the charge to the top of the dielectric (distance Δ ), as can 

be verified by simple scaling laws.   

 ( )max
0

2
Teflon

V d
k
σ
ε

∝ − Δ  (IV.17) 

Thicker dielectric, d , will produce higher output voltage, but there is much experimental 

data indicating that stored charge, σ , is decreased in both maximum quantity and 

lifetime with thicker dielectrics.  Storing charge near the surface (small Δ ) implies lower 

acceleration energies should be used to implant the charge[reference], which affects all 

variable in the implantation process.  Storing charge near the surface may make it more 

vulnerable to decay by conduction while the lower implantation energies may actually 

cause more damage to the dielectric. 
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At this point, it is also necessary to realize that maximum current (Equation (IV.18)) 

flowing through the external circuit is proportional to implanted charge.  Therefore, a 

decrease in stored charge has a squared effect on power output.  

 max  I A fσ∝  (IV.18) 

 max max maxP V I∝  (IV.19) 

 ( )
2

max
0

 2
Teflon

A fP d
k

σ
ε

∝ − Δ   (IV.20) 

The following table aids in optimizing the design process.  
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Variable Increase or 
decrease? State of the art Limitations Other relationships 

σ 
(charge) Increase 5x10-4C/m2 

Breakdown field, material 
choice.  σ decreases as d 

increases. 
2max

volume
P σ∝  

h 
(height) Decrease 10x d Decreasing lowers peak-to-

peak voltage swing 
( )max 2

volume

dP
h d
− Δ

∝
+

 

w,l 
(width, 
length) 

Increase 
relative to 
dead space 

1mm-5mm Allowed volume, target 
frequency 

Optimum length decreases for 
increasing frequency 

f 
(frequency) Increase 120Hz 

Wall strength and sealing. 
Can easily exceed surface 

tension of mercury. 
max

volume
P f∝  

d 
(Electret 
thickness) 

Increase 100μm 
σ decreases as d increases. 

Destabilizes implanted 
charge. 

( )max 2
volume

dP
h d
− Δ

∝
+

 

kTeflon 
(permittivity 

electret) 
Decrease 1.93 Already lowest known 

dielectric 
max

0

1

Teflon
volume
P

k ε
∝  

Δ 
(implantation 

depth) 
Decrease 1μm Decreasing Δ destabilizes 

charge 
Necessitates re-optimization of 

implantation process 

Table IV-1. Design considerations for LEPG 
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IV.3.b.  FABRICATION 

IV.3.b.i.  LEPG V1.0: QUICK AND DIRTY 

The first LEPG process was a very quick and dirty attempt to see if a measurable signal 

can be detected from the device using water as the liquid dielectric.  A picture of the 

capacitive plates, each 1cm x 1cm made of thermally evaporated aluminum.  On top of 

one of the electrodes is a 4μm layer of Teflon AF 1601-s 7% solids.  This layer is applied 

through spin coating, baked, and then implanted with charge in the back lighted 

thyratron.  The spacer was cut by hand from a 2mm thick sheet of Teflon PTFE.  

 
Figure IV-6 LEPG with a small droplet of water in the channel. 
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The Teflon wetted the surface and would not move.  A second trial was performed 

without charging the Teflon.  In this case, the water would shake in the channel until it 

had triboelectrically charged the Teflon.  At that point, all shaking would halt.  

Substituting mercury for water worked instantly.  Using a LF356 op-amp as a voltage 

buffer, a voltage signal of +/- 15Volts was observed for the first trials of mercury in a 

charged Teflon-air gap capacitor.   
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IV.3.b.ii.  LEPG V2.0: PDMS MOLD AND PROCESS REFINEMENTS 

A second fabrication process of the LEPG is shown in Figure IV-7.  Glass plates with 

patterned metal are the starting capacitor electrodes.   

 
Figure IV-7 Process Flow a. deposit metal on glass substrate b. pattern metal c. spin-on Teflon AF d. mask 

design used. 

An 8µm thick Teflon AF is spun onto the bottom plate, and 0.5µm Teflon onto the top 

plate [4].  The Teflon AF layer on the bottom plate is then implanted with electrons from 

a back-lighted thyratron to form the electret [7]. The spacer (which also provides the 

liquid chamber) is made by casting Sylgard 184 PDMS onto a CNC-machined mold as 

seen in Figure IV-8 and bonded to the bottom plate with epoxy. 
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Figure IV-8 Mold Master for Sylgard 184 and peeled PDMS. 

For this demonstration, a liquid mercury droplet is used to partially fill the chamber on 

the bottom electrode. The top electrode plate is then bonded to the spacer to finish the 

device (Figure IV-9). Cavity dimensions for Device 3 are W=2.3mm, L=4.812mm, and 

H=2.3mm for a droplet of 50µL. Cavity dimensions for Device g are W=3.5mm, 

L=9.4mm, H=4.45mm for a droplet about 600µL.  

 

Figure IV-9 Assembled LPG Device.  Clear epoxy binds the top plate to the bottom plate and prevents the 

mercury from leaking. 
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IV.3.c.  LEPG V3.0: MULTIPLE CHANNELS ON SINGLE CHIP  

Fabrication of arrays of LEPG channels is very similar to the fabrication of a single 

channel as described in the previous section.  Glass plates are patterned with metal to 

form capacitor electrodes (Figure IV-11).   

 

Figure IV-10 Electrode pattern for 6x3 cavities with 2 top and 2 bottom electrodes per cavity. 

A 25 µm thick film of Teflon FEP is glued to the bottom plate using Teflon AF, which 

does not provide good adhesion.  A 0.5 µm Teflon AF thin film is spun on the top plate to 

protect the top electrodes from the mercury.  The Teflon PTFE layer on the bottom plate 

is then implanted with electrons from a Welty handheld ion generator to form the electret.  

The surface voltage was measured to be -850 V before the power generation trials.  The 

spacer (which also defines the liquid chamber) is made by casting Sylgard 184 PDMS 
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onto a CNC-machined mold.  Either liquid mercury droplets or an aggregate of steel 

beads [64] is used to fill half the chamber on the bottom electrode plate.   

 

Figure IV-11 Assembled LEPG device with cutaway to reveal bottom electrodes. 

The top electrode plate is then placed on the spacer to finish the device (Figure IV-11).  

The final device is then sealed in clear epoxy to provide structural support as well as 

guard against leakage.  Cavity dimensions are W = 1 mm, L = 2 mm, and H = 1 mm with 

a droplet volume of 1 µL, with 3 columns of 6 cavities per die.  
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IV.4.  EXPERIMENTAL DETAILS 

Power generation experiments are performed on a Labworks Inc. ET-139 electrodynamic 

shaker (Figure IV-12) driven sinusoidally by a HP33120A function generator through a 

Labworks Inc. PA-141 power amplifier. Acceleration is measured using an Endevco 

256HX-10 accelerometer. Displacement is acquired by double integration of the 

acceleration waveform. The shaking frequency can be varied from 20 to 100Hz, and the 

displacement can be varied from 0 to 5 mm peak-to-peak. The LEPG’s output voltage 

across a load resistor is measured with a National Semiconductor LF356N op-amp used 

as a 1210  Ohm impedance voltage buffer. Both acceleration and generator voltage 

waveforms are averaged over 256 samples on an HP oscilloscope and captured to 

computer by IntuiLink software over GPIB. 

 
Figure IV-12 Test setup for LEPG mounted on shaker 
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IV.4.a.  DATA 

With the top electrodes replaced by a glass slide, high-speed video clearly shows the 

motion of the channels and the mercury droplets within.  Shaking at low amplitudes and 

above 20Hz with the channels perpendicular to gravity, the mercury droplets remain 

fixed in space while the channels move about them.  By increasing the amplitude to at 

least half the channel length, the droplets’ centers of mass are well synchronized but no 

longer stationary.  Impacts with the ends of the cavities impart energy to the mercury 

droplets that is converted into deformation of the surface as shown in Figure IV-15.  

When the walls and the droplets have zero relative velocity, the energy of surface 

deformation is transferred back into kinetic energy of the droplets.  This process increases 

the relative motion of the droplets, and is reflected in the output waveforms as phase lag 

(Figure IV-18) and larger currents with reduced duty cycle.  The increase in power output 

in this overdriving mode is smaller than the increase in input energy.  While overdriving 

the amplitude ensures synchronization, it is rarely the case that the channels are perfectly 

perpendicular to gravity, and overdriving may be unnecessary.  Replacing the mercury 

with aggregates of steel beads demonstrates no phase lag and also benefits from 

overdriving [9].  

IV.4.a.i.  REPLACING MERCURY WITH STEEL BEADS 

A collection of small diameter beads can flow much in the same way a liquid can.  Using 

this effect, the mercury in the LEPG can be replaced with a collection of small beads.  

The beads used had a mean diameter of 280μm, but a large variance over the set of beads 
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used.  Furthermore, the shape of the beads are not necessarily spherical.  This is because 

the beads used in the experiments are originally sold as sand-blasting media, which is 

many orders of magnitude cheaper than purchasing individual bearing balls. 
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Figure IV-13 Power generated in LPG V2.1 with 100μm Teflon PTFE 

This result is not intuitive.  It is expected that mercury can generate higher power output 

in Figure IV-13 because it can completely occupy the gap of the LEPG and the 

completely evacuate it, whereas the motion of the beads prevent them from moving 

perfectly in unison.  Two observations that may be important: a. the steal beads used 

were originally purposed for sand blasting media and they obviously cause some wear 

(and perhaps triboelectricity) on the channel, and b. the beads net motion is almost 

stationary as can be seen from high speed video, which is what the theory originally calls 
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for while the mercury absorbs and re-releases impact energy from collisions with the 

walls.   

 
Figure IV-14 Still-frame position 1 taken at 2000fps while shaking at 60Hz and 1 mm peak to peak. 

 
Figure IV-15 Still-frames position 2 taken at 2000fps while shaking at 60Hz and 1 mm peak to peak. 
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IV.4.a.ii.  PARALLEL ARRAYS 

By design, the arrayed devices are organized in 3 columns, where every column contains 

6 devices in parallel (Figure IV-2 and Figure IV-10).  Each device in the array contains 

an electrode pair on each half of the channel.  For the purposes of this test, only the 

electrodes on the left side of the channels are tested. Data is taken from 1, 2, or 3 columns 

in parallel (Figure IV-16).  Data shows power output scaling linearly with number of 

devices in parallel.  Testing smaller arrays with 4 and 5 devices per column produced 

similar results.   

 
Figure IV-16 Experimental values for parallel channels shaking of 2.58 mm peak-to-peak at 60Hz. 
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IV.4.a.iii.  SERIAL ARRAYS 

After tests demonstrated the linear scaling of parallel arrays, the same columns of 6 

electrodes are used, but this time the electrodes between the columns were connected 

serially.  

 
Figure IV-17 Experimental values for serial columns shaking at 1 mm peak-to-peak at 60Hz. 

The relationship is anything but linear in this case, and any columns in serial produce less 

power output than single columns. The waveforms are shown in Figure IV-18, which 

shows voltage vs. time for each column and combinations of those columns. These 

results imply complicated interactions between columns, probably related to slight phase 
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differences and feedback effects. Testing with 4 and 5 electrode columns produced 

similar results.  

 
Figure IV-18 Experimental values for shaking at 2.58 mm peak-to-peak at 60 Hz and Rl of 4 MOhm. 
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IV.4.a.iv.  NON-OBVIOUS ELECTRICAL CONNECTIONS 

Different combinations of connections between electrodes on the LEPG devices were 

tested on LEPG V3.0 with beads and with mercury as shown in Figure IV-19.   

 
Figure IV-19 Diagram showing all connections across LEPG 

Power output was, on average, lowest when the top and bottom electrodes directly across 

from each other were tested, which implies that the original design is neglecting a large 

effect—most likely the influence of nearby electrodes.  The highest power was obtained 

when there were three resistors connected at the same time, most likely related to charge 

flow between all four electrodes.  
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Figure IV-20 Voltage waveforms with resistors connected across V3-V4, V1-V2, and V2-V3 on an LEPG 

device shaking at f = 60 Hz, displacement = 2 mm p-p, R = 14 MOhm for all three resistors. 

Careful examination of Figure IV-19 reveals that the V1-V2 and V3-V4 signals are 

inverted and reversed in time. The V3-V2 signal is the largest signal and perhaps the 

most useful for power generation because of its near sinusoidal nature and larger voltage.  

This test was not part of the original design, but it yields new and exciting data that may 

be used to construct more efficient devices in the future. 
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Figure IV-21 Waveforms from same connections as above in Figure IV-19 except only one resistor is 

connected at any time.  

Figure IV-21 shows that the V3-V2 signal is less significant if charge is not allowed to 

flow around the entire system when the V1-V2 and V3-V4 resistors are removed.  What 

this suggests is that neighboring electrodes have significant impact on each other and that 

the system needs further modeling where all four electrodes are considered to be part of 

the same system.  
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IV.5.  CONCLUSIONS 

A new class of power generation device was developed: the liquid-rotor electret power 

generator.  Although simple in concept, this device had not been possible in the past 

because the lack of good electret technology and precise methods for fabrication and 

assembly had not been applied to this area.  Instead of fighting the change in permittivity 

that mercury would induce into the electric field, this effect was exploited to create a new 

type of power generation device.  One of the major advantages of this device is the lack 

of friction, which causes significant losses in microscale devices [65, 66]. 

A theory was developed from linearized equations, but it is impossible to implement 

without numerical calculations.  A simpler theory was developed to explain the scaling 

principles of the device for practical purposes. 

This work demonstrates the ability to connect many LEPG devices in parallel, and the 

difficulty with serially connected LEPG devices. Devices in parallel allow for increased 

power output, and also allow for the possibility of creating further miniaturized and 

embedded power systems.  

The improved LEPG is a promising, economical method to harvest power from 

vibrational environments to power remote sensing devices. Steel beads can approximate a 

fluid and produce more power than mercury. However, wear characteristics need further 

exploration to prove the long-term viability of this approach. Future work will attempt to 

coat the beads with parylene or other soft polymers to prevent the beads from wearing the 

channels. 
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Evidence presented here warrants further study and modeling to describe the power 

generated with varying the configuration of connections. These results suggest that 

optimal electrode design has not yet been attained. Furthermore, since two, coplanar 

electrodes generated the most power, it may be possible to reduce the number of 

electrodes and produce a simpler device. 
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C H A P T E R  5  

V.  CONCLUSIONS AND FUTURE WORK 

Under the direction of Yu-Chong Tai, I set out to produce a rotary electret power 

generator (REPG) utilizing micromachining techniques.  Along the way I improved some 

processes, extended electret processing capabilities, built the world’s first micromachined 

rotary electret power generator, and built the world’s first liquid rotor electret power 

generator (LEPG).   

V.1.  ROTARY ELECTRET POWER GENERATOR 

Although this project is part of a larger project to generate electricity from fossil fuels, 

the devices that have been presented in this work will make excellent energy harvesters.  

Comparing the power output of the Seiko Kinetic watch generator, the rotary electret 

generator not only produces more power but produces more power proportionally at low 

RPMs that the Seiko electromagnetic generator.  What this implies is that the rotary 

electret generator has the distinct advantage of generating usable electricity from small 

motions.  

In contrast to the electromagnetic generator, the rotary electret generator is inherently a 

high voltage power generator.  The electromagnetic power generator produces less than 

1.4Vpp from rest until 8800RPM, which implies that it cannot be used with a simple 

bridge rectifier for most of the motions it is attempting to harvest.  This leads to more 
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complicated circuitry and more inefficiencies, whereas the 32-pole rotary power 

generator produces 16Volts peak to peak at the slow speed of 1900RPM.  

 
Figure V-1 Comparison of Seiko’s Kinetic electromagnetic power generator to the REPG 

While these comparisons are promising, much work is left to perfect the REPG.  Table 

III-1 illustrates the design parameters left to optimize.  It was found that gap distance is 

very difficult to control when using commercial bearings.  Therefore, a micromachine 

compatible solution is necessary to improve this aspect, which would give large gains in 

power generated.  A fluid bearing is still the most promising approach, and a possible 

design is shown in Figure V-2 and Figure V-3.  In this design, distinct droplets of 

mercury or a ring of mercury is made to wet the rotor or stator while other part makes 
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physical and electrical contact to the mercury without wetting.  Micromachined magnets 

can be used to couple axial torque into the generator to cause rotation as well as to apply 

force to draw the rotor closer to the stator.    

 
Figure V-2 Liquid bearing concept for gap control in REPG. 

 
Figure V-3 Micromachined magnets (red is north pole up, blue is south pole up) are used to apply force and 

couple torque into the REPG. 

The gap distance criterion can be slightly relaxed by a factor of 
Teflon

d
k

 if thickness of the 

electret is increased.  This may be accomplished by layered polymers, injection molded 
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polymers or inorganic dielectrics such as spin-on glass, or other polymer 

molding/deposition steps.  The dangers in increasing the thickness of the electret are two-

fold: a) the dimensions of the electrodes may violate the infinite plane approximation 

causing significant parasitic capacitance and b) the storage of charge in an electret is 

inversely proportional to its thickness.  Danger b) is alleviated if the electret is composed 

of a layered structure.  

The REPG is inherently a low current power generator, with current being proportional to 

the area of the generator.  This low current drawback can cause difficulty if the generator 

is used to charge a storage device with large leakage current.  The low current is also a 

difficulty when trying to build a custom ASIC in silicon because silicon diodes have 

leakage currents on the order of microampere (from a conversation with an engineer at 

International Rectifier Custom Solutions department).  The simple solutions to produce 

more current are: operate at higher rotational speeds; increase the number of poles; 

implant more charge; and have a larger disk.  The first three are feasible areas of 

improvement, but the last is a design constraint. 

Operating at higher frequency has not proved viable to date, which is curious.  It is 

probably that there is a significant source of parasitic capacitance in the testbeds and 

circuitry used to date.  By inverting Equation (III.12), maximum power should occur 

when  

 2
0

1
    load teflon

df g
n r R Kε π

⎛ ⎞
= +⎜ ⎟⎜ ⎟

⎝ ⎠
 (IV.21) 
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Plugging in typical values leads to Figure V-4, which was generated by calculating the 

theoretical power output of a rotary generator as given by equations (III.10) and (III.11), 

using the typical values of for a 32 pole generator with 1cm radius, 4μm thick Teflon 

layer, -5x10-4 C/m2 charge implanted, and a Teflon permittivity of 1.93. 
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Figure V-4 Theoretical plot of rotational speed versus gap displacement showing that higher rotational 

speeds are necessary when gap distance is large. 

Examination of the theoretical plot in Figure V-4 shows that spinning a rotational 

generator at higher speeds will allow for a lower load resistance to be used.  This is due 

to the current increase at higher speeds (Equation (III.10), which causes a lower internal 

impedance (Z) of the generator.   

 1
 

Z
j Cω

=  (IV.22) 
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 Where j is used to represent the imaginary phase of the capacitance.  When using a 

resistor to load match, the load resistance should be equal to the real part of Z.   

It can also be seen that the knee in the rotational speed curve corresponds to the thickness 

of the electret divided by the dielectric constant.  This confirms the analysis of the gap 

spacing in section III.3.a.iii.  

When compared to Figure III-25, this indicates that not everything in the test was ideal.  

It is possible that a significant external capacitance is present, which has caused 

significant difficulties in measuring power for the liquid-rotor power generators.  

Furthermore, significant shaking of the testbed at higher rotational rates cause 

significantly larger vibrations in the chassis and these vibrations can cause misalignment 

and gap separation. 

Going back to electrical current production, future REPG devices may have stacked 

geometries such as the Wimhurst Machine shown in Figure V-5. 
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Figure V-5 A Wimshurst machine used to generate electricity from electrostatics and triboelectricity. 

Finally, the fight with leakage current in storage elements is reliant on start-of-the-art 

technology, which is still lacking.  Preliminary tests show that the majority of capacitor 

types have leakage currents on the order of microamperes, which is on the order of the 

current produced by the power generator.   
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Figure V-6 Decay curve of charge 1farad supercapacitor due to leakage current alone. 
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V.2.  LIQUID ROTOR ELECTRET POWER GENERATOR 

The LEPG was born in the Caltech Micromachining Laboratory and has survived 

infancy.  Now, it needs to grow.  The weaknesses of the LEPG are similar to the REPG, 

except the LEPG operates at much lower frequency.  This is also a strength for energy 

scavenging applications, but it exacerbates the difficulties of leakage current and low 

current output.   

By Equation (I.4), the figure of merit for the 0.1cc LEPG shaking at 60Hz, 1mmpp, with 

a mass of 74mg (assuming the liquid remains still and the cavity shakes around it) is 

25LEHN cc= .  This number is magnitudes lower than competing devices, which can 

partly be explained by the lack of information given in the literature on competing 

devices and the generous assumptions made, while the rest of the deficiency is due to a 

non-optimized design.  This work focused on exploring the relationships between 

variables and scaling laws, which allows for future optimization of power generation 

from the LEPG.   

The next set of experiments should be aimed at exploring the power output as the load 

resistance in matched to the other parameters of the LEPG.  This is challenging because 

there is no closed form criteria for load resistance, so a theory ought to be developed to 

handle this.  Very simple relations can be used, such as max 2   I A fσ= (for short circuit 

current) and max
 

2 Teflon

dV σ
ε

=  (for open circuit voltage), but these ought to be developed a 

bit further and tested for accuracy.   
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After load matching experiments are performed, the LEPG ought to be scaled in parallel 

into the 3rd dimension by stacking 2-dimensional arrays.  When a LEPG generator system 

is proven sufficiently reliable, efficiency tests need to be performed to characterize how 

much of the mechanical energy is absorbed into the generator and how much of the 

absorbed energy is converted to electrical power.   

Finally, a system should be built to take power generated from a LEPG system and 

charge a storage device that in turn is the power source for some useful electronic 

function [11, 31, 67]. 
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