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Abstract

A major difficulty in modeling molecular systems is that the number of dimensions, even

for a small system, is commonly too large for computation to be feasible. To overcome this

challenge, a combination of lower-dimensional representations of the system and improved

computational methods are required. In this thesis, we investigate techniques to achieve

both of these aims via three model problems.

By exploiting an understanding of the mechanism and dynamics of reaction in the sys-

tems considered, we attain a low-dimensional description of the transition that captures

the essential dynamics. For the ionization of a Rydberg atom we utilize concepts from

dynamical systems theory that reveal the geometric structures in phase space that mediate

the reaction. The gyration radius formalism captures the kinematic effects of the secondary

particles in a coarse variable that reduces the number of dimensions of the model, thereby

providing a simple description of our methane and oxygen dissociation example. These

methods are applicable more generally and provide a coarse model of chemical reactions

that can be combined with efficient computational tools, such as the set-oriented method

employed in our Rydberg example, to efficiently compute reaction rates of previously diffi-

cult problems.

The third model problem considered is the self-assembly of particles into an ordered

lattice configuration under the influence of an isotropic inter-particle potential. With the

aim of characterizing the transition from a disordered to an ordered state, we develop

metrics that assess the quality of the lattice with respect to the target lattice configuration.

The five metrics presented use a single number to quantify the order within this large

system of particles. We explore numerous applications of these quality assessment tools, in

particular, finding the optimal potential for self-assembly. The very noisy, highly variable

nature of our expensive-to-evaluate objective function prompted the development of a trend

optimization algorithm that efficiently minimizes the objective function, using upper and
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lower envelopes that are responsible for the robustness of the method and the solution. This

trend optimization scheme is widely applicable to problems in other fields.
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Chapter 1

Introduction

A major difficulty in modeling molecular systems is that the number of dimensions for even

a small system is commonly too large for computation to be feasible. To overcome this

challenge, a combination of lower-dimensional representations of the system and improved

computational methods are required. Understanding the dynamics of a transition enables

us to focus on mechanisms that mediate transport and to develop coarse models that have

fewer dimensions than the original system, yet contain the essential dynamics.

These lower-dimensional models of chemical reaction dynamics can be used to calculate

transition rates when coupled with efficient methods of computation. An efficient computa-

tional method will exploit global features of the domain, and locally refine areas of interest,

rather than doing a brute force computation at every point in the domain.

Together, these approaches make the calculation of reaction rates in realistic chemical

systems tractable. The predictions of computational reduced-order models can be compared

with experiments to gain further understanding of the mechanism of reaction, thereby

opening the door to the design of new reaction pathways and products.

In this thesis we develop low-dimensional representations of a number of chemical sys-

tems as well as implement efficient algorithms for computation. These tools are presented

in the context of model problems that are sophisticated enough to capture phenomena that

are, or are expected to soon be, experimentally verifiable.

In Chapter 2 we calculate reaction rates by coupling dynamical systems theory and a

set-oriented method for computation. The number of dimensions to be modeled is reduced

by introducing a surface of section through which all trajectories must pass and exploiting

knowledge of the geometric structures in phase space that mediate the reaction. Transition
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rates are calculated by looking at a global description of transport in the system. This is

possible through the set-oriented approach, which constructs a box covering of the surface of

section and computes many short trajectories in each box, rather than following individual

trajectories for a long time. This is an efficient computational method for finding global

structures and calculating transport rates; it uses local refinements of the box covering to

ensure the accuracy of the computed rates. The method is demonstrated with the ionization

of a Rydberg atom in crossed electric and magnetic fields, an example for which traditional

transition state theory fails.

Chapter 3 investigates a system in which (primary) particles undergo a transition under

the influence of other particles (secondary particles). The energy distribution between

the reactive and bath modes is demonstrated to be important to an understanding of the

system. A coarse variable, called the gyration radius, describes the dynamics of reaction

in a succinct and elegant way. An effective potential computed along this gyration radius

takes into account the kinematic effects of the secondary particles and is consistent with the

observed probability distributions. This effective potential includes an internal centrifugal

term that is shown to govern the mechanism of reaction for some system parameters. The

internal centrifugal force couples the kinematics of the bath particles with the gyration

radius, which encapsulates the mass distribution of the system. The system we consider is a

simplified model of the dissociation of methane and oxygen. The coarse representation of the

system by the gyration radius and accompanying effective potential can be combined with

the set-oriented computational method to calculate dissociation rates for realistic chemical

reactions.

In the second half of the thesis we move away from chemical reactions with a small

number of constituents and instead focus on a large number of particles in the plane and

their transition from a disordered state to an ordered state. In Chapter 4 we develop and

discuss five metrics for assessing the quality of ordered lattice configurations. These quality

assessment tools are a simple representation of the system that can capture phase transitions

that involve a change in order. They are compared and their differences highlighted, noting

the situations in which each is applicable. The best metric to use depends on whether the

alignment of particles, the local density, or the correct inter-particle distance is the most

important.

Chapter 5 explores some of the many applications of the Defect Measure and other lattice



3

quality assessment tools. The problems examined here are the generation of inter-particle

potentials for the self-assembly of particles, examining the robustness of such potentials,

finding the phase diagram of krypton atoms on a graphite substrate, and identifying global

defects and clusters from local information. A computationally efficient method, called

trend optimization, for optimizing the parameters of self-assembly potentials is presented

and contrasted with simulated annealing. The trend optimization scheme is ideal for finding

minima of very noisy (or discontinuous), highly variable, expensive-to-evaluate objective

functions and quantifying the robustness of solutions. It is also very fast and robust. It

is the combination of being able to represent the quality of a lattice with one number and

this efficient trend optimization method that enables us to find the optimal inter-particle

potential for self-assembling systems.
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Chapter 2

Set-Oriented Computation of
Transport Rates in
3-Degree-of-Freedom Systems: The
Rydberg Atom in Crossed Fields

One of the primary goals of chemical physics is the calculation of the rate at which a

reaction proceeds. Transition State Theory (TST) (see, for example, [84]), also known as

Rice-Ramsperger-Kassel-Marcus (RRKM) theory (see, for example, [33]) is widely used in

the chemistry community to calculate these rates. While successful in many situations, this

statistical theory is inadequate in others, and in those cases it can have an error of a few

orders of magnitude when compared with experimental results [18].

TST identifies a transition state for the system under consideration: This is a set of

states through which the reactants must pass in order to become products of the reaction.

These transition states may be in phase space rather than configuration space, but TST

assumes that the regions in phase space connected by this transition state are structureless

in the sense that motion within them is purely statistical [62]. However, in the examples

where TST fails, this assumption breaks down, and indeed, the structure of phase space

must be accounted for when calculating reaction rates [31].

By developing reaction island theory, De Leon, Mehta, and Topper have shown that

cylindrical manifolds in phase space mediate 2-degree-of-freedom chemical reactions [19, 20].

Uzer, Jaffé, and co-workers have isolated some of the important geometrical aspects of the

phase space structure for higher degree-of-freedom systems [44, 85]. We note that Koon
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et al. [51] emphasized the importance of heteroclinic networks and the associated cylindrical

manifolds (tubes) when considering dynamical channels, and Contopoulos and Efstathiou

[15] used escape rates from a surface of section to identify regions that govern the transport

between parts of the phase space.

Gabern et al. [31] have calculated reaction rates in chemical systems with three degrees of

freedom using dynamical systems tools and Monte Carlo methods. By taking into account

the invariant manifold tubes that mediate the dynamics of a reaction, these rates were

calculated for a system with non-statistical dynamics. A major difficulty that was overcome

by using a Monte Carlo method was the calculation of the volume of the overlap of the

invariant manifold tubes.

This work uses a new approach, based on set-oriented methods (see, for example, [26]),

to identify the structures in phase space that mediate chemical reactions and to calculate

the associated reaction rates.

The set-oriented approach focuses on a global description of the dynamics on a coarse

level and covers the relevant region of phase space by appropriately sized boxes. By con-

sidering a transfer operator associated with the underlying map, one is able to describe the

evolution of an initial distribution under the dynamics. Via a partition of some interesting

region in phase space, this operator can be discretized, yielding a stochastic matrix. The

transport rates between different regions in phase space can then be computed using this

matrix of transition probabilities. This global analysis is more efficient and can provide

more information than the calculation of many individual trajectories.

The primary differences between the approach presented in this chapter and that of [31]

are that the set-oriented method

1. does not use normal forms to find the invariant manifold tubes but rather uses infor-

mation about the time trajectories take to return to a Poincaré section,

2. does not use Monte Carlo methods for the calculation of volumes, as the necessary

information is naturally given by the box volumes and the matrix of transition prob-

abilities, and

3. does not use long-term simulations but rather short-term simulations for a large num-

ber of globally distributed initial particles.
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Despite the large differences in methodology and computational tools, the results of the

set-oriented approach and that of [31] are in good agreement, which gives us confidence in

both methods.

We take the ionization of a Rydberg atom in crossed electric and magnetic fields as

our example. Both the planar problem and the three-dimensional problem are considered,

with the half scattering and full scattering rates being calculated. The power and the

potential of the set-oriented approach in dealing with high-dimensional systems is thereby

demonstrated.

In the following section, the physical background of the example that we consider is

presented, followed by a detailed description of the model. Section 2.3 elucidates the set-

oriented method as it relates to the calculation of reaction rates. In Section 2.4 the results

are presented and discussed, followed in Section 2.5 by conclusions and future directions.

2.1 Background

The Rydberg atom is a hydrogen-like atom in that it has one valence electron. Highly

excited Rydberg atoms have enough energy such that the valence electron is far away

from the nucleus and its dynamics can be treated classically, to a good approximation.

Introducing external perpendicular electric and magnetic fields breaks the symmetry of the

problem so that the escaping electron will do so in a particular direction. The escape of

the electron from the field of the nucleus (and surrounding inner electrons) is known as

ionization. The electron moves off to infinity and there is no possibility of return. This

process is an example of a unimolecular reaction or dissociation.

The highly excited Rydberg atom is an interesting example not only because of its

relation to other problems in chemical physics but also because of applications in diverse

areas ranging from lasers to quantum computing [29, 87, 1]. They are also of interest as

they are at the overlapping region between classical and quantum mechanics, where the

correspondence principle applies [73]. In addition to their theoretical interest, such atoms

in crossed fields arise naturally in some astrophysical plasmas.

Rydberg atoms are a compelling test bed as they have a theoretical richness while also

being experimentally accessible. Such atoms have been used to study the onset of classical

chaos and to develop semi-classical models of quantum resonances [57, 17]. They are well
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suited to experiments as the internal field strengths of the atom are comparable to the

external field strengths that are attainable in the laboratory [72]. Thus it is possible to

study the strong-field regime.

Raithel, Walther, and co-workers have studied Rydberg atoms in a number of arrange-

ments, including the crossed fields arrangement. They have calculated ionization rates as

a function of excitation energy for different values of the electric and magnetic fields [73].

Advances in experimental methods now allow the excitation of a Rydberg atom to a known

energy level [39]. Thus, the techniques are available for experimentally calculating the ion-

ization rates that are computed in this chapter. It is hoped that the explicit experimental

connection is achieved in the near future.

2.2 Model

2.2.1 Half and Full Scattering Problem

In a unimolecular dissociation reaction, the reactant is the bound state and the product

the unbound state. To pass from a bound state to an unbound state, the system must

go through the transition state. Such reactions have come to be known as half scattering

problems [44]. Once in the unbound state, there is no possibility of return for the electron.

The full scattering problem involves moving through the transition state from an unbound

state to a bound state and then back through the transition state to an unbound state,

that is, the capture of the electron followed by ionization of the same electron. The example

discussed in Section 2.4 calculates rates of reaction for both the half scattering and full

scattering problems.

The reaction will proceed only if the system has enough energy to overcome the energy

barrier between reactants and products. For an energy at which the reaction can proceed,

the energy in the system must find its way into a reactive mode for the reaction to occur.

It is this process which determines the rate of the reaction.
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2.2.2 The Hamiltonian System

The dynamics of the electron is described classically by the following 3-degree-of-freedom

Hamiltonian in co-ordinates that have been scaled by the cyclotron frequency:

H =
1
2

(p2
x + p2

y + p2
z)−

1
r

+
1
2

(xpy − ypx) +
1
8

(x2 + y2)− εx, (2.1)

where r =
√
x2 + y2 + z2 is the distance between the electron and the center of the nuclear

core. The cyclotron frequency, ωc, is given by ωc = eB/m where e is the electron charge,

B is the magnetic field strength and m is the mass of the electron. The scaled electric field

strength, ε, is defined by ε = ω
−4/3
c E where E is the applied electric field strength (see for

example [44]).

The Legendre transformation gives us the velocities

ẋ = px −
y

2
, ẏ = py +

x

2
, ż = pz.

The Jacobi constant (first integral) is given by

C(x, y, z, ẋ, ẏ, ż) = −(ẋ2 + ẏ2 + ż2) + 2Ω(x, y, z) = −2E(x, y, z, ẋ, ẏ, ż)

where

E(x, y, z, ẋ, ẏ, ż) =
1
2

(ẋ2 + ẏ2 + ż2)− Ω(x, y, z),

is the energy function. The effective potential function is Ω(x, y, z) = εx+ 1
r . The 2-degree-

of-freedom system is obtained by setting z = ż = 0 in the equations above.

The Stark saddle point occurs at

x =
1√
ε
, y = 0 , z = 0,

ẋ = 0 , ẏ = 0 , ż = 0.

The Hill’s region is the region of configuration space in which the electron is energetically

forbidden to go, and for ẋ = ẏ = ż = 0 is given by

M(ε, C) = {(x, y, z) ∈ R3 | Ω(x, y, z) ≥ C/2}.
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(a) (b)

Figure 2.1: (a) xy projection of the Hill’s region (schematic). (b) The possible types of
trajectories in the equilibrium region are shown in the xy projection (schematic). There are
three different types of orbits — asymptotic, transit, and non-transit orbits (see [51]).

Figure 2.1(a) shows one of the possible cases of the Hill’s region for the Rydberg atom

projected onto the xy-plane. For some values of the energy (and hence C), the energetically

forbidden region will be such that there is no way to go from a bound state to an unbound

state or vice versa. That is, the neck region in the figure will close. Thus, for scattering

problems we must have sufficient energy for the Hill’s region to look qualitatively as shown

in Figure 2.1(a).

2.2.3 Dynamics Near the Saddle Equilibrium Point

For the computation of transition probabilities, we need to identify regions in phase space

that correspond to transport regions. In Transition State Theory the phase space associated

with the reaction is traditionally assumed to be structureless [62]. Jaffé et al. [44], as well

as Gabern et al. [31], have shown that this is not true for the problem of a Rydberg atom in

crossed electric and magnetic fields. Their work builds on the work of Conley [14], McGehee

[63], and Koon et al. [51], which have shown this to also be true for the restricted three

body problem in celestial mechanics.

For a system with n degrees of freedom, there is an invariant deformed (2n− 3)-sphere

that is the normally hyperbolic invariant manifold (NHIM), near the rank-one saddle equi-

librium point sp. Orbits asymptotic to this sphere form the stable and unstable manifolds

of the sphere. These manifolds (also called “tubes”) are the key features of phase space
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Figure 2.2: Typical (a) transit and (b) nontransit trajectories. The xy projection of the
Hill’s region is shown as the dotted line. Compare with Figure 2.1.

that mediate transport through the transition state. As these tubes are (2n − 2) dimen-

sional objects in a (2n− 1) dimensional energy surface, they divide the possible orbits into

two categories: those that will pass through the transition state and those that will not.

Orbits inside the stable manifold in the interior of the atom will pass through the transition

state, that is, particles on these orbits will react. Figure 2.1(b) shows the possible types of

trajectories in the region near the equilibrium point sp.

2.2.4 The Poincaré Section

To reduce the dimensionality, an appropriately chosen (2n−2)-dimensional Poincaré section

is taken in the (2n− 1)-dimensional energy surface. In our context of the 2- and 3-degree-

of-freedom system we choose a Poincaré section Σ given by the conditions

y = 0, x < 0, ẏ > 0. (2.2)

All of the essential dynamics are captured by the Poincaré section as trajectories will cross

the Poincaré section only once in every loop that they make about the nuclear core at the

origin. Thus we focus our attention on the dynamics on the Poincaré section.

In Figure 2.2 the xy-projection of typical (a) transit and (b) nontransit trajectories

are shown. The starting point of the trajectory in (a) lies in the interior of the stable

manifold tube and leaves the Poincaré section directly, whereas the starting point in (b)

lies somewhere in the chaotic sea and comes back to Σ several times.
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The first intersection of the unstable manifold tube with the Poincaré section contains

those orbits that have just passed through the transition state from the unbound to the

bound state. The forward mapping of these orbits under the Poincaré return map designates

successive intersections of the unstable manifold tube with the Poincaré section. The first

intersection of the stable manifold tube with the Poincaré section contains orbits that are

about to pass through the transition state from the bound state to the unbound state. The

m-th pre-image of this intersection under the Poincaré return map designates orbits that

will pass through the transition state after m iterations. Thus in order to calculate rates

of reaction for the half scattering problem, it is sufficient to find the transport probability

into these intersections of the stable tube with the Poincaré section. For the computation

of transport rates in the full scattering problem it is necessary to calculate transition prob-

abilities between intersections of the stable and unstable manifold tubes with the Poincaré

section. The methodology for these computations is explained in Section 2.3.

All of our computations were with a fixed energy level of E = −1.52, which corresponds

to a Jacobi constant of C = 3.04. With this value of energy, a reaction will be able to

proceed if the electric field parameter is greater than ε = 0.5776. If the scaled electric field

is less than this value, the neck region between the bound and unbound states will be closed.

Figures 2.3 and 2.4 show the chaotic sea for the 2-degree-of-freedom Rydberg atom

together with intersections of the stable (blue) and unstable (red) tube boundaries. The

electric field parameter is ε = 0.57765 for Figure 2.3, which is just above the critical value.

Figure 2.3(a) shows the first six intersections of the stable (blue) and unstable (red) tube

boundaries with Σ, and Figure 2.3(b) focuses on the region of interest. These tube inter-

sections are very thin in comparison to the intersections of the tube boundaries for ε = 0.58

shown in Figure 2.4.

The black dots in these diagrams represent trajectories crossing Σ. The same number

of iterates and the same initial conditions were used for both values of ε. In both diagrams,

the inside of the first intersection of the unstable tube with Σ is white because particles of

this region will be mapped out of this region under one iteration of the map and no particles

of the initial distribution will be mapped into this region. For an electric field parameter

ε = 0.57765, if a particle’s trajectory begins in the unstable (red) tube, it will take five

iterations before it could possibly be in the stable (blue) tube. Thus in the full scattering

problem, once an electron has been captured, it will make five loops about the nuclear core
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(a) (b) zoom into (a)

Figure 2.3: Chaotic sea for the 2-degree-of-freedom Rydberg atom is shown with the first
six intersections of the unstable (red) and stable (blue) tube boundaries with the Poincaré
section Σ under consideration. For this electric field parameter of ε = 0.57765, the neck
between the bound and unbound region is only open a little.

(a) (b) zoom into (a)

Figure 2.4: Chaotic sea for the 2-degree-of-freedom Rydberg atom for an electric field
parameter of ε = 0.58. The first three intersections of the unstable (red) and stable (blue)
tube boundaries with the Poincaré section Σ under consideration are shown in (a), whereas
(b) is a zoom into the interesting region of (a).

before it could possibly leave the atom. For an electric field parameter ε = 0.58, the first

unstable tube intersection with Σ already overlaps the first stable tube intersection.

2.3 Set-Oriented Methods

In this section we describe the general methodology for the computation of transition prob-

abilities. We first introduce a method for the identification of the regions we are interested
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in. We then discuss a technique for the computation of transport rates and probabilities.

It makes use of an appropriate discretization of a transfer operator. Both of these methods

are based on the set-oriented approach (see, for instance, [24, 25, 26]).

2.3.1 Computation of Tube Intersections

As mentioned earlier, to compute the transition rate for the half and full scattering problems,

one needs to identify the intersections of the stable and unstable manifolds with the Poincaré

section Σ. One possible way is described in Gabern et al. [31] and the references therein.

The authors use a normal form method for the computation of the stable and unstable

manifolds and their intersection with Σ.

We follow a different approach to compute the intersections, and build on the concepts

of [67]. They use an algorithm for a decomposition of the phase space into those invariant

sets on which the corresponding dynamical system is ergodic. Based on these ideas, we

develop a multilevel approach for the decomposition of the set of interest.

First Return Time. Consider the system ẋ = g(x) with x ∈ Rd and a smooth function

g : Rd → Rd. Then the vector field g generates a flow ϕt : Rd → Rd with a smooth function

ϕ defined for all x ∈ Rd and t in some interval I ∈ R. Consider a local compact cross

section Σ ⊂ Rd which is transverse to the flow ϕ, and each point q ∈ Σ has to be valid in

the system g. Recall that the Poincaré map F : U → Σ for a point q ∈ U is defined by

F (q) = ϕτ̃(q)(q), where U ⊆ Σ and τ̃(q) is the time taken for the orbit ϕτ̃(q)(q) which starts

at q to first return to Σ. We call τ̃(q) the first return time (see, for example, [35]).

We make use of the return time to divide the section Σ into different regions. Therefore,

we need to define τ̃(q) for all q ∈ Σ even if points do not come back to Σ. If U = Σ then

all points of the Poincaré section Σ will come back to it by definition and τ̃(q) exists for

all q ∈ Σ. If U ⊂ Σ then there are points in Σ\U for which the Poincaré map F is not

defined. For our analysis, it is necessary that all points in Σ are assigned a time. Therefore,

we define

τ(q) :=

 τ̃(q) : q ∈ U

∞ : q ∈ Σ\U.
(2.3)

We use definition (2.3) for the computation of the first stable and unstable tube intersec-
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Figure 2.5: First return time distribution of the rectangle X = [−0.295,−0.005]× [−1.0, 1.0]
for an electric field parameter ε = 0.58. The white region in the middle indicates an infinite
return time, meaning points in this region do not come back to the Poincaré section under
consideration, and the other colors correspond to a finite return time decreasing from the
inner to the outer region.
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tions with Σ. Figure 2.5 shows the first return time distribution for the 2-degree-of-freedom

Rydberg atom in crossed electric and magnetic fields for an electric field parameter ε = 0.58.

For this we took the rectangle X = [−0.295,−0.005] × [−1.0, 1.0] as Σ and divided it into

16384 small boxes. The color of the boxes corresponds to the average return time with

respect to initial conditions in the respective box. The white region corresponds to the

interior and the boundary of the stable tube (compare with Figure 2.4) and indicates an

infinite return time. Besides this, the other colors show a finite return time decreasing from

the inner to the outer region.

In Section 2.2.3 we introduced asymptotic, transit, and nontransit orbits, which we will

denote by Oas, Otr, and Ontr, respectively. These are orbits on the boundary, inside, and

outside of the invariant manifolds, respectively. Uniqueness of solutions ensures that an

orbit cannot change between these groups [31, 51].

Recall that there is no possibility of return for the valence electron after it crosses from

the bound to the unbound state. This means that for the system under consideration,

particles that leave the Poincaré section through the interior of the first intersection of the

stable manifold with Σ will never come back to Σ. The same applies to particles on the

boundary of this intersection. Therefore, in terms of return times, the sets Oas, Otr, and

Ontr are given by

Oas = {x ∈ Σ | ∃ ε > 0 and ∃ y, z ∈ Vε(x) with τ(y) =∞ and τ(z) <∞},

Otr = {x ∈ Σ | ∃ ε > 0 such that ∀y ∈ Vε(x), τ(y) =∞},

Ontr = {x ∈ Σ | ∃ ε > 0 such that ∀y ∈ Vε(x), τ(y) <∞},

where Vε(x) denotes an ε-neighborhood of x.

With these theoretical considerations we are now able to devise an algorithm, which is

based on the ideas of [24, 25] and provides a method for the approximation of Oas.

Set-Oriented Subdivision Algorithm. The set-oriented subdivision algorithm gener-

ates a sequence B0,B1, . . . of finite collections of compact subsets of Rn such that the diam-

eter diam(Bk) = maxB∈Bk
diam(B) converges to zero for k →∞. Given an initial collection

B0, we obtain Bk from Bk−1 for k = 1, 2, . . . by
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(i) Subdivision:

Construct a new collection B̂k such that

⋃
B∈B̂k

B =
⋃

B∈Bk−1

B and

diam(B̂k) ≤ θk diam(Bk−1) where 0 < θmin ≤ θk ≤ θmax < 1.

(ii) Selection: Define a new collection Bk by

Bk = {B ∈ B̂k | ∃x, y ∈ B with τ(x) =∞ and τ(y) <∞}.

Remark. By construction we have

diam(Bk) ≤ θkmax diam(B0)→ 0 for k →∞.

We denote by Σk the collection of compact subsets obtained after k subdivision steps,

Σ0 = Σ. These Σks define a nested sequence of compact sets, i.e., Σk+1 ⊂ Σk. For each l

we have Σl =
⋂l
k=0 Σk, and we may view

Σ∞ =
∞⋂
k=0

Σk

as the limit of the Σks.

This algorithm converges to

Oas = Σ∞.

Remark. To obtain the sets corresponding to the unstable manifold one needs to proceed

backwards in time.

For the 3-degree-of-freedom system and a parameter value of ε = 0.58, Figure 2.6 shows

the xẋ- and zż-projections of the first stable (blue) and first unstable (red) tube intersec-

tions.
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(a) (b)

Figure 2.6: First intersection of the stable (blue) and unstable (red) tube with the Poincaré
section in (a) xẋ- and (b) zż-projections for a parameter value ε = 0.58.

Higher Return Times. The concept of the computation of the first tube intersection

with the Poincaré section can easily be extended to the computation of further intersections.

The n-th return time to Σ is denoted by τn(q) for q ∈ Σ. Figures 2.3 and 2.4 show further

intersections of the stable (blue) and unstable (red) tube boundaries with Σ for two dif-

ferent parameter values. These computations were carried out using the above subdivision

algorithm.

Now we have identified and approximated the regions of interest—for the following trans-

port computations we only need the first intersections of the stable and unstable manifold

with the Poincaré section. In the next subsection we show how the transition rates between

these sets can be computed.

2.3.2 Transport Rates

The set-oriented approach provides a convenient framework for the computation of transport

rates between regions of interest. In the following, we briefly describe a method that relies

on an appropriate discretization of a transfer operator—the Perron-Frobenius operator. For

a detailed description we refer to [27, 70].

Transfer Operator. Let

f : M →M, xk+1 = f(xk), k ∈ Z,
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be a map and R1, . . . , Rl ⊂ M a partition of M into l regions. We are interested in the

transport rates

Ti,j(n) = m(f−n(Rj) ∩Ri),

where m denotes the Lebesgue measure, that is, the mass or volume of material transported

from some region Ri to Rj in n steps.

Generally, the evolution of measures ν on M can be described in terms of the trans-

fer operator (or Perron–Frobenius operator) associated with f . This is a linear operator

P :M→M,

(Pν)(A) = ν(f−1(A)), A measurable,

on the space M of signed measures on M .

This operator concept relates to the transport quantities in the following way:

Corollary 1. Let mi ∈ M be the measure mi(A) = m(A ∩ Ri) =
∫
A χRi dm, where χRi

denotes the indicator function on the region Ri. Then

Ti,j(n) = (Pnmi)(Rj).

(Here Pn refers to the n-fold application of the transfer operator P .)

Since an analytic expression for this operator will usually not be available, we need to

derive a finite-dimensional approximation to it.

Discretization of Transfer Operators. As a finite dimensional spaceMB of measures

onM we consider the space of absolutely continuous measures with density h ∈ ∆B := span{χB | B ∈ B},

i.e., one which is piecewise constant on the elements of the partition (box covering) B. Let

QB : L1 → ∆B be the projection

QBh =
∑
B∈B

1
m(B)

∫
B
h dm χB.

Then for every set A that is the union of partition elements we have

∫
A
QBh dm =

∫
A
h dm.

Hence a discretization of the transfer operator P with respect to the box collection B,



20

consisting of b boxes, is given in terms of a transition matrix PB := (pij) with

pij =
m(f−1(Bi) ∩Bj)

m(Bj)
, i, j = 1, . . . , b.

So the entry pij gives the (conditional) probability that a particle is mapped from box Bj

to Bi within one iterate of f .

Approximation of Transport Rates. For a measurable set A let

A =
⋃

B∈B:B⊂A
B and A =

⋃
B∈B:B∩A 6=∅

B.

We obtain the following estimate on the error between the true transport rate Ti,j(n)

and its approximation using powers of the transition matrix PB. To abbreviate notation,

let eR, eR, uR and uR ∈ Rb be defined by

(eR)i =

 1, if Bi ⊂ R

0, else
, (eR)i =

 1, if Bi ∩R 6= ∅

0, else

and

(uR)i =

 m(Bi), if Bi ⊂ R

0, else
, (uR)i =

 m(Bi), if Bi ∩R 6= ∅

0, else

where i = 1, . . . , b.

Lemma 1. Let Ri, Rj ⊂M ,

S0 = Rj , Sk+1 = f−1(Sk), k = 0, . . . , n− 1

and

s0 = Rj , sk+1 = f−1(sk), k = 0, . . . , n− 1.
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Then

∣∣∣Ti,j(n)− eRj
TPnB uRi

∣∣∣
≤ eRj

TPnB (uRi − uRi) + (eRj − eRj )TPnBuRi

+ max
{
m
(
f−n(Rj \Rj) ∩Ri

)
,m
(
f−n(Rj \Rj) ∩Ri

)}
+ max

{
m
(

(Sn \ f−n(Rj)) ∩Ri
)
,m
(
(f−n(Rj) \ sn) ∩Ri

)}
.

For a proof of this statement we refer to [70]. This result is an improvement of a similar

estimate in [27]. The main difference is that in this statement the error stays bounded if

n goes to infinity. Furthermore, this estimate gives a bound on the error between the true

transport rate Ti,j(n) and the one computed via the transition matrix PB. Especially those

elements of the fine partition B contribute to the error which either intersect the boundaries

or which contain pre-images of the boundary of Rj , see Figure 2.7 for an illustration. A

direct consequence of Lemma 1 is that in order ensure a certain degree of accuracy of the

transport rates, these particular boxes need to be refined.

f

f

R

Rj

i

Figure 2.7: Two box transitions that contribute to the error between the computed and the
actual value of the transport rate from a region Ri into region Rj after one iterate. This
figure is taken from [27].
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Convergence. Using Lemma 1 one can prove convergence for the approximate transport

rate as the box covering is refined (see [27, 70]).

Adaptive Refinement of the Box Covering. As shown above, the boxes that con-

tribute considerably to the error are those that either map onto the boundary of the target

set or whose pre-image lies on the boundary of the source set. Unlike the situation in [27],

one usually does not observe the desired transport within one iteration of the map, but only

after a longer time span. Therefore, we use the following algorithm, discussed in [70], for

the refinement of the transport boxes.

Adaptive Algorithm. Let Ri, Rj ⊂ M and n ∈ N. Let B be a box covering of M , let

N := dn2 e and let PB be the transition matrix as defined above. Determine the boundary

boxes

bRi := Ri \Ri

bRj := Rj \Rj

and compute

Ti,j(n) := eRj
TPnB uRi

Ti,j(n) := eRj
TPnB uRi ,

the numerical lower and upper bound on the transport rate Ti,j(n), respectively. Choose

J ∈ N.

For j = 1, . . . , J

1. Mark all boxes B for which

fk(B) ∩ bRj 6= ∅ for k ∈ {1, . . . , N}

or

f−k(B) ∩ bRi 6= ∅ for k ∈ {1, . . . , N}.

(This information is coded in the transition matrix.)
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2. Subdivide marked boxes.

3. Compute PB.

4. Determine bRi , bRj , Ti,j(n), and Ti,j(n).

The algorithm produces an adaptive covering, refining those boxes in particular that

contribute to the error in computing the transport rates. Moreover, the algorithm gives

an upper and lower bound to the transport rate, at least up to the error estimated in

Lemma 1. Note that the numerical effort to compute the approximate transport rates

essentially consists in n matrix-vector-multiplications—where the matrix PB is sparse.

Transport Probabilities. In many applications one is interested in transport probabil-

ities rather than in the transported volume. The transport probability as a function of the

number of iterations n is given by

qi,j(n) =
Ti,j(n)
m(Ri)

,

that is, the fraction of particles in Ri that gets transported to Rj in n steps.

An approximation q̃i,j(n) to this quantity can be obtained using the upper and lower

bounds on the transport rates and taking an average in the following way:

q̃i,j(n) =
Ti,j(n) + Ti,j(n)

m(Ri) +m(Ri)
.

Note that the quantities q̃i,j(n) can be computed from the box covering and the transition

matrix, whereas in our setting the true transport probabilities qi,j(n) are theoretical values.

Convergence of q̃i,j(n) to qi,j(n) follows from the results above when the box covering is

appropriately refined.

2.3.3 Implementation

The algorithms described above are implemented in the dynamical systems software package

GAIO (Global Analysis of Invariant Objects, see [22]). The box collections Bk are realized

by generalized rectangles of the form

B(c, r) = {y ∈ Rd | |yi − ci| ≤ ri for i = 1, . . . , d},
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where c ∈ Rd denotes the center and r ∈ Rd the radius of the rectangle (box). For our

computations we use a finite number of test points in each box, such as a regular grid or

Monte Carlo points; see, for instance, [24] or [48] for a discussion on the choice of test points.

In GAIO, the boxes are stored in a binary tree, where the children of a box at depth k are

constructed by bisecting the box in alternate coordinate directions.

Note that the methods described above can be used in parallel to speed up the compu-

tation time.

2.4 Examples

We demonstrate the strength of our methods by computing ionization probabilities for the

full and half scattering problems of the Rydberg atom in crossed electric and magnetic

fields. We choose an energy of E = −1.52.

First we consider the full scattering problem of the 2-degree-of-freedom system for an

electric field parameter ε = 0.57765. We compare the results of the computation with the

respective results for the 3-degree-of-freedom system. Then we analyze the 3-degree-of-

freedom system for ε = 0.58, allowing a comparison with [31]. Finally, we use the results

from the previous computations to consider the half scattering problem.

2.4.1 Full Scattering Problem for the 2- and 3-Degree-of-Freedom System

(ε = 0.57765)

For the 2-degree-of-freedom system we consider the rectangle X = [−0.295,−0.005] ×

[−1.0, 1.0] on the Poincaré section Σ. We start with a partition of X on depth 8. By

applying the return time algorithm in forward and backward time, we can identify and

approximate the first stable and unstable tube intersections, respectively. As a result, we

obtain a covering of X on depth 8, with the boxes covering the boundary of the tube inter-

sections on depth 18. This covering consists of 736 boxes. We denote by R1 the set of boxes

in the interior of the unstable tube intersection and by R1 the boxes covering the interior

and the boundary. The sets R2 and R2 correspond to the stable tube intersection. Note

that we are not given R1 and R2 explicitly because we can only approximate these sets on

the box level, yielding R1, R1, R2, R2.

We then apply J = 5 steps of the adaptive refinement algorithm with 25 grid points
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Figure 2.8: Adaptive box covering for the Rydberg atom in crossed fields. In the 2-degree-
of-freedom system for ε = 0.57765 those boxes are refined that contribute to the error in
the computation of the transport rates. The unstable (light red) and stable (blue) tube
intersections are superimposed.

per box. We choose N = 5 because we want to consider at least n = 10 iterations of the

Poincaré map for our transport calculations. In each step, we subdivide in both coordinate

directions at once. As the boundary is on depth 18, there is no gain in considering boxes

on finer levels because while the computational effort increases, we would not get any new

information. The resulting box covering (18670 boxes), with those boxes contributing to

the error in the transport rate having being refined, is on depth 8/18; see Figure 2.8.

In Figure 2.9 we show the numerical lower and upper bounds on the transport rates,

T1,2(n) and T1,2(n), respectively, for n = 1, . . . , 15. Observe that the scattering profile is

structured. The approximate scattering probabilities q̃1,2(n) are shown in Figure 2.10(a).

The electron scattering probability is about 22% for n = 5 loops around the nuclear core.

It is zero or almost zero for all other n apart from n = 10 and n = 11, where we observe

small probabilities.

To check the results, we computed these probabilities using as many as 900 grid points
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Figure 2.9: Full scattering problem for the 2-degree-of-freedom Rydberg atom in crossed
fields for ε = 0.57765. Approximations of the lower bound T1,2(n) (blue) and the upper

bound T1,2(n) (red) on the transport rate for n = 1, . . . , 15 are shown.

per box, obtaining almost identical results. So for the given accuracy of the sets of interest,

we can be sure that the results are correct.

We compare the results in the planar Rydberg system with those obtained in the 3-degree

of freedom problem. In the 3-degree of freedom system we have the coordinates x, y, z, ẋ, ẏ, ż.

Fixing a constant energy and a Poincaré section defined by (2.2), our remaining coordinates

are x, z, ẋ, ż. Therefore, the initial box needs to be four-dimensional. For the following

computations we chose X = [−0.3, 0]× [−0.1, 0.1]× [−1.0, 1.0]× [−2.0, 2.0].

We start with a box covering on depth 16 and apply the return time algorithm in forward

and backward time which yields a covering of the boundaries of R1 and R2 on depth 36.

The resulting box collection consists of 139276 boxes. We then apply J = 7 steps of the

adaptive refinement algorithm, choosing N = 5 and 100 Monte Carlo points per box. In

each step we subdivide in two coordinate directions at once and obtain a covering of 2056672

boxes, again on depth 16/36. The approximate electron scattering probabilities q̃1,2(n) for

the full scattering problem are shown in Figure 2.10(b). Note that the scattering profile

has the same qualitative characteristics as for the 2-degree-of-freedom system. Yet, the

probabilities are lower than in the planar case. A reason for this might be that the volumes

of the tubes are smaller, while the relative box sizes are considerably bigger than in the

planar case. If the volume of the tube is comparatively small, as in our example, we need

to use a box covering on a much deeper level to decrease the error between the upper and
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(a) (b)

Figure 2.10: Full scattering problem for the Rydberg atom in crossed fields for ε = 0.57765.
Approximate transport probabilities q̃1,2(n) for n = 1, . . . , 15 in (a) the 2-degree-of-freedom
system and (b) the 3-degree-of-freedom system.

lower bounds of the transport rates. However, by doing this we obtain a covering that is

hardly manageable because it consists of a huge number of boxes.

To verify our results for this parameter value we computed the transport probabilities

in the 3-degree of freedom system using as many as 1000 Monte Carlo points per box.

This computation confirmed our results. Furthermore, in the 2-degree-of-freedom system

our results agree very well with calculations done for this value of ε by the authors of [31]

(personal communication).

2.4.2 Full and Half Scattering Problem for the 3-Degree-of-Freedom Sys-

tem (ε = 0.58)

Choosing ε = 0.58, the first intersections of the stable and unstable tubes with the Poincaré

surface overlap. For the computation of the electron scattering probabilities in the 3-degree-

of-freedom system we consider a partition of X as defined above. The box covering consists

of 2155528 boxes on depth 16/28, with the transport boxes refined using J = 4 steps of the

adaptive algorithm as described above.

The scattering probabilities q̃1,2(n) with n = 1, . . . , 10 are shown in Figure 2.11(a).

These results compare well with the scattering probabilities obtained by Gabern et al. [31],

who analyzed the system using the same parameters.

In addition, we can re-use the box covering and the transition matrix already computed

for dealing with the half scattering problem.
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(a) (b)

Figure 2.11: The 3-degree-of-freedom Rydberg atom in crossed fields for ε = 0.58. Ap-
proximation of transport probabilities in (a) the full scattering problem and (b) the half
scattering problem.

Here we define R3 = X \ R2 and R3 = X \ R2, that is, we consider the transport of

particles from every region outside the stable tube R2 into R2. Note that by this construc-

tion, R2 and R3 have a non-empty intersection, containing the boundary boxes of R2. So

T3,2(n) and T3,2(n) can only give very coarse estimates on the transport rate because the

boundary boxes are taken into account twice. Therefore we compute an approximation of

the half scattering probability by

q̂3,2(n) =
e2
TPnBu3 + e2

TPnBu3

m(R3) +m(R3)
.

This represents an average of the transport from R3 to R2 and R3 to R2. The results

are presented in Figure 2.11(b). Note that for higher iterates one observes an exponential

decay of the electron scattering probabilities. Jaffé et al. [44] used a similar parameter

value for the computation of so-called survival probabilities for the 2-degree-of-freedom half

scattering problem in their paper. Even if it is not exactly the same value (they used an

electric field parameter of ε = 0.6) the shapes of the probabilities for both ε values look

qualitatively the same.

2.5 Conclusion

This chapter has presented a set-oriented method for computing transport rates. We con-

sidered a suitable Poincaré section and introduced a new method for the computation of
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tube intersections with this section using the Poincaré first return time. Based on these

intersections we have the necessary information to find the regions between which transport

will occur. We can use an adaptive algorithm for the computation of the transport rates

relevant for the present situation (see [27] and [70]). It focuses on a global description

of the dynamics using a box covering of the interesting region and a matrix of transition

probabilities between these boxes for the calculation of the transport rates.

These techniques were demonstrated in the 2- and 3-degree-of-freedom systems for the

Rydberg atom in crossed electric and magnetic fields. The generalization to higher dimen-

sions is straightforward, with the limitation being the time taken to do the computations, as

well as the memory required. For this reason, the calculation of transition rates for larger

systems requires a reduced-order model of the system on which to use the set-oriented

computational method.

In contrast to [31], the set-oriented approach does not require normal form techniques

for the computation of tube intersections and does not use a Monte Carlo approach for the

computation of the reaction rates. However, there is agreement between the results of the

two approaches.

One possible next step in this line of research is to experimentally verify the numerical

results presented in this chapter. The techniques for calculating the relevant transition rates

are available but these observations have not yet been made. In such an experiment, there

would be a spread of energies of the incoming electrons and also a variation in the electric

field parameter ε. Thus, results of physical observations would not exactly match those in

Figure 2.10 and Figure 2.11, but should be qualitatively the same. That is, an experiment

should look for a non-exponential structure in the ionization rate that resembles those

calculated here. For the results presented here to be directly comparable with experimental

results, we would need to average over both the energy and the electric field.

The methods presented in this chapter represent a good starting point for further inves-

tigations using dynamical systems and geometric observations combined with set-oriented

methods and statistics. To the best of our knowledge the results presented here and those

of [31] represent the first successful calculation of reaction rates in a 3-degree-of-freedom

chemical system.

An ongoing priority is to make set-oriented calculations in higher-dimensional problems

more computationally efficient. Since even small molecular systems commonly have too



30

many dimensions for computation to be feasible, methods to reduce the number of vari-

ables needed to describe the coarse dynamics of a high-dimensional system are needed. The

aim is to investigate high-dimensional multiscale problems by combining the set-oriented

method with an appropriate procedure for distinguishing between optimal coarse and fine

variables. An interesting possibility for coarse variables is the Perron-Frobenius eigenfunc-

tions themselves [49, 68].

We would like to apply these methods to the computation of reaction rates and tran-

sition probabilities for more complex molecules. To do so will surely require some form of

model reduction and the associated identification of suitable reaction coordinates, with the

methods presented here applied to the coarse-level dynamics. In the following chapter we

investigate a good candidate for a coarse variable that describes a transition. The gyra-

tion radii of a system could be used to describe the dynamics and the set-oriented method

applied to these coarse variables to calculate transition rates.
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Chapter 3

Energy Effects and Gyration
Radius Dynamics in the
Dissociation of Methane and
Oxygen

In molecular dynamics, the effects of the bath particles on the motion of the primary

particles are known to be important, yet are difficult to quantify. The primary particles

are the particles undergoing the reaction and the bath particles are particles that exert

an influence on these primary particles. Analyses of systems where the bath particles

exert a significant influence most often consider only the potential acting between particles.

However, these potentials are modified by the kinematics, or in other words, the motion, of

the particles and thus, a realistic description of the system would quantify this effect.

Considering only the potentials acting between particles is insufficient in many molecular

systems to describe the dynamics of transition [90]. The goal is to calculate the effective

potential that governs the motion of the primary particles of a system. This effective

potential will take into account the kinematics of the bath particles, or secondary particles

(these terms will be used interchangeably). Another important goal is to find appropriate

coarse variables to describe the dynamics of the transition. A good set of coarse variables

will capture the essential dynamics and produce a lower-dimensional description of the

system.

The system that we investigate is a dissociation reaction in one dimension, involving

two primary particles and four secondary particles. We calculate two different effective
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potentials. These effective potentials describe the dissociation behaviour of the system very

well, whereas simply looking at the potential between the dissociating particles does not.

The first exploits the kinetic energy distribution within the system to derive an entropic

force that describes the dynamics of the primary particles as they dissociate. The reaction

co-ordinate in this case is simply the distance between the dissociating primary particles.

The second method for calculating the effective potential makes use of the gyration

radius of the system as a coarse variable. The gyration radius formalism developed by

Yanao and collaborators [89] considers the kinematic influence of the secondary particles.

The elegance of this method is its simple description of the dynamics. Previously, they had

been applied by Yanao and co-workers to study conformational changes in small molecular

systems [88], but since they essentially capture the mass distribution of the system, they

are ideally suited to dissociation reactions. This is the first application of the formalism

to the dynamics of dissociation reactions. We shall see that the gyration radius not only

provides a good coarse variable for describing the transition, but that the effective potential

calculated along this reaction co-ordinate explains the observed dissociation behaviour.

In the next section we introduce the model dissociation reaction that we will study. The

Kinetic Energy Bias method for calculating the effective potential is presented in Section 3.2.

Following this, we explain the Gyration Radius method, which recasts the system dynamics

in terms of a coarse variable that takes the effect of the bath particles into account. We

then derive an effective potential for the system using this formalism. The probability

distribution and average lifetime of our model system is studied with respect to changes in

energy and changes in the masses of the secondary particles. At the end of the section, a

simpler system in which the influence of the bath particles’ kinematics is seen more clearly

is presented.

3.1 Model

The system that we investigate is motivated by one of the reactions that occur in the

burning of methane, CH4, and oxygen, O. We study the one-dimensional system that has

two primary particles (the carbon atom (C) and the oxygen atom) with a Lennard-Jones



33

potential between them, which is given by

VLJ = 0.01

((
0.1
r

)12

−
(

0.1
r

)6
)
. (3.1)

We work in non-dimensional units. The hydrogen atoms (H) are attached to the carbon

atom by spring potentials, with spring constant k = 0.01. A schematic of the system is

shown in Figure 3.1. The potential energy function of the system is

V = 0.01

((
0.1

|x1 − x2|

)12

−
(

0.1
|x1 − x2|

)6
)

+
1
2
k |x3 − x1|2

+
1
2
k |x4 − x1|2 +

1
2
k|x5 − x1|2 +

1
2
k|x6 − x1|2. (3.2)

The total energy of the system is a constant and of a magnitude that is sufficient for

dissociation to occur. In our simulations, the primary particles have no initial velocity and

the initial conditions of the hydrogen atoms, here the bath particles, are chosen randomly

so as to conserve energy. Thus, for dissociation to occur, energy must be redistributed from

the bath modes to the reactive mode, that is, from the H atoms to the C and O atoms.

We work in the center of mass and center of momentum frame.

Figure 3.1: Schematic of the model problem

The masses of the four secondary particles are the same. These masses were changed for

the different sets of simulations. The masses of the primary particles are set to unity. The

different values of the secondary particle masses that we consider are ms = 0.1, 0.01, 0.001

for s = 3, ..., 6.

For the Kinetic Energy Bias method of Section 3.2, the total energy of the system was

set to E = 0.0036. The initial conditions of the system are shown in Figure 3.2(a). The

Lennard-Jones potential between the primary particles is shown in black and the total

energy of the system is shown as the dashed red line. The initial separation of the primary
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Figure 3.2: (a) Initial conditions. The Lennard-Jones potential between the primary par-
ticles is shown in black and the total energy of the system is the red dashed line. The
initial separation of the primary particles is indicated by the blue circle. For dissociation to
occur, energy from the bath modes must be transferred to the reactive mode, that is, to the
primary particles. (b) Typical trajectories. The separation between the primary particles
is shown on the vertical axis. This separation oscillates until dissociation occurs. Some
trajectories, such as the green one, do not lead to dissociation.

particles is indicated by the blue circle. For dissociation to occur, energy from the bath

particles must be transferred to the primary particles. The minimum of the Lennard-Jones

potential occurs at r = 0.11225 where the potential is Vmin = −2.5× 10−3.

Figure 3.2(b) shows typical trajectories with the separation between primary particles,

r, on the vertical axis and time on the horizontal axis. Simulations were run for much

longer than shown here (8 times longer). Trajectories such as the green one continued to

bounce (that is, the separation between the primary particles oscillated) until the end of

the simulation without leading to dissociation. The other trajectories show the type of

bouncing that occurs before dissociation.

For the Gyration Radius method of Section 3.3, the dissociation reaction was investi-

gated both for a variety of bath particle masses and different total energies.

3.2 Kinetic Energy Bias Method

Knowing that for dissociation to occur in our system, energy must be transferred to the

reactive mode, suggests that an examination of the energy distribution in the system is

important for understanding the observed dynamics.
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3.2.1 Theory

For an n-atom system in the center of mass and momentum frame, there are n− 1 degrees

of freedom. The law of equipartition of energy states that the average kinetic energy per

degree of freedom in a system is given by

〈K〉i =
E − V
n− 1

fori = 1, ..., n− 1 (3.3)

where E is the total energy of the system and V is the potential energy. If equipartition of

energy does not hold then there will be a bias in the kinetic energy balance and this bias

can be characterized by α:

〈K〉i =
E − V
n− 1

× αi fori = 1, ..., n− 1. (3.4)

A reaction co-ordinate qR is used to describe the reaction pathway. For our dissociation

reaction, we take the distance between the primary particles, r, to be the reaction co-

ordinate, with the additional restriction that along the reaction co-ordinate, the potential

energy of the bath particles is very small. This is because the energy must be in the reactive

mode for the dissociation to occur.

By considering the equation of motion for the reaction coordinate, we can derive the

average force

〈Force〉 = − ∂V
∂qR

+
E − V (qR)
n− 1

∂

∂qR
log
(
α2 × ...× αn−1

αR

)
. (3.5)

The second term is an entropic force term where E−V
n−1 , the average kinetic energy per degree

of freedom, is the temperature. The motivation for the form of this term is the statistical

mechanical force due to entropy. The αi represent the available volume in phase space. We

refer to the first term as the potential force term since it is the force due to the potential

term. Data from reactive trajectories (trajectories leading to dissociation) at points where

the potential energy of the bath particles is less than 5% of the total system energy was

used to compute the average force at each point along the reaction co-ordinate. These data

points are along the reaction co-ordinate as defined above.
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The effective potential Veff is the work done against this averaged force:

Veff = −
∫
path
〈Force〉 dqR. (3.6)

This effective potential quantifies the kinematic effects due to the breakdown of the equipar-

tition law via the dependence of the average force on the αi.

3.2.2 Effective Potential

The effective potential given by Equation 3.6 was calculated numerically by running 100, 000

simulations. Figure 3.3 shows the effective potential along the reaction coordinate (sepa-

ration of primary particles) compared to the Lennard-Jones potential between the primary

particles. Results are shown for secondary particle masses ms = 0.01 and ms = 0.1, with

total energy E = 0.0036. The masses considered did not all yield effective potentials with

the same number of wells but they all had at least a secondary well (a well apart from that

of the primary Lennard-Jones potential).
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Figure 3.3: The effective potential as calculated from Eq. 3.6 is shown as a solid line. The
horizontal axis is the reaction co-ordinate, which is the separation of the primary particles.
The Lennard-Jones potential between the primary particles is shown as the dotted line. (a)
secondary particle masses ms = 0.01 and (b) secondary particle masses ms = 0.1.

We see that the effective potential calculated by taking into account the break-down of

the equipartition law is significantly different from the Lennard-Jones potential. It has the

same primary well, but in addition, there are clearly-defined secondary and tertiary wells.

The effects of these additional wells should be observable in the dissociation behaviour of
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the system.
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Figure 3.4: The distribution (in time) for reactive trajectories versus r is shown on the left
vertical axis in blue and the effective potential is shown on the right vertical axis in green.

Figure 3.4 shows the effective potentials of Figure 3.3 along with the distribution of the

reactive trajectories. These distributions plot the separation between the primary particles

at each time step. This is the probability distribution in time of the system, i.e., peaks

correspond to the primary particle separation most likely to be seen. This indicates that

the system spends most of its time before dissociation on the downward segment of the

effective potential leading into the secondary well. This is consistent with the system

bouncing back and forth between the primary and secondary wells of the effective potential.

This behavior can also be seen in Figure 3.2(b): the primary particle separation oscillates

between r = 0.125 and r = 0.26.

The distributions in Figure 3.4 are dominated by data points from the part of the

trajectories before dissociation and by the effects of velocity. To explain the latter, we

observe that in the regions of the peaks in the distribution, the primary particles have less

kinetic energy and thus traverse these regions more slowly. This can be seen by observing

the kinetic energy distribution in Figure 3.8, where we see that the primary particles have

the least kinetic energy at r = 0.2. A distribution in time (such as in Figure 3.4) is more

likely to find the primary particles with a separation in this region. There is no peak in the

distribution corresponding to the third well in the effective potential because in this region

the primary particles have a larger velocity.

To account for these effects governing the distributions in Figure 3.4, we compute a
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Figure 3.5: Distribution in space. The distribution of reactive trajectories, from the last
bounce onwards, along the reaction coordinate, taking into account differences in dissocia-
tion velocity, is shown in blue on the left vertical axis. The effective potential is shown in
green on the right vertical axis.

different distribution that may be considered to be a distribution in space (Figure 3.5).

We consider only reactive trajectories from the time of their last bounce onwards, that is,

trajectories that are on their way to dissociation. This last bounce is defined to occur at the

last time that the primary particle separation is less than r = 0.125 before dissociation.1

It was found (as can be seen in Figure 3.2(b)) that there is typically a last bounce with

r < 0.125 immediately before dissociation occurs.

The distribution in space is found as follows. For any series of consecutive output time

steps, if the primary particle separations are in the same bin in r, then only one of them

is counted. We note that the output time step was chosen to be small enough such that

every bin along r is visited consecutively, once the system is beyond the primary well.

The difference between the distributions in Figure 3.4 and Figure 3.5 is that Figure 3.4

corresponds to where you are likely to find the system when you look at it and Figure 3.5

corresponds to what you would see if you drew the trajectories and plotted the number of

unique visits to bins along r.

Figure 3.5 reveals that the effective potential calculated using the Kinetic Energy Bias

method successfully explains the dissociation dynamics of the system. We see that in the

process of dissociation, the system is temporarily trapped in the wells of the effective po-

1This value for the last bounce is for a secondary particle mass of m = 0.01. Different values were used
for each different mass.
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tential. This behavior can not be explained by the Lennard-Jones potential alone. In terms

of the primary particle separation, the trapped motion corresponds to certain separations

about which the carbon and oxygen atoms oscillate on their way to dissociating.

We note that in Figure 3.5(b) the distribution increases at larger values of r beyond the

secondary well. This is because as the primary particles dissociate, they oscillate in such

a way as to cross the boundary of the bins along r a number of times. These small scale

oscillations (as opposed to the larger ones across many bins in r caused by trapping in the

secondary well) were more prominent for the larger bath masses. This binning issue may

be overcome by changing the bin size, but this would require a bin size that would obscure

the features we are interested in at smaller values of r.

3.2.3 Energy Distribution in the System

To further understand the mechanism behind the observed dissociation behaviour, we in-

vestigate the energy distribution in the system along the reaction pathway. We saw in

Figure 3.5 that the dissociating particles are temporarily trapped in the secondary and

tertiary wells of the effective potential. Since the effective potential was calculated from

considering the breakdown of the law of equipartition of energy, we expect that the expla-

nation for the trapping phenomenon will involve the transfer of energy between the modes

in the system.

3.2.3.1 Ratio of Average Kinetic Energies

Figure 3.6 shows the ratio of the average kinetic energies of the primary and secondary

particles for data points along the reaction co-ordinate. Peaks in this ratio occur in the

wells of the effective potential. These wells determine the dissociation dynamics of the

primary particles: the primary particles are caught in one of these wells when they do not

have enough kinetic energy to continue to dissociation. For a fixed energy, this occurs when

the bath particles have more kinetic energy. For dissociation to continue, this kinetic energy

of the bath particles must be redistributed to the primary particles.

The average kinetic energy of the bath particles is higher than the average kinetic energy

of the primary particles once the barrier between the primary and secondary wells of the

effective potential has been crossed. In the primary well, the average kinetic energy of the

primary particles is greater than that of the bath particles. This is to be expected, as we
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are considering data along the reaction co-ordinate from the last bounce onwards, and in

order for dissociation to occur, the primary particles must have sufficient energy to climb

out of the primary well. This well is deeper than the other wells and so requires much more

of the energy to be in the reactive mode.
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Figure 3.6: Ratio of bath kinetic energy to primary particles’ kinetic energy versus r. The
kinetic energy ratio is plotted on the left vertical axis in blue and the effective potential is
plotted on the right vertical axis in green.

3.2.3.2 α Tubes

For α, which characterizes the breakdown of the law of equipartition of energy, as defined in

Equation 3.4, we can construct tubes, called α-tubes, with radius given by α4
bath/αprimary.

These tubes are shown in Figure 3.7. The α-tubes provide a visualization of the bottlenecks

experienced by the dissociating particles. We see that the tubes are narrower in regions

where there is a local maximum in the effective potential. Since the dissociation reaction

proceeds through this tube, a narrower region of the tube indicates that it will be more

difficult to get through this region of the tube and this corresponds to having to overcome

a local barrier in the effective potential. The α-tubes are very narrow in the primary well

of the effective potential because the depth of this well compared to the successive wells is

much greater and therefore it is more difficult to overcome the barrier between the primary

and secondary well. In other words, it is difficult to get the dissociation reaction started.

Note that initially the primary particles have a separation of r = 0.2, so our system starts

outside of the primary well and to the right of the narrowest region of the α-tubes.
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Figure 3.7: Visualization of the bottlenecks experienced by the dissociating particles: α-
tube versus r. The radius of the tube is given by α4

bath/αprimary.

3.2.3.3 Equipartition of Energy

Figure 3.8 shows the average kinetic energy for the primary and secondary particles. If the

energy were equipartitioned then the plots for the primary and secondary particles would

be the same. As they are not, equipartition of energy does not hold. We note that this is

because in a dissociation reaction, the phase space is not bounded.

In contrast to previous figures, these plots were produced using all trajectories in the

simulations. The sharp peak in the average kinetic energy of the secondary particles seen

in the ms = 0.1 case, close to r = 0.2, coincides with the secondary well in the effective

potential. The minimum of the average kinetic energy of the primary particles corresponds

to the peak in the distributions of Figure 3.4.

3.2.4 Discussion

The results shown in Section 3.2.2 and similar results for other mass parameters highlight

the need to take into account kinematic effects in addition to the potentials between particles

in molecular dynamics calculations. These kinematic effects are captured by an effective

potential, which can be calculated by quantifying the break-down of the law of equipartition

of energy and accounting for the entropic force that this leads to. The effective potential

has been shown to agree with the observed behavior of the system.

An investigation of the energy distribution in the system in Section 3.2.3 confirmed that

the kinetic energy in the system is not equipartitioned. The ratio of kinetic energies of the



42

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4
x 10

−3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
4

4.5

5
x 10

−4

(a) ms = 0.01

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4
x 10

−3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
4

4.5

5
x 10

−4

(b) ms = 0.1

Figure 3.8: Average kinetic energy of primary (left, in blue) and secondary (right, in green)
particles versus r. As these average energies are not the same, equipartition of energy does
not hold. Note that the scales on the vertical axes are different.

bath and primary particles revealed that when the primary particles are trapped in the

wells of the effective potential, the bath particles have much more kinetic energy. Thus

the trapped motion can be explained by the primary particles losing kinetic energy to the

bath modes and having to get this energy back in order to continue to dissociation. This

phenomenon can be visualised as bottlenecks along the reaction co-ordinate, as shown by

the α-tubes.

Although the Kinetic Energy Bias method has successfully explained the dynamics, a

more elegant approach would provide a more sophisticated reaction co-ordinate than the

distance between the primary particles. This reaction co-ordinate should take into account

the kinematic effects observed to play a crucial role here. The effective potential calculated

along this reaction co-ordinate should ideally be simpler and smoother than the effective

potentials found in this section. The following section explores the use of the gyration radius

of the system as the reaction co-ordinate.

3.3 Gyration Radius Method

The gyration radii, being related to the moments of inertia of a system, naturally incorporate

the mass distribution of the system. As such, they are ideally suited for the dissociation

reaction studied here and for conformational changes from symmetric to elongated shapes

as studied by Yanao et al. [88]. By calculating an effective potential along the gyration
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radius of the system (one gyration radius since our model is collinear), we can quantify the

work that the dissociating system must do in order to transition to the unbound state. We

are interested in the intrinsic equations of motion of the system, that is, in the internal

shape space, and thus have eliminated overall translations and rotations of the system.

We begin with a general, isolated n-atom system and turn our attention to our specific

model problem in Section 3.3.2.1. A more detailed exposition can be found in [88] and the

references therein.

3.3.1 Background

In order to study the internal shape space of a system, it is important to first correctly sep-

arate the rotational and internal motion [89]. These two motions can be strongly coupled

via the effects of a change in the mass distribution on the total angular momentum. Tran-

sition state theory typically assumes that they may be simply separated and that studying

the dynamics on the potential energy surface is sufficient. However, as in the “falling cat”

example, a molecule can continuously change its shape while keeping the total angular mo-

mentum equal to zero, and end up with a different orientation to the one it began with even

though the molecule has returned to its initial shape. The body frame of the molecule (the

frame with respect to which shape changes are viewed) changes as the molecule changes

shape, even in a system with zero total angular momentum. Thus the body frame must be

found in a careful manner in order to account for the internal changes.

The separation of the motions is correctly done using reduction theory from geometric

mechanics [61, 60] and the associated gauge theory for systems with rotational symmetry

[59, 36, 79, 54]. Since the body frame is not unique, the internal space has an associated

gauge field. Having separated the overall translational and rotational motion in this way, we

are left with a (3n− 6)-dimensional internal space. In this internal space, the metric tensor

is in general non-Euclidean and determined only by the mass and shape of the system. It

is independent of the potential energy surface and the choice of body-fixed frame. The

mass-related kinematic effects that we investigate arise from the non-Euclidean nature of

this internal space.

We note that for collinear dynamics, as in our model, internal motion and rotation do

not couple, but the body frame changes as the shape of the system changes, giving rise to

a non-Euclidean internal space. In what follows, we will keep the discussion general until
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Section 3.3.2.1, when we confine our attention to collinear systems.

An appropriate co-ordinate system in the internal space is given by the principal-axis

hyperspherical co-ordinates. This formalism was developed by Chapuisat [12] and Kupper-

mann [52], based on early work by Eckart [28]. The principal axes of the instantaneous

moment of inertia tensor provide a time-dependent body frame. The gyration radii of

the system are the mass-weighted lengths of the molecule along each principal axis. The

principal-axis hyperspherical co-ordinates are the three gyration radii and the (3n− 9) hy-

perangles. A change in the latter generates a cyclic deformation of the molecule’s shape,

referred to as a kinematic rotation [89]. These are different from the external rotations of

the system in configuration space.

The coupling of the gyration radii with the internal kinematic rotation, via the non-

Euclidean metric of the internal space, induces an “internal centrifugal force” in the space

spanned by the gyration radii. This centrifugal force is an internal force and can be gen-

erated even if the system has zero total angular momentum. It is considered a centrifugal

force since it has a quadratic dependence on the angular velocities of the kinematic ro-

tations. It can have a significant influence on chemical reaction dynamics and has been

extensively studied in the case of isomerization of atomic clusters [88]. The inclusion of this

internal centrifugal force yields the effective potential for our model system. The force due

to the potential in the system tends to confine the particles, acting against dissociation.

The internal centrifugal force on the other hand works to elongate molecular systems and

increase the mass distribution. In other words, the effect of the motion of the bath particles,

via the internal centrifugal force, is to drive the system towards dissociation. The effective

potential captures this competition between the potential and internal centrifugal forces.

3.3.2 Theory

The exposition of the formalism for finding the gyration radii of an isolated n-atom system

follows the presentation in Yanao and Takatsuka [89], which is based on the work of Lit-

tlejohn and Reinsch [54]. In Section 3.3.2.1 we limit our attention to our collinear model

system.

Let rsj be the position of the jth particle, where j = 1, ..., n, with respect to some origin

in a space-fixed frame. The overall translational degrees of freedom can be eliminated by

using mass-weighted Jacobi co-ordinates {ρs1, ..., ρs(n−1)}, where the subscript s refers to a
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vector with respect to a space-fixed frame.

A body-fixed frame will be represented as a 3 × 3 proper rotation matrix R ∈ SO(3),

whose columns are the orthonormal axes of the frame. We fix the origin of the frame to

be at the center of mass of the system. This body frame, R, specifies the orientation of

the system. The relation between the mass-weighted Jacobi vectors above and the Jacobi

vectors with respect to this frame, {ρi}, is given by

ρsi = R ρi({qµ}) i = 1, ..., n− 1, (3.7)

where the qµ are the 3n− 6 internal co-ordinates of the system.

Differentiating with respect to time yields

ρ̇si = Ṙρi + R
∂ρi
∂qµ

q̇µ (3.8)

where the Einstein summation convention (sum over repeated upper and lower indices) has

been adopted over the indices µ = 1, ..., (3n− 6) and will be used for all Greek indices.

The angular momentum with respect to the body frame can be written as

L = RT Ls

= RT
n−1∑
i=1

ρsi × ρ̇si

=
n−1∑
i=1

ρi × (ω × ρi) +
n−1∑
i=1

ρi ×
∂ρi
∂qµ

q̇µ, (3.9)

where superscript T denotes the transpose and ω is the angular velocity vector of the body

frame with respect to the frame itself.

The angular momentum can be rewritten in terms of the moment of inertia tensor M,

and the gauge potential Aµ:

L = M (ω + Aµq̇
µ), (3.10)

with

Mαβ =
n−1∑
i=1

((ρi · ρi)δαβ − ρiαρiβ) ; (3.11)
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where δαβ is the Kronecker delta and

Aµ = M−1

(
n−1∑
i=1

ρi ×
∂ρi
∂qµ

)
. (3.12)

The kinetic energy with respect to the body-fixed frame is

K =
1
2

n−1∑
i=1

ρ̇i · ρ̇i (3.13)

=
1
2

(ωTMω) + (ωTMAµ)q̇µ +
1
2
hµν q̇

µq̇ν (3.14)

where hµν is a pseudo-metric defined by

hµν =
n−1∑
i=1

∂ρi
∂qµ
· ∂ρi
∂qν

. (3.15)

The first term on the right-hand side of Equation 3.14 is the rotational kinetic energy, the

second term is the Coriolis term, and the third is the vibrational kinetic energy.

None of the terms in Equation 3.14 are separately gauge invariant, however Littlejohn

and Reinsch [54] derived a rearrangement of the kinetic energy in which each term is indi-

vidually gauge invariant:

K =
1
2

(ω + Aµq̇
µ)T M (ω + Aµq̇

ν) +
1
2
gµν q̇

µq̇ν , (3.16)

where gµν is a gauge-invariant metric tensor on the internal space defined as

gµν = hµν − AT
µMAν . (3.17)

This metric tensor is, in general, non-Euclidean and leads to the kinematic effects that we

seek to explore.

If the total angular momentum of the system L (Equation 3.10) is zero, the kinetic

energy simplifies and the Lagrangian of the system becomes

L =
1
2
gµν q̇

µq̇ν − V ({qµ}), (3.18)

where we restrict our attention to the case in which the potential energy, V , of the system
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only depends on the internal co-ordinates, {qµ}.

The equations of motion are given by the Euler-Lagrange equations:

gµν(q̈ν + Γνκλq̇
κq̇λ) = − ∂V

∂qµ
. (3.19)

The Christoffel symbols Γνκλ are

Γνκλ =
1
2
gνµ

(
∂gµκ
∂qλ

+
∂gµλ
∂qκ

− ∂gκλ
∂qµ

)
. (3.20)

The metric force arises due to the non-vanishing Christoffel symbol yielding a force propor-

tional to the velocities of the internal co-ordinates.

We now introduce the principal-axis hyperspherical co-ordinates, starting from the mass-

weighted Jacobi vectors with respect to the body frame:

ρi =
√
µi

(∑i
k=1mk rk∑i
k=1mk

− ri+1

)
i = 1, ..., n− 1, (3.21)

where the µi are the reduced masses

µi =
mi+1

∑i
k=1mk∑i+1

k=1mk

i = 1, ..., n− 1. (3.22)

For an n-atom system in 3 dimensions, the matrix W is defined to be the 3× (n−1) matrix

with columns given by the Jacobi vectors,

W ≡ ( ρ1 ... ρn−1 ) . (3.23)

By the singular value decomposition theorem,

W = NUT (3.24)

where N is a 3× (n− 1) matrix whose diagonal entries a1, a2, a3 are the singular values of

W and the other elements are zero. The matrix U is an (n− 1)× (n− 1) orthogonal matrix

with the ith row given by the unit eigenvector uTi . The square of the singular values are
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the non-zero eigenvalues of the matrix WTW satisfying

WTW uk = a2
kuk k = 1, 2, 3. (3.25)

The matrix WTW has (n−4) zero eigenvalues with corresponding eigenvectors u4, ...,un−1.

The ak are the gyration radii of the system and the ui characterize the bath modes.

The gyration radii are related to the principal moments of inertia by

M1 = a2
2 + a2

3, M2 = a2
1 + a2

3, M3 = a2
1 + a2

2. (3.26)

This formalism has been applied to the isomerization of three, four, and six atom clusters

[88, 89]. We now use it to study our model collinear dissociation system, after rephrasing

the formalism explicitly for collinear n-atom systems.

3.3.2.1 Collinear System

For an n-atom collinear system, such as the methane and oxygen dissociation model pre-

sented in Section 3.1, the overall translational degrees of freedom of the system are elimi-

nated by introducing mass-weighted Jacobi vectors (scalars in our case) as defined in Equa-

tion 3.21.

The matrix of Jacobi vectors, W, is a 1 × (n − 1) matrix that can be decomposed

according to the singular value decomposition theorem as

W = ( ρ1 ... ρn−1 ) = ( a1 0 ... 0 )


uT1

uT2
...

uTn−1

 , (3.27)

where a1 is the gyration radius and the ui are (n− 1)-dimensional orthogonal unit vectors.

The kinetic energy of the collinear n-atom system can be expressed as

K =
1
2

n−1∑
i=1

ρ̇i · ρ̇i

=
1
2
ȧ2

1 +
1
2
ȧ2

1 u̇T1 u̇1. (3.28)
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The Lagrangian of the system, L = K−V , yields the following Euler-Lagrange equation

for the gyration radius

ä1 = a1 u̇T1 u̇1 −
∂V

∂a1
. (3.29)

The first term on the right-hand side is an internal centrifugal force and will be called the

centrifugal force term. It arises from the dynamical coupling of the gyration radius with

the bath modes. The second term on the right-hand side will be called the potential force

term since it is derived from the potential of the system.

The effective potential, Veff , governing the reaction is given by the line integral of the

averaged field of the force terms along the gyration radius:

Veff = −
∫ (〈

a1 u̇T1 u̇1

〉
−
〈
∂V

∂a1

〉)
da1 . (3.30)

Since there is only one gyration radius in our collinear system, we henceforth drop the

subscript on a1. The potential force term can be computed by observing that

∂V

∂a
=

n∑
j=1

∂V

∂xj

∂xj
∂a

. (3.31)

The ∂V/∂xj terms can be calculated from the potential energy function of the system,

Equation 3.2. The ∂xj/∂a terms are given simply by xj/a. This can be seen as follows.

The Cartesian co-ordinates {xj} are related to the mass-weighted Jacobi co-ordinates {ρi}

by the linear transformation


x1

...

...

xn

 = S ({mj})


ρ1

...

ρn−1

RCM

 = S ({mj})


u(1,1)

...

u(1,n−1)

0

× a (3.32)

where S ({mj}) is an n × n matrix whose components are functions of the masses of the

particles and RCM is the center of mass of the system. The subscripts on u(1,j) denote the

n− 1 components of the vector u1. To obtain the second equality, we set RCM = 0 without

loss of generality, and use Equation 3.27. Since the matrix S ({mj}) and the vector u1 are

independent of a, Equation 3.32 can be differentiated with respect to a to yield the desired



50

result, 
∂x1/∂a

...

...

∂xn/∂a

 = S ({mj})


u(1,1)

...

u(1,n−1)

0

 =


x1/a

...

...

xn/a

 . (3.33)

3.3.3 Systems with Different Total Energies

In this section we investigate the effects of changing the total system energy on the disso-

ciation of our model system in which the masses of the secondary particles are ms = 0.01.

3.3.3.1 Distributions for Different Energies

The minimum of the potential energy, V , in Equation 3.2, occurs at a = 0.08290. Typical

trajectories along the gyration radius are shown in Figure 3.9. A bounce was defined (for the

mass and energy parameters of Figure 3.9) as occurring when a decreased until a < 0.165

and then subsequently increased. Dissociation is considered to have occurred once a > 0.5

as no trajectories were observed to bounce again after this. Bounces were not observed to

exceed an a value of 0.4.
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Figure 3.9: Typical trajectories. The gyration radius, a, is plotted against the time step.

We computed the two different types of distributions explained in Section 3.2.2, the

distribution in time and the distribution in space, along both the primary particle separa-

tion, r, and the gyration radius, a. Total energies of E = 0.001, 0.003, 0.005, 0.007 were

investigated. These distributions are shown in Figure 3.10. They include both reactive and

non-reactive trajectories.
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Figure 3.10: (a) Distribution in time along r; (b) distribution in space along r; (c) distri-
bution in time along a; (d) distribution in space along a. See text for explanation.

The distributions along r, (Figure 3.10 a,b), do not change very much in their width

as the energy is increased. This is to be expected since this primary inter-particle distance

is governed by the Lennard-Jones potential. The differences between distributions in time

and space can also clearly be seen, indicating that the primary particles remain in the well

of the Lennard-Jones potential, bouncing back and forth.2

In contrast to the distributions along r, the distributions along a, (Figure 3.10 c,d),

moved to significantly greater values of a for increasing energy. This is consistent with the

fact that the gyration radius is a measure of the extent of the whole system, not just the

2We note that the distribution in space was computed slightly differently to that in Section 3.2.2 since
the output time step was not such that it would guarantee that every bin is visited consecutively. Instead,
trajectories were assumed to move in a straight line between the positions in successive output time intervals.
The bin number of data from successive output time intervals was found and the count in each of the bins
between these two bin numbers was increased by one. If the bin number of successive data points were the
same then the count in that bin was increased by only one. This indicates where trajectories traverse rather
than where they spend most of their time.
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primary particles. At higher energies, the extra energy manifests itself as both potential

and kinetic energy. The extra potential energy causes the particles to be further apart, thus

accounting for the greater a values. The extra kinetic energy leads to faster oscillations

but this can not be seen from these distributions, particularly in (d) where the effects of

velocity have been eliminated.

It is the form of the distributions in Figure 3.10(c) and (d) that we seek to explain by

calculating the effective potential along the gyration radius.

3.3.3.2 Effective Potential

The internal centrifugal force and potential force of Equation 3.29 are shown in Figure 3.11.

The local minimum of the internal centrifugal force and the minimum of the potential force

move towards increasing values of a for larger energies. Both forces go to zero as a gets

larger, which is expected for a dissociating system.

Figure 3.12 shows the potential due to the force terms in Figure 3.11. The potential due

to the internal centrifugal term indeed acts like a centrifugal potential pushing the system

apart. This effect is greater for larger energies, as is expected. The potential due to the

potential term along the gyration radius has similarities with the Lennard-Jones potential

since this is the dominant contribution to the potential in Equation 3.2. For larger energies,

the potential well gets deeper and wider. The minimum of the potentials in Figure 3.12(b)

are all close to a = 0.1.

Figure 3.12 illustrates that the effective potential is a balance between two opposing

types of forces. The internal centrifugal potential acts to increase the mass distribution in

the system, that is, it tends to elongate the system and thereby push it to dissociation. The

potential due to the potential term is a confining potential that aims to keep the system

compact, that is, keep it from dissociating. The balance between these opposing tendencies

depends on the system parameters.

The sum of the potentials due to the internal centrifugal term and the potential term

yield the effective potential of the system (Figure 3.13). The effective potentials for the

different energies have a Lennard-Jones-like shape with a hard repulsive potential at low

values of a and the force going to zero at large values of a. There is one potential well,

but the location, depth, and width of the potential well changes with the energy of the

system. The higher the energy, the wider the potential well and the further it is towards
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Figure 3.11: (a) Internal centrifugal force along the gyration radius a for different energies;
(b) zoom into (a). (c) Potential force along the gyration radius a for different energies; (d)
zoom into (c).

larger values of a.

As noted earlier, the potentials due to the potential term all have their minimum in

approximately the same location. The internal centrifugal potential has the effect of pushing

the system to higher values of a and this is more noticeable for higher energies. It is this

internal centrifugal term that has spread out the minimum of the effective potentials in

Figure 3.13.

It is notable that the largest and smallest energies considered have the deepest well. For

E = 0.001 the internal centrifugal term’s contribution to the effective potential is small,

so the latter is dominated by the potential due to the potential term. The potentials in

Figure 3.12(b) for the other energies are all very similar in structure and location. For

E = 0.007 the internal centrifugal force is quite large and significantly affects the location

and shape of the well in the effective potential. It is interesting to note that there is a
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Figure 3.12: (a) Potential due to the internal centrifugal force. (b) Potential due to the
potential force.
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Figure 3.13: (a) Effective potential of the system for different energies; (b) zoom into (a).

pronounced dip in the centrifugal force for E = 0.007 in Figure 3.11(b). This is only just

noticeable as a slight flattening of the potential in Figure 3.12(a) at the same location near

a = 0.18. Comparison of these figures reveals that between E = 0.003 and E = 0.005 the

dominant influence on the effective potential changes from the potential term to the internal

centrifugal term.

The test of whether the effective potential can explain the dynamics of the dissociation

is if it can account for the observed distributions in Figure 3.10(c) and (d). Figure 3.14

shows two of the effective potentials of Figure 3.13 along with the corresponding distribution

from Figure 3.10. The effective potentials are shown on the right vertical axis in green and

the distributions (in space, that is, taking into account the effects of velocity) on the left
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vertical axis in blue. Energies of E = 0.003 and E = 0.007 are shown; the other energies

gave qualitatively similar results.
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(b) E = 0.007

Figure 3.14: Comparison of effective potential and distribution in space for different ener-
gies, along the gyration radius. The effective potential is shown on the right vertical axis
in green and the distribution on the left vertical axis in blue.

We see that the effective potential along the gyration radius successfully accounts for

the observed distribution. The system is trapped in the well of the effective potential before

dissociation.

The simple form of the effective potential and the distribution highlight the fact that the

gyration radius is a good reaction co-ordinate to use to describe the dissociation dynamics

of the system. A comparison with the effective potentials and distributions found using

the Kinetic Energy Bias method (Figure 3.3) reveals that the Gyration Radius method is

a more elegant way of explaining the reaction pathway, and that it naturally encompasses

the dissociation mechanism governing the primary particles. The Gyration Radius effective

potentials have only one well rather than two or three, and are smoother. In this way they

are a cleaner description of the dissociation.

3.3.3.3 Average Lifetime Before Dissociation

The time at which dissociation occurs is defined here to be the time of the last bounce of the

system (see Section 3.2.2). The time of dissociation, tlast, is the last time that the gyration

radius was below a particular value (depending on the mass and energy parameters) before

dissociation.

Figure 3.15 shows the distribution of tlast values for different energies. The distributions
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Figure 3.15: Distribution of times of last bounce, tlast, of the system before dissociating for
different energies.

have clean peaks at regular intervals. These peaks occur at the same dissociation times for

all of the energies, up to t = 70. For 14 < t < 70, the successive most common dissociation

times (peaks in the distribution) were 2π apart. The period of oscillation of the secondary

particle spring potentials is 2π since k = 0.01 and the secondary particle mass is ms = 0.01

(period = 2π/
√
k/m).

The table below shows the percentage of simulations leading to dissociation, that is,

the percentage of reactive trajectories, for different energies. It also shows the average

lifetime before dissociation. As the energy increases, a greater number of simulations lead

to dissociation and the average lifetime decreases. A comparison with the effective potentials

in Figure 3.13 reveals that this is unexpected since the potential well is deeper for E = 0.007

than for E = 0.005. We note that the values in Table 3.1 are based on 4, 000 simulations. A

different set of 4, 000 simulations lead to the percentage of reactive trajectories changing by

5%. Since the percentage of reactive trajectories for energies of E = 0.005 and E = 0.007

are within 5% of each other, we believe that this unexpected result is an artifact of the

particular set of simulations used.

3.3.4 Systems with Different Secondary Particle Masses

In this section we investigate the effects of changing the masses of the bath particles on the

dissociation of our model system with total system energy E = 0.003. Secondary particle

masses of ms = 0.001, 0.01, 0.1 are considered.
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Energy % reactive trajectories Average tlast

0.001 58.5 32.6
0.003 78.6 20.5
0.005 88.7 17.3
0.007 92.5 14.5

Table 3.1: Percentage of simulations leading to dissociation and the average lifetime before
dissociation for different energies.

3.3.4.1 Distributions for Different Masses

The distributions in time and space along both r and the gyration radius, a, for different

masses are shown in Figure 3.16.3 We see that the distributions along r change only a

little in their width as the secondary particle mass changes; however, for higher masses

the primary inter-particle distance oscillates higher in the Lennard-Jones potential well.

This can be seen from both Figure 3.16(a) and (b). Figure 3.16(a) shows that the primary

particles spend most of their time with an inter-particle distance that puts them on the

edge of the Lennard-Jones well, where their velocity is slower. Figure 3.16(b) shows this by

the width of the broad, flat region of the distribution.

Figure 3.16(c) and (d) show that as the mass increases, the system moves to larger

values of a and that it oscillates between a broader range of a values. Since the gyration

radius characterizes the mass distribution of the system, it is expected that systems with a

higher total mass will have larger a values.

3.3.4.2 Effective Potential

Figure 3.17 shows the internal centrifugal and potential force terms from Equation 3.29. It

is interesting to note that the local minimum in the centrifugal force gets more pronounced

as the mass is increased (as well as moving to larger a values). The locations of these

local minima for the two higher masses are in the vicinity of peaks in the distribution in

Figure 3.16(c). Figure 3.17(b) indicates that between ms = 0.01 and ms = 0.1 the potential

force changes significantly in its structure along the gyration radius. For the highest mass,

the potential well is very wide and shallow.

In Figure 3.18, where we see the potential due to the internal centrifugal term and

3Section 3.3.3.1 explains the differences between distributions in time and space.
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Figure 3.16: Distributions for different masses. (a) Distribution in time along r; (b) distri-
bution in space along r; (c) distribution in time along a; (d) distribution in space along a.
See text for explanation.
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Figure 3.17: (a) Internal centrifugal force along the gyration radius a for different masses.
(b) Potential force along the gyration radius a for different masses.
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Figure 3.18: (a) Potential due to the internal centrifugal force. (b) Potential due to the
potential force.

the potential term, the system with highest mass can be seen to experience a qualitatively

different total potential. The potential due to the internal centrifugal term exhibits a pro-

nounced flat region and the potential due to the potential term has a differently shaped well.

These features are evident in the effective potential for the system, shown in Figure 3.19.

For ms = 0.1 the well is significantly broader. Thus there seems to be a change in the

mechanism of dissociation between systems with bath particle masses of ms = 0.01 and

those with ms = 0.1. Part of this change is accounted for by the increasing influence of the

internal centrifugal term and by the nature of this term. In particular, the location of the

minimum of the effective potential for ms = 0.1 can be seen to have moved to a larger value

of a from the minimum in the potential due to the potential term. This is not true for the

other ms values considered.
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Figure 3.19: Effective potential of the system for different masses.
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Based on these observations, and those in Section 3.3.3.2, we postulate that the internal

centrifugal term begins to dominate the effective potential once a noticeable flat region

develops in the potential due to the internal centrifugal term. Once this flat region develops,

its location corresponds to the outer edge of the well in the effective potential along the

gyration radius. If the flat region has not developed, the major features of the effective

potential are determined by the potential term.

Figure 3.20 compares the effective potential with the distributions in space along the

gyration radius. Results for ms = 0.001 and ms = 0.1 are shown (the result for ms = 0.01

can be seen in Figure 3.14(a)). We see that the effective potential successfully accounts for

the observed distributions. Furthermore, the effective potential has a simple well structure

and is smooth. This was not the case for the effective potential found by the Kinetic Energy

Bias method. The fact that the Gyration Radius method has such a clean description of the

dynamics indicates that the dissociation behavior can be explained by accounting for the

non-Euclidean nature of the internal space. The gyration radius is a good coarse variable

to use to describe the dissociation dynamics as it captures these effects.
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Figure 3.20: Comparison of the effective potential and distribution in space for different
masses, along the gyration radius. The effective potential is shown on the right vertical axis
in green and the distribution on the left vertical axis in blue.

3.3.4.3 Average Lifetime Before Dissociation

The distributions of dissociation times, as given by tlast (defined in Section 3.3.3.3), are

shown in Figure 3.21. The most common dissociation times occur at regular intervals
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for any particular value of ms; however, the distance between peaks is different for the

different masses. The times between successive peaks (excluding the first peak) are shown

in Table 3.2. Noting that the spring constant is k = 0.01, we observe that for ms = 0.001

and ms = 0.01, the time between peaks is equal to the period of oscillation, T = 2π/
√
k/m.

This is not true for the largest mass, ms = 0.1, where T = 19.7. This is consistent with

the observation that the mechanism of dissociation is different for the heaviest bath particle

mass.
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Figure 3.21: Distribution of times of last bounce, tlast, of the system before dissociating for
different masses.

Table 3.2 also shows the percentage of simulations for which dissociation occurred and

the average dissociation time for these reactive trajectories. The system with ms = 0.01 is

more reactive than systems with other bath particle masses. The effective potential for this

mass has a shallower well.

Bath mass % reactive trajectories Average tlast Time between tlast peaks T = 2π/
√
k/m

0.001 69.2 34.4 1.98 ± 0.05 1.99
0.01 78.6 20.5 6.15 ± 0.48 6.28
0.1 72.5 21.4 10.16 ± 0.87 19.87

Table 3.2: Percentage of simulations leading to dissociation, the average lifetime before dis-
sociation, the average time between peaks in dissociation times, and the period of oscillation
of the secondary particles, for different masses.

We conclude that the influence of the internal centrifugal term in the effective potential

becomes greater than that of the potential term once the bath particle mass increases from
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ms = 0.01 to ms = 0.1. Evidence for this is the shape of the potential for the heaviest

mass in Figure 3.18(a) and the form of the effective potential along the gyration radius in

Figure 3.19. A consequence of this is that the time between peaks in the distribution of

dissociation times is no longer given by the period of oscillation of the secondary particles.

The internal centrifugal term is responsible for the dynamical coupling of the bath

modes to the reactive mode. As a result of this, we expect that the influence of the internal

centrifugal term on the effective potential is also dependent on the spring constant of the

spring potentials that couple the bath particles to one of the primary particles. This is an

avenue for further investigation.
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Figure 3.22: (a) Variation in reactivity with mass. Percentage of simulations that resulted
in dissociation, for different masses, are shown on the left vertical axis in red. The average
time to dissociation is shown on the right vertical axis in light blue. The horizontal axis is
the logarithm to base 10 of the bath particle masses. (b) Variation in reactivity with spring
constant, k. Vertical axes are the same as in (a). The horizontal axis is the logarithm to
base 10 of k, the spring constant, that couples the bath particles to the primary particle.
Each set of (ms, k) parameters used 10, 000 simulations with total energy E = 0.0036.

Figure 3.22 shows the variation in reactivity of the system as the bath particle pa-

rameters are changed. Figure 3.22(a) considers different secondary particles masses from

ms = 0.001 to ms = 10 for a spring constant of k = 0.01. The logarithm to base 10 of these

masses is shown on the horizontal axis. The vertical axes show the percentage of simulations

that lead to dissociation on the left in red, and the average time to dissociation, as given

by tlast, on the right in blue. We see that ms = 0.01 leads to dissociation most often and

is the fastest to dissociate. In contrast to the results presented earlier in this section, the

results in Figure 3.22 are shown for 10, 000 simulations for each set of (ms, k) parameters
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with an energy of E = 0.0036, and not the 4, 000 simulations at an energy of E = 0.003

used previously.

Figure 3.22(b) considers different strengths of the coupling between the secondary parti-

cles and the primary particle that they are attached to. This is given by the spring constant

k of the spring potential between them. Values of k = 0.001 to k = 0.75 were considered for

a secondary particle mass of ms = 0.01. The logarithm to base 10 of these spring constants

is shown on the horizontal axis. The vertical axes are the same as in (a). For this mass,

the most reactive system has k = 0.01—it dissociates most often and the fastest.

Figure 3.23 shows the variation in reactivity with respect to k/ms as either the mass

or the spring constant is kept constant. The system is most reactive when k = ms = 0.01.

These simulations had a total energy of E = 0.0036. The examination of systems with

different total energies and different bath masses in the last two sections has revealed that

there is a competition between the internal centrifugal force and the potential force. The

nature of the dissociation dynamics is determined by which of these is stronger for the given

system parameters. In Section 3.3.3, as the energy was increased, the internal centrifugal

force became dominant. This was also the case in the present section with a larger bath

particle mass. Future work aims to define the region of (ms, k, E)-space in which the

internal centrifugal force is the dominant contributor to the effective potential governing

the dissociation dynamics.
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Figure 3.23: Variation in reactivity with k/ms. The horizontal axis shows log10(k/ms).
The different colors represent quantities that are kept constant while the other parameter is
varied from 0.001 to 0.75. For example, the red line corresponds to k = 0.001 with masses
varying from ms = 0.001 to ms = 0.75. The system energy is E = 0.0036.
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3.3.5 The Internal Centrifugal Term in a Simpler System

The internal centrifugal term in the equation of motion along the gyration radius captures

the kinematic effects that are not included in the potential force term. For some systems,

this internal centrifugal term plays a larger role than the potential term in determining the

dynamics. In this section we investigate a simpler system that exemplifies this.

The system that we consider is a modification of the model introduced in Section 3.1,

with only two secondary particles instead of four. These secondary particles have a mass of

m3,4 = 0.1 and the primary particles have mass m1,2 = 1.0. The total system energies that

we consider are E = 0.0012, 0.0030, 0.0036, 0.0042, and 0.0072.
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(b) Internal centrifugal force term
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(c) zoom into (b)
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(d) Potential due to internal centrifugal term

Figure 3.24: Distributions, internal centrifugal force, and internal centrifugal potential for
different energies in a system with two secondary particles.

Figure 3.24(a) shows the distribution in time along the gyration radius, using both

reactive and non-reactive trajectories. The distributions along a change with increasing

energy, forming a bi-modal distribution above a certain energy threshold. The peak of the
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distribution at lower values of a does not shift for larger energies, however the other peak

moves to increasing a values for larger energies. This is consistent with having a well in the

effective potential that has a hard repulsive potential, like the Lennard-Jones potential, at

low a values. The well in the effective potential along the gyration radius gets wider with

increasing energy. In this distribution in time, the peaks correspond to turning points as

the system bounces back and forth within the effective potential well. It is for this reason

that we look at the distribution in time here and not the distribution in space, the former

giving a clear indication of the edge of the effective potential well.

Figure 3.24(b) and (c) show the internal centrifugal force term in the equation of motion

along the gyration radius. Figure 3.24(d) shows the potential due to this internal centrifugal

term. For all energies apart from the lowest one, there is a pronounced flat region in the

internal centrifugal potential. For the lowest energy we see this flat region beginning to

develop. The internal centrifugal force tends to increase the gyration radius by pushing

the primary particles further apart. This effect is more pronounced for higher energies

since it is a kinematic effect and there is more kinetic energy available at higher total

energies. A comparison of Figure 3.24(a) and (c) reveals that the minimum in the internal

centrifugal force term coincides with the location of the second peak in the distribution, for

all energies. This strong correlation is evidence for the internal centrifugal force being the

dominant force in this system, determining the width of the well in the effective potential.

Further, the existence of the flat region in the internal centrifugal potential is consistent

with our hypothesis that once this flat region develops, the internal centrifugal force will be

the major contributor to the dissociation dynamics of the system.

3.4 Conclusion

In this chapter we have seen that for a correct description of the dynamics of transition in

our dissociating system, the kinematic effects of the secondary particles must be taken into

account. These effects are generally applicable in molecular transitions and frequently lead

to observable effects that explain the transition dynamics.

In the Kinetic Energy Bias method, these kinematic effects are captured by an effective

potential, which is calculated by quantifying the break-down of the law of equipartition of

energy and accounting for the entropic force that this break-down leads to. The Gyration
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Radius method shows that the kinematic influence of the bath particles is contained in

the internal centrifugal force that is derived from the non-Euclidean nature of the internal

shape space. The metric force due to the non-Euclidean internal space begins to dominate

the force due to the potential of the system for higher energies and larger masses, as shown

in Sections 3.3.3 and 3.3.4. The nature of the dissociation dynamics is determined by the

competition between the internal centrifugal force and the potential force. The latter gen-

erally works to maintain the inter-atomic bond, whereas the internal centrifugal force works

to break the bond. For some systems, such as the simpler one considered in Section 3.3.5,

the internal centrifugal force dominates at all energies that we considered.

We have shown that the system parameter values at which the internal centrifugal force

is dominant are those at which the internal centrifugal potential has a flat region. The

location of this flat region corresponds to the edge of the well in the effective potential

along the gyration radius.

Both the Kinetic Energy Bias method and the Gyration Radius method give the follow-

ing physical insight: It is the redistribution of kinetic energy from the bath modes to the

reactive mode that enables and governs the dissociation. The point at which the primary

particles can be said to have dissociated is best given by the Gyration Radius method as the

gyration radius value at the edge of the well in the effective potential. Dissociation can not

be said to have definitely occurred if the distance between the primary particles is greater

than the value at the right-hand edge of the Lennard-Jones potential. The Kinetic Energy

Bias method indicates that beyond this primary well, there are secondary wells along r in

which the system can be caught. These wells give the distances at which the primary par-

ticles can be temporarily caught; however, the most straightforward cutoff value at which

dissociation occurs is given by the Gyration Radius method.

The most common times at which dissociation occurs (peaks in the distribution of

dissociation times) was shown to depend on the mass of the secondary particles. For systems

in which the potential force is dominant, peaks in the dissociation time distribution occurred

every T time units, where T is the period of oscillation of the secondary particles. When

the internal centrifugal force is more dominant, this no longer holds—that is, peaks in the

distribution are not correlated with the period of oscillation.

The dissociation reactions that we have considered show that the Gyration Radius for-

malism provides a good coarse variable to use as the reaction co-ordinate and that the
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effective potential calculated along this reaction co-ordinate explains the observed disso-

ciation behaviour. The effective potential found in this way has a relatively simple form

(one potential well) and is much smoother than the effective potential found in Section 3.2

using the Kinetic Energy Bias method. It is also much cheaper, computationally, to find

the effective potential using the Gyration Radius method since all data points can be used,

whereas in the Kinetic Energy Bias method, many data points were discarded as they did

not lie along the reaction co-ordinate, which required the kinetic energy in the bath mode

to be almost zero. For the results presented here, the Kinetic Energy Bias method used 25

times more simulations.

A further advantage of the Gyration Radius framework is its generalizability to higher-

dimensional systems than the collinear one considered here. This is applicable in any system

in which a change in the mass distribution can account for the transition of interest. The

coarse variables would be the three gyration radii which are the singular values of the matrix

of Jacobi vectors (Equation 3.23).

The Kinetic Energy Bias method and the Gyration Radius method together provide a

detailed understanding of the dissociation dynamics in this system. Both methods highlight

the importance of considering kinematic effects in this reaction.

A promising method for overcoming the problem of dimensionality in larger chemical

systems is to combine the methods presented in this chapter with those of the previous,

namely, to use the gyration radii of the system as a coarse variable and the effective potential

along this variable as the model for the set-oriented method to use to compute transition

rates. We believe this will be a fruitful combination of approaches.
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Chapter 4

Lattice Quality Assessment Tools

In this chapter and the next, we move away from chemical reactions with a small number

of constituents and instead focus on a large number of particles in the plane and their

transition from a disordered to an ordered sate. The transition can be captured by metrics

that assess the quality of the patterns formed.

The structure of crystalline solids has been of interest to the condensed matter and

materials science fields for a long time. The defects present in these solids determine many

of the physical properties of the material. Investigations have been both theoretical and

experimental, concentrating on how different types of defects, and the number of them,

affect mechanical, electrical, and optical properties [50]. A large number of experiments

have been performed that attempt to make materials that are free of defects, or examine

the formation energies and movement of defects. The number of defects and their type is

commonly deduced from bulk properties of the material, such as diffraction patterns or shear

stress [3]. The focus is on the material as a whole rather than on the region surrounding

each constituent particle.

This chapter is concerned with a quantitative assessment of the quality of two-dimensional

lattices. We are interested not in measuring a bulk property of the whole lattice as it re-

sponds to some external stimulus, but rather assessing the positions of the constituent

particles in a manner similar to the human eye. The aim is to quantify what the eye sees

when comparing two lattices and deciding that one is better than the other. The notion

of “better” may depend on which property of the lattice is more important to the assessor

or the goal in assessing the lattice. The measures of the defects of a lattice that we have
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developed are thus concerned with the local neighborhood of each particle, reflecting the

eye’s propensity to judge sub-regions of the lattice and how these regions combine.

We describe and compare five defect metrics that have this local nature. The most

versatile of these, the Defect Measure, is used as a tool in applications such as those that arise

in designing an isotropic inter-particle potential that leads to the self-assembly of particles

into a specified lattice. All particles are identical and move in a finite two-dimensional area.

This and other applications, including those of the other metrics, are presented in the next

chapter.

The motivation for the development of the quality assessment tools was the self-assembly

problem. The self-assembly of particles is of importance in the diverse fields of under-

standing how biological or chemical components form a coherent whole and multi-vehicular

surveillance. In the latter, large numbers of small vehicles moving in a lattice formation

may be an efficient way of surveying the landscape. The local deviations from a perfect

lattice formation must be understood in this context in order to deal with issues such as

loss of communication with neighboring vehicles and coverage of the area to be surveyed.

Vehicles that communicate only with their neighbors should be able to assemble into and

maintain a lattice formation, eliminating the need for each vehicle’s specific trajectory to

be programmed. The design of the ideal isotropic potential for doing so requires an effec-

tive measure of the defects in the lattice, as does the evaluation of the robustness of that

potential.

4.1 Types of Lattice Defects

There are a number of different types of defects that can occur in a monatomic two-

dimensional lattice [64]. The defects most commonly referred to are listed below.

• Vacancy : a lattice site that should have a particle is unoccupied.

• Interstitial : a particle occupies a lattice site that should not have a particle occupying

it.

• Frenkel pair : a vacancy and an interstitial are nearby. A particle is at a lattice site

which should be unoccupied, leaving a nearby lattice site that should be occupied

empty.



71

• Topological defect : a region in a lattice where the ordered structure is different from

the rest of the lattice. For example, in a honeycomb lattice, a region that has five

particles in a unit cell rather than the required six.

• Split interstitial : two particles share a lattice site, typically by having their centre of

mass at the lattice site where there should be one particle.

• Edge dislocation: an extra line of particles inserted part of the way into the lattice.

The adjacent lines of correctly ordered particles bend around the line that terminates.

Dislocations are breaks in the translational symmetry of the lattice.

• Disclinations: a line defect that results in a rotation if the orientation of the lattice

around the defect is tracked.

• Grain boundaries: regions, typically lines, where the orientation of the lattice changes

abruptly. Frequently caused by two sub-lattices growing separately and then meeting.

An effective quality assessment metric must capture these different kinds of defects.

4.2 Metrics for Assessing the Quality of Lattices

We describe five metrics for assessing the quality of lattices that focus on the local config-

uration of particles. These metrics are compared in the following section.

4.2.1 Defect Measure

The Defect Measure is a tool that was developed in order to compare the quality of lattices.

The human eye is frequently a good judge of the quality of a lattice, however, a more

quantitative assessment was sought in order to make this assessment more efficient and

objective. The motivation was the need to provide a numerical assessment of the quality of

lattices that are formed during the optimization procedure used for finding a potential that

leads to the self-assembly of particles in a plane. This application of the Defect Measure is

discussed in Sections 5.1.3 and 5.1.4.

Given the positions of particles in a plane, the quality of the lattice that is formed is

determined by the desired or target lattice. If the target lattice is known, calculating the

Defect Measure requires only Step 3 in the procedure described below. If the target lattice
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is not known, or if it is necessary to find the type of lattice that the system of particles is

attempting to form, then Steps 1 and 2 can be applied to determine what the target lattice

is. Identification of a target lattice means identifying both the type of lattice (honeycomb,

triangular, etc.) and the minimum lattice spacing, called the lattice constant, a. That is,

identifying the target lattice involves identifying the shape and the scaling.

The algorithm for identifying the target lattice and computing the Defect Measure does

not need the positions of all particles in the plane. It only requires a list of distances to

the nearest m neighbors of each particle. To distinguish between the four types of lattices

considered—triangular, honeycomb, square and kagome1—it is only necessary to consider

the distances to the nearest 15 neighbors of each particle,2 however the results are more

reliable (as the identification of the target lattice is improved) if more nearest neighbors are

considered. We use m = 20.

This is an important feature for our surveillance example. Vehicles would only need to

detect other vehicles that are in a certain range that covers an area in which there would

be approximately m other vehicles. The direction of each detected vehicle is unimportant,

only the distance to that vehicle. In this way, the position of each vehicle does not need to

be tracked.

In the identification steps (Steps 1 and 2), it is assumed that the lattice is reasonably well

formed. This assumption effectively means that the human eye would be able to distinguish

the type of target lattice.

The number of particles in the lattice to be assessed must be large enough such that

there are more interior particles than boundary particles. Note that “boundary” here refers

to the boundary of the lattice and not the boundary of the domain containing the particles.

The larger the number of inner particles with respect to boundary particles, the better

the algorithm is able to identify the target lattice. The issue of identifying the boundary

particles is discussed in Section 4.2.1.3.

1A kagome lattice has is composed of hexagrams in which each particle has four nearest neighbors
2See Table 4.1.
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4.2.1.1 Procedure for Identifying the Target Lattice and Computing the Defect

Measure

Step 1: Identify the lattice constant, a

1. List the inter-particle distances dpj for particle p in ascending order.

2. Find clusters in the distances for each particle.

3. Consider the cluster of shortest distances for each particle p. (a) Average over all of

the values in all of these clusters to find a, or (b) use all of these values to construct

a histogram of shortest distances and define a to be the maximum in the distribution

of shortest distances (that is, the most common shortest distance).3

Step 2: Identify the type of lattice

1. Count the number of values in the first three clusters identified in Step 1.2, for each

particle.

2. Find the mode of the number of particles in the first clusters (clusters of shortest

distances). Repeat for the second and third clusters.4 The mode for the first clusters

will be referred to as the number of particles at a distance given by the lattice constant,

a, found in Step 1.

3. Compare the number of particles at each distance (modes of number of particles in

each successive cluster) with the known values for possible types of lattices.

Mode of: cluster 1 cluster 2 cluster 3
Triangular 6 6 6
Square 4 4 4
Honeycomb 3 6 3
Kagome 4 4 6

Table 4.1: Number of particles in perfect lattice.

3Method (b) for finding the lattice constant is the most accurate and will be used here.
4This step works because for a majority of particles, the number of values in each successive cluster

should be the same.
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Step 3: Compute the Defect Measure

Compare the given lattice to a perfect lattice of the same type with the same lattice

constant, to find a measure of the defects, that is, the quality of the lattice.

For a particle in the target (perfect) lattice, find the distance r that is halfway between

the distance to the closest neighbors and the next closest neighbors. This distance is shown

as the red circle in Figure 4.1. For a triangular lattice, there are six closest neighbors at

a distance of a and six next closest neighbors at a distance of
√

3a. The red circle has a

radius of r = (1 +
√

3)a/2.

a

2a

p

Figure 4.1: The nearest neighbors circle (red circle) of particle p is halfway between the
closest particles and the next closest particles.

Define the nearest neighbors of a particle p to be those particles that are within a radius

r of particle p.

1. Choose weights, ωdefect type for each type of defect (see discussion below).

2. For each particle, p, construct the nearest neighbors circle and compute the Defect

Measure of that particle according to which of the following types of defects apply
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(shown in Figure 4.2):

(Defect Measure)p = ωdisplaced ×

 ∑
j∈nearest neighbors

ffjp × (dpj − a)2


+ ωmissing × nmissing × a2 + ωextra × nextra × a2

+ ηlone × ωlone × a2 + ηboundary × ωboundary × a2 (4.1)

where the ηs are indicator functions for lone and boundary particles. In the first term,

ffjp is the fade factor for particle j with respect to particle p. The fade factor allows

particles to fade out of view of particle p rather than disappear as they cross the nearest

neighbors circle. For triangular and honeycomb lattices, the fade factor is equal to 1

for dpj < (5 + 3
√

3)a/8 ≈ 1.27a and is equal to 0 for dpj > (1 +
√

3)a/2 ≈ 1.37a (the

nearest neighbors circle). The fade factor decreases from 1 to 0 over a distance that

is equal to a quarter of the distance from a to the nearest neighbors circle. Within

this region, the fade factor decreases in a cubic polynomial fashion with horizontal

tangent at the end points of the region.

Missing particlesDisplaced particles Extra particles

Lone particles Boundary particles

Figure 4.2: Types of defects used in computing the Defect Measure.
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3. The Defect Measure for the lattice is given by summing over all particles p:

(Defect Measure for Lattice) =
∑
p

(Defect Measure)p.

The Defect Measure is lower for higher quality lattices. A perfect lattice will only have

a Defect Measure equal to zero if the weight for boundary particles is set to zero.

The weights, ωdefect type, for each type of defect are chosen according to the severity

of the defect. This depends on the goal. For example, in the surveillance example, if

the collision avoidance of the vehicles is an issue, then a larger weight would be given

for extra particles, ωextra, in order to deter more strongly lattices with extra particles.

When optimizing the potential for the self-assembly problem, a larger weight for boundary

particles, ωboundary, may be necessary to penalize the formation of distinct sub-lattices. Note

that boundary particles are not penalized for missing particles in their nearest neighbors

circle (see Section 4.2.1.3). The effect of changing the weights for the various types of defects

will be discussed further in Section 4.3.

One of the advantages of the Defect Measure is that it allows for flexibility to penalize

different types of defects more heavily. In this way, it is a tool that can be shaped for the

specific task at hand.

Note that all of the varieties of defects discussed in Section 4.1 are taken into account

by the types of defects listed in Step 3.2. For example, grain boundaries are penalized by

contributions to the Defect Measure from displaced, missing, and extra particles.

The Defect Measure is composed of two factors: the local density around each particle

(which is compared to that of the target lattice), and the distance between particles. The

geometry of the particles is not explicitly considered. This is sufficient because, for any

potential that could lead to self-assembly, if the correct number of particles are put into a

region the size of the nearest neighbors circle, they will arrange themselves into approxi-

mately the correct configuration due to the potential between them. For this reason, only

the inter-particle distances are required. In Section 4.3 we discuss the ability of the Defect

Measure to be tailored to reflect the geometry of the particles.
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4.2.1.2 Advantages of the Defect Measure

The Defect Measure has a number of advantages over other methods for quantifying the

quality of lattices. Although the quality metrics described in the remainder of this section

may share some of these advantages, none of the metrics share all of them.

• The Defect Measure gives a local assessment of the quality of a lattice. Apart from

leading to the versatility of the Defect Measure in applications, a local assessment of

a lattice is closer to the qualitative assessment that a human eye would make of a

lattice.

• Each particle’s contribution to the quality of the lattice can be quantified. In this

way, regions of the lattice that are not well formed can be identified. This is useful in

applications such as those discussed in Sections 5.3 and 5.4.

• The primary types of defects, and the number of such defects, that occur in a lattice

can be easily identified.

• The flexibility of the Defect Measure due to the assignment of weights to defects, leads

to a versatility that may be exploited in applications. This flexibility will be discussed

further in Section 4.3.

• The target lattice does not need to be specified.

• The Defect Measure is invariant under rotations, reflections, and translations of the

lattice.

4.2.1.3 Identifying the Boundary of a Lattice

To implement the procedure for calculating the Defect Measure (with non-zero weights

for the boundary particles), the particles that form the boundary of the lattice must be

identified using only the distances to the nearest m neighbors (m = 20 for us).

The boundary particles of a perfect lattice can be identified by counting the number of

particles at a distance of a and the number of particles within a distance of 2a from each

particle. For a triangular lattice, an inner particle has 6 neighbors at a distance of a, 6

neighbors at a distance of
√

3a, and 6 neighbors at a distance of 2a. Boundary particles

can have a maximum of 5 particles at a distance of a and 15 particles within a distance of
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2a. This is shown in Figure 4.3. Particles that satisfy these conditions are designated as

boundary particles. Note that these requirements specify the maximum concavity of the

boundary that can be detected. A similar construction applies to different types of lattices.

Figure 4.3: A boundary particle in a perfect triangular lattice can have a maximum of 5
particles at a distance of a and 15 particles within a distance of 2a. The red particle is such
a particle. The red line indicates the boundary of the lattice. The circle encloses particles
that are within a distance 2a of the red particle.

For an imperfect triangular lattice, the condition of having a maximum of 5 particles at

a distance of a is loosened to having a maximum of 5 particles within the nearest neighbors

circle. The second condition is relaxed to having a maximum of 15 particles within a

distance (1 +
√

7/2)a of the candidate boundary particle. This distance is halfway between

2a and the distance to the next nearest neighbors (at
√

7a). Similarly relaxed conditions

apply to other types of lattices.

Identifying the boundary of a lattice given the positions of particles. If a system

of particles is not a sufficiently well-formed lattice and the goal is to compute the Defect

Measure of the particles with respect to some specified target lattice, then it will be necessary

to use a different method to identify the boundary particles. In this situation, the position

of each particle is required, as the number of particles in the circles described above may

not be comparable to that of the target lattice.

The convex hull of a set of points in the plane is the minimal convex set containing all

the points. It may be visualised as the shape of an elastic band that has been stretched to

encompass all the points and then allowed to collapse around them. The convex hull for a

set of points and the points identified as boundary points by this convex hull are shown in
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Figure 4.4.
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Figure 4.4: (a) The convex hull of a set of points in the plane. (b) The points identified by
the convex hull as boundary points (shown in red).

Clearly, this is not what the human eye identifies as the boundary. Instead, the non-

convex hull correctly identifies the boundary particles. First, a minimum concave curvature,

ρ, must be chosen. The non-convex vertices of the boundary are those particles that are

touched by a disk of radius ρ as it is rolled around the outside of the set of points. The

following algorithm for finding the non-convex hull is due to Boje [8].

Algorithm for finding the non-convex hull (Boje).

1. Find the Delaunay triangulation5 of the set of points.

2. Find the outside triangles, that is, those triangles with an edge that does not touch

another triangle’s edge. Such edges together form the convex hull.

3. Recursively delete any outside triangle that has an outside edge longer than 2ρ.

4. Recursively delete outside triangles whose outside edge is the longest edge of the

triangle and whose circumcircle6 has a radius greater than ρ.

5. Iterate steps 3 and 4 until no more triangles are deleted.

The points identified by this algorithm as the particles on the non-convex hull of the set

of points in Figure 4.4 are shown in Figure 4.5 in red. These are the boundary particles.
5The Delaunay triangulation of a set of points is a triangulation such that no point is inside the cir-

cumcircle of any triangle in the triangulation [21]. It is the dual graph of the Voronoi tessellation of the
points.

6The circumcircle of a polygon is a circle that passes through all of the vertices of the polygon.
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Note that the boundary points identified by the convex hull corresponds to the points found

by rolling a disk of infinite radius around the set of points.
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Figure 4.5: The points identified by the non-convex hull as boundary points (shown in red).

4.2.2 Geometric Defect Measure

The Defect Measure takes into account the local density of particles and the distance be-

tween particles; it does not consider local geometry. Despite this, as discussed above, the

Defect Measure provides a good assessment of the quality of a lattice. The Geometric Defect

Measure was developed as an alternative quality assessment tool that could be compared to

the Defect Measure (with appropriate weights) to check that looking at local densities (with

a correction for displacements) does indeed lead to a lattice with the correct geometry.

Computation of the Geometric Defect Measure requires the position of each particle in

the system as well as the type of target lattice. It focuses on the shape of the lattice and not

the scaling. Thus, two lattices that differ only by a scaling of the lattice constant will have

identical values for the Geometric Defect Measure. It is computationally more expensive

than the calculation of the Defect Measure.

The algorithm for computing the Geometric Defect Measure of a honeycomb lattice is

outlined below and illustrated in Figure 4.6. The procedure is similar for other types of

lattices.

Algorithm for computing the Geometric Defect Measure of a honeycomb lattice.

1. Find the nearest neighbor of particle p. Label it nn1. Let the distance between

particles p and nn1 be dnn1.
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Figure 4.6: Construction used in computing the Geometric Defect Measure for particle p.

2. Extend the line from p to nn1 a distance of dnn1. Determine whether there is a particle

within a distance dnn1/8 of this point, that is, whether there is a particle in region 2

in Figure 4.6.

3. Continue extending the line from p to nn1 in units of dnn1 and determining whether

a particle is within a region around the end points. Do this for a total of s regions or

steps from particle p. (Figure 4.6 shows s = 5.)

4. Compare whether or not a particle is found in each region to whether or not it is

expected to be found if it were a perfect lattice. For the honeycomb lattice, there

should be particles in regions 3 and 4, but not in regions 2 and 5. (Region 1 will have

a particle by construction.)

5. If a region j does not have the correct number of particles then mp1j = 1, otherwise

mp1j = 0.

6. Repeat steps 2–5 for the second and third nearest neighbors, nn2 and nn3.

7. Calculate the angle between pairs of nearest neighbors of p: θp12, θp13, and θp23.

8. Sum over all particles p in the lattice to obtain the Geometric Defect Measure of the

lattice.

Geometric Defect Measure =
∑
p

nn∑
i=1

 s∑
j=1

mpij +
nn∑

k=2, k>i

|cos θperfect − cos θpik|


(4.2)
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where θperfect is the angle between pairs of nearest neighbors of p in the perfect lattice

and nn is the number of nearest neighbors. For the honeycomb lattice θperfect = 120◦ and

nn = 3.

If the domain that contains the system of particles does not have periodic boundary

conditions then the extension of the lines from particles to their nearest neighbors should

be cut off when a boundary of the domain is reached.

A number of modifications to the algorithm outlined above are appropriate for most

lattices. These modifications have been found based on experimentation. First, the number

of steps, s, that the lines are extended may be increased or decreased, depending on the

type of lattice. For the triangular lattice, looking at only three regions is sufficient to give

a quality assessment that is comparable to what the human eye would judge. However, five

regions is more appropriate for a honeycomb lattice because it has fewer neighbors than

the triangular lattice. Changing the number of steps taken alters how local the quality

assessment is. It is the local nature of the Geometric Defect Measure that makes it useful

for detecting regions with many defects.

Secondly, the size of the regions used to determine whether a particle is in the correct

position relative to the base particle p may be adjusted. It is appropriate to increase the

size of the detection region the further the region is from the base particle. Doing so is

compatible with judgements made by the human eye. It is also affected by the importance

of having a correctly aligned lattice rather than a skewed lattice. For the honeycomb lattice,

we have found that a good choice is allowing the radius of the detection region for region j

to be (j − 1)× dnn1/8 for j > 1.

Last, as regions further away from the base particle are less important in quantifying

the local geometry, the contribution of the more distant regions to the Geometric Defect

Measure can be reduced. For our example, the first term in parentheses in Equation 4.2

then becomes
∑s

j=1mpij × (6− j)/4, for j > 1 where j denotes the number of the detection

region.

4.2.3 Local Template Measure

The Local Template Measure compares the lattice particle positions to a small segment

of the target lattice.7 For example, in the honeycomb lattice, a suitable segment of the
7Thanks to Jerry Marsden for the idea of the metric and to Philip du Toit for implementing it.
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perfect lattice may be one honeycomb cell composed of six particles. For each particle in

the given lattice, this template is pinned to the particle and rotated to find the best fit

to the neighboring particles. The best fit minimizes the distance between points in the

template and the nearest particle in the lattice. Once this minimum distance position of

the template has been found, the Local Template Measure is given by8

Local Template Measure =
∑
p


√√√√1
c

c∑
i=1

(
ri − rtemplatei

)2
−

(
1
c

c∑
i=1

(
ri − rtemplatei

))2

p

(4.3)

where rtemplatei is the position of the ith point in the template, ri is the position of the

lattice particle that is closest to this ith template point, and c is the number of points in

the template (c = 6 for the honeycomb cell template). The Local Template Measure for

the lattice is found by summing these values for all particles, p, in the lattice.

Figure 4.7 shows a honeycomb lattice and the honeycomb cell template that is overlaid in

calculating the Local Template Measure. To make the computation of the Local Template

Measure faster, a feasible alternative is to use fewer cell templates than the number of

particles in the lattice. In our experience, using a third as many templates as particles

yields reliable results while cutting down the time taken to assess a lattice.
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Figure 4.7: Illustration of the Local Template Measure. (a) A template of one cell of the
target lattice (in red) is pinned to a particle and rotated to the position which minimizes
the distance between points in the template and the nearest lattice point. (b) Using a third
as many templates as the number of particles in the lattice provides good coverage of the
lattice.

8This is the square root of the mean squared deviation.
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The Local Template Measure suffers from the disadvantage that when minimizing the

distance between template points and particles in the lattice, the same lattice particle may

be attributed to more than one point in the template. For example, if a lattice particle is

half way between two template points and there are no other lattice particles closer to the

template points, then this one lattice particle will be used for both template points when

calculating the distance between template points and lattice particles. This may lead to a

region in a honeycomb lattice with an area equal to that of a unit cell that contains five

lattice particles having a better value of the Local Template Measure than a similar region

with six lattice particles.

Another disadvantage of the Local Template Measure is that it can not distinguish

lattices where one lattice is a subset of the other. For example, the honeycomb lattice is a

subset of the triangular lattice formed by adding a particle to the centre of each honeycomb

cell. Since the templates used in the Local Template Measure do not consider particles in

the centre of the template (unless close to one of the template points), this metric would

judge a well-formed triangular lattice to be a well-formed honeycomb lattice. This is a

serious drawback when using this metric since it requires independent analysis to determine

whether the given lattice is the target honeycomb lattice or the competitor triangular lattice.

4.2.4 Voronoi Metric

The Voronoi Metric finds the Voronoi tessellation [86] of the particles in the lattice and

compares the area of each Voronoi cell to the area of a Voronoi cell of the target lattice.

The Voronoi tessellation of a set of particles in the plane is the partition of the plane into

regions such that any point of the plane in the region corresponding to particle p is closer

to p than to any other particle. The Voronoi tessellation of an imperfect lattice can be seen

in Figure 4.8(a).

The Voronoi Metric is straightforward to apply to lattices with periodic boundary con-

ditions that fill the available domain. For these lattices, the positions of the particles near

the bounding box are mapped outside the bounding box on the opposite side in an appro-

priate way that is consistent with the periodic boundary conditions. This is illustrated in

Figure 4.8(b). The particles of the lattice are shown in blue; the lattice has a bounding box

specified by 0 < x < 1 and 0 < y < 1. The particles that have been mapped outside the

bounding box are colored cyan. The particle on the left that is colored magenta lies inside
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Figure 4.8: (a) Voronoi tessellation of a set of points in the plane. (b) The same Voronoi
tessellation as in (a) with the particles of the original lattice colored blue and the particles
that are mapped outside the periodic boundaries colored cyan. The magenta particle on
the left is mapped outside the bounding box to the red particle position on the right.

the bounding box. It is mapped to the particle position on the right that is colored red.

Such a construction allows the Voronoi cells of the particles close to the boundary to be

calculated without edge effects, for periodic boundary conditions. Without this mapping of

particles on the edges, these particles would have Voronoi cells that either extend to infinity

or are partially determined by the bounding box rather than the other particles.

Algorithm for computing the Voronoi Metric.

1. Map particles that are close to the bounding box outside the bounding box, respecting

the periodic boundary conditions.

2. Find a Voronoi tessellation of the particles.9

3. Compute the area of each Voronoi cell that contains a particle in the original lattice

(not the particles that have been mapped outside the bounding box).

4. The Voronoi metric is given by

Voronoi Metric =
N∑
p

∣∣∣∣area(V (p))− area of bounding box
N

∣∣∣∣ (4.4)

9This can be done easily using the MATLAB R© function voronoi. (MATLAB, 2007a, The MathWorks,
Natick, MA.)
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where N is the number of particles in the original lattice and V (p) is the Voronoi cell

containing particle p.

Equation 4.4 is motivated by the idea that for lattices that fill the domain completely

(such as honeycomb lattices), each particle in a perfect lattice should take up the same

amount of space.

An alternative expression for the area of a Voronoi cell in the perfect lattice may be

obtained from the geometry of the target lattice and the best estimate for the lattice con-

stant. The lattice constant may be found by Step 1 of the procedure for computing the

Defect Measure described in Section 4.2.1.1. For a perfect honeycomb lattice (with periodic

boundary conditions), the area of each Voronoi cell would be 3
√

3 a2/4. The second term

in Equation 4.4 may be replaced by this expression.

For honeycomb lattices formed in a bounding box that does not have periodic boundary

conditions, or other types of lattices that do not completely fill the domain, an assessment

of the quality of the lattice based on the Voronoi Metric can be made by ignoring the

contribution from boundary particles. The boundary particles can be identified by using

Boje’s algorithm for finding the non-convex hull of a set of points (Section 4.2.1.3). In this

case, the alternative expression for the area of a Voronoi cell in the target lattice should be

used.

To include a contribution from the boundary particles of the lattice, there are a number

of options. For lattices that completely fill the domain, modified Voronoi cells for the

boundary particles can be formed by taking the area enclosed by the lines of the Voronoi

tessellation and the bounding box. These areas for the boundary particles can then be

compared to the areas of the similarly modified Voronoi cells that would be formed for

the target lattice. Since the modified Voronoi cells of the boundary particles in the target

lattice depend a great deal on the construction of the target lattice, it is best to sum the

areas of the modified Voronoi boundary cells of the lattice and compare this to the sum of

the areas of the modified boundary cells of the target lattice, rather than compare the areas

of individual cells. However, this is not an effective way to assess the quality of a lattice

because of the many possible ways of constructing the target lattice.

Another way to include the contribution of the boundary particles to a Voronoi-like

metric is to define the Voronoi cells of the boundary particles to be the area enclosed by
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the lines of the Voronoi tessellation and the non-convex hull of the particles. This method

suffers from the same drawback as the previous one, but has the advantage that for a lattice

that is not aligned with the edges of the bounding box, the contribution of the boundary

particles to the value of the metric will be smaller. This effect is important for lattices that

do not require the pressure from the domain walls to form, that is, lattices that do not

completely fill the domain. For example, this method is the appropriate way to include the

boundary particles in the Voronoi metric of a triangular lattice that is formed in a domain

that is larger than the area occupied by the lattice.

None of these options for dealing with the boundary particles of the lattice are satis-

factory. The Voronoi Metric, if one is unwilling to exclude boundary particles, is thus of

limited use for lattices that do not completely fill the domain or are formed in domains

without periodic boundary conditions.

4.2.5 Cumulative Distribution Function Metric

The cumulative distribution function of the inter-particle distances of a lattice can be used

to assess the quality of the lattice. This metric was proposed by Mezić and Runolfsson in a

different setting [66]. The cumulative distribution function (CDF) metric is most effective,

for our purposes, when only inter-particle distances up to a distance of slightly above 2a

are considered. In a perfect lattice, this includes the nearest neighbors, the next nearest

neighbors and the third nearest neighbors of each particle.

Algorithm for computing the Cumulative Distribution Function Metric.

1. Let dmax be the distance to a point half-way between the third nearest neighbors

circle and fourth nearest neighbors circle of particles in the target lattice.

2. For each distance d in 0 < d ≤ dmax, find all inter-particle distances of the lattice

being assessed that are less than or equal to d.

3. Then

CDF lattice(d) =
∑

dij≤d, i>j
dij (4.5)

for 0 < d < dmax, where the dij are the inter-particle distances of the lattice.
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4. CDF target is defined in a similar way using the inter-particle distances of the target

lattice.

5. The Cumulative Distribution Function Metric is given by

∫ dmax

0
|CDF lattice(l)− CDF target(l)| dl. (4.6)

The CDF of a lattice and its target lattice is shown in Figure 4.9. CDF lat is in blue

and CDF target is in green. The value of the Cumulative Distribution Function Metric is the

area between the curves.
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Figure 4.9: The Cumulative Distribution Function Metric computes the area between
CDF lattice shown in blue and CDF target shown in green.

The question of how to treat the boundary particles of a lattice is also non-trivial for

the CDF metric, especially for domains without periodic boundary conditions. For lattices

formed in domains with periodic boundary conditions, the only concern is whether the

domain can indeed be filled with a perfect lattice with the specified number of particles.

Not all domains have a perfect lattice that completely fills the domain for an arbitrary

number of particles; however, this introduces only a very minor error into the value of the

CDF metric.

For domains without periodic boundary conditions, a target lattice must be constructed

that can be used to find CDF target. The inter-particle distances of the target lattice depend

on where the boundary particles are placed, that is, the shape of the boundary.

A more serious problem with the CDF metric is that there is a cancellation between

two different types of defects: missing particles and extra particles. If a particle is missing

a neighboring particle at a distance d′ from it and another particle has an extra particle
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at a distance d′ from it, then there will be some cancellation between these two defects,

and the value of the CDF metric at d′ will be lower than it should be. However, these

two defects also affect the surrounding particles and this will add to the value of the CDF

metric. How much is added depends on the arrangement of particles around the defect and

not the defects themselves.

The CDF metric was designed to only look at inter-particle distances less than dmax

partially for this reason. There is less opportunity for such cancellation of defects to occur.

Another reason for limiting the CDF metric’s horizon to dmax is that considering all inter-

particle distances would put too much emphasis on the long range order of the lattice.

When assessing the quality of a lattice, the human eye tends to focus more on the order

within regions that have a radius of a few lattice constants, rather than the long range order

of the lattice as a whole.

A feature of the CDF metric is that it tends to judge lattices with grain boundaries

relatively harshly. This may or may not be a concern depending on the goal and how severe

such a defect is considered to be.

4.3 Comparison of Quality Metrics

It is natural to ask which of the metrics for assessing the quality of a lattice discussed in

Section 4.2 is the best.

Which quality metric performs best depends on which properties of a lattice are more

important. Different metrics focus on different aspects, such as having the correct number of

particles in approximately the right positions, or having the correct alignment of particles.

This will be discussed further below.

There are two straightforward ways to compare metrics that assess the quality of a

lattice: whether it can identify the best lattice from a set of lattices, and the computational

time taken to compute the value of the metric for a lattice.

In order to compare the metrics from Section 4.2, a set of 20 lattices were generated,

with 576 particles in a domain with periodic boundary conditions. The target lattice was

the honeycomb lattice. Each metric was used to assess the lattices and rank them from

best to worst. The time taken to calculate the value of the metric for each lattice was

averaged over the 20 lattices. The results are shown in Figure 4.10 and Table 4.3. We chose
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to examine 20 lattices because this allowed us to have a variety of different lattices that

exhibited different features. The number of particles was chosen to be large enough such

that boundary particles would not significantly contribute to the value of the metric, and

because this number of particles can fill the domain with a honeycomb lattice.
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Figure 4.10: Comparison of quality assessment metrics. Each metric on the left hand side
ranked the 20 test lattices (along horizontal axis) from best to worst. The colorbar indicates
which color corresponds to which ranking. Red signifies the best lattice (rank 1) and dark
blue the worst lattice (rank 20). Metrics that focus on similar features have a similar pattern
of colors across their rows.

Figure 4.10 has the metrics discussed in Section 4.2 along the vertical axis and the index

of each of the 20 lattices used for the comparison along the horizontal axis. Defect Measure

1 and Defect Measure 2 differ only in the weights assigned to the different types of defects.10

The colors in the figure represent the ranking of the 20 lattices, with a rank of 1 in red

being the best lattice and a rank of 20 in dark blue being the worst lattice. For example,

along the top row it can be seen that Defect Measure 1 ranked lattice number 7 as the best

lattice and lattice number 10 as the worst lattice. Metrics that focus on similar features

have a similar pattern of colors across their rows.

The index of each lattice is not important; however, groups of lattices with similar lattice

numbers were generated by the same inter-particle potential at the same density. Two

different types of inter-particle potentials were used: lattices 1–13 were generated using a

Rechtsman-style potential and lattices 14–20 were generated using a polynomial potential.

10Weights for Defect Measure 1: ωdisplaced = 1.0, ωmissing = 1.0, ωextra = 0.8.
Weights for Defect Measure 2: ωdisplaced = 1.0, ωmissing = 0.02, ωextra = 0.015.
There were no boundary or lone particles in these lattices. These weights were chosen heuristically.
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These potentials will be explained in Section 5.1. Beyond this, the lattices may be grouped

according to {1, 2}, {3}, {4, 5}, {6−9}, {10}, {11}, {12}, {13}, {14−16}, {17−19}, {20}.

These groupings are due to the parameters used in the potentials and the initial density of

particles (see Appendix A).

Time to compute (s)
Defect Measure 0.117
Geometric Defect Measure 6.69
Local Template Measure 44.4
Voronoi Metric 0.338
CDF Metric 0.163

Table 4.2: Time taken to compute quality metrics.

Figure 4.10 shows that Defect Measure 1 ranks the test lattices in an order that is

similar to the ranking of the Voronoi Metric. Rows 2 and 3 of Figure 4.10 show that Defect

Measure 2 assigns similar rankings to the test lattices as the Geometric Defect Measure. This

highlights the flexibility of the Defect Measure, which results from the freedom to choose the

weights for the different types of defects. It will be shown below that the Geometric Defect

Measure and the Voronoi Metric consider different aspects of lattices to be important and

thus apply to different situations. The Local Template Measure ranks lattices in a similar

way to the Geometric Defect Measure and Defect Measure 2. One notable exception is that

the Local Template Measure ranks lattice number 10 as being average whereas this lattice

is ranked as one of the worst by all of the other metrics. The CDF Metric identifies the

same few lattices as being the worst lattices that the other metrics identify. However, the

lattices that are judged to be the best lattices by the CDF Metric are not judged to be that

way by the other metrics. The Geometric Defect Measure ranks the CDF Metric’s best

lattices as being only moderately good.

Lattices number 18 and 5 are shown in Figure 4.11. It can be seen that in Lattice

18, although there are defects like missing and extra particles, the particles tend to be

aligned with each other. For a majority of particles, the angles between nearest neighbor

particles are close to that of a perfect honeycomb lattice. There is also more medium range

structure than in Lattice 5. This is precisely what the Geometric Defect Measure focuses

on. However, in Lattice 18, there are obvious defects. In Lattice 5 on the other hand,



92

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

R

(a) Lattice 18

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

E

(b) Lattice 5

Figure 4.11: Best lattices. Test honeycomb lattices with 576 particles and periodic boundary
conditions. The dark blue particles are inside the bounding box. The cyan particle positions
show the structure at the edge of the bounding box. The lattice numbers correspond to
those in Figure 4.10.

the density of particles is much more uniform across the domain. The particles are not

aligned well into a honeycomb lattice but a majority of particles have the correct number

of nearest neighbors and form rough rings of six particles. It is this focus on the local area

of each particle that is characteristic of the Voronoi Metric. The shape of the Voronoi cells

is not considered, only their area compared to a Voronoi cell of a perfect lattice. Thus local

density is the most important feature.

Which of Lattices 18 and 5 is judged to be the better lattice depends on the goal. If

the purpose of having a honeycomb lattice is to cover an area evenly, with each particle

having three nearest neighbors and forming rings of six particles, then the Voronoi Metric

is the one to use. If the goal is to form as much of a close-to-perfect honeycomb lattice

as possible then the Geometric Defect Measure should be used.11 It is interesting to note

that the Defect Measure can be used to achieve both of these goals simply by adjusting the

weights for the different types of defects.

The Voronoi Metric whose results are shown in Figure 4.10, used Equation 4.4. This

metric can also be implemented using the alternative expression for the area of a Voronoi

cell in the perfect lattice explained in Section 4.2.4. The alternative expression computes

the average lattice constant and then sets the perfect Voronoi cell area to be 3
√

3 a2/4,

11Lattice 18 was generated using a polynomial potential while Lattice 5 was generated using a Rechtsman-
style potential [75].
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based on geometry. The results for this metric are shown in Figure 4.12 under the label

Voronoi Metric 2. The assessment of this quality metric depends greatly on how accurate

the estimate of the lattice constant is. The average lattice constant is calculated using the

histogram method in Step 1.3(b) of the algorithm for computing the Defect Measure.

Voronoi Metric 2 ranked Lattice 17 so highly because of the peculiar coincidence of the

error in the area of the Voronoi cells around the gross defects, summing to a similar error

in area that is spread out across all Voronoi cells. Lattice 17 looked similar to Lattice 18,

which is shown in Figure 4.11(a). This feature of the error can be seen by comparing the

lattices in Figure 4.11. It is because of a few large errors in area that sum to a similar total

as the sum of many small errors in area, and not because the Voronoi Metric particularly

looks at geometry, that Lattice 17 has the best ranking. It can be seen from Figure 4.12

that Voronoi Metric 1 and Defect Measure 1 avoid this anomaly.
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Figure 4.12: Comparison of quality assessment metrics. Each metric on the left hand
side ranked the 20 test lattices (along horizontal axis). The colorbar indicates which color
corresponds to which ranking. Red signifies the best lattice (rank 1) and dark blue the
worst lattice (rank 20).

Figure 4.12 also shows the two components of the Geometric Defect Measure: one that

determines whether particles are where they should be along the nearest neighbor lines

and one that evaluates how close the angles between nearest neighbors are to what they

should be in a perfect lattice. The rankings for these two components are very similar. This

implies that either component can be used alone as a metric instead of the more complete

Geometric Defect Measure.

The last row of Figure 4.12, labeled Area Estimate Measure, is a very rough quality
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assessment metric. It compares the area that a perfect lattice would cover if it had the

average lattice constant, to the area of the bounding box. That is,

Area Estimate Measure =
∣∣∣Area of bounding box − (3

√
3 a2/4)× (number of particles)

∣∣∣ .
This extremely fast calculation can roughly rank the lattices in a way similar to the Geo-

metric Defect Measure, if the value of a that is used is accurate. It’s advantage is that it

requires nothing more than the calculation of the average lattice constant. All of the other

metrics require this computation and additional computations.

Table 4.3 shows the time taken to compute the value of each metric.12 These times are

averages over the time taken to compute the metric for the 20 test lattices. Each metric was

given the minimum information it needed in order to compute the value of the metric. The

Defect Measure calculations were given the distances to the nearest twenty neighbors of each

particle; the CDF Metric was given a list of all nearest neighbor distances up to a distance of

2.2a; the Geometric Defect Measure, the Voronoi Metric, and the Local Template Measure

were given the particle positions.

The rationale for giving each quality metric only the minimum information that it

needs stems from the applications of the metrics. If the Defect Measure is used to assess

the lattice formed by vehicles flying in formation then these vehicles need only detect their

nearest twenty neighbors—this limits the range necessary for their relative distance sensors

and the amount of information that must be transmitted. Further, when using the Defect

Measure to assess the quality of lattices formed in a LAMMPS13 simulation, as was done

in the optimization of self-assembly potentials discussed in Section 5.1.3, the distance to

the nearest twenty neighbors is easily accessible due to the structure of the LAMMPS

simulation code. This code calculates particle positions in parallel by dividing up the

domain into smaller regions, thus keeping more detailed information about a particle’s

nearest neighbors. Similar reasoning holds for the CDF Metric.

We see that the Defect Measure is the fastest to compute. The Local Template Measure

requires the most time to compute by far. Since the Local Template Measure, Geometric

Defect Measure and Defect Measure 2 rank lattices in a similar manner, it is most efficient
12Metrics were computed using MATLAB R© (2007a, The MathWorks, Natick, MA).
13LAMMPS is a software package that was developed by Sandia Laboratories for the simulation of molec-

ular systems. See http://lammps.sandia.gov [71].
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to use Defect Measure 2 whenever a metric focusing on particle alignment is needed.
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Figure 4.13: The two worst test honeycomb lattices with 576 particles and periodic bound-
ary conditions. The dark blue particles are inside the bounding box. The cyan particle
positions show the structure at the edge of the bounding box. The lattice numbers corre-
spond to those in Figure 4.10.

Figure 4.10 shows that all of the metrics, apart from the Local Template Measure and

the CDF Metric, found Lattices 1 and 10 to be the two worst lattices. These lattices are

shown in Figure 4.13. Lattice 1 was judged to be bad by all of the metrics. Lattice 10 was

ranked third to last by the CDF metric; however, the Local Template Measure judged it

to be an average-quality lattice. It can be seen that these two generally worst lattices also

exhibit the two different types of lattice that the best lattices in Figure 4.11 did. Namely,

one has particles that are well aligned (albeit in the wrong locations) and the other has a

more uniform number of particles per area (though not aligned into the honeycomb pattern

at all). Both are considered to be bad lattices because of the large number of defects relative

to the target honeycomb lattice.

The Local Template Measure assigned Lattice 10 an average ranking because it forms a

reasonably good triangular lattice. The honeycomb lattice can be considered to be a subset

of the triangular lattice: a triangular lattice can be formed from a honeycomb lattice by

putting a particle in the centre of each honeycomb cell. Since the templates used in the

Local Template Measure do not care whether or not there is a particle in the centre of

the template, a well-formed triangular lattice would rank highly using a honeycomb Local

Template Measure.

The CDF Metric assigns rankings that are quite different from all of the other metrics. It
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Figure 4.14: The CDF Metric’s two best test honeycomb lattices with 576 particles and
periodic boundary conditions. The dark blue particles are inside the bounding box. The
cyan particle positions show the structure at the edge of the bounding box. The lattice
numbers correspond to those in Figure 4.10.

judges the worst lattices, similarly to the other metrics but chooses different lattices as the

best lattices. These best lattices, shown in Figure 4.14, received a moderately good ranking

from the Geometric Defect Measure but were rated as quite bad by the Voronoi Metric.

One feature that they exhibit is having regions that are well-formed that are separated from

other well-formed regions by areas with many defects. Lattices 15 and 16 have large regions

with missing particles and also curves with a small distance between the particles (more

evident in Lattice 16). This combination leads to some cancellation, causing the lattice to

be ranked highly, as discussed in Section 4.2.5.

Thus, it seems that the CDF Metric does not assign rankings that are similar to what

a human observer would assign, whether particle alignment or density is the focus. The

CDF Metric is an indicator of how many inter-particle distances (within a limited range

set by dmax) are correct. Since the distances are the focus rather than the local density or

alignment (properties that are important for forming a lattice structure), the structure is

less important with this metric. This renders the CDF Metric less useful as a quality metric

for the particular problem of the self-assembly of particles into a target lattice.
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4.4 Conclusion

We have introduced five metrics for assessing the quality of lattices in a two-dimensional

domain. These metrics are based, to differing degrees, on a local perspective that quantifies

lattice quality by analyzing the region immediately surrounding each particle in the lattice.

This emphasis on local order leads to quality judgements that are much the same as those

of the human eye. It differs from the global perspective that is prevalent in the condensed

matter and materials science literature, since it does not investigate the number and type

of defects by looking at bulk properties of the material.

Which of the lattice quality assessment tools introduced is better depends on which

aspect of a lattice is most important to the assessor. A comparison of the metrics reveals

that they fall into three main categories; those that focus on uniform local density, those

that focus on local alignment, and those that focus on the correct distance between particles.

The advantage of the Defect Measure, apart from being the fastest to compute, is that the

weights assigned to each type of defect can be adjusted to reflect any one of these categories.

The Defect Measure and other metrics provide a succinct description of the order within

a planar system of particles. They are useful in a variety of applications, particularly in

tracking transitions in molecular systems from disordered to ordered states. This feature is

exploited in the next chapter for the generation and assessment of potentials leading to the

self-assembly of particles, the construction of a phase diagram, and identifying clusters of

well-formed particles.
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Chapter 5

Applications of the Defect Measure
and Other Lattice Quality
Assessment Tools

The Defect Measure is a tool that can be used to quantitatively assess the quality of lattices.

As such, it can be regarded as a low-dimensional representation of a system that transitions

between disordered and ordered states. It is useful in a variety of situations, such as

finding potentials that lead to the self-assembly of particles, assessing the robustness of

such potentials, and detecting phase transitions from a disordered to an ordered state.

Having a simple way to characterize the quality of a lattice opens up many avenues in

the study of self-assembling particles. The quality assessment tools of the previous chapter

enable potentials for self-assembly to be optimized directly for the quality of the resultant

lattice. The quality metrics can also quantify the robustness of these potentials. We present

a robust method for generating optimal self-assembly potentials that are themselves robust

to changes in parameters of the potential and initial conditions. This method relies on (a)

the quality metrics, and (b) a computationally efficient trend optimization scheme that uses

the quality metrics as the objective function.

The Defect Measure is a good coarse description of the phase transition from liquid to

solid of krypton atoms on a graphite substrate. We use the Defect Measure to construct

the phase diagram for this system. Our results agree very well with those of experiments.

Clusters of well-formed particles in a lattice can be identified by the Defect Measure,

since it assigns a quality metric value to each particle. The Voronoi metric is particularly

useful in identifying global defects by considering local properties of lattices. It is a general

feature of the quality metrics developed in the previous chapter that by examining the local
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order around each particle, much can be said about the global pattern.

5.1 Generation of Potentials for the Self-Assembly of Parti-

cles

The self-assembly of constituent particles into an ordered final configuration is an active

area of research from materials science and chemistry to nanotechnology. Through local in-

teractions, the self-assembling entities organise themselves into a more regular configuration

than the state in which they started.

Self-assembly has been studied experimentally in a variety of biological and nanotech-

nology systems. Examples include the formation of lipid bilayers, block copolymers orga-

nizing into ordered arrays, and the self-assembly of microspheres (see [75] and the references

therein). Theoretical studies, such as that of Jagla [45], have typically started with a given

interaction potential between particles and then examined the resulting structure and prop-

erties of the system. An exception to this is the reverse Monte Carlo method of Lyubartsev

and Laaksonen [56] (and extensions by Toth [83]), which uses radial distribution functions

to iteratively find the interaction potential. However, applications have only considered

liquids and solutions (see also [55] for applications using experimental data). Early work in

this area was carried out by Salsburg et al. [77] who derived an analytic expression for the

molecular pair-distribution function for a system of particles interacting via an arbitrary

nearest neighbor potential.

The focus of this section is on the generation of isotropic pairwise potentials that lead to

the self-assembly of particles into a lattice configuration in the plane. We first describe the

work done by Rechtsman and co-workers [75]. This was the motivation for the development

of the quality metrics in Chapter 4 and the trend optimization scheme presented later in

this section. Next we explain how the quality metrics can be used to design self-assembly

potentials. A more efficient method for finding these potentials is to run an optimization

procedure over the parameters in the potential, rather than do a brute force search. Sec-

tion 5.1.3 presents two ways in which the Defect Measure can reduce the time taken to

evaluate the objective function in an optimization. In Section 5.1.4 we present an improved

optimization procedure that exploits the simple trend of the very noisy objective function.

This scheme finds parameters of the self-assembly potential that not only lead to higher
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quality lattices, but do so two orders of magnitude faster than a simulated annealing scheme.

The robustness of such potentials is also an important issue. Ways of quantifying robustness

are discussed in Section 5.1.5.

5.1.1 Background

Rechtsman and co-workers [75, 74] developed two computational algorithms to find poten-

tials that lead to the self-assembly of particles into given target configurations. In contrast

to previous work (both experimental and theoretical), their method was an inverse method

in that the two-dimensional target lattice configuration was specified and an appropriate

radially symmetric pair interaction potential was found. Previous work concentrated on

determining the structure that would result from particles with a specified non-covalent

interaction between them. Rechtsman et al. considered both energetic and mechanical sta-

bility by investigating the lattice sums and phonon spectra [50] of their potentials. Theil’s

[80] more theoretical work analyzed the asymptotic behaviour of the ground state energy of

particle systems governed by Lennard-Jones-like pairwise isotropic interaction potentials.

The first scheme developed by Rechtsman et al. [75], a simulated annealing optimization,

focuses on energetic stability by maximising the energy gap between the target lattice and its

competitor lattices. This is done while maintaining mechanical stability via the requirement

that phonon frequencies be real. Competitor lattices are lattice configurations that the self-

assembling particles may tend towards or end up in that are not the target lattice. For

example, when assembling a honeycomb lattice, the triangular lattice, which has twice as

many nearest neighbors for a given particle as the honeycomb lattice, is the competitor

lattice.

The second optimization scheme considered by Rechtsman et al. concentrates on max-

imising the stability of the lattice near its melting point, while requiring stable lattice sums

and real phonon frequencies. Molecular dynamics simulations are run at temperatures close

to, but below, the melting point of the target lattice and a measure of the extent of phase

transitions, called the Lindemann parameter, is calculated. The Lindemann parameter is

defined as √√√√ 1
N

∑
i

(
ri − r(0)

i

)2
−

(
1
N

∑
i

(
ri − r(0)

i

))2

, (5.1)
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where r(0)
i is the initial position of particle i, ri is the position some time later, and N is the

number of particles.1 It is the objective function for a simulated annealing optimization.

Note that the Lindemann parameter compares each particle’s position to the initial position

of that particle, that is, the position of that particle when it is in the target configuration

initially (particles start the simulation in the target configuration, the lattice is heated

close to the melting temperature for the lattice, and then cooled). In this way, it requires

information about the history of each particle and for each particle to be assigned to a

specific position in the target lattice. Rather than measuring the general quality of the final

lattice, it is a measure of how much a target lattice configuration has melted.

To test the potentials that they find from their optimization schemes, Rechtsman et al.

run an NVT2 Monte Carlo simulation, starting from a random initial configuration, and

see whether the particles self-assemble into a lattice. Whether or not a lattice is formed

is determined by looking at the lattice itself, deciding if the given configuration is ordered

enough to be considered a lattice, and calculating the structure factor of the lattice, which

gives an indication of the long-range order.

We improve on this eyeball test of the lattice by assigning a value to the quality of the

lattice using the lattice quality assessment tools we have developed in the previous chapter.

In this way, lattices can be compared to each other in terms of quality, and the extent to

which the lattice differs from the target lattice configuration can be quantified.

In comparing potentials that lead to self-assembly, there are three criteria according to

which potentials may be contrasted: the quality of the resulting lattices, the time taken to

discover the potential, and how robustly good quality lattices are formed. The following

sections will address these issues.

5.1.1.1 Baseline Geometric Method

With regard to the issue of the time taken to discover a potential that leads to self-assembly,

there is a baseline to which the potentials found by the method of Rechtsman et al. or any

other method, including the one in Section 5.1.4, may be compared. This is the method of

1Compare with Equation 4.3. The Local Template Measure of Section 4.2.3 was developed in order to
more directly compare our results with those of Rechtsman et al. [75] since Equation 5.1 is not a direct
measure of the quality of a lattice.

2N = number of particles, V = volume of the system, T = absolute temperature. These quantities are
held constant.
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designing a potential by hand.

This baseline geometric approach is as follows: for a particle in the target lattice (not

near the boundary), find the distances at which it has neighboring particles and count the

number of particles at each of these distances from the initial particle. For example, in

the honeycomb lattice, a particle has 3 nearest neighbors at a distance of a, where a is the

minimum lattice spacing, called the lattice constant. The same particle has 6 neighbors

at a distance of
√

3a and 3 at a distance of 2a. Particles must have a strongly repulsive

core and interactions should be local so that the potential goes to zero beyond a distance

of approximately 2a (this distance may be chosen to be any value; however, this is the

distance we consider here to define local interactions3). Given this information, the shape

of the potential can be deduced—there must be an inner repulsive core, a minimum at an

inter-particle distance of a, another minimum at a distance of
√

3a that is deeper (because

there are more neighbors at this distance), and beyond this the potential goes to zero. The

relative heights of the minima and the local maxima may be chosen to favor the honeycomb

lattice and disfavor the competitor triangular lattice. An example of such a potential is

shown in Figure 5.1. The potential is defined piecewise using cubic polynomials. The cubic

splines are constructed so as to have zero derivative at the nodes thus ensuring that the

potential is continuously differentiable on the whole positive real line. In order to ensure a

repulsive core, a 6–12 Lennard-Jones potential is used on the first segment.4

Any potential that is found by any other method must perform better than this poly-

nomial potential in tests of lattice quality and robustness to warrant the time taken to

implement the optimization procedure used to find the potential.

5.1.2 Design of Potentials for Self-Assembly

The Defect Measure can be used as a tool not only to assess the quality of lattices that

result from simulations with a particular isotropic potential between particles, but also to

refine such potentials to achieve the best potential. A functional form for these potentials

can be designed with a number of parameters that may be varied to achieve the potential

that yields the best lattices, as measured by the Defect Measure.

3Polynomial potentials that were equal to zero beyond 5a (and not before) were also considered, but
lattices formed with a tail of the potential that starts at 2a were better.

4The form of a Lennard-Jones potential can be seen in Equation 3.1.
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Figure 5.1: (a) A perfect honeycomb lattice. (b) Rechtsman et al.’s honeycomb potential
(Equation 5.2), a polynomial potential designed using the baseline geometric method, and
the potential found by a brute force search over parameters using the Defect Measure to
assess lattice quality (Section 5.1.2).

Rechtsman et al. [75] found the following expression for the self-assembly of particles

into a honeycomb lattice:

VHC =
5
r12
− a0

r10
+ a1 e

−a2r − 0.4 e−40(r−a3)2 (5.2)

with a0 = 5.89, a1 = 17.9, a2 = 2.49, and a3 = 1.823 being the best parameter values that

they found for good lattices. This potential is shown in Figure 5.1. The functional form of

this potential was chosen to be physically realizable in an experimental setting. We note

that in [75], the quality of lattices was not quantitatively assessed, rather, particles were

judged to have self-assembled into lattices or not by human observation.

Using the same basis as Rechtsman and co-workers, we can design a better potential

by doing a brute force search over the different parameter values, and assessing the quality

of lattices formed with these values. Any of the quality metrics introduced in Section 4.2

may be used for this. Although a brute force search over all four parameters has been

conducted, and a global minimum found, we first illustrate the method with a search over

only one parameter value, a2, for clarity. The other parameter values and conditions (such

as the density and cooling schedule) were kept constant. One thousand simulations were

run with 65 particles in a domain without periodic boundary conditions. The values of
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the parameter a2 used for the 1000 simulations formed a Gaussian distribution with mean

a2 = 1.49 and standard deviation of 0.6. Figure 5.2 shows the Defect Measure of the

final lattice of each simulation versus the value of the a2 parameter used to generate the

lattice. The values of the weights for the Defect Measure (Section 4.2.1) are: ωdisplaced =

1.0, ωmissing = 1.0, ωextra = 0.8, ωboundary = 0.2, and ωlone = 2.0. These weights are the

same weights as for Defect Measure 1 in Section 4.3. The lattices corresponding to the red

and green points are shown in Figure 5.3. The green point has the lowest Defect Measure

of all the lattices. Note that each point in Figure 5.2 is the result of one simulation with

random initial velocities for the particles.

Once the region in which the Defect Measure has a minimum is found, this procedure

may be repeated. The brute force search over all parameter values reveals that the Defect

Measure function over the space of all parameters has many local minima and that is it

very noisy. Furthermore, different evaluations with the same parameters in the potential

can lead to lattices with quite different quality, due to sensitivity to initial conditions.
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Defect Measure vs a2 in Rechts HC 1.49+/−0.6

Figure 5.2: Defect Measure versus parameter a2 in Equation 5.2. The 1000 simulations
shown here used 65 particles in a domain without periodic boundary conditions. The a2

values have a mean of 1.49 and a standard deviation of 0.6. The lattices corresponding to
the red and green points are shown in Figure 5.3.

Figure 5.2 indicates that for the conditions under which the simulations were run, the

best choice for parameter a2 is a value of 2.6. Note that the honeycomb lattice is quite fragile

and particularly sensitive to the density of particles and the boundary conditions. Thus,

for different densities or boundary conditions, other values of a2 may be more appropriate.

However, this example illustrates the method for designing an isotropic potential by brute
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Figure 5.3: (a) Lattice corresponding to the green point in Figure 5.2, with a2 = 2.6 and
Defect Measure = 9.6. (b) Lattice corresponding to the red point in Figure 5.2, with
a2 = 0.5 and Defect Measure = 41.6.

force.

As mentioned in Section 4.3, the weights of the Defect Measure should be chosen accord-

ing to the properties of the lattice that are most important for the particular application.

Defect Measure 1, used here, focuses on the correct local density of particles. The Geometric

Defect Measure or other metrics can also be used to design the potential for the formation

of lattices.

Figure 5.4(a) shows the Geometric Defect Measure versus the parameter a2 for the same

simulations as above. The best lattice, that is, the one with the lowest Geometric Defect

Measure value, shown in Figure 5.4(b), was formed with a2 = 2.23. This value of a2 is quite

different from that found by Defect Measure 1. Thus, which value of a2 is chosen depends

on whether the focus is the correct alignment or local density of particles. Figure 5.5 depicts

the two components of the Geometric Defect Measure: the Nearest Neighbor Lines Measure

and the Angle Measure. The former looks at whether particles are aligned with their nearest

neighbors and the latter measures how close the angle between nearest neighbors is to what

it should be. Both components favour an a2 value of 2.23.

Note that the a2 values that are found to give the highest quality lattices (by whichever

metric) are applicable only to self-assembly problems that have the same density and cooling

schedule. The number of particles and the boundary conditions of the domain are less of

an influence. At other densities and with other cooling schedules, different values of a2

may yield better lattices. In general, the slower the rate of cooling, the better the resulting
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Figure 5.4: (a) Geometric Defect Measure versus parameter a2 in Equation 5.2. (b) Lattice
corresponding to the lowest Geometric Defect Measure in (a), with a2 = 2.23.
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Figure 5.5: The two components of the Geometric Defect Measure. (a) Nearest Neighbor
Lines Measure versus parameter a2. (b) Angle Measure versus parameter a2.

lattice is. This brute force method may be applied to the density of particles as well, and

the best parameters for the potential found at each density of interest.

The brute force search over all of the parameters in the potential can be done to find

the best combination of parameters, that is, the potential that leads to the highest quality

lattice. Figure 5.6(a) shows the results of a search over parameters a0, a1, a2 in Equation 5.2

using the Defect Measure as the quality metric5. Over 105 points were tested in the range

4.00 < a0 < 7.50, 15.0 < a1 < 21.0, 0.0001 < a2 < 3.50. (5.3)

5Thanks to Philip du Toit for running the brute force simulations and producing Figure 5.6.
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Regions colored blue indicate higher quality lattices. We see that there is little sensitivity

to a1 since the slices at different a1 values look very similar. However, in the (a0−a2)-plane

there is a clearly defined region in which the Defect Measure is low.

(a) (b)

Figure 5.6: (a) Search over the parameters in the self-assembly potential, Equation 5.2,
using the Defect Measure to assess lattice quality. (b) The slice from (a) in which a1 = 17.9.
The best parameters found by Rechtsman and co-workers is indicated with a square. The
optimal parameter set as given by this search is indicated by a circle.

Figure 5.6(b) is the slice at a1 = 17.9, with the location of the parameters found by

Rechtsman et al. [75] marked by the square. the circle indicates the optimal parameter

values as found by our brute force search. We see that Rechtsman et al.’s procedure found

a point on the edge of the high lattice quality region (low Defect Measure). However, this

is quite far removed from the optimal potential parameters. The self-assembly potentials

found by Rechtsman et al. and this brute force search using the Defect Measure are shown

in Figure 5.1. These potentials can be seen to have very different forms, the latter having

a much larger repulsive section and having only a point of inflection at the lattice constant

(where Rechtsman et al.’s potential has its first minimum).

Thus, the highest quality honeycomb lattices are formed from repulsive particles that

spread out in the domain. The brute force potential shown in Figure 5.1 accounts for the

observed sensitivity of the honeycomb lattice to the initial density of particles and for its

fragility once formed.

Figure 5.7 illustrates that the lattice quality over the space of parameters for the poten-

tial is very noisy. Lattices are assessed here by the Defect Measure but similarly noisy results
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were obtained for the other metrics considered, including the Local Template Measure.
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(c) a2 = 0.95

Figure 5.7: The Defect Measure over the parameters a0, a1, a2 in Equation 5.2, with a3 =
1.823. Each set of parameters yields a different isotropic inter-particle potential. Each
potential was used in a simulation of particles cooling and the Defect Measure of the final
configuration was computed to assess the quality of the lattice. The lattice quality is a
noisy function but regions of higher quality can be seen as the dark blue areas.

5.1.3 Optimization of Potential for Self-Assembly

The brute force approach to designing the best potential for the self-assembly of particles in

Section 5.1.2, is computationally expensive. Each set of parameter values in the potential

requires at least one simulation to be run in order to assess the quality of the lattice formed.

A more efficient way to find the best parameters is to use an optimization scheme that has

the chosen quality metric as the objective function. Ideally, the optimization would be

a more robust way of finding potentials and would also provide some information on the

robustness of the potentials found.
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Rechtsman and co-workers used a simulated annealing procedure to find the potential in

Equation 5.2. In Section 5.1.4 we implement a trend optimization scheme that yields better

lattices and the parameters for the potentials that form these better lattices are found up

to one hundred times faster. The Defect Measure and the Local Template Measure were

used as both the objective function in the optimization scheme and as metrics for assessing

the quality of the lattices that were formed using the potentials found by the optimization

procedure.

Any quality metric may be used as the objective function in optimization schemes and

to assess lattice quality. However, the Defect Measure has two other features that can be

used to shorten the time taken to evaluate the objective function. These objective function

evaluations are frequently a large part of the cost of optimization schemes as they involve

running simulations of particles being slowly cooled to see what configuration they self-

assemble into.

The first application takes advantage of Step 2 of the Defect Measure algorithm, which

can identify the type of lattice being formed (if it is reasonably well formed). If the lattice

being formed in a simulation is not the same type of lattice as the target lattice then the

simulation may be cut short. This is particularly useful when the target lattice is the

honeycomb lattice because the competitor lattice is the very stable triangular lattice. For

many values of the parameters in the potential, a triangular lattice (with lattice constant

equal to the location of either of the first two minima) will form. Since triangular lattices

are very stable, there is no need to continue the simulation; the particles will not form a

honeycomb lattice with further cooling.

The second application of the Defect Measure in an optimization scheme is indicating

when the simulations can be halted because the particles will not significantly change their

positions with further cooling. For each set of parameters, a simulation will have to be run to

determine whether those parameters lead to a good potential for self-assembly. Rather than

having to run each large simulation for a long time, the Defect Measure of the particles can

be computed during the simulation and when the Defect Measure levels off, the simulation

can be cut short. Figure 5.8 shows the Defect Measure plotted against the time step for a

single simulation. From time step 110 until the end of the simulation at time step 150, the

Defect Measure stays relatively constant, indicating that the simulation could have been

cut off at time step 110. Naturally, the Defect Measure would not need to be computed at
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every time step, and not at the beginning of the simulation. This is especially useful if the

simulations involve a large number of particles. As the number of particles increases, the

relative expense of calculating the Defect Measure decreases, such that for large systems,

the computational savings from ending simulations early outweighs the cost of computing

the Defect Measure.
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Figure 5.8: Defect Measure versus time for a single simulation.

5.1.4 Trend Optimization of Potential for Self-Assembly

Rechtsman et al. [75] used a simulated annealing optimization procedure to find potentials

that lead to the self-assembly of particles into a lattice formation, as the temperature of the

system is reduced. The final method described here leads to a one hundred times speed-up

in the optimization of the parameters of the potential, and to higher quality lattices. The

procedure for finding the best potential is more robust and the resulting potentials form

the target lattice more robustly.

Choosing an optimization method requires the selection of both an optimization scheme

and an objective function to optimize. We compare simulated annealing and trend optimiza-

tion as our optimization schemes. The objective functions that we consider are the Defect

Measure (Equation 4.1), the Local Template Measure (Equation 4.3), and the Lindemann

Parameter (Equation 5.1).

Whereas the baseline geometric method utilizes only the geometry of the static target

lattice, the optimization methods discussed in this section incorporate information about

particle dynamics by optimizing parameters in the potential with respect to actual particle
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simulations. All molecular dynamics simulations were performed on eight parallel processors

using the LAMMPS software package from Sandia Laboratories.6

5.1.4.1 Objective Function Evaluation

Evaluation of the objective function f(x), where x = (a0, a1, a2, a3) is a point in the space of

parameter values for the inter-particle potential given by Equation 5.2, requires a particle

simulation with this inter-particle potential. These simulations were carried out with a

relatively small number of particles (74 for the Lindemann parameter and 64 for the Defect

Measure and Local Template Measure) in a periodic domain. As noted in Section 5.1.1, the

Lindemann parameter is a measure of how much a target lattice configuration has melted

and not the quality of the lattice, but using the Lindemann parameter as an objective

function is advantageous since it is faster to evaluate than the other objective functions,

which require much longer molecular dynamics simulations. Optimizing the Lindemann

parameter is, however, an indirect method in that the quanitity being optimized is not the

quantity that will be used to determine the final quality of the potential. A more direct

approach is to explicitly optimize the quality metrics. Although computationally more

expensive to evaluate, optimization of these objective functions guarantees optimization of

lattice quality and does not rely on the correlation of the objective function with lattice

quality. Indeed, in some cases we have observed that a potential that produces a low value

of the Lindemann parameter does not produce lattices of high quality.

To evaluate the Defect Measure and Local Template Measure objective functions, we

start the molecular dynamics simulation with a temperature well above the lattice melting

point and then reduce this temperature slowly until the particle motion is very small, that

is, to a temperature very close to zero. The quality metrics are computed for the final

lattice configuration. These simulations are expensive to carry out. Even though they may

be run in parallel, objective function evaluations are still the major contributor to the time

taken by the optimization procedure to optimize the potential parameters.

5.1.4.2 Objective Function Difficulties

As shown in Figure 5.7, the Defect Measure objective function is very noisy or spiky. Despite

this, a region of generally lower Defect Measure can be clearly distinguished (the dark blue
6http://lammps.sandia.org [71]
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region). Repeating the simulation for the same parameter values frequently lead to very

different Defect Measure values—up to an order of magnitude different. This is the main

difficulty with our objective function. It makes the optimization non-trivial for available

optimization techniques, and prompted the development of the trend optimization scheme.

The other objective functions considered have the same characteristics.

Traditional gradient-based optimization methods can not deal with such noisy objective

functions since gradients can not be computed using finite differences. If the ∆x in ∆f/∆x

is chosen larger, so as to try to avoid the spikes, the method becomes more like a patterned

search method (discussed in Section 5.1.4.3). Such methods can be robust despite noisy

objectives. Interpolation is another class of techniques used in the optimization community

that would have difficulties with a noisy objective. The interpolation between sites of

objective function evaluations will pass through spikes in the objective and the interpolation

itself will be as noisy as the objective. Furthermore, these methods perform poorly with

objectives that are highly variable in the sense that subsequent evaluations of the objective

function at the same location may yield very different results.

A number of fitting or trend approaches that approximate the objective are in use and

some of these are discussed briefly in Section 5.1.4.3. They can be very efficient even for

noisy objective functions; however, highly variable objective functions frequently present a

problem here too.

Thus, the primary features of our objective function are that it is

1. expensive to evaluate,

2. highly variable—repeated evaluations of the objective function at the same point in

the domain can give values that are up to an order of magnitude different,

3. very noisy or spiky;

4. yet has a smooth trend.

After a brief history of gradient-free optimization we discuss the initial investigations

that allowed us to construct the efficient procedure that we call trend optimization.

5.1.4.3 A Brief Survey of Similar Optimization Techniques

This section briefly surveys methods related to the trend optimization technique.
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Trend optimization combines:

• trends, or surfaces that fit the objective function evaluations,

• global and local optimization of the trend,

• hierarchical optimization approaches using a hierarchy of coarser and finer trends, and

• handling of noisy or highly oscillatory objectives by envelopes.

Trend optimization is designed for the global optimization of highly noisy objective

functions that are expensive to evaluate (possibly with crashes). Such problems are often

encountered in engineering, finance, and life sciences.

There are many optimization approaches based on approximations of the objective func-

tion. Such approximations could be, for example, response surfaces, reduced-order models,

surrogates, trends, coarse models, and many more. Some of these approximations are

physics based (such as coarse models), some are based on data such as regressions (data fit)

or interpolation, and some are hybrid, such as physics-based models with coefficients tuned

to best fit the given data. A major difference should be noted between surfaces that inter-

polate the objective function, that is, exactly pass through the objective function values,

and those that just fit the objective function values, for example, approximate the objective

function in a least squares way.

For objective functions that are noisy, optimization techniques based on interpolation are

prone to fail since they may try to follow the spikes of the objective function. Optimization

approaches that use trends or data fitting approaches may be much more robust since the

trends tend to reproduce the general shape of the objective function by smooth surfaces that

ignore the noise and local details of the objective function. Hence, trend based approaches

may be much more successful at finding the large local minima (as opposed to the deep

spikes) of non-smooth objective functions.

There are a great number of interpolation and fitting approaches. Approximations

that are used include polynomial interpolation, splines, Kriging methods, Taylor and other

expansions, distance based interpolation, linear and nonlinear regressions, radial basis func-

tions, neural networks, kernel based approaches, optimization based approaches, and more.

For a survey see, for example, [38].
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There is a vast body of literature on global optimization and multidisciplinary design

optimization (MDO) that encompasses different hierarchical optimization approaches and

surrogate approaches. Some reviews are [41, 69, 7, 10, 2]. Seminal papers in the area

include [47, 46, 78, 37, 42].

Noisy or non-differentiable objective functions can be handled by optimization tech-

niques such as pattern searches (discussed below), deterministic and stochastic searches (for

example, Monte Carlo, genetic algorithms, simulated annealing, evolutionary algorithms),

and techniques that smooth the objective (for example, multigrid optimization) or build

smooth trends of the objective function.

Trend optimization has a large overlap with the pattern search algorithms developed

by John Dennis, Charles Audet, and co-workers ([5] and references therein). They may

be combined with surrogates and response surfaces, such as Kriging surfaces. Some key

techniques are the Surrogate Management Framework (SMF) [9], the Generalized Pattern

Search (GPS) [81, 82], Mesh Adaptive Direct Search (MADS) [6], and the Variable Neigh-

borhood Search (VNS) [4]. The SMF incorporates the use of surrogate functions into a

pattern search framework. The SMF and the other pattern search techniques provide a ro-

bust and efficient alternative to traditional gradient-based optimization methods and they

can minimize functions that are noisy, have many local minima, and are relatively expensive

to evaluate. Audet et al. [4] propose a way to combine the MADS, which extends the Gener-

alized Pattern Search (GPS), with the Variable Neighborhood Search (VNS) metaheuristic

for non-smooth constrained optimization. This paper also proposes a generic way to use

surrogate functions in the VNS search. An application of SFM to a CFD problem is shown

in Marsden et al. [58], which also has a summary of how SFM works. Pattern searches date

back to the work of Hooke and Jeeves [40], where a robust algorithm that can handle noisy

objective functions is presented; it is implemented in iSIGHT 7.

Leading optimization software packages have algorithms that combine global optimiza-

tion with response surfaces or surrogates. Some of these are Tomlab8, DAKOTA9, iSIGHT,

IOSO10, and NOMAD11.

The trend optimization scheme presented here is similar to other response surface meth-
7http://www.engineous.com
8http://tomopt.com/tomlab
9http://www.cs.sandia.gov/DAKOTA/software.html

10http://www.iosotech.com/ioso tech.htm
11http://www.afit.edu/en/ENC/Faculty/MAbramson/NOMADm.html
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ods in global optimization that fit functions to the objective function rather than use inter-

polation. The added feature of our method is the upper and lower envelopes, which provide

a measure of the variability in the objective function values. It is ideal for dealing with

noisy (or discontinuous), widely variable, expensive-to-evaluate objective functions such as

the one we have in the self-assembly problem.

5.1.4.4 General Trend Optimization Algorithm

1. Evaluate the objective function at some number of points in the domain.

2. Construct a trend surface to the objective function at these points and previously

evaluated points.

3. Construct an upper envelope surface using information from all objective function

evaluations thus far.

4. Construct a lower envelope surface in a similar manner.

5. Optimize the trend and determine points of the trend that are local minima.

6. Refine the domain by excluding regions in which the upper and lower envelopes are

more than a specified maximum variability tolerance apart.

7. Repeat Steps 1–6 until a stopping criterion is met. Subsequent objective function

evaluations in Step 1 should select points both near the local minima and in regions

of lowest point density.

8. Perform a local search by any optimization technique in this region of flat envelopes.

9. The global optimal point is declared to be the point found by this local search.

This trend optimization algorithm12 is very general in that

• many methods of choosing points at which to evaluate the objective function may be

used;

12This algorithm was the result of discussions between the authors of [16], and Ronald Coifman from Yale
University and his group.
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• the trend and envelopes may be constructed by local averaging, Kriging, other surface

fitting techniques, least squares fit constructed from a vast range of basis functions,

or any other method;

• the optimization of the trend may be performed by any of the previously mentioned

techniques, including gradient-based methods; and

• the local search can employ a wide range of methods.

The feature that makes the algorithm efficient and robust is the upper and lower en-

velopes. This allows us to handle highly variable objective functions and, importantly, gives

a meaningful stopping criterion. Any other stopping criterion (given number of objective

function evaluations, given computing time, an objective function evaluation that is lower

than a given value, etc.) may be used, but the envelopes provide a natural stopping criterion

that is related to the acceptable variability in the objective function. This stopping criterion

is that the envelopes are flat and less than a maximum tolerance apart in a neighborhood

of the global minimum of the trend. Flat here means that their variance is less than a given

threshold.

The upper and lower envelopes specify which regions of the domain can be excluded

in the refinement step, thereby focusing the procedure on regions with less variability in

the objective function. The number of expensive objective function evaluations required

is reduced by this refinement step. The procedure also gains efficiency by using a cheap

method to optimize the trend.

Not only is the algorithm robust, but it provides a measure of the robustness of the final

solution. Flat upper and lower envelopes indicate that all points in this region exhibit the

same variability in repeated evaluations of the objective function. The minimum tolerance

distance specifies the maximum variability that is acceptable in the solution. Any point in

the region of flat envelopes near the global minimum of the trend is an equally good solution.

The closer the global optimal point is to the center of the region in which the envelopes are

flat, the more robust it is to variations in the parameters spanning the domain. Thus, the

trend optimization scheme provides a measure of the robustness of the optimal point. A

point that is at the edge of the region of flat envelopes may be moved to a point of high

variability in the objective function by a small variation in the domain parameters. Such a

point is not robust even though it is in the region of equally good solutions.
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A note on convergence of the algorithm

Jones et al. [47] studied issues related to balancing the exploitation of the approximat-

ing surface for optimization with the need to improve the approximation in the response

surface methodology. They prove that if the objective function is continuous on a compact,

finite-dimensional domain and a response surface interpolates the objective, then the above

algorithm, without the refinement of the search area in Step 6, will converge towards the

global minimum of the objective.

When the objective function is not continuous, this convergence result no longer holds.

However, it is intuitively plausible that if we sample points in the domain such that the

maximum distance between sampled points is no greater than a defined characteristic width

of the deep spikes, then the algorithm will find the “global minimum”, ignoring features

smaller than this characteristic distance.

5.1.4.5 Hierarchical Nature of the Trend Optimization Scheme

Trend optimization can be performed in a hierarchical manner by building a hierarchy

of trend surfaces. Each successive iteration of the procedure can build its own unique

trend. These trends can differ in four key ways. The most straightforward of these is that

successive trend surfaces may use previous objective function evaluations to build a surface

which better fits the objective function, since more points are used than in the previous

iteration. The second property of the family of trends is that after the initial global trend,

subsequent trend surfaces may be more local due to the refinement of the search area (by

excluding regions in which the envelopes are more than a maximum variability tolerance

apart). Third, successive trends may use more complex basis functions or a larger basis

when fitting surfaces so as to get a better trend. Finally, the method used to construct the

trend may be more sophisticated in successive iterations. The last two properties yield a

hierarchy of coarse to fine trends.

Note: In Step 7 of the algorithm, points are sampled not only in the region of the global

minimum but also at areas of lowest point density to ensure that no areas of local minima

have been missed by previous sampling steps.
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5.1.4.6 Initial Investigations

We present here the initial investigations that were carried out before implementing the final

trend optimization scheme for our self-assembly problem. It would not be fair to present

the final method without a discussion of the previous work that lead to confidence in our

results. This previous work lead to the development of the trend optimization method

that is expected to be useful in many other applications with similarly difficult objective

functions.

We seek the lowest point of the objective function in the regions of the relevant local

minima of the trend. We first briefly discuss the method we used to construct the trend

and envelopes.

Points from the domain are chosen using Monte Carlo sampling, and the trend, and

upper and lower envelopes, are constructed from the objective function evaluations at these

points, as shown in Figure 5.9. We first define a radius in parameter space, rnbhd, that is

the distance, or neighborhood, around each point that will be taken into account when con-

structing the envelope. These envelopes are interpolated based on local averaging. For each

point, find the minimum and maximum value of the objective function in a neighborhood

around that point,

fminnbhd(xp) = min{f(x) : |x− xp| < rnbhd}

fmaxnbhd(xp) = max{f(x) : |x− xp| < rnbhd}. (5.4)

Our upper envelope is a surface that goes through these fmaxnbhd(x) values and the lower

envelope is a surface that goes through these fminnbhd(x) values. An infinite number of surfaces

can qualify as an upper envelope (likewise for lower); we require only that it should touch

f(x) at least at one point and that it should be smoother than f(x).

The trend is a smoothed version of the objective function; it shows the simple smooth

shape underlying the objective function. A straightforward way to find a trend is by finding

the average value of the objective function in a neighborhood around each point, favgnbhd(x),

and constructing the surface through these values.

In our method we fit a linear regression such that the difference between f(x) and the

trend at x is minimized in some norm. We tested a variety of basis functions for the trend.
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Figure 5.9: Schematic of the trend and upper and lower envelopes for a noisy objective
function with a simple trend. The objective function is shown in green, the trend is red,
and the upper and lower envelopes are blue.

Once a satisfactory trend has been found, any desired method for finding the global

minimum of it can be used. In the regions of the minima, local searches using more objective

function evaluations can be conducted to find the multiple relevant minima. The evaluation

of the trend is very fast, unlike the evaluation of the objective function, so it is feasible to

evaluate the trend at a large number of points, and thus perform a robust global optimization

of the trend.

The process of choosing points by Monte Carlo sampling and evaluating the trend and

envelopes at these points can be repeated any number of times to get better and better

surfaces. Successive selection of points should be chosen not only around the region of the

global minimum of the trend but also in other regions of lowest point density.

Initial sensitivity studies were conducted on a one-dimensional slice of the objective

function with the goal of tuning the trend optimization method to our particular lattice

quality objective function. These investigations varied the number of points sampled at

each step, as well as the number of steps in the procedure. They revealed appropriate basis

functions and methods to use to fit the trend, tolerances on acceptable variability, and

methods for optimizing the trend. We present our final method below.

Trend Optimization Algorithm used in Self-Assembly Problem

1. Evaluate the objective function at 20 randomly sampled points drawn from a uniform



121

distribution.

2. Construct a trend by computing a least squares fit to these points.

3. Evaluate the quadratic at 10,000 Monte Carlo-selected points and determine the points

at which the trend has local minima.

4. Refine the size of the domain by reducing the length along each dimension by a factor

of 3 and re-centering the refined domain on the minimum of the quadratic.

5. Repeat the above steps, using all objective function evaluations performed thus far in

Step 2.

6. Evaluate the objective function at another 20 points in this doubly refined area of the

global minimum.

7. The optimal parameter values (minimum of the objective function) is declared to be

the point in this refined area at which the objective function is lowest.

This procedure is fast because although it is expensive to evaluate the objective function,

fitting the quadratic and evaluating it at 10,000 points requires very little time. Each set of

20 objective function evaluations may also be done in parallel thus reducing the wall-clock

time for the optimization. We also note that all previous objective function evaluations are

used to construct the trend and to find the global minimum in the final step. It is these

features and the simple smooth nature of the trend that make this algorithm so efficient for

our particular implementation.

We note that up to 14 successive sampling steps were considered. The factor by which

the search area could be refined at each step was also explored, using factors from 0.1 to 0.5.

These studies indicated that 2 sampling steps were sufficient, each consisting of 20 sampled

points, and that the search area could be refined by a factor of 1/3. It is this realisation

that lead to this method being 100 times faster than a simulated annealing procedure.

These values were demonstrated to be sufficient by examining the upper and lower

envelopes. Flat upper and lower envelopes after two sampling steps indicate that all points

in this region exhibit the same variability in repeated evaluations of the objective function,

and thus, are equally good. Hence, potentials using parameters from this region are equally

robust in the sense of producing the same quality lattices with the same potential. The
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robustness of the potential with respect to changes in its parameters is proportional to the

distance to the center of the flat region of the envelopes (Section 5.1.4.4).

Although designed with the potential for the self-assembly of a honeycomb lattice in

mind, the above procedure has been successful in optimizing the parameters for other self-

assembly potentials as well.

5.1.4.7 Comparison with Simulated Annealing

Simulated annealing is known to perform badly with objective functions such as the one we

have here. The results presented in Section 5.1.4.8 used a contributed simulated anneal-

ing procedure available on the MATLAB R© website.13 An enhanced simulated annealing

procedure with many more parameters was also used that was tuned to better deal with

our objective function. Five hundred runs of this simulated annealing optimization, with

different combinations of parameters, gave greatly varying optimal potentials. This variety

of optimal potentials naturally lead to great variability in the final lattice quality of simula-

tions with each potential. In contrast, the trend optimization procedure gave consistently

higher quality lattices (via better potential parameters) and did so 100 times faster than

the best out of the 500 enhanced simulated annealing runs. That is, it found a better global

minimum of the objective function and did so 100 times faster than simulated annealing.

Averaging multiple objective function evaluations at the same point in the domain would

give a smoother function on which to run simulated annealing; however, this is extremely

inefficient. It is faster and more robust to follow the trend optimization procedure explained

above. We note that simulated annealing may be used in the trend optimization algorithm

in Step 5 or 8, and we would expect good results in this case.

5.1.4.8 Results

After running an optimization method, we can assess the quality of the resultant potential

by measuring the quality of the lattices produced by the potential under cooling. The Defect

Measure and the Local Template Measure can be used to measure lattice quality but the

Lindemann parameter is not a measure of lattice quality (Section 5.1.1). Since we know

from the envelopes that repeated simulations with the same potential can produce lattices

with quality metric values varying by a factor of ten, for the results presented here, we
13MATLAB, 2007a, The MathWorks, Natick, MA
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average over 15 cooling simulations with different random initial conditions for each set of

potential parameters. The cooling simulations started from a temperature approximately

1.5 times the melting temperature of the lattice and cooled, using a Nosé-Hoover thermostat

[30], to less than 10% of the melting temperature.
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Figure 5.10: (a) Defect Measure versus CPU time for the different trend optimizations that
were run. The objective functions of these optimizations were the Lindemann Parameter,
the Defect Measure and the Local Template Measure (called Local Lindemann in the fig-
ure). Each data point represents a separate simulation run for the given CPU time. The
polynomial potential from the baseline geometric method (Section 5.1.1.1) is indicated for
comparison; it required no CPU time. (b) Lindemann Parameter versus the number of
function evaluations both for a trend optimization and a simulated annealing run with the
Lindemann Parameter as the objective function.

Figure 5.10(a) shows the average lattice quality (assessed by the Defect Measure) for

each potential found versus the CPU time taken to find the potential. Results are shown

for trend optimization using the Lindemann Parameter, the Defect Measure, and the Local

Template Measure (called Local Lindemann in the figure). We see that evaluating the

Lindemann Parameter is ten times faster than evaluating the other two metrics that measure

quality. The baseline geometric method’s polynomial potential is indicated for comparison;

it required no CPU time. Similar results were obtained using the Local Template Measure

as the final lattice quality metric.

Figure 5.10(b) is a direct comparison of the trend optimization scheme and simulated

annealing, using the Lindemann Parameter as the objective function. The latter is the

method employed by Rechtsman et al. to find their self-assembly potential parameters.
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The number of function evaluations is plotted on the horizontal axis. Trend optimization

can be seen to require 100 times fewer function evaluations than simulated annealing, for

the same final Lindemann Parameter. Not all simulated annealing runs performed as well as

the one shown here but the trend optimizations performed consistently well. The speed-up

can be attributed to the fact that the objective function is noisy yet has a simple trend,

two properties for which trend optimization is ideally suited. Furthermore, using trend

optimization on the more expensive quality metric objective functions still provides a ten-

fold speed up and provides the guarantee that the final potentials produce high-quality

lattices.

Figure 5.11: Potentials for the self-assembly of particles into a honeycomb lattice. The
different colors denote different methods used to find the form of the potential. Brown:
Rechtsman et al.’s potential (Equation 5.2); Red: potential resulting from trend optimiza-
tion with the Lindemann parameter (Equation 5.1) as the objective function; Green: po-
tential resulting from trend optimization with the Defect Measure (Equation 4.1) as the
objective function; Blue: potential resulting from trend optimization with the Local Tem-
plate Measure (MLP in the figure; Equation 4.3) as the objective function; Magenta: po-
tential resulting from simulated annealing with the Lindemann parameter as the objective
function.

Figure 5.11 shows the potentials generated by the various methods discussed. The

potential found by Rechtsman et al. is also shown for reference. When comparing the

potentials, the most striking feature that we observe is that trend optimization generates

potentials that are more repulsive and do not have potential wells. This leads to higher

quality lattices since particles do not get stuck in local minima associated with the potential

wells.
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5.1.5 Quantifying Robustness of Potentials

A good potential for the self-assembly of particles will be robust to uncertainty in the

parameters of the potential, the density of particles, the particle initial conditions and the

cooling schedule. The larger the range of values over which the final lattices formed are

acceptable, the more robust the potential is.

Two ways for finding this range of values will be presented. The first looks at lattices

formed from potentials that are equally good and the second looks at lattices that are

acceptably good. The notion of equally good potentials comes from the discussion of the

envelopes used to establish the trend optimization procedure.

5.1.5.1 Equally Good Potentials

Potentials that are equally good at producing the highest quality lattices possible, can be

found from the envelopes discussed in Section 5.1.4. Once the search area over the domain

of parameters of the potential has been refined so that the upper and lower envelopes over

the refined area at the global minimum of the trend are flat and less than a maximum

variability tolerance apart, this refined area defines the potentials that are equally good at

producing high quality lattices. They are equally good because the variability in repeated

objective function evaluations for these parameters is the same. Thus, these potentials are

equally robust to changes in the initial conditions of particles.

The robustness of the potential with respect to changes in its parameters is proportional

to the distance to the center of this region where the envelopes are flat.

5.1.5.2 Acceptably Good Lattices

There are two ways to define what an acceptably good lattice is. Lattices that have a value

of the chosen quality metric that is below a certain threshold value can be accepted as good

lattices. The value of this threshold will depend on what the assessor deems to be a good

enough lattice and which metric is being used.

The second way to define the acceptably good lattices is by using Step 2 of the procedure

to compute the Defect Measure. If the lattice can be identified by the algorithm to be of

the same type of lattice as the target lattice, then it is an acceptably good lattice. Such

lattices will have a majority of particles that have the correct number of nearest neighbors,
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next nearest neighbors, and third nearest neighbors. This definition of a good lattice works

best for lattices with many more inner particles than boundary particles.
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Figure 5.12: Defect Measure versus density of particles for (a) Rechtsman’s potential and (b)
a piecewise polynomial potential. Each point corresponds to one simulation of 65 particles
in a domain without periodic boundary conditions. The weights corresponding to Defect
Measure 1 were used.

Figure 5.12 plots the Defect Measure versus density of particles for two honeycomb po-

tentials: Rechtsman’s potential and a simple piecewise polynomial potential designed using

the baseline geometric method explained in Section 5.1.1.1. The weights of Defect Measure

1 were used in the computation. Note that 15 points were omitted from Figure 5.12(a).

These points all had a Defect Measure greater than 495 and a density greater than 1. Each

point in the plot corresponds to a simulation of 65 particles in a domain without peri-

odic boundary conditions. There were 1000 simulations with densities given by a Gaussian

distribution with mean of 0.8 and standard deviation of 0.1.

Defining acceptably good lattices to be those having a Defect Measure less than 30,

Rechtsman’s potential yields good lattices from densities of 0.6334 to 0.9578. The poly-

nomial potential yields good lattices over a range of densities from 0.6884 to 1.0690. This

corresponds to a spread of 0.3244 for Rechtsman’s potential and a spread of 0.3806 for the

polynomial potential; the latter is 17% larger. Thus, the polynomial potential can be said

to be more robust to uncertainty in the density of particles. It forms good lattices over a

wider range of densities.

The sensitivity of potentials to the parameters in the potential and the cooling schedule

can be examined by a similar procedure.
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5.2 Construction of the Phase Diagram of Krypton Atoms

on a Graphite Substrate

The lattice quality assessment tools developed in Section 4.2 can be used to detect phase

transitions from a disordered to an ordered state. In this way, they provide a low-dimensional

representation of the system. As the system is cooled, the quality metric can be monitored

until it reaches a threshold value that corresponds to an acceptably good lattice being

formed. The temperature at this time indicates the temperature at which the system has

transitioned for the density of particles in the simulation. By repeating this procedure at

different densities, a phase transition curve can be constructed. This method is straight-

forward to implement and we do not discuss it further here. Instead, we implement a

temperature quench method that is not as computationally expensive.14 We will show that

our results agree very well with experimental results.

Krypton atoms above a graphite substrate are an example of a system that forms a

lattice in one phase. The graphite substrate provides the krypton atoms with adsorption

sites in the form of a triangular lattice [11, 53]. The LAMMPS simulation package from

Sandia Laboratories was used to model this system.15 A monolayer of krypton atoms was

maintained by a reflective wall above the substrate and periodic boundary conditions in

both co-ordinate directions were enforced. The Defect Measure was used as the quality

metric because of its adaptability and short computation time.

The simulations follow a temperature quenching procedure, as explained by Gelb and

Müller [32]. The system is equilibrated at a temperature above the phase transition curve,

thus providing a system that is all in the fluid phase. The temperature is then quickly

dropped to a temperature that is below the phase transition curve. The density of the

system must be between the densities of the phase transitions to the solid and fluid phases

at the final temperature. This procedure is illustrated in Figure 5.13 where the system is

initalised at some point A that is at a high temperature. After the temperature drop, the

system moves to point B that is at a lower temperature. It has a density between points C

and D on the phase transition curve that have the same temperature. It has a temperature

that is below the broad, flat part of the phase transition curve.

14Thanks to Marco Arienti for suggesting the use of this method.
15Thanks to Vladimir Fonoberov from Aimdyn for modifying the code to enable implementation of these

simulations.
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Figure 5.13: Schematic illustration of the temperature quench method. Based on Figure 1
in [32].

The temperature quenching (sharp drop in temperature) causes the system to become

unstable and to spontaneously separate into fluid and solid regions. It is not necessary to

let the system as a whole equilibrate; only local equilibrium is required. This leads to some

savings in computational time. Two points on the phase transition curve can now be found

by identifying the solid and fluid phases and calculating their densities.

Constructing the phase diagram involves two methods, one of which is used at low

temperatures and the other at higher temperatures. The main difference between the two

methods is the form of the Defect Measure that is used.

5.2.1 Low Temperature Region

In the low temperature region of the phase diagram, the densities at which there is a

transition to a purely fluid and a purely solid phase are far apart. Thus, the phase that

an individual particle belongs to (in a system with both fluid and solid phases) can be

determined by counting the number of nearest neighbors of the particle. Since the graphite

substrate provides adsorption sites in a triangular lattice formation, a particle having six

nearest neighbors is in the solid phase. Particles with fewer than six nearest neighbors

are either fluid particles or particles on the boundary of fluid and solid regions. Counting

the number of nearest neighbors of particles corresponds to using the Defect Measure with

weights ωmissing = ωextra = 1 and ωdisplaced = ωboundary = ωlone = 0. Particles in the solid

phase will have a Defect Measure less than one, whereas fluid and boundary particles will

have Defect Measure greater than one. Boundary particles are identified as particles that
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have fewer than six nearest neighbors and that have at least one nearest neighbor that has

the correct number of nearest neighbors.

Once each particle has been identified as either a solid, fluid, or boundary particle, the

density of the two phases can be calculated by attributing an area to each particle. This is

done by finding the Voronoi tessellation of the particles in the plane [86]. Figure 5.14 shows

a typical snapshot of the system at a temperature of 70K after the temperature quench.

Solid particles are colored red, fluid particles are colored blue, and boundary particles are

green. Voronoi cells that correspond to fluid or boundary particles are colored yellow. The

small points around the edge of the figure show where the particles on the other side of

the domain are mapped to under the periodic boundary conditions. This is necessary to

account for when finding the Voronoi cell of each of the particles because of the edge effects

discussed in Section 4.2.4.
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Figure 5.14: A typical snapshot of krypton atoms (that are on a graphite substrate) at
70K. Solid particles are colored red, fluid particles are colored blue and boundary particles
are green. Voronoi cells that correspond to fluid or boundary particles are colored yellow.
Points around the edge show where the particles on the other side of the domain are mapped
to under the periodic boundary conditions.

Let nsolid be the number of particles identified as being in the solid phase, and Asolid be

the sum of the areas of the Voronoi cells corresponding to solid particles. Similar notation

applies to fluid and boundary particles. The density of the solid and fluid phases are then
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calculated as

ρsolid =
nsolid

Asolid
, (5.5)

ρfluid =
nfluid

(Afluid +Aboundary)−
(
nboundary × Asolid

nsolid

) . (5.6)

The area attributed to the fluid phase (the denominator in Equation 5.6) is the sum of

the area of Voronoi cells of particles that are either fluid or boundary particles less an

approximation of the area taken up by the boundary particles. The area of boundary

particle Voronoi cells is necessary to take into account so as to include all the free space

not taken up by the solid phase. However, the boundary particles are not to be counted

as fluid particles so we assign an area to them corresponding to the average area of a solid

particle Voronoi cell.

A lower estimate on the fluid density can be found by not subtracting the area taken up

by the boundary particles. An over-estimate of the fluid density can be found by looking

for particles that have Voronoi cells with an area greater than 1.5 times the average area of

a solid particle. Such particles are colored black in Figure 5.15 and their Voronoi cells are

colored yellow. This includes many of the boundary particles in the numerator. Thus

Fluid density under estimate =
nfluid

Afluid +Aboundary
, (5.7)

(5.8)

Fluid density over estimate =
nlarge cell

Alarge cell
. (5.9)

The results of this low temperature method are shown in Figure 5.18 as the black points

for temperatures below 85K (vertical axis). The horizontal axis shows the commensurate

monolayer density. This is found by comparing the densities calculated above to the density

of krypton atoms if there were a complete monolayer. Thus, a commensurate density of 1

corresponds to all adsorption sites of the krypton and graphite system being occupied. The

fluid density under- and over-estimates are indicated by the green lines. The red points are

the results of a 10, 000 atom molecular dynamics simulation using the LAMMPS software

package.16 The blue lines indicate experimental results obtained by Butler and Lahrer

16Thanks to Vladimir Fonoberov from Aimdyn for these results.
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Figure 5.15: A snapshot of krypton atoms on graphite showing which particles and Voronoi
cells are used for the fluid density over-estimate. Cells with an area greater than 1.5 times
the average area of a solid particle are colored yellow and the particles belonging to these
cells are colored black. Points around the edge show where the particles on the other side
of the domain are mapped to under the periodic boundary conditions.

[11, 53].

There is good agreement between our method and the two other methods. The advan-

tage over the molecular dynamics simulation is that the simulations did not need to be run

for as long since we require only local equilibrium and not equilibrium of the whole system.

There was also a reduction in computational cost as our results were obtained using ap-

proximately a quarter of the number of atoms. Other advantages of this method are that

only one snapshot of the system is needed, any snapshot provides two points on the phase

diagram (one for fluid and one for solid density), and the same initial equilibrated system

can be used for each final temperature considered.

This method of constructing the phase transition curve only works well in regions of the

phase diagram where the transition to pure fluid and pure solid phases are far apart. The

method is not suitable in the neck region at higher temperatures or in the broad flat region

around 85K. In these regions we must use a different form of the Defect Measure.

5.2.2 High Temperature Region

At temperatures where the solid and fluid phase transition densities are similar, the order of

the particles is the feature that distinguished the two phases. The Defect Measure weights

that are used are similar to that of Defect Measure 1 in Section 4.3: ωdisplaced = ωmissing =
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ωextra = 1, and ωboundary = ωlone = 10.

At these higher temperatures, the krypton atoms oscillate around their adsorption sites

more than at lower temperatures. To account for this, we average the positions of each

particle for a number of timesteps after the system has reached local equilibrium. In the

simulations used to produce the results shown in Figure 5.18, we average for 500 timesteps,

corresponding to 3.75 × 10−12s. The oscillation of a particle in the solid phase around

its adsorption site for this period is shown in Figure 5.16, with the green point indicating

the average position. The oscillations are about 0.3 times the distance between adsorption

sites. Note that it is feasible at most temperatures considered to average for fewer than 500

timesteps.
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Figure 5.16: (a) Trajectory of krypton atoms around their adsorption sites on the graphite
substrate for 500 timesteps. The green points indicate the average position of each particle.
The width of the oscillations are about 0.3 times the distance between adsorption sites. (b)
Close-up of one particle’s oscillations.

After calculating the Defect Measure of each particle (using the average particle posi-

tions), the histogram of the Defect Measures will have a peak at low Defect Measures (at

some value less than 1) and other peaks at higher Defect Measures. This can be seen in

the example shown in Figure 5.17 (note that this figure omits higher Defect Measures). We

choose a threshold value between the first and second peaks in the distribution. In the

example, and in the simulations used to produce Figure 5.18, the threshold Defect Measure

that defines the phases is a value of 0.5. Below this, particles are in the solid phase and

above this they are in the fluid phase. For the weights specified above, the threshold value

will be less than one. Other weights may give different threshold values but the appropriate

threshold value is between the first and second peaks of the distribution.
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Figure 5.17: Distribution of Defect Measure values (horizontal axis is truncated so higher
values of the Defect Measure are not shown). Below the threshold Defect Measure of 0.5,
particles are in the solid state and above the threshold they are in the fluid state.

The density of the phases is found by using the area of the Voronoi cells of particles

corresponding to each phase, as explained in Section 5.2.1. The commensurate density of

the points on the phase transition curve is shown in Figure 5.18 for temperatures from 85K

upwards (from the black diamonds upwards).

It can be seen that there is quite good agreement in the high temperature region with

the 3D molecular dynamics and experimental results. The shape of the phase transition

curves are similar in all three cases, however the Defect Measure method seems to be offset

slightly.

The advantage of our method is that we have used only a quarter of the particles that

the molecular dynamics simulation results used. It is possible to use fewer particles still.

The other advantages mentioned above for the low temperature method also hold, apart

from needing only one snapshot. It is necessary to find the average position of the atoms

as they are oscillating about their adsorption site. However, good results can be obtained

with averaging fewer than 500 timesteps.

The example of krypton atoms on a graphite substrate considered here illustrates that

the Defect Measure is a good coarse description of the system as it transitions between fluid

and solid phases. The temperature quench method reduces the computational time taken

to find the phase diagram of the system. The phase transition curve found by using these

tools is in agreement with experimentally found values.
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Figure 5.18: Phase diagram for krypton atoms on a graphite substrate. Results using
the Defect Measure method are shown in black. The low temperature method is used for
temperatures below 85K and the high temperature method for temperatures 85K (shown
as a black diamond) and above. Fluid density under and over estimates are represented
by the green lines. Approximately 2500 atoms were used for each simulation. Molecular
dynamics results, using 10,000 krypton atoms are shown in red. Experimental results are
shown in blue [11, 53].

5.3 Identification of Global Defects

The Voronoi metric can be used to identify global defects in a lattice by looking at the

local area of each particle. Calculating the Voronoi metric of each particle and shading

the Voronoi cell of particles that have a Voronoi metric value greater than some threshold,

yields Figure 5.20(a). This lattice has 576 particles and periodic boundary conditions in

both directions. The threshold Voronoi metric value used is 5× 10−5. This threshold value

can be found by looking at the distribution of Voronoi metric values.

For example, Figure 5.19 shows the distribution of the area of Voronoi cells in blue.

The green dashed line represents the value of (area of bounding box)/(number of particles),

and the shorter, red dashed lines represent this value plus/minus the threshold value. This

threshold value was chosen to include the part of the distribution centered around the (area
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Figure 5.19: Distribution of the area of Voronoi cells. The dashed green line represents the
value of [(area of bounding box)/(number of particles)], and the shorter, red dashed lines
represent this value plus/minus the threshold value. This threshold value was chosen to
include the part of the distribution centered around the [(area of bounding box)/(number
of particles)] value.

of bounding box)/(number of particles) value.

Local as well as global defects of the lattice can be seen in Figure 5.20(a). The hexagonal

shape (made up of seven Voronoi cells) indicates an extra particle in the lattice, whereas

the triangular shape (made up of three Voronoi cells) indicates a missing particle. These

local defects are much easier to locate at a glance by this method.

Global defects such as domain walls or grain boundaries can be seen by observing con-

tiguous shaded Voronoi cells. The lattice in Figure 5.20 has a domain wall extending from

the left-hand side down to the lower edge, which then continues from the top to the right-

hand side due to the periodic boundary conditions. There is another domain wall that joins

up with this domain wall, beginning in the top right and extending upwards until it comes

back into the bounding box at the bottom left. These domain walls are more clearly defined

on Figure 5.20(b) where Voronoi cells that share at least two vertices with cells that have

a large value of the Voronoi metric (shaded magenta), are colored green.

Note that the Voronoi tessellation yields cells that have many sides, including short

sides that can not easily be seen in Figure 5.20. The vertices that are used in determining

which cells are colored green must adjoin a side that is not one of these short sides, that is,

a side that is visible in the figure. Short sides are defined heuristically to have a length of

less than 0.03 in Figure 5.20.
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Figure 5.20: Identification of global and local defects using the Voronoi metric. (a) Voronoi
cells of particles with a high Voronoi metric are colored magenta. These cells identify
areas where there are defects. Local defects such as missing and extra particles can easily
be located by their characteristic triangular and hexagonal, respectively, shaded regions.
Global defects such as domain walls can be identified by contiguous shaded cells. (b)
Global areas of defects, for example domain walls, are more clearly defined by shading cells
green that share at least two vertices with magenta cells.

Apart from the domain walls mentioned above, the shading rule that yields Figure 5.20(b)

also joins the defects in the middle of the domain that were isolated defects in Figure 5.20(a).

Thus, this procedure based on the Voronoi metric highlights regions of the lattice that are

weaker or not as well formed, as well as identifying domain walls.

5.4 Identification of Clusters to be treated as Rigid Bodies

The self-assembly of particles with pairwise isotropic inter-particle potentials into a lattice

requires long and computationally expensive simulations. The temperature of the particles

must be decreased slowly to allow a lattice to form. One way to speed up such simulations

is to identify particles that have already formed a lattice structure and treat these particles

as a rigid body, thus decreasing the number of evaluations of the potential function. This

procedure works best for lattices that form nuclei that grow and join up to form a lattice.

The triangular lattice is ideal because of its stability once formed. The polynomial potential

in Section 5.1.5 for the honeycomb potential also forms in this way.

A cluster of particles that may be treated as a rigid body can be identified by observing

how much the inter-particle distances change over time. If these distances have not changed
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significantly for an appropriate length of time then the particles are most likely in the lattice

configuration and may be treated as a rigid body.

However, there may be some defects in this cluster of particles. A lattice with a defect

is typically less stable than a lattice free of defects. Over time, the particles will try to

eliminate the defect or move it towards the edge of the otherwise well-formed cluster. This

takes more time than the free movement of particles that are not a part of a cluster. So a

cluster that has a defect may be identified as a cluster to treat as a rigid body because the

inter-particle distances do not change much.

To allow defects within clusters of particles to be eliminated, the Defect Measure can

be calculated for each candidate rigid body particle. Those particles with a high Defect

Measure (those close to the defect) would then not be included in the cluster of particles

to be treated as a rigid body. This would allow the defect to move to the boundary of the

cluster. If the particles with a high Defect Measure are completely surrounded by particles

with a low Defect Measure, the defect is likely to be stuck in the interior of the cluster.

A related application of the procedure for calculating the Defect Measure is in that

of simulating nucleation. Clusters of particles that have formed a lattice either grow or

combine with other clusters to form a larger lattice cluster. This process of nucleation can

be modelled by allowing the outer particles of a cluster to move freely while keeping the

inner particles in a rigid body core, since cluster growth is a process that takes place on the

boundary of clusters. The method for identifying the boundary of a group of particles in a

lattice configuration (see the Defect Measure algorithm in Section 4.2.1.1) can be used to

identify these boundary particles, which are then taken out of consideration while the next

layer of boundary particles is found. As many layers as necessary may be found in this way,

although for the triangular lattice, without defects, two layers or “skins” is sufficient.

5.5 Conclusions and Future Directions

The Defect Measure, and other quality metrics, have been used in implementing an opti-

mization procedure that finds parameters for potentials that lead to the self-assembly of

particles into desired lattice configurations. Apart from being the objective function, it

was used to measure the robustness of potentials. It also has other uses in optimization

schemes, such as speeding up the simulations required and identifying what type of lattice
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is forming.

The trend optimization scheme presented here is an efficient method for finding the best

potential parameters in a robust way. We compared it to a simulated annealing procedure

and found it to be at least ten times faster, depending on which objective function is used.

Trend optimization is ideal for objective functions that are very noisy, highly variable, and

expensive to evaluate, but have a simple trend. The development of a way to characterize

the quality of particle configurations has enabled the optimization of potentials based on

quality.

Phase diagrams that involve a phase transition from a disordered to an ordered state

can be constructed using lattice quality metrics. Krypton atoms on a graphite substrate

are an example of such a system, and the phase transition curve for this system was found

by using the Defect Measure. A different formulation of the Defect Measure is needed

for the low temperature and high temperature regimes because of the densities at which

phase transitions occur. The results are in good agreement with both molecular dynamics

simulations using many more particles and experimental results.

The Voronoi metric, by looking at local properties, can be used to find global defects.

This notion of using local properties to find global features allows the weaker regions of

a lattice to be determined. If the lattice represented a material, it is along these weaker

regions that deformations due to the effects of a stress on the lattice as a whole would occur.

Thus, it is useful in predicting the behaviour of materials.

Similar ideas find an application in a very different system in the area of vehicular

surveillance. Small, unmanned vehicles, with a limited range of communication, may be

given the task of searching an area. Depending on the size and shape of the area to be

searched, the vehicles flying in formation may be the best way to conduct the search. If

vehicles can only communicate with their nearest neighbors, it is important for a central

controller to know where there are weaknesses in the communication links. These correspond

to areas of global defects in the lattice formation. Identifying these areas of weakness is the

same problem that was solved using the Voronoi metric to find global defects by examining

local properties.

The local perspective advocated here yields a toolkit of lattice quality metrics that

can be used to further understand the structure of planar ordered systems. These can be

either computational or experimental in nature. Although the applications discussed here
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have been chemical systems, the metrics developed are, in principle, applicable to biological

systems as well.

The self-assembly of nano-particles promises to yield a new generation of materials with

novel applications (see [43, 13] for theoretical and experimental examples, respectively). The

quality metrics developed here have a role to play in studying the behaviour of such materials

that have not formed perfectly. Finding global defects by examining local properties can

help to understand the structural properties of these materials. Optimization of features of

the nano-particles with respect to quality of the resultant materials in simulations can lead

to new materials and further understanding of the dynamics of their formation.

Similar ideas are also applicable in the area of self-assembling proteins in biological sys-

tems [65]. Computational models exist for the formation of structures such as the filaments

formed from silicatines.17 Investigating how the properties of the filaments depend on the

quality of the intermediate fractal sheet that self-assembles is expected to be a fruitful area

of research. Quality metrics for constituents that are not simple particles can be developed

based on the ideas presented here.

The analysis of real experimental systems with respect to local pattern quality is becom-

ing a reality with the advent of ways to visualise surface monolayers using ultrafast electron

crystallography [76]. The combination of experimental tests of structural properties once

the actual pattern features and local quality is known can lead to significant improvements

in computational models and hence the design of self-assembling systems.

17Thanks to Gunjan Thakur at UCSB for suggesting this application.
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Chapter 6

Conclusions and Future Directions

In this thesis we have explored ways to overcome the difficulty of the large number of dimen-

sions in computational models of molecular systems. This requires both a low-dimensional

representation of the system that captures the essential dynamics of transition and efficient

computational methods.

The first half of the thesis emphasised the importance of exploiting knowledge of the

reaction dynamics in small molecular systems to produce reduced-order models of the tran-

sition. Dynamical systems theory reveals that invariant manifold tubes mediate transport

through the transition state in the ionization of a Rydberg atom. The intersections of

these tubes with a Poincaré surface of section yield a low-dimensional model from which

transition rates can be calculated.

A coarse-level description of a chemical system requires an appropriate coarse variable

that allows for a reduction of the number of dimensions in the model and captures the

essential dynamics. The gyration radii of a system are such coarse variables. The internal

centrifugal force, which couples the kinematics of the bath particles to the gyration radii,

can be as important as the potential force between particles in chemical reactions. The

competition between these two forces yield an effective potential that provides a simple

model of the system.

The low-dimensional models of transition found by using knowledge of these two mech-

anisms of reaction were shown to accurately capture the system’s transition behaviour. In

the case of the Rydberg atom, we are confident in our results as they agree with those

obtained by an independent method. In the methane and oxygen dissociation example the

model’s effective potential explains the observed distributions.

An efficient computational tool is also necessary for the calculation of transition prob-
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abilities. The set-oriented method, as implemented in the gaio software package, is such

a tool. It can efficiently find global structures while maintaining accuracy by local refine-

ment in the interesting regions of phase space. An exciting future direction is combining

the coarse gyration radii description of a system with the set-oriented method to calculate

reaction rates. The isomerization of an Argon-6 cluster is a well-studied system [88] and is

a good test-bed for this combined approach. The study of transitions in larger molecular

systems will become tractable by using the gyration radii as coarse variables to describe the

system and computing reaction rates via the set-oriented method.

In the second half of the thesis, we developed quality metrics that quantify the ordered

patterns in lattices and enables lattices to be compared with respect to quality via a single

number. The metrics were shown to focus on different aspects of lattices: the alignment,

the local density, and the inter-particle distances. We discussed situations in which each

metric would be applicable, as well as the versatility of the Defect Measure. An important

feature of these metrics is that they provide information about a global attribute based on

local information.

We investigated various applications of these quality assessment tools: their use in the

generation of potentials for the self-assembly of particles, finding the phase diagram of

krypton atoms on a graphite substrate, and identifying global defects and clusters. Other

possible applications are in computational models that seek to understand collisions at

the atomic level, and with further development, in models of self-assembling proteins in

biological systems.

The efficient computational tool that, when combined with the ability to represent

the quality of a lattice with one number, enabled us to find optimal potentials for the

self-assembly of particles into a lattice was the trend optimization scheme presented in

Section 5.1.4. This powerful method, which is ideal for the noisy, highly variable, expensive-

to-evaluate objective functions that we have here, was shown to perform two orders of

magnitude better than a standard simulated annealing procedure. The strength of this

scheme, and the feature that leads to robust solutions, is the upper and lower envelopes that

characterize the variability in the objective function. These envelopes identify regions of the

domain that may be excluded from the refined search area and provide a stopping criterion

for the algorithm. Difficult optimization problems that have very noisy (or discontinuous),
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highly variable objective functions that are expensive to evaluate, yet exhibit a smooth

trend, can easily be handled by this scheme.
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Appendix A

Lattices Used for Comparison in
Section 4.3

The test lattices in Section 4.3 that were used for comparing the quality assessment metrics

developed in that chapter, were generated from two different types of potentials: Lat-

tices 1–13 were generated using a Rechtsman-style potential [75] and lattices 14–20 were

generated using a polynomial potential (as explained in the baseline geometric method of

Section 5.1.1.1). These potentials are explained in Section 5.1.

The differences between the lattices are due to differences in the parameter a2 of the

Rechtsman potential, the initial density, the time allowed for cooling, or the initial con-

ditions. The values used are shown in Table A. If two lattices appear to have the same

parameters, density and cooling time, then they differ only the initial conditions of the

system.

The lattices may be grouped according to {1, 2}, {3}, {4, 5}, {6−9}, {10}, {11}, {12}, {13}, {14−

16}, {17−19}, {20}.
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Lattice index Type of potential Parameter a2 Initial Density Cooling Time
1 R 2.49 0.5977 2.5
2 R 2.49 0.5977 3.0
3 R 1.2 0.6897 3.0
4 R 1.49 0.6897 3.0
5 R 1.49 0.6897 3.0
6 R 2.49 0.6897 2.95
7 R 2.49 0.6897 3.0
8 R 2.49 0.6897 3.0
9 R 2.49 0.6897 3.0
10 R 2.49 0.8234 3.0
11 R 1.48 0.6897 3.0
12 R 1.52 0.6897 3.0
13 R 2.49 0.6903 3.0
14 P – 0.7235 3.0
15 P – 0.7235 3.0
16 P – 0.7235 3.0
17 P – 0.7698 3.0
18 P – 0.7698 3.0
19 P – 0.7698 3.0
20 P – 0.7854 3.0

Table A.1: Differences between test lattices used for comparing metrics in Section 4.3. R
denotes a Rechtsman-style potential and P denotes a polynomial potential. The cooling
time is in units of 105 time steps.
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