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Abstract

A major difficulty in modeling molecular systems is that the number of dimensions, even
for a small system, is commonly too large for computation to be feasible. To overcome this
challenge, a combination of lower-dimensional representations of the system and improved
computational methods are required. In this thesis, we investigate techniques to achieve
both of these aims via three model problems.

By exploiting an understanding of the mechanism and dynamics of reaction in the sys-
tems considered, we attain a low-dimensional description of the transition that captures
the essential dynamics. For the ionization of a Rydberg atom we utilize concepts from
dynamical systems theory that reveal the geometric structures in phase space that mediate
the reaction. The gyration radius formalism captures the kinematic effects of the secondary
particles in a coarse variable that reduces the number of dimensions of the model, thereby
providing a simple description of our methane and oxygen dissociation example. These
methods are applicable more generally and provide a coarse model of chemical reactions
that can be combined with efficient computational tools, such as the set-oriented method
employed in our Rydberg example, to efficiently compute reaction rates of previously diffi-

cult problems.

The third model problem considered is the self-assembly of particles into an ordered
lattice configuration under the influence of an isotropic inter-particle potential. With the
aim of characterizing the transition from a disordered to an ordered state, we develop
metrics that assess the quality of the lattice with respect to the target lattice configuration.
The five metrics presented use a single number to quantify the order within this large
system of particles. We explore numerous applications of these quality assessment tools, in
particular, finding the optimal potential for self-assembly. The very noisy, highly variable
nature of our expensive-to-evaluate objective function prompted the development of a trend

optimization algorithm that efficiently minimizes the objective function, using upper and



vi
lower envelopes that are responsible for the robustness of the method and the solution. This

trend optimization scheme is widely applicable to problems in other fields.
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Chapter 1

Introduction

A major difficulty in modeling molecular systems is that the number of dimensions for even
a small system is commonly too large for computation to be feasible. To overcome this
challenge, a combination of lower-dimensional representations of the system and improved
computational methods are required. Understanding the dynamics of a transition enables
us to focus on mechanisms that mediate transport and to develop coarse models that have
fewer dimensions than the original system, yet contain the essential dynamics.

These lower-dimensional models of chemical reaction dynamics can be used to calculate
transition rates when coupled with efficient methods of computation. An efficient computa-
tional method will exploit global features of the domain, and locally refine areas of interest,
rather than doing a brute force computation at every point in the domain.

Together, these approaches make the calculation of reaction rates in realistic chemical
systems tractable. The predictions of computational reduced-order models can be compared
with experiments to gain further understanding of the mechanism of reaction, thereby

opening the door to the design of new reaction pathways and products.

In this thesis we develop low-dimensional representations of a number of chemical sys-
tems as well as implement efficient algorithms for computation. These tools are presented
in the context of model problems that are sophisticated enough to capture phenomena that
are, or are expected to soon be, experimentally verifiable.

In Chapter 2 we calculate reaction rates by coupling dynamical systems theory and a
set-oriented method for computation. The number of dimensions to be modeled is reduced
by introducing a surface of section through which all trajectories must pass and exploiting

knowledge of the geometric structures in phase space that mediate the reaction. Transition
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rates are calculated by looking at a global description of transport in the system. This is
possible through the set-oriented approach, which constructs a box covering of the surface of
section and computes many short trajectories in each box, rather than following individual
trajectories for a long time. This is an efficient computational method for finding global
structures and calculating transport rates; it uses local refinements of the box covering to
ensure the accuracy of the computed rates. The method is demonstrated with the ionization
of a Rydberg atom in crossed electric and magnetic fields, an example for which traditional
transition state theory fails.

Chapter 3 investigates a system in which (primary) particles undergo a transition under
the influence of other particles (secondary particles). The energy distribution between
the reactive and bath modes is demonstrated to be important to an understanding of the
system. A coarse variable, called the gyration radius, describes the dynamics of reaction
in a succinct and elegant way. An effective potential computed along this gyration radius
takes into account the kinematic effects of the secondary particles and is consistent with the
observed probability distributions. This effective potential includes an internal centrifugal
term that is shown to govern the mechanism of reaction for some system parameters. The
internal centrifugal force couples the kinematics of the bath particles with the gyration
radius, which encapsulates the mass distribution of the system. The system we consider is a
simplified model of the dissociation of methane and oxygen. The coarse representation of the
system by the gyration radius and accompanying effective potential can be combined with
the set-oriented computational method to calculate dissociation rates for realistic chemical
reactions.

In the second half of the thesis we move away from chemical reactions with a small
number of constituents and instead focus on a large number of particles in the plane and
their transition from a disordered state to an ordered state. In Chapter 4 we develop and
discuss five metrics for assessing the quality of ordered lattice configurations. These quality
assessment tools are a simple representation of the system that can capture phase transitions
that involve a change in order. They are compared and their differences highlighted, noting
the situations in which each is applicable. The best metric to use depends on whether the
alignment of particles, the local density, or the correct inter-particle distance is the most
important.

Chapter 5 explores some of the many applications of the Defect Measure and other lattice
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quality assessment tools. The problems examined here are the generation of inter-particle
potentials for the self-assembly of particles, examining the robustness of such potentials,
finding the phase diagram of krypton atoms on a graphite substrate, and identifying global
defects and clusters from local information. A computationally efficient method, called
trend optimization, for optimizing the parameters of self-assembly potentials is presented
and contrasted with simulated annealing. The trend optimization scheme is ideal for finding
minima of very noisy (or discontinuous), highly variable, expensive-to-evaluate objective
functions and quantifying the robustness of solutions. It is also very fast and robust. It
is the combination of being able to represent the quality of a lattice with one number and
this efficient trend optimization method that enables us to find the optimal inter-particle

potential for self-assembling systems.






Chapter 2

Set-Oriented Computation of
Transport Rates in
3-Degree-of-Freedom Systems: The
Rydberg Atom in Crossed Fields

One of the primary goals of chemical physics is the calculation of the rate at which a
reaction proceeds. Transition State Theory (TST) (see, for example, [84]), also known as
Rice-Ramsperger-Kassel-Marcus (RRKM) theory (see, for example, [33]) is widely used in
the chemistry community to calculate these rates. While successful in many situations, this
statistical theory is inadequate in others, and in those cases it can have an error of a few
orders of magnitude when compared with experimental results [18].

TST identifies a transition state for the system under consideration: This is a set of
states through which the reactants must pass in order to become products of the reaction.
These transition states may be in phase space rather than configuration space, but TST
assumes that the regions in phase space connected by this transition state are structureless
in the sense that motion within them is purely statistical [62]. However, in the examples
where TST fails, this assumption breaks down, and indeed, the structure of phase space
must be accounted for when calculating reaction rates [31].

By developing reaction island theory, De Leon, Mehta, and Topper have shown that
cylindrical manifolds in phase space mediate 2-degree-of-freedom chemical reactions [19, 20].
Uzer, Jaffé, and co-workers have isolated some of the important geometrical aspects of the

phase space structure for higher degree-of-freedom systems [44, 85]. We note that Koon
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et al. [51] emphasized the importance of heteroclinic networks and the associated cylindrical
manifolds (tubes) when considering dynamical channels, and Contopoulos and Efstathiou
[15] used escape rates from a surface of section to identify regions that govern the transport
between parts of the phase space.

Gabern et al. [31] have calculated reaction rates in chemical systems with three degrees of
freedom using dynamical systems tools and Monte Carlo methods. By taking into account
the invariant manifold tubes that mediate the dynamics of a reaction, these rates were
calculated for a system with non-statistical dynamics. A major difficulty that was overcome
by using a Monte Carlo method was the calculation of the volume of the overlap of the
invariant manifold tubes.

This work uses a new approach, based on set-oriented methods (see, for example, [26]),
to identify the structures in phase space that mediate chemical reactions and to calculate
the associated reaction rates.

The set-oriented approach focuses on a global description of the dynamics on a coarse
level and covers the relevant region of phase space by appropriately sized boxes. By con-
sidering a transfer operator associated with the underlying map, one is able to describe the
evolution of an initial distribution under the dynamics. Via a partition of some interesting
region in phase space, this operator can be discretized, yielding a stochastic matrix. The
transport rates between different regions in phase space can then be computed using this
matrix of transition probabilities. This global analysis is more efficient and can provide
more information than the calculation of many individual trajectories.

The primary differences between the approach presented in this chapter and that of [31]

are that the set-oriented method

1. does not use normal forms to find the invariant manifold tubes but rather uses infor-

mation about the time trajectories take to return to a Poincaré section,

2. does not use Monte Carlo methods for the calculation of volumes, as the necessary
information is naturally given by the box volumes and the matrix of transition prob-

abilities, and

3. does not use long-term simulations but rather short-term simulations for a large num-

ber of globally distributed initial particles.



7

Despite the large differences in methodology and computational tools, the results of the
set-oriented approach and that of [31] are in good agreement, which gives us confidence in
both methods.

We take the ionization of a Rydberg atom in crossed electric and magnetic fields as
our example. Both the planar problem and the three-dimensional problem are considered,
with the half scattering and full scattering rates being calculated. The power and the
potential of the set-oriented approach in dealing with high-dimensional systems is thereby
demonstrated.

In the following section, the physical background of the example that we consider is
presented, followed by a detailed description of the model. Section 2.3 elucidates the set-
oriented method as it relates to the calculation of reaction rates. In Section 2.4 the results

are presented and discussed, followed in Section 2.5 by conclusions and future directions.

2.1 Background

The Rydberg atom is a hydrogen-like atom in that it has one valence electron. Highly
excited Rydberg atoms have enough energy such that the valence electron is far away
from the nucleus and its dynamics can be treated classically, to a good approximation.
Introducing external perpendicular electric and magnetic fields breaks the symmetry of the
problem so that the escaping electron will do so in a particular direction. The escape of
the electron from the field of the nucleus (and surrounding inner electrons) is known as
ionization. The electron moves off to infinity and there is no possibility of return. This
process is an example of a unimolecular reaction or dissociation.

The highly excited Rydberg atom is an interesting example not only because of its
relation to other problems in chemical physics but also because of applications in diverse
areas ranging from lasers to quantum computing [29, 87, 1]. They are also of interest as
they are at the overlapping region between classical and quantum mechanics, where the
correspondence principle applies [73]. In addition to their theoretical interest, such atoms
in crossed fields arise naturally in some astrophysical plasmas.

Rydberg atoms are a compelling test bed as they have a theoretical richness while also
being experimentally accessible. Such atoms have been used to study the onset of classical

chaos and to develop semi-classical models of quantum resonances [57, 17]. They are well



8

suited to experiments as the internal field strengths of the atom are comparable to the
external field strengths that are attainable in the laboratory [72]. Thus it is possible to
study the strong-field regime.

Raithel, Walther, and co-workers have studied Rydberg atoms in a number of arrange-
ments, including the crossed fields arrangement. They have calculated ionization rates as
a function of excitation energy for different values of the electric and magnetic fields [73].
Advances in experimental methods now allow the excitation of a Rydberg atom to a known
energy level [39]. Thus, the techniques are available for experimentally calculating the ion-
ization rates that are computed in this chapter. It is hoped that the explicit experimental

connection is achieved in the near future.

2.2 Model

2.2.1 Half and Full Scattering Problem

In a unimolecular dissociation reaction, the reactant is the bound state and the product
the unbound state. To pass from a bound state to an unbound state, the system must
go through the transition state. Such reactions have come to be known as half scattering
problems [44]. Once in the unbound state, there is no possibility of return for the electron.
The full scattering problem involves moving through the transition state from an unbound
state to a bound state and then back through the transition state to an unbound state,
that is, the capture of the electron followed by ionization of the same electron. The example
discussed in Section 2.4 calculates rates of reaction for both the half scattering and full

scattering problems.

The reaction will proceed only if the system has enough energy to overcome the energy
barrier between reactants and products. For an energy at which the reaction can proceed,
the energy in the system must find its way into a reactive mode for the reaction to occur.

It is this process which determines the rate of the reaction.



2.2.2 The Hamiltonian System
The dynamics of the electron is described classically by the following 3-degree-of-freedom
Hamiltonian in co-ordinates that have been scaled by the cyclotron frequency:

1 1 1 1
H = 5(175 +po+p2) — —+ S (@py —ypa) + g(:r2 +y?) — ex, (2.1)

where r = /22 4 y2 + 22 is the distance between the electron and the center of the nuclear
core. The cyclotron frequency, w, is given by w. = eB/m where e is the electron charge,
B is the magnetic field strength and m is the mass of the electron. The scaled electric field
strength, ¢, is defined by € = w, Y3 B where E is the applied electric field strength (see for
example [44]).

The Legendre transformation gives us the velocities
j=py+5. i=pa

- y
x_px_§7

The Jacobi constant (first integral) is given by
Cla,y,2,8,9,2) = —(&° + 9% + £%) + 20(x, y, 2) = —2B(2,y, 2, 3,5, 2)
where
o 1 .9 .9 .9
E(z,y,2,2,9,2) = 5 (2" +§° + 27) - Qz,y, 2),

is the energy function. The effective potential function is Q(x,y, z) = ex + % The 2-degree-
of-freedom system is obtained by setting z = Z = 0 in the equations above.

The Stark saddle point occurs at
1
\/Ea Yy
0, ¢y = 0, 2 = 0.

The Hill’s region is the region of configuration space in which the electron is energetically

forbidden to go, and for & = ¢ = 2 = 0 is given by

M(e,C) = {(z,y,2) € R} | Q(x,y,2) > C/2}.
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Figure 2.1: (a) zy projection of the Hill’s region (schematic). (b) The possible types of
trajectories in the equilibrium region are shown in the xy projection (schematic). There are
three different types of orbits — asymptotic, transit, and non-transit orbits (see [51]).

Figure 2.1(a) shows one of the possible cases of the Hill’s region for the Rydberg atom
projected onto the zy-plane. For some values of the energy (and hence C), the energetically
forbidden region will be such that there is no way to go from a bound state to an unbound
state or vice versa. That is, the neck region in the figure will close. Thus, for scattering
problems we must have sufficient energy for the Hill’s region to look qualitatively as shown

in Figure 2.1(a).

2.2.3 Dynamics Near the Saddle Equilibrium Point

For the computation of transition probabilities, we need to identify regions in phase space
that correspond to transport regions. In Transition State Theory the phase space associated
with the reaction is traditionally assumed to be structureless [62]. Jaffé et al. [44], as well
as Gabern et al. [31], have shown that this is not true for the problem of a Rydberg atom in
crossed electric and magnetic fields. Their work builds on the work of Conley [14], McGehee
[63], and Koon et al. [51], which have shown this to also be true for the restricted three
body problem in celestial mechanics.

For a system with n degrees of freedom, there is an invariant deformed (2n — 3)-sphere
that is the normally hyperbolic invariant manifold (NHIM), near the rank-one saddle equi-
librium point sp. Orbits asymptotic to this sphere form the stable and unstable manifolds

of the sphere. These manifolds (also called “tubes”) are the key features of phase space
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Figure 2.2: Typical (a) transit and (b) nontransit trajectories. The zy projection of the
Hill’s region is shown as the dotted line. Compare with Figure 2.1.

that mediate transport through the transition state. As these tubes are (2n — 2) dimen-
sional objects in a (2n — 1) dimensional energy surface, they divide the possible orbits into
two categories: those that will pass through the transition state and those that will not.
Orbits inside the stable manifold in the interior of the atom will pass through the transition
state, that is, particles on these orbits will react. Figure 2.1(b) shows the possible types of

trajectories in the region near the equilibrium point sp.

2.2.4 The Poincaré Section

To reduce the dimensionality, an appropriately chosen (2n —2)-dimensional Poincaré section
is taken in the (2n — 1)-dimensional energy surface. In our context of the 2- and 3-degree-

of-freedom system we choose a Poincaré section X given by the conditions

y=0, <0, y>0. (2.2)

All of the essential dynamics are captured by the Poincaré section as trajectories will cross
the Poincaré section only once in every loop that they make about the nuclear core at the
origin. Thus we focus our attention on the dynamics on the Poincaré section.

In Figure 2.2 the xy-projection of typical (a) transit and (b) nontransit trajectories
are shown. The starting point of the trajectory in (a) lies in the interior of the stable
manifold tube and leaves the Poincaré section directly, whereas the starting point in (b)

lies somewhere in the chaotic sea and comes back to X several times.
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The first intersection of the unstable manifold tube with the Poincaré section contains
those orbits that have just passed through the transition state from the unbound to the
bound state. The forward mapping of these orbits under the Poincaré return map designates
successive intersections of the unstable manifold tube with the Poincaré section. The first
intersection of the stable manifold tube with the Poincaré section contains orbits that are
about to pass through the transition state from the bound state to the unbound state. The
m-th pre-image of this intersection under the Poincaré return map designates orbits that
will pass through the transition state after m iterations. Thus in order to calculate rates
of reaction for the half scattering problem, it is sufficient to find the transport probability
into these intersections of the stable tube with the Poincaré section. For the computation
of transport rates in the full scattering problem it is necessary to calculate transition prob-
abilities between intersections of the stable and unstable manifold tubes with the Poincaré
section. The methodology for these computations is explained in Section 2.3.

All of our computations were with a fixed energy level of £ = —1.52, which corresponds
to a Jacobi constant of C' = 3.04. With this value of energy, a reaction will be able to
proceed if the electric field parameter is greater than e = 0.5776. If the scaled electric field
is less than this value, the neck region between the bound and unbound states will be closed.

Figures 2.3 and 2.4 show the chaotic sea for the 2-degree-of-freedom Rydberg atom
together with intersections of the stable (blue) and unstable (red) tube boundaries. The
electric field parameter is € = 0.57765 for Figure 2.3, which is just above the critical value.
Figure 2.3(a) shows the first six intersections of the stable (blue) and unstable (red) tube
boundaries with ¥, and Figure 2.3(b) focuses on the region of interest. These tube inter-
sections are very thin in comparison to the intersections of the tube boundaries for € = 0.58
shown in Figure 2.4.

The black dots in these diagrams represent trajectories crossing . The same number
of iterates and the same initial conditions were used for both values of €. In both diagrams,
the inside of the first intersection of the unstable tube with ¥ is white because particles of
this region will be mapped out of this region under one iteration of the map and no particles
of the initial distribution will be mapped into this region. For an electric field parameter
e = 0.57765, if a particle’s trajectory begins in the unstable (red) tube, it will take five
iterations before it could possibly be in the stable (blue) tube. Thus in the full scattering

problem, once an electron has been captured, it will make five loops about the nuclear core
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dx/dt
dx/dt

(a) (b) zoom into (a)

Figure 2.3: Chaotic sea for the 2-degree-of-freedom Rydberg atom is shown with the first
six intersections of the unstable (red) and stable (blue) tube boundaries with the Poincaré
section Y under consideration. For this electric field parameter of € = 0.57765, the neck
between the bound and unbound region is only open a little.

dx/dt
dx/dt

(a) (b) zoom into (a)

Figure 2.4: Chaotic sea for the 2-degree-of-freedom Rydberg atom for an electric field
parameter of € = 0.58. The first three intersections of the unstable (red) and stable (blue)
tube boundaries with the Poincaré section ¥ under consideration are shown in (a), whereas
(b) is a zoom into the interesting region of (a).

before it could possibly leave the atom. For an electric field parameter € = 0.58, the first

unstable tube intersection with Y already overlaps the first stable tube intersection.

2.3 Set-Oriented Methods

In this section we describe the general methodology for the computation of transition prob-

abilities. We first introduce a method for the identification of the regions we are interested
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in. We then discuss a technique for the computation of transport rates and probabilities.
It makes use of an appropriate discretization of a transfer operator. Both of these methods

are based on the set-oriented approach (see, for instance, [24, 25, 26]).

2.3.1 Computation of Tube Intersections

As mentioned earlier, to compute the transition rate for the half and full scattering problems,
one needs to identify the intersections of the stable and unstable manifolds with the Poincaré
section 3. One possible way is described in Gabern et al. [31] and the references therein.
The authors use a normal form method for the computation of the stable and unstable
manifolds and their intersection with X..

We follow a different approach to compute the intersections, and build on the concepts
of [67]. They use an algorithm for a decomposition of the phase space into those invariant
sets on which the corresponding dynamical system is ergodic. Based on these ideas, we

develop a multilevel approach for the decomposition of the set of interest.

First Return Time. Consider the system = g(x) with z € R? and a smooth function
g : R4 — R? Then the vector field g generates a flow ¢! : R? — R? with a smooth function
¢ defined for all z € R? and ¢ in some interval I € R. Consider a local compact cross
section ¥ C R? which is transverse to the flow ¢, and each point ¢ € ¥ has to be valid in
the system g. Recall that the Poincaré map F : U — X for a point ¢ € U is defined by
F(q) = ¢™@(q), where U C ¥ and 7(q) is the time taken for the orbit ©7(@(q) which starts
at ¢ to first return to X. We call 7(q) the first return time (see, for example, [35]).

We make use of the return time to divide the section ¥ into different regions. Therefore,
we need to define 7(q) for all ¢ € ¥ even if points do not come back to 3. If U = ¥ then
all points of the Poincaré section ¥ will come back to it by definition and 7(q) exists for
all g € ¥. If U C ¥ then there are points in X\U for which the Poincaré map F' is not
defined. For our analysis, it is necessary that all points in ¥ are assigned a time. Therefore,
we define

7(q): q€eU

T(q) :== (2.3)
oo: qeX\U

We use definition (2.3) for the computation of the first stable and unstable tube intersec-
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Figure 2.5: First return time distribution of the rectangle X = [—0.295, —0.005] x [—1.0, 1.0]
for an electric field parameter € = 0.58. The white region in the middle indicates an infinite
return time, meaning points in this region do not come back to the Poincaré section under
consideration, and the other colors correspond to a finite return time decreasing from the
inner to the outer region.
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tions with Y. Figure 2.5 shows the first return time distribution for the 2-degree-of-freedom
Rydberg atom in crossed electric and magnetic fields for an electric field parameter € = 0.58.
For this we took the rectangle X = [—0.295, —0.005] x [—1.0,1.0] as ¥ and divided it into
16384 small boxes. The color of the boxes corresponds to the average return time with
respect to initial conditions in the respective box. The white region corresponds to the
interior and the boundary of the stable tube (compare with Figure 2.4) and indicates an
infinite return time. Besides this, the other colors show a finite return time decreasing from

the inner to the outer region.

In Section 2.2.3 we introduced asymptotic, transit, and nontransit orbits, which we will
denote by Ogs, Oy, and Oy, respectively. These are orbits on the boundary, inside, and
outside of the invariant manifolds, respectively. Uniqueness of solutions ensures that an

orbit cannot change between these groups [31, 51].

Recall that there is no possibility of return for the valence electron after it crosses from
the bound to the unbound state. This means that for the system under consideration,
particles that leave the Poincaré section through the interior of the first intersection of the
stable manifold with ¥ will never come back to ¥. The same applies to particles on the
boundary of this intersection. Therefore, in terms of return times, the sets Ogs, Oy, and

Optr are given by

Ous ={r€X|Je>0 and Jy, z € V(z) with 7(y) = 0o and 7(z) < oo},
O = {z € ¥ | Je > 0 such that Yy € V.(z), 7(y) = oo},

Opntr = {x € ¥ | 3e > 0 such that Vy € V.(z),7(y) < oo},

where V(z) denotes an e-neighborhood of z.

With these theoretical considerations we are now able to devise an algorithm, which is

based on the ideas of [24, 25] and provides a method for the approximation of Ogs.

Set-Oriented Subdivision Algorithm. The set-oriented subdivision algorithm gener-
ates a sequence By, B, ... of finite collections of compact subsets of R™ such that the diam-
eter diam(By) = maxpep, diam(B) converges to zero for k — oco. Given an initial collection

By, we obtain By from By_q for k =1,2,... by



17
(i) Subdivision:

Construct a new collection l';’k such that

UB: U B and

BeBy, BeBy 1

diam(By) < 0y, diam(Bj,_1) where 0 < Opin < 0 < Opaz < 1.

(ii) Selection: Define a new collection By, by

B ={B € By, | 3z,y € B with 7(z) = co and 7(y) < co}.

Remark. By construction we have

diam(B;,) < 6*

mae diam(Bp) — 0 for k — oo.

We denote by ¥; the collection of compact subsets obtained after & subdivision steps,
3o = X. These Xs define a nested sequence of compact sets, i.e., Xy+1 C Xg. For each [

we have X; = ﬂé:o Yk, and we may view

[e.e]
Soo =[] Sk
k=0
as the limit of the Ys.
This algorithm converges to
Ous = Yo-

Remark. To obtain the sets corresponding to the unstable manifold one needs to proceed

backwards in time.

For the 3-degree-of-freedom system and a parameter value of € = 0.58, Figure 2.6 shows
the x@- and zz-projections of the first stable (blue) and first unstable (red) tube intersec-

tions.
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dx/dt
dz/dt

Figure 2.6: First intersection of the stable (blue) and unstable (red) tube with the Poincaré
section in (a) zd- and (b) zz-projections for a parameter value € = 0.58.

Higher Return Times. The concept of the computation of the first tube intersection
with the Poincaré section can easily be extended to the computation of further intersections.
The n-th return time to ¥ is denoted by 7"(q) for ¢ € X. Figures 2.3 and 2.4 show further
intersections of the stable (blue) and unstable (red) tube boundaries with 3 for two dif-
ferent parameter values. These computations were carried out using the above subdivision

algorithm.

Now we have identified and approximated the regions of interest—for the following trans-
port computations we only need the first intersections of the stable and unstable manifold
with the Poincaré section. In the next subsection we show how the transition rates between

these sets can be computed.

2.3.2 Transport Rates

The set-oriented approach provides a convenient framework for the computation of transport
rates between regions of interest. In the following, we briefly describe a method that relies
on an appropriate discretization of a transfer operator—the Perron-Frobenius operator. For

a detailed description we refer to [27, 70].

Transfer Operator. Let

f:M—>M) xk-‘rl:f(xk)? kEZa
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be a map and Ri,...,R; C M a partition of M into [ regions. We are interested in the
transport rates

Tij(n) = m(f"(R;) N Ri),

where m denotes the Lebesgue measure, that is, the mass or volume of material transported
from some region R; to R; in n steps.

Generally, the evolution of measures v on M can be described in terms of the trans-
fer operator (or Perron—Frobenius operator) associated with f. This is a linear operator
P M- M,

(Pv)(A) = v(f *(A)), A measurable,

on the space M of signed measures on M.
This operator concept relates to the transport quantities in the following way:

Corollary 1. Let m; € M be the measure m;i(A) = m(ANR;) = [, xr, dm, where xr,

denotes the indicator function on the region R;. Then
Tij(n) = (P"mi)(R;).

(Here P™ refers to the n-fold application of the transfer operator P.)

Since an analytic expression for this operator will usually not be available, we need to

derive a finite-dimensional approximation to it.

Discretization of Transfer Operators. As a finite dimensional space Mp of measures
on M we consider the space of absolutely continuous measures with density h € Ag := span{xp | B € B},
i.e., one which is piecewise constant on the elements of the partition (box covering) B. Let

Qp : L' — Ag be the projection

1

BeB

Then for every set A that is the union of partition elements we have

/QBhdm:/hdm.
A A

Hence a discretization of the transfer operator P with respect to the box collection B,
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consisting of b boxes, is given in terms of a transition matrix Pg := (p;;) with

m(f~'(B;) N By)
m(B;) ’

Dij = i,jzl,...,b.

So the entry p;; gives the (conditional) probability that a particle is mapped from box B;

to B; within one iterate of f.

Approximation of Transport Rates. For a measurable set A let

A= U B and A= U B.
BeB:BCA BeB:BNA#(D

We obtain the following estimate on the error between the true transport rate T; j(n)
and its approximation using powers of the transition matrix Pg. To abbreviate notation,

let eg,er,ur and ugr € R? be defined by

1, if B;CR o 1, it BBNR#0
(er)i = , (er)i =
0, else 0, else
and
m(B;), f B;C R m(B;), if BB NR#0
(Uj)i = ,\UR)i =
0, else 0, else
where ¢ =1,...,b.

Lemma 1. Let R;, R; C M,
So=Rj, Sky1=f""Sk), k=0,...,n—1

and

50 =Rj, Spt1 :f_l(si), k=0,...,n—1.
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Then

T;j(n) — er," P§ ur,
T pn(-—— —— T pn——

<er, Pg(ur; —ugr,) + (€r; — er,;)" P5ur;

+ max {m (f_”(Rj \ Rj) N Rz’) om (f (B \ Ry) 0 Ri)}

+ max {m ((Sn \ ffn(&)) N Ri) , M ((fin(ﬁj) \ sn) N RZ)} :

For a proof of this statement we refer to [70]. This result is an improvement of a similar
estimate in [27]. The main difference is that in this statement the error stays bounded if
n goes to infinity. Furthermore, this estimate gives a bound on the error between the true
transport rate 7T; j(n) and the one computed via the transition matrix Pg. Especially those
elements of the fine partition B contribute to the error which either intersect the boundaries
or which contain pre-images of the boundary of R;, see Figure 2.7 for an illustration. A
direct consequence of Lemma 1 is that in order ensure a certain degree of accuracy of the

transport rates, these particular boxes need to be refined.

L] :

/

Figure 2.7: Two box transitions that contribute to the error between the computed and the
actual value of the transport rate from a region R; into region R; after one iterate. This
figure is taken from [27].
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Convergence. Using Lemma 1 one can prove convergence for the approximate transport

rate as the box covering is refined (see [27, 70]).

Adaptive Refinement of the Box Covering. As shown above, the boxes that con-
tribute considerably to the error are those that either map onto the boundary of the target
set or whose pre-image lies on the boundary of the source set. Unlike the situation in [27],
one usually does not observe the desired transport within one iteration of the map, but only
after a longer time span. Therefore, we use the following algorithm, discussed in [70], for

the refinement of the transport boxes.

Adaptive Algorithm. Let R;,R; C M and n € N. Let B be a box covering of M, let

N := [%] and let Pg be the transition matrix as defined above. Determine the boundary

boxes

br, = R;

and compute

T ;(n) :=eg, P§ugm,,

the numerical lower and upper bound on the transport rate T; j(n), respectively. Choose

J e N.
Forj=1,...,J
1. Mark all boxes B for which
fk(B)ﬁij # (0 for ke {1,...,N}

or

FHB)Nbg, #£0 for ke {1,...,N}.

(This information is coded in the transition matrix.)
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2. Subdivide marked boxes.

3. Compute Pg.

4. Determine bg,, bg;, T;j(n), and T; ;(n).

The algorithm produces an adaptive covering, refining those boxes in particular that
contribute to the error in computing the transport rates. Moreover, the algorithm gives
an upper and lower bound to the transport rate, at least up to the error estimated in
Lemma 1. Note that the numerical effort to compute the approximate transport rates

essentially consists in n matrix-vector-multiplications—where the matrix Pg is sparse.

Transport Probabilities. In many applications one is interested in transport probabil-
ities rather than in the transported volume. The transport probability as a function of the

number of iterations n is given by

gi,j(n) =

that is, the fraction of particles in R; that gets transported to R; in n steps.
An approximation ¢; j(n) to this quantity can be obtained using the upper and lower

bounds on the transport rates and taking an average in the following way:

Note that the quantities ¢; j(n) can be computed from the box covering and the transition
matrix, whereas in our setting the true transport probabilities g; j(n) are theoretical values.
Convergence of §; j(n) to g; j(n) follows from the results above when the box covering is

appropriately refined.

2.3.3 Implementation

The algorithms described above are implemented in the dynamical systems software package
GAIO (Global Analysis of Invariant Objects, see [22]). The box collections By, are realized

by generalized rectangles of the form

Ble,r)={yeR||y; —cj| <mfori=1,...,d},
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where ¢ € R? denotes the center and r € R? the radius of the rectangle (box). For our
computations we use a finite number of test points in each box, such as a regular grid or
Monte Carlo points; see, for instance, [24] or [48] for a discussion on the choice of test points.
In GAIO, the boxes are stored in a binary tree, where the children of a box at depth k are
constructed by bisecting the box in alternate coordinate directions.

Note that the methods described above can be used in parallel to speed up the compu-

tation time.

2.4 Examples

We demonstrate the strength of our methods by computing ionization probabilities for the
full and half scattering problems of the Rydberg atom in crossed electric and magnetic
fields. We choose an energy of F = —1.52.

First we consider the full scattering problem of the 2-degree-of-freedom system for an
electric field parameter ¢ = 0.57765. We compare the results of the computation with the
respective results for the 3-degree-of-freedom system. Then we analyze the 3-degree-of-
freedom system for e = 0.58, allowing a comparison with [31]. Finally, we use the results

from the previous computations to consider the half scattering problem.

2.4.1 Full Scattering Problem for the 2- and 3-Degree-of-Freedom System
(e = 0.57765)

For the 2-degree-of-freedom system we consider the rectangle X = [-0.295, —0.005] x
[-1.0,1.0] on the Poincaré section . We start with a partition of X on depth 8. By
applying the return time algorithm in forward and backward time, we can identify and
approximate the first stable and unstable tube intersections, respectively. As a result, we
obtain a covering of X on depth 8, with the boxes covering the boundary of the tube inter-
sections on depth 18. This covering consists of 736 boxes. We denote by R; the set of boxes
in the interior of the unstable tube intersection and by R; the boxes covering the interior
and the boundary. The sets Ry and Ry correspond to the stable tube intersection. Note
that we are not given R; and R explicitly because we can only approximate these sets on
the box level, yielding Ry, Ry, Ry, Rs.

We then apply J = 5 steps of the adaptive refinement algorithm with 25 grid points
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Figure 2.8: Adaptive box covering for the Rydberg atom in crossed fields. In the 2-degree-
of-freedom system for ¢ = 0.57765 those boxes are refined that contribute to the error in
the computation of the transport rates. The unstable (light red) and stable (blue) tube
intersections are superimposed.

per box. We choose N = 5 because we want to consider at least n = 10 iterations of the
Poincaré map for our transport calculations. In each step, we subdivide in both coordinate
directions at once. As the boundary is on depth 18, there is no gain in considering boxes
on finer levels because while the computational effort increases, we would not get any new
information. The resulting box covering (18670 boxes), with those boxes contributing to

the error in the transport rate having being refined, is on depth 8/18; see Figure 2.8.

In Figure 2.9 we show the numerical lower and upper bounds on the transport rates,

M and 77 2(n), respectively, for n = 1,...,15. Observe that the scattering profile is
structured. The approximate scattering probabilities ¢ 2(n) are shown in Figure 2.10(a).
The electron scattering probability is about 22% for n = 5 loops around the nuclear core.
It is zero or almost zero for all other n apart from n = 10 and n = 11, where we observe

small probabilities.

To check the results, we computed these probabilities using as many as 900 grid points
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Figure 2.9: Full scattering problem for the 2-degree-of-freedom Rydberg atom in crossed
fields for € = 0.57765. Approximations of the lower bound 77 2(n) (blue) and the upper

bound T 2(n) (red) on the transport rate for n =1,...,15 are shown.

per box, obtaining almost identical results. So for the given accuracy of the sets of interest,

we can be sure that the results are correct.

We compare the results in the planar Rydberg system with those obtained in the 3-degree
of freedom problem. In the 3-degree of freedom system we have the coordinates z,y, z, T, 9, 2.
Fixing a constant energy and a Poincaré section defined by (2.2), our remaining coordinates
are x, z,&, 2. Therefore, the initial box needs to be four-dimensional. For the following

computations we chose X = [-0.3,0] x [—0.1,0.1] x [-1.0,1.0] x [—2.0,2.0].

We start with a box covering on depth 16 and apply the return time algorithm in forward
and backward time which yields a covering of the boundaries of R and Ry on depth 36.
The resulting box collection consists of 139276 boxes. We then apply J = 7 steps of the
adaptive refinement algorithm, choosing N = 5 and 100 Monte Carlo points per box. In
each step we subdivide in two coordinate directions at once and obtain a covering of 2056672
boxes, again on depth 16/36. The approximate electron scattering probabilities ¢ 2(n) for
the full scattering problem are shown in Figure 2.10(b). Note that the scattering profile
has the same qualitative characteristics as for the 2-degree-of-freedom system. Yet, the
probabilities are lower than in the planar case. A reason for this might be that the volumes
of the tubes are smaller, while the relative box sizes are considerably bigger than in the
planar case. If the volume of the tube is comparatively small, as in our example, we need

to use a box covering on a much deeper level to decrease the error between the upper and
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Figure 2.10: Full scattering problem for the Rydberg atom in crossed fields for e = 0.57765.
Approximate transport probabilities §i 2(n) for n = 1,...,15 in (a) the 2-degree-of-freedom
system and (b) the 3-degree-of-freedom system.

lower bounds of the transport rates. However, by doing this we obtain a covering that is
hardly manageable because it consists of a huge number of boxes.

To verify our results for this parameter value we computed the transport probabilities
in the 3-degree of freedom system using as many as 1000 Monte Carlo points per box.
This computation confirmed our results. Furthermore, in the 2-degree-of-freedom system
our results agree very well with calculations done for this value of € by the authors of [31]

(personal communication).

2.4.2 Full and Half Scattering Problem for the 3-Degree-of-Freedom Sys-
tem (e = 0.58)

Choosing € = 0.58, the first intersections of the stable and unstable tubes with the Poincaré
surface overlap. For the computation of the electron scattering probabilities in the 3-degree-
of-freedom system we consider a partition of X as defined above. The box covering consists
of 2155528 boxes on depth 16/28, with the transport boxes refined using J = 4 steps of the
adaptive algorithm as described above.

The scattering probabilities ¢ 2(n) with n = 1,...,10 are shown in Figure 2.11(a).
These results compare well with the scattering probabilities obtained by Gabern et al. [31],
who analyzed the system using the same parameters.

In addition, we can re-use the box covering and the transition matrix already computed

for dealing with the half scattering problem.
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Figure 2.11: The 3-degree-of-freedom Rydberg atom in crossed fields for € = 0.58. Ap-
proximation of transport probabilities in (a) the full scattering problem and (b) the half
scattering problem.

Here we define Rz = X \ Ry and R3 = X \ Ry, that is, we consider the transport of
particles from every region outside the stable tube Rs into Ry. Note that by this construc-

tion, Ry and R3 have a non-empty intersection, containing the boundary boxes of Ry. So

T32(n) and T32(n) can only give very coarse estimates on the transport rate because the

boundary boxes are taken into account twice. Therefore we compute an approximation of
the half scattering probability by

o’ PRz + 3" Pjus
m(Rs3) + m(Rs)

g32(n) =

This represents an average of the transport from R3 to Ry and R3 to Ry. The results
are presented in Figure 2.11(b). Note that for higher iterates one observes an exponential
decay of the electron scattering probabilities. Jaffé et al. [44] used a similar parameter
value for the computation of so-called survival probabilities for the 2-degree-of-freedom half
scattering problem in their paper. Even if it is not exactly the same value (they used an
electric field parameter of € = 0.6) the shapes of the probabilities for both e values look

qualitatively the same.

2.5 Conclusion

This chapter has presented a set-oriented method for computing transport rates. We con-

sidered a suitable Poincaré section and introduced a new method for the computation of
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tube intersections with this section using the Poincaré first return time. Based on these
intersections we have the necessary information to find the regions between which transport
will occur. We can use an adaptive algorithm for the computation of the transport rates
relevant for the present situation (see [27] and [70]). It focuses on a global description
of the dynamics using a box covering of the interesting region and a matrix of transition
probabilities between these boxes for the calculation of the transport rates.

These techniques were demonstrated in the 2- and 3-degree-of-freedom systems for the
Rydberg atom in crossed electric and magnetic fields. The generalization to higher dimen-
sions is straightforward, with the limitation being the time taken to do the computations, as
well as the memory required. For this reason, the calculation of transition rates for larger
systems requires a reduced-order model of the system on which to use the set-oriented
computational method.

In contrast to [31], the set-oriented approach does not require normal form techniques
for the computation of tube intersections and does not use a Monte Carlo approach for the
computation of the reaction rates. However, there is agreement between the results of the
two approaches.

One possible next step in this line of research is to experimentally verify the numerical
results presented in this chapter. The techniques for calculating the relevant transition rates
are available but these observations have not yet been made. In such an experiment, there
would be a spread of energies of the incoming electrons and also a variation in the electric
field parameter €. Thus, results of physical observations would not exactly match those in
Figure 2.10 and Figure 2.11, but should be qualitatively the same. That is, an experiment
should look for a non-exponential structure in the ionization rate that resembles those
calculated here. For the results presented here to be directly comparable with experimental
results, we would need to average over both the energy and the electric field.

The methods presented in this chapter represent a good starting point for further inves-
tigations using dynamical systems and geometric observations combined with set-oriented
methods and statistics. To the best of our knowledge the results presented here and those
of [31] represent the first successful calculation of reaction rates in a 3-degree-of-freedom
chemical system.

An ongoing priority is to make set-oriented calculations in higher-dimensional problems

more computationally efficient. Since even small molecular systems commonly have too
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many dimensions for computation to be feasible, methods to reduce the number of vari-
ables needed to describe the coarse dynamics of a high-dimensional system are needed. The
aim is to investigate high-dimensional multiscale problems by combining the set-oriented
method with an appropriate procedure for distinguishing between optimal coarse and fine
variables. An interesting possibility for coarse variables is the Perron-Frobenius eigenfunc-
tions themselves [49, 68].

We would like to apply these methods to the computation of reaction rates and tran-
sition probabilities for more complex molecules. To do so will surely require some form of
model reduction and the associated identification of suitable reaction coordinates, with the
methods presented here applied to the coarse-level dynamics. In the following chapter we
investigate a good candidate for a coarse variable that describes a transition. The gyra-
tion radii of a system could be used to describe the dynamics and the set-oriented method

applied to these coarse variables to calculate transition rates.
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Chapter 3

Energy Effects and Gyration
Radius Dynamics in the
Dissociation of Methane and
Oxygen

In molecular dynamics, the effects of the bath particles on the motion of the primary
particles are known to be important, yet are difficult to quantify. The primary particles
are the particles undergoing the reaction and the bath particles are particles that exert
an influence on these primary particles. Analyses of systems where the bath particles
exert a significant influence most often consider only the potential acting between particles.
However, these potentials are modified by the kinematics, or in other words, the motion, of
the particles and thus, a realistic description of the system would quantify this effect.

Considering only the potentials acting between particles is insufficient in many molecular
systems to describe the dynamics of transition [90]. The goal is to calculate the effective
potential that governs the motion of the primary particles of a system. This effective
potential will take into account the kinematics of the bath particles, or secondary particles
(these terms will be used interchangeably). Another important goal is to find appropriate
coarse variables to describe the dynamics of the transition. A good set of coarse variables
will capture the essential dynamics and produce a lower-dimensional description of the
system.

The system that we investigate is a dissociation reaction in one dimension, involving

two primary particles and four secondary particles. We calculate two different effective
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potentials. These effective potentials describe the dissociation behaviour of the system very
well, whereas simply looking at the potential between the dissociating particles does not.
The first exploits the kinetic energy distribution within the system to derive an entropic
force that describes the dynamics of the primary particles as they dissociate. The reaction

co-ordinate in this case is simply the distance between the dissociating primary particles.

The second method for calculating the effective potential makes use of the gyration
radius of the system as a coarse variable. The gyration radius formalism developed by
Yanao and collaborators [89] considers the kinematic influence of the secondary particles.
The elegance of this method is its simple description of the dynamics. Previously, they had
been applied by Yanao and co-workers to study conformational changes in small molecular
systems [88], but since they essentially capture the mass distribution of the system, they
are ideally suited to dissociation reactions. This is the first application of the formalism
to the dynamics of dissociation reactions. We shall see that the gyration radius not only
provides a good coarse variable for describing the transition, but that the effective potential

calculated along this reaction co-ordinate explains the observed dissociation behaviour.

In the next section we introduce the model dissociation reaction that we will study. The
Kinetic Energy Bias method for calculating the effective potential is presented in Section 3.2.
Following this, we explain the Gyration Radius method, which recasts the system dynamics
in terms of a coarse variable that takes the effect of the bath particles into account. We
then derive an effective potential for the system using this formalism. The probability
distribution and average lifetime of our model system is studied with respect to changes in
energy and changes in the masses of the secondary particles. At the end of the section, a
simpler system in which the influence of the bath particles’ kinematics is seen more clearly

is presented.

3.1 Model

The system that we investigate is motivated by one of the reactions that occur in the
burning of methane, C Hy, and oxygen, O. We study the one-dimensional system that has

two primary particles (the carbon atom (C') and the oxygen atom) with a Lennard-Jones
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potential between them, which is given by

Vs = 0.01 <(07;1>12 - (07})6) . (3.1)

We work in non-dimensional units. The hydrogen atoms (H) are attached to the carbon
atom by spring potentials, with spring constant & = 0.01. A schematic of the system is

shown in Figure 3.1. The potential energy function of the system is

12 6
V = 0.01 L - L +1k|x3—x1]2
|x1 — 29| |x1 — 29| 2

1 1 1
+ 5k |z —x1|2+§kz|x5 —z)? + 51f|gc6—x1|2. (3.2)

The total energy of the system is a constant and of a magnitude that is sufficient for
dissociation to occur. In our simulations, the primary particles have no initial velocity and
the initial conditions of the hydrogen atoms, here the bath particles, are chosen randomly
so as to conserve energy. Thus, for dissociation to occur, energy must be redistributed from
the bath modes to the reactive mode, that is, from the H atoms to the C' and O atoms.

We work in the center of mass and center of momentum frame.

)
0 LJ
(H)
()
Figure 3.1: Schematic of the model problem

The masses of the four secondary particles are the same. These masses were changed for
the different sets of simulations. The masses of the primary particles are set to unity. The
different values of the secondary particle masses that we consider are ms = 0.1, 0.01, 0.001
for s =3,...,6.

For the Kinetic Energy Bias method of Section 3.2, the total energy of the system was
set to E = 0.0036. The initial conditions of the system are shown in Figure 3.2(a). The
Lennard-Jones potential between the primary particles is shown in black and the total

energy of the system is shown as the dashed red line. The initial separation of the primary
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Figure 3.2: (a) Initial conditions. The Lennard-Jones potential between the primary par-
ticles is shown in black and the total energy of the system is the red dashed line. The
initial separation of the primary particles is indicated by the blue circle. For dissociation to
occur, energy from the bath modes must be transferred to the reactive mode, that is, to the
primary particles. (b) Typical trajectories. The separation between the primary particles
is shown on the vertical axis. This separation oscillates until dissociation occurs. Some
trajectories, such as the green one, do not lead to dissociation.

particles is indicated by the blue circle. For dissociation to occur, energy from the bath
particles must be transferred to the primary particles. The minimum of the Lennard-Jones
potential occurs at 7 = 0.11225 where the potential is Vj,in = —2.5 x 1073,

Figure 3.2(b) shows typical trajectories with the separation between primary particles,
r, on the vertical axis and time on the horizontal axis. Simulations were run for much
longer than shown here (8 times longer). Trajectories such as the green one continued to
bounce (that is, the separation between the primary particles oscillated) until the end of
the simulation without leading to dissociation. The other trajectories show the type of
bouncing that occurs before dissociation.

For the Gyration Radius method of Section 3.3, the dissociation reaction was investi-

gated both for a variety of bath particle masses and different total energies.

3.2 Kinetic Energy Bias Method

Knowing that for dissociation to occur in our system, energy must be transferred to the
reactive mode, suggests that an examination of the energy distribution in the system is

important for understanding the observed dynamics.
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3.2.1 Theory

For an n-atom system in the center of mass and momentum frame, there are n — 1 degrees
of freedom. The law of equipartition of energy states that the average kinetic energy per

degree of freedom in a system is given by

(K); = . fori=1,..,n—1 (3.3)

where FE is the total energy of the system and V is the potential energy. If equipartition of
energy does not hold then there will be a bias in the kinetic energy balance and this bias

can be characterized by «:

(K); = X fori =1,...,n — 1. (3.4)

A reaction co-ordinate gg is used to describe the reaction pathway. For our dissociation
reaction, we take the distance between the primary particles, r, to be the reaction co-
ordinate, with the additional restriction that along the reaction co-ordinate, the potential
energy of the bath particles is very small. This is because the energy must be in the reactive

mode for the dissociation to occur.

By considering the equation of motion for the reaction coordinate, we can derive the

average force

(Force) = —

ov i E — V(QR) 0 log <042 X ... X an1> . (35)

Oqr n—1 Oqr QR

The second term is an entropic force term where %, the average kinetic energy per degree
of freedom, is the temperature. The motivation for the form of this term is the statistical
mechanical force due to entropy. The «; represent the available volume in phase space. We
refer to the first term as the potential force term since it is the force due to the potential
term. Data from reactive trajectories (trajectories leading to dissociation) at points where
the potential energy of the bath particles is less than 5% of the total system energy was
used to compute the average force at each point along the reaction co-ordinate. These data

points are along the reaction co-ordinate as defined above.
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The effective potential Vog is the work done against this averaged force:

Vet = —/ (Force) dqp. (3.6)
path

This effective potential quantifies the kinematic effects due to the breakdown of the equipar-

tition law via the dependence of the average force on the ;.

3.2.2 Effective Potential

The effective potential given by Equation 3.6 was calculated numerically by running 100, 000
simulations. Figure 3.3 shows the effective potential along the reaction coordinate (sepa-
ration of primary particles) compared to the Lennard-Jones potential between the primary
particles. Results are shown for secondary particle masses ms = 0.01 and m,; = 0.1, with
total energy E = 0.0036. The masses considered did not all yield effective potentials with
the same number of wells but they all had at least a secondary well (a well apart from that

of the primary Lennard-Jones potential).

-05F 1 -0.5F

1

Effective Potential
Effective Potential

(a) ms = 0.01 (b) ms =0.1

Figure 3.3: The effective potential as calculated from Eq. 3.6 is shown as a solid line. The
horizontal axis is the reaction co-ordinate, which is the separation of the primary particles.
The Lennard-Jones potential between the primary particles is shown as the dotted line. (a)
secondary particle masses ms = 0.01 and (b) secondary particle masses ms = 0.1.

We see that the effective potential calculated by taking into account the break-down of
the equipartition law is significantly different from the Lennard-Jones potential. It has the
same primary well, but in addition, there are clearly-defined secondary and tertiary wells.

The effects of these additional wells should be observable in the dissociation behaviour of
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the system.
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Figure 3.4: The distribution (in time) for reactive trajectories versus r is shown on the left
vertical axis in blue and the effective potential is shown on the right vertical axis in green.

Figure 3.4 shows the effective potentials of Figure 3.3 along with the distribution of the
reactive trajectories. These distributions plot the separation between the primary particles
at each time step. This is the probability distribution in time of the system, i.e., peaks
correspond to the primary particle separation most likely to be seen. This indicates that
the system spends most of its time before dissociation on the downward segment of the
effective potential leading into the secondary well. This is consistent with the system
bouncing back and forth between the primary and secondary wells of the effective potential.
This behavior can also be seen in Figure 3.2(b): the primary particle separation oscillates
between r = 0.125 and r = 0.26.

The distributions in Figure 3.4 are dominated by data points from the part of the
trajectories before dissociation and by the effects of velocity. To explain the latter, we
observe that in the regions of the peaks in the distribution, the primary particles have less
kinetic energy and thus traverse these regions more slowly. This can be seen by observing
the kinetic energy distribution in Figure 3.8, where we see that the primary particles have
the least kinetic energy at r = 0.2. A distribution in time (such as in Figure 3.4) is more
likely to find the primary particles with a separation in this region. There is no peak in the
distribution corresponding to the third well in the effective potential because in this region

the primary particles have a larger velocity.

To account for these effects governing the distributions in Figure 3.4, we compute a
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Figure 3.5: Distribution in space. The distribution of reactive trajectories, from the last
bounce onwards, along the reaction coordinate, taking into account differences in dissocia-
tion velocity, is shown in blue on the left vertical axis. The effective potential is shown in
green on the right vertical axis.

different distribution that may be considered to be a distribution in space (Figure 3.5).
We consider only reactive trajectories from the time of their last bounce onwards, that is,
trajectories that are on their way to dissociation. This last bounce is defined to occur at the
last time that the primary particle separation is less than » = 0.125 before dissociation.!
It was found (as can be seen in Figure 3.2(b)) that there is typically a last bounce with

r < 0.125 immediately before dissociation occurs.

The distribution in space is found as follows. For any series of consecutive output time
steps, if the primary particle separations are in the same bin in r, then only one of them
is counted. We note that the output time step was chosen to be small enough such that
every bin along r is visited consecutively, once the system is beyond the primary well.
The difference between the distributions in Figure 3.4 and Figure 3.5 is that Figure 3.4
corresponds to where you are likely to find the system when you look at it and Figure 3.5
corresponds to what you would see if you drew the trajectories and plotted the number of
unique visits to bins along r.

Figure 3.5 reveals that the effective potential calculated using the Kinetic Energy Bias
method successfully explains the dissociation dynamics of the system. We see that in the

process of dissociation, the system is temporarily trapped in the wells of the effective po-

!This value for the last bounce is for a secondary particle mass of m = 0.01. Different values were used
for each different mass.
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tential. This behavior can not be explained by the Lennard-Jones potential alone. In terms
of the primary particle separation, the trapped motion corresponds to certain separations
about which the carbon and oxygen atoms oscillate on their way to dissociating.

We note that in Figure 3.5(b) the distribution increases at larger values of r beyond the
secondary well. This is because as the primary particles dissociate, they oscillate in such
a way as to cross the boundary of the bins along r a number of times. These small scale
oscillations (as opposed to the larger ones across many bins in 7 caused by trapping in the
secondary well) were more prominent for the larger bath masses. This binning issue may
be overcome by changing the bin size, but this would require a bin size that would obscure

the features we are interested in at smaller values of r.

3.2.3 Energy Distribution in the System

To further understand the mechanism behind the observed dissociation behaviour, we in-
vestigate the energy distribution in the system along the reaction pathway. We saw in
Figure 3.5 that the dissociating particles are temporarily trapped in the secondary and
tertiary wells of the effective potential. Since the effective potential was calculated from
considering the breakdown of the law of equipartition of energy, we expect that the expla-
nation for the trapping phenomenon will involve the transfer of energy between the modes

in the system.

3.2.3.1 Ratio of Average Kinetic Energies

Figure 3.6 shows the ratio of the average kinetic energies of the primary and secondary
particles for data points along the reaction co-ordinate. Peaks in this ratio occur in the
wells of the effective potential. These wells determine the dissociation dynamics of the
primary particles: the primary particles are caught in one of these wells when they do not
have enough kinetic energy to continue to dissociation. For a fixed energy, this occurs when
the bath particles have more kinetic energy. For dissociation to continue, this kinetic energy
of the bath particles must be redistributed to the primary particles.

The average kinetic energy of the bath particles is higher than the average kinetic energy
of the primary particles once the barrier between the primary and secondary wells of the
effective potential has been crossed. In the primary well, the average kinetic energy of the

primary particles is greater than that of the bath particles. This is to be expected, as we
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are considering data along the reaction co-ordinate from the last bounce onwards, and in
order for dissociation to occur, the primary particles must have sufficient energy to climb
out of the primary well. This well is deeper than the other wells and so requires much more

of the energy to be in the reactive mode.

0.1 0.2 03 0.4 0.5 0.6 0.7 08 01 0.2 0.3 0.4 05 0.6 0.7 08

(a) ms = 0.01 (b) ms =0.1

Figure 3.6: Ratio of bath kinetic energy to primary particles’ kinetic energy versus r. The
kinetic energy ratio is plotted on the left vertical axis in blue and the effective potential is
plotted on the right vertical axis in green.

3.2.3.2 « Tubes

For a, which characterizes the breakdown of the law of equipartition of energy, as defined in
Equation 3.4, we can construct tubes, called a-tubes, with radius given by aéath / Olprimary -
These tubes are shown in Figure 3.7. The a-tubes provide a visualization of the bottlenecks
experienced by the dissociating particles. We see that the tubes are narrower in regions
where there is a local maximum in the effective potential. Since the dissociation reaction
proceeds through this tube, a narrower region of the tube indicates that it will be more
difficult to get through this region of the tube and this corresponds to having to overcome
a local barrier in the effective potential. The a-tubes are very narrow in the primary well
of the effective potential because the depth of this well compared to the successive wells is
much greater and therefore it is more difficult to overcome the barrier between the primary
and secondary well. In other words, it is difficult to get the dissociation reaction started.
Note that initially the primary particles have a separation of r = 0.2, so our system starts

outside of the primary well and to the right of the narrowest region of the a-tubes.
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Figure 3.7: Visualization of the bottlenecks experienced by the dissociating particles: a-
tube versus r. The radius of the tube is given by aﬁath / Olprimary -

3.2.3.3 Equipartition of Energy

Figure 3.8 shows the average kinetic energy for the primary and secondary particles. If the
energy were equipartitioned then the plots for the primary and secondary particles would
be the same. As they are not, equipartition of energy does not hold. We note that this is
because in a dissociation reaction, the phase space is not bounded.

In contrast to previous figures, these plots were produced using all trajectories in the
simulations. The sharp peak in the average kinetic energy of the secondary particles seen
in the mg = 0.1 case, close to r = 0.2, coincides with the secondary well in the effective
potential. The minimum of the average kinetic energy of the primary particles corresponds

to the peak in the distributions of Figure 3.4.

3.2.4 Discussion

The results shown in Section 3.2.2 and similar results for other mass parameters highlight
the need to take into account kinematic effects in addition to the potentials between particles
in molecular dynamics calculations. These kinematic effects are captured by an effective
potential, which can be calculated by quantifying the break-down of the law of equipartition
of energy and accounting for the entropic force that this leads to. The effective potential
has been shown to agree with the observed behavior of the system.

An investigation of the energy distribution in the system in Section 3.2.3 confirmed that

the kinetic energy in the system is not equipartitioned. The ratio of kinetic energies of the
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Figure 3.8: Average kinetic energy of primary (left, in blue) and secondary (right, in green)
particles versus r. As these average energies are not the same, equipartition of energy does
not hold. Note that the scales on the vertical axes are different.

bath and primary particles revealed that when the primary particles are trapped in the
wells of the effective potential, the bath particles have much more kinetic energy. Thus
the trapped motion can be explained by the primary particles losing kinetic energy to the
bath modes and having to get this energy back in order to continue to dissociation. This
phenomenon can be visualised as bottlenecks along the reaction co-ordinate, as shown by

the a-tubes.

Although the Kinetic Energy Bias method has successfully explained the dynamics, a
more elegant approach would provide a more sophisticated reaction co-ordinate than the
distance between the primary particles. This reaction co-ordinate should take into account
the kinematic effects observed to play a crucial role here. The effective potential calculated
along this reaction co-ordinate should ideally be simpler and smoother than the effective
potentials found in this section. The following section explores the use of the gyration radius

of the system as the reaction co-ordinate.

3.3 Gyration Radius Method

The gyration radii, being related to the moments of inertia of a system, naturally incorporate
the mass distribution of the system. As such, they are ideally suited for the dissociation
reaction studied here and for conformational changes from symmetric to elongated shapes

as studied by Yanao et al. [88]. By calculating an effective potential along the gyration
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radius of the system (one gyration radius since our model is collinear), we can quantify the
work that the dissociating system must do in order to transition to the unbound state. We
are interested in the intrinsic equations of motion of the system, that is, in the internal
shape space, and thus have eliminated overall translations and rotations of the system.
We begin with a general, isolated n-atom system and turn our attention to our specific
model problem in Section 3.3.2.1. A more detailed exposition can be found in [88] and the

references therein.

3.3.1 Background

In order to study the internal shape space of a system, it is important to first correctly sep-
arate the rotational and internal motion [89]. These two motions can be strongly coupled
via the effects of a change in the mass distribution on the total angular momentum. Tran-
sition state theory typically assumes that they may be simply separated and that studying
the dynamics on the potential energy surface is sufficient. However, as in the “falling cat”
example, a molecule can continuously change its shape while keeping the total angular mo-
mentum equal to zero, and end up with a different orientation to the one it began with even
though the molecule has returned to its initial shape. The body frame of the molecule (the
frame with respect to which shape changes are viewed) changes as the molecule changes
shape, even in a system with zero total angular momentum. Thus the body frame must be
found in a careful manner in order to account for the internal changes.

The separation of the motions is correctly done using reduction theory from geometric
mechanics [61, 60] and the associated gauge theory for systems with rotational symmetry
[59, 36, 79, 54]. Since the body frame is not unique, the internal space has an associated
gauge field. Having separated the overall translational and rotational motion in this way, we
are left with a (3n — 6)-dimensional internal space. In this internal space, the metric tensor
is in general non-Euclidean and determined only by the mass and shape of the system. It
is independent of the potential energy surface and the choice of body-fixed frame. The
mass-related kinematic effects that we investigate arise from the non-Euclidean nature of
this internal space.

We note that for collinear dynamics, as in our model, internal motion and rotation do
not couple, but the body frame changes as the shape of the system changes, giving rise to

a non-Euclidean internal space. In what follows, we will keep the discussion general until
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Section 3.3.2.1, when we confine our attention to collinear systems.

An appropriate co-ordinate system in the internal space is given by the principal-axis
hyperspherical co-ordinates. This formalism was developed by Chapuisat [12] and Kupper-
mann [52], based on early work by Eckart [28]. The principal axes of the instantaneous
moment of inertia tensor provide a time-dependent body fra