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Abstract 

Densin-180 is a core protein of postsynaptic densities (PSDs) in excitatory neurons.  

Densin is known to interact with Maguin-1 and PSD-95, suggesting that it plays a role in 

the NMDA receptor complex.  Densin also interacts with -Catenin and N-Cadherin, an 

adhesion complex known to play a role in spine morphology.  A ternary complex of 

Densin, CaMKII, and alpha-actinin suggests that Densin plays a key role in cytoskeleton 

dynamics.  Finally, Densin can directly bind to shank, a core scaffolding molecule of the 

postsynaptic density.  The association of Densin with such diverse complexes of proteins 

suggests that it acts as an integrator of numerous signaling cascades.  Here I describe the 

construction and initial characterization of a Densin knockout mouse.  Mice homozygous 

for the Densin deletion are prone to seizures induced by barbiturates.  Also, Densin
-/-

 

animals have altered spine morphologies and show changes in the expression levels of 

other core PSD proteins. Densin
-/-

 neurons in culture exhibit an overall decrease in their 

dendritic complexity.  Furthermore, we show that in the absence of the NMDA receptor, 

Densin can act to bind CaMKII in the PSD.  A new high-throughput method for studying 

changes in gene transcription, RNA seq, was also used to study the effect of the Densin 

deletion on the forebrain and the hippocampus.  This work represents the first time RNA 

seq has been used to study an animal with a knockout mutation.  Two candidate genes 

that may mediate the seizure sensitivity, Npas4 and GABAA 2, were identified by this 

method.  Npas4 is known to directly affect the number of inhibitory synapses formed by 

neurons, and GABAA 2 is a major GABA receptor subunit that mediates the effects of 

Nembutal.  These results suggest that Densin may play a role in maintaining the balance 

between inhibitory and excitatory networks.  Together, our results demonstrate that 

Densin is important for dendritic arbor formation, spine morphology, CaMKII 

localization in the PSD, and seizure susceptibility. 
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