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ABSTRACT 
 
 
 

The heat-shock response is vital to cellular homeostasis. Drosophila melanogaster 

heat-shock factor (dHSF) is the primary transcriptional activator in the stress response 

pathway for induction of heat-shock-mediated gene transcription. This work investigates the 

potential for dHSF to undergo post-translational modification by phosphorylation and lysine 

tagging, specifically, direct phosphorylation by kinases and covalent-lysine tagging by 

ubiquitin, acetyl, and SUMO groups. Direct phosphorylation of, and binding to, dHSF was 

demonstrated by Akt/PKB kinase. Knock-down of this kinase by RNAi resulted in a heat-

shock phenotype for dHSF and the acquired DNA-binding ability characteristic of activated 

transcription factor. Site-directed mutagenesis of lysines within a putative nuclear localization 

sequence (NLS) revealed two potential sites for regulation of dHSF activation by post-

translational modification. The functional consequences of synergistic Akt phosphorylation 

and lysine modifications are discussed – this work implicates a role for direct kinase 

phosphorylation in regulating the stability of dHSF. 
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CHAPTER 1: Introduction 

The heat-shock response (HSR) is the concerted stimulation of heat shock protein (hsp) 

gene transcription by Heat-Shock Transcription Factor (HSF) in response to elevated 

environmental temperatures. Stress response pathways, such as the HSR, are essential for 

maintaining cellular homeostasis during temperature, nutrient, and chemical stresses. 

Transcription factor regulation by kinase phosphorylation and post-translational lysine (and 

arginine) modifications allows for control of multi-step signaling cascades involved in stress-

mediated transcriptional activation and/or repression. 

 In this review, the heat stress response is detailed, alongside that of the Akt/FOXO 

insulin-signaling stress pathway. The mechanisms of post-translational modification by 

ubiquitylation, acetylation, and sumoylation are discussed, and RNAi is presented as a 

methodology for reducing gene expression in cell culture.  

 

Heat-shock factor and the heat-shock (HS) response  

 Under heat stress conditions, heat-shock transcription factor (HSF) binds the heat-shock 

promoter element (HSE) (Fig 1A, B). Drosophila HSF (dHSF) is the 691-amino-acid primary 

transcriptional activator of the heat-shock response in Drosophila melanogaster (Fig 1A). In the 

Dm heat-shock (HS) response (Fig 1B), HSF remains a monomer in the non-shocked (NS) state 

throughout the nucleus [1]. Upon HS, it spontaneously trimerizes and is localized to sub-nuclear 

granules [2], where it binds HSEs upstream of hsp genes, one of them the temperature-regulated 

hsp70, a crucial HS chaperone protein [3, 4]. 

 The hsp genes are among the most highly conserved [5, 6], are rapidly synthesized in 

response to heat stress, and range in size from 20-140 kDa. Sudden, significant (10°C) changes in 

temperature conditions from the basal growth temperature are sufficient to activate the HS 

pathway [7]. Hsp transcription can also be induced by oxidative stress, viral infection, and 

chemical stressors [8]. Genome-wide proteomics analysis of HSF-mediated stress responses have 
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revealed target genes involved in protein folding and transport, cell signaling, and cellular 

metabolism and energy generation [9], and include ubiquitin- and proteolysis-related genes. 

There is some evidence for HSF to act as a direct thermometer [10], and it responds to changes in 

temperature from cell-specific standard growth conditions [11, 12]. 

 

 HSFs can be characterized according to distinct regions of similar functionality, yet share 

little primary sequence homology [13, 14]. Two domains exist within all HSFs: an amino 

terminal DNA-binding domain (DBD) of approximately 100 amino acids, followed by a region of 

hydrophobic heptad (leucine/isoleucine) repeats (LIR) that mediate HSF oligomerization [15]. 

Drosophila, plant, and vertebrate HSFs also have an isoform-specific, C-terminal LIR (the HR-

C), and deletion and/or mutation of this region results in constitutive HSF trimerization and 

DNA- binding, pointing to an inhibitory role in the monomer-trimer transition [16]. 

Saccharomyces cerevisiae HSF, which does not contain a HR-C, trimerizes and constitutively 

binds DNA [1, 9]. In contrast, S. pombe, which contains a region homologous to the HR-C, has 

inducible DNA- binding that is only partially- regulated by the presence of this region [17]. The 

multiple chicken and tomato HSF isoforms (both with and without this HR-C) dimerize during 

heat-induced activation [1].  

 The most highly conserved region of HSF is the heat-shock element (HSE), a region 

upstream of heat-shock gene promoters consisting of inverted repeats of the sequence NGAAN; 

these residues provide the necessary contacts for heat-induced transcriptional activation [18]. The 

conformation of HSF-bound HSE renders it sensitive to proteolysis. Accessibility of heat-shock 

gene promoters to HSFs is dictated by protein cofactor docking and sequence elements of 

flanking regions, such as the presence of paused RNApII and the positions of the GAGA element 

and TFIID in the case of the Dm hsp70 gene promoter [19].   

While there is only a single Drosophila HSF, there are three mammalian homologs of 

HSF: HSF1, HSF2, and HSF4 [1]. Several mammalian HSF homologs may have evolved in 
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response to the complexity of higher-organism-specific responses [19]. Individual isoforms carry 

out specialized functions, whether they are temporally or compartmentally- defined. HSF1, (like 

dHSF, a monomer in non-HS conditions) is heat-stress- induced, while HSF2 (a dimer under non-

HS conditions), responds during basic cell differentiation [20]. As a group, human HSF isoforms 

heterotrimerize to enhance activation of the hsp70 gene promoter, allowing for measured gene 

transcription in a cell-line-specific manner [21]. It has been noted that HSF1 is activated during 

muscle injury, as suppression of HSF1 activity results in activation of the pro-inflammatory 

pathway that includes the NF-κB and AP-1 genes [22]. Knock-out of HSF1 has been shown to 

inhibit induction of hsp70 in response to heat- shock [23-25]. However, since HSF1 is not 

responsible for induction of all heat-shock-related gene transcription, other hsp transcripts are still 

present during heat stress. HSF2 plays the most prominent role in regulating embryonic 

development, but unlike HSF1, is not activated for DNA- binding during heat stress. HSF1 and 

HSF4 have been linked to formation and maintenance of cells in the olfactory and visual systems 

[26]. The single Dm HSF may encompass the functions of the three HSF isoforms in vertebrate 

systems. Recently, four alternately spliced forms of dHSF were identified that modulate the 

amplitude of the transcriptional response to heat and cold stress [27], and the same has been 

found for vertebrate HSF1 [28-30], pointing to pre-translational regulation of HSF activity. 

 

 There is limited structural data for full-length HSFs; currently, only the DBD has 

undergone NMR and x-ray analysis, revealing similarities to the helix-turn-helix motif class of 

DNA-binding proteins [31]; up to this point, evolutionary/phylogenetic hypotheses have been 

based strictly on domain architecture. Studies of S. cerevisiae HSF have yielded the most data 

concerning protein-DNA interactions in this pathway. Analysis of heat- shock element-bound 

dHSF has identified residue contacts essential for binding and activation of the HS response [18, 

32]. In S. cerevisiae, HSF1 and the Skn7 oxidative stress regulator share structural homology, 

namely within the DBDs and tandem coiled-coil structural domains [33]; in addition, Skn7 can 
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bind yeast HSEs, demonstrating induction of heat-shock gene transcription as a result of non-

stress conditions, for example, oxidative stress. Structural study of the yeast HSF DBD through 

cross-linking experiments have revealed highly flexible N- and C-terminal domains, allowing for 

transcriptional activity in these regions to proceed unhindered [34].  

 

Heat- shock proteins are synthesized in response to activation of the heat- stress pathway 

 There are several heat-shock proteins whose gene transcription is induced by temperature 

stress: Hsp60, 70, 83, 26, and 27, among others. 

Hsp70 gene induction is a result of environmental stress, cell growth and developmental 

regulation, or disease. A basal level of hsp70 transcription is noted at normal growth 

temperatures, but rapid transcriptional activation is achieved as a result of hsp70 promoter-paused 

RNA polymerase II (RNApII) molecules that have recently synthesized 25-nucleotide transcripts 

in their active sites, ready for heat- shock-associated transcription [19, 35, 36]. 

 Unlike heat-induced activation of hsp70, hsp83 is a tissue- and developmental-stage- 

specific gene that is induced during normal development of Dm, and this role is distinct from 

hsp83’s response to heat stress [37]. Maximal induction of hsp83 gene transcription takes place at 

33-35°C vs. 37°C for hsp70 [38]. 

 The heat shock chaperone proteins are essential for mediating protein folding – defects in 

this regulatory function for hsps can lead to disease. Diseases characterized by accumulation of 

misfolded proteins range from Parkinson’s to familial neurohypophyseal diabetes insipidus [39, 

40]. 

 

The Akt/FOXO stress pathway is the primary insulin-signaling stress cascade 

The key regulators of stress-dependent responses that modify lifespan are forkhead 

transcription factors (FKHR), the most notable being the Akt/FOXO pathway. FKHRs are key 

components in proliferative cell responses and regulate genes involved in metabolism, apoptosis, 
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and oxidative stress [41]. FOXO, while not a prime candidate for drug targeting due to its 

ubiquitous nature, may benefit from cell-specific regulation, for example, in pancreatic β-cells to 

control diabetes [42].  

FKHRs are characterized by a conserved DNA-binding domain consisting of three α-

helices and two large loops [41]. Daf-16/FOXO1, a member of the FOXO sub-group of FKHRs 

that regulates insulin signaling in C. elegans, plays a dual role as both transcriptional activator 

and repressor [43]. Daf-16 is negatively regulated by phosphorylation by Akt/Protein Kinase B 

(Akt/PKB), repressing FOXO-related gene transcription by disrupting the interaction of FOXO 

with cofactors necessary for transcriptional activation. FOXO1 binds the major groove of DNA as 

a monomer at the consensus DNA-binding sequence TTGTTTAC [44].  

 Akt plays a role in the regulation of nucleocytoplasmic shuttling and transcriptional 

activity of FOXO [45], however, the mechanisms by which Akt is activated are not yet fully 

understood. Akt is both nuclear and cytosolic (personal observation).  In the presence of insulin, 

(PI3K) generates 3’-phosphatidylinositol lipids, which act as secondary messengers and bind the 

pleckstrin-homology (PH) domains of Akt [8, 46]. PH domains mediate transport of Akt to the 

plasma membrane, where it is phosphorylated at Thr308 and Ser473 [47]. In humans, this 

activated form of Akt can now phosphorylate FOXO in vivo at 3 of 5 possible residues: Thr24, 

Ser256, and Ser319. Ser256 is located in the basic region of the DNA-binding domain [48]; 

phosphorylation at this site is critical for nuclear exclusion of FOXO1 and its subsequent 

transcriptional inactivation, and may have major effects on DNA-binding [49].  

The PI3K/Akt signaling pathway is conserved in Drosophila [50]. The single Drosophila 

FOXO homolog (dFOXO) is 613aa [51] (Fig 1C), while Dm Akt (dAkt) exists in two forms: a 66 

kDa protein (530 amino acids), and a longer, less- expressed, 85 kDa form (611 amino acids), a 

result of transcription from an upstream initiation codon that contains several proline residues in 

the N-terminal region [52]. DAkt is activated at S505 and T342 (S473 and T308 on the 

mammalian homologs, respectively), and targets residues Thr44, Ser190, and Ser259 of dFOXO 
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[51]. DAkt can phosphorylate transcription factors involved in stress signaling cascades, as well 

as cellular developmental processes- for example, tracheal system development [46]. 

 Components of the Akt pathway, such as the 14-3-3 proteins [53], enhance pathogenic 

protein aggregation, often found in human neurodegenerative disorders. Several diseases are 

characterized by long, polyglutamine tracts in essential proteins, like Spinocerebellar ataxia type 

1 [54]. 

 

RNAi: A methodology for the dissection of signaling pathways by knock-down of protein 

expression 

Injection of antisense RNA is the basis of the ground-breaking knock-down method of 

endogenous genes in C. elegans, and now several other organisms [55-58]. RNA interference 

(RNAi) is a form of post-transcriptional gene silencing by introduction of RNA molecules 

complementary to the mRNA of the target protein [57]; both endogenous and exogenous gene 

expression have been effectively silenced by this method [56]. RNAi has been successfully 

utilized in classifying genes essential for cell culture, as well as upstream effectors of signal 

transduction cascades, such as regulators of Down Syndrome proteins [59] and cell growth and 

division.  

RNAi evolved as a defense mechanism against retroviral invasion. RNAi, as it is referred 

to in C. elegans and Drosophila, is known as post-transcriptional gene silencing (PTEG), while in 

the fungi Neospora crassa, it is known as “quelling” [60]. 

In Drosophila cells, the enzyme Dicer digests exogenous (or invading) double-stranded 

RNA (dsRNA) into 21-23 nucleotide segments [61]. The RNA-induced silencing complex 

(RISC) unwinds the double-stranded fragment, and stores the antisense strand. Complementary 

mRNA hybridizes to this stored strand and this hybrid nucleic acid is degraded and unable to 

translate into protein. Exon sequences are required to silence genes via RNAi; early experiments 

using intron and promoter sequences were unable to induce RNAi on targeted genes [60]. In Dm 
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cell culture, addition of long, unprocessed dsRNA is sufficient to deplete the targeted gene’s 

endogenous RNA levels due to the absence of an interferon response in cell culture, and the 

injection of long dsRNA into C. elegans or Dm flies acts systemically to carry out the same 

process. In the mouse and zebrafish embryos [28], stable lentiviral vectors and transfection 

reagents [60] are required for dsRNA to permeate the cell membrane, and may need to be 

processed into the smaller, 21-23 nucleotide double-stranded fragments for transfection. Some 

success has been achieved with RNAi in mammalian cell culture [56, 62] as well as in whole 

model organisms [63]. 

 RNAi is a powerful new tool for elucidating gene function within complex networks. We 

target Akt by RNAi in Drosophila S2 culture to reduce protein levels as a means to assay the 

regulatory function of this kinase on the activation of dHSF. 

 

The nuclear localization signal (NLS) dictates cellular localization of proteins 

 Proteins containing a nuclear localization signal sequence (NLS) are targeted to the 

nucleus after their synthesis in the cytosol [64-67]. Improper/incorrect tagging of nuclear proteins 

has been noted in neurodegenerative diseases. A characteristic of Huntington’s disease is nuclear, 

rather than cytosolic, inclusions of mutant huntingtin protein in neuroblasts [68], possibly a result 

of incorrect nucleocytoplasmic protein transport. 

Three classes of NLS exist: monopartite, bipartite, and a third that shares homology with 

the NLS of the c-Myc oncoprotein [69]. A monopartite sequence is a single cluster of basic 

residues, while bipartite sequences consist of two basic residue clusters, the N-terminal cluster 

making a significant contribution to the binding energy of the NLS [67]. Lysine positioning 

within the NLS is crucial for its signaling function. The SV40 large T-antigen (PKKKRKV) is a 

classical monopartite NLS that requires lysine at position 3, while the c-Myc NLS 

(PAAKRVKLD) requires lysine at position 4, as well as residues P at position 1 and LD at 8 and 

9 [70-72].  
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 The NLS is recognized by the import receptor complex, composed of importin proteins α 

and β, which shuttle NLS-containing proteins into the nucleus [70]. DHSF has diffuse nuclear 

localization in the absence of temperature stress, and its subcellular location is dictated by 

developmental cues. DHSF cannot enter the nucleus during heat shock in early embryos until 

developmental cycle 14, at which time it migrates between sub-cellular chambers, such as from 

the nucleus to the cytoplasm during oogenesis [73]. However, dHSF nuclear localization is a 

requirement for transcription of the hsp70 genes, and is achieved beginning in/during 

developmental stage 13 upon synthesis of the Drosophila Kap-α3 karyopherin transport protein 

[74].  

Studies have shown that cytosolic proteins tagged with an NLS can also be translocated 

to the nucleus [75], indicating that synthetic NLS motifs that are appended to proteins are 

sufficient to signal nuclear localization of a non-nuclear protein. In this work, we took note of a 

mutant dHSF (ΔNLS) where deletion of a previously identified nuclear localization signal 

resulted in excess protein levels in the cytosol. We conducted site-directed mutagenesis within 

this region at lysine residues (Chapter 3) to find the minimal mutation necessary for this 

phenotype. The SV40 NLS was used to target cytosolically retained mutants, identified by 

mutation, to the nucleus to determine the purpose/nature of the mutation. We also note a novel 

mutant, ΔD, which exhibits differences in DNA-binding function when mutated at S256.   

 

Post-translational lysine (K) modifications: Lysine modification by ubiquitylation can 

signal proteolysis and/or regulate protein function 
Probing the ubiquitin-proteasome-mediated degradation of Drosophila proteins has 

become commonplace; recent examples include the clock proteins dPER and dTIM) [35, 76]. 

Several disease states are associated with incomplete or inefficient processing of misfolded 

proteins that compromise cell toxicity/health, primarily neurodegenerative diseases like 

Parkinson’s Syndrome, Huntington’s, and Alzheimer’s [77]. 
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 Ubiquitin (Ub) is a highly conserved, 76 amino acid (8.6 kDa) protein that exists in both 

bacteria and eukaryotes. Target proteins are covalently tagged at lysine (K) residues to signal 

their destruction or regulate their localization or function [75].  

 The ATP-dependent ubiquitin-proteasome pathway (UPP) is responsible for the 

proteolysis of ubiquitin-tagged proteins, and the primary mechanism for signaling protein 

degradation in the cytosol is through this covalent tagging [78, 79]. This three-step, catalytic 

process requires ATP to activate ubiquitin for transfer to one of its several ubiquitin-conjugating 

enzymes (E2). A ubiquitin ligase (E3) recruits the target protein to its designated E2 to catalyze 

Ub-transfer to lysine residues, in turn forming Ub chains that target the protein to the 26S 

proteasome complex [80]. The 26S proteasome complex consists of one, barrel-shaped 20S-, and 

two 19S- sub-complexes, one on either side of the 20S; the 19S regulatory complexes recognize 

the Ub-tagged substrate and process it for destruction within the 20S proteasome core [75, 81]. A 

limited number of proteins are preferentially degraded by the 26S proteasome without the need 

for ubiquitin tagging. 

Two recognized signaling regions exist for ubiquitin-tagging proteins – 1) an N-terminal 

degron [82], and 2) a PEST domain [83]. Specificity is conferred by the E3 ligase, which 

recognizes the degron of a target protein, one of the signaling modules for activating its 

degradation. It is unknown whether the PEST is recognized by E3 ligases for purposes of 

ubiquitin tagging. 

 In addition to UPP-targeting of misfolded or denatured proteins, overexpressed, cytotoxic 

mutant proteins or excess protein-complex subunits are tagged for degradation to maintain cell 

vitality and this multimer complex stoichiometry [84]. Defects in the UPP are linked to several 

neurodegenerative disorders, such as Huntington’s, characterized by protein aggregates as a result 

of overexpressed mutant huntingtin protein (exon 1) carrying polyglutamine tracts [85]. 

The specific linkage of lysine residues between ubiquitin-chain subunits determines 

whether the substrate is targeted for degradation or Ub-tagged for activation or to alter its 
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function. Initially, a single Ub monomer is transferred to lysines of the target protein. 

Polyubiquitylation is the multi-Ub chain formation of four or more subunits that are linked via 

K48 of the first Ub unit for signaling proteolysis [86]. Fewer than four Ub subunits, or linkage 

through K63 of Ub, tags the target protein to modify its function. This is referred to as 

monoubiquitylation, as these Ub chains range from one to three subunits [87, 88] and can regulate 

diverse processes, from receptor endocytosis [89, 90] to protein translocation or conformation. 

Some transcription factors require their own polyubiquitylation for transcriptional activation [91]. 

The heat-shock chaperone proteins, hsp70 and hsp60, protect newly synthesized proteins 

during protein folding [3]. Previous studies have found a requirement for both chaperones and 

proteases for protein degradation in E. coli and eukaryotes [92, 93]. Theories range from a 

cofactor mechanism whereby chaperones maintain misfolded proteins in a proteolytically 

sensitive environment, to possible “signaling” to proteasomes by association with difficult-to-fold 

or partially folded protein [84].  Understanding how HSF is regulated by ubiquitin for 

degradation or monoubiquitylation may give insight into the mechanisms underlying the roles of 

heat-shock proteins’ cell defense system as a result of the stability and activation functions of 

dHSF. 

 

Acetylation, sumoylation, and methylation of lysine residues regulate protein function 

In addition to ubiquitylation, lysines are also prime targets for post-translational 

modification by acetylation [94, 95], sumoylation [96, 97], and methylation [94].  

 Reversible acetylation of histones has been well- documented as an integral regulator of 

chromatin remodeling and transcriptional activity [98, 99]. Lysine acetylation can also regulate 

the function of protein components in the cell cycle, cell differentiation, and DNA replication and 

repair pathways. In this process, acetyltransferases transfer acetyl groups from acetyl-coenzymeA 

to the ε-amino groups of lysines or the α-amino group of N-terminal residues [100], and 

proteins/substrates are deacetylated as necessary. 
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The 101aa, small ubiquitin-like modifier (SUMO) has similar tertiary structure to 

ubiquitin [96]. However, sumoylation serves to target transcription factors to specialized cellular 

compartments to regulate their transactivation potential rather than tag them for entry into the 

UPP [101]. Sumo has been conjugated to a number of transcription factors [96], and recognizes 

lysines within the motif ΨKxE, where Ψ is a hydrophobic and x is any residue. The fly NF-κB 

homolog Dorsal is sumoylated in order to translocate it into the nucleus and enhance its 

activation, and may have a potential role in the Drosophila innate immune response [102].  

 There have been limited studies of lysine and arginine methylation [103]. N-terminal 

histone lysine methylation is a dynamically regulated process that controls transcriptional 

activation and repression [104]. Methylation has recently been reported as a method of chemical 

modification in the crystallization of otherwise soluble protein species [105]. Currently, the only 

reliable method for identifying methylation has been through mass spectrometry analysis [98]. 

 We conducted site-directed mutagenesis of lysine residues within the nuclear localization 

signal of dHSF to determine whether the strict cytosolic localization of a ΔNLS protein is a result 

of modification by acetylation or sumoylation. Due to the difficulty of identifying covalent 

modification by methylation, we do not investigate this mechanism in our study of post-

translational modification. 

 

In this work  

 Clearly, the interdependence of cellular defense pathways is important for targeting drug 

discovery efforts against disease states that may result from improper activation of stress 

responses and its consequences. In the HSR, an example of this is misregulation of the heat-shock 

chaperone protein expression and/or function.  

In this work, we explore the potential for dHSF activation by post-translational 

modification. We postulate that dHSF phosphorylation by Akt kinase maintains it in an inactive 

state in the absence of heat stress. At heat-shock temperatures, dHSF becomes dephosphorylated 
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for activation and induction of heat-shock-mediated gene expression. Chapter 2 investigates the 

direct interaction of dHSF with Akt, an important regulator of the FOXO-stress-related pathway, 

by direct binding studies, functional kinase/phosphorylation assays, and site-directed mutagenesis 

of the Akt consensus site Serine 256. Chapter 3 details the potential modification of lysine 

residues within the NLS of dHSF for DNA-binding activation and protein degradation functions. 

Chapter 4 puts this all into perspective: We delve into the possible interdependence of dHSF 

regulation by Akt and its consequences on the stability of dHSF. 
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Figure 1-1 
 
A – Drosophila heat -shock transcription factor (dHSF) is the 691-aa primary 

transcriptional activator of the heat-shock pathway. The DNA-binding domain (DBD) resides 

from residues 47-163, followed by the oligomerization domain (residues 180-235). A putative 

NLS was found at residues 390-420 by Zandi et al. Adapted from Zandi et al., 1997. 

 

B- The heat-shock response (HSR) pathway. DHSF resides in the nucleus as a monomer that is 

unable to bind DNA. Upon heat-shock, it trimerizes and binds to heat shock elements (HSE) in 

active transcriptional complexes, for induction of heat-shock mediated gene transcription. 

Adapted from Pockley, 2001. 
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Figure 1-2 
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Figure 1-2 
 
The Akt/FOXO insulin-signaling pathway. DAkt is activated by phosphorylation at T342 and 

S505. DAkt activates dFOXO by phosphorylation at T44, S190, and S259. 
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CHAPTER 2: Akt negatively regulates dHSF by phosphorylation of S256 

Introduction 

 Stress pathways are activated in response to a variety of cellular environments, such as 

during nutrient deficiency, metal and chemical toxicity, and temperature changes [1-4]. Initiation 

of stress-dependent signaling cascades results in accelerated stress-protein synthesis [3, 5], the 

transcription and activation of cofactors regulating protein folding, such as the heat-shock 

chaperone proteins (hsp) [3], and cell cycle arrest [2, 6, 7]. A number of key stress pathway 

protein regulators are members of the Serine-Threonine Kinase family [8-10] that function to 

phosphorylate Ser/Thr residues of target proteins. 

 

The Akt/FOXO pathway is the key insulin-signaling cascade in vertebrates 

The insulin-signaling pathway is known for mediating stress resistance and longevity in 

many metazoan and vertebrate species [10]. Recent investigations have shown that one of the 

primary initiators in this cascade is Protein Kinase B (Akt), a regulator of members of the 

forkhead transcription factor family (FOXO) [11, 12]. During non-nutrient-limiting conditions, 

Drosophila Akt phosphorylates Dm FOXO (dFOXO) to inhibit its activity. However, under 

nutrient-deficient conditions, dFOXO is dephosphorylated and translocated to the nucleus, 

inducing the transcription of FOXO-related genes, which include regulators of cell cycle arrest [2, 

7].  

During heat shock, the primary transcriptional activator Drosophila heat-shock factor 

(dHSF) initiates transcription of the hsp genes, including a strictly temperature-regulated form of 

hsp70 [3, 5, 13]. In addition, there is evidence to suggest transactivation of hsp gene induction via 

an alternative pathway. Daf-16/FOXO in C. elegans may directly activate hsp synthesis based on 

the results of HSF1 knock-out studies [14]. However, there is no direct biochemical evidence 

linking direct modification of HSF by Akt/PKB. HSF activation has been noted in several 

organisms under glucose-deficient conditions [15]; in the yeast S. cerevisiae, ScHSF is activated 
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by the metabolic regulating kinase Snf1, for DNA-binding and HSF-mediated gene transcription 

[15]. Studies have also shown that overexpression of C. elegans HSF1 extends organismal 

lifespan [14], while its inhibition results in decreased longevity [16, 17].  

There is evidence that Akt, the primary kinase in the insulin-signaling response involving 

FOXO, may be regulated directly or indirectly by hsps [18]. Hsp27 can bind to and inactivate the 

pro-apoptotic caspase proteins [19], inhibit Fas-mediated apoptosis [20], and regulate Akt activity 

to control apoptosis of human neutrophils [18]. Proper regulation of Akt and its upstream 

activators is essential for preventing the onset of disease and the progression of oncogenesis. 

 

The heat-shock response is regulated by activation of a dynamically phosphorylated heat-

shock factor 

Reversible, multi-site phosphorylation facilitates regulatory function and DNA-binding 

activity as both a binary switch and a dynamic, measured response [21]. In the absence of stress, 

dHSF does not undergo changes in its phosphorylation state, and the relative distribution of 

phosphorylated HSF isoforms remains the same for the duration of all developmental stages [22].  

Upon heat stress, dHSF becomes highly phosphorylated; at the same time its concentration 

increases several-fold. The question arises whether this phosphorylation process is a direct 

regulatory step in the activation of dHSF, a consequence of activation, or a combination of both 

of these possibilities. 

To analyze the activity of Akt on dHSF, RNA interference (RNAi) will be utilized to 

reduce protein levels of this kinase in S2 cells. RNAi is a powerful tool to knock-down 

specifically targeted gene expression. Previous studies using RNAi to reduce expression of 

potential regulators of the FOXO/Akt pathway, for example, the insulin receptor substrate 

CHICO and the PI3K phosphatase PTEN, have confirmed their roles in regulating either Akt 

transactivation or repression, respectively [23]. 
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 In our lab, a process was devised for simultaneous knock-down (KD) of endogenous 

dHSF and knock-in (KI) of exogenous mutant dHSF (A.B. Hicks) to assay the functionality of 

mutant dHSF. By specifically targeting the 3’ and 5’ untranslated region (UTR) of endogenous 

dHSF with complementary double-stranded RNA, expression levels below 10% of the 

endogenous factor were achieved in the S2 cell line. This potent method allows assessment of 

mutant dHSF activity with minimal contributions from endogenous wild-type (wt) factor at the 

level of DNA-binding and transcriptional activation. 

 

Dm HSF may undergo phosphorylation-dependent regulation by Akt kinase similar to 

dFOXO  

 Analysis of the dHSF sequence revealed a consensus Akt phosphorylation site at residue 

S256 that may be phosphorylated by Akt (Fig 4A). A direct interaction between Dm Akt and 

dHSF may link dHSF function to the Akt/FOXO pathway. The phosphorylation of dHSF by Akt 

may act as a negative regulatory step, similar to the regulation of FOXO. This putative Akt 

recognition site is conserved in HSFs among several species (Table 1), and is located adjacent to 

the oligomerization domain (residues 180-235). Modifications at this position may play a role in 

DNA binding, possibly by altering the oligomerization state. Limited structural data exists for 

dHSF, however, NMR studies of the dHSF DNA-binding domain (DBD) point to similarities 

between itself and that of the Forkhead protein family members [24] via a winged helix-turn-helix 

motif that is present in both transcription factors.  RNAi was used to reduce Akt levels in S2 cells, 

and examine the effect of this knock-down on the heat-shock response. These studies will 

determine the role of potential dHSF modification by Akt in the heat-shock response. 
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Results 

Akt directly interacts with and phosphorylates dHSF    

To determine whether dHSF is a substrate of Akt, immunoprecipitated endogenous and 

transfected wild type (wt)-dHSF from non-shocked (NS) and heat-shocked (HS) cell extracts 

were probed with an α-phospho-Akt-substrate antibody. Comparison of NS and HS dHSF shows 

a significantly greater signal for NS dHSF as a phosphorylated Akt substrate when probed by this 

antibody (Fig 1A). Direct association of Akt with dHSF was determined by additional 

immunoprecipitation experiments using wt- and endogenous dHSF (Fig 1B). Antibodies reactive 

against Akt reveal association of Akt with both NS and HS factor. Akt is active in both NS and 

HS cell extracts (Fig 1C), and is not heat-shock concentration-dependent - its concentration does 

not change upon HS, while dHSF concentration increases several-fold during these conditions.  

 Akt is a negative regulator of FOXO by directly phosphorylating this transcription factor 

at three residues [25, 26]. It is necessary to establish the phosphorylation state of dHSF prior to 

and after HS to determine if Akt is acting by the same mechanism to regulate dHSF. Several 

methods were used to establish the in vivo phosphorylation state of dHSF at S256. First, an in 

vitro inverse kinase assay was performed on wt and endogenous dHSF. As shown in Fig 2A, 

immunoprecipitated dHSF from heat-shocked cells can be phosphorylated by Akt (lane 2); these 

results showed NS dHSF as a significantly poorer substrate than HS, suggesting that reactivity of 

S256 to recombinant Akt (for radio- labeling) in this assay is due to a dephosphorylation step 

during HS. Recombinant (GST-tagged) wt-dHSF (wt-rdHSF) can be phosphorylated by 

recombinant Akt kinase, as noted by radioactive labeling (Fig 2A, lanes 3 and 4, bottom), though 

it is not as sensitive a substrate as endogenous dHSF.  

Wt-rdHSF can bind heat-shock elements (HSEs) (Fig 4D); it does not exhibit the same 

lack of HSE-DNA-binding in the NS in vivo expressed protein, indicating the possibility that 

protein cofactors are needed to properly regulate its function. In addition, inverse kinase assay on 

internal deletions of rdHSF indicate that the Akt kinase site is between residues 241-270 (Fig 2A, 
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lanes 5-8). This biochemical data for the direct interaction, and substrate specificity, between 

dHSF and Akt, is evidence for a direct link between the insulin-signaling and heat-stress response 

pathways. Specifically, that phosphorylation of non-shocked/inactive dHSF is removed upon 

heat-shock. 

 

Akt affects the cellular localization of dHSF 

 In vivo RNAi knock-down of Akt (AKD) was performed in S2 cells, and cell extracts 

were analyzed for changes in the localization and DNA-binding ability of dHSF. Wt-dHSF 

tagged with enhanced GFP (EGFP) forms nuclear punctate bodies when Akt expression levels are 

knocked-down by RNAi in the absence of HS (Fig 3A). This is the first visual evidence 

suggesting Akt maintains dHSF in a non-induced state, and removal of this kinase allows 

association with the active transcriptional bodies that are seen during HS-induced activation. This 

observation was supported by cytosolic (S10)- and nuclear (NE)- fractionated cell extracts that 

showed an increase in the amount of nuclearly fractionated dHSF in AKD cells while still under 

NS conditions (Fig 3B). In this Akt knock-down background, NS dHSF bound to DNA (Fig 3C), 

the same as is observed under heat-shocked conditions. This functional data for dHSF activity in 

the absence of Akt supports the idea that Akt is a negative regulator of dHSF. 

Cells were transfected with wt-dHSF-EGFP and treated with LY294002, an inhibitor of 

PI3K (the upstream activator of Akt), under NS conditions. Mirroring the Akt KD experiment, 

the distribution of EGFP-dHSF revealed a punctuate pattern of non-shocked dHSF similar to 

what is observed under HS conditions (data not shown). Since LY294002 is a general inhibitor of 

PI3K (an indirect regulator of Akt), as opposed to a specific Akt inhibitor, there is an overall 

reduction in the number of phosphorylated Akt substrates in Dm cell extracts (Fig. 3D). This is 

likely to be the result of non-specific inhibition of several proteins that may be modified by both 

PI3K and Akt. In comparison, direct KD of Akt does not significantly reduce the overall number 
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of phosphorylated Akt substrates, and would be a more revealing indicator of direct or secondary 

effects of Akt on its participating pathways. 

Treatment of endogenous NS dHSF with LY294002 results in dHSF acquiring DNA-

binding ability (data not shown), in confirmation with HSE-binding data from AKD studies. 

Similarly, cells treated with a specific Akt inhibitor (Calbiochem) revealed an increase in the 

proportion of active, DNA-binding molecules in the nuclear fraction as the concentration of 

inhibitor was progressively increased (Fig 3E). The data from chemical inhibition of Akt 

corroborates the Akt knock-down data, suggesting Akt imparts a negative regulatory function on 

dHSF activation. 

Interestingly, when immunoprecipitated dHSF from Akt knock-down cell extracts was 

probed with an α-phospho-Akt-substrate antibody, a larger population of phosphorylated dHSF 

was found in heat-shocked AKD cells than from NS AKD or NS and HS S2 cells (Fig 3F). The 

specificity of this antibody for S256 of dHSF may come into question; it could be recognizing a 

pseudo-Akt-kinase motif, like the one located at S35. During Akt knock-down, a second kinase 

may be modifying dHSF at the Akt site, possibly GSK-3β [27, 28], which is also active in the NS 

and HS states in Dm S2 cells (Fig 1C). While active Akt is present under NS and HS conditions, 

it may be only conditionally regulating dHSF. 

 

Site-directed mutagenesis of dHSF reveals a negative regulatory role for phosphorylation at 

S256 

 In order to assess the probability that dHSF is a substrate for Akt, sequence analysis via a 

computational motif search program revealed a putative Akt binding site at S256 (251-RARTTS-

256) (PROSITE, Fig 4A). Site-directed mutagenesis of S256 to Ala (S/A) or Asp (S/D) of EGFP-

fusion dHSF did not yield any differences from wt-dHSF in overall protein expression levels or 

transcriptional activation (Fig 4B). However, there was a difference in protein localization and 

DNA-binding activity. According to fractionation studies, protein distribution of dHSF in non-
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shocked S10- and nuclear-cell fractions show higher levels of nuclearly fractionated S/A-dHSF, 

while S/D-dHSF has a larger proportion that is fractionated into the cytosol (Fig 4C). This is 

visually observed in EGFP-tagged mutant dHSFs; S/A is present in the nucleus, while wt- and 

S/D-dHSF protein distributions are more diffuse, and a portion may exist in the cytosol. DNA 

binding of S/D-dHSF was reduced during HS conditions in S2 cells with endogenous dHSF 

knocked-down by RNAi (Fig 4D). There is minimal DNA-binding of non-shocked wt-, S/A-, and 

S/D-dHSF. This replacement of serine at 256 with a negatively- charged residue (D) exhibits 

changes in protein distribution within the cell, and compromised DNA-binding ability of heat-

shocked protein, possibly resulting from phosphorylation at this site. 

 It has been noted that in some instances, for serine residues to be Akt-modified, prior 

post-transcriptional modifications need to be carried out, such as lysine methylation or acetylation 

[21, 29, 30]. This prompted a closer look at mutants from our collection of internally deleted and 

C-terminal-deletion dHSF constructs containing several modifiable lysines (K). One mutant (Δ), 

missing the previously identified nuclear localization signal [31] (Fig 5A), has 100-fold wt 

protein levels in vivo (Fig 5A and 5B), and constitutive DNA binding in the NS and HS states. A 

Δ mutant in conjunction with the S-to-D mutation to mimic a permanently phosphorylated serine 

and yield a negative-charge at the Akt binding site - ΔD - exhibited abolished DNA-binding 

activity, while ΔA  (like Δ) bound HSE-DNA constitutively in the NS and HS states (Fig 5C). 

Both (Δ+S256)-mutant dHSF constructs, like Δ, were cytosolically localized when observed 

under fluorescence. It has been noted that S256D in the human FOXO DBD limits its binding 

activity, and a negative charge at this site may be sufficient to limit transactivation by FOXO 

proteins [32]. Protein levels of ΔD are similar to those of Δ and ΔA (Fig 5C) - clearly, a negative 

charge at S256 is sufficient to disrupt the normal mechanism of dHSF activation. Oligomerization 

of mutant dHSF (ΔA and ΔD) was not hindered by replacement of S256 or deletion of the 393-

420 residue region (Fig 5D); this may be a result of high protein levels activating oligomerization 

and DNA-binding functions, even when HSEs are inaccessible (cytosol vs. nucleus). 
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Recombinant dHSF also oligomerizes normally (Fig 5E) and as previously noted, has DNA-

binding ability in the NS and HS states, much like HS wt-dHSF. Cryptically, transcriptional assay 

of simultaneous [endogenous dHSF knock-down/ (Δ+S256)-mutant-dHSF knock-in] indicated 

levels of hsp70 transcription under HS conditions (Fig 5F), likely a result of incomplete 

endogenous HSF knock-down. So, while oligomerization and transcriptional activation of Δ-

mutant-dHSF is not hindered, ΔD results in a mutant that is non-functional for DNA-binding. 

 

Discussion 

Akt phosphorylation at S256 may repress dHSF activation 

 Independently functioning domains of transcription factors determine DNA-binding and 

transcriptional-activating functions. These are well characterized for proteins such as the yeast 

activator GAL4 [33], among others. As DNA-binding is a prerequisite for transcriptional 

activation, determining whether phosphorylation within the Akt binding site alters the DNA-

binding activity of dHSF implicates a role for Akt in regulating the HS response. Though there 

were no significant changes in dHSF function as a result of site-directed mutagenesis of S256, 

there were notable differences in its subcellular localization and a reduction in the population of 

DNA-binding S/D-dHSF. These data demonstrate dynamic phosphorylation as a means to 

sequester proteins throughout the cell for site-specific function. DHSF is nuclearly localized as a 

single large body, but upon HS, forms tiny, punctuate bodies that are tightly associated with 

active transcriptional complexes. In the NS state, dHSF can be fractionated into the cytosol as a 

monomer, as it is not bound to DNA. The replacement of serine 256 of dHSF with a non-

phosphorylatable residue (alanine, A) allows it to remain in the nuclear compartment, as seen by 

fluorescent imaging of EGFP-tagged protein. The phosphorylated “mimic” (S256D) exhibits 

some nucleo-cytoplasmic protein migration. S256A mutants possess properties akin to the HS-

form of HSF in that they preferentially fractionate within the nuclear extract, whereas S256D 
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mutants, like NS wt-dHSF, readily fractionate into the cytosol. The same mutation in a 

cytosolically retained protein lacking a NLS produces a non-binding mutant when serine is 

mutated to aspartic acid (D). There is no enhancement of DNA-binding in S256-mutated dHSF 

with a functional NLS, leading to the conclusion that the abolishment of ΔD DNA-binding 

activity is a synergistic effect of both the S/D and ΔNLS mutation. It is necessary to investigate 

mutations in residues within the NLS that could work in conjunction with this putative Akt 

phosphorylation site to alter the Dm HS response. 

Post-translational modification of transcription factors results in their specific targeting to 

cellular compartments, leading to transcriptional activation in the nucleus, or lack of activation if 

localized to the cytosol [29, 34]. In the event that post-translational modification of dHSF 

includes phosphorylation by Akt at S256, identifying the location of Akt in the cell during heat 

shock may reveal the phosphorylation state of S256 under non-shocked and heat-shocked 

conditions. Akt is purportedly cytosolic during its participation in the PI3K pathway [4, 26, 35]; 

however, it is unknown whether it ever traverses the nuclear membrane. In order to observe its 

location in response to heat shock, Akt-EGFP was transfected into S2 cells, and monitored with a 

fluorescent microscope under NS and HS conditions. Preliminary observations show Akt 

uniformly distributed throughout the cytosol and nucleus (data not shown).  Cytosolic 

compartmentalization of Akt would render it unable to regulate dHSF by phosphorylation during 

HS, since dHSF remains in the nucleus and then binds HSEs to activate the heat shock pathway. 

The fact that Akt is not retained in one cellular fraction/area during NS and HS conditions in Dm 

cells supports conditional regulation of dHSF by Akt kinase. Cytosolic and nuclear cell extract 

fractionation and subsequent assay by Western blot will reveal the sub-cellular location of Akt or 

the possibility of Akt moving freely between the cytosol and the nucleus. 

These data show direct interaction of endogenous Akt to dHSF by immunoprecipitation 

experiments. In addition, recombinant and in vivo expressed wt-dHSF were able to be 

phosphorylated by recombinant Akt. The Akt phosphorylation site is within residues 241-270, 
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while the kinase binding site may overlap between sequences defined by the internal deletions. 

The ability of Akt to modify recombinant factor suggests that: 1) dHSF does not need to undergo 

additional modifications to be phosphorylated at this kinase site, or 2) cofactors that may prevent 

Akt from modifying dHSF under in vivo conditions are not present, and cannot interfere with in 

vitro wt-rdHSF phosphorylation. Recombinant dHSF is a more sensitive substrate to 

phosphorylation by Akt kinase, as demonstrated in the in vitro kinase assay (Fig 2A, lanes 3 and 

4). The constitutive DNA-binding that results from spontaneous oligomerization of this factor 

suggests that dHSF that is activated for oligomerization, if not also DNA binding, provides the 

optimal substrate conditions for Akt phosphorylation. 

RNAi was successfully used to remove a large population of Akt from Drosophila 

cultured cells. Fluorescent imaging of wt-dHSF and assay by Western blot revealed that dHSF 

was stably localized within the nucleus and in a punctuate pattern characteristic of heat-stressed 

cells. Along the same lines, chemical inhibition of Akt and assay of HSE-DNA-binding 

confirmed the increase in molecules in the nucleus that have acquired DNA-binding ability. 

Interestingly, when Akt expression levels were knocked-down, there was an increase in the 

amount of HS dHSF recognized as an Akt substrate. The possibility of a second kinase, GSK-3β, 

which has an overlapping recognition motif that includes S256, may indicate that shared kinase 

sites are now accessible and may have enhanced phosphorylation. Akt may compete with other 

kinases by possessing high affinity for S256 of dHSF, yet have low efficiency of phosphorylation 

activity. Additional studies will assay for GSK-3β activity during Akt knock-down. In a similar 

fashion to knockdown of Akt, removal of other, Akt/FOXO-associated kinases, such as GSK-3β 

and SGK will allow for more precise identification of the conditions under which Akt participates 

in dHSF regulation. It is known that Akt functions to regulate glycogen synthesis by inactivation 

of GSK-3α and -3β [27]. In studies of human HSF1, simultaneous overexpression of GSK-3β and 

ERK1 has been shown to halt transcription and decrease HSF1 in heat-stress induced granules 
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during the recovery stage [36]; similar to FOXO, HSF1 is negatively regulated by 

phosphorylation. 

 

DHSF and dFOXO may have cofactor roles in activating both the Akt/FOXO and HS 

pathways 

 It was previously reported that a Daf-16(FOXO):GFP fusion protein was found 

systemically throughout C. elegans, and transported into the nucleus during environmental 

stresses, including heat stress [9]. To assay for localization in Dm cells, dFOXO tagged with 

DsRed6 under control of a constitutive promoter will be expressed in S2 cells. Based on current 

knowledge, it will be nuclearly-localized under both NS and HS conditions. Co-expression of 

dHSF:EGFP and dFOXO:DsRed6, and subsequent assay of DNA binding with NS and HS cell 

fractions may suggest either: 1) that activation of this Daf-2/Daf-16 pathway initiates non-heat-

induced activation of the HSF-mediated pathway; or 2) that HSF activation is independent of 

FOXO activation or that of its downstream targets. 

The possibility of activating hsp gene transcription in a non-heat-induced state could be a 

result of the binding of dFOXO, rather than dHSF, at HSEs. A similar phenomenon is observed in 

yeast, with the oxidation protein Skn7 able to bind HSEs, a region previously believed to be 

occupied solely by ScHSF [37]. Constructing an in vivo luciferase/transcription assay using an 

HSE promoter-driven template, and assay of gene transcription by dFOXO and dHSF (as a 

control) may give insight into the transactivation potential of dFOXO in the HS response. 

Chromatin ip (CHip) assays might also be informative [38]. Previous reports have shown that 

removal of HSF1 in C. elegans did not reduce hsp70 and hsp90 transcript levels [14]. Hsp gene 

induction by a partner protein that can bind HSEs and transactivate hsp gene transcription 

implicates HSEs may be secondary, minor downstream targets of FOXO1 by necessity. This 

evidence suggests that hsp gene induction can be compensated for by alternate transcription 

factors in the event of a non-functional HSF. 
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Recently, the S. cerevisiae Akt homolog, SCH9, has been shown to influence lifespan 

and longevity in the presence of stress-resistance transcription factors [6, 39-41] and functional 

Sod2, a mitochondrial superoxide dismutase that, when overexpressed, extends lifespan by 30% 

[41]. Deletion of SCH9 is synonymous with calorie restriction and increased longevity [6]. 

Expression of the yeast HSF, as well as the three mammalian HSF homologs, in Dm S2 cells may 

provide insight into how this regulatory mechanism is conserved between species and reveal 

species-specific complexity within this nutrient-sensing pathway. While there is only a single 

yeast HSF, mammalian HSF1, HSF2, and HSF4 respond in stress-specific manners, as only HSF1 

is activated by heat stress [42, 43]; isolating each homolog, and assaying for its ability to activate 

the HS response, will reveal the HSF isoform-specific stress response with which the 

dAkt/dFOXO pathway may cooperate in order to modulate the aging pathway/response. In this 

manner, we may also be able to distinguish between the cells’ response to the Akt/FOXO 

pathway and to the dHSF heat shock response.  

The aim of this study was to elucidate the biochemical mechanism for HSF 

activation/repression by dAkt, and to investigate direct Akt-dHSF interaction and 

phosphorylation of dHSF by this kinase. These data show mutants with properties similar to non-

shocked dHSF as a result of modification at a consensus Akt binding motif. Deletion of the dHSF 

nuclear localization sequence in combination with S256D substitution rendered this mutant non-

functional for DNA binding. These data point to a negative charge at S256 by phosphorylation as 

a means to prevent activation of Dm Heat Shock Factor.  
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Materials and Methods 

Cell line maintenance. S2 Schneider cells [44] were maintained with S2 cell media (Gibco) 

supplemented with 10% fetal bovine serum (FBS) and split 1:3 every 4-5 days.  

 

Plasmid constructs and protein expression. DHSF was inserted into pAc 5.1A/V5-His 

(Invitrogen) with a C-terminal enhanced GFP (EGFP) tag (BD Biosciences). EGFP from pEGFP 

(BD Biosciences) was subcloned into the plasmid pAc/5.1A/V5-His, generating pAc 5.1A/EGFP-

V5-His. Recombinant dHSF constructs were cloned into pET11b (NEB) for expression in 

inducible DE3 cells (Invitrogen). Site-directed mutagenesis via PCR was carried out according to 

protocols provided by the Mayo Lab (Caltech), and the resulting reaction was transformed into 

DH5α cells (Invitrogen). Transformed colonies were selected with ampicillin and the DNA 

isolated from cells using Qiagen Miniprep columns. Transfections were performed with FuGene6 

(Roche) transfection reagent into S2 cells. Briefly, 1 μg construct DNA was diluted in ddH2O and 

combined with 12 μL Fugene6 for 30 minutes at 25°C. This solution was added to 2 x 106 cells in 

900 μL FBS-deficient media. After 24 hours, 1 mL complete media and 100 μL FBS was added 

to each transfection. Cells were harvested 24-72 hours post transfection. 

 

Antibodies and Chemical Inhibitors. Monoclonal anti-dHSF (line 17H8) and anti-α-3 (line 

E43), used as a control, were obtained from [31]. Anti-V5 antibody was obtained from Serotec. 

Anti-phospho-Akt-substrate, anti-Akt, anti-phospho-S473, and anti-GSK3-β antibodies were 

purchased from Cell Signaling Technology. Cells were incubated with the following chemical 

inhibitors: LY294002 (Sigma) at a concentration of 30 μM for 6-12 hours, and Akt Inhibitor 

V/Tricibine (Calbiochem) at a concentration of 40 μM for 2 hours. 

 

Whole cell extract preparation, cytosolic and nuclear fractionation, and Western blotting. 

S2 Schneider whole cell extracts (WCE) and cytosolic/nuclear fractions were prepared in lysis 
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(A) buffer (15 mM HEPES (pH 7.6), 10 mM KCl, .1 mM EDTA, 5 mM MgCl2, .2% NP40, and 1 

mM PMSF) according to [31]. Western blotting analysis was performed with whole cell extracts 

or ips and combined with 2X Laemmli sample buffer (LSB), heated to 95°C for 5 min. Samples 

were resolved by SDS-PAGE and blotted onto nitrocellulose. After incubation with the indicated 

antibody, bands were analyzed by chemiluminescence (Pierce). 

 

Immunoprecipitation. Immunoprecipitation of dHSF was carried out with either αV5-PGS 

(Roche) X-linked, α17-PGS X-linked, or nickel agarose (NiArg) beads (Qiagen) as noted, and 

incubated with whole cell extracts for 2-14 hours at 4°C. Beads were washed 3 times and 

resuspended in D buffer (25 mM HEPES (pH 7.6), 10% glycerol, .1 mM EDTA, .1% NP40, 10 

mM KCl). Bead-bound proteins were fractionated by SDS-PAGE and analyzed by Western blot 

with the appropriate antibody. 

 

Binding assays. Binding assays were performed using the dsHSE γ-32P labeled HSE (5’-

GCGCGCCTCGAATGTTCGCGAAAAGA-3’) in binding cocktail (100 microg/mL BSA, 100 

microg/mL poly(dI-dC) and 5% Ficoll in HGE buffer (25mM Hepes, 100% glycerol, .1 mM 

EDTA)). WCE or ips were incubated in binding cocktail and end-labeled HSE at room 

temperature for 30 minutes, then analyzed by 10%/1X TBE gel and autoradiography.  

 

Primer extension assays. The oligonucleotide sequences used for primer extension analysis were 

(5’-GGTTACTTTTAATTGATTCAC-3’) for hsp70 and (5’-CCTTTCCACTAGTTTTCGGA-3’) 

for the quantitative control H2b. The oligonucleotides were 5’ γ-32P end-labeled with T4 

Polynucleotide kinase (NEB) and 5 ng were hybridized to 8 μg total RNA in TEK (10 mM Tris-

Cl, 1 mM EDTA, pH 7.4, and 200 mM KCl.) by heating to 65°C for 15 minutes and slowly 

cooling 4°C. Avian myeloblastosis virus (AMV) reverse transcriptase was added to the 
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RNA:oligonucleotide hybrid mixture and incubated at 37°C for 90 minutes. Glycogen and 95% 

EtOH/.1M NaOAc was added to the reaction, incubated on dry ice for 5 minutes, and clarified by 

centrifugation. Samples were resuspended in formamide and XCFF dye, heated to 70°C for 5 

minutes, and run on a 10% acrylamide-6M urea gel in 1X TBE, 300V for 20 minutes. The gel 

was soaked in ddH2O to remove urea, and imaged by autoradiography. 

 

Akt KO via RNAi. Cloning and IVT. DAkt was obtained from a Dm embryonic cDNA library 

[31], cloned into pAc5.1A, and the plasmid linearized with EcoRI (NEB). T7 RNA polymerase 

(T7RNAp) start sites were attached to the ends of the first 500 bp of the coding region of Akt by 

PCR to form the template for in vitro transcription. Primers for construction of ssRNA to 

endogenous dHSF proceeded in a similar manner. ssRNA was synthesized by in vitro 

transcription with the PCR product as template. Briefly, 3 μg template, 1X RNA secure (Roche), 

16 mM rNTPs (Roche), and 20 μL 5X transcription buffer (200 mM Tris-HCl (pH 7.9 @ 25°C), 

30 mM MgCl2,  50 mM DTT, 50 mM NaCl, and 10 mM spermidine) were mixed with water to a 

total reaction volume of 99 μL. This was heated to 65°C for 15 minutes, cooled, and 1 μL 

T7RNAp was added and incubated at 3 °C for 5 hours. ssRNA was redissolved with .5M EDTA, 

phenol/chloroform extracted, and re-precipitated from the aqueous phase with .1 volume 3M 

NaOAc/2.5 volumes 95% EtOH for 15-30 minutes on ice. RNA was pelleted and washed with 

70% EtOH, dried by speedvac, and resuspended in Tris-EDTA pH 7.4. dsRNA was formed by 

heating RNA to 70°C and slowly cooling to anneal strands. 

 

Akt KO – cell manipulation. 2 x 106 cells were left to adhere several hours in 6- well plates. 

Growth media was removed and replaced with 900 μL FBS-deficient media, and 40 μg dsRNA 

was added to each well and incubated for 2 hours. Cells were then supplemented with 100 μL 



38 

FBS. After 24 hours, 1 mL complete media was added and cells grown at 25°C for an additional 

72 hours for optimal RNA knockdown. 

 

Inverse Kinase Assay. Inverse Kinase assay was performed with immunoprecipitated 

endogenous dHSF or rdHSF using anti-dHSF (17) antibody. Ips were washed two times with 

kinase buffer (20 mM Tris-HCl, 10mM MgCl2, 5 mM DTT (pH 7.5)). Beads were incubated 1:1 

(v/v) with γ-32P-[ATP] reaction solution containing rAkt (S. Milward, Caltech) for 1 hour at 

30°C. Reactions were stopped by addition of 2x LSB, and analyzed by SDS-PAGE and 

autoradiography. 

 

Oligomerization assay. Proteins were oligomerized by addition of 30 μM EGS to WCE for 30 

minutes RT. The reactions were stopped by 10 minutes incubation with 340 μM Lysine. Samples 

were mixed with 2XLSB and run on a 7.5% SDS-PAGE gel for 90 minutes at 200V for analysis 

by Western blot. 
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Figure 2-1 

A- Non-shocked (NS) dHSF is phosphorylated by Akt kinase. Immunoprecipitated wt-

dHSF-V5-EGFP was isolated from NS and HS S2 cell extracts. Comparable levels of 

immunoprecipitated protein were resolved by SDS-PAGE, and blotted onto 

nitrocellulose, followed by incubation in αV5 antibody.  

B-  Akt kinase binds to and phosphorylates NS endogenous dHSF. Immunoprecipitated 

endogenous dHSF from NS and HS S2 cell extracts were analyzed by Western blot and 

incubated in α17 (dHSF), αV5, or α Akt antibodies. 

C- Akt levels remain the same in the NS and HS states. WCE from S2 cells were 

analyzed by Western blot and incubated in α17 (dHSF), αAkt, αpS473, and αpGSK-3β 

antibodies. DHSF levels increase as a result of heat stress, while Akt levels do not 

change. Akt phosphorylated at S473 is recognized in both NS and HS extracts, as is 

phosphorylated GSK-3β. 



45 

Figure 2-2 
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Figure 2-2 

Immunoprecipitated NS endogenous and recombinant dHSF can be phosphoryated by Akt 

in an in vitro kinase assay. Immunoprecipitated endogenous dHSF from NS (lane 1) and HS 

(lane 2) S2 cell extracts were incubated in an in vitro kinase assay (Materials/methods). 

Recombinant dHSF that is GST-tagged was also able to be phosphorylated by this method. In 

lanes 3 and 4 – wt-rdHSF. In lane 5 – wt-rdHSF containing an internal deletion of residues 241-

270 (Δ9). Lane 6- Δ10 (missing residues 271-300). Lane 7- Δ11 (missing residues 301-330). 

Lane 8- Δ12 (missing residues 331-360). Samples were run on SDS-PAGE and visualized by 

autoradiography.  
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Figure 2-3 
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Figure 2-3 

A- RNAi-mediated knock-down of Akt results in a nuclear punctuate pattern of dHSF-

EGFP. Akt knock-down by RNAi resulted in a punctuate pattern of dHSF-EGFP, similar 

to the phenotype observed in HS dHSF. S2 cells were treated with dsRNA (Akt) to lower 

endogenous Akt expression levels, then transfected with wt-dHSF-EGFP and observed 

under fluorescence. Wt-dHSF is a monomer in a diffuse body in the nucleus, which forms 

punctuate bodies upon heat stress. Images of NS and HS S2 cells were taken from Zandi 

et al., 1997. 

B- DHSF preferentially fractionates into the nuclear extract during Akt knock-down 

S2 cells. Cytosolic (S10) and nuclear (NE) fractions were run on Western blot and 

incubated with α17 (dHSF) antibody. 

C- DHSF acquires DNA-binding ability in Akt knock-down S2 cells. Binding assays 

were conducted with comparable levels of endogenous dHSF to assay for DNA- binding 

to a double-stranded HSE. Samples were run on a native polyacrylamide gel and imaged 

by autoradiography. 

D- Substrate recognition by αphospho-Akt-substrate antibody in LY294002-treated 

and Akt knock-down cell extracts. NS and HS WCE were probed with αpAsub 

antibody to reveal phosphorylated Akt substrates. Note the reduction in overall number of 

substrates recognized in LY294002 cells as compared to Akt knock-down cells. Akt 

levels are reduced in Akt knock-down cells, while they remain the same in cells treated 

with LY294002. 

E- DNA-binding assay of Akt inhibitor-treated S2 cells. S2 cells were treated with 

increasing levels of a specific Akt Inhibitor (Calbiochem) and fractionated into S10 and 

NE extracts. DNA-binding assay on NE extracts indicated acquired DNA binding as a 

result of Akt inhibition. 
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F- DHSF may be phosphorylated by a second kinase in Akt knock-down cells upon HS. 

Immunoprecipitated wt-dHSF from Akt knock-down cells were probed with αpAsub 

antibody to reveal a more highly phosphorylated population of dHSF from HS Akt 

knock-down cells.
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Figure 2-4 
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Figure 2-4 

 

A- Schematic of Akt Kinase motifs. Survey of Akt kinase sites in dHSF, dFOXO, and 

DAF-16. The Akt consensus site exists in dHSF at residues 251-256. 

B- Site-directed mutagenesis of S256 in dHSF. Mutagenesis of S256 to A and D reveal no 

differences in protein levels as a result of mutation at this site. 

C- Cellular fractionation of S256 mutant dHSF. S/A (A) mutation results in a higher 

population of mutant dHSF that fractionates into the nuclear extract, while S/D (D) 

mutation exhibits similar S10 and NE fractionated levels as wt-dHSF. 

D- DNA binding of S256 mutant dHSF. S/A (A) mutation results in slightly increased 

DNA- binding ability compared to wt-dHSF, while S/D (D) exhibits compromised DNA-

binding ability. Endogenous dHSF was removed to prevent heterotrimerization with 

mutant dHSF that may show up as binding artifacts. 
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Figure 2-5 
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Figure 2-5 

 

A- Schematic of ΔNLS-dHSF. This mutant is lacking a nuclear localization sequence at 

residues 390-420; identified in Zandi et al., 1997. Western blot reveals differences in 

protein levels upon removal of the NLS. 

B- Internal deletions of dHSF reveal overexpressed Δ dHSF levels. Mutant internally- 

deleted dHSF were analyzed by Western blot and incubated with α17 antibody. 

C- DNA-binding of Δ dHSF with mutations at S256. DNA-binding assay reveals minimal 

binding for the ΔD mutant, while ΔA bind DNA-constitutively. Western blot show 

comparable levels of mutant dHSF as probed by α17 antibody. 

D- Oligomerization of mutant dHSF. The Δ/S256 combination mutants were not hindered 

in oligomerization ability as a result of mutation. Cross-linking with EGS and subsequent 

assay by Western blot revealed the presence of oligomerized factor in NS and HS mutant 

protein. 

E- Recombinant dHSF can oligomerize spontaneously. Recombinant wt-dHSF can 

oligomerize when cross-linked by EGS and assayed by Western blot. 

F- Transcriptional activity of Δ/S256 combination mutants. Primer extension assays 

were performed on standardized levels of total RNA isolated from mutant-dHSF 

transfected S2 cells. Hsp70 transcripts were still synthesized in ΔD-dHSF transfected 

cells. H2b internal control transcripts were used as a control. 
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Table 2-1 

 
 

          HSF 
Kinase 

D. 
melanogaster 

S. 
cerevisiae 

H. sapiens M. 
musculus

C. 
elegans 

K lactis 

AKT S256 T388 S230 S230 S309 S299 

CKII S17 T580   T503    

DNA PK S223, T442       T328 6 sites 

ATM   T694, 
S608 

    S559, 
T328 

S575 

ERK1 S378 S655, 
T555 

S363, 4 
more sites

S303, 
S440 

T662, 
S551 

T434 

Calmodulin T513   S136, 
S230 

S230, 
S136 

S559, 
S196 

S229, 
T569 
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Table 2-1 
 
 
Survey of putative Akt kinase sites in heat-shock factor from several model organisms. 

Putative Akt consensus sequence sites that are present in HSF from several species point to a 

possible conserved mechanism for Akt modification of heat-shock factor. 
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CHAPTER 3: Post-translational modification of dHSF within the nuclear 

localization sequence 

Introduction 

 Lysine post-translational modification is a crucial modulator of protein function. Lysines 

can be tagged with ubiquitin or SUMO, as well as acetylated or methylated, and regulate 

processes as diverse as transcription and protein degradation [1, 2]. Ubiquitin tags target the 

protein to the 26S proteasome [1], while lysines that undergo other post-translational 

modifications can finely tune cellular responses by altering protein function. 

 

The ubiquitin proteasome pathway signals degradation or changes in regulatory function of 

its target protein 

 The ubiquitin proteasome pathway (UPP) handles degradation of misfolded, denatured, 

or potentially cytotoxic proteins by covalently tagging them with ubiquitin (Ub). Heat-shock 

chaperone proteins (hsp) are necessary cofactors for proteases during proteolytic processing [3]. 

Examples also exist of proteins associating with hsps to increase their own half-life and stability 

[4]. 

 Two recognized signaling regions exist for ubiquitin-tagging proteins: an N-terminal 

degron and a PEST domain. Recently, there is evidence for a third putative degradation-signaling 

domain within a hydrophobic core, that becomes unmasked during degradation and/or misfolding 

(Parker lab, unpublished results). Currently, most degrons that have been characterized lie within 

the transcriptional activation domain [5], a phenomenon that intertwines the degradation and 

transcriptional activating functions observed in several transcription factors. 

 Ubiquitin-tagging of transcription factors can regulate both their destruction and their 

nuclear translocation for the transcriptional activation of tightly regulated processes. As 

degradation is an energetically unfavorable process, it has been postulated that dHSF may be 
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recycled rather than degraded, and previous studies have suggested a conversion between 

activated/DNA-binding dHSF and its inactive form in the same molecule [6].  

 Ubiquitin substrate tagging is a concerted process whereby E1 modifies Ub into a 

reactive state and associates with an E2 that catalyzes the attachment of Ub to a target protein. 

This target protein is recognized and recruited to the E2 by a substrate-specific E3 [7]. Ub 

attachment consists of either chains (polyubiquitylation) or single monoubiquitin subunits. 

Ubiquitin is a stress protein exhibiting heat-stress induced ub gene transcription. This in turn 

alters cell protein profiles as a result of ubiquitin-mediated degradation [8]. During HS, 

polyubiquitin gene expression is induced, and increases for the duration of temperature stress, 

while no differences are observed in monoubiquitin gene expression under the same conditions 

[8]. Proteins synthesized prior to heat stress accounted for the majority of proteins that were 

ubiquitylated during HS. Studies have shown that one of the principal heat shock pathway 

components, hsp70, is rapidly turned over and degraded within the UPP [8].  

 Several transcriptional activator proteins are polyubiquitylated to induce their 

transcriptional activation [9], and are destroyed as a result of this covalent tagging. Meanwhile, 

monoubiquitylation can alter protein function without signaling protein turnover, as seen in 

histone H2B [10, 11]. In some cases, such as the yeast activator GAL4, polyubiquitin-tagging and 

subsequent proteolysis of the factor is a requirement for its transcriptional activation [12]. 

Recently, Salghetti [13] and colleagues found that ubiquitylation of the (S. cerevisiae) VP16 

transcriptional activation domain (TAD) signals both TAD activation and protein degradation of a 

TAD:transcription factor fusion protein, uncoupling the degradation and ubiquitylation functions. 

Many ubiquitin ligases are proto-oncogenes, and mutations in these enzymes, their substrates, and 

ubiquitin itself are noted in human disease pathogenesis [1, 14, 15]. Elucidating the process of 

ubiquitylation as a regulator of transcriptional activation/repression will play a prominent role in 

understanding disease states.   

 



63 

Non-ubiquitin post-translational modification can modulate the activity of a target protein 

 Acetylation is another method for regulating transcriptional activation. Examples exist of 

modulating transcriptional activity by site-specific acetylation of lysines in relation to the DNA-

binding domain (DBD), where acetylation outside the DBD enhances transcriptional activity, and 

acetylation within this domain diminishes it [16]. The p53 tumor suppressor protein is activated 

by phosphorylation and subsequently acetylated at several candidate lysines throughout the 

transcription factor [17, 18]. Post-translational modifications within the DNA-binding domain 

regulate cellular apoptosis [17, 19, 20], while modifications to serines and lysines at the extreme 

N- and C-terminal regions mediate DNA-binding and the induction of p53 transcriptional activity 

[21]. 

 In contrast to ubiquitylation, sumoylation does not dictate degradation of proteins tagged 

by the small ubiquitin-related modifier (SUMO), but can direct nucleo-cytoplasmic transport and 

transcriptional regulatory functions, among others [22, 23]. Methylation at lysine and arginine 

residues of histone tails by multiple methyl groups directs chromatin accessibility to 

transcriptional activators and repressors [24]. 

 

DHSF may be post-translationally modified for degradation and/or regulation of its 

activating function 

 In dHSF, deletion of the putative NLS resulted in extremely high protein levels (Chapter 

2), suggesting there exist modifiable residues within, and flanking, this region. Mutation of these 

residues to arginine exhibited extremely high levels of protein that are retained in the cytosol. 

These mutants are degradation-deficient (within a given test period) according to pulse-chase 

analysis. Experiments were designed to determine whether this region (Δ) acts as a degron to 

promote degradation or is post-translationally modified by ubiquitin, acetylation, or sumoylation 

at lysine residues within this nuclear localization sequence. Identifying the nature of the 
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modifications within the NLS may distinguish between the functions of the signaling and 

targeting domains of dHSF. 

 

Results 

A nuclear localization signal in dHSF contains lysines that may be modified by ubiquitin 

 In order to identify putative sites of degradation and/or the degron, C-terminal deletions 

of EGFP-tagged dHSF were expressed in S2 cells and their sub-cellular localization was surveyed 

(Fig 1). During this process, the region between residues 405 and 435 was found to play a role in 

nuclear (N-435) vs. cytosolic (N-405) partitioning (Hicks, A.B.). Internal deletions and sequence 

analysis of this region implicate a putative nuclear localization signal (NLS) between residues 

393 and 420 [25]. This protein (Δ) exhibits 100-fold excess protein levels in vivo and is cytosolic 

when exogenously expressed (in pAc) (Chapter 2, Fig 5A). Stability of this mutant is persistent 

when assayed via S35 pulse-chase analysis (Fig 2E), which suggests that this region may be a 

degron or a region containing the lysines targeted by the ubiquitylation mechanism. Further 

supporting this theory, an internal deletion of residues 404–460 had protein levels comparable to 

ΔNLS and constitutive DNA-binding for NS and HS dHSF (unpublished). Examination of the 

lysines in, and surrounding, this region may reveal post-translational lysine modifications and 

their role(s) in the ubiquitin-mediated proteolysis of dHSF, and the nuclear-dependent 

degradation of this transcription factor.  

 Drosophila HSF contains 32 lysines- three of these are within the Δ-deleted region 

(K400, 405, and 409) (Fig 2A). Site-directed mutagenesis of lysine (K) to arginine (R) to yield 

charge-conservative mutations in all three Ks, singly and in combination (K3R), revealed wild-

type (wt)-dHSF expression levels (Fig 2B) and sub-cellular distribution. However, mutation of 

K432R in conjunction with K3R (K4R) resulted in strict cytosolic localization, dramatically 

swollen nuclei, and 20-fold wt-dHSF expression levels, like that of Δ (Fig 2B, Fig 2C). DNA-

binding assays revealed constitutive binding to the heat shock element by K4R, while K3R had 
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only wt-dHSF DNA-binding activity (Fig 2D). K432R alone had no effect on binding, 

localization, or expression levels. Additional K/R mutations to K4R (addition of K454R to make 

K5R) did not further increase the levels of protein; instead, these mutations seemed to limit the 

amount of protein produced to 3-4X wt. Pulse-chase analysis by metabolic-labeling of methionine 

shows that K5R is a stable mutant (Fig 2E). 

 Endogenous dHSF can be degraded, as observed during treatment with the reversible 

proteasome inhibitor MG132. The presence of trapped, higher molecular weight complexes 

suggests Ub-tagging of dHSF (Fig 2F). To assess whether K-mutated dHSF was degraded, and in 

a proteasome-dependent manner, lysine-mutated dHSF was treated with MG132. K4R did not 

exhibit an increase in protein levels, suggesting it has already exited the proteasome pathway, 

possibly by virtue of K/R mutagenesis (Fig 2G). There was no enhanced DNA-binding activity 

due to these mutations, (though there may be an increase in the DNA-binding ability of K5R). A 

time course of K5R mutant protein treated with MG132 showed a shift within a 20 minute heat-

shock, consistent with wt-dHSF shifting in response to HS, but no change in protein expression 

levels (Fig 2H). This mutant is still able to undergo modification, either at other lysines in the 

factor, or by phosphorylation, during HS conditions.  

 To determine if dHSF and K-mutated dHSF are able to be ubiquitin-tagged in vivo, cells 

were co-transfected with wt- or K-mutant dHSF and a ubiquitin construct under control of a 

metallothionein promoter. Ubiquitin expression was induced following proteasome inhibition by 

MG132. Tagging ubiquitin to wt- and mutant-dHSF resulted in higher-order complexes (Fig 3A). 

Endogenous dHSF was also able to be tagged in vivo, when assayed by HSF-immunopreciptation 

and Western blot probed with α17 dHSF antibody. However, the EGFP tag on dHSF can also be 

Ub-tagged for degradation, and this may interfere with recognition of appropriate substrates of 

ubiquitin/E3 ligase. An in vitro ubiquitylation reaction on dHSF ips utilizing recombinant 

ubiquitin (rUb) resulted in higher- order complexes as assayed by Western blot (Fig 3B). 

Recombinant dHSF is unable to be rUb-tagged in vitro in this reaction, suggesting that either 
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post-translational modification or cofactor recruitment is necessary for ubiquitylation. This 

preliminary data encourages further study of direct dHSF ubiquitylation.  

 

A “synthetic” SV40 NLS can force cytosolically retained mutant dHSF into the nucleus 

 The SV40 large T-antigen NLS can be tagged at the C-terminus of a target protein to 

force its nuclear entry. Strictly cytosolic dHSF mutants also exhibiting overproduction of the 

protein were tagged with a C-terminal SV40 nuclear localization sequence to force them into the 

nucleus to observe any differences in subcellular localization or protein turnover. K4R, while still 

overproduced, can now enter the nucleus and form punctuate bodies during HS – suggesting these 

lysines are not essential for degradation; rather they may be post-translationally modified (other 

than by polyubiquitylation) for proper sequestration in the cell (data not shown). K5R-SV40 is 

also overexpressed but nuclearly localized. While this localization does not necessarily indicate 

HS-inducibility, K5R-SV40 dHSF does exhibit the punctuate pattern characteristic of heat-

stressed protein under HS conditions. ΔNLS-SV40 is also nuclear, but has a protein haze 

throughout the cytosol (also seen in EGFP-tagged mutant dHSF), as if the cell were attempting to 

control/handle degradation of excess protein.  

 

Other post-translational modifications of dHSF reveal two lysine residues/sites that may 

control dHSF activation 

To assay the possibility of other lysine modifications to dHSF, full-length factor was ip-

ed and probed with commercial antibodies to acetylated-lysine and sumoylated-lysine. DHSF is 

acetylated in the NS and HS states (Fig 4A).  It is also sumoylated by sumo-1 and sumo-2/3 

(responsible for poly-sumo-chain modification). Sumoylation has been noted in human HSF1 and 

HSF2 [26], and the motif is present for 3 lysine residues in dHSF (Fig 4B).  

Conservative lysine-to-arginine mutation did not result in degradation-resistant mutants 

(according to SV40-tagging dHSF data), so combinations of lysine to alanine (K/A) mutants were 
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constructed to investigate the possibility of acetyl or SUMO modification of the lysines within the 

NLS. A lysine-to-alanine mutation substitutes a constitutively acetylated lysine (A) in place of a 

modifiable lysine, while a non-acetylated lysine would be “mimicked” by an arginine (R). Two 

double mutants were cytosolically localized: K409/432A (9/2A) and K409/454A (9/4A) 

(schematic - Fig 2A). Replacement of the lysines in pairs at these three positions is sufficient to 

target dHSF to a different cellular compartment in the NS state, in this case the cytosol. In the HS 

state, 9/4A is concentrated in nuclear bodies, while 9/2A is still overexpressed and in the nuclear 

periphery. Analysis of these double mutants by Western blot revealed a pattern of heat shock 

molecular weight shifts for the 9/4A mutant characteristic of wt-dHSF upon HS, but that is absent 

in the 9/2A mutant (Fig 4C). Mutant 9/2A is compromised as a transcription factor, as primer 

extension assay of 9/2A hsp70 gene transcripts reveals a reduction in activity, compared to the 

transcriptional ability of wt- and 9/2R-dHSF (Fig 4D). When tagged with SV40, the 9/2A mutant 

still remains as an engorged phenotype in the cytosol during NS and HS, and could not enter the 

nucleus for further processing. K409R/432R (9/2R) does not differ from wt-dHSF in phenotype, 

but mirrors a non-acetylated form of dHSF at these two lysine residues. From this data, it is 

evident that modification at both K409 and K432 can affect the sub-cellular distribution, and 

possibly a regulatory step, in dHSF activation.  

 

Discussion 

 Dissecting the individual contributions of modified lysines to the elaborate dynamics of 

transcriptional activation has proven difficult; overlapping motifs and reversible modifications 

may affect the same sets of lysines at distinct regulatory steps. This phenomenon is seen during 

NF-κB activation, as a result of ubiquitylation and sumoylation of its regulatory oncoprotein Tax 

[27]. Mutations in C-terminal lysine residues of the human p53 tumor suppressor protein, that are 

normally acetylated for proper regulation, interfere with the efficient ubiquitylation of the protein 

[18]. 



68 

DHSF can be ubiquitylated and degraded in vivo and in vitro 

 These data present point mutations within a characteristic nuclear localization sequence 

that confer stability to dHSF. More than one destruction-signaling sequence can exist in a protein. 

This study examined the possibility that the NLS acts as a degron or contains ubiquitin- or post-

translationally-tagged lysine residues. Many examples exist of lysine modification as a way to 

target transcription factors to the nucleus, therefore cytosolically localized K/R mutants were 

expected. As these lysines can no longer be modified, they would be unable to enter the nucleus 

to be activated themselves or to activate other protein components. Upon insertion of a C-

terminal NLS (SV40-tag), the mutants were able to enter the nucleus and their intracellular 

protein levels decreased (when observed by fluorescent imaging), though they were not 

necessarily punctuate, a visual cue in EGFP tagged protein for activated heat-shock factor. Pulse-

chase assays show these K/R mutants have extended half-lives, far longer than wt, yet they may 

still get degraded by Ub tagging of lysines elsewhere in the factor. MG132 treatment results in a 

decrease in degradation by-products, and consistent levels of K5R-dHSF with and without 

MG132 suggest its exit from the ubiquitin-proteasome pathway. These SV40 data are 

observations of EGFP-tagged protein; data from Western blot of protein expression levels will 

determine if the amount of protein changes, or if it is simply translocated into the nuclear 

compartment. Δ-SV40 has excess dHSF throughout the cell as a diffuse cloud/ haze found in the 

nucleus with some residual protein levels in the cytosol. Since Δ spontaneously binds HSE-DNA, 

the phenotype of ΔSV40 suggests that the cell is attempting to degrade this excess protein. Taken 

together, these data may indicate that DNA binding of dHSF results in its subsequent degradation. 

The overflow of protein in the nucleus may result from an excess of Δ to heat-shock element. 

Future work will include isolation of dHSF from various SV40-tagged mutants followed by an 

assay of their DNA-binding ability.  

The possibility still exists for the NLS to act as a degron to signal the destruction of 

dHSF. These lysines may not be polyubiquitin-tagged, but these data do not rule out the 
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possibility of monoubiquitylation. Preliminary data show dHSF can be ubiquitin-tagged, both in 

vivo and in vitro, but the presence of an EGFP tag (with its own degron) makes it difficult to 

distinguish between the Ub- tagging of mutant dHSF vs. EGFP. Follow-up experiments will need 

to be conducted with an unambiguous ubiquitin-tagging protocol, ideally utilizing a mutant-Ub 

construct and a minimally tagged dHSF. K48R-Ub will bind to Ks preferentially tagged for 

degradation, while K63R-Ub [28, 29] will attach to sites that are monoubiquitylated. Co-

expression of K/R-Ub with K-mutant dHSF will reveal the location of Ub-tagging and its purpose 

at that site (as a result of the Ub construct expressed). The absence or shortening of a rUb-dHSF 

ladder (protein-ubiquitin conjugates) points to the mutated lysines as the residues being modified 

in wt-dHSF.  

 The PEST sequence can also signal degradation [30]. There exist three regions containing 

PEST-like sequences in dHSF – residues 17-30, 256-266, and 361-390. The first two were 

identified computationally (PROSITE). Very recently, it was found that EGFP-tagged deletions 

of these regions under control of a constitutive promoter have higher intracellular protein levels. 

Further characterization of these regions to test for stability by pulse-chase analysis and MG132 

treatment may reveal whether these areas, either singly or in tandem, act as the degron and are 

able to signal the proteasome-dependent degradation of dHSF.  

 The mutants 9/2A and 9/2A-SV40, which have cytosolic distribution and cannot enter the 

nucleus even when tagged with a C-terminal SV40 tag, will be studied further. Comparison of 

9/2A and 9/4A showed differences in electrophoretic mobility, with 9/4A exhibiting wt-dHSF 

characteristics, while 9/2A had no mobility shift upon HS. Clearly, this shift is a result of 

mutation of K432A vs. K454A. K409A (as a member of K3A), is unable to localize preferentially 

to the cytosol, the same being true for K432A, K454A, and K432R mutants (data not shown). 

These single mutants are unable to alter sub-cellular localization, suggesting this phenotype is a 

synergistic effect of several lysine mutations. 
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Based on the finding that Δ is an overexpressed, DNA-binding mutant with limited 

proteolysis, it will be insightful to ask whether the nuclear localization sequence has the ability to 

function as an autonomous degron. An “autonomous” degron exists as a fragment containing the 

lysines that are Ub tagged to signal its own proteolysis. Mutated lysines within this region will 

render the mutant protein unable to promote its own degradation. To test this theory, the region of 

dHSF between residues 375-450 will be inserted it into pAc/5.1A-V5-His, and expressed in S2 

cells. The lysines in this segment (K 400, 405, 409, and 432) will be mutated to arginine to 

prevent post-translational tagging of ubiquitin to these residues. Indirect immunofluorescence 

will reveal localization of the factor without contribution of a degron from EGFP (which could 

destroy the NLS-containing fragment by polyub- tagging of itself). If these lysines are 

ubiquitylated, there will be overexpressed intracellular protein levels. If so, this will be the first 

instance of an NLS containing overlapping domains for signaling destruction and the K-sites for 

degradation-promoting ubiquitylation. 

 

DHSF undergoes non-ubiquitin Lysine modification 

Identifying non-ubiquitin lysine modifications in dHSF is a more difficult proposition, as 

several modifications may be responsible for temporal or transient regulation of cellular 

processes. In the case of sumoylation, the preliminary evidence suggests S1, S2 and S3 

sumoylation of dHSF, but it still remains to be seen what role and to what extent sumoylation 

plays in regulating dHSF.  While only wild-type, full-length dHSF has been probed for 

sumoylation, it will be useful to identify sumoylation-deficient mutants by K/R substitutions and 

Western blotting with α-S1 and α-S2/S3 antibodies will reveal whether these lysines are tagged 

for sumoylation in vivo. Another motif, a highly conserved, bipartite sumoylation sequence 

(ΨKxExxSP), has been found that requires phosphorylation of serine prior to SUMO tagging 

[26]. Based on sequence analysis, there exist three potential K sites for sumoylation (K191, K454, 

and more poorly, K162), but no sequence homology to the phosphorylation-dependent motif was 
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found within dHSF. Mammalian HSF homologs HSF1 and the splice variant HSF4b both contain 

the phosphorylation-dependent motif, and sumoylation of the lysine in each of these proteins 

effectively represses their transactivation [26]. 

To identify acetylated residues, general acetylated lysine antibodies are available, but 

antibodies reactive against specifically acetylated lysines are rare, and for our data a 

commercially available antibody that was reactive to our protein was difficult to obtain. We were 

able to identify a possible candidate for acetylation in 9/2A, an acetylated-lysine mutant that is 

spatially targeted, in contrast to the 9/2R non-acteylated mutant that retains wt-dHSF activity. 

Functional data reveals the transcriptional activity of 9/2A is partially compromised, suggesting it 

is unable to activate hsp70 gene transcription at wt-dHSF levels due to an inhibitory role of lysine 

modification. Aside from site-directed mutagenesis of individual lysines, determining the number 

of acetylated lysine residues has been best tackled via mass spectrometry (MALDI) [2], or a less-

sensitive 3H-acetate labeling assay.  

DHSF may undergo post-translation modification upon HS - this is seen as a shift/change 

in the distribution of dHSF from the lower band of a doublet to the upper band; we note the 

absence of this shift in the 9/2A mutant. To determine if there is an inability to carry out other 

modifications/regulatory changes upon HS,  the dHSF doublet can be probed with antibodies to 

Sumo, acetylated-lysine, and ubiquitin to reveal the possibility of, and relative distribution of, 

lysine-modified dHSF in each of these bands.  

 These studies analyze lysine mutations within the nuclear localization sequence of dHSF. 

A K/R mutation in four lysine residues within this region results in a cytosolically localized, 

highly expressed dHSF that constitutively binds DNA and has a longer half-life than wt factor. A 

K/A mutation in two of these lysines results in the same defect in both nuclear-localization and 

protein expression level. DHSF can be tagged by ubiquitin in vivo and in vitro, and the full-length 

protein is acetylated and sumoylated. We find that dHSF undergoes post-translational 

modification, and likely, several at once at lysines within the NLS for regulation of dHSF 
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activity. Identifying the exact modification at each lysine residue within this region will reveal the 

functional consequences of post-translational modification on dHSF activation function. 

 

Materials and Methods 
 
Antibodies and Proteasome Inhibitor. Anti-dHSF (17H8) and anti-α-3 antibodies were 

obtained as noted in Chapter 2. Anti-V5 antibody was obtained from Serotec. Anti-ubiquitin 

(P4D1), anti-AcK, anti-S1, and anti-S2/3 antibodies were purchased from Cell Signaling 

Technology. MG132 proteasome inhibitor (Sigma) was added to cells at a concentration of 50 

μM for 90-120 minutes. 

 

Site-directed mutagenesis. C-terminal dHSF deletions and ΔNLS-dHSF were constructed 

according to [25]. A C-terminal SV40 tag was inserted into pAc 5.1A/EGFP-V5-His to make 

pAc5.1A/SV40-EGFP-V5-His. Site-directed mutagenesis was carried out according to protocols 

provided by the Mayo Lab (Caltech). Ubiquitin (Ub) was cloned into pAc 5.1A/V5-His. 

Recombinant Ub was cloned into pET15b (NEB). 

 

Pulse-chase assays. Pulse-chase and immunoprecipitation analysis were modified for S2 cells 

from ([13] or online at http://tanseylab.cshl.edu). In brief, S2M3 cells (S2 cells acclimated to M3 

media) grown in M3 medium were transfected with wt and mutant dHSF under control of a pAc 

constitutive promoter or pMT inducible metallothionein promoter [31]. Eight mL cells were 

rinsed twice with 1.5 mL labeling medium (without 35S-methionine) supplemented with 10% 

dialyzed FBS, then incubated one hour in 1.5 mL of the same labeling medium. Media was 

removed, and incubated with 35S labeling medium (150 μL of 5 mCi 35S-methionine in 3 mL 

media) for 30 minutes. Labeling medium was removed, and 3 mL chase media (supplemented 

with 10X excess methionine and 10% undialyzed FBS) was added to the flask. Cells were 

aliquoted and WCE were isolated at designated time points. DHSF was immunoprecipitated with 

http://tanseylab.cshl.edu/
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NiArg beads, washed with D buffer and 10 mM imidazole, and fractionated by SDS-PAGE for 

later analysis by autoradiography. 

 

Binding assays. Binding assays were performed using the dsHSE γ-32P labeled HSE (5’-

GCGCGCCTCGAATGTTCGCGAAAAGA-3’) in binding cocktail (100 microg/mL BSA, 100 

microg/mL poly(dI-dC) and 5% Ficoll in HGE buffer (25 mM Hepes, 100% glycerol, .1 mM 

EDTA)). WCE or ips were incubated in binding cocktail and end-labeled HSE at RT for 30 

minutes, then analyzed by 10%, 1X TBE gel and autoradiography.  

 

In vitro ubiquitylation reactions. Ubiquitylation reactions were carried out with 1 μg rUb in 

reaction buffer (10 mM MgCl2 and 1 mM γ-32P-[ATP] in HGEN) with α17- or αV5- antibody-

bead immunoprecipitations for 60 minutes at 25°C. Samples were mixed with 2X LSB and run by 

SDS-PAGE for autoradiography. 
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Figure 3-1 
 

Schematic of C-terminal deletions in dHSF-EGFP. C-terminal deletions constructed by Zandi 

et al. were used to assay overall protein expression levels by Western blot with α17 antibody and 

cellular localization by fluorescence imaging. N and C represent nuclear and cytosolic/S10-

fractionated protein. The increase in protein expression levels between N-461-dHSF and N-404 

dHSF may be a result of loss of the NLS. 
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Figure 3-2 
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Figure 3-2 
 

A- Schematic of lysine residues in the nuclear localization sequence. K/R mutant dHSF-

EGFP (Materials/Methods) was transfected into S2 cells for observation of cellular 

localization and analysis of protein expression levels by Western blot. 

B- Protein expression levels of K/R mutation within the NLS. WCE were assayed by 

Western blot and incubation with α17 antibody. 

C- Site-directed mutation of 5 lysine residues results in cytosolic localization of mutant 

dHSF. Images were taken for DAPI nuclear staining (blue), fluorescent antibody reactive 

against nuclear pore proteins (red), and the EGFP dHSF construct. K4R exhibits the same 

protein localization pattern. 

D- DNA-binding ability of K/R mutations in the NLS. Constitutive binding of K4R and 

K5R mutant protein correlates to sub-cellular localization. K4R and K5R mutants were 

cytosolically-localized, while K3R and single or double mutants from (K400, 405, 409) 

did not exhibit differences from wt-dHSF. WCE were run in a standard DNA-binding 

assay. 

E- Metabolic- labeling in K/R mutant dHSF. Pulse-chase analysis was performed on K/R 

mutants over the course of three hours as described in Materials/Methods. Persistent 

mutations as a result of K/R mutation were observed in K5R, while Δ-dHSF also 

exhibited stability in this assay. 

F- Endogenous tagging of dHSF in vivo observed after treatment with proteasome   

inhibitor MG132 

G- MG132 treatment of K/R mutant dHSF. Mutant dHSF transfected S2 cells were treated  

with MG132 as described in Materials/Methods. Samples were analyzed by western blot  

and incubated with α17 antibody. 

H- MG132 treatment of K5R dHSF indicates it can be further modified as a result of 

heat stress. MG132 treatment was performed as described. WCE were taken at 
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representative time points and analyzed by Western blot.
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Figure 3-3 
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Figure 3-3 
 

A- DHSF can be tagged in vivo by ubiquitin. Wt- and mutant dHSF were co-transfected 

with a Ub-construct and non-shocked WCE were analyzed by Western blot and 

incubation with α17 antibody. 

B- DHSF can be modified by ubiquitin in an in vitro ubiquitylation reaction. Wt and 

mutant dHSF were incubated with rUb and ATP in reaction buffer (Materials/Methods). 

The left lanes are controls for the reaction buffer minus a single component. 
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Figure 3-4 
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Figure 3-4 
 

A- DHSF is acetylated and sumoylated. Immunoprecipitated NS and HS dHSF were run 

on SDS-PAGE and analyzed by Western blot. Antibodies utilized were reactive against 

acetylated lysine (AcK) and single-(S1) and multi- (S2/3) chain sumoylation. 

B- DHSF contains 3 putative sumoylation motifs.  K191, K454, and K162 that may fall 

within a sumoylation consensus motif. Hydrophobic residues are denoted by Ψ, X is any 

residue. 

C- DHSF double K/A mutants point to key residues within the NLS for cellular 

localization. Site-directed mutants (9/2A, 9/4A) were analyzed by Western blot and 

observed by fluorescence imaging. Comparison of NS and HS WCE of dHSF mutants 

and a time course of 15 minute heat shock revealed differences in electrophoretic 

mobility, as assayed by Western blot and α17 antibody. 

D- Functionality of 9/2R and 9/2A mutants. Double K/A mutants in dHSF exhibited 

extremely high protein levels as compared to wt and 9/2R-dHSF. Transcriptional analysis 

revealed dramatic differences in hsp70 gene transcript levels as assayed by primer 

extension (Materials/Methods). 
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CHAPTER 4: Akt phosphorylation of Drosophila heat-shock factor – a signature for stress 

resistance 

The heat-shock response is vital to cellular homeostasis. Drosophila melanogaster heat-

shock factor (dHSF) is the primary transcriptional activator in the stress-response pathway for 

transcription of protective heat-shock chaperone proteins. Understanding the regulatory 

mechanism underlying dHSF activation will reveal how this process maintains a cellular 

environment that can combat environmental stresses while being conducive to proper cell growth 

and development. 

This work investigates the potential for dHSF to undergo post-translational modification 

by phosphorylation and lysine tagging, specifically, phosphorylation by Akt kinase and covalent 

lysine tagging by ubiquitin, acetyl, and SUMO groups. Here, the findings of this study are 

summarized, and comparisons are made between the regulation of dHSF activation and that of 

dFOXO. Detailed below, a discussion of the functional consequences of synergistic 

phosphorylation and lysine modification – this work may implicate a prominent role for Akt 

phosphorylation in regulating the stability of dHSF. 

 

The dHSF and dFOXO stress-related transcription factors are negatively regulated in a 

similar fashion by Akt kinase 

 This study shows that the direct association of Dm heat-shock factor by Akt/Protein 

Kinase B and the phosphorylation of dHSF at Serine 256 by Akt kinase inhibits its activation 

function. This negative regulatory mechanism (Fig 1) follows that of the primary insulin-

signaling transcription factor in Dm, dFOXO. Phosphorylation by Akt at three sites on dFOXO 

(one primary, two secondary), serves to inhibit its transcriptional activity when insulin levels are 

maintained in the cell [1]. During nutrient deficiency, Akt relieves the inhibitory phosphorylation 

of dFOXO, allowing for its translocation and the transcription of stress-related proteins involved 
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in apoptosis, metabolism, and oxidative stress [2, 3]. Several major findings have demonstrated 

that dFOXO can confer longevity as an essential regulator of organismal lifespan [3]. 

 These observations show that dHSF is inhibited by phosphorylation at S256 by Akt, in a 

similar fashion as dFOXO. In this phosphorylated state, dHSF is unable to activate its DNA- 

binding and transcription functions. When heat stressed, Akt relieves this inhibitory 

phosphorylation for the multi-step transcriptional activation of dHSF. Removal of Akt by RNAi 

or inhibition by chemical agents in S2 cells (Chapter 2) results in dHSF activation at the level of 

DNA binding. Fluorescence studies confirmed that in the absence of Akt, dHSF exhibits a 

phenotype consistent with that of heat-shocked activated factor. Site-directed mutagenesis of 

S256 revealed aspects of dHSF phenotype and activity that mimicked those of the non-shocked 

(S/D) or heat-shocked (S/A) states of dHSF.  

These findings suggest that the dHSF (and dFOXO) stress-related transcription factors 

are negatively regulated by the same inhibitory phosphorylation mechanism of Akt kinase. 

 

DHSF may be degraded through a phosphorylation-dependent mechanism by Akt 

Recently, Aoki et al. have reported the phosphorylation-dependent degradation of 

FOXO1 by either Akt or the PI3K homolog, P3k [4]. The upregulation of Akt and subsequent 

loss of FOXO1 transcriptional regulation results in the oncogenic transformation of chicken 

embryo fibroblasts.  

Does dHSF undergo similar proteasome-mediated degradation as a result of 

phosphorylation (or de-phosphorylation) by Akt? In one theory, under non-shocked (NS) 

conditions Akt phosphorylation may promote the degradation of inactive dHSF to maintain the 

basal level of dHSF that is present in the nucleus prior to heat shock. Upon heat stress, Akt 

relieves phosphorylation of dHSF at S256 for its association into transcriptional complexes for 

HSE-DNA binding and transcriptional activation (Fig 2). In a second scenario, contrary to the 

previous model, dephosphorylation of dHSF at the Akt kinase site may result in the upregulation 
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of dHSF activity, and only then permit the subsequent degradation of active dHSF participating in 

protein-DNA interactions (Fig 3). 

Transient modification of dHSF by Akt kinase may comprise both a phosphorylation and 

a dephosphorylation step as a single event. A small population of dHSF may be regulated at any 

given time by Akt. In the phosphorylation-dependent degradation of FOXO, Akt phosphorylation 

of FOXO keeps it in an inactive state, and its subsequent degradation maintains steady protein 

levels [4]. DHSF already exists at a basal level within the nucleus as a soluble species that 

fractionates preferentially to the cytosol. This nuclear localization allows access to heat-shock 

elements for rapid activation of the HS response. If the model for phosphorylation and 

degradation of dHSF follows that of FOXO, phosphorylation by Akt in the absence of heat stress 

would maintain baseline levels of dHSF by also promoting its degradation (Fig 2). 

 The degradation of dHSF under non-shocked conditions is readily observed (Chapter 3). 

During heat shock, overall cellular protein degradation levels increase as polyubiquitylation 

function is upregulated. However, proteins that are poly-Ub tagged during heat shock (HS) are 

synthesized prior to temperature stress [5]. When dHSF levels dramatically increase in response 

to HS, newly synthesized dHSF would not comprise a significant portion of the proteins that 

undergo proteolysis. The population of dHSF that can bind DNA for the activation of hsp gene 

transcription may get subsequently degraded, but only as a result of this DNA-binding 

event/activation step. During standard NS conditions, a small amount of dHSF (that may be 

dephosphorylated at S256) is bound to HSEs for baseline transcriptional activity and ongoing 

synthesis of dHSF. If DNA binding is a prerequisite for degradation, this small percentage of 

active dHSF will undergo proteolysis. The increase in dHSF levels upon HS would result in a 

larger population of activated DNA-binding molecules, however, this species would not be poly-

ubiquitylated for degradation. This theory is in direct contrast to what is observed for regulating 

proteasomal degradation of FOXO by Akt: upon dephosphorylation of dHSF at the Akt kinase 



89 

site, dHSF becomes activated for DNA binding. Only after carrying out DNA-binding function 

can the dephosphorylated species get degraded by a proteasome-mediated process (Fig 3). 

 

Regulation of dHSF activity is modulated by several levels of post-translational 

modification 

Other possibilities exist for dHSF regulation at the levels of Akt kinase phosphorylation, 

post-translational lysine modification, and protein degradation, in concert and individually.  

Domains that signal degradation (degron, PEST) and domains that are substrates for 

polyubiquitylation are usually found as separate entities within a protein; some proteins contain 

more than one of these degradation-signaling regions. Sequence analysis of dHSF reveals 

homology to a ubiquitin interacting motif (UIM) at residues 249-259. A UIM consists of the 

motif eeeXΨXXAXXXSXXe, where e is a charged residue, X is any residue and Ψ is a 

hydrophobic residue, to promote protein ubiquitylation. The UIM itself can be bound by 

polyubiquitin chains [6, 7]. In dHSF, this region overlaps the Akt kinase site, and may be where 

the Akt-regulating and ubiquitylation pathways converge. The orientation of the UIM in relation 

to the polyubiquitylation sites is integral to Ub tagging at these lysines -many UIMs are C-

terminal to the lysines in question. If the putative UIM in dHSF follows this model, the lysines to 

be tagged would be located N-terminal to the 249-259 region. The data presented here (Chapter 

3) suggest that the dHSF NLS may act as a degron, however, its constituent lysines may not be 

Ub tagged. There is a possibility that the lysines tagged for degradation lay in the 17-30 reside 

region (PEST) yet to be investigated. 

 Careful regulation of dHSF proteolysis is essential for cell vitality, but in oncogenic cell 

types, dHSF may not undergo normal protein turnover. This has been noted in Myc, where a non-

proteolytic form of the protein is found in tumor cells [8]. If DNA binding is a requirement for 

subsequent proteolysis of a factor, an inability to signal the destruction of a transcriptional 

activator yields an abundance of bound (or able to be re-bound) dHSF that is trapped in an 
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activated state with DNA-binding ability. This results in extremely high levels of heat-shock 

proteins and upregulation of dHSF’s own protein levels. The influx of excess protein in the UPP 

ties up the proteolytic machinery and hinders the “waste-disposal” process, in turn activating pro-

apoptotic cascades and associated stress pathways, possibly by Akt phosphorylation-dependent 

degradation.  

 The location within the cell of the dHSF phosphorylation step by Akt kinase is yet to be 

determined. Protein translation occurs in the cytosol and dHSF localization may be dynamic, 

similar to its migration between cellular compartments in the NS state during early development 

[9]. Assessing the phosphorylation state of cytosolically localized mutant dHSF may reveal if 

dHSF is modified in the cytosol prior to nuclear entry, where the factor will eventually reside. 

However, there is the possibility that mutant protein, if processed inefficiently, may get 

phosphorylated by Akt in order to be polyubiquitylated and degraded. Two stress pathways would 

then be initiated: Akt may be activated for non-specific phosphorylation in response to an 

increase in the activity of the ubiquitin proteasome pathway. Kim et al. [10] have shown that 

inhibition of proteasomal degradation by treatment with MG132 induces hsp transcription and 

HSF1 hyperphosphorylation. However, in cells treated with MG132 and the general protein 

kinase inhibitor wortmannin (for PI3K and DNA-PK), MG132 treatment still 

hyperphosphorylates HSF1. Based on the activity of proteasome inhibitors, treatment with this 

reagent would retain proteins that were originally targeted for destruction and that may have 

already undergone activation. This supports the theory of negative regulation of dHSF by Akt: 

initially, MG132 treatment activates the heat-shock response [11, personal observations], 

resulting in the hyperphosphorylation event. Treatment with this proteasome inhibitor alone traps 

activated dHSF, which can continue hsp gene transcription. Subsequent addition of the Akt 

inhibitor does not modify the highly phosphorylated dHSF species. Note that the 

hyperphosphorylated shift mirrors the mobility shift seen in HS dHSF. Taken together, it is not a 

phosphorylation event by Akt (or by PI3K pathway components) that contributes to this observed 
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hyperphosphorylation of HSF once it has been activated (by MG132, as previously noted). 

Rather, a dephosphorylation event at Akt kinase consensus site S256 may have initiated this 

response. 

 There are distinct examples of post-translational lysine modifications that regulate 

transcription factor activation [12]. Several modifications may be simultaneously responsible for 

the resulting effect. These steps may raise or lower the sensitivity of dHSF to phosphorylation by 

Akt, or be entirely independent of the Akt/FOXO regulating mechanism. In the case of 

ubiquitylation, these data suggest recombinant dHSF cannot be modified by ubiquitin, but 

ongoing research into the possibility of sumoylation, acetylation, and methylation of recombinant 

protein is necessary. If there is pathway overlap, Akt phosphorylation may be a necessary step 

prior to, instead of a result of, post-translational modification to activate the DNA binding of 

dHSF.  

 

Akt phosphorylation of Drosophila Heat Shock Factor – a signature for stress-resistance 

Elucidating the activation of the Drosophila heat-shock response (dHSR) as a result of 

Akt phosphorylation provides a link between two key stress-signaling pathways: the HSR and the 

FOXO-mediated insulin-signaling pathway. Characterizing the nature of dHSF activation may 

reveal the HSR as a parallel and/or cooperating mechanism alongside the Akt/FOXO cascade in 

conferring stress resistance, and potentially, longevity.  

From this work, we extrapolate that Akt phosphorylation is a negative regulatory 

mechanism in the activation of the heat-shock factor-mediated response, and Dm heat-shock 

factor stabilization may be a consequence of dHSF activation. Implications for this work in 

understanding disease states and identifying targets for drug delivery are far reaching, as 

misregulation of the HS pathway could lead to the onset of disease and, as a result, oncogenic cell 

transformation. 
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Figure 4-1 

 

DHSF is phosphorylated by dAkt at S256 in a negative regulatory mechanism. DHSF is a 

monomer in the nucleus, where it is maintained in an inactive state by dAkt phosphorylation at 

S256 of dHSF. Upon HS, dHSF becomes dephosphorylated for association into active 

transcriptional complexes for heat-shock mediated gene transcription. 
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Figure 4-2 
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Figure 4-2 

 

DHSF may be degraded through a phosphorylation-dependent mechanism by Akt: 

Scenario 1. DHSF is maintained in an inactive state by phosphorylation by Akt at S256, which 

also promotes proteasome-mediated dHSF degradation.
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Figure 4-3 
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Figure 4-3 

 

DHSF may be degraded through a phosphorylation-dependent mechanism by Akt: 

Scenario 2.  Upon dephosphorylation at the Akt kinase site, dHSF becomes activated for DNA-

binding. Following DNA-binding, the dephosphorylated species gets degraded in a proteasome-

mediated process. Recovery of dHSF from the activated state is represented by a dotted line. 
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