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Chapter 2

Development of a Quantitative
Full-Field, Three-Dimensional
Imaging Technique

This chapter describes the development of a quantitative, full-field three-dimensional imaging tech-

nique for measuring deformations in solids including transparent soft materials. The method pre-

sented here employs a laser scanning confocal microscope to acquire three-dimensional volumetric

images, while a digital volume correlation algorithm is used to determine the full field displace-

ments. In particular, the DVC computes the displacement of fluorescent microparticles embedded in

a transparent agarose polymer. What follows is a detailed presentation of the quantitative full field

three-dimensional imaging technique development and its validation, including in-depth description

of laser scanning confocal microscopy (LSCM) and digital volume correlation (DVC).

2.1 Laser Scanning Confocal Microscopy (LSCM)

This section presents an overview of laser scanning confocal microscopy and discusses how its res-

olution along the optical imaging axis can be improved by means of a computationally efficient

deconvolution algorithm.
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2.1.1 Overview of Laser Scanning Confocal Microscopy

Confocal microscopy has emerged as a powerful imaging technique due to its optical sectioning

capability, which enables construction of three-dimensional images. In conventional wide-field mi-

croscopy, light is collected from the entire sample volume, including the focal plane as well as all

other planes. In confocal microscopy light is generally collected from the focal plane only. This is

achieved by using a pinhole in front of a photomultiplier tube (PMT) detector that blocks the in-

coming light from all other planes. As illustrated in Fig. 2.1, the solid line represents light reflected

or emitted from the focal plane, while the dashed lines represent light from the out-of-focus planes.

The overall contrast and resolution of the image is significantly increased as compared to con-

ventional wide-field microscopy where the image is blurred by out-of-plane light. As a conse-

quence, the inherent optical sectioning of the specimen in confocal microscopy allows the assem-

bly of three-dimensional image volumes by stacking together individually acquired planar slices.

Figure 2.1: Illustration of the confocal

imaging principle (solid lines = in-focus

light; dashed lines = out-of-focus light)

In an LSCM system, a laser with a single-diffraction

limited spot size is used to sequentially scan a selected

focal plane. Thus, the image is not formed using a

CCD camera as in conventional microscopy, but rather

the image is a result of the lights interaction with suc-

cessive areas of the specimen, i.e., the image is recorded

pixel by pixel, analogous to a scanning electron micro-

scope (SEM). The resulting image is generally superior

in resolution to images recorded by conventional opti-

cal microscopy. The spatial resolution of a confocal mi-

croscope is determined by the three-dimensional point

spread function (PSF), which is an intensity distribu-

tion near the focal point corresponding to a volume

image of a point light source under a diffraction-limited imaging system. Thus, the obtained con-

focal image is the convolution of actual intensity distributions using the point spread function as
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a kernel or an optical impulse response function. A given point spread function will depend on

each imaging situation but is typically a function of the imaging wavelength, λ, refractive index

surrounding the lens, n, the numerical aperture of the lens, NA, and the image magnification. The

numerical aperture of a lens can be expressed as NA = nsinθ, where θ is the half angle of the

light cone collected by the microscope lens. Following the derivations given by Stevens et al. [47], a

representive expression for the intensity distribution of the point spread function along the lateral

and optical imaging axis (u, v) gives

h2[u, v] = |
∫ 1

0

J0[vρ]exp(iuρ2/2)ρdρ|2, (2.1)

where ρ is the radial distance from the optical axis and J0 is the Bessel function of order zero. The

optical coordinates u and v are related to the spatial coordinates r and z by

v =
2π
λ

(NA)r, u =
2π
λ

(NA)2z/n, (2.2)

Figure 2.2: Profiles of the PSF for

u = 0 (lateral), and v = 0 (vertical) from

Stevens et al. [47]. The units of u and

v are arbitrary optical units (ou). The

peak widths determine the resolution.

where r is the radial distance from the optical axis,

and z is the distance from the focal plane. Figure 2.2

shows a typical line intensity plot of the above point

spread function expression both along the lateral and

optical imaging axis. The lateral intensity profile of the

point spread function in the focal plane, i.e., h2[0, v],

gives the known line profile of the Airy disk1. Using

Eqs. 2.2, estimates on the typical lateral and axial

resolutions can be formulated by using the generally

adopted Rayleigh criterion. This criterion states that

the ultimate lateral resolution of the optical system is

determined by the first zero of the Airy pattern or J0.
1The interference pattern created from light diffracting through a circular aperture is known as the Airy disk
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Following the same criterion in determining the axial direction, both lateral and axial resolution

limits can be estimated as

Resolutionlateral = 0.61
λ

NA
, (2.3)

and

Resolutionaxial = 1.4
nλ

NA2
. (2.4)

This result is shown graphically in Fig. 2.2 by the width of both lateral and axial intensity peaks.

Further details describing the confocal principle, including a more rigorously mathematical treatment

of confocal imaging and the current applications of confocal microscopy, are well documented and

can be found elsewhere [11, 43, 47, 19] . The next section will describe a method to improve the

axial resolution of LSCM by accounting for the effects of the point spread function.

2.1.2 Improving Axial Resolution through Deconvolution

Figure 2.2 illustrates the differences in the lateral and axial resolutions during confocal imaging. As

can be seen, the axial resolution of confocal imaging is typically three to ten times worse than the

lateral resolution depending on the refractive index of the medium and the numerical aperture of

the objective lens. In Fig. 2.3, an isosurface2 plot of a typical confocal subvolume image (64 x 64

x 64 voxels) of a transparent agarose gel with randomly dispersed fluorescent spherical particles of

two voxels in diameter is shown. A voxel is defined as a pixel in three-dimensional space, which in

the present case is equal to 0.45 µm. The spherical fluorescent particles appear as axially elongated

ellipsoids. The blurring in the axial direction causes increased uncertainties in the digital volume

correlation measurements of the axial direction components. The consequence of such blurring is

particularly critical to the performance of the large deformation digital volume correlation algorithm

that uses the Fourier power spectrums. In this study, the noise-resistant Lucy-Richardson decon-

volution algorithm [30] was used to deconvolve the raw confocal images using the following point

2An isosurface is a surface consisting of points of constant value
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spread sinc function (PSF),

PSF =
sin(x3)
x3

, (2.5)

in the axial direction prior to the stretch correlation. The appropriateness of using a sinc function

in approximating the three-dimensional point spread function can be seen in Fig. 2.2, and from Eq.

2.1, where h2[u, 0] describes a typical sinc profile. Figure 2.4 shows the subvolume from Fig. 2.3

after deconvolution of the raw image.

There are two additional confocal-imaging artifacts caused by the refractive index mismatch in

the optical path. First, spherical aberration due to the refractive index mismatch causes asymmetric

distortions of the three-dimensional point spread function as a function of the penetration depth.

Such a distorted and depth-dependent point spread function makes the deconvolution of the confocal

images difficult and causes significant error in the digital volume correlation. Effects of such spherical

aberration in confocal imaging have been extensively studied in the past [51, 44]. In practice,

the spherical aberrations can be minimized by adjusting the correction collar commonly found in

commercial microscope objectives. In order to minimize the distortion of the point spread function

within the field of view, the correction collar needs to be adjusted appropriately prior to each test.

The second form of confocal imaging artifact due to the refractive index mismatch is caused by the

fact that the focal point does not follow the axial motion of the scanning stage [52, 15]. This causes

an over- or under-estimation of the depths depending on the ratio of the refractive indeces. This

apparent discrepancy between the axial and the lateral scanning resolutions can be calibrated by

imaging large fluorescent microspheres embedded in a sample.
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Figure 2.3: Isosurface plot of fluorescent par-
ticles as recorded by LSCM (1 voxel = 0.45
µm)

Figure 2.4: Isosurface plot of fluorescent
particles after deconvolution of the PSF (1
voxel = 0.45 µm)

2.2 Digital Volume Correlation (DVC)

2.2.1 Principle of DVC

LSCM provides discretized volume images visualizing three-dimensional structural patterns of fluo-

rescent markers in a transparent sample. In this study, the combination of digital volume correlation

(DVC) and confocal images is used to achieve three-dimensional full-field deformation measurements

as an extension of the vision-based surface deformation measurement techniques, well-known as dig-

ital image correlation (DIC) [10]. The basic principle of the DVC is schematically illustrated in Fig.

2.5. Two confocal volume images of an agarose gel with randomly dispersed fluorescent particles are

obtained before and after mechanical loading.

Then, the two images are subdivided into a set of subvolumes that are centered on the points

of interest. Using each pair of corresponding subvolume images, the respective local displacement

vector can be obtained from three-dimensional volume correlation methods. Consider two scalar

signals f(x) and g(x) which represent a pair of intensity patterns in a subvolume Ω before and after

a continuous mapping, ŷ(x) : x → y , respectively. Assuming that the signal is locally invariant

during the mapping, f(x) = g(y(x)) , correlation matching by subvolume can be obtained by

finding an optimal mapping that maximizes the cross-correlation functional defined as
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Digital Volume Correlation (DVC)

Principle of DVC

LSCM provides discretized volume images visualizing 3-D
structural patterns of fluorescent markers in a transparent
sample. In this study, the combination of digital volume
correlation (DVC) and confocal images is used to achieve 3-D
full-field deformation measurements as an extension of the
vision-based surface deformation measurement techniques,
well-known as digital image correlation (DIC). The basic
principle of the DVC is schematically illustrated in Fig. 2.
Two confocal volume images of an agarose gel with
randomly dispersed fluorescent particles are obtained before
and after mechanical loading. Then, the two images are
subdivided into a set of subvolumes that are centered on the
points of interest. Using each pair of corresponding
subvolume images, the respective local displacement vector
can be obtained from 3-D volume correlation methods.

Consider two scalar signals f (x) and g(x) which
represent a pair of intensity patterns in a sub-volume W
before and after a continuous mapping, by xð Þ : x ! y,
respectively. Assuming that the signal is locally invariant
during the mapping, f xð Þ ¼ g y xð Þð Þ, subvolume-wise cor-
relation matching can be obtained by finding an optimal
mapping that maximizes the cross-correlation functional
defined as

m byð Þ ¼
Z

f xð Þg y xð Þð ÞdWx ð1Þ

The methodology is illustrated using a translational vol-
ume correlation, which is presented below. The continuous
mapping is assumed to be a rigid translation, y ¼ xþ c,
and the cross-correlation function is represented as a
function of a displacement vector c as

m cð Þ ¼
Z

f xð Þg xþ cð ÞdWx ð2Þ

Fig. 2 Schematic illustration of
the digital volume correlation
(DVC)

Exp Mech

Figure 2.5: Schematic illustration of the principle of digital volume correlation (DVC)

m(ŷ) =
∫
f(x)g(y(x)dΩx. (2.6)

The methodology is illustrated using a translational volume correlation, which is presented below.

The continuous mapping is assumed to be a rigid body translation, y = x + c , and the cross-

correlation function is represented as a function of a displacement vector c as

m(c) =
∫
f(x)g(x + c)dΩx. (2.7)
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The cross-correlation function can be written using Fourier transforms as

m(c) = F−1[F [f(x)]∗F [g(x)]], (2.8)

where the Fourier transform of f(x) is defined as

F [f(x)] =
∫
f(x)e−ik·xdΩx, (2.9)

and * denotes the complex conjugate. The discrete cross-correlation function can be computed

efficiently by using the fast Fourier transform (FFT) algorithm. Then, the rigid body translation

vector c can be estimated from the location of the cross-correlation peak with respect to the origin.

Finding the displacement vector c from the discrete cross-correlation function is straightforward

and provides half-voxel accuracy. Determining the displacement vector c within subvoxel accuracy

generally requires fitting and interpolation of the correlation function near the peak. Various fitting

models have been used in the past [9, 48], employing somewhat arbitrary assumptions that the

cross-correlation function near the peak can be approximated by a Gaussian or a parabolic function.

The subvoxel accuracy of such peak-finding algorithms is determined by the choice of fitting function

as well as the size of the fitting window. In this study, a three-dimensional quadratic polynomial

fitting is used to fit the correlation function near the peak and hence provides improved subvoxel

accuracy over previously used lower order fitting polynomials.

Significant measurement error can be introduced from the decorrelation of the intensity patterns

when the rotation or the stretch of the subvolume is large. Thus, applications of such simple

correlation algorithms have been limited to small strain and small rotation problems due to the

inherent limitation of the rigid-translation assumption. In general, the applicability of such an

algorithm is limited up to about 5% of strain or 0.05 radian of rotation [9]. To overcome this

limitation and to obtain more accurate displacement measurements, a higher order approximation

of the deformation field within each subvolume is required for large deformation measurements in

soft materials. In the following section, an extension of the FFT-based DVC to measure large
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deformation fields is presented.

2.2.2 Stretch Correlation Algorithm

Assuming a general homogeneous deformation of each subvolume, the deformation field can be

written as

ŷ(x) = Fx + c, (2.10)

with a deformation gradient tensor F = I+∇u and a displacement vector u. Therefore, any uniform

deformation in three-dimensions can be represented with a total of 12 parameters which consist of

three displacement components and nine displacement gradient components. Optimal programming

in three-dimensions for a total of 12 degrees of freedom (DOF) is computationally expensive in

conventional correlation algorithms. Alternatively, the general homogeneous deformation can be

represented using a polar decomposition of the deformation gradient tensor as

ŷ(x) = RUx + c, (2.11)

where R is the orthogonal rotation tensor and U is the symmetric right-stretch tensor. Then,

the general homogeneous deformation in three dimensions is represented with six stretch, three

rotation, and three translation components. Depending on the dominant mode of the deformation

of interest, the correlation algorithm can be modified to include additional optimization parameters

selectively. A digital volume correlation algorithm that includes three rotational degrees of freedom

has been presented previously [46]. In this study, assuming small rotations and small shear stretch

components, three normal stretch components are included as additional correlation parameters in

the FFT-based DVC algorithm, as an extension of the stretch-correlation algorithm developed for

large deformation measurements in two dimensions [22]. Neglecting the small rotations, the mapping

of a pure homogeneous deformation and a rigid translation is written as

ŷ(x) = Ux + c. (2.12)
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When the loading axes are aligned with the global coordinate axes so that the shear stretch compo-

nents are small, the invariant condition can be written as

f(x) ≈ g(Ux + c), (2.13)

where U denotes the diagonal part of U. Then, the six optimization parameters for the stretch

correlation in DVC algorithm are {c1, c2, c3, U11, U22, U33} . In the case of a pure stretch problem

without any translation, a simple coordinate transform into a logarithmic scale converts the stretch

correlation problem into a simple translational correlation problem. However, when there is a non-

zero translation, the coordinate transform cannot be directly performed in the spatial-domain to

achieve the stretch correlation. Therefore, an equivalent invariant condition of Eq. (2.13) in the

Fourier domain is considered to implement the stretch correlation in the Fourier domain as

||U||F (Uk) = eik·cG (k), (2.14)

where, again, F (k) and G (k) represent Fourier transforms of f(x) and g(x), respectively. Then

by using the Fourier power spectrums only and therefore dropping the phase term, a translation-

invariant stretch-correlation problem can be achieved in the Fourier domain. A stretch cross-

correlation function to be maximized for determining the three axial stretch components neglecting

the determinant of the Jacobian is shown as

m(U) =
∫
|F (Uk)||G (k)|dΩx. (2.15)

The stretch correlation problem in the Fourier domain can be transformed into a translational

correlation problem in a log-frequency domain as

m̃(η) =
∫
|F̃ (ξ + η)||G̃ (ξ)dΩξ, (2.16)
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where ξ = logbk, η = logbU, and b is an arbitrarily chosen logarithmic base. The translational

correlation problem in the log-frequency domain can be easily solved using Eq. 2.8. Finally, the

three axial stretch components can be obtained from the optimal vector η in the log-frequency

domain as

U11 = bη1 , U22 = bη2 and U33 = bη3 . (2.17)

Figure 2.6: Ilustration of the stretch-

correlation procedures using a one-

dimensional (1D) example

The accuracy of the obtained stretch compo-

nents depends strongly on the spectral content of

the original signals. If the signals are already band-

limited, special considerations, such as normalizing

the power spectrums and employing the Hanning

window, must be included to achieve robust stretch

correlations. Also, in the numerical implementa-

tion of the stretch correlation algorithm, incorpo-

rating zero-padding of the signals before Fourier

transforms can improve the overall accuracy of the

stretch correlation algorithm by providing ideal in-

terpolations of the Fourier transforms at a cost of

increased computational load.

In Fig. 2.6, the stretch-correlation procedures

are illustrated for a one-dimensional example. Two

reference and deformed signals representing 10%

of uniform strain are shown in Fig. 2.6 (a). The

Fourier power spectra of the two signals are shown

in Fig. 2.6 (b). Note that only half of the full frequency range is shown due to the inherent Fourier

symmetry. In Fig. 2.6 (c), the equivalent Fourier power spectra are shown after applying zero-

padding (interpolation) to the power spectra in Fig. 2.6 (b). Figure 2.6 (d) shows the Fourier power

spectra along the logarithmic axis. After interpolating the power spectra using a uniform interval
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in the log-frequency domain as shown in Fig. 2.6 (e), the translational correlation as presented in

Eq. 2.16 can be applied to find the one-dimensional stretch value. Extension of the one-dimensional

stretch-correlation into two dimensions or three dimensions is straightforward as long as the rotations

and shear stretches are small.

Figure 2.7: Two-dimensional projec-

tion of confocal subvolume images (a) be-

fore and (b) after uniaxial compression of

10% in x3-direction

In the implementation of three-dimensional

stretch correlation, two-dimensional projections of

the three-dimensional subvolume images were used

to circumvent the geometrically increased computa-

tional load after the zero-padding, as shown in Fig.

2.7. Essentially, the stretch correlations using the

large zero-padding were conducted in a reduced di-

mension for computational efficiency. Three sepa-

rate two-dimensional projections were made so that

three sets of two stretch components could be ob-

tained. From the six stretch values, three stretch

components (U11, U22, U33) were obtained by com-

puting the average of the two corresponding stretch

components. Once the three axial stretch compo-

nents are found, the translation vector c can be de-

termined more accurately by conducting the stretch-

compensated translational correlation using

m(c) =
∫
f̃(x′)g(x′ + c)dΩx, (2.18)

where f(x) = f̃(Ux) and x′ = Ux. The stretch-compensated translational correlation requires the

initial subvolume image f(x) to be stretched to f̃(x′) using the three stretch values obtained earlier.

Therefore, the process involves sub-voxel interpolations of the initial subvolume image. Because
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the stretch part of the deformation is compensated, a more accurate translation vector c can be

obtained. The stretch correlation and the translational correlation were conducted iteratively to

achieve converged results. For all experiments executing the stretch and translational correlation

twice yielded sufficient convergence based on a mean difference criterion, where the mean and stan-

dard deviation of the difference of the before and after displacement matrices were compared (this

is similar to the least-square error estimate). Such an iteration process is equivalent to the iterative

optimization of a correlation coefficient in conventional image correlation scheme conducted in the

two-dimensional spatial domain.

Finally, the displacement gradients were computed by using a three-dimensional least-square

fitting of each displacement component in a 3 x 3 x 3 grid of neighboring data points. Although a

more sophisticated smoothing or filtering algorithm can be employed before or during the gradient

calculation to obtain smoother strain fields, no such algorithm was used in this study to assess the

performance and robustness of the proposed DVC algorithm. Once the displacement gradient fields

are determined, either infinitesimal or finite strain values can be computed from the displacement

gradient fields.

2.3 Experimental Procedures

Agarose test specimens were prepared from a 1% weight-in-volume (w/v) solution of agarose (J.T.

Baker, NJ) in standard 0.5X TBE buffer (Tris/Borate/EDTA, pH 8.0). The agarose solution was

heated until molten, and carboxylate-modified red fluorescent (580/605) polystyrene microspheres

(Invitrogen, CA) of 1 µm diameter were injected into the liquid agarose. The nominal volume

fraction of fluorescent markers in the gel was 0.3%. The mixture was cast into a pre-chilled Teflon

mold mounted onto a glass plate. Samples were left at room temperature for 5 minutes to solidify.

This protocol yielded circular agarose specimens with typical dimensions of 6.4 mm diameter and

1.4 mm height. The addition of the fluorescent microspheres had negligible effect on both the local

and global mechanical response of the agarose gel. For spherical inclusion measurements describing

a hard inclusion surrounded by a soft matrix, spherical polymethylmethacrylate (PMMA) beads



23

(Sigma-Aldrich, MO) of 100 µm diameter were added to the mixture before casting. For spherical

inclusion measurements describing a soft inclusion of a hard matrix, a burst of air was injected

into the molten agarose gel to allow the formation of voids inside the material. The air inclusions

(bubbles) were consequently imaged and a particular isolated bubble (only bubble within entire field

of view) with a diameter of 200 µm was chosen.

Figure 2.8: Loading fixture for uniax-

ial compression of soft materials mounted

onto a laser scanning confocal microscope

To apply uniaxial compressive loading to the

sample while imaging, a miniature loading-fixture

was built and mounted directly on the microscope

stage of an inverted optical microscope as shown

in Fig. 2.8. The sample was kept immersed in

the buffer solution to prevent swelling or shrink-

ing during the test. The compressive loading was

achieved by translating a micrometer head with

a resolution of 1 µm. For all experiments the

imposed strain increments were controlled by the

micrometer (Mc Master-Carr, Los Angeles, CA)

and were calculated using the dimension of the

specimen and the imposed loading (displacement)

step. The resulting applied force was measured using a 10-gram load cell (A.L. Design, NY). Nominal

stress-strain curves were compiled using this setup for each test. The LSCM used in this study was

a confocal system (Nikon C-1) combined with an inverted optical microscope (Nikon TE-2000-U).

A 40x CFI planar fluor air objective with a numerical aperture of 0.6 was used in all experiments.

All DVC computations were performed using Matlab (Mathworks, Natick, MA), and executed on

an Intel based Pentium Xeon with 4 core processors. The typical computation time for 512 x 512 x

512 voxel image with a spatial resolution of 8 voxels is ∼ 4.3 hours/image.
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Stationary Translation
u1 [voxel] 0.0605 0.1392
u2 [voxel] 0.0541 0.1238
u3 [voxel] 0.2106 0.6491
ε11 (%) 6.39 x 10−3 4.18 x 10−2

ε22 (%) 9.80 x 10−3 4.96 x 10−2

ε33 (%) 0.260 0.718

Table 2.1: Standard deviation values for measured displacement and strain fields in the undeformed
condition

2.4 Uniaxial Compression Results

To verify the measurement precision of the DVC algorithm using confocal volume images, two tests

were conducted under zero-strain condition. In the first test, two confocal volume images were

repeatedly acquired from a stationary sample under zero load. The scanning resolution was 512

x 512 x 512 voxels, and the scan spacing was 0.45 µm in all three directions. This resulted in a

field of view of 230 x 230 x 230 µm3. In the second test, confocal images were acquired before

and after translating the unloaded sample using the x3-directional scanning stage of the confocal

microscope. The two pairs of the confocal images were analyzed by using the DVC algorithm with

a subvolume size of 64 x 64 x 64 voxels. Displacements were measured at 15 x 15 x 15 points (total

3375 points) in a uniform grid of 32 voxels spacing. Displacement gradients were then calculated by

using the displacement data at 3 x 3 x 3 neighboring grid points following linear least-square fitting

of the displacement components. Although the quadratic (Lagrangian) or the logarithmic (true)

strain measure can be used for large deformation analysis, the linear (engineering) strain measure

was used to represent the deformations in this study. As a quantitative measure of the uncertainties

in the DVC results, standard deviation values of three displacement components and three normal

strain components were computed and are summarized in Table 2.1.

The absolute values of the uncertainties in the displacements and the strains are comparable to

previously reported results [4, 39]. These measurement uncertainties are likely due to the noise in

the confocal images caused by the photomultiplier tube detector noise as well as the positional uncer-

tainty of the laser scanning system. It is also noted that the axial uncertainties of the displacement
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and strain components in the x3-direction (axial) are approximately three to five times larger than

the corresponding lateral uncertainties in the x1- and x2-directions (in-plane). This result shows

that the axially elongated three-dimensional point spread function causes a significantly degraded

measurement precision in the x3-direction. These tests under zero-strain condition provide a simple

way to assess baseline uncertainties of the measurements using the DVC algorithm.

In order to verify the three-dimensional deformation measurement capability of the DVC using

the LSCM, the agarose gel sample was compressed uniaxially with nominal strain increments of 2-

3%. The total imposed nominal strain was approximately 10%. The obtained confocal images were

analyzed using the DVC algorithm with a subvolume size of 64 x 64 x 64 voxels. Figure 2.10 shows a

vector plot of the measured displacement field and Fig. 2.9 shows a three-dimensional contour plot

of the vertical displacement components.

Figure 2.9: Experimentally determined
three-dimensional displacement vector field
under uniaxial compression

Figure 2.10: Experimentally determined ver-
tical displacement field u3 under uniaxial com-
pression

In order to assess the performance of the DVC algorithm with the stretch-correlation for large

deformation measurements, accuracy and precision must be established systematically. The accu-

racy and the precision of a measurement technique are usually achieved by repeatedly measuring

some traceable reference standard. Then, the accuracy and precision are typically quantified as
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No stretch-correlation Stretch-correlation
Mean Std. Deviation Mean Std. Deviation

ε11 (%) 0.8 x 10−2 7.1 x 10−2 -3.6 x 10−2 7.4 x 10−2

ε22 (%) 1.1 x 10−2 6.8 x 10−2 7.8 x 10−2 7.1 x 10−2

ε33 (%) -9.25 0.866 -9.34 0.392

Table 2.2: Mean and standard deviation values for measured strain fields under uniaxial compression

the difference between the mean of the measured values and the true value, and by the standard

deviation of the measured values, respectively.

Mean and standard deviation values of the measured strain fields are presented in Table 2.2 to

assess the effectiveness of the stretch-correlation algorithm. The mean values of the lateral strain

components ε11 and ε22 are close to zero and smaller than their corresponding standard deviation

values, i.e., the measurement precision, and are therefore negligible. The standard deviations of

the no-stretch-correlated and stretch-correlated lateral strain components are similar, illustrating

that the stretch-correlation does not improve the precision of the strain measurements for small

strains. Comparing the no-stretch and stretch-corrected axial strain component ε33, the difference

of 0.09% between the two mean values is smaller than their corresponding standard deviations, which

shows that the stretch correlation does not improve the accuracy of the average strain measurement.

However, the standard deviation in the stretch-correlation case is less than half of that in the no-

stretch-correlation case. This proves that the stretch-correlation greatly improves the precision of the

large deformation measurement. Although precise measurements do not necessarily mean accurate

measurements, it is often not possible to reliably achieve high accuracy in individual measurements

without precision. This point is particularly important in the full-field measurement of non-uniform

deformation fields.

Since it is not possible to know the true value of the compressive strain up to the level of accuracy

and precision of the measurement technique under investigation, the absolute accuracy of the pro-

posed DVC method cannot be assessed with the nominal strain value from the global measurement.

However, it is clear that the overall measurement accuracy can be improved by providing better

precision, since precision is a limit of accuracy. The results from the uniaxial compression test show
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that the proposed stretch-correlation algorithm in conjunction with the deconvolution algorithm

improved the overall accuracy of large deformation measurement with better precision.

The average axial compressive strain was 9.3%, whereas the average lateral strain values were

negligible. This result showed that the lateral expansion due to the Poisson effect was effectively

constrained due to the disc-shaped geometry of the sample. To determine the material properties

of the agarose sample correctly the uniaxial test results need to be interpreted as a constrained

compression (ε11 = ε22 = 0) of a soft layer. The axial stress-strain ratio for constrained compression

is defined as a constrained modulus (E) and related to elastic properties as

E =
σ33

ε33
=

(1− ν)E
(1 + ν)(1− 2ν)

, (2.19)

where E and ν denote the Young’s modulus and the Poisson’s ratio, respectively.

2.5 Spherical Inclusion Results

Figure 2.11: Schematic of a spherical inclusion

with a sliding interface under confined uniaxial

compression

In order to demonstrate the capabil-

ity of the measurement technique using

the DVC and the LSCM, non-uniform

three-dimensional deformation fields near

a hard and a soft (void) spherical inclu-

sion were measured under far-field uniax-

ial compressive loading. Confocal images

near a 100 µm-diameter PMMA bead and

a 200 µm air bubble embedded within the

agarose gel sample were recorded during

incremental compressive loading. The ex-

perimental setup is shown in Fig. 2.11 schematically. The nominal strain increment was approxi-

mately 3%. The scanning resolution was 512 x 512 x 512 voxels, and the scan spacing was 0.45 µm
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in all three directions. The experimentally determined displacement fields were qualitatively and

quantitatively compared to the analytical solution given by Ghahremani [18] and is presented in

the next section. The solution by Ghahremani describes a spherical “sliding” inclusion, where the

“sliding” is defined by vanishing tractions along the inclusion-matrix interface and continuity in the

displacements normal to the inclusion-matrix interface.

2.5.1 Analytical Solution of a Sliding Spherical Inclusion

This section presents the analytical solution of a sliding spherical inclusion in a linearly elastic

matrix under applied far field uniaxial compressive loading as formulated by Ghahremani [18] . Most

analytical elasticity solutions of the inclusion problem assume the continuity of displacement at the

interface. Considering the high water content in the agarose gel and the large deformations in the

sample, the perfect bonding condition is inadequate to accurately represent the present experiment.

Using the solution of the sliding inclusion problem under uniaxial loading, and considering that

only the deformations inside the agarose gel and not the inclusion itself are measured, the elasticity

solution of the matrix displacements beginning with the far field solution due to an applied uniform

compressive loading stress P is

u∞ =
P

2Gm(1 + νm)
(νx1i + νx2j− x3k), (2.20)

where Gm and νm denote the shear modulus and Poisson’s ratio of the matrix, respectively, and i,

j, k are the Cartesian unit vectors. The radial displacements due to the inclusions are

ur(r, θ) = −A
r2

+ [
B(5− 4νm)

r2
− 3C

2r4
](3cos2θ − 1), (2.21)

with r =
√
x2

1 + x2
2 + x2

3, and θ = tan−1(x3/
√
x2

1 + x2
2), and constants A, B, and C as described

later. The tangential displacements due to the inclusion are

uθ(r, θ) = −[
B(1− 2νm)

r2
+

C

2r4
](sin2θ). (2.22)
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The constants A, B, and C are defined as

A =
Pr30

12Gm
− Dr30(1 + νi)Gi

Gm
, (2.23)

B = − 5P
12Gm

· r30
7− 5νm

+
Gi
Gm
· 7 + 5νi

7− 5νm
Fr50, (2.24)

C = − P

2Gm
· r50

7− 5νm
+

Gi
2Gm

− 1 + νm
7− 5νm

(7 + 5νi)Fr70, (2.25)

where Gi and νi denote the shear modulus and Poisson’s ratio of the inclusion, respectively, r0 is

the inclusion diameter, and the constants D and F are given by

D =
P (1− νm)

4(1 + νm)[(2Gm +Gi) + νi(Gi − 4Gm)]
, (2.26)

F =
−10P (1− νm)

r20[4Gm(7− 5νm)(4νi − 7)−Gi(17− 19νm)(7 + 5νi)]
. (2.27)

The final form of the analytical solution of the sliding inclusion under the laterally-constrained

uniaxial compressive loading is constructed by the superposition of three mutually-orthogonal uni-

axial compression solutions using Eqs. (2.20-2.27) as illustrated in Fig. 2.11.

2.5.2 PMMA Bead and Air Bubble Inclusion Results

This section presents the experimentally determined full-field three-dimensional displacements near

a hard (PMMA) and soft (air bubble) inclusion. Confocal images of each embedded inclusion

were recorded during successive compressive loading increments. The nominal strain increment was

approximately 3%. The scanning resolution was 512 x 512 x 512 voxels as before, and the scan

spacing was 0.45 µm in all three directions. A representative confocal scanning volume near the

inclusion is illustrated schematically in Fig. 2.11. Figures 2.12 and 2.13 show a vertical slice of the

confocal image along the meridian plane of the PMMA bead and the air bubble at the undeformed
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configuration, respectively. The superimposed uniform grid with spacing increments of 16 voxels

represents the locations where displacements measurements were conducted. The confocal images

were analyzed by using the proposed DVC algorithm with a subvolume size of 64 x 64 x 64 voxels.

The spatial resolution of the DVC technique can be adjusted and increased to a maximum resolution

of 1 voxel. However, due to the increased computational load with increased resolution, the typical

spatial resolution for calculating the displacement is 8 voxels, or 3.6 µm.

Figure 2.12: Confocal slice along the merid-
ian plane of an embedded 100 µm PMMA bead
within an agarose sample

Figure 2.13: Confocal slice along the merid-
ian plane of an embedded 200 µm air bubble
within an agarose sample

Initially, the displacement fields are calculated using the translational DVC algorithm, the output

of which is then used as an initial guess in calculating the displacement fields using the stretch-

correlation algorithm. Figures 2.14 and 2.15 show a representative cross-sectional three-dimensional

contour plot of the u3 displacement fields near the PMMA bead and air bubble inclusion. Figures 2.16

and 2.17 show the results of the DVC stretch-correlation algorithm for the same experimental data

on a smaller data domain (around the center plane of each inclusion). Since the stretch-correlation

algorithm is computationally more expensive than the regular translational DVC algorithm, only

a particular region of interest, which here is a volumetric region around the center plane of each

inclusion, is selected. In order to compare the experimental data with the analytical elasticity

solution presented in the previous section, the data set is refined further by selecting and executing

the DVC stretch-correlation on the meridian plane of each inclusion. The voxel spacing or spatial



31

resolution of the DVC measured displacement field is further increased to a grid spacing of 4 voxels.

Generally such an increase in resolution is only performed on thin volumes consisting of less than

10 slices to be computationally efficient.

The contour maps in Figs. 2.18 and 2.19 represent constant contours of the vertical (u3) displace-

ment components on the meridian plane of the PMMA and air bubble inclusion, respectively. The

local distortion of the displacement contours near the PMMA bead and the air bubble indicate that

the proposed DVC algorithm effectively captures non-uniform deformation fields near both spherical

inclusions. It should be noted that the magnitude of the u3 displacements as indicated in pixels by

the color bar in both Figs. are different. This difference is due to rigid body translation during the

experiments that is also captured by the DVC algorithm. This rigid body motion arises since the

imaging reference frame is stationary and the inclusion location within the agarose gel is different

for the two inclusions. Hence, the amount of recorded rigid body translation will be different. The

rigid body translation is accounted for in the analytical model through the simple addition of a

displacement constant. The experimentally measured displacement fields in Figs. 2.18 and 2.19

were compared to the analytical solution of the equivalent linear-elasticity problem as described in

detail in the previous section.



32

Figure 2.14: Cross-section of the experi-
mentally determined vertical displacement field
u3 near PMMA bead inclusion under uniaxial
compression. Contour values are in pixels (1
pixel = 0.45 µm).

Figure 2.15: Cross-section of the experimen-
tally determined vertical displacement field u3

near air bubble inclusion under uniaxial com-
pression. Contour values are in pixels (1 pixel
= 0.45 µm).

Figure 2.16: Cross-section of the stretch-
corrected measured vertical displacement field
u3 near the PMMA bead inclusion under uni-
axial compression. Contour values are in pixels
(1 pixel = 0.45 µm).

Figure 2.17: Cross-section of the stretch-
corrected measured vertical displacement field
u3 near the air bubble inclusion under uniaxial
compression. Contour values are in pixels (1
pixel = 0.45 µm).
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Figure 2.18: Experimentally determined ver-
tical displacement field u3 near PMMA bead
inclusion under uniaxial compression. Contour
values are in pixels (1 pixel = 0.45 µm).

Figure 2.19: Experimentally determined ver-
tical displacement field u3 near air bubble in-
clusion under uniaxial compression. Contour
values are in pixels (1 pixel = 0.45 µm).

Figure 2.20: Analytical vertical displacement
field u3 near a rigid bead inclusion with a slid-
ing interface under uniaxial constrained com-
pression. Contour values are in pixels (1 pixel
= 0.45 µm).

Figure 2.21: Analytical vertical displacement
field u3 near a soft inclusion with a sliding inter-
face under uniaxial constrained compression.
Contour values are in pixels (1 pixel = 0.45
µm).

The contour maps in Fig. 2.20 and Fig. 2.21 show the horizontal and the vertical displacement

fields of the constructed analytical solution. Qualitative comparisons of the contour maps in Fig.

2.18 and Fig. 2.20, and Fig. 2.19 and Fig. 2.21 indicate that the proposed DVC algorithm is well-

suited for the full-field measurements of non-uniform deformation fields in three dimensions. Once

the full field displacements are obtained, the strain tensor is calculated by using a displacement-

gradient technique [26]. In brief, the local displacement field around each grid point is approximated

by

û(x1, x2, x3) = ax1 + bx2 + cx3 + d, (2.28)
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where a,b,c, and d are constants to be determined by minimizing the following vector S in the

least-square sense using the measured displacement vector u

S =
N∑
i=1

M∑
j=1

P∑
k=1

(ûijk − uijk)2. (2.29)

Point-wise least-square minimization of Eqs. 2.28 and 2.29 using a 3 x 3 x 3 voxel stencil or

kernel, yields the constants a,b,c and d from which the full-field strain tensor is constructed. A more

detailed description of the displacement-gradient technique can be found in [26]. Figures 2.22 and

2.23 show a contour plot of ε33 from the experimentally obtained displacement fields around the

PMMA and air bubble inclusions, respectively.

Figure 2.22: Experimentally determined ver-
tical strain field ε33 near a PMMA bead inclu-
sion under uniaxial compression

Figure 2.23: Experimentally determined ver-
tical strain field ε33 near an air bubble inclusion
under uniaxial compression

At the bottom of the inclusion in Fig. 2.22, a region of high strain concentration of up to 25%

strain, or 2.5 times of the far field applied strain is shown. Figure 2.23 displays a similar picture

in case of the strain profile near the air bubble, where ε33 is approximately zero directly beneath

the bubble. Following the time-lapse series of the air bubble compression measurements (not shown

here), the air bubble collapses under the applied far field strain with no noticeable deformation

occurring in the agarose gel underneath the bubble. Figure 2.24 displays the line-profile of the ε33

strain component along the central axis in the x3-direction from the PMMA bead inclusion contour

plot (Fig. 2.22). Also shown in Fig. 2.24 is the analytical description of ε33 along the meridian
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plane of a hard inclusion as described by Ghahremani [18]. The local compressive strain reaches

the far-field applied strain level at approximately one diameter length away from the center of the

bead. The high strain gradient will decrease the accuracy of the stretch-correlation by violating the

assumption of uniform stretch deformation. In such cases, iterative applications of the DVC using

a smaller subvolume will increase the accuracy of the measurements since each subvolume will be

subjected to a more uniform stretch.

Figure 2.24: Plot of the experimentally determined strain field ε33 as a function of outward distance
(x3 = 0 denotes the center of the inclusion) in the meridian plane of the spherical PMMA inclusion
under uniaxial compression

2.6 Summary of LSCM and DVC Development

A novel experimental technique for measuring three-dimensional large deformation fields in soft ma-

terials has been developed [17]. The technique utilizes the three-dimensional measurement capability

of the DVC algorithm in conjunction with the three-dimensional imaging capability of laser scanning

confocal microscopy. Introduction of the stretch-correlation algorithm and the deconvolution algo-

rithm greatly improved the strain measurement accuracy by providing better precision especially

under large deformation. Also, the large deformation measurement capability of the proposed DVC

algorithm was successfully demonstrated by measuring a uniform deformation field for the case of

simple uniaxial compression and a non-uniform deformation field surrounding both a hard and soft
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(void) spherical inclusion. This new technique should prove particularly useful in situations where

local three-dimensional strain non-uniformities need to be measured with high resolution. An ap-

plication of this technique in characterizing the three-dimensional time-dependent cell interactions

with its surrounding extracellular matrix are documented in the following chapters. While it is

anticipated that this technique will lead to valuable insights into the role of mechanical forces on

biological processes and mechanical characterization of biological materials in three dimensions, the

application of the DVC itself is not limited to usage with LSCM. Since DVC is a post-processing

technique, it renders itself as a quantitative full-field displacement measurement technique that can

be combined with many methods in experimental mechanics including computer tomography (CT)

scanning, magnetic resonance imaging (MRI), and many others.


