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Abstract

In recent years, the importance of mechanical forces in directing cellular function has been recognized

as a significant factor in biological and physiological processes. In fact, these physical forces are now

viewed equally as important as biochemical stimuli in controlling cellular response. Not only do these

cellular forces, or cell tractions, play an important role in cell migration, they are also significant to

many other physiological and pathological processes, both at the tissue and organ level, including

wound healing, inflammation, angiogenesis, and embryogenesis. A complete quantification of cell

tractions during cell-material interactions can lead to a deeper understanding of the fundamental

role these forces play in cell biology. Thus, understanding the function and role of a cell from a

mechanical framework can have important implications towards the development of new implant

materials and drug treatments.

Previous research has contributed significant descriptions of cell-tissue interactions by quantifying

cell tractions in two-dimensional environments; however, most physiological processes are three-

dimensional in nature. Recent studies have shown morphological differences in cells cultured on

two-dimensional substrates versus three-dimensional matrices, and that the intrinsic extracellular

matrix interactions and migration behavior are different in three dimensions versus two dimensions.

Hence, measurement techniques are needed to investigate cellular behavior in all three dimensions.

This thesis presents a full-field imaging technique capable of quantitatively measuring cell trac-

tion forces in all three spatial dimensions, and hence addresses the need of a three-dimensional

quantitative imaging technique to gain insight into the fundamental role of physical forces in bio-

logical processes. The technique combines laser scanning confocal microscopy (LSCM) with digital

volume correlation (DVC) to track the motion of fluorescent particles during cell-induced or ex-
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ternally applied deformations. This method is validated by comparing experimentally measured

non-uniform deformation fields near hard and soft spherical inclusions under uniaxial compression

with the corresponding analytical solution. Utilization of a newly developed computationally effi-

cient stretch-correlation and deconvolution algorithm is shown to improve the overall measurement

accuracy, in particular under large deformations.

Using this technique, the full three-dimensional substrate displacement fields are experimentally

determined during the migration of individual fibroblast cells on polyacrylamide gels. This is the

first study to show the highly three-dimensional structure of cell-induced displacement and traction

fields. These new findings suggest a three-dimensional push-pull cell motility, which differs from

the traditional theories based on two-dimensional data. These results provide new insight into the

dynamic cell-matrix force exchange or mechanotransduction of migrating cells, and will aid in the

development of new three-dimensional cell motility and adhesion models.

As this study reveals, the mechanical interactions of cells and their extracellular matrix appear

to be highly three-dimensional. It also shows that the LSCM-DVC technique is well suited for

investigating the mechanics of cell-matrix interactions while providing a platform to access detailed

information of the intricate biomechanical coupling for many cellular responses. Thus, this method

has the capability to provide direct quantitative experimental data showing how cells interact with

their surroundings in three dimensions and might stimulate new avenues of scientific thought in

understanding the fundamental role physical forces play in regulating cell behavior.
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Chapter 1

Introduction

1.1 Mechanics in the Context of Cell Biology

Mechanical forces play an important role in the activities of our daily lives from sitting to lifting

objects to running. During all of these activities our bones and ligaments experience cycles of

different mechanical loads, and need to adjust accordingly. For example, a runner’s foot constantly

experiences physical forces as it periodically impacts the ground. These forces are balanced by the

runner’s joints and bones, where the bone carries some of the compressive loading. If we examine

the structure of the runner’s bone in more detail, we would find a fairly porous structure made up of

mostly calcium phosphate and collagen fibers, much resembling a light-weight composite structure.

Intertwined with this structure are cells, some of which are constantly remodeling and restructuring

the bone adjusting to the external loading.

In fact, one can think of the bone as an active mechanical system in which a particular type

of cells called osteocytes act as mechanosensors. These “sensor” cells can communicate with other

cells through an intricate feedback system to ensure the health or homeostasis of the bone itself.

In particular, two of the cells with which osteocytes communicate are osteoblasts and osteoclasts.

Osteoblasts are responsible for bone remodeling or remineralization. Osteoclasts, on the other hand,

are in charge of removing or resorbing bone. So, in order to maintain a healthy bone structure, the

activities of osteoblasts and osteoclasts need to be balanced.

However, since this system is based upon an active feedback loop, if the external mechanical
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loading were to be removed, as in the case of an astronaut in space (zero-gravity environment), then

the osteoblasts will cease to create more healthy bone structure due to the absence of the mechanical

stimulus. Another type of imbalance is created in the case of osteoporosis, where insufficient os-

teoblasts exist to counteract the bone removal created by the more numerous osteoclasts. Of course

this is a simplification of a delicate biochemical and mechanical system, which needs to be fully

understood in order to maintain healthy, long-lasting bones.

Another example of the importance mechanical forces play in cellular behavior, is when tumor

cells metastasize, or spread to the surrounding tissue in the body. In this case, as the tumor cells

spread from their primary site they must venture through a jungle of extracellular proteins, such

as proteoglycans, collagen, and elastin fibers collectively known as the extracellular matrix (ECM).

For these malignant cells to successfully reach the arterial walls they need to push, squeeze, and

cleave their way through the ECM, which involves exerting mechanical forces. Yet unfortunately,

this migration mechanism, in particular the three-dimensional cell-matrix force exchange is relatively

poorly understood.

As suggested by the above examples, there is an established connection between mechanical

forces and cellular function [45]. In fact, these physical forces are today viewed equally as impor-

tant as biochemical stimuli in directing cellular response. The translation of mechanical forces into

biochemical signals that are responsible for determining cellular behavior is coined mechanotrans-

duction [23]. Since the purpose of this investigation focuses on the physical interactions of cells

and their ECM, the following overview presents a rather simplified version of the intricate interplay

between mechanical forces and biochemical signaling, which can be found in more detail elsewhere

[7, 24, 29, 36].

There are at least three ways in which mechanical forces can introduce biochemical signals [53].

The first one involves the opening and closing of cell membrane ion channels, which are activated

through physical stresses. The second consists of the unraveling of protein molecules by mechanical

forces, thus opening up previously hidden or cryptic binding sites. In the third, the application of

physical forces can stabilize chemical bonds that are otherwise unstable or short-lived. However, for
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these forces to take place, the cell needs to anchor itself to the surrounding ECM. These particular

anchor points that connect the cell to the ECM are called focal adhesion sites. They serve as a

gateway for the cell to transmit its internal forces to the ECM and vice versa.

Internal cellular forces are created through the interaction of actin with myosin II. Actin is

one of the three structural elements found inside the cell, beside microtubules and intermediate

filaments. Actin filaments can form long bundles also known as stress fibers that form a collaborate

intracellular network that connects the focal adhesion sites (e.g., α and β integrins), much like

truss structures support a steel bridge. Myosin II is a molecular motor protein that hydrolizes

adenosine-5′-triphosphate (ATP) for energy, and induces contraction of the actin framework. The

cell membrane has receptors or integrins that connect to the ECM proteins or ligands at the focal

adhesion site. Cell contraction is first felt by actin, then transmitted to the membrane receptors

across a multitude of focal adhesion proteins and finally to the ECM ligands. In order for the cell

to move, all it needs to do is to detach from a particular focal adhesion site, thus creating a force

imbalance. Not only do these cellular forces or cell traction forces play an important role in cell

migration, they are also significant to many other physiological and pathological processes, both at

the tissue and organ level. Some of these include wound healing, inflammation, angiogenesis, and

embryogenesis [54]. Hence, quantification and understanding of their nature and regulation become

an important part for the development of new implant material and drug treatments.

1.2 Previous Work on Quantifying Cell-ECM Interactions

Within the last few decades, studies began to quantify surface traction forces that are developed

by migrating cells through a variety of techniques. In 1980 Harris et al. demonstrated that cellular

forces could be visualized by creating thin elastic silicone rubber substrates and tracking the wrinkle

formation response to the cell’s applied stresses [20]. However, since wrinkle formation or buckling

is an intrinsically nonlinear and unstable process, the quantitative characterization using this tech-

nique is difficult. In 1995 Oliver et al. and Dembo et al. developed a quantitative, non-wrinkling

technique called traction force microscopy (TFM) to study fibroblast migration on two-dimensional
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substrate surfaces [13, 34, 27]. This method utilizes optical phase and wide-field microscopy to track

substrate surface displacements due to cellular traction forces via fluorescent particles embedded in

a polyacrylamide substrate. This technique is currently one of the most widely used methods in

determining cellular traction forces that are part of the mechanotransduction process. It will be

described in more detail within the next section.

Another method to determine cell-induced traction forces was proposed by Tan et al. in 2003

where, instead of using fluorescent beads, thin cantilevers (micro needle-like posts) are fabricated out

of poly-dimethylsiloxane (PDMS) substrates, from which traction forces can be calculated according

to linear beam theory [49]. This method produces similar spatial resolution as the TFM technique

on the micrometer scale with resolved forces of the order of nano-Newtons. Yet another approach

demonstrated by Balaban et al. relies on displacement measurements of submicron patterned dots on

PDMS susbtrate. However, both this technique and TFM employ an inverse Bousinessq formulation

to convert the observed displacements into traction forces as will be explained later. Although

these reports have contributed much to describing cell behaviors in two-dimensional environments,

many physiological processes are three dimensional in nature and recent studies have not only shown

morphological differences in cells cultured on two-dimensional substrates versus three-dimensional

matrices, but their intrinsic ECM interactions and migration behavior also appears different [12, 16,

55]. Yet few advances have been made to address the need for three-dimensional quantitative imaging

techniques [32]. Thus, a new class of experimental tools capable of quantitatively capturing such

interactions is needed for more in-depth studies. This thesis presents a three-dimensional imaging

technique capable of quantitatively measuring cell traction forces in all three spatial dimensions.

1.2.1 Traction Force Microscopy (TFM)

As previously mentioned probably the most wide-spread technique for investigating cellular traction

forces utilizes traction force microscopy [7, 41, 14, 38]. This method measures surface displace-

ment using either a single-particle or digital image correlation (DIC) based approach between two

successive images. In most studies submicron fluorescent tracker particles are embedded in poly-
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acrylamide or similar polymer based substrates with typical Young’s moduli ranging from ∼ 1 - 30

kPa [14, 7, 38]. Balaban et al. used a geometrical pattern stamped into PDMS to track cell-induced

surface displacements. To record cell surface deformations, cells are initially seeded on the substrate

material and allowed to spread and migrate. After some time, a first image is recorded via an opti-

cal microscope, where typically both the cell and the tracker particles are recorded simultaneously.

Then, the cells are chemically detached from the surface involving cleaving proteases such as trypsin

to disrupt all cell substrate attachments. Without moving the microscope objective another image

is captured serving as the undeformed or reference configuration. The two-dimensional full-field

displacements are then determined from the set of the two images by either using a single particle

tracking or digital image correlation algorithm.

In order to determine the cell-induced surface traction forces from the recorded displacement

data, the Boussinesq formulation is utilized. The Boussinesq theory describes the displacement

equilibrium solutions inside a semi-infinite elastic half-space with applied forces at its free boundary

(surface) via the governing equation

∇(∇ · u(x)) + (1− 2ν)∇2u(x) = 0 (1.1)

where u(x) is the three-dimensional displacement vector, and ν is the Poisson’s ratio of the linearly

elastic material. The details of the derivation in formulating the solution is given by Landau and

Lifshitz [25], so only the end result is presented here. The displacement field u(x) in the semi-infinite

half space can be written as a convolution integral with the Green’s tensor G(x) and the applied

surface traction forces given by

ui =
∫ ∫

Gik(x1 − x′1,x2 − x′2,x3 − x′3)Pk(x′1,x
′
2)dx′1dx

′
2, (i, j, k = 1, 2, 3) (1.2)

where the surface traction forces Pk(x′1,x
′
2) at a particular location (x′1,x

′
2) are expressed as

Pk = Fδ(x′1)δ(x′2), (1.3)
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where F is a concentrated surface force. In the TFM calculations, Eq. 1.2 is simplified by setting ν

= 0.5, and assuming only two-dimensional, in-plane displacements resulting in,

Gαβ(r) =
3

4πEr
(δαβ +

xαxβ
r2

), r =
√

x2
1 + x2

2. (1.4)

Finally, in order to determine the surface traction forces Eq. 1.2 needs to be discretized and

inverted. However, the inversion of this problem is ill posed, especially in the presence of noise

in the displacement data, and thus requires regularization schemes to calculate the traction forces

accurately [14, 42]. Butler et al. addressed this issue and developed an approach of performing the

inverse calculations in Fourier space and noted that the Fourier transform of the Green’s tensor is

diagonal and invertible without regularization or other modifications to the problem [7].

While the Boussinesq solution provides an approach to determine surface tractions and traction

forces directly, it depends on the assumption of a semi-infinite elastic half-space or an elastic substrate

of finite thickness. However, the criterion of when a substrate can be treated as infinitely thick is

difficult to assess without any direct information about the deformation extending in the third

spatial dimension (i.e. the thickness direction). It has been shown that the Boussinesq solution

underestimates the forces when cells are seeded on gels ranging from 5 - 60 µm thick, and that

finite height corrections are necessary [31]. To apply the Boussinesq solution, one must ensure that

the displacement data is indeed recorded at the free surface, which is difficult to determine without

depth information.

Another limitation to the conventional TFM formulation is that extreme care must be exercised

when recording two-dimensional image data to ensure no focal (out-of-plane) drift occurs during

imaging. This is especially challenging when imaging biological systems that require constant phys-

iological temperature (37◦C), where thermal drift is likely to occur.

Although these reports have contributed much to describing cell behaviors in two-dimensional en-

vironments, it has been recently demonstrated that many cell types show distinct three-dimensional

morphologies and interactions, as expected in vivo [12, 16, 55]. Therefore the extension of TFM

into the third spatial dimension has the capability to provide a more complete picture of cell-ECM
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interactions.

1.3 Previous Digital Volume Correlation (DVC) Techniques

To extend the existing two-dimensional traction force microscopy techniques into three-dimensional,

a different set of instruments and algorithms needs to be utilized. A few recent studies have begun

to develop quantitative three-dimensional imaging techniques using X-ray tomography and laser

scanning confocal microsopy in conjunction with digital volume correlation. In 1998 Bay et al.

first proposed an extension of the DIC method into three-dimensional and named it digital volume

correlation (DVC) [4]. In their study, volumetric images were acquired using X-ray tomography

of trabecular bone, where the microstructure of the porous bone is used as a tracking pattern.

Analagous to DIC, DVC algorithms divide the entire volume image into smaller sized subsets. Bay

et al. based their correlation algorithm on the translation of the center of these subsets only, where

terms in the deformation gradient are ignored. In 2002 Smith et al. refined the existing DVC algo-

rithm developed by Bay et al. by accounting for finite rotations, presenting an improvement in the

overall accuracy of the technique when rotations exceed 0.05 radians [46, 9]. Their study utilized

a micro computer tomography scanner and aluminum foam samples, where again the material mi-

crostructure was used as the tracking pattern. In 2004 Roeder et al. combined a translation-based

only DVC algorithm similar to Bay et al. with laser scanning confocal microscopy to measure the

three-dimensional deformations of a collagen based gel under uniaxial tension. To track material dis-

placements they utilized the native material microstructure under autofluorescent illumination [39].

In 2005 Pizzo et al. applied the translation-based DVC and LSCM method developed by Roeder

et al. to measure volumetric strain and cell area in human dermal fibroblast cells encapsulated in

collagen I extracellular matrices. The purpose of this study was to investigate the role of collagen

fibril density in regulating local cell-ECM behavior. In particular, the connection between cell shape

and proliferation as a function of fibril density was examined. Again, the microstructure of the

collagen-based ECM was used to track cell mediated displacements [37]. Throughout these studies
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it was found that DVC subsets of the size 64 x 64 x 64 voxels1 gave optimal correlation results, while

the subset spacing or grid resolution was typically between 64 - 16 voxels due to computational

constraints.

1.4 Accomplishments

This thesis presents a quantitative imaging technique using laser scanning confocal microscopy

(LSCM) and digital volume correlation (DVC). This technique has the capability of determining

the three-dimensional full-field displacements inside transparent materials, in particular, soft bio-

materials. This technique was validated by comparing experimentally measured displacement and

strain field data obtained from uniaxial compression and spherical inclusion tests, and obtained

excellent agreement with the predicted analytical solution [18]. Next, this method was applied

to migrating single cells on the surface of polyacrylamide substrates and successfully captured the

three-dimensional deformation fields induced by these cells. This demonstrates that the newly devel-

oped LSCM and DVC method has the capability of quantitatively capturing the three-dimensional

mechanical interaction of cells and their extracellular matrix.

One of the advantages of the developed three-dimensional quantitative imaging technique over

those reported previously [4, 46, 39] is that the method presented here takes into consideration

the stretch deformation of each volume subset. This allows for a more accurate strain estimate,

especially when local strains are large and subset deformation is significant. Another advantage

over previous studies is the addition of a deconvolution algorithm, which minimizes the blurring of

confocal images. Thus, the overall resolution of the images, in particular along the optical axis, is

significantly improved leading to an increase in the accuracy of the subsequent DVC calculations.

Also advantageous over previous studies is that the presented results do not depend on the local

sample feature size to achieve high correlation resolution, but rather can be tailored to the relevant

length scale of interest. This is achieved by utilizing commercially available fluorescent markers

rather than relying on autofluorescence of the sample, which can limit the field of view. The method
1A voxel is generally defined as a three-dimensional pixel.
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presented here allows the user to choose virtually any field of view provided the appropriate markers

are available. Using this method, locally varying displacement and strain fields around motile cells

are determined in all three spatial dimensions. Also, this technique can be used to experimentally

determine the material properties of soft materials, especially where conventional characterization

techniques fail due to the compliant nature of the material.

In the second part of this thesis, an application of the new LSCM and DVC technique to live

cell systems is described. In particular, it presents the time-dependent measurements of the three-

dimensional deformations induced by single migrating fibroblasts on polyacrylamide substrates. Re-

sults are presented for cell-induced displacements and cellular traction forces information during

different stages of cell movement in all three dimensions for the first time. While the focus in

this study was to track single cell material deformations, this technique is capable of measuring

three-dimensional deformation fields of cell clusters and cell sheets of many different cell types.

Chapter 1 has described the motivation of this project and presented a literature review of the

crossroads between biochemistry and mechanics in cell-matrix interactions followed by the currently

employed two-dimensional (two-dimensional) traction force methodologies. It also reviewed previous

developments in digital volume correlation, and concluded by stating the accomplishments of this

thesis. The remainder of this the thesis is organized as follows:

Chapter 2 presents the development of the quantitative full-field three-dimensional imaging tech-

nique based on laser scanning confocal microscopy and digital volume correlation, and its validation.

Chapter 3 describes the experimental setup of the cell system, which has been chosen as an appli-

cation of the developed quantitative imaging method. Chapter 4 presents the experimental findings

and observations of applying the LSCM-DVC method to migrating fibroblast cells on polyacrylamide

substrates. Lastly, Chapter 5 concludes this study by providing a summary of findings, including pre-

liminary experimental observations on cells interacting with artificial extracellular matrix (aECM)

proteins, and provides recommendations for future work.
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Chapter 2

Development of a Quantitative
Full-Field, Three-Dimensional
Imaging Technique

This chapter describes the development of a quantitative, full-field three-dimensional imaging tech-

nique for measuring deformations in solids including transparent soft materials. The method pre-

sented here employs a laser scanning confocal microscope to acquire three-dimensional volumetric

images, while a digital volume correlation algorithm is used to determine the full field displace-

ments. In particular, the DVC computes the displacement of fluorescent microparticles embedded in

a transparent agarose polymer. What follows is a detailed presentation of the quantitative full field

three-dimensional imaging technique development and its validation, including in-depth description

of laser scanning confocal microscopy (LSCM) and digital volume correlation (DVC).

2.1 Laser Scanning Confocal Microscopy (LSCM)

This section presents an overview of laser scanning confocal microscopy and discusses how its res-

olution along the optical imaging axis can be improved by means of a computationally efficient

deconvolution algorithm.
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2.1.1 Overview of Laser Scanning Confocal Microscopy

Confocal microscopy has emerged as a powerful imaging technique due to its optical sectioning

capability, which enables construction of three-dimensional images. In conventional wide-field mi-

croscopy, light is collected from the entire sample volume, including the focal plane as well as all

other planes. In confocal microscopy light is generally collected from the focal plane only. This is

achieved by using a pinhole in front of a photomultiplier tube (PMT) detector that blocks the in-

coming light from all other planes. As illustrated in Fig. 2.1, the solid line represents light reflected

or emitted from the focal plane, while the dashed lines represent light from the out-of-focus planes.

The overall contrast and resolution of the image is significantly increased as compared to con-

ventional wide-field microscopy where the image is blurred by out-of-plane light. As a conse-

quence, the inherent optical sectioning of the specimen in confocal microscopy allows the assem-

bly of three-dimensional image volumes by stacking together individually acquired planar slices.

Figure 2.1: Illustration of the confocal

imaging principle (solid lines = in-focus

light; dashed lines = out-of-focus light)

In an LSCM system, a laser with a single-diffraction

limited spot size is used to sequentially scan a selected

focal plane. Thus, the image is not formed using a

CCD camera as in conventional microscopy, but rather

the image is a result of the lights interaction with suc-

cessive areas of the specimen, i.e., the image is recorded

pixel by pixel, analogous to a scanning electron micro-

scope (SEM). The resulting image is generally superior

in resolution to images recorded by conventional opti-

cal microscopy. The spatial resolution of a confocal mi-

croscope is determined by the three-dimensional point

spread function (PSF), which is an intensity distribu-

tion near the focal point corresponding to a volume

image of a point light source under a diffraction-limited imaging system. Thus, the obtained con-

focal image is the convolution of actual intensity distributions using the point spread function as
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a kernel or an optical impulse response function. A given point spread function will depend on

each imaging situation but is typically a function of the imaging wavelength, λ, refractive index

surrounding the lens, n, the numerical aperture of the lens, NA, and the image magnification. The

numerical aperture of a lens can be expressed as NA = nsinθ, where θ is the half angle of the

light cone collected by the microscope lens. Following the derivations given by Stevens et al. [47], a

representive expression for the intensity distribution of the point spread function along the lateral

and optical imaging axis (u, v) gives

h2[u, v] = |
∫ 1

0

J0[vρ]exp(iuρ2/2)ρdρ|2, (2.1)

where ρ is the radial distance from the optical axis and J0 is the Bessel function of order zero. The

optical coordinates u and v are related to the spatial coordinates r and z by

v =
2π
λ

(NA)r, u =
2π
λ

(NA)2z/n, (2.2)

Figure 2.2: Profiles of the PSF for

u = 0 (lateral), and v = 0 (vertical) from

Stevens et al. [47]. The units of u and

v are arbitrary optical units (ou). The

peak widths determine the resolution.

where r is the radial distance from the optical axis,

and z is the distance from the focal plane. Figure 2.2

shows a typical line intensity plot of the above point

spread function expression both along the lateral and

optical imaging axis. The lateral intensity profile of the

point spread function in the focal plane, i.e., h2[0, v],

gives the known line profile of the Airy disk1. Using

Eqs. 2.2, estimates on the typical lateral and axial

resolutions can be formulated by using the generally

adopted Rayleigh criterion. This criterion states that

the ultimate lateral resolution of the optical system is

determined by the first zero of the Airy pattern or J0.
1The interference pattern created from light diffracting through a circular aperture is known as the Airy disk
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Following the same criterion in determining the axial direction, both lateral and axial resolution

limits can be estimated as

Resolutionlateral = 0.61
λ

NA
, (2.3)

and

Resolutionaxial = 1.4
nλ

NA2
. (2.4)

This result is shown graphically in Fig. 2.2 by the width of both lateral and axial intensity peaks.

Further details describing the confocal principle, including a more rigorously mathematical treatment

of confocal imaging and the current applications of confocal microscopy, are well documented and

can be found elsewhere [11, 43, 47, 19] . The next section will describe a method to improve the

axial resolution of LSCM by accounting for the effects of the point spread function.

2.1.2 Improving Axial Resolution through Deconvolution

Figure 2.2 illustrates the differences in the lateral and axial resolutions during confocal imaging. As

can be seen, the axial resolution of confocal imaging is typically three to ten times worse than the

lateral resolution depending on the refractive index of the medium and the numerical aperture of

the objective lens. In Fig. 2.3, an isosurface2 plot of a typical confocal subvolume image (64 x 64

x 64 voxels) of a transparent agarose gel with randomly dispersed fluorescent spherical particles of

two voxels in diameter is shown. A voxel is defined as a pixel in three-dimensional space, which in

the present case is equal to 0.45 µm. The spherical fluorescent particles appear as axially elongated

ellipsoids. The blurring in the axial direction causes increased uncertainties in the digital volume

correlation measurements of the axial direction components. The consequence of such blurring is

particularly critical to the performance of the large deformation digital volume correlation algorithm

that uses the Fourier power spectrums. In this study, the noise-resistant Lucy-Richardson decon-

volution algorithm [30] was used to deconvolve the raw confocal images using the following point

2An isosurface is a surface consisting of points of constant value
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spread sinc function (PSF),

PSF =
sin(x3)
x3

, (2.5)

in the axial direction prior to the stretch correlation. The appropriateness of using a sinc function

in approximating the three-dimensional point spread function can be seen in Fig. 2.2, and from Eq.

2.1, where h2[u, 0] describes a typical sinc profile. Figure 2.4 shows the subvolume from Fig. 2.3

after deconvolution of the raw image.

There are two additional confocal-imaging artifacts caused by the refractive index mismatch in

the optical path. First, spherical aberration due to the refractive index mismatch causes asymmetric

distortions of the three-dimensional point spread function as a function of the penetration depth.

Such a distorted and depth-dependent point spread function makes the deconvolution of the confocal

images difficult and causes significant error in the digital volume correlation. Effects of such spherical

aberration in confocal imaging have been extensively studied in the past [51, 44]. In practice,

the spherical aberrations can be minimized by adjusting the correction collar commonly found in

commercial microscope objectives. In order to minimize the distortion of the point spread function

within the field of view, the correction collar needs to be adjusted appropriately prior to each test.

The second form of confocal imaging artifact due to the refractive index mismatch is caused by the

fact that the focal point does not follow the axial motion of the scanning stage [52, 15]. This causes

an over- or under-estimation of the depths depending on the ratio of the refractive indeces. This

apparent discrepancy between the axial and the lateral scanning resolutions can be calibrated by

imaging large fluorescent microspheres embedded in a sample.
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Figure 2.3: Isosurface plot of fluorescent par-
ticles as recorded by LSCM (1 voxel = 0.45
µm)

Figure 2.4: Isosurface plot of fluorescent
particles after deconvolution of the PSF (1
voxel = 0.45 µm)

2.2 Digital Volume Correlation (DVC)

2.2.1 Principle of DVC

LSCM provides discretized volume images visualizing three-dimensional structural patterns of fluo-

rescent markers in a transparent sample. In this study, the combination of digital volume correlation

(DVC) and confocal images is used to achieve three-dimensional full-field deformation measurements

as an extension of the vision-based surface deformation measurement techniques, well-known as dig-

ital image correlation (DIC) [10]. The basic principle of the DVC is schematically illustrated in Fig.

2.5. Two confocal volume images of an agarose gel with randomly dispersed fluorescent particles are

obtained before and after mechanical loading.

Then, the two images are subdivided into a set of subvolumes that are centered on the points

of interest. Using each pair of corresponding subvolume images, the respective local displacement

vector can be obtained from three-dimensional volume correlation methods. Consider two scalar

signals f(x) and g(x) which represent a pair of intensity patterns in a subvolume Ω before and after

a continuous mapping, ŷ(x) : x → y , respectively. Assuming that the signal is locally invariant

during the mapping, f(x) = g(y(x)) , correlation matching by subvolume can be obtained by

finding an optimal mapping that maximizes the cross-correlation functional defined as
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Digital Volume Correlation (DVC)

Principle of DVC

LSCM provides discretized volume images visualizing 3-D
structural patterns of fluorescent markers in a transparent
sample. In this study, the combination of digital volume
correlation (DVC) and confocal images is used to achieve 3-D
full-field deformation measurements as an extension of the
vision-based surface deformation measurement techniques,
well-known as digital image correlation (DIC). The basic
principle of the DVC is schematically illustrated in Fig. 2.
Two confocal volume images of an agarose gel with
randomly dispersed fluorescent particles are obtained before
and after mechanical loading. Then, the two images are
subdivided into a set of subvolumes that are centered on the
points of interest. Using each pair of corresponding
subvolume images, the respective local displacement vector
can be obtained from 3-D volume correlation methods.

Consider two scalar signals f (x) and g(x) which
represent a pair of intensity patterns in a sub-volume W
before and after a continuous mapping, by xð Þ : x ! y,
respectively. Assuming that the signal is locally invariant
during the mapping, f xð Þ ¼ g y xð Þð Þ, subvolume-wise cor-
relation matching can be obtained by finding an optimal
mapping that maximizes the cross-correlation functional
defined as

m byð Þ ¼
Z

f xð Þg y xð Þð ÞdWx ð1Þ

The methodology is illustrated using a translational vol-
ume correlation, which is presented below. The continuous
mapping is assumed to be a rigid translation, y ¼ xþ c,
and the cross-correlation function is represented as a
function of a displacement vector c as

m cð Þ ¼
Z

f xð Þg xþ cð ÞdWx ð2Þ

Fig. 2 Schematic illustration of
the digital volume correlation
(DVC)

Exp Mech

Figure 2.5: Schematic illustration of the principle of digital volume correlation (DVC)

m(ŷ) =
∫
f(x)g(y(x)dΩx. (2.6)

The methodology is illustrated using a translational volume correlation, which is presented below.

The continuous mapping is assumed to be a rigid body translation, y = x + c , and the cross-

correlation function is represented as a function of a displacement vector c as

m(c) =
∫
f(x)g(x + c)dΩx. (2.7)
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The cross-correlation function can be written using Fourier transforms as

m(c) = F−1[F [f(x)]∗F [g(x)]], (2.8)

where the Fourier transform of f(x) is defined as

F [f(x)] =
∫
f(x)e−ik·xdΩx, (2.9)

and * denotes the complex conjugate. The discrete cross-correlation function can be computed

efficiently by using the fast Fourier transform (FFT) algorithm. Then, the rigid body translation

vector c can be estimated from the location of the cross-correlation peak with respect to the origin.

Finding the displacement vector c from the discrete cross-correlation function is straightforward

and provides half-voxel accuracy. Determining the displacement vector c within subvoxel accuracy

generally requires fitting and interpolation of the correlation function near the peak. Various fitting

models have been used in the past [9, 48], employing somewhat arbitrary assumptions that the

cross-correlation function near the peak can be approximated by a Gaussian or a parabolic function.

The subvoxel accuracy of such peak-finding algorithms is determined by the choice of fitting function

as well as the size of the fitting window. In this study, a three-dimensional quadratic polynomial

fitting is used to fit the correlation function near the peak and hence provides improved subvoxel

accuracy over previously used lower order fitting polynomials.

Significant measurement error can be introduced from the decorrelation of the intensity patterns

when the rotation or the stretch of the subvolume is large. Thus, applications of such simple

correlation algorithms have been limited to small strain and small rotation problems due to the

inherent limitation of the rigid-translation assumption. In general, the applicability of such an

algorithm is limited up to about 5% of strain or 0.05 radian of rotation [9]. To overcome this

limitation and to obtain more accurate displacement measurements, a higher order approximation

of the deformation field within each subvolume is required for large deformation measurements in

soft materials. In the following section, an extension of the FFT-based DVC to measure large
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deformation fields is presented.

2.2.2 Stretch Correlation Algorithm

Assuming a general homogeneous deformation of each subvolume, the deformation field can be

written as

ŷ(x) = Fx + c, (2.10)

with a deformation gradient tensor F = I+∇u and a displacement vector u. Therefore, any uniform

deformation in three-dimensions can be represented with a total of 12 parameters which consist of

three displacement components and nine displacement gradient components. Optimal programming

in three-dimensions for a total of 12 degrees of freedom (DOF) is computationally expensive in

conventional correlation algorithms. Alternatively, the general homogeneous deformation can be

represented using a polar decomposition of the deformation gradient tensor as

ŷ(x) = RUx + c, (2.11)

where R is the orthogonal rotation tensor and U is the symmetric right-stretch tensor. Then,

the general homogeneous deformation in three dimensions is represented with six stretch, three

rotation, and three translation components. Depending on the dominant mode of the deformation

of interest, the correlation algorithm can be modified to include additional optimization parameters

selectively. A digital volume correlation algorithm that includes three rotational degrees of freedom

has been presented previously [46]. In this study, assuming small rotations and small shear stretch

components, three normal stretch components are included as additional correlation parameters in

the FFT-based DVC algorithm, as an extension of the stretch-correlation algorithm developed for

large deformation measurements in two dimensions [22]. Neglecting the small rotations, the mapping

of a pure homogeneous deformation and a rigid translation is written as

ŷ(x) = Ux + c. (2.12)
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When the loading axes are aligned with the global coordinate axes so that the shear stretch compo-

nents are small, the invariant condition can be written as

f(x) ≈ g(Ux + c), (2.13)

where U denotes the diagonal part of U. Then, the six optimization parameters for the stretch

correlation in DVC algorithm are {c1, c2, c3, U11, U22, U33} . In the case of a pure stretch problem

without any translation, a simple coordinate transform into a logarithmic scale converts the stretch

correlation problem into a simple translational correlation problem. However, when there is a non-

zero translation, the coordinate transform cannot be directly performed in the spatial-domain to

achieve the stretch correlation. Therefore, an equivalent invariant condition of Eq. (2.13) in the

Fourier domain is considered to implement the stretch correlation in the Fourier domain as

||U||F (Uk) = eik·cG (k), (2.14)

where, again, F (k) and G (k) represent Fourier transforms of f(x) and g(x), respectively. Then

by using the Fourier power spectrums only and therefore dropping the phase term, a translation-

invariant stretch-correlation problem can be achieved in the Fourier domain. A stretch cross-

correlation function to be maximized for determining the three axial stretch components neglecting

the determinant of the Jacobian is shown as

m(U) =
∫
|F (Uk)||G (k)|dΩx. (2.15)

The stretch correlation problem in the Fourier domain can be transformed into a translational

correlation problem in a log-frequency domain as

m̃(η) =
∫
|F̃ (ξ + η)||G̃ (ξ)dΩξ, (2.16)
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where ξ = logbk, η = logbU, and b is an arbitrarily chosen logarithmic base. The translational

correlation problem in the log-frequency domain can be easily solved using Eq. 2.8. Finally, the

three axial stretch components can be obtained from the optimal vector η in the log-frequency

domain as

U11 = bη1 , U22 = bη2 and U33 = bη3 . (2.17)

Figure 2.6: Ilustration of the stretch-

correlation procedures using a one-

dimensional (1D) example

The accuracy of the obtained stretch compo-

nents depends strongly on the spectral content of

the original signals. If the signals are already band-

limited, special considerations, such as normalizing

the power spectrums and employing the Hanning

window, must be included to achieve robust stretch

correlations. Also, in the numerical implementa-

tion of the stretch correlation algorithm, incorpo-

rating zero-padding of the signals before Fourier

transforms can improve the overall accuracy of the

stretch correlation algorithm by providing ideal in-

terpolations of the Fourier transforms at a cost of

increased computational load.

In Fig. 2.6, the stretch-correlation procedures

are illustrated for a one-dimensional example. Two

reference and deformed signals representing 10%

of uniform strain are shown in Fig. 2.6 (a). The

Fourier power spectra of the two signals are shown

in Fig. 2.6 (b). Note that only half of the full frequency range is shown due to the inherent Fourier

symmetry. In Fig. 2.6 (c), the equivalent Fourier power spectra are shown after applying zero-

padding (interpolation) to the power spectra in Fig. 2.6 (b). Figure 2.6 (d) shows the Fourier power

spectra along the logarithmic axis. After interpolating the power spectra using a uniform interval
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in the log-frequency domain as shown in Fig. 2.6 (e), the translational correlation as presented in

Eq. 2.16 can be applied to find the one-dimensional stretch value. Extension of the one-dimensional

stretch-correlation into two dimensions or three dimensions is straightforward as long as the rotations

and shear stretches are small.

Figure 2.7: Two-dimensional projec-

tion of confocal subvolume images (a) be-

fore and (b) after uniaxial compression of

10% in x3-direction

In the implementation of three-dimensional

stretch correlation, two-dimensional projections of

the three-dimensional subvolume images were used

to circumvent the geometrically increased computa-

tional load after the zero-padding, as shown in Fig.

2.7. Essentially, the stretch correlations using the

large zero-padding were conducted in a reduced di-

mension for computational efficiency. Three sepa-

rate two-dimensional projections were made so that

three sets of two stretch components could be ob-

tained. From the six stretch values, three stretch

components (U11, U22, U33) were obtained by com-

puting the average of the two corresponding stretch

components. Once the three axial stretch compo-

nents are found, the translation vector c can be de-

termined more accurately by conducting the stretch-

compensated translational correlation using

m(c) =
∫
f̃(x′)g(x′ + c)dΩx, (2.18)

where f(x) = f̃(Ux) and x′ = Ux. The stretch-compensated translational correlation requires the

initial subvolume image f(x) to be stretched to f̃(x′) using the three stretch values obtained earlier.

Therefore, the process involves sub-voxel interpolations of the initial subvolume image. Because
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the stretch part of the deformation is compensated, a more accurate translation vector c can be

obtained. The stretch correlation and the translational correlation were conducted iteratively to

achieve converged results. For all experiments executing the stretch and translational correlation

twice yielded sufficient convergence based on a mean difference criterion, where the mean and stan-

dard deviation of the difference of the before and after displacement matrices were compared (this

is similar to the least-square error estimate). Such an iteration process is equivalent to the iterative

optimization of a correlation coefficient in conventional image correlation scheme conducted in the

two-dimensional spatial domain.

Finally, the displacement gradients were computed by using a three-dimensional least-square

fitting of each displacement component in a 3 x 3 x 3 grid of neighboring data points. Although a

more sophisticated smoothing or filtering algorithm can be employed before or during the gradient

calculation to obtain smoother strain fields, no such algorithm was used in this study to assess the

performance and robustness of the proposed DVC algorithm. Once the displacement gradient fields

are determined, either infinitesimal or finite strain values can be computed from the displacement

gradient fields.

2.3 Experimental Procedures

Agarose test specimens were prepared from a 1% weight-in-volume (w/v) solution of agarose (J.T.

Baker, NJ) in standard 0.5X TBE buffer (Tris/Borate/EDTA, pH 8.0). The agarose solution was

heated until molten, and carboxylate-modified red fluorescent (580/605) polystyrene microspheres

(Invitrogen, CA) of 1 µm diameter were injected into the liquid agarose. The nominal volume

fraction of fluorescent markers in the gel was 0.3%. The mixture was cast into a pre-chilled Teflon

mold mounted onto a glass plate. Samples were left at room temperature for 5 minutes to solidify.

This protocol yielded circular agarose specimens with typical dimensions of 6.4 mm diameter and

1.4 mm height. The addition of the fluorescent microspheres had negligible effect on both the local

and global mechanical response of the agarose gel. For spherical inclusion measurements describing

a hard inclusion surrounded by a soft matrix, spherical polymethylmethacrylate (PMMA) beads
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(Sigma-Aldrich, MO) of 100 µm diameter were added to the mixture before casting. For spherical

inclusion measurements describing a soft inclusion of a hard matrix, a burst of air was injected

into the molten agarose gel to allow the formation of voids inside the material. The air inclusions

(bubbles) were consequently imaged and a particular isolated bubble (only bubble within entire field

of view) with a diameter of 200 µm was chosen.

Figure 2.8: Loading fixture for uniax-

ial compression of soft materials mounted

onto a laser scanning confocal microscope

To apply uniaxial compressive loading to the

sample while imaging, a miniature loading-fixture

was built and mounted directly on the microscope

stage of an inverted optical microscope as shown

in Fig. 2.8. The sample was kept immersed in

the buffer solution to prevent swelling or shrink-

ing during the test. The compressive loading was

achieved by translating a micrometer head with

a resolution of 1 µm. For all experiments the

imposed strain increments were controlled by the

micrometer (Mc Master-Carr, Los Angeles, CA)

and were calculated using the dimension of the

specimen and the imposed loading (displacement)

step. The resulting applied force was measured using a 10-gram load cell (A.L. Design, NY). Nominal

stress-strain curves were compiled using this setup for each test. The LSCM used in this study was

a confocal system (Nikon C-1) combined with an inverted optical microscope (Nikon TE-2000-U).

A 40x CFI planar fluor air objective with a numerical aperture of 0.6 was used in all experiments.

All DVC computations were performed using Matlab (Mathworks, Natick, MA), and executed on

an Intel based Pentium Xeon with 4 core processors. The typical computation time for 512 x 512 x

512 voxel image with a spatial resolution of 8 voxels is ∼ 4.3 hours/image.
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Stationary Translation
u1 [voxel] 0.0605 0.1392
u2 [voxel] 0.0541 0.1238
u3 [voxel] 0.2106 0.6491
ε11 (%) 6.39 x 10−3 4.18 x 10−2

ε22 (%) 9.80 x 10−3 4.96 x 10−2

ε33 (%) 0.260 0.718

Table 2.1: Standard deviation values for measured displacement and strain fields in the undeformed
condition

2.4 Uniaxial Compression Results

To verify the measurement precision of the DVC algorithm using confocal volume images, two tests

were conducted under zero-strain condition. In the first test, two confocal volume images were

repeatedly acquired from a stationary sample under zero load. The scanning resolution was 512

x 512 x 512 voxels, and the scan spacing was 0.45 µm in all three directions. This resulted in a

field of view of 230 x 230 x 230 µm3. In the second test, confocal images were acquired before

and after translating the unloaded sample using the x3-directional scanning stage of the confocal

microscope. The two pairs of the confocal images were analyzed by using the DVC algorithm with

a subvolume size of 64 x 64 x 64 voxels. Displacements were measured at 15 x 15 x 15 points (total

3375 points) in a uniform grid of 32 voxels spacing. Displacement gradients were then calculated by

using the displacement data at 3 x 3 x 3 neighboring grid points following linear least-square fitting

of the displacement components. Although the quadratic (Lagrangian) or the logarithmic (true)

strain measure can be used for large deformation analysis, the linear (engineering) strain measure

was used to represent the deformations in this study. As a quantitative measure of the uncertainties

in the DVC results, standard deviation values of three displacement components and three normal

strain components were computed and are summarized in Table 2.1.

The absolute values of the uncertainties in the displacements and the strains are comparable to

previously reported results [4, 39]. These measurement uncertainties are likely due to the noise in

the confocal images caused by the photomultiplier tube detector noise as well as the positional uncer-

tainty of the laser scanning system. It is also noted that the axial uncertainties of the displacement
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and strain components in the x3-direction (axial) are approximately three to five times larger than

the corresponding lateral uncertainties in the x1- and x2-directions (in-plane). This result shows

that the axially elongated three-dimensional point spread function causes a significantly degraded

measurement precision in the x3-direction. These tests under zero-strain condition provide a simple

way to assess baseline uncertainties of the measurements using the DVC algorithm.

In order to verify the three-dimensional deformation measurement capability of the DVC using

the LSCM, the agarose gel sample was compressed uniaxially with nominal strain increments of 2-

3%. The total imposed nominal strain was approximately 10%. The obtained confocal images were

analyzed using the DVC algorithm with a subvolume size of 64 x 64 x 64 voxels. Figure 2.10 shows a

vector plot of the measured displacement field and Fig. 2.9 shows a three-dimensional contour plot

of the vertical displacement components.

Figure 2.9: Experimentally determined
three-dimensional displacement vector field
under uniaxial compression

Figure 2.10: Experimentally determined ver-
tical displacement field u3 under uniaxial com-
pression

In order to assess the performance of the DVC algorithm with the stretch-correlation for large

deformation measurements, accuracy and precision must be established systematically. The accu-

racy and the precision of a measurement technique are usually achieved by repeatedly measuring

some traceable reference standard. Then, the accuracy and precision are typically quantified as
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No stretch-correlation Stretch-correlation
Mean Std. Deviation Mean Std. Deviation

ε11 (%) 0.8 x 10−2 7.1 x 10−2 -3.6 x 10−2 7.4 x 10−2

ε22 (%) 1.1 x 10−2 6.8 x 10−2 7.8 x 10−2 7.1 x 10−2

ε33 (%) -9.25 0.866 -9.34 0.392

Table 2.2: Mean and standard deviation values for measured strain fields under uniaxial compression

the difference between the mean of the measured values and the true value, and by the standard

deviation of the measured values, respectively.

Mean and standard deviation values of the measured strain fields are presented in Table 2.2 to

assess the effectiveness of the stretch-correlation algorithm. The mean values of the lateral strain

components ε11 and ε22 are close to zero and smaller than their corresponding standard deviation

values, i.e., the measurement precision, and are therefore negligible. The standard deviations of

the no-stretch-correlated and stretch-correlated lateral strain components are similar, illustrating

that the stretch-correlation does not improve the precision of the strain measurements for small

strains. Comparing the no-stretch and stretch-corrected axial strain component ε33, the difference

of 0.09% between the two mean values is smaller than their corresponding standard deviations, which

shows that the stretch correlation does not improve the accuracy of the average strain measurement.

However, the standard deviation in the stretch-correlation case is less than half of that in the no-

stretch-correlation case. This proves that the stretch-correlation greatly improves the precision of the

large deformation measurement. Although precise measurements do not necessarily mean accurate

measurements, it is often not possible to reliably achieve high accuracy in individual measurements

without precision. This point is particularly important in the full-field measurement of non-uniform

deformation fields.

Since it is not possible to know the true value of the compressive strain up to the level of accuracy

and precision of the measurement technique under investigation, the absolute accuracy of the pro-

posed DVC method cannot be assessed with the nominal strain value from the global measurement.

However, it is clear that the overall measurement accuracy can be improved by providing better

precision, since precision is a limit of accuracy. The results from the uniaxial compression test show
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that the proposed stretch-correlation algorithm in conjunction with the deconvolution algorithm

improved the overall accuracy of large deformation measurement with better precision.

The average axial compressive strain was 9.3%, whereas the average lateral strain values were

negligible. This result showed that the lateral expansion due to the Poisson effect was effectively

constrained due to the disc-shaped geometry of the sample. To determine the material properties

of the agarose sample correctly the uniaxial test results need to be interpreted as a constrained

compression (ε11 = ε22 = 0) of a soft layer. The axial stress-strain ratio for constrained compression

is defined as a constrained modulus (E) and related to elastic properties as

E =
σ33

ε33
=

(1− ν)E
(1 + ν)(1− 2ν)

, (2.19)

where E and ν denote the Young’s modulus and the Poisson’s ratio, respectively.

2.5 Spherical Inclusion Results

Figure 2.11: Schematic of a spherical inclusion

with a sliding interface under confined uniaxial

compression

In order to demonstrate the capabil-

ity of the measurement technique using

the DVC and the LSCM, non-uniform

three-dimensional deformation fields near

a hard and a soft (void) spherical inclu-

sion were measured under far-field uniax-

ial compressive loading. Confocal images

near a 100 µm-diameter PMMA bead and

a 200 µm air bubble embedded within the

agarose gel sample were recorded during

incremental compressive loading. The ex-

perimental setup is shown in Fig. 2.11 schematically. The nominal strain increment was approxi-

mately 3%. The scanning resolution was 512 x 512 x 512 voxels, and the scan spacing was 0.45 µm
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in all three directions. The experimentally determined displacement fields were qualitatively and

quantitatively compared to the analytical solution given by Ghahremani [18] and is presented in

the next section. The solution by Ghahremani describes a spherical “sliding” inclusion, where the

“sliding” is defined by vanishing tractions along the inclusion-matrix interface and continuity in the

displacements normal to the inclusion-matrix interface.

2.5.1 Analytical Solution of a Sliding Spherical Inclusion

This section presents the analytical solution of a sliding spherical inclusion in a linearly elastic

matrix under applied far field uniaxial compressive loading as formulated by Ghahremani [18] . Most

analytical elasticity solutions of the inclusion problem assume the continuity of displacement at the

interface. Considering the high water content in the agarose gel and the large deformations in the

sample, the perfect bonding condition is inadequate to accurately represent the present experiment.

Using the solution of the sliding inclusion problem under uniaxial loading, and considering that

only the deformations inside the agarose gel and not the inclusion itself are measured, the elasticity

solution of the matrix displacements beginning with the far field solution due to an applied uniform

compressive loading stress P is

u∞ =
P

2Gm(1 + νm)
(νx1i + νx2j− x3k), (2.20)

where Gm and νm denote the shear modulus and Poisson’s ratio of the matrix, respectively, and i,

j, k are the Cartesian unit vectors. The radial displacements due to the inclusions are

ur(r, θ) = −A
r2

+ [
B(5− 4νm)

r2
− 3C

2r4
](3cos2θ − 1), (2.21)

with r =
√
x2

1 + x2
2 + x2

3, and θ = tan−1(x3/
√
x2

1 + x2
2), and constants A, B, and C as described

later. The tangential displacements due to the inclusion are

uθ(r, θ) = −[
B(1− 2νm)

r2
+

C

2r4
](sin2θ). (2.22)
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The constants A, B, and C are defined as

A =
Pr30

12Gm
− Dr30(1 + νi)Gi

Gm
, (2.23)

B = − 5P
12Gm

· r30
7− 5νm

+
Gi
Gm
· 7 + 5νi

7− 5νm
Fr50, (2.24)

C = − P

2Gm
· r50

7− 5νm
+

Gi
2Gm

− 1 + νm
7− 5νm

(7 + 5νi)Fr70, (2.25)

where Gi and νi denote the shear modulus and Poisson’s ratio of the inclusion, respectively, r0 is

the inclusion diameter, and the constants D and F are given by

D =
P (1− νm)

4(1 + νm)[(2Gm +Gi) + νi(Gi − 4Gm)]
, (2.26)

F =
−10P (1− νm)

r20[4Gm(7− 5νm)(4νi − 7)−Gi(17− 19νm)(7 + 5νi)]
. (2.27)

The final form of the analytical solution of the sliding inclusion under the laterally-constrained

uniaxial compressive loading is constructed by the superposition of three mutually-orthogonal uni-

axial compression solutions using Eqs. (2.20-2.27) as illustrated in Fig. 2.11.

2.5.2 PMMA Bead and Air Bubble Inclusion Results

This section presents the experimentally determined full-field three-dimensional displacements near

a hard (PMMA) and soft (air bubble) inclusion. Confocal images of each embedded inclusion

were recorded during successive compressive loading increments. The nominal strain increment was

approximately 3%. The scanning resolution was 512 x 512 x 512 voxels as before, and the scan

spacing was 0.45 µm in all three directions. A representative confocal scanning volume near the

inclusion is illustrated schematically in Fig. 2.11. Figures 2.12 and 2.13 show a vertical slice of the

confocal image along the meridian plane of the PMMA bead and the air bubble at the undeformed



30

configuration, respectively. The superimposed uniform grid with spacing increments of 16 voxels

represents the locations where displacements measurements were conducted. The confocal images

were analyzed by using the proposed DVC algorithm with a subvolume size of 64 x 64 x 64 voxels.

The spatial resolution of the DVC technique can be adjusted and increased to a maximum resolution

of 1 voxel. However, due to the increased computational load with increased resolution, the typical

spatial resolution for calculating the displacement is 8 voxels, or 3.6 µm.

Figure 2.12: Confocal slice along the merid-
ian plane of an embedded 100 µm PMMA bead
within an agarose sample

Figure 2.13: Confocal slice along the merid-
ian plane of an embedded 200 µm air bubble
within an agarose sample

Initially, the displacement fields are calculated using the translational DVC algorithm, the output

of which is then used as an initial guess in calculating the displacement fields using the stretch-

correlation algorithm. Figures 2.14 and 2.15 show a representative cross-sectional three-dimensional

contour plot of the u3 displacement fields near the PMMA bead and air bubble inclusion. Figures 2.16

and 2.17 show the results of the DVC stretch-correlation algorithm for the same experimental data

on a smaller data domain (around the center plane of each inclusion). Since the stretch-correlation

algorithm is computationally more expensive than the regular translational DVC algorithm, only

a particular region of interest, which here is a volumetric region around the center plane of each

inclusion, is selected. In order to compare the experimental data with the analytical elasticity

solution presented in the previous section, the data set is refined further by selecting and executing

the DVC stretch-correlation on the meridian plane of each inclusion. The voxel spacing or spatial
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resolution of the DVC measured displacement field is further increased to a grid spacing of 4 voxels.

Generally such an increase in resolution is only performed on thin volumes consisting of less than

10 slices to be computationally efficient.

The contour maps in Figs. 2.18 and 2.19 represent constant contours of the vertical (u3) displace-

ment components on the meridian plane of the PMMA and air bubble inclusion, respectively. The

local distortion of the displacement contours near the PMMA bead and the air bubble indicate that

the proposed DVC algorithm effectively captures non-uniform deformation fields near both spherical

inclusions. It should be noted that the magnitude of the u3 displacements as indicated in pixels by

the color bar in both Figs. are different. This difference is due to rigid body translation during the

experiments that is also captured by the DVC algorithm. This rigid body motion arises since the

imaging reference frame is stationary and the inclusion location within the agarose gel is different

for the two inclusions. Hence, the amount of recorded rigid body translation will be different. The

rigid body translation is accounted for in the analytical model through the simple addition of a

displacement constant. The experimentally measured displacement fields in Figs. 2.18 and 2.19

were compared to the analytical solution of the equivalent linear-elasticity problem as described in

detail in the previous section.
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Figure 2.14: Cross-section of the experi-
mentally determined vertical displacement field
u3 near PMMA bead inclusion under uniaxial
compression. Contour values are in pixels (1
pixel = 0.45 µm).

Figure 2.15: Cross-section of the experimen-
tally determined vertical displacement field u3

near air bubble inclusion under uniaxial com-
pression. Contour values are in pixels (1 pixel
= 0.45 µm).

Figure 2.16: Cross-section of the stretch-
corrected measured vertical displacement field
u3 near the PMMA bead inclusion under uni-
axial compression. Contour values are in pixels
(1 pixel = 0.45 µm).

Figure 2.17: Cross-section of the stretch-
corrected measured vertical displacement field
u3 near the air bubble inclusion under uniaxial
compression. Contour values are in pixels (1
pixel = 0.45 µm).
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Figure 2.18: Experimentally determined ver-
tical displacement field u3 near PMMA bead
inclusion under uniaxial compression. Contour
values are in pixels (1 pixel = 0.45 µm).

Figure 2.19: Experimentally determined ver-
tical displacement field u3 near air bubble in-
clusion under uniaxial compression. Contour
values are in pixels (1 pixel = 0.45 µm).

Figure 2.20: Analytical vertical displacement
field u3 near a rigid bead inclusion with a slid-
ing interface under uniaxial constrained com-
pression. Contour values are in pixels (1 pixel
= 0.45 µm).

Figure 2.21: Analytical vertical displacement
field u3 near a soft inclusion with a sliding inter-
face under uniaxial constrained compression.
Contour values are in pixels (1 pixel = 0.45
µm).

The contour maps in Fig. 2.20 and Fig. 2.21 show the horizontal and the vertical displacement

fields of the constructed analytical solution. Qualitative comparisons of the contour maps in Fig.

2.18 and Fig. 2.20, and Fig. 2.19 and Fig. 2.21 indicate that the proposed DVC algorithm is well-

suited for the full-field measurements of non-uniform deformation fields in three dimensions. Once

the full field displacements are obtained, the strain tensor is calculated by using a displacement-

gradient technique [26]. In brief, the local displacement field around each grid point is approximated

by

û(x1, x2, x3) = ax1 + bx2 + cx3 + d, (2.28)
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where a,b,c, and d are constants to be determined by minimizing the following vector S in the

least-square sense using the measured displacement vector u

S =
N∑
i=1

M∑
j=1

P∑
k=1

(ûijk − uijk)2. (2.29)

Point-wise least-square minimization of Eqs. 2.28 and 2.29 using a 3 x 3 x 3 voxel stencil or

kernel, yields the constants a,b,c and d from which the full-field strain tensor is constructed. A more

detailed description of the displacement-gradient technique can be found in [26]. Figures 2.22 and

2.23 show a contour plot of ε33 from the experimentally obtained displacement fields around the

PMMA and air bubble inclusions, respectively.

Figure 2.22: Experimentally determined ver-
tical strain field ε33 near a PMMA bead inclu-
sion under uniaxial compression

Figure 2.23: Experimentally determined ver-
tical strain field ε33 near an air bubble inclusion
under uniaxial compression

At the bottom of the inclusion in Fig. 2.22, a region of high strain concentration of up to 25%

strain, or 2.5 times of the far field applied strain is shown. Figure 2.23 displays a similar picture

in case of the strain profile near the air bubble, where ε33 is approximately zero directly beneath

the bubble. Following the time-lapse series of the air bubble compression measurements (not shown

here), the air bubble collapses under the applied far field strain with no noticeable deformation

occurring in the agarose gel underneath the bubble. Figure 2.24 displays the line-profile of the ε33

strain component along the central axis in the x3-direction from the PMMA bead inclusion contour

plot (Fig. 2.22). Also shown in Fig. 2.24 is the analytical description of ε33 along the meridian



35

plane of a hard inclusion as described by Ghahremani [18]. The local compressive strain reaches

the far-field applied strain level at approximately one diameter length away from the center of the

bead. The high strain gradient will decrease the accuracy of the stretch-correlation by violating the

assumption of uniform stretch deformation. In such cases, iterative applications of the DVC using

a smaller subvolume will increase the accuracy of the measurements since each subvolume will be

subjected to a more uniform stretch.

Figure 2.24: Plot of the experimentally determined strain field ε33 as a function of outward distance
(x3 = 0 denotes the center of the inclusion) in the meridian plane of the spherical PMMA inclusion
under uniaxial compression

2.6 Summary of LSCM and DVC Development

A novel experimental technique for measuring three-dimensional large deformation fields in soft ma-

terials has been developed [17]. The technique utilizes the three-dimensional measurement capability

of the DVC algorithm in conjunction with the three-dimensional imaging capability of laser scanning

confocal microscopy. Introduction of the stretch-correlation algorithm and the deconvolution algo-

rithm greatly improved the strain measurement accuracy by providing better precision especially

under large deformation. Also, the large deformation measurement capability of the proposed DVC

algorithm was successfully demonstrated by measuring a uniform deformation field for the case of

simple uniaxial compression and a non-uniform deformation field surrounding both a hard and soft
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(void) spherical inclusion. This new technique should prove particularly useful in situations where

local three-dimensional strain non-uniformities need to be measured with high resolution. An ap-

plication of this technique in characterizing the three-dimensional time-dependent cell interactions

with its surrounding extracellular matrix are documented in the following chapters. While it is

anticipated that this technique will lead to valuable insights into the role of mechanical forces on

biological processes and mechanical characterization of biological materials in three dimensions, the

application of the DVC itself is not limited to usage with LSCM. Since DVC is a post-processing

technique, it renders itself as a quantitative full-field displacement measurement technique that can

be combined with many methods in experimental mechanics including computer tomography (CT)

scanning, magnetic resonance imaging (MRI), and many others.
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Chapter 3

Application of LSCM and DVC to
Migrating Fibroblasts

This chapter describes the experimental setup of the substrate-cell system that will be studied in

Chapter 4. In particular, the experimental procedure to produce polyacrylamide gel samples, cell

culturing, mechanical testing of the substrates as well as the LSCM live cell imaging setup are

described in detail below.

3.1 Experimental Procedure

Polyacrylamide gels are one of the most commonly used polymer-based substrate materials in study-

ing cell force responses due to their mechanical tunability, optical translucency, and elastic material

behavior [35]. By controlling the incorporation percentage or volume fraction of added crosslinker

N, N-methylene-bis-acrylamide (BIS), the Young’s modulus of each particular polyacrylamide gel

can be modified with a typical modulus ranging from around 1 - 20 kPa [14, 41, 49]. Polyacrylamide

substrates were prepared for all of the results shown in the subsequent chapters.

In order to control the thickness of each polyacrylamide substrate, a polyacrylamide solution of

known volume was pipetted onto a clean coverslip. A chemically-activated coverslip was then laid

on top of the solution causing the gel mixture to spread uniformly in-between both coverslips. After

the polymerization reaction of the polyacrylamide gel was completed, the bottom coverslip was re-

moved, and the polyacrylamide gel was left adherent to the activated bottom coverslip. The following
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protocols describe how to chemically activate the coverslips followed by the preparations of the poly-

acrylamide films, including biological functionalization of the polyacrylamide substrates through fi-

bronectin. Concluding this section is a description of the characterization of the fibronectin-modified

polyacrylamide substrates and the employed cell culture.

3.1.1 Preparation of Activated Coverslips

Glass coverslips (Gold-Seal coverslip No. 0, Electron Microscopy Sciences) were chemically modified

to allow for covalent attachment of polyacrylamide sheets using a previously established protocol

[40, 35]. Briefly, coverslips were rinsed with ethanol and then placed in a sample dish containing

a solution of 0.5% (v/v) 3-aminopropyltrimethoxysilane (Gelest) in ethanol for 5 minutes. The

coverslips were removed from the dish and rinsed thoroughly with ethanol before being immediately

submersed with the treated side facing upwards in a solution of 0.5% glutaraldehyde (Polysciences,

Inc.) and water for 30 minutes. Activated coverslips were rinsed thoroughly with deionized water

and left to dry for several hours at 60o C. Treated coverslips were then covered and stored at room

temperature for up to one week after the preparation.

3.1.2 Preparation of Polyacrylamide Films

Micron-sized polyacrylamide films were generated and fused to functionalized coverslips using a

previously adapted protocol [14, 40]. Two different solutions of polyacrylamide (Bio-Rad, 40% w/v)

and N, N-methylene-bis-acrylamide (BIS, Bio-Rad, 2.5% w/v) were mixed with distilled water to

obtain substrates with different mechanical properties. The first solution contains a total volume

fraction of 10% acrylamide and 0.015% BIS, whereas the second solutions consists of 10% acrylamide

and 0.0075% BIS total volume fraction. By adjusting the concentration of BIS in the formulation

mechanical properties of the polyacrylamide substrate was modified in a controlled manner. Next,

fluorescent micro-particles (0.5 µm in diameter, carboxylate-modified, Molecular Probes) in a 2%

(w/v) suspension were vortexed for 10-15 seconds and subsequently added to either polyacrylamide

solution in a volume ratio of 9:100. Crosslinking was initiated through the addition of ammonium
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persulfate (Sigma) and TEMED (Invitrogen). The samples were vortexed for 10 seconds, and 5-7

microliters of the acrylamide solution was pipetted on the surface of a precleaned microscope slide

(No. 1, 22 mm x 50 mm, VWR). To generate thicker films, 20-40 microliters of the solution were

used. The activated surface of the coverslip was then placed on top of the acrylamide droplet,

causing the solution to flatten under the weight of the coverslip. The entire assembly was set out

to allow complete polymerization for 5 minutes, and then placed in a 60 mm Petri dish (VWR)

containing distilled water for 10-30 minutes. The bottom coverslip was then peeled off using a pair

of tweezers, leaving the polyacrylamide gel bonded to the activated coverslip. The polyacrylamide

gel was then thoroughly rinsed with water and hydrated in a 60 mm Petri dish.

The thickness of each sample was measured by vertical slicing of the acquired volumetric confocal

images, and calculating the distance from the top layer of fluorescent particles to the bottom layer of

fluorescent beads. Sample thicknesses were controlled by adjusting the total volume of acrylamide

mixture used.

3.1.3 Functionalization of Polyacrylamide Substrates with Fibronectin

(FN)

In order to promote cell attachment to polyacrylamide films, a saturating density of fibronectin

was conjugated to the gel surface using the heterobifunctional crosslinker, sulfo-SANPAH (Pierce

Chemicals). Adopting a previously outlined procedure [14], polyacrylamide gel samples were briefly

dried in air to remove any excess water before 200 µl of sulfo-SANPAH (1.0 mg/ml) were deposited

on the surface of the film. The sample was then exposed to unfiltered UV light from a high-pressure

mercury lamp (Oriel Q 100W at 5 A, > 10 min warm up time) at a distance of 10 inches away

from the sample for 7.5 minutes. The darkened sulfo-SANPAH solution was subsequently removed

from the surface of the gel and replaced with another 200 µl aliquot solution of sulfo-SANPAH and

irradiated for another 7.5 minutes for a total of 15 minutes of UV exposure. The samples were

then rinsed vigorously with water for 5 minutes, and adhered to the bottom of 60 mm Petri dishes

(Becton Dickinson) by applying a thin layer of vacuum grease (Dow Corning) around the perimeter
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of the unmodified side of the coverslip. The samples were rinsed twice with phosphate buffered saline

(pH 7.4), and covered with a solution of fibronectin (FN, 0.2 mg/ml, Millipore) and left undisturbed

overnight at 4o C. Following overnight incubation, the substrates were rinsed three times with a

phosphate buffered saline (PBS) solution and sterilized by rinsing with ethanol before use.

3.1.4 Characterization of Fibronectin-Modified Films

A comparison of the relative concentration of covalently attached fibronectin on samples made with

varying percentages of crosslinker was conducted using a bicinchoninic acid (BCA) assay (Sigma).

In this assay, the relative protein concentration is exhibited as a color change in the sample solution

upon the addition of the copper/BCA reagents. The degree of color change can be quantified by

measuring the absorbance at 542 nm using a plate reader. A set of fibronectin-modified samples made

with varying crosslinker (BIS) percentages (3-4 total samples for each percentage) were prepared

as described above, and placed in a 6-well plate. However, fluorescent particles were not added to

the polyacrylamide samples in the BCA assays in order to avoid unintentional complications, since

the microparticles partially fluoresce at the absorbance wavelength of the plate reader. Negative

controls consisting of unmodified samples made with each crosslinker percentage were also prepared.

All samples were then treated with the copper/BCA reagent for 1 hour at 60o C, followed by an

absorbance reading. All tests were repeated twice. The absorbance reading for both sets of samples

showed similar absorbance values, and lie within the standard deviation calculated from the tested

samples. These results confirm that cells are responding to the difference in mechanical properties

and not differences in the chemical composition of the surfaces.

3.1.5 Cell Culture

Prior to depositing cells, fibronectin-modified gel samples were equilibrated in a growth medium

at 37o C for 15 minutes. Swiss 3T3 fibroblasts transfected with a green-fluorescent-protein-actin

(GFP-actin) vector (from Scott Frasier’s laboratory) were cultured in Dulbecco’s Modified Eagle

Medium (DMEM) supplemented with 10% fetal bovine serum, 50 µg/ml streptomycin, and 50 µg/ml
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penicillin. For all experiments, cells were first treated with Mitotracker Deep Red (Invitrogen)

for 45 minutes before passaging with trypsin. Mitotracker dyes accumulate in actively respiring

mitochondria providing a second method in addition to the GFP-actin vector for tracking the location

of cells on the material as well as showing cell viability. Cells were plated at a concentration of ∼

40,000 cells/coverslip, and were incubated on samples for 8-12 hours before imaging.

3.2 Mechanical Testing of the Substrate Material

The mechanical properties of the substrates were determined by performing both unconfined and

confined compression testing on cylindrical polyacrylamide specimens using a custom-built compres-

sion setup [17]. The typical sample dimensions were 8 mm in diameter and 4 mm in height. The

displacements during each compression increment were controlled using a digital micrometer with a

resolution of 1 µm. The resulting nominal force was measured using a 10 g load cell (A.L. Design,

NY). For each volume fraction of polyacrylamide crosslinker 6-8 samples were tested in both confined

and unconfined uniaxial compression.

For unconfined tests, gel samples were cast in a circular washer secured to the bottom of a 60

mm diameter plastic Petri dish. Following polymerization (∼ 2-5 minutes), the washer was removed

from the dish and the sample was hydrated and left covered at room temperature overnight to

ensure hydrostatic (swelling) equilibrium. Prior to compression, the alignment of the setup with the

sample was inspected to ensure pure compression along the nominal loading axis. The samples were

compressed between the top platen of the compression setup and the bottom of the Petri dish with

a nominal strain increment of 1-2%. Force values were obtained continuously during each 5-minute

increment in order to detect any time-dependent relaxation of the material during the compression.

The typical total applied compressive strain was ∼ 13-15%. After complete loading, the sample

was successively unloaded using the same strain increments to record the entire loading-unloading

cycle. Figure 3.1 shows the raw data for an incremental loading cycle highlighting negligible time-

dependent material behavior, whereas Figure 3.2 shows the loading-unloading stress strain curve for

a typical sample.
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Figure 3.1: Representative force history plot
during uniaxial compression experiments on
a polyacrylamide gel showing negligible time-
dependent material behavior.

Figure 3.2: Representative loading and un-
loading stress-strain plot of a polyacrylamide
gel, highlighting the linear elastic material re-
sponse with negligible hysteresis.

The Young’s modulus for the polyacrylamide samples was calculated from each stress-strain

curve as E = σ33/ε33 (σ11 = σ22 = 0), where σ and ε denote the uniaxial engineering stress and

engineering strain. Table 3.1 summarizes the unconfined compression test results for two different

crosslinker volume fractions.

Crosslinker Volume Fraction Young’s Modulus (kPa)
0.015% BIS 9.64 ± 1.12
0.0075% BIS 0.82 ± 0.23

Table 3.1: Young’s modulus values for polyacrylamide substrates with different crosslinker volume
fraction.

In order to determine the Poisson’s ratio for each polyacrylamide gel, cylindrical specimens

were cast and polymerized in a confined Teflon sleeve 15 mm in diameter and about 8 mm in height.

Samples were hydrated following the same protocol as described above. The samples were compressed

following the same loading-unloading protocol used for the unconfined test. Using the determined

Young’s modulus value of the unconfined test case and observing that further compression beyond

an initial compression strain of ∼ 0.25% was not possible (due to the Poisson effect), Poisson’s ratio

was determined to be ∼ 0.48 - 0.5 according to the following equation:
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E =
σ33

ε33
=

(1− ν)
(1 + ν)(1− 2ν)

E, (3.1)

where E denotes the measured confined compression modulus, ν is the Poisson’s ratio, and E is the

Young’s modulus as determined from unconfined compression test. From this set of experiments,

Poisson’s ratio was taken to be 0.5, and the material behavior is described as a linearly elastic,

isotropic, incompressible for all traction calculations.

3.3 Live Cell Imaging

Three-dimensional image stacks were acquired using a Nikon C-1 confocal system mounted on a

TE-2000-U inverted optical microscope. A 40x CFI planar fluor air objective with a numerical

aperture of 0.6 was used in all experiments. Three laser lines were used to image the cells and

the fluorescent microparticles: an argon (488 nm) laser for the GFP-actin, a green helium neon

(543 nm) for the microparticles inside the polyacrylamide gels, and a red helium neon (633 nm)

illuminating Mitotracker Deep Red for mitochondrial labeling. Confocal stacks were acquired every

35 minutes for several hours at a resolution of 512 x 512 x Z voxels (x1 x x2 x x3), where Z ranges

from 120 250 pixels (voxels). Typical imaging areas were between 150-200 µm2 in-plane (x1, x2)

with imaged volume depth of ∼ 15 - 20 µm. Images with a larger field of view were captured before

and after experiments to ensure that measured displacements were not the result of contributions

from neighboring cells. Physiological conditions were maintained during all times by housing the

entire confocal microscope inside a custom-built temperature-controlled chamber. The temperature

was controlled using a feedback controlled heater, Air-Therm ATX Air Heater Controller (World

Precision Instruments), and cell media PH-levels were maintained by the addition of arterial gas

(5% CO2, 20% O2, 75% N2) into the chamber.
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3.4 Establishing LSCM and DVC Resolution for Polyacry-

lamide Gels

Chapter 2 already presented the resolution of the LSCM-DVC technique, however, all measure-

ments in the development of this technique were performed at room temperature. Here, several

zero-load (baseline) measurements were performed on fibronectin-modified polyacrylamide gels for

both crosslinker volume fraction levels at 37o C to establish the maximum resolution of the tech-

nique for softer materials at elevated temperatures. Table 3.2 shows representative results of the

fibronectin-modified polyacrylamide gels side by side with the earlier presented no-load DVC results

from an agarose gel. As can been seen in Table 3.2, the standard deviation of the experimental

uncertainties at room temperature and 37o C are similar in magnitude, highlighting subpixel or

submicron resolution.

25o C 37o C
u1 [voxel] 0.0605 0.0289
u2 [voxel] 0.0541 0.0282
u3 [voxel] 0.2106 0.187
ε11 (%) 6.39 x 10−3 6.59 x 10−2

ε22 (%) 9.80 x 10−3 6.04 x 10−2

ε33 (%) 0.260 0.526

Table 3.2: Standard deviation values for measured displacement fields in the undeformed condition
for agarose gels at 25o C and polyacrylamide gels at 37o C

This chapter describes the experimental setup to perform live cell imaging experiments using

laser scanning confocal microscopy including the fabrication of fibronectin-modified polyacrylamide

gel substrates with embedded submicron fluorescent particles. The next chapter presents the quan-

titative findings of cell induced material deformations during cell movement as imaged by laser

scanning confocal microscopy and analyzed by digital volume correlation.
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Chapter 4

Quantifying Three-Dimensional
Deformations of Migrating
Fibroblasts

This chapter presents the full-field displacements and tractions of 3T3 fibroblast cells during mi-

gration on polyacrylamide (PA) substrates of varying stiffness. The notation of a soft substrate

corresponds to a Young’s modulus of the polyacrylamide gel of ∼ 0.82 kPa, whereas stiff denotes

a Young’s modulus of ∼ 9.64 kPa as presented in Chapter 3. While the displacement fields are

calculated on a uniformly spaced Cartesian grid given by the DVC algorithm, the cell’s orientation

oftentimes does not follow a principal Cartesian coordinate direction. Hence, due to the finite grid

spacing used in the DVC calculations (8 voxels or ∼ 2 µm) interpolation may be necessary to de-

termine the displacement and strain field values for an arbitrary orientation. The data presented

here are interpolated only as necessary between grid points utilizing primarily a trilinear scheme.

Occasionally tricubic interpolation is utilized to better resolve steeper gradients, though trilinear

interpolation is generally preferred since it introduces less data smoothing. However, for additional

computational cost the DVC grid spacing could be reduced to a minimal value of 1 voxel. Yet this

cost is enormous (on the order of days to weeks per volume stack), and hence is not performed

within the scope of this study.
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4.1 Three-Dimensional Displacements and Tractions

This section defines the displacement and traction notations that will be used throughout the chapter.

It also describes how cell applied tractions are calculated. Chapter 2 described in depth how the

three-dimensional displacements and the associated strains are calculated. All of the calculated and

presented displacements, tractions and surface normals are referenced to the generalized Cartesian

coordinates x1, x2, x3.

4.1.1 Definition of the Three-Dimensional Displacement Vector

The three-dimensional displacement vector u, having components u1, u2, and u3, is defined as

u =


u1

u2

u3

 , (4.1)

with its magnitude given by

|u| =
√
u2

1 + u2
2 + u2

3. (4.2)

4.1.2 Traction Calculations

Chapter 3 presented the material characterization of the polyacrylamide gels, and it was experi-

mentally shown that these can be reasonably treated as isotropic, linearly elastic, incompressible,

time-independent materials for the context of the here presented study. At each time increment the

cell-induced strains were computed and it was found that the strains were within the linear range

of the material behavior, in particular, the strain magnitudes per time increment were consistently

found to be less than 5%. Chapter 2 described how the strain tensor is calculated, which will be

denoted here as ε.

In order to calculate traction stresses including surface tractions, the stress tensor σ needs to be
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determined first, and is calculated, based on the above constitutive properties as

σ = 2µε, (4.3)

where µ is the shear modulus, which is related to Young’s modulus E and to Poisson’s ratio ν by

E = 2µ(1 + ν). (4.4)

Calculation of the traction stresses involves using the well-known Cauchy relation

T = σ · n, (4.5)

where T is defined as the three-dimensional traction vector, and n is the surface normal of an

arbitrary plane on which T acts given by

T =


T1

T2

T3

 , (4.6)

and

n =


n1

n2

n3

 . (4.7)

The magnitude of the three-dimensional traction vector is then defined as

|T| =
√
T 2

1 + T 2
2 + T 2

3 . (4.8)

All tractions are presented in units of pN/µm2 or Pascal (Pa), and can also be represented as a

individual traction forces per unit area.
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4.2 Three-Dimensional Cell-Induced Displacements During

Cell Migration on Soft Substrates

Full-field displacement measurements were carried out using the LSCM-DVC technique applied to

migrating 3T3 Fibroblast cells on soft polyacrylamide gels. The results shown here represent the

cell-induced deformation fields that were observed tracking single cells over an extended period of

time. Confocal volume stacks were recorded at 35 min time increments, while each cell was tracked

over several hours. Further details of the imaging conditions including the size of the imaged volumes

is described in Chapter 3. Time t0 denotes the start point of each experiment, whereas t1 describes

the first 35 min time increment. Altough the initial cell spreading time history was not recorded,

the results display snapshots of the dynamic interactions between the single fibroblast cell and the

substrate. The substrate thickness for the subsequently shown results is 40 µm. In order to reduce

the effects of phototoxicity and photobleaching during cell imaging, the imaged confocal volume size

was limited to 48% of the total substrate thickness. As the subsequent Figs. show, this volume

size is sufficient to capture most of the cell-induced deformation field within the resolution limits of

the technique. The LSCM-DVC method is able to detect displacement changes greater than 0.12

µm, where 0.12 µm was determined to be the sensitivity threshold through baseline tests. These

baseline tests consist of the same material and experimental setup but without any cells present,

which allows establishing the measurement sensitivity.

The cell is visualized simultaneously with the displacement of the fluorescent particles inside

the polyacrylamide gels using two separate photodetectors. This procedure allows correlating the

position of the cell determined by the GFP-actin fluorescent marker construct with the substrate

displacement field. GFP-actin highlights the actin filaments of the cell, which are one of the three

main structural filaments comprising a cell. Therefore, GFP-actin can be used the visualize the shape

of the cell during the migration increments. However, due to the finite life-time of the fluorescent

protein marker used to visualize the cell shape, occasionally parts of the cell are not visible at

locations where considerable deformations are observed.



49

Figure 4.1 shows a time evolution of the surface displacement fields beneath a migrating cell over

a time span of 140 min. The color contour plots display the magnitude of the three-dimensional

displacement vector |u| in µm. The linear dimension of the cell along its major axis in all of the

plots is approximately 100 µm. The direction of cell migration is from the left to the right. The cell

migration speed, as determined by tracking the nucleus of the cell, is ≈ 18 µm/hr, which is within

the range of reported fibroblast migration speeds on polyacrylamide gels [29].

(a) Cell-induced surface displacements at t1 = 35 min (b) Cell-induced surface displacements at t2 = 70 min

(c) Cell-induced surface displacements at t3 = 105 min (d) Cell-induced surface displacements at t4 = 140 min

Figure 4.1: Surface contour plots of the magnitude of the three-dimensional displacement vector during
cell migration. The color bar represents the magnitude of the total three-dimensional displacement
vectors in µm, and the cell (green) is superimposed on the three-dimensional contour plots to show its
position with respect to the deformation field.
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Figure 4.2 shows the time evolution of the displacement field along an arbitrary slice beneath the

migrating cell’s long axis over a time span of 140 min. Here the decay of the magnitude of the three-

dimensional displacement vectors are shown for the same time series as in Fig. 4.1. The color contour

plots display the magnitude of the three-dimensional displacement vector in µm. The displacement

contour slices highlight the dynamic interaction of the cell with its substrate as characterized by

changes in magnitudes and location of the observed displacements.

Figure 4.3 examines the displacement field of the arbitrary planar slice in Fig. 4.2(a) in more

detail. Figure 4.3(a) shows the magnitude of the three-dimensional displacement vector as color

contours along the same planar slice, while the white arrows represent the (u3, u1) displacement

components. The color bar displays the units in µm, whereas the magnitude of the longest arrow

corresponds to 0.8 µm. Figure 4.3(b) plots an enlarged picture of Fig. 4.3(a) highlighting an

arbitrarily chosen location to generate a line profile of each displacement component as a function

of depth (x3), which is shown in Fig. 4.3(c). While the overall displacement magnitude decays

approximately as x3/2
3 , the magnitude of the individual displacement components highlights the

importance of the u3 component at that particular time increment (t1).

Figure 4.4 displays the displacement distribution along the same arbitrary plane as in Fig. 4.3 for

the next time increment t2 = 70 min. Figure 4.4(a) shows the magnitude of the three-dimensional

displacement vector as color contours along the same planar slice, while the white arrows repre-

sent the (u3, u1) displacement components. The color bar displays the units in µm, whereas the

magnitude of the longest arrow corresponds to 0.8 µm. Figure 4.3(b) plots an enlarged picture of

Fig. 4.3(a) highlighting an arbitrarily chosen location to generate a line profile of each displacement

component as a function of penetration depth (x3), which is shown in Fig. 4.3(c). The displacement

contour and line profiles show a slower decay with thickness than presented in Fig. 4.3 at time t1.

Figures 4.5 and 4.6 display the surface displacement fields presented in Figs. 4.1(a) and 4.1(b) in

more detail. In particular, Fig. 4.5(a) shows the magnitude of the three-dimensional displacement

vector as color contours directly underneath the migrating cell, while the white arrows represent the

{u1, u2} displacement components. The color bar displays the units in µm, whereas the magnitude
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(a) Cell-induced displacements at t1 = 35 min (b) Cell-induced displacements at t2 = 70 min

(c) Cell-induced displacements at t3 = 105 min (d) Cell-induced displacements at t4 = 140 min

Figure 4.2: Arbitrary displacement contour slices along the long axis of the cell. The slices of
displacement contours underneath migrating cells show significant deformation in the normal plane
that decay along the thickness of the sample. The two edges in the image are included to show that
there are negligible displacements detected from neighboring cells (contours are dark blue). The color
bar represents the magnitude of the total three-dimensional displacement vectors in µm, and the cell
(green) is superimposed on the three-dimensional contour plots to show its position with respect to the
deformation field.
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(a) Cross-sectional displacement contour plot through the substrate thickness at t1 = 35 min

(b) Enlarged view of the contour plot in 4.3(a) and location of
displacement line plot shown in 4.3(c)

(c) Displacement line profile through the thickness of the gel
(x3). The maximum x3 value corresponds to the gel surface.

Figure 4.3: Displacement contour and line plot profiles as a function of depth (x3) through the
thickness of the gel. Figure 4.3(a) shows the same displacement contours along the long axis of the
cell as shown in Fig. 4.2(a), where the color bar represents the magnitude of the three-dimensional
displacement vectors in µm, and the white arrows show the direction of the in-plane (u1,u3) displacement
components only. Figure 4.3(b) shows the zoom-in image of Fig. 4.3(a), whereas Fig. 4.3(c) illustrates
the decay of all three displacement components in the x3 direction, where x3 = 14 represents the
location of the top surface.
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(a) Cross-sectional displacement contour plot through the substrate thickness at t2 = 70 min

(b) Enlarged view of the contour plot in 4.4(a) and location of
displacement line plot shown in 4.4(c)

(c) Displacement line profile through the thickness of the gel
(x3). The maximum x3 value corresponds to the gel surface.

Figure 4.4: Displacement contour and line plot profiles as a function of depth (x3) through the
thickness of the gel. Figure 4.4(a) shows the same displacement contours along the long axis of the
cell as shown in Fig. 4.2(b), where the color bar represents the magnitude of the three-dimensional
displacement vectors in µm, and the white arrows show the direction of the in-plane (u1,u3) displacement
components only. Figure 4.3(b) shows the zoom-in image of Fig. 4.3(a), whereas Fig. 4.3(c) illustrates
the decay of all three displacement components in the x3 direction, where x3 = 14 represents the
location of the top surface.
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of the longest arrow corresponds to 1.6 µm. Figure 4.5(b) plots an enlarged picture of Fig. 4.5(a)

highlighting an arbitrarily chosen location to generate a line profile of each displacement component

as a function of spatial distance, which is shown in Fig. 4.3(c). Here, the displacement distribution

follows an almost Gaussian profile obtaining a maximum value of 1.8 µm over a length of ∼ 1

µm, most likely corresponding to the particular location of a focal adhesion complex. As shown in

Fig. 4.3(c), the u3 displacement components obtain their local maximum values around the overall

displacement peak, with a minimum at the location where the overall displacements are maximum.

Figure 4.6(a) shows the same series of plots as Fig. 4.5(a) for the next time increment (t2 =

70 min). The color contours display the magnitude of the three-dimensional displacement vector

underneath the fibroblast, while the white arrows represent the (u1, u2) displacement components.

The color bar displays the units in µm, whereas the magnitude of the longest arrow corresponds to

1.8 µm. Figure 4.6(b) plots an enlarged picture of Fig. 4.6(a), highlighting an arbitrarily chosen

location to generate a line profile of each displacement component as a function of spatial distance,

which is shown in Fig. 4.3(c). The line profiles for both Figs. 4.3(c) and 4.4(c) were chosen at the

leading edge of the motile cell. Comparing the contour plots and in particular the line profile plots,

Fig. 4.4(c) shows a similar displacement distribution profile. In particular, the u3 displacement

component follows the same trend as in Fig. 4.3(c) attaining two local maxima right before the

maximum peak in the total displacement, showing a minimum at the overall displacement peak

itself. However, instead of showing only one single total displacement peak, Fig. 4.4(c) depicts two

local maxima over an approximate distance of ∼ 1 µm.

Figure 4.7 compares the surface displacement fields directly underneath the migrating cells shown

in Fig. 4.1(a) and 4.1(b) by highlighting the contribution of the u3 displacement component. Figures

4.7(a) and 4.7(c) show the displacement contours of the magnitude of the three-dimensional displace-

ment vector whereas Figs. 4.7(b) and 4.7(d) display the magnitude of only the two-dimensional (u1,

u2) displacement vectors. Side-by-side comparison reveals that most of the deformation occurs in-

plane, i.e. (u1, u2) are dominating, however there are particular areas where the u3 displacement

component proves to be significant. These areas are found along the periphery of the maximum
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(a) Surface displacement contour plot underneath the migrating
cell at t1 = 35 min

(b) Enlarged view of the contour plot in 4.5(a) and location of
displacement line plot shown in 4.5(c) (dashed line)

(c) Surface displacement profile along the selected line in 4.5(b)

Figure 4.5: Surface displacement contour and line plot profiles along a particular line in the x1 − x2

surface plane at t1 = 35 min. Figure 4.5(a) shows the same displacement contours as shown in Fig.
4.1(a), where the color bar represents the magnitude of the three-dimensional displacement vectors in
µm, and the white arrows show the direction of the in-plane (u1,u2) displacement components only.
Figure 4.5(b) shows the zoom-in image of Fig. 4.5(a) highlighting the particular region where the line
plot was generated. Figure 4.5(c) illustrates the distribution of all three displacement components along
the selected line.
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(a) Surface displacement contour plot underneath the migrating
cell at t2 = 70 min

(b) Enlarged view of the contour plot in 4.6(a) and location of
displacement line plot shown in 4.6(c) (dashed line)

(c) Surface displacement profile along the selected line in 4.6(b)

Figure 4.6: Surface displacement contour and line plot profiles along a particular line in the x1 − x2

surface plane at t2 = 70 min. Figure 4.6(a) shows the same displacement contours as shown in Fig.
4.1(b), where the color bar represents the magnitude of the three-dimensional displacement vectors in
µm, and the white arrows show the direction of the in-plane (u1,u2) displacement components only.
Figure 4.5(b) shows the zoom-in image of Fig. 4.6(a) highlighting the particular region where the line
plot was generated. Figure 4.6(c) illustrates the distribution of all three displacement components along
the selected line.
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displacement peaks, and are also observed in Figs. 4.5(c) and 4.6(c).

(a) Cell-induced surface displacements (3D) at t1 = 35 min (b) Cell-induced surface displacements (2D) at t1 = 35 min

(c) Cell-induced surface displacements (3D) at t2 = 70 min (d) Cell-induced surface displacements (2D) at t2 = 70 min

Figure 4.7: Comparison between the displacement magnitude of all three-dimensional vector compo-
nents (4.7(a) and 4.7(c)) and the magnitude of the two-dimensional vector components only (4.7(b)
and 4.7(d)). The color bar is displaying all displacement values µm, and and the white arrows show
the direction of the in-plane (u1,u2) displacement components only.
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4.3 Three-Dimensional Tractions During Cell Migration on

Soft Substrates

This section presents the tractions calculated based upon the measured displacement fields reported

in the previous section. Since the determination of the tractions involves calculating the strain

tensor and the experimental determination of material constants, the sensitivity of the LSCM-

DVC technique in terms of the calculated tractions needs to be assessed. This is accomplished by

performing experiments using the same materials setup as in the case for the migrating fibroblasts,

but without any cells present. Hence, the measured displacements and calculated tractions are solely

due to thermal fluctuations, instrumental and measurement error, and thus establish the sensitivity

of the traction calculations. Using standard error analysis the technique can accurately detect

stresses and tractions that are greater than 8 Pa or 8 pN/µm2. All of the subsequently presented

Figs. are from the same data set as the displacement results reported in Section 4.2.

Figure 4.8 shows a time evolution of the cell surface tractions during migration over a time

span of 140 min. The color contour plots display the magnitude of the three-dimensional traction

vector in pN/µm2. Again, the linear dimension of the cell in all of the plots is approximately

100 µm. The direction of cell migration is from the left to the right. The localized nature of the

tractions is clearly visible in all time frames. As explained earlier due to the degradation of the

actin-fluorescent cell stain (GFP-actin), the cell’s outline is not always visible directly above some

of the stress concentration locations, although the cell is still transmitting force there, as has been

confirmed through multiple experiments where GFP-actin was clearly visible.

Figure 4.9 shows the time evolution of the traction field along an arbitrary slice beneath the

migration cell’s long axis over a time span of 140 min. The tractions acting along the shown plane

were calculated through the Cauchy relationship (see Section 4.1.2) with the stress tensor, where

the plane is defined by its normal, n = (n1 n2 0)T , where n1 and n2 can be expressed in terms

of sine and cosine of the in-plane angle that defines each arbitrarily chosen plane. The decay of the

magnitude of the three-dimensional traction vector is shown for the same time series as in figure
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(a) Cell-induced surface tractions at t1 = 35 min (b) Cell-induced surface tractions at t2 = 70 min

(c) Cell-induced surface tractions at t3 = 105 min (d) Cell-induced surface tractions at t4 = 140 min

Figure 4.8: Surface contour plots of the magnitude of the three-dimensional traction vector during
cell migration. The color bar represents the magnitude of the total three-dimensional surface traction
vectors in pN/µm2, and the cell (green) is superimposed on the three-dimensional contour plots to
show its position with respect to the traction field.
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4.8. The color contour plots display the magnitude of the three-dimensional traction vector in

pN/µm2. The traction contour slices highlight the dynamic interaction of the cell with its substrate

characterized by changes in magnitudes and location of the observed tractions. It should be noted

that in figure 4.9(d) the cell outline extends past the rear end of the stress concentration (around

x1 = 30 µm, x2 = 120 µm).

Figure 4.10 shows the traction field of the arbitrary planar slice shown in Fig. 4.9(a) in more

detail. Figure 4.10(a) shows the magnitude of the three-dimensional traction vector as color contours

along the same planar slice, while the white arrows represent the (T3, T1) traction vector components.

The color bar displays the units in pN/µm2, whereas the magnitude of the longest arrow corresponds

to 40 pN/µm2. Figure 4.10(b) plots an enlarged picture of Fig. 4.10(a) highlighting an arbitrarily

chosen location to generate a line profile of each traction component as a function of depth (x3),

which is shown in Fig. 4.10(c). Comparing the decay of the magnitude of the three-dimensional

traction vector to the decay of the total displacement vector in Fig. 4.3(c), the tractions decay

noticeably faster than the corresponding displacements.

Figure 4.11 displays the distribution of the tractions along the same arbitrary plane as in Fig.

4.10 for the next time increment t2 = 70 min. Figure 4.11(a) shows the magnitude of the three-

dimensional traction vectors as color contours along the same planar slice, while the white arrows

represent the (T3, T1) displacement components. The color bar displays the units in pN/µm2,

whereas the magnitude of the longest arrow corresponds to 100 pN/µm2. Figure 4.11(b) plots an

enlarged picture of Fig. 4.11(a), highlighting an arbitrarily chosen location to generate a line profile

of each traction component as a function of depth (x3), which is shown in Fig. 4.11(c). The traction

contours and line profiles show a similar decay with thickness as presented in Fig. 4.10 at time

t1, however, in Fig. 4.11(c) T3 is the dominant force term as compared to Fig. 4.10(c) where the

in-plane tractions are most significant.

Figures 4.12(a) and 4.13(a) display the surface traction fields presented in Figs. 4.8(a) and

4.8(b) in more detail. In particular, Fig. 4.5(a) shows the magnitude of the three-dimensional

traction vectors as color contours directly underneath the migrating cell, while the white arrows



61

(a) Cell tractions at t1 = 35 min (b) Cell tractions at t2 = 70 min

(c) Cell tractions at t3 = 105 min (d) Cell tractions at t4 = 140 min

Figure 4.9: Arbitrary traction contour slices along the long axis of the cell. The color bar indicates
the magnitude of the three-dimensional traction vectors along that particular plane in units of pN/µm2.
The slices of the traction contours underneath the migrating cells correspond to the displacement slices
shown in Fig. 4.2. The two edges in the image are included to show that there are negligible tractions
detected from neighboring cells (contours are dark blue). The cell (green) is superimposed on the
three-dimensional contour plots to show its position with respect to the traction field.
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(a) Cross-sectional traction contour plot through the substrate thickness at t1 = 35 min

(b) Enlarged view of the contour plot in 4.10(a) and the location
of traction line plot shown in 4.10(c)

(c) Traction force line profile through the thickness of the gel
(x3). The maximum x3 value corresponds to the gel surface

Figure 4.10: Traction contour and line plot profiles as a function of depth (x3) through the thickness
of the gel at time t1 = 35 min. Figure 4.10(a) shows the same traction contours along the long axis of
the cell as shown in Fig. 4.9(a), where the color bar represents the magnitude of the three-dimensional
traction vectors along that particular plane, and the white arrows show the direction of the in-plane
(T1,T3) traction components only. Figure 4.10(b) shows the zoom-in image of Fig. 4.10(a), whereas
Fig. 4.10(c) illustrates the decay of all traction components and the magnitude of the three-dimensional
traction vector in the x3 direction. The color bar units are displayed in pN/µm2.
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(a) Cross-sectional traction contour plot through the substrate thickness at t1 = 70 min

(b) Enlarged view of the contour plot in 4.11(a) and location of
the traction line plot shown in 4.11(c)

(c) Traction line profile through the thickness of the gel (x3).
The maximum x3 value corresponds to the gel surface.

Figure 4.11: Traction contour and line plot profiles as a function of depth (x3) through the thickness
of the gel at time t2 = 70 min. Figure 4.11(a) shows the same traction contours along the long axis of
the cell as shown in Fig. 4.9(b), where the color bar represents the magnitude of the three-dimensional
traction vectors along that particular plane, and the white arrows show the direction of the in-plane
(T1,T3) traction components only. Figure 4.11(b) shows the zoom-in image of Fig. 4.11(a), whereas
Fig. 4.11(c) illustrates the decay of all traction components and the magnitude of the three-dimensional
traction vector in the x3 direction. The color bar units are displayed in pN/µm2.
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represent the (T1, T2) traction components. The color bar displays the units in pN/µm2, whereas

the magnitude of the longest arrow corresponds to 140 pN/µm2. Figure 4.12(b) plots an enlarged

picture of Fig. 4.12(a), highlighting an arbitrarily chosen location to generate a line profile of each

traction component as a function of spatial distance, which is shown in Fig. 4.12(c). Here, the

tractions follow an almost Gaussian distribution obtaining a maximum value of 172 pN/µm2 over a

length of ∼ 1 µm, most likely corresponding to the particular location of a focal adhesion complex.

Figure 4.13(a) shows the same series of plots as Fig. 4.12(a) for the next time increment (t2

= 70 min). The color contours display the magnitude of the three-dimensional traction vectors

underneath the fibroblast, while the white arrows represent the (T1, T2) traction components. The

color bar displays the units in pN/µm2, whereas the magnitude of the longest arrow corresponds to

140 pN/µm2. Figure 4.13(b) plots an enlarged picture of Fig. 4.13(a), highlighting an arbitrarily

chosen location to generate a line profile of each traction component (T1, T2, T3) and the magnitude

of the three-dimensional traction vector (|T|) as a function of spatial distance, which is shown in

Fig. 4.3(c). The line profiles in Figs. 4.3(c) and 4.13(c) were chosen at the leading edge of the

motile cell. Comparing the contour plots and in particular the two line profile plots, Fig. 4.13(c)

shows a broader traction profile with two local maxima. The T1 traction component attains a

single maximum coinciding with the maximum peak of the total traction vector. The T2 traction

component obtains two smaller single peaks at the same spatial location as the overall traction

vector, while the T3 traction component reaches its highest value close to the location where the

local minimum value of the total traction vector is shown.

Figure 4.14 compares the surface traction fields directly underneath the migrating cells shown

in Figs. 4.8(a) and 4.8(b) by highlighting the contribution of the T3 traction component. Figures

4.14(a) and 4.14(c) show surface contours of the magnitude of the three-dimensional traction vectors

whereas Figs. 4.14(b) and 4.14(d) display the magnitude of only the two-dimensional, in-plane (T1,

T2) traction vectors. Side-by-side comparison reveals that the cell applies mostly shear tractions

(T1, T2). While the contribution of T3 is observed in a few areas, shown in Figs. 4.12(c) and 4.13(c),

its overall contribution is relatively insignificant for the given time increments t1 and t2.
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(a) Surface tractions contour plot underneath the migrating cell
at t1 = 35 min

(b) Enlarged view of the contour plot in 4.12(a) and location of
the traction line plot shown in 4.12(c)

(c) Traction force profile along the selected line in 4.12(b)

Figure 4.12: Surface tractions contour and line plot profiles along a particular line in the x1− x2 top
surface plane at t1 = 35 min. Figure 4.12(a) shows the same traction contours as shown in Fig. 4.8(a),
where the color bar represents the magnitude of the three-dimensional surface traction vectors and
the white arrows show the direction of the in-plane (T1,T2) traction components only. The color bar
units are in pN/µm2. Figure 4.5(b) shows the zoom-in image of Fig. 4.12(a) highlighting the particular
region, where the line plot was generated. Figure 4.12(c) illustrates the distribution of all three traction
components and the magnitude of the three-dimensional traction vector along the drawn line.
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(a) Surface tractions contour plot underneath the migrating cell
at t2 = 70 min

(b) Enlarged view of the contour plot in 4.13(a) and location of
the traction line plot shown in 4.13(c)

(c) Traction force profile along the selected line in 4.13(b)

Figure 4.13: Surface traction contour and line plot profiles along a particular line in the x1 − x2

top surface plane at t2 = 70 min. Figure 4.13(a) shows the same traction force contours as shown in
Fig. 4.8(b), where the color bar represents the magnitude of the three-dimensional surface traction
vectors and the white arrows show the direction of the in-plane (T1,T2) traction components only. The
color bar units are pN/µm2. Figure 4.6(b) shows the zoom-in image of Fig. 4.13(a) highlighting the
particular region, where the line plot was generated. Figure 4.13(c) illustrates the distribution of all
three traction components and the magnitude of the three-dimensional traction vector along the drawn
line.
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(a) Cell-induced surface tractions (3D) at t1 = 35 min (b) Cell-induced surface tractions (2D) at t1 = 35 min

(c) Cell-induced surface tractions (3D) at t2 = 70 min (d) Cell-induced surface tractions (2D) at t2 = 70 min

Figure 4.14: Comparison between the magnitude of the three-dimensional traction vector (4.14(a) and
4.14(c)) and the magnitude of the two-dimensional traction vector (T1, T2) components only (4.14(b)
and 4.14(d))). The color bar is displaying all traction values in pN/µm2, and and the white arrows
show the direction of the in-plane (T1,T2) traction components only.
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4.4 Three-Dimensional Displacements During Cell Migration

on Stiff Substrates

This section presents the full-field three-dimensional displacements induced by migration cells on

stiff substrates (for definitions of soft and stiff refer to beginning of Chapter 4). All Figs. and results

are displayed in the same format as in the previous sections. One observation worth mentioning is

that the magnitude of the measured displacement fields are of the same order as those for the soft

substrates and thus appear independent of the Young’s modulus of the substrate material over the

range of moduli investigated. These findings are discussed in more detail in Section 4.7.

Figure 4.15 shows a time evolution of the surface displacement fields beneath a migration cell

over a time span of 140 min. The color contour plots display the magnitude of the three-dimensional

displacement vector in µm. The linear dimension of the cell in all of the plots is approximately 80

- 100 µm. The direction of cell migration is from the left to right. The cell migration speed, as

determined by tracking the nucleus of the cell, is ≈ 8 µm/hr.

Figure 4.16 shows the time evolution of the displacement field along an arbitrary slice beneath

the migration cell’s long axis over a time span of 140 min. Here the decay of the magnitude of

the three-dimensional displacement vectors are shown for the same time series as in Fig. 4.15.

The color contour plots display the magnitude of the three-dimensional displacement vector in µm.

The displacement contour slices highlight the dynamic interaction of the cell with its substrate

characterized by changes in magnitudes and location of the observed displacements.

Figure 4.17 shows the displacement field of the arbitrary planar slice in Fig. 4.16(a) in more

detail. Figure 4.17(a) shows the magnitude of the three-dimensional displacement vector as color

contours along the same planar slice, while the white arrows represent the (u3, u1) displacement

components. The color bar displays the units in µm, whereas the magnitude of the longest arrow

corresponds to 1 µm. Figure 4.17(b) plots an enlarged picture of Fig. 4.17(a), highlighting an

arbitrarily chosen location to generate a line profile of each displacement component as a function

of depth (x3), which is shown in Fig. 4.17(c). While the overall displacement magnitude
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(a) Cell-induced surface displacements at t1 = 35 min (b) Cell-induced surface displacements at t2 = 70 min

(c) Cell-induced surface displacements at t3 = 105 min (d) Cell-induced surface displacements at t4 = 140 min

Figure 4.15: Surface contour plots of the magnitude of the three-dimensional displacment vector dur-
ing cell migration. The color bar represents the magnitude of the total three-dimensional displacement
vectors in µm, and the cell (green) is superimposed on the three-dimensional contour plots to show its
position with respect to the deformation field.
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(a) Cell-induced displacements at t1 = 35 min (b) Cell-induced displacements at t2 = 70 min

(c) Cell-induced displacements at t3 = 105 min (d) Cell-induced displacements at t4 = 140 min

Figure 4.16: Arbitrary displacement contour slices along the long axis of the cell. The slices of
displacement contours underneath migrating cells show significant deformation in the normal plane
that decay along the thickness of the sample. The two edges in the image are included to show that
there are negligible displacements detected from neighboring cells (contours are dark blue). The color
bar represents the magnitude of the total three-dimensional displacement vectors in µm, and the cell
(green) is superimposed on the three-dimensional contour plots to show its position with respect to the
deformation field.
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(a) Cross-sectional displacement contour plot through the substrate thickness at t1 = 35 min

(b) Enlarged view of the contour plot in 4.17(a) and location of
displacement line plot shown in 4.17(c)

(c) Displacement line profile through the thickness of the gel
(x3). The maximum x3 value corresponds to the gel surface.

Figure 4.17: Displacement contour and line plot profiles as a function of depth (x3) through the
thickness of the gel. Figure 4.17(a) shows the same displacement contours along the long axis of the
cell as shown in Fig. 4.16(a), where the color bar represents the magnitude of the three-dimensional
displacement vectors in µm, and the white arrows show the direction of the in-plane (u1,u3) displacement
components only. Figure 4.17(b) shows the zoom-in image of Fig. 4.17(a), whereas Fig. 4.17(c)
illustrates the decay of all three displacement components and the magnitude of the three-dimensional
displacement vector in the x3 direction.
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decays approximately as x3/2
3 , the magnitude of the individual displacement components highlights

the importance of the u3 component at that particular time increment (t1). Figure 4.18 displays the

displacement distribution along the same arbitrary plane as in Fig. 4.17 for the next time increment

t2 = 70 min. Figure 4.18(a) shows the magnitude of the three-dimensional displacement vector as

color contours along the same planar slice, while the white arrows represent the (u3, u1) displacement

components. The color bar displays the units in µm, whereas the magnitude of the longest arrow

corresponds to 0.6 µm. Figure 4.17(b) plots an enlarged picture of Fig. 4.17(a), highlighting an

arbitrarily chosen location to generate a line profile of each displacement component as a function

of depth (x3), which is shown in Fig. 4.17(c). The displacement contour and line profiles show a

similar decay with thickness than presented in Fig. 4.17 at time t1.

Figures 4.19 and 4.20 display the surface displacement fields presented in Figs. 4.15(a) and

4.15(b) in more detail. In particular, Fig. 4.19(a) shows the magnitude of the three-dimensional

displacement vector as color contours directly underneath the migrating cell, while the white arrows

represent the (u1, u2) displacement components. The color bar displays the units in µm, whereas

the magnitude of the longest arrow corresponds to 1.4 µm. Figure 4.19(b) plots an enlarged picture

of Fig. 4.19(a), highlighting an arbitrarily chosen location to generate a line profile of each displace-

ment component as a function of spatial distance, which is shown in Fig. 4.17(c). The displacement

distribution is primarily dominated by the in-plane displacements with the u3 displacement com-

ponent showing its highest values at the periphery of the line profile. This particular displacement

trend for the u3 component is also observed in the softer substrate materials (see Fig. 4.5 and 4.6).

Figure 4.20(a) shows the same series of plots as Fig. 4.19(a) for the next time increment (t2 =

70 min). The color contours display the magnitude of the three-dimensional displacement vector

underneath the fibroblast, while the white arrows represent the (u1, u2) displacement components.

The color bar displays the units in µm, whereas the magnitude of the longest arrow corresponds to

1.8 µm. Figure 4.20(b) plots an enlarged picture of Fig. 4.20(a), highlighting an arbitrarily chosen

location to generate a line profile of each displacement component as a function of spatial distance,

which is shown in Fig. 4.17(c). The line profiles for both Figs. 4.17(c) and 4.18(c) were chosen at
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(a) Cross-sectional displacement contour plot through the substrate thickness at t2 = 70 min

(b) Enlarged view of the contour plot in 4.18(a) and location of
displacement line plot shown in 4.18(c)

(c) Displacement line profile through the thickness of the gel
(x3). The maximum x3 value corresponds to the gel surface.

Figure 4.18: Displacement contour and line plot profiles as a function of depth (x3) through the
thickness of the gel. Part 4.18(a) shows the same displacement contours along the long axis of the
cell as shown in Fig. 4.16(b), where the color bar represents the magnitude of the three-dimensional
displacement vectors in µm, and the white arrows show the direction of the in-plane (u1,u3) displacement
components only. Figure 4.18(b) shows the zoom-in image of Fig. 4.18(a), whereas Fig. 4.18(c)
illustrates the decay of all three displacement components and the magnitude of the three-dimensional
displacement vector in the x3 direction.
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(a) Surface displacement contour plot underneath the migrating
cell at t1 = 35 min

(b) Enlarged view of the contour plot in 4.5(a) and location of
displacement line plot shown in 4.19(c)

(c) Displacement profile along the selected line in 4.5(b)

Figure 4.19: Surface displacement contour and line plot profiles along a particular line in the x1− x2

top surface plane at t1 = 35 min. Figure 4.19(a) shows the same displacement contours as shown in Fig.
4.15(a), where the color bar represents the magnitude of the three-dimensional displacement vectors
in µm, and the white arrows show the direction of the in-plane (u1,u2) displacement components only.
Figure 4.19(b) shows the zoom-in image of Fig. 4.19(a) highlighting the particular region, where the
line plot was generated. Figure 4.19(c) illustrates the distribution of all three displacement components
and the magnitude of the three-dimensional displacement vector along the drawn line.
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the leading edge of the motile cell. Comparing the contour plots and in particular the line profile

plots, Fig. 4.18(c) shows a a narrower, Gaussian-like displacement distribution profile as compared

to Fig. 4.17(c).

Figure 4.21 compares the surface displacement fields directly underneath the migrating cells

shown in Fig. 4.15(a) and 4.15(b) by highlighting the contribution of the u3 displacement compo-

nent. Figures 4.21(a) and 4.21(c) show the displacement contours of the magnitude of the three-

dimensional displacement vector whereas Figs. 4.21(b) and 4.21(d) display the magnitude of only

the two-dimensional (u1, u2) displacement vectors. Side-by-side comparison reveals that most of the

deformation occurs in-plane (u1, u2), however there are particular areas where the u3 proves to be

significant. These areas are found along the periphery of the maximum displacement peaks, which

is also observed in Figs. 4.19(c) and 4.20(c).

4.5 Three-Dimensional Tractions During Cell Migration on

Stiff Substrates

This section presents the traction calculation based upon the measured displacement field reported

in Section 4.4. Following the same error analysis as in Section 4.3 the technique is sensitive to

stresses and tractions that are greater than 80 Pa or 80 pN/µm2. All of the subsequently presented

Figs. are from the same data set as the displacement results reported in Section 4.4.

Figure 4.22 shows a time evolution of the cell surface tractions during migration over a time

span of 140 min. The color contour plots display the magnitude of the three-dimensional traction

vector in pN/µm2. Again, the linear dimension of the cell in all of the plots is approximately 80 -

100 µm. The direction of cell migration is from the left to the right. The localized nature of the

tractions is clearly visible in all time frames. As described earlier, due to the degradation of the

actin-fluorescent cell stain (GFP-actin), the cell’s outline is not always visible directly above some

of the stress concentration locations, although the cell is still transmitting force there, as has been

confirmed through multiple experiments where GFP-actin was clearly visible.



76

(a) Surface displacement contour plot underneath the migrating
cell at t2 = 70 min

(b) Enlarged view of the contour plot in 4.6(a) and location of
displacement line plot shown in 4.20(c)

(c) Displacement profile along the selected line in 4.6(b)

Figure 4.20: Surface displacement contour and line plot profiles along a particular line in the x1− x2

top surface plane at t2 = 70 min. Figure 4.20(a) shows the same displacement contours as shown in Fig.
4.15(b), where the color bar represents the magnitude of the three-dimensional displacement vectors
in µm, and the white arrows show the direction of the in-plane (u1,u2) displacement components only.
Figure 4.19(b) shows the zoom-in image of Fig. 4.20(a) highlighting the particular region, where the
line plot was generated. Figure 4.20(c) illustrates the distribution of all three displacement components
and the magnitude of the three-dimensional displacement vector along the drawn line.
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(a) Cell-induced surface displacements (3D) at t1 = 35 min (b) Cell-induced surface displacements (2D) at t1 = 35 min

(c) Cell-induced surface displacements (3D) at t2 = 70 min (d) Cell-induced surface displacements (2D) at t2 = 70 min

Figure 4.21: Comparison between the displacement magnitude of all three-dimensional vector compo-
nents (4.21(a) and 4.21(c)) and the magnitude of the two-dimensional vector components only (4.21(b)
and 4.21(d)). The color bar is displaying all displacement values in µm, and and the white arrows show
the direction of the in-plane (u1,u2) displacement components only.
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(a) Cell-induced surface tractions at t1 = 35 min (b) Cell-induced surface tractions at t2 = 70 min

(c) Cell-induced surface tractions at t3 = 105 min (d) Cell-induced surface tractions at t4 = 140 min

Figure 4.22: Surface contour plots of the magnitude of the three-dimensional traction vector during
cell migration. The color bar represents the magnitude of the total three-dimensional surface traction
vectors with units in pN/µm2, and the cell (green) is superimposed on the three-dimensional contour
plots to show its position with respect to the traction field.
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Figure 4.23 shows the time evolution of the traction field along an arbitrary slice beneath the

migration cell’s long axis over a time span of 140 min. The tractions acting along the shown plane

were calculated as previously described (see Section 4.3). The decay of the magnitude of the three-

dimensional traction vector is shown for the same time series as in Fig. 4.22. The color contour plots

display the magnitude of the three-dimensional traction vector in pN/µm2. The traction contour

slices highlight the dynamic interaction of the cell with its substrate, characterized by changes in

magnitudes and location of the observed tractions. It should be noted that in all Figs. the actual cell

outline most likely extends further than is shown by the green rendered cell, where the GFP-actin

is degraded as explained earlier.

Figure 4.24 examines the traction field of the arbitrary planar slice in Fig. 4.23(a) in more detail.

Figure 4.24(a) shows the magnitude of the three-dimensional traction vector as color contours along

the same planar slice, while the white arrows represent the (T3, T1) traction vector components. The

color bar displays the units in pN/µm2, whereas the magnitude of the longest arrow corresponds to

3000 pN/µm2. Figure 4.24(b) plots an enlarged picture of Fig. 4.10(a), highlighting an arbitrarily

chosen location to generate a line profile of each traction component as a function of depth (x3),

which is shown in Fig. 4.24(c). The decay of the total traction vector appears to have two linear

regimes, one being dominated by the T3 component closer to the surface of the gel, and one farther

away from the surface, where T1 contributes most significantly.

Figure 4.25 displays the traction distribution along the same arbitrary plane as in Fig. 4.24 for

the next time increment t2 = 70 min. Figure 4.25(a) shows the magnitude of the three-dimensional

traction vectors as color contours along the same planar slice, while the white arrows represent the

(T3, T1) traction components. The color bar displays the units in pN/µm2, whereas the magnitude

of the longest arrow corresponds to 680 pN/µm2. Figure 4.25(b) plots an enlarged picture of

Fig. 4.25(a), highlighting an arbitrarily chosen location to generate a line profile of each traction

component as a function of depth (x3), which is shown in Fig. 4.25(c). The traction contours and

line profiles show a similar decay with thickness as presented in Fig. 4.24, however, in Fig. 4.25(c) T3

dominates the total traction vector throughout the entire imaged gel thickness, whereas the in-plane
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(a) Cell tractions at t1 = 35 min (b) Cell tractions at t2 = 70 min

(c) Cell tractions at t3 = 105 min (d) Cell tractions at t4 = 140 min

Figure 4.23: Arbitrary traction contour slices along the long axis of the cell. The color bar indicates the
magnitude of the three-dimensional traction vectors along that particular plane in units of pN/µm2.
The slices of the traction contours underneath migrating cells correspond to the displacement slices
shown in Fig. 4.16. The two edges in the image are included to show that there are negligible tractions
detected from neighboring cells (contours are dark blue). The cell (green) is superimposed on the
three-dimensional contour plots to show its position with respect to the traction field.
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(a) Cross-sectional tractions contour plot through the substrate thickness at t1 = 35 min

(b) Enlarged view of the contour plot in 4.24(a) and the location
of the traction line plot shown in 4.24(c)

(c) Traction force line profile through the thickness of the gel
(x3). The maximum x3 value corresponds to the gel surface.

Figure 4.24: Traction contour and line plot profiles as a function of depth (x3) through the thickness
of the gel at time t1 = 35 min. Figure 4.24(a) shows the same traction contours along the long axis of
the cell as shown in Fig. 4.23(a), where the color bar represents the magnitude of the three-dimensional
traction vectors along that particular plane, and the white arrows show the direction of the in-plane
(T1,T3) traction components only. Figure 4.24(b) shows the zoom-in image of Fig. 4.24(a), whereas
Fig. 4.24(c) illustrates the decay of all traction components and the magnitude of the three-dimensional
traction vector in the x3 direction. All color bar units are pN/µm2.
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(a) Cross-sectional tractions contour plot through the substrate thickness at t1 = 70 min

(b) Enlarged view of the contour plot in 4.11(a) and the location
of the traction line plot shown in 4.25(c)

(c) Traction line profile through the thickness of the gel (x3).
The maximum x3 value corresponds to the gel surface.

Figure 4.25: Traction contour and line plot profiles as a function of depth (x3) through the thickness
of the gel at time t2 = 70 min. Figure 4.25(a) shows the same traction contours along the long axis of
the cell as shown in Fig. 4.23(b), where the color bar represents the magnitude of the three-dimensional
traction vectors along that particular plane, and the white arrows show the direction of the in-plane
(T1,T3) traction components only. Figure 4.25(b) shows the zoom-in image of Fig. 4.25(a), whereas
Fig. 4.25(c) illustrates the decay of all traction components and the magnitude of the three-dimensional
traction vector in the x3 direction. All color bar units are pN/µm2.
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components T1 and T2 contribute primarily on the surface of the gel to |T|, the magnitude of the

total traction vector.

Figures 4.26(a) and 4.27(a) display the surface traction fields presented in Figs. 4.22(a) and

4.22(b) in more detail. In particular, Fig. 4.19(a) shows the magnitude of the three-dimensional

traction vectors as color contours directly underneath the migrating cell, while the white arrows

represent the (T1, T2) traction components. The color bar displays the units in pN/µm2, whereas

the magnitude of the longest arrow corresponds to 2730 pN/µm2. Figure 4.26(b) plots an enlarged

picture of Fig. 4.26(a), highlighting an arbitrarily chosen location to generate a line profile of each

traction component as a function of spatial distance, which is shown in Fig. 4.26(c). All three

traction components display a similar behavior in that they attain there maximum along the same

spatial position (x1 = 89 µm).

Figure 4.27(a) shows the same series of plots as Fig. 4.26(a) for the next time increment (t2

= 70 min). The color contours display the magnitude of the three-dimensional traction vectors

underneath the fibroblast, while the white arrows represent the (T1, T2) traction components. The

color bar displays the units in pN/µm2, whereas the magnitude of the longest arrow corresponds to

1000 pN/µm2. Figure 4.27(b) plots an enlarged picture of Fig. 4.13(a), highlighting an arbitrarily

chosen location to generate a line profile of each traction component as a function of spatial distance,

which is shown in Fig. 4.17(c). The line profiles in Figs. 4.17(c) and 4.27(c) were chosen at the

leading edge of the motile cell. Comparing the contour plots, and in particular the two line profile

plots, Fig. 4.26(c) shows a broader traction profile than Fig. 4.27(c).

Figure 4.28 compares the surface traction fields directly underneath the migrating cells shown

in Fig. 4.22(a) and 4.22(b) by highlighting the contribution of the T3 traction component. Figures

4.28(a) and 4.28(c) show surface contours of the magnitude of the three-dimensional traction vectors

whereas Figs. 4.28(b) and 4.28(d) display the magnitude of only the two-dimensional, in-plane (T1,

T2) traction vectors. Side-by-side comparison reveals that the cell applies mostly in-plane shear

tractions (T1, T2). Over the course of the shown time increments t1 and t2 the contribution of the

T3 traction component as shown in Figs. 4.26(c) and 4.27(c) is relatively insignificant.
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(a) Surface tractions contour plot underneath the migrating cell
at t1 = 35 min

(b) Enlarged view of the contour plot in 4.26(a) and the location
of the traction line plot shown in 4.26(c)

(c) Traction profile along the selected line in 4.26(b)

Figure 4.26: Surface traction contour and line plot profiles along a particular line in the x1 − x2 top
surface plane at t1 = 35 min. Figure 4.26(a) shows the same traction contours as shown in Fig. 4.22(a),
where the color bar represents the magnitude of the three-dimensional surface traction vectors and the
white arrows show the direction of the in-plane (T1,T2) traction components only. The color bar units
represent pN/µm2. Figure 4.19(b) shows the zoom-in image of Fig. 4.26(a) highlighting the particular
region, where the line plot was generated. Figure 4.26(c) illustrates the distribution of all three traction
components and the magnitude of the three-dimensional traction vector along the drawn line.
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(a) Surface tractions contour plot underneath the migrating cell
at t2 = 70 min

(b) Enlarged view of the contour plot in 4.27(a) and the location
of the traction line plot shown in 4.27(c)

(c) Traction profile along the selected line in 4.27(b)

Figure 4.27: Surface traction contour and line plot profiles along a particular line in the x1 − x2

surface plane at t2 = 70 min. Figure 4.27(a) shows the same traction contours as shown in Fig.
4.22(b), where the color bar represents the magnitude of the three-dimensional surface traction vectors
and the white arrows show the direction of the in-plane (T1,T2) traction components only. The color
bar units represent pN/µm2. Figure 4.6(b) shows the zoom-in image of Fig. 4.27(a) highlighting the
particular region, where the line plot was generated. Figure 4.27(c) illustrates the distribution of all
three traction components and the magnitude of the three-dimensional traction vector along the drawn
line.
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(a) Cell-induced surface tractions (3D) at t1 = 35 min (b) Cell-induced surface tractions (2D) at t1 = 35 min

(c) Cell-induced surface tractions (3D) at t2 = 70 min (d) Cell-induced surface tractions (2D) at t2 = 70 min

Figure 4.28: Comparison between the magnitude of the three-dimensional traction vector (4.28(a)
and 4.28(c) and the magnitude of the two-dimensional traction vector (T1, T2) components only (4.28(b)
and 4.28(d))). The color bar is displaying all traction values in pN/µm2, and and the white arrows
show the direction of the in-plane (T1,T2) traction components only.
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4.6 Inhibiting Cell Contractility and Cell Locomotion

In order to conclude that the experimentally observed displacements are indeed caused by cell-

mediated forces, cell displacements were monitored before and after the cells were treated with a

myosin II blocker. This blocker protein, blebbistatin (Sigma-Aldrich, St. Louis, MO), inhibits the

myosin II molecular motor proteins from moving along the cell’s actin filaments to cause cytoskeletal

contraction. Blebbistatin is commonly used in traction or traction force measurements to inhibit

actomyosin contraction in non-muscle cells [5, 6]. If the cell is unable to generate actomyosin based

internal forces that are transmitted through focal adhesions to the substrate, then there should be

be no evident substrate displacements. Hence, this experiment serves as a validation tool that the

previously observed displacements are in fact cell-mediated, and are not due to thermal fluctuation

or instrument noise. Confocal stacks of individual cells were captured 1-2 hours before treatment

with 12.5 µM blebbistatin, and up to 4 hours post-treatment. Figures 4.29(a) - 4.29(d) show the

resulting surface displacement fields before and after blebbistatin injection as displacement contours.

The contours represent the magnitude of the three-dimensional displacement vectors, whereas the

white arrows indicate the in-plane (u1,u2) displacements only. The color bar is indicating all values

in µm. Figure 4.29(e) shows the average maximum surface displacements achieved by a single cell

at time points before and after blebbistatin injection. Following the treatment, there is a notable

decrease in the average maximum displacement. Despite the cell’s presence, there are no detectable

displacements after 35 minutes. Identical experiments performed without cells and in the presence

of blebbistatin yielded no notable displacements, establishing that all measured displacements are

cell-induced.
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(a) Cell-induced surface displacements before blebbistatin treat-
ment

(b) Cell-induced surface displacements at blebbistatin injection

(c) Cell-induced surface displacements 35 min after treatment (d) Cell-induced surface displacements 245 min after treatment

(e) Plot of the average maximum observed cell-induced sur-
face displacement before and after treatment with blebbis-
tatin. (blebbistatin injection occured at stack #3.)

Figure 4.29: Successive time series of cell-induced surface displacements before (4.29(a) and 4.29(b))
and after treatment with blebbistatin (4.29(c) and 4.29(d)). Color contours display the magnitude of
the three-dimensional displacement vector, while the white arrows show the direction of the in-plane
(u1,u2) displacement components only. The color bar represents all values in µm.
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4.7 Comparison of Cell Response on Soft and Stiff Substrates

Comparing the magnitude of the measured displacement fields on soft and stiff substrates shows

similar values (same order of magnitude) during cell migration, suggesting that the cell actively

regulates the amount of force needed to generate enough surface displacements. Figures 4.30 and

4.31 show that while the magnitudes of the surface displacement on soft and stiff substrates display

values of the same magnitude order, the tractions are different by approximately a factor of ten.

The ratio of the soft and stiff substrate material Young’s moduli is also approximately ten, which

suggests that the cell tractions scale linearly with the Young’s moduli of the substrates studied here.

This trend is noticable throughout all of the experiments performed on both substrates, and this

scaling behavior has been observed previously [3].
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(a) Cell-induced surface displacements on soft polyacrylamide
gels at t1 = 35 min

(b) Cell-induced surface tractions on soft polyacrylamide gels at
t1 = 35 min

(c) Cell-induced surface displacements on stiff polyacrylamide
gels at t1 = 35 min

(d) Cell-induced surface tractions on stiff polyacrylamide gels at
t1 = 35 min

Figure 4.30: Comparison between the three-dimensional cell induced surface deformation on soft
(4.31(a) and 4.31(b)) and stiff (4.31(c) and 4.31(d)) polyacrylamide gel substrates for a 35 min time
increment. The color bar in Figs. 4.31(a) and 4.31(c) indicates all values in µm, whereas the color bar
in Figs. 4.31(b) and 4.31(d) displays all values in pN/µm2. The Young’s moduli of the soft and stiff
substrates are 0.82 and 9.64 kPa, respectively.
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(a) Cell-induced surface displacements on soft polyacrylamide
gels at t1 = 70 min

(b) Cell-induced surface tractions on soft polyacrylamide gels at
t1 = 70 min

(c) Cell-induced surface displacements on stiff polyacrylamide
gels at t1 = 70 min

(d) Cell-induced surface tractions on stiff polyacrylamide gels at
t1 = 70 min

Figure 4.31: Comparison between the three-dimensional cell induced surface deformation on soft
(4.31(a) and 4.31(b)) and stiff (4.31(c) and 4.31(d)) polyacrylamide gel substrates for a 35 min time
increment. The color bar in Figs. 4.31(a) and 4.31(c) indicates all values in µm, whereas the color bar
in Figs. 4.31(b) and 4.31(d) displays all measurements in pN/µm2. The Young’s moduli of the soft
and stiff substrates are 0.82 and 9.64 kPa, respectively.
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4.8 Implications of Three-dimensional Measurements for Cur-

rent Cell Motility Models

The deformation results presented in Sections 4.2 - 4.5 highlight the strong three-dimensional depen-

dence of cell-matrix interactions during cell migration. One important implication of these findings

is in the context of cell motility models that are typically based on existing two-dimensional cell

displacement and traction or traction force data. This section briefly reviews the basis of the most

widely accepted motility model based on two-dimensional experimental data, and gives an outlook on

a potential new cell migration mechanism based on the three-dimensional experimental observations

presented here. It should be noted however, that the suggested migration mechanism outlined here

is based on the results presented in the previous sections, and additional experiments are necessary

to elucidate this further.

One of the most commonly accepted cell motility models describes the process of cell motion

in four general steps, as illustrated in Fig. 4.32. The following is a summary of these steps, and

further detailed information can be found elsewhere [2, 1]. The first step, as shown in Fig. 4.32(a),

consists of the protrusion of actin fibers at the leading edge via actin polymerization. Typically, actin

polymerization rates vary and can be different at either end leading to differential polymerization or

treadmilling. This allows the cell to actively control the shape of its cytoskeleton. Next, the newly

formed protrusion will engage the substrates through ligand-receptor connection (Fig. 4.32(b)),

which generally involve the interplay of many focal adhesion proteins. This newly formed adhesion

anchor site, or focal adhesion complex, will be utilized later by the cell to transmit forces to the

substrate or matrix material. In step three, as shown in Fig. 4.32(c), the cell detaches from the

trailing edge by possibly disassembling the focal adhesion complex. Finally, the cell generates an

internal contractile force by the activation of actomyosin, and due to the imbalance of forces, propels

itself forward, as illustrated in Fig. 4.32(d).

While this description of cell movement is oversimplified, the basic cell-generated tractions re-

sponsible for cell motion are thought to be only planar. However, as shown in the previous sections,
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cell-induced displacements and tractions are not only planar but rather highly three-dimensional.

This is further illustrated in Fig. 4.33, where the cell seems to undergo a sort of peeling or rolling

motion during its movement from left to right. The leading edge of the cell is located towards the

right end of the Fig., whereas the trailing edge is located towards the left end (also, see Figs. 4.15

- 4.23). The Fig. illustrates the progression of the in-plane (T1) and normal (T3) shear tractions

underneath the long axis of the cell along the same arbitrarily selected slice as presented in Sections

4.4 and 4.5. The color contours display the magnitude of the three-dimensional traction vector,

while the black arrows indicate the (T1, T3) shear traction components. The time series shows the

evolution of the substrate shear tractions as the cell moves from the left to the right, suggesting a

potential peeling mechanism. Examining the magnitude of each of the T1 and T3 components in Fig.

4.34 elucidates this mechanism in more detail. The in-plane (T1) tractions seem to alternate between

local contraction and extension close to force equilibrium, while the normal (T3) tractions show a

net moment around the center of the cell body in Figs. 4.34(a) and 4.34(e). This implies the cell is

utilizing a more complex migration mechanism than previously thought, incorporating out-of-plane

(normal) rotations along with in-plane contractions and extensions. Previous cell motility models

primarily focused on the in-plane forces due to the lack of information in the third dimension, thus

suggesting a purely in-plane “push-pull” hypothesis.

A potential analog to this observed mechanism is the rapid attachment and detachment of in-

dividual setae of a gecko’s toe. These animals have the ability to generate large frictional and

adhesion forces to climb steep inclines and vertical walls using van der Waals interactions between

their spatulae that comprise the setae and the substrate material [50]. During the approach stage,

the gecko’s spatulae adhere to the substrate in an almost parallel configuration with minimal adhe-

sive force. Then, the gecko “rolls” and “grips” its toes inward generating large frictional (in-plane)

and adhesion (normal) forces. The final step involves a “rolling-out” process, in which the gecko

peels its spatulae off the substrate surface from rear to front. The experimental findings presented

here reveal new insights into the cell’s complex migration machinery and should provide an impetus

for the development of new three-dimensional cell motility models.
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(a) Protrusion of the leading edge through actin poly-
merization

(b) Adhesion at the leading edge

(c) Detachment at the trailing edge

(d) Cell contraction and movement of the cell body

Figure 4.32: A schematic of the four basic steps involved in cell motion. Movement is initiated by
the protrusion of the the cystoskeleton by actin polymerization 4.32(a) followed by formation of focal
adhesion complexes and adhesion to the substrate 4.32(b). Next, the cell detaches its trailing edge
from the substrate 4.32(c) and finally generates an internal force to contract and propel itself forward
4.32(d).
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(a) Cell-induced shear tractions at t2 = 70 min

(b) Cell-induced shear tractions at t3 = 105 min

(c) Cell-induced shear tractions at t4 = 140 min

Figure 4.33: Time evolution of cell-induced tractions as a function of depth (x3) over 70 min along an
arbitrary slice below the cell’s long axis. The contour plots show the magnitude of the three-dimensional
traction vector as previously plotted in Figs. 4.24(a) - 4.25(a). The black arrows represent the in-plane
shear tractions (T1, T3), where the magnitude of the longest arrow in each Fig. is equal to the maximum
value depicted by the color bar in pN/µm2. The particular time increments that are shown here are
t2, t3, and t4, where the time increment between each frame is 35 min. The leading edge of the cell is
located on the right (∼ x1 = 120 µm), and the direction of cell migration is from left to right.
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(a) Cell-induced shear tractions at t2 = 70 min (b) Cell-induced shear tractions at t2 = 70 min

(c) Cell-induced shear tractions at t3 = 105 min (d) Cell-induced shear tractions at t3 = 105 min

(e) Cell-induced shear tractions at t4 = 140 min (f) Cell-induced shear tractions at t4 = 140 min

Figure 4.34: Time evolution of cell-induced shear tractions (T1, T3) as a function of depth (x3) over
70 min along an arbitrary slice below the cell’s long axis. The contour plots show the magnitude of
the shear traction components (left column: T3; right column: T1). The color bar units are pN/µm2.
The black arrows on the top of each plot give the general direction of the cell-generated tractions. The
particular time increments that are shown here are t2, t3, and t4, where the time increment between
each frame is 35 min. The leading edge of the cell is located on the right (∼ x1 = 120 µm), and the
direction of cell migration is from left to right.
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Chapter 5

Conclusions

5.1 Summary

A novel experimental technique for measuring three-dimensional deformation fields in soft materials

has been developed and its applicability to quantitatively investigate cell-matrix interactions has

been demonstrated. This method utilizes the three-dimensional scanning ability of laser scanning

confocal microscopy (LSCM) in conjunction with a digital volume correlation (DVC) algorithm as

described in detail in Chapter 2. The utilization of a deconvolution algorithm to account for the

effects of the point spread function along the optical imaging axis, is shown to improve the resolu-

tion of the LSCM images, leading to enhanced accuracy in the calculation of the displacement fields.

The ability of this technique to determine full-field three-dimensional displacement information un-

der large deformations was demonstrated in Chapter 2. One advantage of being able to measure

large deformations accurately is being able to compile the cumulative evolution of the applied defor-

mations. While incremental deformations can be added up to yield a cumulative representation of

the deformation state, any perturbations or noise will not only affect the single measurement time

point but rather the entire time evolution. Hence, a cumulative deformation evolution represents a

more robust and potentially more accurate measurement.

The application of the LSCM-DVC technique to study the interaction of motile fibroblast cells

with polyacrylamide substrates was discussed in Chapter 4. The results demonstrate the capability

of this method to accurately map the cell-induced deformation fields during cell migration, and the
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viability of determining the traction forces in three dimensions. While previous traction force meth-

ods provided significant insight into cell-matrix interactions in two dimensions, the newly developed

technique demonstrates that these interactions can now be quantified in all three dimensions with

high spatial resolution. Furthermore, all of the presented investigations in Chapter 4 were obtained

dynamically with respect to the average speed of cell migration, allowing for an in-situ analysis

of cell motility and the resulting mechanical interactions with the substrate. While previous stud-

ies focused primarily on quantifying traction forces and adhesion of spread cells [14, 41, 49], this

study highlights the more dynamic substrate interactions of motile cells. While the main results of

this study present quantitative experimental findings of cells interacting with soft biomaterials, in

particular polyacrylamide gels of different moduli, Section 5.3 will provide an outlook on some of

the experimental implications and future applications of these measurements and the LSCM-DVC

technique.

5.2 Preliminary Cell Migration Studies on Artifical Extra-

cellular Matrix Proteins (aECM)

This section provides some preliminary results on 3T3 fibroblast cells migrating on artificial extra-

cellular matrix proteins (aECM) developed by Tirrell and coworkers [28, 21]. This new class of

biomaterials offers greater control and versatility than traditional biomaterials since their molecular

structure can be precisely controlled through genetic engineering. These proteins are designed to

be employed as implant materials mimicking the key features of the natural extracellular matrix

[28, 21]. Since, a cell’s response is most often comprised of a variety of biochemical and biome-

chanical stimuli at a particular point in time, decoupling these signals requires information on the

spatial and temporal location of these cell-matrix exchanges. In other words, by controlling the

exact composition of the extracellular matrix, cell-specific signals and cues can be analyzed and

potentially controlled. In brief, these novel biomaterials incorporate certain amino repeat sequences

to control both a specific cell binding domain, e.g., RGD, CS5, etc., as well as their mechanical
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properties. These materials can be crosslinked into thin films or three-dimensional matrices through

the incorporation of the photosensitive non-canonical amino acid p-azidophenylalanine (pN3Phe).

Exposure of pN3Phe to ultraviolet (UV) light results in the photodecomposition of the aryl azide,

which mediates non-specific crosslinking, either by electrophilic trapping via ring expansion or by

the diradical behavior of the triplet nitrene. Thus, this technique is well suited for fabrication of par-

ticular thin film geometric patterns [8]. Furthermore, the mechanical properties, such as the Young’s

modulus, can be tuned by altering the incorporation level of pN3Phe with a typical modulus range

of 0.3 - 1.0 MPa [33].

The experimental setup utilized is similar to the one described in Chapter 3 and hence, only

the differences are discussed here. aECM proteins incorporating photosensitive pN3Phe residues

with elastin-based repeats for mechanical integrity and RGD cell binding domains are expressed and

purified, dissolved, and deposited onto glass coverslips yielding typical thicknesses of 50 - 80 µm. As

the protein is dissolved in dimethylsiloxane (DMSO), 0.5 µm fluorescent red microspheres are mixed

with the protein solution similar in fashion to the preparation protocol described in Chapter 3. The

final step consists of crosslinking the protein, which is achieved through UV irradiation for several

minutes. Next, GFP-actin expressing cells are seeded on the top surface of the aECM matrices and

imaged in 45 min time increments over time periods up to 24 hours. The imaging setup and the

imaging conditions are the same as described in Chapter 3.

Figure 5.1 shows that the cells appear well adhered to the aECM substrate and remain motile

and alive after several hours of imaging. Comparing the general cell shape in Fig. 5.1, the fibroblast

seeded on top of the aECM protein substrates are spread over a larger area and are thinner in

cross-section when compared to the fibroblast seeded on top of the presented polyacrylamide gels in

Chapter 4. A very similar cell morphology is observed when fibroblasts are placed on glass substrates

indicating a potential connection between cell shape and substrate Young’s modulus.

Figure 5.2 shows preliminary cell displacement measurements during fibroblast migration on the

aECM substrate shown in Fig. 5.1. It is important to note that the generally observed displacements

in Figs. 5.2(a) - 5.2(d) are indiscernible from measurement noise, whose threshold was previously
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(a) LSCM composite image at t0 (beginning of
imaging)

(b) LSCM composite image at t10 = 450 min

Figure 5.1: LSCM image depicting three arbitrary planar slices of the entire volumetric image stack
at two different imaging times. Fibroblast cells displaying GFP-actin are shown in red, whereas the 0.5
µm fluorescent microspheres are shown in yellow.

established ∼ 0.12 µm. One possible explanation is that cells have a finite amount of internal force

they can generate and transmit to the substrate. Hence, the resulting surface deformations due to

the higher substrate stiffness cannot be detected by the optical methods employed here. It is also

worth noting that most traction force studies typically report Young’s moduli in the range of ∼

0.1 - 25 kPa [14, 49, 41]. New proteins are currently being designed to increase the compliance of

the aECM substrates by increasing the molecular weight between individual crosslinks, such that

the LSCM-DVC can be successfully employed to study cell-induced surface deformations and their

connection to specific biochemical stimuli. These studies have great potential in providing deeper

insight into the biomechanochemical coupling during cell-matrix interactions.
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(a) Measured cell displacement fields at t1 = 45 min (b) Measured cell displacement fields at t3 = 135 min

(c) Measured cell displacement fields at t5 = 225 min (d) Measured cell displacement fields at t7 = 315 min

Figure 5.2: Time series of the LSCM-DVC measured three-dimensional displacement vector fields.
The average vector length in each plot is between 0.06 - 0.18 µm. The fibroblasts cells are superimposed
in green (GFP-actin).
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5.3 Recommendation for Future Work

As demonstrated, the LSCM-DVC technique is capable of determining full-field three-dimensional

displacement and strain information inside transparent materials with subpixel or submicron resolu-

tion. Also, the addition of a stretch-correction algorithm was shown to improve the overall precision

of the methodology, especially under large deformation applications ( strain > 5%). However, in the

large deformation formulation presented, only the three principal stretches were considered exclud-

ing both large shear deformations and rotations. In the future, the inclusion of the full stretch and

rotation tensors should provide an even more accurate and precise full-field displacement measure-

ment. While one study has addressed the issue of finite rotations [4], there has been no study to

date that accounted for all 12 degrees of freedom. While this implementation, namely of the entire

deformation gradient, is straightforward in the two-dimensional case of digital image correlation

(DIC), it is non-trivial in three dimensions due to the high computational cost. The development

of time-effective algorithms to incorporate both finite rotations and stretches in three-dimensional

should alleviate this issue in the future. In particular, one of the potential next steps in the con-

tinued evolution of the DVC algorithm presented here is the incorporation of the already existing

finite rotation algorithm into the stretch-correlation correction. Since DVC is not dependent on any

particular image capturing method, its application might find further application in other imaging

techniques, such as magnetic resonance imaging (MRI) and computer tomography (CT) scanning,

where the only necessity is the generation of volumetric images entailing some sort of speckle or

trackable pattern.

The combination of LSCM and DVC can lead to numerous quantitative applications in partic-

ular, but not exclusive, to cell mechanics. In particular, the method can be used to quantitatively

study local force transmission by monitoring certain focal adhesion proteins and their force transmis-

sion locally using a smaller field of view. This can be achieved by using submicron tracker particles

in conjunction with fluorescently labeled focal adhesion proteins, such as vinculin, talin, etc. Fur-

thermore, interactions between multiple cells, including cell clusters and sheets, can be investigated

quantitatively using the LSCM-DVC technique. In addition the development of novel biomaterials
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relies on the capability of actively controlling or stimulating a particular cell response with the goal

of reproducing the natural cell-cell or cell-matrix behavior. This technique has the ability to assist

in the quantitative correlation between biomechanical and biochemical events. Furthermore, funda-

mental questions between biochemical signaling and mechanical stimulation for fully encapsulated

cells, such as environmentally induced cell transformations from benign to malignant cancer cells

can be addressed in a quantitative manner.

While these applications highlight the versatility of the technique to cell mechanics research, there

are also many opportunities to study mechanics-based problems using the combination of LSCM and

DVC. Some of these problems include contact studies, such as indentation and adhesion problems,

where the contact area might be changing or non-linearities in the employed geometries make the

observations difficult. For instance, some of the difficulties in calculating the mechanical properties

from indentation data stems from the fact, that the contact area of the indenter and the surface

interactions between the indenter and the sample surface are either unknown or poorly understood.

The LSCM-DVC method could provide the deformation information needed to better understand

these interactions for transparent materials. In conclusion, the quantitative three-dimensional full-

field imaging technique presented here offers a new way to investigate cell-mediated mechanical

interactions and three-dimensional mechanics problems with high spatial resolution.
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Abstract

Thin films of controlled elastic modulus were made by photocrosslinking artificial extracellular matrix

(aECM) proteins containing the photosensitive amino acid para-azidophenylalanine (pN3Phe). The

elastic moduli of the films were calculated from nanoindentation data collected by atomic force

microscopy (AFM) using a thin-film Hertz model. The modulus was shown to be tunable in the

range 0.3-1.0 MPa either by controlling the irradiation time or by varying the level of pN3Phe in

the protein. Tensile measurements on bulk films of the same proteins and finite-element simulation

of the indentation process agreed with the thin-film modulus measurements from AFM. Substrates

characterized by spatial variation in elastic modulus were created by local control of the irradiation

time.

Introduction

Cellular interactions with the surrounding matrix play defining roles in biological processes rang-

ing from normal tissue function to morphogenesis, immunity, wound healing, and tumor metasta-

sis. The realization that substrate mechanical properties strongly influence cell behavior is com-

paratively recent and has stimulated considerable interest.1 Substrate stiffness has been shown

to affect cell adhesion,2,3 morphology,2,4,5 traction forces and migration rate,2,6,7 growth,8 and

differentiation.3,9−11.

Cell culture substrates with adjustable mechanical properties have become essential tools for

the study of cell-matrix interactions. The stiffness-dependent cell behavior reported to date has

been examined most frequently on synthetic gels such as polyacrylamide.2,6,12 Because biological

and mechanical signals are often interdependent,1,13 some investigators have chosen substrates (e.g.,

collagen-coated gels) that mimic more closely the natural extracellular matrix.3,8 Additional advan-

tages accrue from varying mechanical properties on a single substrate, in that many sets of culture

conditions can be probed at once, reducing the experimental variability that arises from lot-to-lot

variation in the behavior of cultured cells. Moreover, films of spatially varying elastic modulus allow
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the examination of cell behavior at mechanical interfaces,6 and elastic modulus gradients allow the

study of mechanotaxis or durotaxis.7,14,15

Here we describe the use of photosensitive artificial proteins to make substrates on which the

interrelated effects of elastic modulus and extracellular matrix biology can be studied directly. These

proteins are intended for use as implantable biomaterials, and are designed to mimic key features

of the extracellular matrix.16−19 The design (Figure A.1) includes cell-binding domains periodically

spaced between elastin-like repeating elements. The CS5 cell-binding domain, derived from human

fibronectin, enables attachment of cells that express the α4β1 integrin adhesion receptor.20 The

origin of the elasticity of the protein is the repeating pentapeptide VPGVG (Val-Pro-Gly-Val-Gly),

derived from mammalian elastin and shown by Urry and others to confer mechanical properties

appropriate for soft tissue engineering and regenerative medicine.21

Figure A.1: Amino acid sequence of the artificial extracellular matrix protein examined in this work.
The cell-binding sequence CS5 is underlined. Proteins containing the photosensitive amino acid para-
azidophenylalanine are designated aE-pN3Phe.

The phenylalanine (Phe) sites encoded within the elastin-like domains of the protein serve as

sites for incorporation of the non-canonical amino acid para-azidophenylalanine (pN3Phe, Figure

A.1). Incorporation of pN3Phe into recombinant proteins is accomplished by using a bacterial

expression host that harbors a mutant phenylalanyl-tRNA synthetase (PheRS) with an enlarged

binding pocket.22,23 Upon photolysis, pN3Phe generates a reactive nitrene intermediate that yields

non-specific crosslinks to surrounding protein molecules. Varying the concentration of pN3Phe in

the expression medium controls the extent of incorporation of the photosensitive amino acid into

the protein, and ultimately determines the crosslink density and elastic modulus of the irradiated
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protein film. We recently reported photochemical patterning of similar proteins (and adherent cells)

on solid substrates.24 Here we describe detailed mechanical characterization of thin photocrosslinked

protein films and demonstrate the preparation of step-gradients of mechanical properties within a

single film.

Mechanical properties of thin, substrate-bound films are typically measured by nanoindentation,

and atomic force microscopy (AFM)-based nanoindentation in particular offers significant advantages

in spatial and force resolution over conventional nanoindenters. The method is especially attractive

for analyzing soft samples and materials whose elastic modulus varies over short length scales.25−27

Figure A.2: AFM topography scans of cut edges of an aE-48%-pN3Phe film, dry (A) and in water
(B). The spikes at the edge are artifacts of the scratching procedure.

Here AFM nanoindentation with a microspherical tip (600 nm diameter) was used to obtain

accurate measurements of the elastic moduli of thin photocrosslinked protein films.11,28,29 The use

of a spherical tip is important, in that it allows a spherical indentation model to be correctly applied;

the classical Hertz spherical model is known to cause distortions when used to analyze AFM data

collected with conventional sharp, pyramidal or conical tips.30 A film-height dependent physical

model 31 accounts for the mechanical coupling of the film to its underlying substrate, another known

source of distortion in AFM nanoindentation.32,33 Bulk tensile tests of the same materials confirm

the validity of the nanoindentation analysis.Finite element simulations of the indentations were also

performed to verify the modulus calculations and to explore the possibility of determining a more
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sophisticated mechanical material model from the AFM data. While the linear elasticity model 31

accurately characterizes the Young’s (elastic) moduli of the films described herein, the finite element

analysis is appropriate for characterization of thinner films undergoing large deformations due to

higher-strain indentation or certain tip geometries.

Experimental Section

Protein aE-pN3Phe. The amino acid sequence of the photosensitive artificial extracellular protein,

aE-pN3Phe, is shown in Figure A.1. aE-pN3Phe is made biosynthetically in a Phe-auxotrophic

strain of Escherichia coli outfitted with a plasmid bearing genes coding for both the protein and

the Ala294Gly mutant of the E. coli phenylalanyl-tRNA synthetase (PheRS).34 Use of the mutant

synthetase allows incorporation of pN3Phe (Bachem) into recombinant proteins in place of Phe.[23]

Because the relative amounts of Phe and pN3Phe in the protein can be controlled by varying the

concentrations of the amino acids in the expression medium, the designation aE-pN3Phe refers to a

family of artificial proteins rather than to a single protein.

The expression and purification of aE-pN3Phe were performed as described previously.24 To

deplete Phe from the expression medium, cells were centrifuged and resuspended in minimal medium

lacking Phe and containing pN3Phe 10 minutes after expression was induced. This procedure allows

enough time for functional copies of PheRS to be synthesized before Phe is depleted.

The extent of replacement of Phe by pN3Phe was measured by 600 MHz 1H NMR spectroscopy

(Varian) at a protein concentration of 15 mg/mL in DMSO-d6 (Cambridge Isotope Laboratories).24

Phe replacement levels of 28%, 31%, 48%, and 66% were achieved by using 125, 188, 250, and 250

mg/L, respectively, of pN3Phe in the culture medium; the corresponding proteins are designated

aE-28%-pN3Phe, etc.

AFM - instrument. Images and force curves were collected on a Park Scientific Instruments

AutoProbe M5 atomic force microscope, with accompanying ProScan v1.51b software. Pyramidal-

tipped triangular silicon nitride cantilevers with nominal spring constant 0.58 N/m were used for

imaging (Veeco DNP-S). A silicon nitride cantilever of the same shape, with an attached 600 nm
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Figure A.3: Representative loading indentation profiles for thin films of aE-66%-pN3Phe and aE-
48%-pN3Phe, showing force versus indentation depth (z-displacement). (A) shows the entire profiles;
(B) is magnified to show the contact point assignment.

diameter SiO2 particle tip (Novascan, Ames, IA), was used to indent samples for collecting force

curves. The spring constant of the cantilever was calculated to be 0.37 N/m by indenting against

reference cantilevers with predetermined spring constants of 1.00 N/m and 0.125 N/m (Veeco CLFC).

Here, ktest/kref = (δtot−δtest)/(δtestcos(θ)), where ktest and kref are the spring constants of the test

and reference cantilevers, δtot and δtest are slopes of the force-distance curves when the test cantilever

is indented against a rigid surface and against the free end of a reference cantilever, respectively,

and θ is the angle between the cantilevers (15o). A glass slide was glued to the back of the cantilever

mount so that the cantilever and sample could be submerged in water.

Bulk protein films. aE-pN3Phe (4 mg) was dissolved in dimethylsulfoxide (40 µL, Mallinck-

rodt). The solution was spread to cover an area ca. 1.5 cm x 1 cm on a poly(methyl methacrylate)

surface, and the solvent was evaporated at 50oC overnight. The resulting films were ca. 20 µm

thick (dry). After photocrosslinking (vide infra), uniaxial tension tests were performed at 22oC on

an Instron 5542 Materials Testing System outfitted with a 0.5 N load cell and modified to contain

the sample in a water bath. The nominal strain rate was 0.1 per minute;35 at this rate viscoelastic

effects are negligible.

Thin protein films. All film-making procedures were performed in a cold room (4oC), below the
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lower critical solution temperature (LCST)21 of the protein in water. Protein (10 mg) was dissolved

in water (100 µL), and the solution was centrifuged (5 min, 16,500g) to remove any aggregates or

particles. Protein solution (10 µL) was pipetted onto and spread to cover an unmodified 12 mm glass

slide (Hecht-Assistent, Sondheim, Germany). Films were spin-coated (Specialty Coating Systems,

Inc. P6204, Indianapolis, IN) at 7,000 rpm for 30 seconds and dried overnight at 4oC. Typical film

thickness was ca. 160 nm (dry).

Figure A.4: (A) Superimposed force profiles for multiple indentations of a single aE-48%-pN3Phe film
for 1 sec and 10 sec indent cycles. (B) Calculated Young’s modulus for 1 sec and 10 sec indentation
cycles on five different aE-48%-pN3Phe films.

Irradiation of films. Dry protein films were exposed to unfiltered UV light from a high-pressure

mercury arc lamp (Oriel Q, 100 watt @ 5 amps, > 20 min warm-up time; measured intensity in

irradiation plane = 1.5 mW/mm2). The time required to achieve complete conversion, ca. 300 sec,

was determined empirically. Zones of differential crosslinking were prepared on the same substrate

by placing an opaque shutter over portions of the film during irradiation. Specifically, a step-gradient

of irradiation times (0, 12, 20, 30, 50, 80, 120, 180, and 300 sec) was made across a 12 mm slide by

manually repositioning the shutter between exposures.

Slides were agitated in excess water at 4oC to remove any soluble protein. Un-irradiated protein,

or protein irradiated for 12 sec or less, was completely removed during this rinsing process as

evidenced by AFM imaging. No delamination of irradiated films from their glass substrates was
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protein pN3Phe added to
medium (mg/L)

% replacement of
Phe by pN3Phe

protein yield (mg
protein/liter of cul-
ture)

aE-66%-pN3Phe 250 66 66
aE-48%-pN3Phe 250 48 35
aE-31%-pN3Phe 188 31 76
aE-28%-pN3Phe 125 28 66

Table A.1: Expression conditions and protein yields

observed.

AFM film thickness. The tip of a pair of fine forceps was dragged lightly across the surface

of the protein film, tearing away the protein along the scratch and revealing the underlying glass

substrate. The edge of this scratch was imaged by AFM both dry and under water; the thickness

of the film is apparent from the scan (see Figure A.2). The surface revealed by the scratch was

confirmed to be glass, based on its smoothness and linear force profile when indented. The protein

film thickness was calculated by averaging the height measurements at many (n ≥ 16) points on the

film, using the revealed glass surface as a baseline.

AFM indentation force curves. The films and cantilever assembly were submerged in water

under ambient conditions. The 600-nm SiO2 microsphere tip was placed above a spot where the film

thickness had been measured (identified visually from the optical microscope image using reference

markers on the film) to ensure that the thickness at the point of indentation was known. Force

curves were collected; the instrument records z (piezo) displacement, and force, which is the product

of measured tip deflection and cantilever spring constant.

The indentation range was set to (-150 nm, +1350 nm) relative to the contact point, effectively

limiting the force to ca. 20-30 nN and the strain magnitude to less than 20%. The indent-retract

cycle time was 1 sec (tip speed 3 µm/sec). Viscoelastic effects did not appear to be a significant

factor at this strain rate (ca. 4 sec 1), as evidenced by the statistical superimposability of force

curves collected using 1 sec and 10 sec cycles (strain rate ca. 0.4 sec 1) (Figure A.4).

To assess the uniformity of the films, force curves were evaluated repeatedly at the same spot

and at nearby spots spaced 10-20 µm apart. For uniformly irradiated pN3Phe films this procedure
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was repeated at three distant (> 1 mm apart) spots of known height.

Calculation of Young’s (elastic) modulus. The Dimitriadis model 31 for indentation of

linearly-elastic soft material films of finite height with a spherical indenter was applied to the loading

force data. For a support-bonded film with Poisson’s ratio of ν = 0.5 (incompressible, a reasonable

estimate for both for rubbery networks and biological materials):

F =
16E

9
R1/2δ3/2[1 + 1.133χ+ 1.283χ2 + 0.769χ3 + 0.0975χ4]. (A.1)

The first term of this series is the classical Hertz indentation model, giving the force F as a

function of (Young’s) elastic modulus E and indentation depth δ using a rigid sphere of radius R.

The additional terms 31 correct for the finite height of the film, where χ is given by:

χ =
√
Rδ/h, (A.2)

where h is the thickness of the film. As the film gets thinner, or as the indentation depth increases,

the indenting sphere (AFM tip) experiences a higher force than it would for an infinitely-thick

film of the same material, owing to mechanical effects of film confinement to the stiff underlying

substrate. The film indentation δ was calculated by subtracting the tip displacement from the total

(z) displacement.

The contact point of each force-distance curve, where the indentation and force were set to zero in

the analysis, was determined by visual inspection. While this can be difficult in some experiments, 31

it is straightforward for the force curves collected here, because we observe a distinct snap-in when the

tip touches the surface (see Figure A.3 for examples). The apparent elastic modulus was calculated

by evaluating equations A.1 and A.2 at each recorded force-indentation point between 15 nm and

10% film thickness indentation and averaging over the range. Below 15 nm, the scatter in the data is

magnified in the calculations and distortions are common; the 10% maximum indentation constrains

the data to the near-linear response range.31 In this strain range, the finite-height correction factor

was as large as 1.78 (χ = 0.395) for the films analyzed here.
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Finite element simulation. Simulations of the nanoindentation process were conducted by

using the commercial finite element software, ABAQUS (ABAQUS, Inc., Providence, RI). The

geometries of the indenter and the film were discretized by using 2D axisymmetric elements (CAX4R)

and the known protein film height and indenting spherical tip geometry (R = 300 nm). From tensile

data collected for bulk samples of aE-pN3Phe, material model parameters for each material were

calculated and entered into the simulation. Various hyperelastic material models describing the large

strain material behavior (e.g., Neo-Hookean, Mooney-Rivlin, etc.) were evaluated. The Yeoh model

36 was found to best describe the material response of aE-pN3Phe as determined through numerous

uniaxial tension and compression tests. The output of force versus film indentation was compared

to the AFM data collected experimentally.

Results And Discussion

Protein production and purification. aE-pN3Phe proteins were expressed in a phenylalanine-

auxotrophic E. coli expression host using a medium shift procedure which allowed controlled re-

placement of phenylalanine by pN3Phe. Cells were grown for several hours in media containing all

20 natural amino acids, washed and transferred to minimal media containing 19 amino acids and

lacking phenylalanine. Production of the mutant PheRS during the initial growth period provides

the cellular machinery needed for insertion of pN3Phe into recombinant proteins. Target proteins

were collected from harvested cells and separated from contaminant proteins through a series of

temperature-shift centrifugation cycles24, and protein purity was monitored by denaturing gel elec-

trophoresis. Titrating the amount of pN3Phe in the expression medium generated artificial proteins

containing controlled levels of incorporation of the photosensitive amino acid (Table A.1).

Thin films. Spin-coated thin films of aE-pN3Phe proteins appeared smooth (RMS roughness

= 1.3 nm, versus 0.9 nm for the revealed glass) when imaged by AFM (Figure A.2). Film thickness

was uniform over the surface of each 12 mm diameter glass substrate, varying no more than 11%

from the average. Local thickness was much more uniform, with < 2% variation in a 30 µm scan.

The protein films had average hydrated thicknesses between 206 and 368 nm, except for two films
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protein thickness (µm) average elastic
modulus, E
(MPa)

molecular
weight be-
tween crosslinks,
Mc

pN3Phe cross-
linking reaction
efficiency (%)

aE-66%-pN3Phe 20 1.01 ± 0.07 4300 ± 200 50 ± 3
aE-48%-pN3Phe 21 0.52 ± 0.04 7000 ± 400 42 ± 2
aE-31%-pN3Phe 19 0.20 ± 0.04 11,900 ± 1000 39 ± 3
aE-28%-pN3Phe 20 0.14 ± 0.02 13,800 ± 600 37 ± 2

Table A.2: Physical properties of bulk aE-pN3Phe films tested in uniaxial tension (n=2).

protein average hy-
drated thickness
of each tested
film (nm)

average elastic
modulus, E
(MPa)

molecular
weight be-
tween crosslinks,
Mc

pN3Phe
crosslinking
reaction effi-
ciency (%)

aE-66%-pN3Phe 312, 322, 328,
1682, 1466

0.91 ± 0.16 4900 ± 700 45 ± 7

aE-48%-pN3Phe 293, 368 0.44 ± 0.04 7800 ± 400 38 ± 2
aE-31%-pN3Phe 223, 252 0.30 ± 0.02 9800 ± 400 47 ± 2
aE-28%-pN3Phe 206, 206 0.29 ± 0.03 10,000 ± 500 51 ± 3

Table A.3: Physical properties of thin aE-pN3Phe films tested by AFM (n6 spots, n24 total indents).

ca. 1500 nm thick, which were made by using a higher concentration of aE-66%-pN3Phe (Table

A.3). The average ratio of wet-to-dry film thickness was 1.80, corresponding to a polymer volume

fraction of 0.56 in the hydrated films. We observed little variation in the polymer volume fraction

under the conditions used here.

AFM Force Curves. Representative loading force-displacement curves are shown in Figure

A.3, and exhibit the parabolic shape typical of indentation of soft materials. Since the assembly is

submerged in water, the attractive force between the tip and the surface is screened; nevertheless,

a distinct snap-in event appears in each force curve, and allows a contact point to be confidently

assigned.

In cases where snap-in appeared to occur over a few nanometers, the contact point was assigned

to the middle of the snap-in rather than the bottom (at minimum force); this procedure was found

to give the best reproducibility between repeated indentations at the same spot. Adhesion forces

between the indenter and sample appeared to be negligible during indentation loading, and finite

element simulations confirmed this interpretation.
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Figure A.5: The elastic modulus (E) calcu-
lated at each point in the AFM indentation us-
ing Hertz and Dimitriadis models (Eq. A.1) is
shown for an aE-48%-pN3Phe film.

Figure A.6: Experimental AFM indentation
data compared to Dimitriadis model (Eq. A.1)
fits for thin films of aE-66%-pN3Phe and aE-
48%-pN3Phe.

When the strain rate was reduced by a factor of 10 (from a 1 sec indentation cycle, strain rate

ca. 4 sec-1), the resulting force curves appeared indistinguishable from the originals, indicating that

viscoelastic effects did not significantly influence the results (Figure A.4) in the range of loading

rates considered here (0.4 to 4 sec-1). Faster indentation cycles allow increased throughput and

minimize the deleterious effects of sensor drift.

Repeated indentations (up to 100) of the same spot did not cause any change in the force-

displacement curves, likely because the hydrated protein films are highly elastic (albeit nonlinear)

and the indentation depth was controlled. When surfaces on which the indentations had been

performed were subsequently imaged by AFM, no evidence of indentation was seen on either hydrated

or dry films. These results suggest that the collection of force curves did not permanently deform

or otherwise alter the mechanical properties of the samples.

Analysis of AFM force curves. Once a force curve is collected, all variables except E in Eqs.

A.1 and A.2 are known, so each point on the force-distance curve can be used to calculate an elastic

modulus for the material. If the model describes the system correctly, the calculated modulus should

be the same at each indentation depth. The Hertz and Dimitriadis 31 models were evaluated using
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this criterion for a representative data set (Figure A.5). Because the films were less than a micron

in thickness and the indentation depth represented a significant portion of the film height, the Hertz

model for infinite-height film was inappropriate for elastic modulus calculation. The effective elastic

properties of the protein films were significantly influenced by the underlying glass substrate, as has

been observed previously for soft thin films.31,32

Figure A.7: Superposition of experimental
AFM data and finite element simulations of in-
dentation based on bulk tensile data for thin
films of aE-66%-pN3Phe and aE-48%-pN3Phe.

Figure A.8: Sample tensile data for bulk films
containing varying amounts of pN3Phe.

Because it accounts for finite sample thickness and coupling to a rigid substrate, the Dimitriadis

model is able to extract the true elastic modulus of the protein film, thus yielding much more

consistent predictions of thin film modulus for each force curve in the indentation depth range of 15

nm to 10% (or more) of the film thickness.

A single value of Young’s modulus (E) was assigned to each surface by averaging the model-

predicted moduli from 15 nm to 10% strain; the standard deviation in E over this range averaged

3.4% and was < 10% for all curves, indicating that the Dimitriadis model gives uniform predictions of

E. In general, the model-calculated value of E is sensitive to the placement of the contact point,[31]

but since contact is observed directly and the sub-15 nm data (recorded forces < 1 nN) are excluded,

the fits are robust. Illustrations of the fit of the Dimitriadis model to the experimental AFM data
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are shown in Figure A.6.

The standard deviation in E from repeated indentation of the same spot (n=3-4 indentations,

51 spots) averaged 5.1%. We observed no tendency of the film to change in modulus with repeated

indentation. The standard deviation in E between different spots on the same film (n=3-4 spots,≥10

µm apart, 13 films) averaged 7.2%, nearly as small as the same-spot variance, indicating that E was

uniform over the films. The uniformity of modulus is important for the application of these films as

probes of mechanosensitive cell behavior.

In principle, raw AFM data could be used to estimate film thickness, by iterating the height

parameter in Eq. A.2 to minimize the variation in predicted modulus over the selected strain range,

since over- or underestimated thickness will result in less consistent modulus predictions. For this

technique to be applied, the linear model would need to completely describe the material mechanics

in the analyzed strain range. However, experimental error makes it likely that decreases in film

thickness could be mistaken for increases in elastic modulus, or vice-versa. The determination of

modulus is more accurate when the film thickness is known, as it is here.

Finite element simulation of indentation. All bulk tensile data were well-described by

a Yeoh hyperelastic model.[36] When the Yeoh parameters calculated from the tensile data (vide

infra; see Figure A.8) were used to model indentation using a finite element simulation, the predicted

force-displacement curves were very similar to those obtained experimentally; representative data

are presented in Figure A.7. Because of the experimental error in measuring quantities such as

the bulk film thickness or AFM cantilever spring constant, some differences in scalar magnitude

between these two plots can be expected, although their shapes should be similar, as observed. The

similarity between experimental AFM indentation data and simulations of the indentation using

only bulk tensile properties is encouraging since it implies that the physical properties of thin and

bulk films are similar, and it confirms the validity of the finite element analysis technique.

The samples investigated here are thick relative to the indentation depth and are highly elastic,

so the deviations from linearity are small, as can be seen by comparing the linear model fit with

experimental AFM data in Figure A.6. However, the simulation approach should be applicable
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to thinner films (e.g., <100 nm) and to non-linear strain data as well, where a limited amount of

data can be collected in the linear deformation range. While the Dimitriadis model is restricted

to spherical tips, the simulation can be easily changed to describe conical or pyramidal tips, the

type more commonly used because of their robustness and lower cost. These sharp tips have the

additional advantage of being usable for imaging as well as indentation.

In performing the inverse analysis of predicting the AFM response from the tensile data, we

used the AFM data to calculate a modulus for the material using the simulation. Coefficients of

the Yeoh model were iterated in the finite element simulation to minimize the difference between

the simulated and experimental AFM data using the entire force curve (including indentation data

past 10% of the film thickness). The moduli determined in this way were indistinguishable from

those calculated with the Dimitriadis model. If high-strain data are collected, this technique can

provide the complete strain energy function for the material being tested in addition to the elastic

Young’s modulus (E). While the finite element technique provides more flexibility, the simplicity

of the Dimitriadis model is preferable when the geometry of the tip is known and when the linear

elastic modulus is the only value required.

Modulus control by variable incorporation of pN3Phe bulk films. As described

earlier, the extent of incorporation of pN3Phe into aE-pN3Phe proteins can be controlled by varying

the concentration of the photosensitive amino acid in the expression medium. We examined the

effects of variable incorporation of pN3Phe, both for bulk samples tested in uniaxial tension and for

thin-film samples analyzed by AFM nanoindentation.

The tensile behavior of the bulk samples (Figure A.8) is typical of rubbery materials; all aE-

pN3Phe films were extensible to 150% (or greater) strains. As expected, the modulus increases with

the pN3Phe content of the protein, a result of increased crosslink density after irradiation. If the

materials are assumed to behave as ideal rubber networks, the shear modulus (G) can be related to

the crosslink density through the expression37:

G = (ρRT/Mc)(1− 2Mc/M), (A.3)
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an approximation shown to be valid for similar elastin-like hydrogels.17.35 The shear modulus is equal

to one-third of the elastic modulus for an incompressible material (ν=0.5), a good approximation

for rubbery hydrated protein films. The chain mass density ρ is found by multiplying the density

of elastin38 (1.32 g/cm3) by the measured polymer volume fraction (0.56) in the films, Mc is the

average molecular weight between crosslinks, and the term (1-2Mc/M) represents the fraction of

elastically active crosslinks, where M is the molecular weight of the protein (42,900). The values of

Mc calculated for the films examined here are listed in Table A.2.

The efficiency of crosslinking can be calculated from Mc and the pN3Phe content of the pro-

tein. For example, the value of Mc (4300) estimated for aE-66%-pN3Phe corresponds to ca. 10

(42,900/4300) crosslinks per protein chain, assuming random crosslinking a reasonable assumption

given the periodic Phe spacing in the protein and the statistical nature of its replacement by pN3Phe.

Incorporation of the photosensitive amino acid at 66% of the 15 Phe sites yields an average of 9.9

pN3Phe side chains per molecule; because each crosslinking event couples two molecules, the mea-

sured value of Mc indicates a reaction efficiency of ca. 50% (10/9.9/2). The crosslinking efficiency

declines slightly as the pN3Phe content of the film is reduced (Table A.2).

Figure A.9: Measured elastic moduli of thin
films of aE-pN3Phe versus fraction replacement
of Phe by pN3Phe. Results from AFM nanoin-
dentation of thin films and tensile testing of
bulk films are compared.

Figure A.10: Preparation of a step gradient
in elastic modulus by variable irradiation of a
single aE-66%-pN3Phe film. Error bars indi-
cate standard deviation in modulus within each
zone of the gradient.
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Modulus control by variable incorporation of pN3Phe thin films. Figure A.9 compares

the elastic moduli calculated from AFM data for thin films to those measured for bulk films in

uniaxial tension. For aE-48%-pN3Phe and aE-66%-pN3Phe, the values match within experimental

error, indicating that the mechanical properties of the bulk films can be reproduced in films 200-400

nm thick, and supporting the validity of the Dimitriadis model for measuring Young’s modulus. The

bulk and thin films, although cast from different solvents, are both crosslinked in the dry state, and

are thus expected to have similar structures and elastic moduli. For films of lower pN3Phe content,

AFM yields moduli slightly higher than those obtained from tensile measurements (Table A.3).

Engineering of the elastic moduli of thin protein films by controlling pN3Phe content should prove

useful in cell culture experiments designed to study mechanosensitive cell behavior. An especially

attractive prospect is the use of microfluidic mixing15,39 to prepare protein substrates characterized

by controlled gradients in elastic modulus.

Modulus control by variable irradiation. Elastic modulus gradients can also be prepared

by variation in the radiation dose used for photocrosslinking. To demonstrate, we prepared a step-

gradient by irradiating adjacent portions of an aE-66%-pN3Phe film for increasing lengths of time.

The elastic moduli measured (by AFM) at different locations on the film are shown in Figure A.10;

the modulus increases slightly more than two-fold as the irradiation time increases from 20 to 300

sec. The majority of the rise in elastic modulus occurs over the first minute of exposure, consistent

with the photolysis behavior reported previously.24

When the gradient film was washed to remove soluble protein, the thicknesses of the 20 sec and

30 sec zones were ca. 35% and ca. 20%, respectively, less than the thickness of the zones irradiated

for longer periods, indicating incomplete crosslinking. Taking into account the known film height (as

in the Dimitriadis calculation of the modulus) is essential for these gradient films, since variable film

height would make the Hertz model inaccurate even as a comparative measure of the local elastic

modulus.

Films that exhibit spatial variation in modulus on millimeter length scales offer unique advantages

as substrates for the study of cell behavior. Large numbers of cells can be cultured on each zone
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of a step-gradient substrate, allowing average cell properties to be measured as a function of elastic

modulus on a single substrate. This approach minimizes reagent use and substrate preparation, and

avoids lot-to-lot variation in the behavior of cultured cells. Observation of cell behavior at interfaces

between stiff and soft materials has also proven instructive.6 Films with more complex patterns of

mechanical properties can also be envisioned. Irradiation through a mask, used previously to pattern

proteins on solid supports,24 could be easily adapted to the preparation of films with micropatterned

moduli. Cell behavior on micropatterned materials has been the subject of a recent study.40

While step gradients are easy to characterize with a limited number of indentations, films with

smooth gradients of elastic modulus could also be made via the variable irradiation approach by

moving an opaque shutter continuously across the film.41 Gradients could be implemented over a

variety of length scales. The spatial resolution of the modulus measurement is limited only by the

300 nm radius of the tip used for indentation, and is adequate for measurement of the variation in

mechanical properties under a single spread cell. Even higher resolution might be achieved through

use of conventional sharp (< 20 nm) conical or pyramidal tips together with finite element analysis

of the indentation process. Gradients extending over distances greater than the ca. 100 µm lateral

piezo range of conventional AFM instruments could be characterized by using translational reference

points in the sample.

Conclusions

Incorporation of the photosensitive amino acid p-azidophenylalanine into artificial proteins enables

the photochemical synthesis of thin protein films of controlled elastic modulus. A film height-

dependent indentation model, validated by bulk tensile measurements and finite element simulation,

allows the elastic modulus to be determined with confidence by nanoindentation. The thin films

prepared in this work enable new approaches to the study of mechanosensitive cell behavior in the

context of coincident biological signals.
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