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Abstract

Chapter One focuses on the movement of quote prices and the role of
asymmetric information. Standard methods of estimating the impact of order flow
shocks are made inappropriate by the existence of runs in trade initiation, which are
theoretically impossible. We find runs that exist in trade initiation persist even after
accounting for standard explanations. The chapter modifies the methodology of (Huang
& Stoll, 1997) to use runs in trade initiation to account for the phenomena and
estimates effects using ASX data.

Chapter Two introduces a new experimental environment in which the market is
continuously shocked by new traders’ incentives. The new environment joins two
branches of theory. Classical economic theory has prices determined by the preferences
of agents, but says little about the price formation process. The second theory is derived
from finance in which prices are determined by the order flow coming to the market,
but there is no connection between order flow and preferences.

We show that in such markets, two competing generalizations of the Walrasian
equilibria exist corresponding to these competing literatures, each with an independent
pull on market prices. Prices and efficiencies reveal a strong roll of expectations in price
discovery and reject the idea that convergence is due to random or zero-intelligence
trading strategies alone.

Chapter Three continues the analysis of Chapter Two by asking how the process
of equilibration occurs in random arrival markets. We find that prices move proportional

to the distance to the temporal equilibrium and show that this model’s predictive power



is due to Marshallian features of the trading process as opposed the classical Walrasian
adjustment model.

Chapter Four studies an RA environment in which some traders have asymmetric
information regarding the distribution of latent incentives and arrival rates. We find that
much of insiders’ information is diffused as theory suggests and that much of the
information is incorporated in outsiders’ market actions. This diffusion of information is
not a result of cumulative signed order flow, but is instead related to the observable
rate of aggregate speculation. The ultimate implications of this phenomenon remain

unknown.
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Introduction

In continuous double auction markets, three fundamental forces are responsible
for the movement of prices, immediate incentives, expectations, and information. This
thesis explores each of those three forces. Many theories in the market microstructure
literature have tended to focus on common value and/or informational aspects of the
double auction market rather than its ability to find supply and demand equilibria. This
is due to the continuous double auctions’ application in financial markets, as well as the
belief that supply and demand parameters can create an “induced common value,”
making the specification of supply and demand itself relatively unimportant.

Despite this theoretical focus in the literature, this thesis shows that commonly
applied models of information diffusion fail to capture key aspects of price movement in
the Australian Stock Market and in experimental continuous double auction markets.
Moreover, the amount of variance in intraday price movements explained by
asymmetric information is remarkably small.

Consequently, this thesis takes a different approach to the study of continuous
double auctions. We apply an exploratory approach to a new kind of experimental
environment. The environment of (Garman, 1976) and (Warren, 1975), in which limit
order flow is modeled as a continuous Poisson process, is generalized to a full general
equilibrium model in which supply and demand forming incentives to trade arrive to the
market according to a Poisson process. The environment is termed “random arrivals”
because it is as though new traders with their own preferences are randomly arriving to

trade in the market. The new environment brings together two branches of theory.
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Classical economics theory has prices determined by the preferences of agents
assuming that the information revealed in market responses accurately reflects both the
agent’s preferences and information. This theory says very little about the details of the
actual price formation process. The second theory is derived from finance in which
prices are determined by the order flow coming to the market but the connection
between this order flow and the underlying preferences is left abstract. Thus, this
theory is not so much about equilibrium price discovery as it is the dynamics of the price
making process. The role of the background incentives plays no role in this theory.

The new experimental environment lends itself to the study and integration of
these two different bodies of theory. We show that in such markets, two competing
generalizations of the Walrasian equilibria exist, each with an independent pull on
market prices. One, which we call the flow competitive equilibrium, is similar to the
classical law of supply and demand as found in economics. The other, which we call the
temporal equilibrium, is similar to the price placing strategies and market
microstructure found in finance.

By modeling supply and demand as a flow of short-lived incentives, we are able
to demonstrate that multiple generalizations of the Walrasian equilibrium exist in
continuous random arrival markets, and show differences in levels of market efficiency
between those equilibria. Prices and efficiencies reveal a strong roll of expectations in
price discovery. We reject the idea that convergence is due to random or zero-

intelligence trading strategies alone.



Xiv

The random arrival environment differs from traditional experimental

environments in which incentives to trade are provided at the beginning of a number of

(possibly overlapping) periods. The final chapter of the thesis also explores the role of

asymmetric information in this environment.

The thesis asks fundamental questions such as, Do continuously evolving

markets converge to supply and demand equilibria? How does this process happen?

Which classical models best explain price dynamics? And how does information become

incorporated into prices and efficiencies?

Key findings include:

Multiple generalizations of the Walrasian equilibria exist in random arrival
markets.

Convergence to supply-demand equilibria is possible in continually evolving
markets without the need for repetition.

Prices in continuous double auctions are highly influenced by local or temporary
imbalances in supply and demand. This is in contrast to predictions made by
rational expectations with risk neutral agents.

The ability of continuous double auctions to converge, as well as their tendency
for prices to be influenced by local factors, is best explained by a kind of
Marshallian dynamic. The speed with which traders enter the market, place bids
and asks, and ultimately transact is a linear function of the amount of available

profit on their immediate incentives at current market prices.
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e Onthe other hand, expectations about future order flow do form and help to
smooth prices and raise efficiency to levels that would be impossible with zero-
intelligence agents.

e Measures of informational efficiency based on price convergence and measures
based on efficiency levels can differ widely when applied to flow environments.

e The impact of asymmetric Information, when measured using the Ho/Stoll
model, in both the Australian stock market and experimental random arrival
markets with competing insiders is either small or non-existent. The proportion
of variance in price changes explained by signed order flow is typically less than
10%.

e Experimental evidence from random arrival markets suggests that one possible
explanation for this is that insiders hide their identities by placing both market
and limit orders.

e If uninformed traders have well defined supply and demand functions,
information held by insiders about the level of future prices is partially
transmitted to uninformed traders through the rate of trade. This allows
uninformed traders to speculate in the direction of insiders’ information, but
does not actually allow them to fully learn what insiders information is.
Chapter One: Inventory and Adverse Selection Effects in a Limit Order Market

focuses on the role of asymmetric information in the Australian stock market. Theory
predicts that, in markets where there is the possibility that some trades are motivated

by asymmetric information, market makers will revise prices after each trade to account
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for the informational content of signed order flow, making the prior probability of a
reversal in trade initiation greater than or equal to .5. This however, is not the case.
Empirically, trade initiation in the Australian stock market is positively correlated, even
after accounting for standard explanations of this phenomenon. Consequently, standard
methods of estimating the effects of asymmetric information and inventory
management on asset prices fail to yield interpretable results. In this chapter, we
estimate the impact of adverse selection and dealer inventory effects by looking at runs
in trade initiation. We conclude that inventory effects are significant even in non-dealer
markets, although their effect is limited to the level of the bid-ask spread. Asymmetric
information has a smaller impact on the level of the bid-ask spread, but does affects the
depth of the market, and the slopes of the limit order books.

¢ Inventory effects are significant even in non-dealer markets.

e Asymmetric information has a smaller effect on prices than inventory effects, but

does affect the curvature of the limit order book.

Chapter Two: Principles of Continuous Price Determination in an Experimental
Environment with Flows of Random Arrivals and Departures studies an experimental
continuous double auction environment with no asymmetric information. The period
structure of classical experimental markets, which is known to play an important role in
the equilibration process, is replaced by an environment in which incentives arrive
randomly and continuously throughout. We show that in such markets, the focus on a
single law of supply and demand is incomplete. There exist two competing

generalizations of the Walrasian equilibria, each with an independent pull on market
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prices. The first we call the “Temporal Equilibrium,” which is based on the parameters
that exist in the market at a moment in time and the second is the “Flow Competitive
Equilibrium,” which reflects the underlying probabilistic structure of the parameters.

Human subjects are also able to achieve much higher levels of surplus extraction
than would be possible from naive trading strategies alone, though far less than 100% of
the additional surplus due to expectations is realized. In particular, the amount of
surplus due to expectations that traders are able to extract seems to be related to the
strength of public signals regarding price changes. When shifts in the FCE price are due
to changes in the distribution of latent incentives, subjects tend to extract more
additional surplus due to expectations than when shifts are due to changes in the
relative rates of arrivals.

The distance to the FCE and TE prices are the most important variables
predicting both the location of new bids and asks as well as the probability of a bid or
ask improvement. Large under pricings relative to either equilibrium concept are likely
to result in a faster rate of market orders on the buy side, higher bid prices, and a
greater chance of bid improvement. Similarly large over pricings relative to either
equilibrium are likely to result in a faster rate of market orders on the sell side, lower
ask prices, and a high chance of ask price improvement.

Additionally, market convergence also appears to be aided by the way in which
subjects position new bids and asks over time. Over the course of an experiment, if the
Flow Competitive Equilibrium is held constant, new bids and asks are influenced in the

direction of the FCE price. The entire distribution of bids and asks, as measured by
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informational entropy, becomes more concentrated around the FCE price. Such changes
in the distribution of bids and asks may be viewed as evidence of the formation of
expectations.

e Trading in experimental RA markets generates high levels of efficiency relative to
the maximum amount of surplus available. Realized surplus extraction is typically
higher than the amount that could be obtained without speculation.

e Waiting times between trades are uncorrelated, and have a mean rate of
transaction larger than the rate of transaction predicted by the FCE.

e The law of one price, in the sense of a constant price over time, does not emerge
under conditions of a constant FCE price.

e Traded prices are distributed around both FCE and TE prices.

e When trade prices deviate from the FCE price, they tend to deviate in the
direction of the TE price.

e Both the direction of temporal equilibrium prices and the direction of the FCE
price influence price movement.

e Over time, human subjects place bids and asks closer to the FCE price. This
process likely aids convergence.

Chapter Three: The Dynamics of Price Adjustment in Experimental Random
Arrival and Departure Environments continues the analysis of Chapter Two by asking
how the process of equilibration occurs. In this chapter, we test six competing classical
models of price movement. We find that all models of price dynamics, when considered

on their own, do equally well in explaining observed experimental data. However, when
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we nest all six models into a single equation, a clear winner emerges. Prices appear to
move in direct proportion to the distance between the current price and the Temporal
Equilibrium Price.

The distance to the temporal equilibrium appears to be the most important
classical variable for several reasons. First, price dynamics are influenced only by the
inframarginal portion of excess demand. Second, the speed with which individuals act
on private incentives, and transact in the market is sensitive to the amount of profit
available on each incentive at the current market prices. Incentives with higher rents at
current offer prices were accepted faster in traders’ private markets, traded quicker in
the public market, and had higher probability of being acted on in general.

Such findings support the hypothesis that market convergence is in part aided by
the “probabilistic Marshallian Path,” that is, the idea that trades will form along the
Marshallian path with greater probability than would occur by randomness alone.

The chapter also finds a significant role of price friction in price adjustments
caused by the limit order book. The size and existence of the limit order book and the
bid-ask spread also contribute to the occurrence of conditional heteroskedasticity in
traded price time series.

e Price changes are relatively insensitive to excess demand between individual
trades due to limit order book friction.

e The naive OLS approach concludes that the best single predictor of per-trade
price changes, in terms of the proportion of explained variation in dP, is the

distance between the TE price and the current price. Distance to the FCE price
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performs comparably well, followed by Excess Rent a distant third. (2) All of the
non-fundamental models, including the classical Walrasian model individually
explain less than 1% of the total variation in price changes.

After adjusting for order book friction, auto correlation, and heteroskedasticity,
there is little difference between models in terms of log likelihood.

Significant levels of order book friction are observed for every single-variable
model.

A significant portion of heteroskedasticity is explainable by the size of the limit
order books and the bid-ask spread.

When all of the theoretically important variables are included in a single nested
model, only the distance to the temporal equilibrium and potential gains from
trade are statistically significant in predicting price adjustment. 2) Of the two
significant variables, only the distance to the temporal equilibrium price is found
to be significantly positive.

Price dynamics are influenced only by inframarginal excess demand.

The speed of transaction for units at the bid and ask price is influenced by the
amount of rent available to the opposite side of the market at that price. The
higher (lower) a bid (ask) is, the faster a transaction will occur at that price.
Incentives with higher temporal equilibrium rents were 1) accepted faster in
traders’ private markets 2) had higher probability of being transacted in traders’
private markets, and 3) transacted faster in the public market than lower rent

incentives.
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Chapter Four: Experimental Random Arrival Markets with Competing Insiders
studies an RA environment in which some traders have asymmetric information
regarding the distribution of latent incentives and arrival rates. Theory suggests that
when more than one insider has identical information, insiders will price compete,
eliminating all informational rent. We find instead, that insiders do not perfectly
compete and that much of the information held by insiders is incorporated in non-
informed traders’ market actions. This diffusion of information is not a result of
cumulative signed order flow, as predicted by theories of pure common value double
auctions.

e Informational efficiency in random arrival market experiments with competing
insiders is high, though typically below 100%. Approximately one third of
information surplus accrued to insiders.

e Traded prices typically did not stabilize to the full information price. Hypothesis 2
is correct. Prices were slightly more likely to be found between the full
information price and the FCE price.

e The inventory buildup of uninformed traders mirrors the inventory buildup of
insiders.

e Uninformed traders use the observed rate of trade to speculate on the direction
of the Full Information Price, but never learn either the identities of the insiders

or the true location of the Full Information Price.
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The only significant determinant of inventory accumulation for uninformed
subjects is the lagged total rate of speculation.
The aggregate rate of insiders depends on location of the FCE price relative to
the FIP. When the FCE is below the FIP, insider have a positive rate of inventory
accumulation. When it is above the FIP, insiders have a negative, rate of
inventory accumulation.
Insiders are also affected by competition, accelerating their rate of inventory
accumulation in direct response to past rates of accumulation.
Informed subjects submitted both market and limit orders in the same
proportion as uninformed traders.
Asymmetric information in Random Arrival Markets is not transmitted through

signed order flow. The direction of order flow however, does impact prices.



Chapter 1 Inventory and Adverse Selection Effects in a
Limit Order Market

1.1 Introduction
This chapter looks at market microstructure data for a random sample of 10

Australian stocks from the S&P/ASX 200 from Jan 2006 to Mar 2006. We find that
existing models of the bid-ask spread, when applied to microstructure data, fail to
identify inventory holding cost and adverse selection components of the spreads, as
well as misestimate effective spreads. We modify the basic methods of (Huang & Stoll,
1997) and apply our model to runs in trade initiation in order to decompose order
processing, inventory, and adverse selection effects on the level and size of the bid-ask
spread as well as determine how the depth and slope of the limit order books relate to
these factors.

We find evidence that dealer inventory effects on the level of the spread exist
even in limit order markets and that these effects are larger than those of adverse
selection. Inventory effects do not appear to persist beyond the level of the spread,
while adverse selection effects tend to affect the thickness of the limit order book,
decreasing the depth of the market. Because bid and ask prices are revised separately in
dealer markets, asymmetries in the effects of adverse selection can be seen between
bid and ask prices. Quote prices respond more strongly to unexpected order flow shocks
on the same side of the market, while changes in the inventory of limit order placers
effects both quotes symmetrically.

This chapter attempts to connect two separate veins of financial literature: the
literature related to the components of the bid-ask spread, and the newly emerging
literature on limit order market microstructure. Its goal is two-fold, first to contribute to
the bid-ask spread literature by showing how inventory, adverse selection and market
making uncertainty affect not only the size and level of the spread, but also the depth

and liquidity of the market. Second, to contribute to the limit order book microstructure



literature by highlighting the importance of runs in trade initiations and the
asymmetries in the behavior of the bid and ask order books.

Most of the empirical microstructure literature related to limit order markets has
focused on predictable patterns in order flow and the interactions between volume,
market depth, liquidity, and volatility (Bias, Hillion, & Spatt, 1995), (Danielson & Payne,
2001), (Ahn, Bae, & Chan, Limit Orders, Depth and Volatility: Evidence from the Stock
Exchange of Hong Kong, 2001), (Bollerslev & Melvin, 1994). While these studies shed
valuable light on the formation of limit order books and their impact on price
movements and volatility, the literature has largely ignored issues such as the role of
inventory holding costs, or to what extent components of the bid-ask spread influence
the shape of the limit order book.

In part, inventory effects have been ignored in limit market order books because
economists have questioned the relevancy of models of dealer inventory in non-dealer
markets. Instead, theories of the spread specific to limit order markets have focused on
the role of heterogeneity in traders’ demand for immediacy, and the relative arrival
rates of limit and market orders (Foucault, 1999), (Foucault, Kadan, & Kandel, 2003).
Empirical works have tended to attribute order flow effects on price movement as
stemming entirely from asymmetric information (Bias, Hillion, & Spatt, 1995), (Chan,
2005).

(Bias, Hillion, & Spatt, 1995) study the patterns of order flow in the Paris Bourse.
They find that order flow is mainly concentrated at or near the best bid and best ask
price, and that rates of limit order submission are negatively correlated with market
thickness. Biais, Hillion, and Spatt also note that large trades on one side of the market
are likely to cause changes in the level of the bid-ask spread, a result that they attribute
to asymmetric information.

(Danielson & Payne, 2001) on the other hand, provide motivation for the
existence of inventory effects and evidence of the importance of runs in trade initiation.
They note that liquidity supply temporally clusters on one side of the market and

removal of liquidity at the front of one side of the book implies increased probability of



seeing fresh liquidity at the front of the other side of the book and lower chances of
seeing subsidiary liquidity supply on that side of the book.

Section 1.2 of the chapter discusses the background theory of the bid-ask spread
and the decomposition of its components. In Section 1.3, we discuss the characteristics
of the Australian Stock Exchange (ASX) data and argue for the applicability of theories
discussed in Section 1.2. In Section 1.4, we show how existing models of the effective
and quoted spread fail to fit the data. We point out problems related to the tendency
for trade initiation to remain on the same side of the market, and sketch the
relationship between accumulated order flow and the probability of a reversal in trade
initiation. Section 1.5 modifies the basic trade indicator model for spread decomposition
into a VAR model of trade initiation runs. The results of this modified model are

presented in Section 1.6. Section 1.7 concludes the chapter.

1.2 The Theory of the Bid-Ask Spread

1.2.1 Effective Spreads and Quoted Spreads
Two types of transaction costs exist in financial markets, quoted spreads and

effective, or realized spreads. Quoted spreads are defined as the difference between the
best asking price and the best bidding price. Today, quoted spreads can be observed in
many different markets with reasonable amounts of accuracy. On the other hand, an
effective spread is only realized when initiation of trade switches sides of the market
and is defined as the amount that prices move due to the spread, at the times at which
initiation changes.

While quoted spreads do represent real economic costs in terms of barriers to
trade, the transactions costs that financial scholars are most interested in are the
amounts that market makers have to be paid to compensate them for the cost and risks
involved in making markets. The effective spread reflects the gross profit that market
makers earn, while the remainder of the quoted spread is believed to exist in order to
shield market makers from the risk of trading with better-informed traders (the
information/adverse selection component) or the risk associated with large swings in

inventory, which inevitably occur.



A simple example of the difference between quoted and effective spreads is the
following. Suppose a market maker sets bid and ask prices of S2 and $3 respectively.
During the first half of a day, ten people each sell one unit at the bid price. Afterward,
the market maker sets new bid and ask prices at $1 and S2 respectively. Ten more
people now buy one unit each at the ask price. Although the quoted spread was
constant throughout the day, the $1 quoted spread was never realized since everyone

bought and sold at the same price; hence, the average effective spread was zero.

1.2.2 The Roll Model of the Effective Spread
(Roll, 1984) provides a model for estimating the effective spread using the auto

covariance of price changes, which is commonly applied in markets where the sequence
of trade initiations is unknown. Roll assumes that in an efficient market, the probability
of a trade occurring at the bid price is .5 and independent of past transactions. He
argues that in such a market with only an order processing component of the spread,
the movement of transaction prices between the bid and the ask creates negative first
order auto covariance of transaction price changes. Using this relationship, Roll derives

a simple estimator of the effective bid-ask spread:

Sron = 2*,/-COV(AP,AP_ ) (L))

(Choi, Salandro, & Shastri, 1988) generalized the Roll model by allowing for the
possibility of serial covariance in the sequence of trade initiations—that is, the
probability of the next trade being initiated at the bid (ask) price given that the last
trade occurred at the bid (ask) price may differ from .5. Choi, Salandro, and Shastri
reasoned that the conditional probability of a continuation might be larger than .5
because large market orders often initiate trades with more than one participant on the
other side of the market. This causes single trades to be recorded as multiple sequential
trades in ticker tape output. Choi, Salandro, and Shastri, derive a modified Roll

estimator:

» J-cov(AR,AP.,)

Scss =

(1.2)

Where m is the probability of a trade reversal.



1.2.3 Glosten/Milgrom and Ho/Stoll
(Glosten & Milgrom, 1985) suggested a model in which some traders have inside

information regarding the common value of an asset. In their model, the bid-ask spread
reflects the amount that market makers must be compensated for constantly trading
against informed traders. In Glosten and Milgrom, market makers adjust price levels to
reflect information contained in order flow. If the last transaction occurred at the ask
price, the market maker revises his or her expectation of the asset’s value upward,
moving bid and ask quotes up accordingly.

(Glosten, 1987), and (Glosten & Harris, 1988) consider the possibility that the
bid-ask spread reflects a combination of an order processing cost, as discussed by Roll,
and an adverse selection component, as discussed by Golsten and Milgrom. Glosten and
Glosten and Harris claim that the Roll estimator reflects a “gross profit” condition—the
profit made by market markers above and beyond the losses they receive from trading
with informed traders. Because of the way information contained in order flow causes
market makers to revise prices, Glosten and Glosten and Harris show that even though
the adverse selection component inflates spreads, it does not contribute negative auto
covariance. Therefore, they claim that the difference between observed quoted spreads
and the effective spread estimated using Roll is due to adverse selection.

(Ho & Stoll, 1981) provide an alternative explanation for why quoted spreads
might be larger than effective spreads. They present a model in which dealers have an
ideal level of inventory holdings, which they try to maintain. After a dealer sale
(purchase), the dealer will adjust prices upward (downward) to induce a dealer purchase
(sale). Unlike adjustments due to information in Glosten and Milgrom, these
adjustments do contribute negative serial covariance.

If quoted spreads reflect a combination of all three transactions costs: order
processing, adverse selection and inventory holding costs, then the difference between
observed and effective spreads reflects both adverse selection and inventory

components of the spread.



1.2.4 The Stoll Decomposition of the Quoted Spread
(Stoll, 1989) shows that five parameters summarize the differences between the

order processing, adverse selection, and inventory holding cost models of the bid-ask
spread:
1. &;:the amount traded prices move when there is a reversal in trade initiation
2. 6. the amount traded prices move when trade continues on the same side of
the market.
3. m: the probability of a change in trade initiation
4. Covq: the first order covariance of transaction price changes
5. Covyq: the first order covariance of quote price changes, which Stoll claimed could
be estimated from either the bid or ask time series®
The values for each of these parameters under the competing theories are listed in

Table 1.1.

Table 1.1: Parameter Values under Competing Theories

Determination of Quoted Spread &, 8, n Cov, Cov,

Only Order Processing 0 S 0.5 -0.255 0.0
(Roll 1984)

Only Adverse Selection 0.5S 0.5S 0.5 0.0 0.0

(Copeland, Galai 1983, Glosten,
Milgrom 1985)

Only Inventory Holding Cost 0.58 0.58 1>1>0.5 -0.255%< -0.255°<
(Ho, Stoll 1981) $°(1-2m)- 1*(1-S) S%(1-2m)
<0.0 <0.0

Stoll’s major contribution to the bid-ask spread literature was to notice that if
the quoted spread was composed of a linear combination of an order processing cost,

an adverse selection component and an inventory holding cost:

S= asorderproce sing + ﬂSAdverseSebction + (1_ a— ﬂ)slnventoryl-blding (13)

then Equation (1.3) and Table 1.1 define a system of equations that can be solved for

the relative proportions of each component of the quoted spread. Stoll estimates the

! Stoll (1989) used the covariance of bid prices. As Table 3 shows, the assumption that the covariances of
bid and ask prices are the same is clearly wrong. In transactions data, the covariance of ask price changes is
always greater than the covariance of bid price changes.



parameters from daily NASDAQ data and concludes that about 47% of the bid-ask
spread is comprised of order processing costs, 43% adverse selection cost and 10%
inventory holding costs.

(Huang & Stoll, 1997) generalized the methodology of (Stoll, 1989) using trade
indicator models to estimate the components of the bid-ask spread for NYSE data. In

their model, the “true” public information price of a stock evolves according to:

V, =V + aE Unexpected change in inventory + public information innovation

S
=V, + aE(It—l —E[l, | It—2])+ 2 (1.4)

Where I; is an indicator function equal to 1, if a trade is designated as being buyer

initiated, and -1 if seller initiated. This specification follows from the assumption that all

trades are of unitary size. The expected change in inventory is simply:
E[l,,|1,,]=@Q-27)l,_,, wherexistheprobability of a reversal (1.5)

The midpoint of the spread M, is assumed to be linearly related to the order
flow imbalance experienced by market makers, which is simply the sum of the indicator
functions. This comes from the model of (Ho & Stoll, 1981). In that model, the dealer’s
response to a change in inventory is given as the solution to a stochastic differential
equation. Ho and Stoll do not solve this equation in the general case, or even show that
there exists a solution to the general case. Instead, the conclusion that market makers
will adjust prices linearly with changes in inventory is the result of several simplifying

assumptions. Later, we will test this linearity assumption in evaluating the model.
t-1
M, =V, + 8>, (1.6)
i=1

Combining Equations (1.4) and (1.6), Huang and Stoll derive the basic trade indicator
model in which changes in the midpoint of the bid-ask spread are modeled as a function
of lagged order flow, and expected order flow.

AM, =(0¢+,B)%It1—0{%(1—27:)“2+5t 1.7



In this model, a reflects the percentage of the half spread attributed to adverse
selection, and B reflects the percentage of the half spread due to inventory holding
costs. (1-a-B) is interpreted as the order processing, or gross profit component of the
half spread. In order to identify all of the parameters of this model, Huang and Stoll
estimate the probability of a reversal separately and provide alternative specifications of
the model depending on whether the quoted spread must also be estimated from the
data.

Huang and Stoll note the potential for serious problems with their model. As in
(Stoll, 1989), the probability of a reversal is a crucial parameter in the trade indicator
model. Huang and Stoll observe the probability of a reversal to be significantly lower
than .5 in NYSE data. As a result, when the model is first estimated, Huang and Stoll find
the proportion of the half spread due to adverse selection to be negative—an
impossible result.

Like (Choi, Salandro, & Shastri, 1988), Huang and Stoll assume that the problem
stems from large market orders being incorrectly recorded as multiple consecutive
trades. As a result, Huang and Stoll overcorrect for the problem of large trades by
repeating their analysis combining all consecutive trades that occurred on the same side
of the market less than 5 seconds apart. After doing this, they estimate that adverse
selection accounts for about 9.6% of the spreads of NYSE stocks while the inventory

component accounts for about 28.7%.

1.3 The ASX and Limit Order Markets

1.3.1 Quality and Characteristics of ASX Data
The ASX is a limit order market with a publicly visible order book. There is no

institutionalized dealer or specialist, although there is a small collection of brokerage
firms that routinely make up the inside of the order book. Trading on the exchange is
conducted anonymously. According to the rules of the exchange, traders may place
either market or limit orders. Although in practice, market orders are extremely rare,
and almost all transactions occur due to overlapping limit orders with most overlapping

orders hitting either the best ask or best bid depending on the side of the market. For



our purposes, limit orders that transact immediately are effectively market orders, and
will be referred to as such. The tendency for transacting limit order to hit the best bid
(ask) rather than under (over) shoot, as well as the tendency for new limit orders to
appear at the current best bid or ask price suggests that traders monitor orders closely.

The data used in this study come from a proprietary dataset compiled by Capital
Markets Surveillance Services Pty Limited (CMSS), which consists of every bid, ask,
amend, cancellation and trade on the Australian Stock Exchange (ASX). Unlike data from
US dealer markets, our data is remarkably clean. Every bid, ask, cancellation and amend
is recorded and labeled according to a unique bid or ask ID number. Each trade is
accompanied by a bid and ask ID and a set of flags indicating whether the transaction
was initiated by the buyer (transaction occurring at the ask price) or the seller
(transaction occurring at the bid price) of the transaction and whether the trade
occurred on market, off market, during the opening or closing auction, etc.

As a result, the potential problem noted by (Choi, Salandro, & Shastri, 1988), that
large trades being broken up into multiple consecutive trades can result in biased
estimates of the probability of a reversal, is non-existent in the data considered in this
study. All consecutive trades that are initiated at the bid (ask) price and are associated

with the same bid (ask) ID number are considered a part of the same trade.

1.3.2 Applicability of Inventory and Adverse Selection Models
A common objection to the methodology of this chapter is likely to be that the

models of Roll, Glosten and Milgrom and Ho and Stoll, which we are applying to ASX
data, are not specifically theories regarding limit order markets. While this is true, these
theories are not specifically models of dealer or specialist markets either. Instead, all of
the theories discussed above are models of stylized fictitious worlds in which a market
makers (in this case, any trader who posts a limit price not for immediate execution)
post fixed prices and individuals trade in unitary quantities with zero transaction risk.
While the market markers of theory are often referred to as “monopolist market
makers,” their pricing does not depend on their monopoly power. (Glosten, 1987)

argues that the presence of adverse selection exists in markets regardless of whether
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the market maker is a single monopolist or a group of competing market makers.
Moreover, in Stoll’s seminal paper on decomposing the effects of inventory and adverse
selection, he uses data from the NASDAQ, which is a multiple dealer market. Even
specialists are not monopolists. On average, NYSE specialists are involved in only 26% of
all trades by volume (Hasbrouck & Sofianos, 1993).

The main substantive difference between limit order markets and dealer
markets is not the monopoly power of the specialist but is the degree of market
transparency and transaction risk. While some microstructure theories, such as (O'Hara
& Oldfield, 1986), explicitly model the lack of transparency in dealer markets, the
theories of Roll, Glosten and Milgrom, and Ho and Stoll are general enough that they do
not account for order book transparency at all.

Whether market transparency is an important factor in determining bid-ask
spreads is addressed in (Bortoli, Frino, Jarnecic, & Johnstone, 2006). Bortoli et a/
examine a natural experiment in which the Australian Futures Exchange made an
institutional change toward greater order book transparency. The exchange increased
the number of visible levels of quantity on the order book from the quantity available at
the best bid and ask price to the quantities available up to three ticks away from the
best offers in both directions. Measuring the average sizes of the bid-ask spread before
and after the change, Bortoli et al. concluded that transaction risk does not affect
guoted spreads, although it did reduce the depth of the market available at the best bid

and ask.

1.4 Empirical Inconsistencies of the Roll and Stoll/Huang Stoll
Models

1.4.1 Quoted and Effective Spreads in ASX Data
Using the time series of bid, asks, cancellations, amends and trades, we can

reconstruct the evolution of the limit order book throughout the trading day. Since we
also observe the sequence of trade initiations, we can compute the average quoted and
effective spreads using Equations (1.8) and (1.9) below. We could alternatively calculate

the average quoted spread weighting by the length of time that the size of the quoted
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spread persisted, or use inter-trade quotes as well. Weighting by time does not appear
to affect our estimate of the average quoted spread in any significant way. The use of
inter-trade quotes in the calculation as well tends to result in higher spread estimates
since there is typically a time delay between when an order is lifted off the book and the
time that quantity is replaced by another limit order. Using inter-trade quotes will
produce positive bias in estimates of average quoted spreads related to the frequency
with which limit order placers monitor a particular stock.

— 1
S = - A_pB
awotd  [#of trades] 2R R

= 1

_ A _pB A _pB _
Seffective - [#Of reversaIS]Z(Pt Pt—l)zt +(Pt—l P[ Xl Zt )’ (19)

(1.8)

1if trade reverses from the bid to theask price

where Z, =
‘ {0 if trade reverses from theask tothe bid price

For each stock, Table 1.2 lists the average quoted spread, the effective spread and two
estimates of the effective spread obtained using the methods of (Roll, 1984) and (Choi,
Salandro, & Shastri, 1988) . Table 1.2 also shows the price level of each stock at the
beginning of the study and its average daily volume.

The actual and effective bid-ask spreads for all stocks tend to remain close to the
minimum tick size of $S0.01. Spreads exhibit some relationship to price levels, and
possibly vary with trading volume as well; however, there is simply not enough data to
make definite conclusions regarding either statement. The spread calculations in Table
1.2 also point out why expressing spreads in terms of returns may be problematic. If
guoted and effective spreads remain close to the minimum tick size for all stocks,
expressing them as fractions of a stock’s share price artificially inflates the difference
between the spreads of high and low priced stocks.

The effective bid-ask spread appears to be merely a fixed fraction of the
observed quoted spread. Figures 1.1-1.3 plot the relationship between the effective
spread, the quoted spread and the estimators listed in Table 1.2. Both the Roll and CSS
models overestimate the true effective spread and, in terms of fit, perform almost as

well as a fixed fraction of the quoted spread, about 2/3.



Table 1.2: Quoted and Effective Spreads

12

Stock Average Effective Effective/ Roll Choi, Price Daily Vol

Quoted  Spread (Average Estimate of Salandro, (on

Spread Quoted Effective Shastri 01/03/06)

Spread) Spread

MBL $0.0284  $0.0179 0.630 $0.0250 $0.0191 $68.00 145,679
NWS  $0.0156  $0.0086 0.551 $0.0098 $0.0073 $22.69 475,942
ANZ $0.0152  $0.0080 0.526 $0.0101 $0.0077 $23.90 1,083,877
BBG $0.0200  $0.0112 0.560 $0.0124 $0.0100 $14.50 321,130
AWC  $0.0117  $0.0065 0.556 $0.0072 $0.0057 $7.44 2,488,957
IvC $0.0158  $0.0103 0.652 $0.0087 $0.0082 $4.11 53,389
QAN $0.0106  $0.0075 0.708 $0.0069 $0.0058 $4.04 3,564,751
WPL $0.0239  $0.0156 0.653 $0.0214 $0.0161 $39.25 854,692
ZFX $0.0139  $0.0072 0.518 $0.0089 $0.0069 $7.00 3,126,523
GWT  $0.0142  $0.0082 0.577 $0.0078 $0.0066 $3.00 123,676

When Roll’s estimator is computed using per-trade transactions data, Roll tends

to underestimate quoted spreads while overestimating effective spreads. On average,

Roll overestimates effective spreads by about 60% using transaction data. This improves

when using the modification suggested by Choi, Salandro, and Shastri. Their estimator,

however, still overestimates effective spreads by about 20%.

Figure 1.1: Quoted and Effective Spreads
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Figure 1.2: Effective Spreads and Roll Estimator Using Transactions Data
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1.4.2 Explaining Differences Between Quoted and Effective Spreads
In order to explain the difference between quoted and effective spreads, we first

try to adopt Stoll’s (Stoll, 1989) methodology to estimate the size of the relative
components of the quoted spread. For each stock, we use bid, ask, and transaction
prices along with the observed sequence of trade initiations to estimate the parameters
given in Table 1.1. We allow &, §, and nt to differ depending on whether the last trade
was initiated at the bid (8, &b, Tt) OF ask price (8¢, 6ra, Ta), and estimate the
covariance of quote prices for bid and ask price time series separately.

We see major discrepancies between observed and theoretical values,
particularly for m, and m,. Each of the theories discussed in (Stoll, 1989) held that the
probability of a reversal is at least .5. The observed probability of a reversal for all stocks
is closer to .4 and for some stocks, such as IVC, significantly less. The probability of a
reversal being smaller than .5 reveals that no combination of inventory holding costs
and adverse selection components, at least as previous researchers have envisioned
them, can adequately explain the difference between quoted and effective spreads.

Table 1.3 also reveals that the covariance of quote prices depends on whether
covariances are computed using the time series of bids or asks. In all ten stocks, the
covariances of ask quotes are higher than the covariances of bid prices. Bid covariances

are negative in all stocks, while ask covariances are positive in four stocks.
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Table 1.3: Estimated Parameters for ASX Stocks

Stock 8cb Sca Srb Ora T TMa Cov: Covp Cov,
MBL -$0.0078 $0.0064 $0.0152 -$0.0166 0.4681 0.3891 -1.56E-04 -1.22E-04 1.39E-04
NWS  -$0.0024 $0.0033 $0.008 -$0.0072 0.4046 0.5086 -2.42E-05 -7.39E-06 -2.91E-06
ANZ  -$0.0028 $0.0026 $0.0071 -$0.0075 0.4679 0.4001 -2.57E-05 -5.53E-06 -1.52E-06
BBG  -$0.0041 $0.0045 $0.0084 -$0.0086 0.3788 0.3873 -3.84E-05 -1.99E-05 6.75E-07
AWC -$0.0016 $0.0015 $0.006 -$0.0059 0.4061 0.3934 -1.30E-05 -3.14E-06 2.75E-04
IVC -$0.0014 $0.0019 $0.0093 -$0.0092 0.2625 0.3091 -1.90E-05 -1.25E-05 -8.61E-06
QAN  -$545E-04 $5.26E-04 $0.0076 -$0.0073 0.3129 0.4054 -1.20E-05 -4.97E-04 -1.41E-05
WPL  -$0.0062 $0.0057 $0.0131 -$0.0139 0.4725 0.4103 -1.14E-04  -0.0296 0.0013
ZFX  -$0.0021 $0.0019 $0.0067 -$0.0066 0.4387 0.3885 -1.97E-05 -2.28E-06 -7.24E-07
GWT  -$0.001 $0.0019 $0.0084 -$0.008 0.2648 0.4193 -1.50E-05 -2.71E-06 -1.66E-06

Ask covariances tend to be higher than bid covariances because of the way stock

prices adjust. Contrary to theory, quote prices do not adjust simultaneously. One price
often undergoes multiple sequential revisions in one direction before the other price
adjusts once. Because stock prices tend to move upwards, ask price changes are more
likely to accumulate positive auto covariance than bid prices.

Figure 1.4 illustrates a sequence of trades for MBL during a period of price
adjustment. Stock prices adjust upward when a large number of trades initiated by
buyers erode limit orders on the other side of the market. This erosion of ask orders
pushes the ask quote upward, but more importantly, it causes ask prices to rise at a
faster rate than bid prices, increasing the quoted spread.

Nearly all transactions during the illustrated period of price change occur at the
ask price. To the perspective of potential sellers, as ask prices increase, bid prices
becomes less attractive, and seller initiated transactions do not occur until after bid

prices have begun to catch up with the ask price.
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Figure 1.4: Upward Price Adjustment in MBL
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1.4.3 The Tendency for Reversals
A natural question to ask given the low probability of a reversal is whether the

probability of a reversal is increasing with the accumulated size of a continuation. It may
be that markets have an “order flow threshold.” That is, small trades, even groups of
small trades on the same side of the market are unlikely to induce any revision of prices.
Only if a large enough order arrives or if a run of small trades accumulates enough one-
sided order flow, will markets undergo a price adjustment.

To answer this question, we consider the hazard rate of reversals. The hazard of
a reversal at a quantity Q is defined to be the probability that a run experiences a
reversal immediately after accumulating a size of Q shares conditional on having not
experienced a reversal up to quantity Q. This can be estimated by dividing the empirical
probability density function of run sizes by the one minus the empirical cumulative

probability distribution.
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Figure 1.5 below shows the typical shape of the relationship between the current
size of a run and the instantaneous probability of a reversal. The estimated hazard rate
functions of the stocks in this sample reveal that there is indeed a relationship between
how long a continuation has already lasted and its instantaneous probability of ending.
In general, the longer a run has continued, the more likely it is to end, although this
relationship appears weak for a broad range of run sizes at the beginning of the
distribution of run sizes.

Essentially, many small trades can accumulate on one side of the market before
affecting the probability of a reversal in a meaningful way. As orders build up on one
side, however, the probability of a reversal increases at a faster rate as orders in a run

arrive.

Figure 1.5: Estimated Hazard Rates for Reversals in IVC
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1.5 Methodology

1.5.1 Predicting Changes in the Level and Slope of the Order Book
Given the problems associated with the tendency for continuations in trade

initiations, we propose a modification of the Huang and Stoll trade indicator model in

which the probability of a reversal is set to one. Specifically, consider the sequence of

trade initiations and quantities:

Trade 1 1 1 -1 -1 1 -1 -1
Indicator

Quantity 100 300 200 500 100 300 200 100
of Shares

Instead of looking at individual trades, we look at the alternating sequence of
runs, measuring the size of the spread, the change in the level of the spread, and the
depth of the market at and around the best ask and best bid on the limit order book
between every run. The sequence of individual trades represented above then becomes

the sequence of runs below:

Trade 1 -1 1 -1
Indicator
Quantity 600 600 500 200
of Shares

We then make similar assumptions regarding the effect of order flow on the true
value of the stock and the relation between order imbalance and the “true” value of the
stock. We assume that the change in the true price of a stock is a linear function of the
size of the previous run, measured in shares, and the unexpected shock in order flow,
also measured in shares. Similarly, we assume that the level of prices is a linear function
of the true value and the size of the previous run. While Huang and Stoll focus on the
mid point, we model changes in bid and ask prices separately in order to explore
potential asymmetric effects on the spread.

We also relax the above mentioned linearity assumptions by testing possible
non-linear forms, and include other covariates and autoregressive terms in our

regressions.
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Vi=Viu + a(Qt—l —E[Q. | Qt—2])+ & (1.10)
We estimate the system of equations below where Qt_l is an estimate of the

size of the run at time t-1, based upon information available at time t-2, and the V’s are

vectors of autoregressive terms and the predicted variance of Q, . The vector of error

terms of the system of equations is assumed contemporaneously cross-correlated while
all other cross correlations are assumed zero.

Notice that in the equations below we have dropped the term S/2 from the
original model. This is because we are no longer considering a fixed, point spread. By
grouping all trades in a single run together, we are considering an “order flow” spread,
which reflects how the interaction of market order flow and the arrival of new limit
orders have changed the level of prices over the length of a trade run.

AP = 6% + B*Q +a(Quy — Oy J+ AV A + & (1.11)
APP = 6% + f°Q,, +a®(Quy — O )+ AVE + 7

S =8%+ f°Q +a*(Q, — O, )+ AV 4 g8

QL= 5%+ %Q, +a®(Q, ~ Q)+ AV + &2

Q5=06%+ ﬁQSQt—l + aQS(Qt—l - Qt—l)+ AV + thS
QDL = 5oL +,BQDth_1 +aQD1(Qt_l _QAt—l)—l—ﬂ’QDlV QD1 +thm

QD5 = &5%° + ,BQDSQH + o (Qt—l - QAH)"' AN L0 4 thDS

1.5.2 A Graphical Interpretation
On average, bid and ask prices tend to go up after a trade run at the ask price,

and tend to go down after a run at the bid price. Because the probability of a reversal at
the end of a run is one, the amount by which the ask price increases after a run at the
ask price reflects the unrealized part of the flow spread after an ask run. Similarly, the
amount that the bid price decreases after a run at the bid price is the unrealized part of

the flow spread after a bid run.
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After each run, we measure the amount that the price on the same side of the

market as the previous trade changed. This is denoted either Y, = YtAif the previous

trade was at the ask price or Y, = YtB if the previous run was at the bid price in Figure

1.6 below. Between each run, just prior to the start of the new run, we also measure the

size of the previous run, denoted as INV in Figure 1.6, and the amount that its size

differed from its predicted size, denoted AS below. Measurements of the components

of the spread are obtained by regressing Y on run size and the size of the shock to

determine the relative importance of the two components of the unrealized spread.

Figure 1.6: Graphical Interpretation of Spread Component Estimation

Adverse
Selection

Costs

Inventory

/ Ask Price

Unrealized Spread

YAt=aA+bA1ASt+bA2I NVi+e;

-+

Order Processing Component

Unrealized Spread W * *

[

=

Trades

Unrealized Spread

I
~ Bid Price

-

/’

Y8.=aP+b® AS+b%,INV +e,




21

1.5.3 Predicting Expected Order Flow
In order to accurately measure the effects of adverse selection on stock prices,

we must predict the size of future order flows given the information available just prior
to the time of a reversal. The size of consecutive runs can be correlated for many
different reasons. According to the theory we are interested in evaluating, order flows
at consecutive runs are correlated because of market making activities that adjust the
level of bid and ask prices in order to induce changes in inventory.

We also know from other micro market studies of order flow and liquidity that
the volume of trade obeys certain predictable time patterns. For example, order flow
tends to start high following the opening auction, fall off towards the middle of the day
and picks back up near the close of the market. Volume is also known to differ
depending on the day of the week or month. Volume tends to be different on Mondays
and Fridays as well as the first and last days of the month. The relation between volume
and time of day found in this study is similar to typical U-shaped pattern of volume
found in (Ahn & Cheung, 1999) and (Bias, Hillion, & Spatt, 1995).

When forecasting future order flow, it is important to distinguish between the
amount of correlation in run sizes caused by market making activities, and the amount
that is merely because consecutive runs are jointly influenced by the same latent
variables affecting the level of volume in general. If Ho and Stoll are correct that market
makers affect future order flow in response to past inventory changes, we should expect
past order flow to forecast future order flow even in the presence of variables
controlling for time. Moreover, we should expect the predictive power of past inventory
to be robust to the presence of time variables.

For every stock, both time and lagged run sizes were significant in predicting
future run sizes. While we do not interpret any of the estimated relationships as being
causal, the influence of lagged run size variables on predictions of future run size were
consistent with theory. Large trades at the bid price tended to predict large future

volume at the ask price and visa versa.
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We also explore the possibility that future inventory depends on past runs
deeper than the first lag. We find past lags significant in predicting run size, although the
length of lagged dependence appears to extend only to the second lag.

Presumably, market makers are aware of predictable time patterns of volume,
and anticipate them in their pricing. Thus, we use both sources of correlation to predict
the unexpected shocks to market makers’ inventory.

We will also forecast the expected variance of future run sizes as a linear
function of the same variables used in forecasting the mean of future run size. We place
no restrictions on the parameters of the variance equation to assure that the variances
are positive, but verify after estimation that each observation in the sample has positive
expected variance. Generally, the number of negative variance predictions is small, less
than 1% of the sample size. These observations are then set to zero.

Q =a+pQ.,+5,Q,, +lagged pricechanges + time of day variables (1.12)
+ day of week/month dummies + ¢,

g =a +BQ._,+ Q. , +lagged pricechanges + time of day variables (1.13)
+ day of week/month dummies + 7,

1.6 Results
1.6.1 The Level of the Bid-Ask Spread

The analysis of our data indicate that the size and level of the bid-ask spread is
determined by three components: an order processing cost, which constitutes the
majority of the quoted spread, an inventory cost, and adverse selection cost. The effect
of inventory and adverse selection costs, as predicted by theory, are similar, both
tending to move prices in the direction of the previous trade run.

Table 1.4 summarizes the effects of inventory and adverse selection on the
movement of bid prices, ask prices and the size of the quoted spread. We summarize
the effect of the variables of interest in Table 1.4 by presenting the mean of the effects
averaged across stocks, as well as the standard deviation of estimates and the minimum

and maximum estimated values. We also provide counts of how many times out of ten,
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the estimated effect of the variable was positive and negative, regardless of the
significance of that result.

As a simple non-parametric test of the inventory and adverse selection
hypotheses, we compare the number of times an effect was estimated to be positive
(negative) to the probability of obtaining the same or greater number of positives
(negatives) under the null hypothesis that positive and negative results are equally
likely.

Theory predicts that large volume and unexpected volume at the ask price will
cause prices to go up and that large volume and unexpected volume at the bid price will
cause prices to go down. Ten out of ten times the effect of quantity traded at the bid
price was found to have a negative effect on the bid price, and ten out of ten times the
effect of quantity traded at the ask price was found to have a positive effect on the ask
price. The probability of this happening by chance alone is only about 1%. We also find
that quantity at the ask (bid) price had a positive (negative) effect on bid (ask) prices
nine (nine) out of ten times as well, an event with about 2% probability.

Less significant results are obtained for the effects of adverse selection. Adverse
selection also appears to have asymmetric effects on bid and ask prices with bid prices
responding more strongly to run size shocks at both the bid and ask prices. This
asymmetry may be related to the tendency for the bid order book to exhibit a higher
degree of curvature than the ask order book as the slope and curvature of the book is
essentially a measure of prices’ sensitivity to volume. Unexpected shocks at the ask
price had a positive effect on bid and ask prices in 7 stocks each, while unexpected
shocks at the bid price had a negative effect on bid and ask prices in 8 and 10 stocks
respectively.

In the cases in which estimated effects of shocks were in the opposite direction
as that predicted by theory, they also tended to be insignificant. For example, the
smallest effect of unexpected shocks at the ask price on the level of the ask price was a

whole order of magnitude smaller than the mean effect across stocks. The one
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exception to this was the effect of shocks at the ask price on the level of the bid price,
for which one stock had a significantly negative estimate.

Overall, a trade run at the ask price one standard deviation larger than the mean
can expect to increase bid and ask prices by slightly more than half a cent. On the other
hand, a run at the bid price one standard deviation larger than the mean can expect to
lower bid and ask prices by slightly less than half a cent. Because of a large amount of
skewness in the distribution of run sizes, most run sizes lie somewhere between +/-1
standard deviation from the mean, but runs +5, +6, even +13 standard deviations or
more away from the mean are not uncommon, certainly much more probable than they
would be under a normal distribution.

The effect of observing an unexpected shock in run size one standard deviation
large than the mean at the ask price tends to raise the ask price by about .3 cents, while
having little impact on the immediate movement of the bid price. Similarly, a one
standard deviation shock at the bid price will decrease the bid price by about .3 cents as
well, and will have an effect about half that size on the ask price.

The asymmetry between how bid and ask prices respond to information
contained in order flow is particularly theoretically important. Typically, theory has
assumed that the bid-ask spread is either constant, or that when bid and ask prices are
revised, that they are revised simultaneously. In a dealer market, where bid and ask
prices are periodically announced by a specialist such as on the NYSE, this is not a bad
assumption. However, in a limit order market, prices changes occur one at a time when
orders at the front of the book are lifted, cancelled or improved.

In theory, inventory effects are caused by dealers’ desire to rebalance
inventory— induce dealer sales after dealer purchases, and visa versa—hence, in a
market where prices are revised separately, the inventory effect is an effect that betters

prices on the side of the market opposite the previous trade run’. Conversely,

2 Prices cannot always be improved on the opposite side of the market as the previous trade run because of
the minimum tick size. If the bid-ask spread is currently at the minimum tick size, the only way to improve
prices at the opposite side of the market is to move both bid and ask prices together. This may explain why
inventory has a significant effect on both sides of the market regardless of the side of the previous run—
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information effects are caused by dealers adjusting prices in ways that reduce order

flow from informed traders, hence when prices adjust separately, adverse selection is

primarily an effect that worsens prices on the same side of the market as the previous

run. In light of how the two effects of information and inventory are likely to affect bid

and ask prices differently, it is not surprising that we find inventory effects have a larger

impact on prices on the opposite side of the market than do adverse selection effects.

Table 1.4: Summary of Effects:

Bid, Ask and Spread Equations

Figure 1.7: 95% Confidence Intervals for Effect of Trade Size (at Ask Price) on Bid Price

Quantity (Quantity  |(Quantity
Quantity Traded at Bid|Traded at |Traded at |Unexpect |Unexpect

Last Run|Traded at Pricein Ask Price in|Bid Price in Jed Shock |ed Shock [Variance

at Ask  |Ask Pricein |Previous Previous Previous at Ask at Bid of Run

Price Previous Run|Run Run)*2 Run)*2 Price Price Size Constant
dbestbid x | P(X>=x|p=.5)
average 0.0050 0.0077 -0.0041 -0.0004 0.0003( -0.0002| -0.0031 0.0000 -0.0015 1 0.999
std dev 0.0027 0.0088 0.0031 0.0005 0.0004 0.0064 0.0026 0.0004 0.0024 2 0.990
min 0.0016 -0.0001 -0.0120 -0.0016 -0.0003 -0.0145( -0.0084| -0.0004 -0.0047 3 0.947
max 0.0102 0.0258 -0.0004 0.0000 0.0009 0.0069( -0.0003 0.0008 0.0038 4 0.831
# Positive 10 9 0 2 8 7 0 4 2| 5 0.627
#Negative 0 1 10 8 2 3 10 6 8| 6 0.382
dbestask 7 0.178
average 0.0040 0.0051 -0.0045 -0.0006 0.0002 0.0026( -0.0017 0.0001 -0.0014 8 0.062
std dev 0.0026 0.0053 0.0049 0.0007 0.0006 0.0039 0.0034 0.0006 0.0020 9 0.019
min 0.0011 0.0005 -0.0156 -0.0024 -0.0013 -0.0026 -0.0075| -0.0005 -0.0055 10 0.010
max 0.0094 0.0156 0.0000 0.0002 0.0009 0.0110 0.0049 0.0016 0.0025
# Positive 10 10 1 2 8 7 2 4 1
#Negative 0 0 9 8 2 3 8 6 9
spread
average -0.0012 -0.0017 0.0002 -0.0001 -0.0002 0.0019 0.0008 0.0001 0.0263
std dev 0.0011 0.0025 0.0012 0.0002 0.0002 0.0025 0.0018 0.0002 0.0760
min -0.0040 -0.0077 -0.0017 -0.0006 -0.0008( -0.0004| -0.0012| -0.0001 0.0006
max 0.0002 0.0005 0.0021 0.0001 0.0001 0.0077 0.0044 0.0007 0.2426
# Positive 1 3 7 3 1 8 6 8 10
#Negative 9 7 3 7 9 2 4 2 0

Effect of Trade Size (at Ask Price) on Bid Price
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because when the spread is small same-side price movement is a prerequisite for adjusting opposite-side

prices in ways that correct inventory imbalance.
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Figure 1.8: 95% Confidence Intervals for Effect of Trade Size (at Ask Price) on Ask Price
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Figure 1.9: 95% Confidence Intervals for Effect of Trade Size (at Bid Price) on Bid Price
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Figure 1.10: 95% Confidence Intervals for Effect of Trade Size (at Bid Price) on Ask Price
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Figure 1.11: 95% Confidence Intervals for Effect of Shocks (at Ask Price) on Bid Price
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Figure 1.12: 95% Confidence Intervals for Effect of Shocks (at Ask Price) on Ask Price
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Figure 1.13: 95% Confidence Intervals for Effect of Shocks (at Bid Price) on Ask Price
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Figure 1.14: 95% Confidence Intervals for Effect of Shocks (at Bid Price) on Ask Price
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In addition to looking at the effects of trade size, we also explore possible non-
linear relationships between trade size and price movement, by including non-linear
transforms of trade size in the price change equations. Table 1.4 includes a summary of
the estimated effect of trade size squared as an example. While these effects are
significant in some individual stocks, their effects are not consistently in the same
direction across stocks.

This suggests that runs of extreme sizes are fundamentally different from runs of
moderate size, but their effect on price movement may depend on other unobservable
factors. For example, the effect of a large trade may depend on whether it follows an

announcement of public information.
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A notable feature of exceptionally large runs is that, in some stocks, they do not
generate any price movement at all, while in others, prices tend to move in the direction
of the trade, as one would intuitively expect. Eliminating large trade runs, those thirteen
standard deviations or more from the mean run size, as outliers often does change the
estimated effect of squared run size, but the estimated effect of run size and
unexpected shocks in run size appear robust to their elimination. Inventory and adverse
selection shocks are also robust to the presence of squared run size, log(run size) and
lagged price change variables.

As expected, the error vectors of the change in ask price and change in bid price
equations are highly correlated with correlations ranging from .85 to .95. This means
that bid and ask prices tend to be moved in the same direction by the arrival of public
information shocks, which are independent of order flow. At the same time, the errors
of the price change equations are not as nearly as highly correlated with the errors of
the spread equation, suggesting that the arrival of public information affects the size
and level of the bid-ask spread differently.

The spread equation is the only place that we tend to see a significant effect of
run size variance. The idea that large variance in run sizes tend to increase the bid-ask
spread seems vaguely consistent with past research which has found positive
relationships between the size of the bid-ask spread and price volatility (Ahn, Bae, &

Chan, 2001) and (Bollerslev & Melvin, 1994).

1.6.2 The Slope of the Bid-ask Spread
The effect of inventory costs, adverse selection and uncertainty are more

complicated with respect to the depth and slopes of the order book. The slopes of the
order book are significantly affected by inventory and adverse selection, but not in the
ways one would intuitively expect from theory. In theory, large trades and/or large
unexpected shocks in dealer inventory at the ask price should increase prices. Since the
depth and slope of a book reflect the price of quantity, one might intuitively expect a
decrease in depth and an increase in the slope of the ask order book following a large

trade at the ask price.
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In practice, the order books appear to be more affected by demand for liquidity
than anything else. High transaction volumes at both bid and ask prices appear to
increase the depth and liquidity of the market. Essentially, market makers observe trade
sizes and respond to increased demand for liquidity by placing additional limit orders at
or around the best bid and ask. Large volumes of trading at either price tend to result in
deeper markets and decreasing slopes of the order book. This result is consistent with
(Danielson & Payne, 2001), which finds significant feedback effects between the rates at
which market and limit orders enter the market for the Reuters D2000-2 USD/DEM
foreign exchange market.

Table 1.5 below reports the same statistics as Table 1.4 for the depth of the
market at the ask price (Q1) and the next four levels closest to the best ask (Q2-Q5), as
well as the depth at the best bid (QD1) and the four closest levels of the bid offer curve
(QD2-QD5). In all of the regressions Q1-Q5 and QD1-QD5 have been standardized by
their mean and standard deviation, so that all effects are interpreted relative to the
average quantity available at that price level. This is to make results comparable across
stocks with different levels of liquidity.

The amount that a trade size increases the level of the quantity available at the
first five price ticks on both sides of the market varies widely between stock, and
between price levels. This variation between levels may be related to gaps in the order
book, prices at which little if any quantity is offered. In general, a trade on either side of
the market one standard deviation larger than the mean will result in an improvement
in depth at a given price level between 1% and 10 % of the standard deviation in the
level of quantity available at that price.

In contrast, large unexpected shocks in volume at either price tend to slow limit
order flow relative to market order flow and increase order book slopes. The expected
variance of run sizes appears to have minimal, if any, significant relationship to either
the bid or ask order book. Just as unexpected shocks had an asymmetric effect on the
level of spreads, they also appear to have an asymmetric effect on liquidity. Shocks at

the bid price tend to affect both the bid and ask order books out to the fifth price level,
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while the effect of ask shocks on the bid order book appears to lose significance after
only one level.

Unexpected shocks in order flow at the bid price appear to have a more
significant impact on market liquidity than shocks at the ask price. A shock at the bid
price one standard deviation above the mean will result in a decrease in quantity
offered at every level of both order books between 5% and 20% of the standard
deviation of quantity at those levels. Comparatively, ask price shocks will decrease the
quantity offered at the best bid price by about 3% of a standard deviation with little or
no effect on other price levels of the bid order book. The effect of ask price shocks on
the ask order book does appear to extend further than the depth at the best ask price,
however. A one standard deviation shock will result in about a 5% to 30% standard

deviation reduction in the quantity offered at each level of the ask book.
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Table 1.5: Summary of Effects: Quantities Offered at First Five Levels of Bid Order Book (QD1-QD5), Quantities
Offered at First Five Levels of Ask Order Book (Q1-Q5)

Quantity Quantity (Quantity |{Quantity

Last Traded at Traded at Traded at |Traded at |Unexpec |Unexpec

Run at |Ask Price in |Bid Price in |Ask Price |Bid Price |[ted ted Variance

Ask Previous Previous in Previous|in Previous|Shock at | Shock at [of Run

Price Run Run Run)*2 Run)~2 Ask Price|Bid Price| Size Constant
QD1 % | P(X>=x|p=.5)
average -0.2249 -0.0434 0.2487 0.0079 0.0045( -0.0262| -0.2884| -0.0054 0.1624 1 0.999
std dev 0.0632 0.0653 0.0596 0.0203 0.0204 0.0364| 0.0777 0.0230 0.0445 2 0.990
min -0.2931 -0.1218 0.1317 -0.0275 -0.0274| -0.1093| -04414) -0.05837 0.0764 3 0.947
max -0.0801 0.0942 0.3444 0.0452 0.0463 00265| -01723 0.0269 02389 4 0831
# Positive 0 3 10 6 A 1 0 4 10 A 0.627
#Megative 10 7 0 4 5 9 10 6 0 6 0.3532
QD2 7 0178
average -0.0090 0.0334 0.1051 -0.006%9 -0.0156( -0.0337| -0.0832 0.0138 0.0317 g 0.062
std dev 0.0547 0.0775 0.0894 0.0249 0.0294 0.0730] 0.0839 0.0312 0.0387 9 0.018
min -0.0595 -0.0449 -0.0126 -0.0671 -0.0883| -01721| -0.1853) -0.0180 -0.0310 10 0.010
max 0.0922 0.2035 0.2212 0.0182 0.0163 0.0493] 01001 0.0929 0.0938
# Positive 3 5 7 5 3 3 1 7 3
#Megative 7 5 3 5 7 7 9 3 2
QD3
average 0.0143 0.0154 0.1126 -0.0007 -0.0035 -0.0302| -0.1304 0.0046 0.0264
std dev 0.1015 01327 02033 0.0133 00133 00918 02074 0.0150 0.0374
min -0.1239 -0.1833 -0.0502 -0.0291 -0.0284| -0.1937| -0.5104) -0.0127 -0.0212
max 01770 0.2005 0.4392 0.0171 0.0126 0.0970| 0.0663 0.0273 0.0940
# Positive 4 6 7 6 5 3 3 5 6
#Megative 6 4 3 4 5 7 7 5 4
QD4
average -0.0182 0.0086 0.0264 0.0004 0.0012( -0.0086| -0.0403] -0.0002 0.0168
std dev 0.0566 0.0625 0.0945 0.0122 0.0143 00712| 00862 0.0136 0.0206
min -0.1214 -0.0573 -0.1555 -0.0141 -0.0161 -0.1367| -0.1817| -0.0248 -0.0233
max 0.0581 0.1557 0.1601 0.0267 0.0240 0.0940] 01044 0.0171 0.0461
# Positive 4 4 7 5 6 5 3 6 9
#Megative 6 6 3 5 4 5 7 4 1
QD5
average -0.0346 0.0860 -0.0320 0.0166 00191 -00953| 00051 -0.0195 0.0274
std dev 0.0613 0.0883 0.1164 0.0236 0.0236 0.1258| 0.1373 0.02538 0.0235
min -0.1467 -0.0208 -0.2434 -0.0091 -0.0079| -0.3143| 01465 -0.0520 -0.0179
max 0.0273 0.2295 0.0653 0.0500 0.0535 0.05258) 0.2546 0.0095 0.0577
# Positive 3 9 6 6 6 1 2 4 9
#heqative 7 1 4 4 4 9 g 6 1
Q1
average 0.0329 0.0766 0.1544 -0.0100 -0.0076( -0.0519] -0.1140 0.0077 0.0041
std dev 0.0584 0.1100 0.1568 0.0258 0.0252 0.0808| 0.0863 0.0265 0.0458
min 0.0186 -0.1183 -0.0586 -0.0389 -0.0306( -0.1604| -0.2703 -0.0475 -0.0788
max 0.1617 0.2305 0.4053 0.0454 0.0473 0.0545| -0.0039 0.0385 0.0543
# Positive 10 8 9 2 3 3 0 g 6
#heqative 0 2 1 il 7 7 10 2 4
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max 0.0263 0.3584 0.1406 0.0354 0.0420 0.1075] -0.0161 0.0544 0.1363
# Positive 4 9 g 4 ] 1 0 5 10
#hegative 6 1 2 6 5 9 10 4 0
Q3
average 0.0443 0.0506 0.2210 -0.0003 -0.0023| -0.0586| -0.1823 -0.0023 0.0379
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#hegative 4 3 1 6 4 7 9 il 4
Q4
average -0.0099 0.0295 0.0557 0.0013 0.0020( -0.0450| -0.0392| -0.0013 0.0196
std dev 0.0377 0.0621 0.1075 0.0050 0.0077 0.0668) 0.0936 0.0069 0.0159
min -0.0780 -0.0291 -0.1869 -0.0052 -0.0087| -0.2068| -01676) -0.0095 -0.0028
max 0.0556 0.1757 0.1839 0.008%9 0.0099 0.0193] 01572 0.0071 0.0617
# Positive 4 6 g 7 ] 2 2 4 9
#Mlegative 6 4 2 3 5 3 3 5 1
Q5
average 0.0348 0.0494 0.0930 0.0024 -0.0022 -0.0806| -0.0891 0.0007( 30254147
std dev 0.0634 0.0551 0.1599 0.0143 0.0152 0.0517] 01293 0.01458( 95671443
min -0.0531 -0.0099 -0.0797 -0.0260 -0.0343 -0.1890| -0.403%) -0.0148 -0.0095
max 0.1569 0.1735 0.4583 0.0196 0.0144( -0.0014| 0.0653 0.0350( 302540000
# Positive 3 [ 7 i 6 0 3 3 8
#heqative 2 2 3 2 4 10 7 7 2
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1.7 Conclusions
Previous models of the bid-ask spread that have focused on the probability of a

reversal as a key parameter in decomposing spreads cannot reliably be used in markets
where there is a large tendency for trade continuations. Even simple modes such as the
Roll model, which do not distinguish between inventory and adverse selection
components cannot be accurately used to measure the difference between effective
and quoted spreads in markets with large runs in trade initiation.

By considering runs as fundamental elements of limit order markets, a clearer
picture of the role of inventory management and asymmetric information emerges.
Dealer inventory effects on spreads are not unique to dealer or specialist markets. They
exist even in limit order markets and their effect on the level of bid-ask spreads is larger
than that of adverse selection.

Decomposition of the spread also allows one to focus on changes in the order
book specifically due to adverse selection. Asymmetric information plays a smaller role
in the level of the spread, but has wide-ranging effects on the depth and shape of the
order book. Unexpected shocks in the size of run volume decrease the flow of limit
orders relative to market orders resulting in lower liquidity and steeper order books.
Inventory effects, on the other hand, have little if any influence on market liquidity.

The relationship between unexpected shocks in order flow and the order book is
also asymmetric. Shocks due to asymmetric information have a greater impact on the
level and slope of the order book on the same side of the market as the shock. Shocks
arriving at the bid price also have a greater influence on liquidity than do shocks at the
ask price.

These differences between inventory and adverse selection effects raise new
qguestions regarding the causality of the observed relationship between order book

steepness and price volatility, and are likely to be a fruitful area of further research.
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Chapter 2 Principles of Continuous Price Determination in
an Experimental Environment with Flows of Random
Arrivals and Departures

2.1 Introduction

The period structure of experimental double auction markets, developed by
(Chamberlin, 1948) and refined by (Smith V., 1962), is known to play an important role
in Market equilibration. But is the repetition of trading days a necessity for convergence,
and in what ways do continuous markets differ from period-style experiments? In this
chapter, we show that 1) periods are not necessary for price equilibration, 2) multiple
generalizations of the Walrasian equilibrium exist in a continuous environment, with

I"

each equilibria exerting a unique “pull” on prices, and 3) that expectations play an
important role in the convergence of continuous markets.

In the experimental markets we study, incentives arrive at random times, are
short lived, and come from stochastic processes which change over time. The first
generalization of the Walrasian equilibrium is simply the price that would clear the
incentives currently in the market irrespective of expected future arrivals. We call this
the Temporal Equilibrium (TE). The second generalization of the Walrasian equilibrium
to the continuous random arrival environment we call the Flow Competitive Equilibrium

(FCE), which represents the price at which the expected flow of buy and sell incentives

are equalized.
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The environment we consider is similar to the environment examined
theoretically in the finance literature by (Garman, 1976) and (Amihud & Mendelson,
1980). The works of Garman and Amihud and Mendelson, however, neglect the
existence of Temporal Equilibrium prices, focusing exclusively on Flow Competitive
Equilibrium and the effects of dealer inventories on prices fluctuations around the FCE
price. Both works essentially take it for granted that expectations about the flow of
supply and demand drive convergence. Other researchers, outside the realm of finance,
such as (Gode & Sunder, 1993) and (Brewer, Jiang, & Plott, 2003) show that price
convergence to the Walrasian equilibrium can be attained with “zero-intelligence”
traders, raising the possibility that market convergence may have little if anything to do
with human expectations.

While the temporal equilibrium can be thought of as a naive or myopic
equilibrium model that could be attained by purely random behavior alone, the FCE is a
model of expectations, which would require real human intelligence. We discover that,
with human subjects, both equilibria exert independent influences on prices.

Continuous markets with random arrivals and departures have the unique
feature that speculation is necessary for obtaining high levels of efficiency. Speculation
becomes a necessity because appropriate trading partners do not always exist in the
market at the same point in time. Buyers and sellers may arrive in random “lumps,”
causing temporary imbalances in supply and demand. To obtain levels close to one
hundred percent efficiency, markets makers or speculators must be willing to smooth

temporary supply imbalances over time. The markets we study here do demonstrate
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levels of efficiency significantly larger than those attainable from random or naive
trading strategies alone. Despite a lack of direct coordination of market timing, nearly all
of the potential gains from trade are realized.

The chapter is divided into seven sections. The first section is this introduction.
The second outlines the random arrival and departure environment that we explore.
The third section is a discussion of the market institutions. The fourth section develops
principles that are natural generalizations of classical principles and illustrates how they
apply to the complex random arrival and departure environment. The fifth section
details the experimental procedures and design and outlines the experiments
conducted. The sixth section contains the results, and the final section contains

concluding remarks.

2.2 The Random Arrival and Departure Environment

2.2.1 Preference Inducement Methodology

Classical experimental market environments, as introduced by (Chamberlin,
1948) and (Smith V., 1962), consist of a set of redemption values, costs, and a period
structure. Before the start of a period, buyers receive redemption values from the
experimenters and sellers receive costs. Buyers make money in an experiment by buying
units in a public market, in which all subjects can participate, and reselling them to the
experimenters at the redemption values the experimenters privately quote each buyer.
Similarly, sellers buy units from the experimenters, at costs the experimenters quote,

and resell them to other subjects for a profit. Redemption values and costs can be
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modeled as limit prices and used as parameters in a model of competitive supply and
demand equilibrium. When a period opens, subjects choose what incentives they will
act on and form trades in the public market. Each period typically lasts for a fixed length
of time. After each period, subjects receive additional redemption values and costs
while old redemption values and costs do not carry forward to new periods.
Additionally, units that exist in one period typically are not carried over to the next
period; inventories and cash typically refresh each period.

Thus, in the classical environment, each period is like a day in which
commodities are traded and completely depreciate over night. The day starts with a
stock of costs and redemption values. During the day, the gains from exchange explicit
in the stock are exhausted. All actions are coordinated by the beginning and ending of
the period.

By contrast, the random arrival environment has no period structure. The market
opens for a fixed length of time, typically about two hours. Incentives arrive in the form
of private orders to buy from the experimenters (i.e., costs for potential sellers) or
private orders to sell to the experimenters (i.e. redemption values for potential buyers)
in a market accessible only by the agent for whom the orders are intended (i.e., the
agent’s private market)®. Buyers have an opportunity to buy in the public market from
other agents and resell for a profit in their private market by accepting an order to sell

to the experimenters found there. Similarly, sellers accept private orders to buy from

® This method of implementing the random arrival of incentives is made possible by the Caltech Marketscape
technology that will be explained in greater detail in later sections.
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the experimenters found in their private markets and resell units to other agents in the
public market.

Private orders to buy and sell appear in agents’ private markets at random arrival
times and each order expires after a short period if not acted on. This expiration feature
is important because it forces the individual to decide whether or not to act on an order
during a specific interval of time. The incentives can appear at any time for any subject
and last as long as the experimenters choose. Thus, at any instant, a subject can have
many orders for different amounts that appeared in the subject’s private order book at

different times and have different expiration times.

2.2.2 Incentive Parameter Structure (Latent Incentives and Realized
Incentives)

The basic parameters will be called “latent buyer incentives” and “latent seller
incentives.” The latent buyer incentives consist of a probability density function g(x),
where x is a price. Latent seller incentives consist of a probability density function gs(y),
where y is a price. For individual agents, draws are made from the distribution of buyer
values and the distribution of seller costs according to two independent Poisson
processes with intensities A, and A, respectively.

Realized incentives, as opposed to latent incentives, are the draws that are
actually sent to buyers’ and sellers’ private order books and serve as “redemption

values” and “costs.” In designing experiments, A is the arrival rate of private orders for

each of the ng sellers, and A, is the arrival rate of private orders for each of the n,



39

buyers. An order sent to a private order book has a life 0, and & for buyers and sellers
respectively. In these experiments, o, and O are fixed lengths of time (6 minutes), but
this need not be true in general. The environment could easily be modified to include

random expiration according to some waiting time distribution.

One can think of nature randomly choosing buyers at a rate n, 4, from a
distribution g, of latent buyer types with each type being a person’s willingness to pay.
Similarly for sellers, one can think of nature randomly choosing sellers at a rate N A,

from a distribution g, of latent seller types with each type representing a cost or a
reservation selling price. Thus, we will sometimes say loosely that the buyers and sellers
are randomly arriving at the market with randomly distributed incentives and a fixed
life.

Figure 2.1 provides an impression of the environment from the point of view of a
subject. Shown there are realized incentives (the private orders received) by a subject
over the course of an experiment. The horizontal axis is the time of arrival and the
vertical axis is the price of the private offer (the analog of a “redemption value”). A
parameter shift to a lower arrival rate took place about the middle of the experiment.
As can be seen from the pattern, the subject faces a wide range of randomly arriving
incentives. When all signals are viewed at once, as is the case in the figure, the
difference in the pattern of incentives is apparent. The implications of parameters are
more subtle from the subject’s point of view. Only the arrivals themselves are observed

by the subject without aggregation or frequency measurements. In Figure 2.1, the
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subject is only exposed to a change in the arrival rate and this change is not signaled by

other features of the environment.

Figure 2.1: Example Arrival of Private Orders (Incentives) for a Single Subject Before and After a Parameter Shift
That Reduces the Flow of Orders to the Subject
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While the environment introduced here is new, the experimental literature
contains suggestive departures from the classical environment. The literature is much
too large for a complete review here. We do not attempt to review all of the
modifications of the classical environment that exist in the experimental literature.
Instead, we reference seminal departures in the direction of the environment
developed here.

In (Jamison & Plott, 1997) and (Kagel, 2004), the incentives differed each period

in a random fashion. In (Brewer, Jiang, & Plott, 2003), incentives were instantaneously
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refreshed after a trade took place, demonstrating that the price adjustment process was
not due to the Marshallian path.4 Many experiments involve incentives with multi-
period longevities following the original study by (Miller, Plott, & Smith, 1977): notable
examples being experiments with financial assets (Forsythe, Palfrey, & Plott, 1982),
(Smith, Suchanek, & Williams, 1988) and many other experiments involving goods with
“asset-like” properties (Peng & Plott, 1998).°

A flow environment with simulated buyers was created by (Millner, Pratt, &
Reilly, 1990) for the study of contestable markets characterized by duopolists with
falling average costs, but they studied only a solution from contestable market theory as
opposed to a general concept of competitive market equilibrium. (Aliprantis & Plott,
1992), introduced the idea of “overlapping orders” similar to the idea of “overlapping
generations” which have features similar to the random arrival markets we introduce
here.® In the overlapping orders environment, each agent-type had a fixed period
structure, say every 20 minutes, the beginning of which orders arrived that could be
executed during the personal period and expired at the end of the personal period.
Identical agent types operated on the same schedule with essentially identical
preferences while different agent types operated on different (overlapping) period
schedules. For example, in a two generation world, the periods for generation 2 started

10 minutes after the period for generation 1 started. The market never closed so at each

4 Interestingly, because the units that could trade would be refreshed, the “arrival” rate of such units began to
increase relative to units that could not trade. In order to accommodate this feature, Brewer, et a/ (2002)
invented a “velocity adjusted” concept of demand and supply that can be viewed as a special case of the
theoretical concepts developed here.

> (Cliff & Preist, 1998) allowed the accumulation of inventories and orders that were distributed to subjects at
scheduled periods.

® In a much different environment, overlapping generations have been studied by (Marimon & Sunder, 1993).
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instant there was a “young generation” that just received incentives and an old
generation, with incentives that were getting ready to expire. Thus, the classical period
structure was removed. One can think of the random arrival environment as an
“overlapping order” environment only with random schedules that differ across

individuals and many generations.

2.3 Market Institutions

The market organization implemented here is the multiple unit double auction
with an order book invented for experimental applications by (Plott & Gray, 1990). At
any instant, a buyer or a seller can submit an order consisting of a quantity, a per-unit
price and an expiration time and send it to the market. Buy orders obligate the bidder to
buy up to the stated quantity at the per unit price if accepted. Sell orders obligates the
asker to sell up to the stated quantity at the per unit price if accepted. Orders are sent
to a public order book that can be viewed by all agents and are listed in order of price
from best to worst from the point of view of counterparties.

If trade is possible when an order arrives at the market, the trade is immediately
executed at the existing price in the order book. That is, if a buy order arrives at a price
that is higher than the lowest sell order price, the trade is executed at the sell order
price. If the quantity of either side is not exhausted, the remaining amount is entered
into the book.

The market exchange system was Caltech’s Marketscape program. This market

system operates over the web; agents can be located at different institutions or at
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home. The exchange system has a public market in which exchanges can take place.
Each agent also has a private market in which orders are placed by the experimenters.
These private markets provide the technology through which the random arrival

environment is implemented.

2.4 Models and Theory

2.4.1 Temporal Equilibrium

At any given time, temporal competitive supply (TS) and temporal competitive
demand (TD) curves are based on orders that exist in private order books (private
incentives) at time t. These are the orders received by subjects that have not been acted
upon or expired. For subjectsiandj let R'(t, x;) be the revenue that is produced by
exercising the best x; orders that buyer i finds in the private order book at time t and let
cl(t, y;) be the cost of buying the best y; order found in seller j's order book at time t. Let
P be the market price. The temporal competitive model holds that x; is chosen to Max
[R'(t, x;)- Px;] and yjis chosen to Max [Py; - cl(t, yj)]. From the optimization model, the
TD and TS are always well defined for the individuals and the TD and TS are well defined
at the market level as the sum of the functions for the individuals at a given market
price.

From the construction above, we know that the temporal demand curve at time
t is a downward sloping step function, TD(P,t), equal to the number of buyers (sell
orders in private markets) in the market at time t—those that have arrived before t and

have not yet either traded or were cancelled —with reservation prices above P.
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Similarly, TS(P,t) is an upward sloping step function equal to the number of sellers (buy
orders received in private markets) with reservation prices below P at time t. We can
define a temporal equilibrium price as a P such that: TD(P,t) = TS(P,t).

One reason that prices might follow the temporal equilibrium is if traders
followed zero, or limited intelligence bidding/asking strategies. Examples of such
theories include (Gode & Sunder, 1993) and (Easley & Ledyard, 1993), in which traders
submit multiple improving bids/asks over the longevity of an incentive, eventually
revealing their true reservation price on each incentive before it expires. In (Easley &
Ledyard, 1993), traders also submit limit offers based on recent trade prices market,
which aides convergence. Likewise, zero intelligence robots programmed to simply
reveal their reservation prices upon arriving to the market would generate traded prices

that coincided perfectly with the temporal equilibrium.

2.4.2 Flow Competitive Equilibrium

Flow competitive demand (FCD) and flow competitive supply (FCS) curves, on
the other hand, specify the arrival rates of buyers (sellers) with reserves above (below) a
given price. Flow competitive supply and flow competitive demand reflect two
components: 1) the distribution of latent reservation prices for buyers and sellers, and
2) the relative arrival rates of buyers and sellers. For a given price P, the levels of the

flow competitive supply and demand curves are given by:

FCS(P) = nsiSJ.p 9, (y)dy =n,4,G, (P)
- (2.1)
FCD(P) = ny 4, [ 9, (x)dx = 0,2, (L~ G, (P))
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Where A, is the arrival rate of individual sellers, A, the arrival rate of individual

buyers, ns and ny, are the number of seller-participants and buyer-participants, and g
and gy, are the latent preferences, the distributions of reserve prices for sellers and
buyers respectively.

A Flow Competitive Equilibrium (FCE) is defined by 1) a price Pgce at which the
arrival rate of buyers with reservation prices at or above Pr¢e is equal to the arrival rate
of sellers with reserve prices at or below Pcg, and 2) a rate of trade associated with Pgce.
That is, the FCE is a price, Prcg, and flow competitive equilibrium transaction rate Vece
defined by:

FCS (Pece) = NyAG (Pece ) = Ny 4, (1_ Gy (Pece )) = FCD (P )

. (2.2)
Vece =Ny Ay L g, (x)dx

The FCE price is the price such that the flow of supply equals the flow of demand.” The

equilibrium flow or volume is simply the FCD evaluated at the FCE price.®

’ Note that the longevities of incentives do not affect FCE price.

8 The FCE can be viewed from the perspective of theoretical ideas in finance. Close relationships exist between
the environment introduced here and the theoretical financial market explored by (Goettler, Parlou, & Uajan,
2005). In a sense, their environment can be viewed as a special case of ours. The prominent features of their
environment are: (i) private values that “reflect the idiosyncratic motives for trade (wealth shocks, tax
exposure, hedging, or portfolio rebalancing needs);” (ii) the independent arrivals of traders drawn from known
distributions; (iii) a publicly known “consensus value” of an asset, perhaps dictated by the present value of a
dividend stream; and (iv) upon arrival in the market, the trader makes a decision about the type of order to
place in an open order book and implicitly, the timing of the placement.

The essence of (i), (ii), and (iv) are in both our environment and in the GPR’s environment. A concept
of a “consensus value” as found in (iii), can be found in both, but in the environment introduced here, it
emerges as a candidate equilibrium concept, the FCE, as opposed to an imposed parameter as done in GPR.
While the FCE carries much of the intuition carried by the “consensus value” of GPR, it is not public information
and there are both conceptual and technical differences. For example, when buyers and sellers have a common
distribution of latent preferences and the arrival rates are the same, the FCE is the median of that distribution
while the consensus value of GPR would be the mean. In addition, the FCE generalizes to the cases where the
latent preferences of potential buyers and sellers do not arise from a common distribution and, since the FCE is
closely associated with the classical competitive model, information or common knowledge about underlying
parameters play no particular role.
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Figures 2 and 3 illustrate graphs of FCS and FCD produced from uniform
distributions of reserve prices on 0 to 1000. Figure 2.3, shows how the curves in 2
change when the rate of arrival for buyers is cut in half, while Figure 2.4 shows how FCS
and FCD change when the distribution of buyers’ valuations is shifted upward. Figure 2.5
illustrates how the FCS and FCD curves generalize to different distributions of incentives
by using truncated normal distributions with a mean of 500f and a variance of 200f to
generate the curves.

Different “types” can be captured by different latent preferences together with
other attributes of private orders, such as arrival rates, private order longevities, etc.,
and restrictions on trading activities such as costly or limited inventory holdings,
restrictions on limit/market order placement, etc. Those who need immediate cash, and
thus might tender market orders, could be represented by a latent preference with
probability mass at, say, zero on the latent supply together with a very short longevity
for the agent receiving the associated private order. While we have not implemented
this particular feature in this chapter, we call it to the attention of readers interested in
the generality of the environment. We also note that the flows are additive and each
type would have its own, independent distribution of latent parameters so the FCD and

FCS would simply be the sum of the flows from the different types.



47

Figure 2.2: Flow Competitive Supply and Demand Arrival Curves with 1000 Buyer and Seller Arrivals Per Hour
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Figure 2.3: Flow Competitive Supply and Demand Arrival Curves with 500 Buyer and 1000 Seller Arrivals Per Hour
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Figure 2.4: Flow Competitive Supply and Demand Arrival Curves with 1000 Buyer and Seller Arrivals per Hour and Shifted

Latent Demand
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Figure 2.5: Flow Competitive Supply and Demand Arrival Curves with 1000 Buyer and Seller Arrivals per Hour and

Normally Distributed Latent Incentives
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2.4.3 Trader Behavior

Table 2.1 lists three different theories of how traders might behave in our
environment. These theories are by no means exhaustive of the set of behaviors that
subjects might exhibit, but they do represent a continuum of “trader sophistication.” At
one extreme are zero-intelligence models such as those presented in (Gode & Sunder,
1993) and (Brewer, Jiang, & Plott, 2003). In zero intelligence models, traders submit bids
and asks at random within their budget sets, traders have no memory of past prices,
incentives, and their actions are not a product of explicit utility maximization. In both of
these models, traders act on each private offer individually, realizing a reservation price,
then submitting a (possibly marketable) limit order between their reservation price and
a price floor or ceiling, and possibly submitting additional random bids based on the
same incentive at a future time.

In the middle are “limited intelligence models,” like that of (Easley & Ledyard,
1993). Limited intelligence models are similar to their zero intelligence counterparts, but
may include features such as memory of past prices or learning based on past offers and
trades. Learning and memory causes limited intelligence traders to behave at random at
first, and gradually alter their behavior over time. In (Easley & Ledyard, 1993), for
example, traders submit limit offers within a price band determined by past trade
prices, causing the distribution of bids and asks to become tighter over time.

Zero and limited intelligence traders only respond to realized incentives. That is,
unsophisticated traders submit limit orders according to private offers they received in

their private markets. Because of this, unsophisticated traders do not realize any
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additional surplus due to smoothing temporal imbalances in supply and demand.
Moreover, prices in markets with zero intelligence traders tend not to converge (Gode &
Sunder, 1993), unless they are aided by additional market institutions such as a limit
order book (Aliprantis & Plott, 1992), or limited intelligence such as memory (Easley &
Ledyard, 1993).

At the other extreme are theories of sophisticated or full intelligence traders.
These theories come from the financial literature and deal with “dealers” or “maker
makers,” who must make the market in the presence of randomly arriving market
orders rather deal with “traders,” who submit both market and limit orders and have
randomly arriving incentives. Full intelligence models diverge from less sophisticated
models in that full intelligence traders, as in (Garman, 1976) and (Amihud & Mendelson,
1980), form (correct) beliefs about their expected future order flows and beliefs about
the location of FCE prices and submit limit and market orders based on those beliefs.
Neither (Garman, 1976) nor (Amihud & Mendelson, 1980) are explicit about how these
beliefs are formed, merely stating that the stochastic structure of supply and demand
arrivals is known to market makers. (Amihud & Mendelson, 1980) also derives that
market makers’ offer prices depend on the level of dealer inventory.

Table 2.1 also compares each theory qualitatively with the observed
experimental data using checks or X’s. We discuss these comparisons in greater depth in

Section 6.
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Theory Author(s) Behavior Theory Predictions  Result
Zero (Gode & Sunder,  Traders’ bid/ask is a Prices closely follow %
Intelligence 1993), (Brewer, random function of the temporal
Jiang, & Plott, reservation price and is  equilibrium %
2003) independent of past No additional
prices or other surplus due to
incentives. expectations is NA
realized
Efficiency depends
on the number of
offers made per
incentive and how
fast traders reveal
their reservation
prices
Limited (Easley & Traders submit limit Prices follow the v
Intelligence Ledyard, 1993) offers within the range temporal %
of recent trade prices. equilibrium
Limit orders are No additional
improved over time until surplus due to v
reservation prices are expectations
revealed by the end of realized
the incentive’s longevity. Distribution of offer
prices becomes less
dispersed over time
Sophisticated (Garman, 1976),  Risk neutral traders All trades occur near x
Expectations (Amihud & understand the random  or at the FCE price
Mendelson, 1980) arrival structure and Close to 100% of
speculate to profit off additional surplus x
temporal imbalances in  due to expectations
supply and demand. is realized X
Level of quote price
negatively
correlated with
dealer inventory
Hybrid Traders may exhibit Prices will tend to v
Theories features of multiple be between and
theories. For example, if  influenced by both
traders are risk averse, the FCE and TE v

they may speculate but

not to the extent
predicted by
Sophisticated
Expectations.

Some additional
surplus due to
expectations will be
realized
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2.5 Experimental Procedures and Design

2.5.1 Experimental Procedures

Subjects were students recruited from Claremont McKenna College, Occidental
College, and Caltech by a general request for people to put themselves in a database if
they were interested in participating in experiments. The day before an experiment,
invitations were sent via e-mail recruiting subjects from that database. Typically, these
experiments recruited subjects from more than one school.

Subjects who reserved a spot in an experiment were sent the web location of a
training program that allowed them to participate as buyers and sellers using market
software typical of the market mechanism used in the experiment. Several of the
students, especially those from Caltech, had prior experience with economics
experiments in general. A few subjects had prior experience with market experiments in
particular. Subjects were asked not to reserve a spot in experiments unless they were
able to show up and participate in the whole experiment, but nearly every experiment
had either subjects that were “no-shows,” or subjects that dropped out before the end
of the experiment. Experiments were conducted either in the evening, (around 7:00PM)
or on weekends.

Subjects were given the web address of the experiment and told that they could
go to the web address to get an identification number and password. Instructions were

also posted at the experiment location.
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Each experiment was preceded by a ten minute practice period for which
subjects did not receive payment. The practice parameters were unrelated to those
used in the experiment. Subjects’ trading activity was monitored remotely to determine
whether subjects were confused about whether they were a buyer or seller, or were
confused regarding how to use their private markets. Subjects were additionally
provided a phone number that they could call with any questions they had about the
experiment.

The experiments started on time. At the end of the experiment subjects were
told to check their mailing addresses in the database and to check our calculation of
how much they earned. They were sent a check for their earnings. Subjects earned
between $10 and $78 for a two hour experiment depending on performance, with most

subjects earning close to an average of $40.

2.5.2 Experimental Design

A total of six experiments were conducted.’ Each experiment featured one shift
in either the distribution of buyers’ redemption values/sellers’ costs or a shift in the
rates of arrivals. The times of these shifts occurred near the middle of each experiment
and are recorded in Table 2.2. Also recorded in Table 2.2 is the length of the
experiment, the number of buyers and sellers, the total number of incentives sent to
buyers and sellers before and after the shift, as well as the distributions of incentives

and the FCE before and after the shift. The table includes the total number of arrivals for

® An additional four experiments were run as pilots but were not included in this study due to the choice of
parameters, computer problems during the experiment, or small sample sizes.
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each side of the market and the parameterized arrival rates per person, per second. The
parameterized arrival rates are the rates intended by the experimenters. Due to the
random nature of the environment and computer slow downs however, the actual rates
of arrivals realized in the market were typically slower than the parameterized rates.
The realized rates are also listed in Table 2.2 in parenthesis. The total arrival rates per
minute are the per-person arrival rates given in the table times the number of
participants.

In designing the experiments, order-flow parameter files were constructed on a
per person basis according to a Poisson process with redemption values/costs drawn
independently from distributions known to the experimenters but not to subjects.
Because of this, the experimenters did not know the actual numbers of incentives that
would arrive on the buy and sell sides of the market in advance. For each buyer and
seller, the experimenters recorded the time of their first and last action in their private
market. The number of incentives sent to the market listed in Table 2.2 includes only
those incentives that were in the market, or arrived to the market during the interval
that the trader for whom they were intended was active.

Since the experiments were conducted with remote subjects, tight control over
participation was impossible. Typical of internet market experiments, parametric
adjustments to models were required when subjects quit the experiment after having
started. In such cases, the models were recalibrated for a different number of subjects
beginning from the time that the subject stopped participating. For most experiments,

the adjustment made for when traders were present in the market was not important.
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Only in experiment market 070414, were there drop-outs and late entrants which
affected the calculation of FCE. These all occurred before the parameter shift and are

illustrated in Figure 2.7, which plots the FCE price path for this experiment.
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Table 2.2: Summary of Experiments

(9z69z62) (9T€T9L%0T) (zLS9L5¢€) (seL3010T) (61% 9805) (621T'1252)
€599205) ‘(ogzzy80TT)  “(60L 9826) ‘(229 3L1%) ‘(569 1862) ‘(26L€LY) wnqinbyg
ZELL €S TS 08'89 ‘€+'8S 08'89 ‘€+'8S ZTOL ‘€89 8Y'8% ‘ZETL €5°6TT '86°St (urw) yasuar
(1sv'zs)n (zeor1e9)n  (strt'vim)n (ezer'8zadn (zL9'€L2)n (Tsv'z9)N uonnqrusiq
(2L9€L2)n ‘(zeor1e9dn  ‘(sTTT9%1T)n ‘(62C1°822)N ‘(1st'zs)n ‘(z19'€L2)N I9[[9S
(1s¥'zs)n (zeor1e9)n  (strtvim)n (ezzr'8TZ)n (zL9'€L2dn (1sv'z9)n uonnqrusig
(zL9'€L2)n ‘(zeorte9dn  ‘(st1T91m)n ‘(6221'822)N ‘(ts¥'zs)n “(z29'e22)N Ia4ng
(ut/94°€) «(uru/g6°s) (urw/09°€) (uru/g9'1) (unw/oz¢) .
. (uwysez)
uw/y unw/91 uw/g'g urw/z urw/ unp
(un/95°¢) “(uw/syor)  (ww/y9°T) ‘(urw/00°2) ‘(urw/071°€) (W08 ) arey
ulu/y unw/97 urw/g urw/g g urury Ul [BALLIY I3][3S
(uri/09°€) (urw/6L'€) (urw/zz'1) (urw/z£9) (uru/1¢€) (w002)
uiu/y urw/g unw/z uw/s'g uru/y g
(uu/z9°€) “(uw/eyo1)  ‘(ww/00°8) ‘(urw/eg1) ‘(urw/0L€) “(UIW/S0°H) arey
unu/y umu/91 unu/g'g umu/z uru/y Uy [eALLY JoAng
zpd I pd Zpd1pd Zpd1pd Zpd1pd Zpd1pd Zzpd T pd
sontuvoul
(£091 ¥zTT) (z62€ ‘T0LY) (08%Z ‘€98) (176 ‘€€9¢€) (eL29011) (0eGz '84LT) | 01108 Jo 1aquInN
S9A[UAdU]
(szzz ‘0zs1) (PreT‘STED) (8¥%L THLE) (zogg ‘0€8) (zzr1'8%81)  (2STZ ‘229T) |194ng jo saqunN
9 6 6 8 S 6 SEIIEN
8 6 8 L L 6 s1adng
£x0
IND £X0Q DD ‘DD ‘Yo3[ED £x0 ‘DD £x0 ‘Yoae) yoayed (s)1ooyds
0%$ xo1ddp 0%$ xoxdde 0%$ xoxdde 0%$ xoxdde 0%$ xoadde 07$ xoudde  [|surureq aderoay
paouariadxy paouariadxy paouaradxy paousladx3
A[9re19po A[9re19po paouariadxy A[are19poy Alo1eispoN
paoualiadxau] ‘PaxIN ‘PaxIN AISOIN ‘POXIN PIXIN ‘pPaxIN douariadxy
8070L0 $I¥0L0 0Z+0L0 SZH0L0 9090L0 $00TL0O are( JuawLIadxy

2.6 Results

The results section is divided into four parts. The first section merely provides a

graphical overview of the results of trading. In the second section, we demonstrate that

two distinct equilibria do exist in our markets and that both affect the motion of traded

prices. Result 1 shows that both the Temporal and Flow Competitive Equilibria closely

approximate traded prices. Result 2 illustrates how the two laws interact, with each

equilibrium having a distinct pull on traded prices.
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The third and fourth sections of the results discusses the role of expectations in
price adjustment. Since the TE and the FCE differ in the role of expectations, we are able
to quantity the role of expectations, which manifests itself in improved efficiency, the

formation of bids and asks and price levels.

2.6.1 Overview

Figures 6 through 10 provide an overview of the parameters and price data. Each
figure plots the supply and demand curves before and after the parameter shift
alongside the price, FCE, and TE price time series. Below the price time series is plotted

the volume transacted over the last 30 seconds.

Figure 2.6: Flow Competetive Supply and Demand Parameters and Results for Market 070208
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Figure 2.7: Flow Competetive Supply and Demand Parameters and Results for Market 070414
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Figure 2.8: Flow Competetive Supply and Demand Parameters and Results for Market 070420
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Figure 2.9: Flow Competetive Supply and Demand Parameters and Results for Market 070425
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Figure 2.10: Flow Competetive Supply and Demand Parameters and Results for Market 070606
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2.6.2 Price Levels

In random arrival markets, temporary imbalances in the flow of buy and sell
incentives create “wandering” temporal equilibrium prices and opportunities for
rational traders to profit by buying during periods of excess supply relative to the FCE
and selling during periods of excess demand relative to the FCE. But are price
movements affected by both equilibria? In this section we demonstrate that both laws
of supply and demand do play a role in determining trade prices during an auction.

We begin with Result 1, which says that trade prices tend to form between FCE
and TE prices. In Result 2, we empirically, measure the relative impact of the flow
competitive and temporal equilibria on trade prices. While the FCE provides a unique
pull on trade prices, trade prices are predominantly determined by TE prices.

Result 1: (i) Traded prices are distributed around both FCE and TE prices. (ii) When
trade prices deviate from the FCE price, they tend to deviate in the direction of

the TE price.

Support (i): The relationships among trade prices, FCE and TE are illustrated in Figures
11, 12, and 13, which also provide general impressions of the data. Figure 2.11 shows
the marginal distribution of trade prices around the FCE. Figure 2.12 shows the marginal
distribution of trade prices around the TE. Figure 2.13 shows the marginal distribution of
deviations in the TE from the FCE.

Similarities exist among the distributions in Figures 11 and 12. Notice that the
trade prices have “fat tails.” Trade prices appear to be T-distributed around the FCE and

the TE. There is a statistically significant tendency for goods to be under priced relative
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to both the FCE and TE prices. Simple t-tests reject the null hypothesis that the mean of
trade prices is equal to the FCE price at virtually any confidence level, but the economic
significance, as well as the size of the under pricing in dollar terms is slight. Given a
typical exchange rate of 500 francs (the currency of the experiment) =51, a 15-20 franc
price deviation represents only about 3-4 cents.

Turning to Figure 2.13, the distribution of TE prices around the FCE, has
properties similar to the distribution of trade prices around the FCE. Trade prices have a
higher variance than TE prices. TE prices have an estimated variance of 3654, while the
estimated variance of trade prices is 8997, well over twice as high. The nature of this

property is explored more closely by Result 2.

Figure 2.11: Distribution of Trade Prices Around FCE Price
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Figure 2.12: Distribution of Trade Prices Around the TE Price
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Figure 2.14: Scatter Plot of Trade Price Deviations vs. TE Price Deviations from FCE
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Support (ii): Figure 2.14 illustrates the positive relationship between trade price

deviations from the FCE and TE price deviations from the FCE. Across all experiments

the contemporaneous correlation between these deviations is 0.6167. Notice that the

relationship between temporal deviations and trade price deviations is weak when the

TE is close to the FCE. This relationship becomes stronger when the TE deviations from

the FCE are large in either direction

Result 2:

Both the direction of temporal equilibrium prices and the direction of the

FCE price influence future price movement.
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Support: We use a simple least squares regression to predict future price movement
based on how far away the current price is away from both the long run and the
temporal equilibrium price for five different forecast horizons. Using only sections of

data over which the FCE remains constant, we estimate the model:
Pt+j_Pt =ﬂ0+ﬂl(TEt_Pt)+ﬂ2(FCE_Pt)+8t (2.3)

where t, indexes the trade number.

In this model, a slope coefficient of one is interpretable as “complete
adjustment,” while a slope coefficient between zero and one indicates that prices are
moving toward the equilibrium price, although not perfectly equilibrating.

Table 2.3 shows the results of these regressions for price changes after 1, 50,
100, 300, and 500 trades. The results indicate that prices move in the direction of both
equilibria since all of the estimated coefficients are between zero and one. The
magnitude of these coefficients tends to grow with the forecast horizon, suggesting that
prices, at least in the short run, are “sticky” and tend to under adjust over short time
periods.

A different story emerges with an examination of price changes over much
longer periods of time, 300 and 500 trades in the future. At these forecast horizons, the
coefficients on the distance to the temporal equilibrium price and the distance to the
FCE price sum to one, but both coefficients are statistically different from one. Neither
equilibrium concept appears to dominate the other. Rather, each of the two equilibria

appears to have its own distinct pull on prices.
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Table 2.3: FCE and TE in Forecasting Price Movement

Dependent Explanatory Variables

Variable

Price Change Constant  TE Price-  FCE Price R?2 Root

After: Current —Current MSE

Price Price

1 Trade -2.28 0.05 0.08 0.07 29.72
(0.38) (0.02) (0.02)

50 Trades -9.7 0.34 0.19 0.31 48.97
(0.65) (0.03) (0.03)

100 Trades -10.93 0.16 0.49 0.36 53.43
(0.75) (0.03) (0.03)

300 Trades -13.09 0.14 0.87 0.62 50.21
(0.91) (0.04) (0.04)

500 Trades -18.88 0.38 0.61 0.72 49.14
(1.68) (0.06) (0.05)

The fact that both the TE and FCE are significant predictors of price movement
shows that both equilibria have independent pulls on traded prices. Moreover, since the
FCE is an equilibrium concept which obtains only if rational agents form expectations
about future order flow and the TE is a concept which does not involve expectations,
one can take the relative coefficients on each variable as a measure of the relative
importance of expectations and temporal supply and demand imbalances in price
determination. According to Table 2.4, in the short run, temporal imbalances in supply
and demand are equally, if not more important in determining traded prices than is
expectations.

Result 3: Prices in Random Arrival markets do not converge to a single price.

Support: As support, we refer only to the Figures 6-10, which plot traded prices against

TE and FCE.
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Result 3 is important to note because it says that our results are not based on
disequilibrium phenomenon. It is not the case that prices follow the temporal
equilibrium at the beginning of the experiment and eventually level off to a constant
FCE price after a period of learning and market adjustment. Nor are prices less volatile in
experiments involving experienced traders. Instead, the influence of both equilibria

appears to be constant throughout the entirety of an experiment.

2.6.3 Efficiency

In an environment with incentives arriving at different times, there can be
multiple definitions of efficiency. Of course, each efficiency concept is closely related to
the concept of experimental market efficiency first developed by (Plott & Smith, 1978).
Table 2.3 reports the efficiency of each experiment relative to three different measures.
The first two of these measures are directly related to expectations and hence the FCE
and TE equilibriums.

The first level of efficiency reported is the local incentive efficiency level. This
measure compares actual surplus with the amount that would be obtained if traders
submitted bids and asks equal to their reservation prices immediately upon receiving an
incentive. We call this value the Maximum Local Surplus (MLS) because the market is
always being cleared at a “local Walrasian” price. Under this trading strategy, there is no
trade due to price smoothing or speculation, which would allow gains from trade to be
realized between two traders who are not in the market at the same time.

Our second efficiency concept, the flow competitive rational efficiency level,

compares actual trading surplus to the level that would be obtained if all trades
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involving incentives that arrived prior to the shift occurred at the initial FCE price, and all
of the trades involving incentives which arrived after the shift occurred at the second
FCE price. We call this value the Maximum Flow Surplus (MFS).

The MLS reflects the maximum amount of surplus that would be obtained by
zero-intelligence price taking agents, while the MFS reflects the amount of surplus that
would be obtained by perfectly rational agents with correct expectations about future
order flow. As such, we use the MLS, MFS, and actual surplus obtained in each
experiment to devise a rough measure of how large a role is played by expectations in

each experiment. For each experiment we compute:

(Actual Surplus —MLS)
(MFS—MLS)

% of Additional Surplus Due to Expectations = (4)

Because the local incentive efficiency and the flow competitive rational
efficiency levels are not necessarily between 0 and 1, we also devise a third measure of
efficiency that does satisfy this familiar feature. This measure of efficiency compares the
total gains from trade to the maximum possible gains from trade. In essence, this is the
surplus that would be obtained if all the incentives, before and after the shift were
aggregated as a stock, a single Walrasian price solved for, and all trades occurred at that
price. We will refer to this fraction of the maximum surplus attainable as the clairvoyant
efficiency level, because in order for a trading mechanism to attain the maximum
possible surplus, it would require a foreknowledge of future incentives flow and
parameter shifts.

Hypothesis 1: The market will not realize any additional surplus due to

expectations, as predicted by limited intelligence trader models.
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Hypothesis 2: The market will realize close to 100% of additional surplus
due to expectations, as predicted by full intelligence trader models.
Result 4: We reject both hypotheses 1 and 2. While realized surplus extraction is
typically higher than the maximum local surplus that could be obtained without
smoothing/speculation, not all of the available surplus from expectations is

realized.

Support: As shown in Table 2.4, all experiments had levels of local incentive efficiency
close to or above 100%, meaning that human subjects performed about as well or
better than robots programmed to simply reveal their incentives through limit orders
immediately upon entering the market would have performed.

The amount of additional surplus due to expectations that subjects were able to
realize, however, differed widely across experiments. While some experiments, such as
experiment 070606, were able to realize the entire surplus due to expectations, other
experiments, such as experiment 070425, did not realize any. On average, human
subjects were able to extract about 44% of the additional surplus available from rational
speculation over all experiments.

Result 5: Experiments involving changes in arrival rates had much lower levels of

surplus extraction and were characterized by incomplete convergence.

Support: Two of the three experiments involving changes in the relative rates of

incentive arrivals extracted less surplus than the MLS. In one case, experiment 070425,
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human subjects actually managed to accumulate less rent than could have been
obtained by zero-intelligence robots.

When looking at the price time series of experiments 070424 and 070425 in
Figures 8 and 9 respectively, we see that prices tended to be biased away from the FCE
price toward the middle of the distribution of latent incentives. Because of this, we say
that the price time series of these experiments was characterized by incomplete
convergence. Coincidently, the two changing rate experiments were the only
experiments in which the FCE price was not equal to the mean of the distribution of

latent incentives.



70

Table 2.4: Efficiency

Experiment | Type of Shift  Local Flow Clairvoyant Percentage of (Actual
Date in FCE Incentive Competitive Efficiency Additional Volume)/
Efficiency  Rational Surplus due (Predicted
Efficiency to Volume)*
Expectations
Realized
070208 Shift in 136% 92% 76% 75% 1878/1582
distribution
070414 Shift in 125% 87% 87% 57% 4908/3596
relative
arrival rates
070420 Shift in 100% 96% 64% 0% 1713/1281
relative
arrival rates
070425 Shift in 99% 94% 61% -18% 1824/1407
relative
arrival rates
070606 Shift in 136% 102% 91% 108% 1458/1114
distribution
Average NA 119% 94% 76% 44% 130%

* Ratio reflects speculative trades

2.6.4 Bid and Ask Placement/Improvement: Evidence of Expectations

Formation

Our final area of analysis is the placement of bids and asks. Evidence of
expectations formation can be seen in the distribution of new bids and asks. At the
beginning of an experiment, and just after a parameter change, the distribution of bids
and asks is diffuse around the FCE price. As the experiment continues, with the FCE
remaining constant, the distribution of bids and asks becomes more centrally
concentrated around the FCE.

If subjects acted solely on the basis of their current incentives, changes in the
distribution of offer price would occur only when there was a shift in the distribution of
latent incentives. The fact that there are changes in biding/asking behavior during

periods of constant equilibria and the fact that new bids and asks are influenced in the
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direction of the FCE price suggests that expectations influence price convergence and
efficiency through the supply of liquidity.
Result 6: The positioning of new bids and asks is influenced in the direction of the

FCE price.

Support: As trading evolves over periods of constant FCE, a strong mode tends to
appear in the distribution of offer prices accompanied by decreasing informational
entropy. Figure 2.15 shows the distribution of bids and asks relative to the FCE price,
divided up into non-overlapping six-minute intervals before the parameter shift. Figure
2.16 shows similar distributions of bids and asks for each 6-minute interval after the
parameter shift. In both figures, we observe the formation of a large mode located close
to, if not exactly on, the FCE price. The modes of the distributions in Figures 15 and 16
tend to be slightly below the FCE price. This under bidding/asking is small in dollar
terms, no more than a few cents, and appears to be more prevalent during the first
thirty minutes after a parameter shift than either before the parameter shift of after the

first thirty minutes following the parameter shift.
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Figure 2.15: Distribution of Bids/Asks from FCE Before Parameter Shift

1st 6 min 2nd 6 min 3rd 6 min
200 200 200 -
100 - 1 100+ 1 100+
0 —"'-“‘ 0" - 0
-1000 0 1000 -1000 0 1000 -1000 0 1000
4th 6 min 5th 6 min 6th 6 min
200 200 200
€
3 100+ 100 - 1 100+
O 44
0 - 0" - 0
-1000 0 1000 -1000 0 1000 -1000 0 1000
7th 6 min 8th 6 min 9th 6 min
200 200 200
100 - 100 - 100 -
0 - 0" - 0 1
-1000 0 1000 -1000 0 1000 -1000 0

1000
Distance of Bid/Ask from FCE Price

Source: using data from experiments 070208 through 071004 excluding 070414




73

Figure 2.16: Distribution of Bids/Asks from FCE after Parameter Shift
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Figure 2.17 summarizes the informational content of the offer price distributions

found in Figures 15 and 16. It plots the entropy of the distribution defined as:

E= —Z p(x) In(p(x)), where y is thesupportof thedistribution of offer prices  (5)

Xex

Similar to variance, entropy is often interpreted as a measure of the uncertainty
associated with an outcome. While variance is a measure of spread, entropy is a
measure of concentration. If all of the probability of an outcome were associated with
one outcome, the probability would be perfectly concentrated on that value and the
entropy of the distribution would be 0. As probability becomes less highly concentrated
on a single value, entropy increases. Entropy, unlike variance, does not take into

account where probability is concentrated. That is, if all bids were placed at one price
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and all asks occurred at another, the variance of the distribution of bids and asks would
depend on the size of the bid-ask spread, while the entropy of the distribution would be
invariant to the size of the spread. Given both these properties, entropy is a natural
measure for measuring in the “focal concentration” of the distribution of offer prices.

What we observe is that, as long as the FCE remains constant, the entropy of the
distribution decreases. After the shift, there is a large increase in entropy, likely caused
by divergent expectations. About thirty minutes after the shift, the level of entropy

stabilizes and again begins to decrease.

Figure 2.17: The Informational Entropy of Offer Price Distributions
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2.7 Conclusions

Prices in continuous experimental double auctions are affected in the direction
of two competing generalizations of the Walrasian equilibria. Human subjects are also
able to achieve much higher levels of surplus extraction than would be possible from
naive trading strategies alone, though far less than 100% of the additional surplus due
to expectations is realized. In particular, the amount of surplus due to expectations that
traders are able to extract seems to be related to the strength of public signals
regarding price changes. When shifts in the FCE price are due to changes in the
distribution of latent incentives, subjects tend to extract more additional surplus due to
expectations than when shifts are due to changes in the relative rates of arrivals.

Moreover, this chapter provides valuable tools for the further study of

continuous markets experimentally.
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Chapter 3 The Dynamics of Price Adjustment in
Experimental Random Arrival and Departure
Environments

3.1 Introduction

In (Alton & Plott, Working Paper1) (AP1), the multiple unit continuous double
auction is generalized to an environment in which incentives to trade evolve over time.
AP1 identifies two distinct competitive equilibrium concepts and demonstrates that
prices in these experimental markets approach and are influenced in the direction of
both equilibrium concepts. This chapter continues the analysis of AP1 by asking how this
process occurs.

In this chapter, we test six competing classical models of price movement. We
find that all models of price dynamics, when considered on their own, do equally well in
explaining observed experimental data. However, when we nest all six models into a
single equation, a clear winner emerges. Prices appear to move in direct proportion to
the distance between the current price and what we will define as the “Temporal
Equilibrium Price.”

Further investigation at the individual level also reveals that this price behavior
stems from Marshallian features of the random arrival market. Specifically, we show
that the speed with which an individual acts on an incentive is proportional to the

amount of available profit from that incentive at current market prices.
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The amount of profit from incentives at the current market prices is also a major
predictor of bid/ask improvement and placement. Over time, bids and asks are placed
closer to competitive equilibrium prices, suggesting that expectations formation may
play a major role in price equilibration.

We also show that productive improvements in theory can be made by
incorporating price friction, heteroskedasticity and auto correlation, and that these
statistical properties of the data can be related to fundamental features of the double
market auction micro-structure.

While there have been many theoretical advances in our understanding of price
dynamics and stability, only recently have theories regarding price movements begun to
be tested experimentally. Experimental research on price dynamics in continuous
double auctions began with (Smith V., 1962) and (Smith V., 1965), which examined the
Walrasian theory that the speed of price movement was driven by the level of excess
demand. In these papers, Smith also tested the Walrasian hypothesis against his own
theories of price movement, which we discuss in Section 5.2.

(Asparouhova, Bossaerts, & Plott, 2003) also study the process of price discovery
in experimental double auction markets. They test modifications of the Walrasian
hypothesis and find support that both the level and the derivatives of excess demand
may play a role in price adjustment.

(Cason & Friedman, 1993) examine bid-ask sequences and price change

autocorrelations in 30 different experimental markets and compare observations with
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the theoretical predictions of three non-classical models, those of: (Wilson, 1987),
(Friedman, 1991) and (Gode & Sunder, 1993).

In each of the papers discussed above, double auction experiments were
conducted using a “stock” of supply and demand incentives and a period structure.

Section 2 briefly summarizes the environment, equilibrium concepts and the
results of AP1. Section 3 provides a summary of the experiments conducted. In Section
4, we describe some stylized facts about the time series of traded prices and point out
similarities with financial micro-structure data. Section 5 we present our finding on price
dynamics. We begin with a discussion of the important, albeit theoretically neglected,
role of price friction, which we relate to micro-structural features of the continuous
double auction market. We then examine univariate and multivariate classical theories
of price dynamics using time series models. Finally, we conclude Section 5 with results
supporting the Marshallian nature of our environment, and show evidence in favor of a

role of expectations. Section 6 provides concluding remarks.
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3.2 Trading Environment and Known Results

3.2.1 Incentive Parameter Structure (Latent Incentives and Realized
Incentives)

The experiments studied here involve Random Arrival and departure (RA)
environments first introduced in AP1. In a RA environment, preferences are induced
though the use of private offers to buy or sell units of a good, “X,” to or from the
experimenter. These offers are sent to participants according to a Poisson process and
last for a length of time before they expire, 8, and ds for buyers’ and sellers’ incentives
respectively. In these experiments, O, and & are fixed lengths of time (6 minutes). The
price associated with each private offer is drawn from a distribution of potential values,
which we call the distribution of latent incentives.

Latent buyer incentives consist of a probability density function g,(x), where x is
a price, while latent seller incentives consist of a (potentially different) probability
density function gs(y). For individual agents, draws are made from the distribution of
buyer values and the distribution of seller costs according to two independent Poisson

processes with intensities A, and A, respectively.

Realized incentives, as opposed to latent incentives, are the draws that are

actually sent to buyers’ and sellers’ private order books and serve as “redemption
values” and “costs.” In designing experiments, A is the arrival rate of private orders for
each of the n; sellers, and lb is the arrival rate of private orders for each of the ny,

buyers.
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More detailed information regarding RA environments and their relationship to
traditional experimental market environments can be found in AP1, and the references

cited therein.

3.2.2 Types of Equilibrium

AP1, identifies two different concepts of competitive equilibrium. While these
two concepts are by no means exhaustive of the types of equilibrium that could exist,
they reflect the dichotomy between supply and demand curves based on latent and
realized distributions of incentives. AP1 shows that both of these equilibrium concepts
have predictive power in forecasting future price movements. We briefly define and

explain both types of equilibrium below.

3.2.2a Temporal Equilibrium

The Temporal Equilibrium is defined as the intersection of temporal supply (TS)
and temporal demand (TD) curves, which are constructed from orders that exist,
unexpired in trades’ private order books at a given instant in time. The temporal
demand curve at time t is a downward sloping step function, TD(P,t), equal to the
number of buyers (sell orders in private markets) in the market at time t—those that
have arrived before t and have not yet either traded or were cancelled —with
reservation prices above P. Similarly TS(P,t) is an upward sloping step function equal to
the number of sellers (buy orders received in private markets) with reservation prices
below P at time t. The temporal equilibrium is then defined as a P such that TD(P,t) =

TS(P,1).
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3.2.2b Flow Competitive Equilibrium

Flow competitive demand (FCD) and flow competitive supply (FCS) curves, on the
other hand, specify the arrival rates of buyers (sellers) with reserves above (below) a
given price. Flow competitive supply and flow competitive demand reflect two
components: 1) the distribution of latent reservation prices for buyers and sellers, and
2) the relative arrival rates of buyers and sellers. For a given price P, the levels of the

flow competitive supply and demand curves are given by:

FCS(P)=n,4 [ g,(y)dy =n,2.G,(P)
- (3.1)
FCD(P) = n,4, |9, ()dx = n, 4, (1~ G, (P))

Where A is the arrival rate of individual sellers, A, the arrival rate of individual

buyers, ng and np, are the number of seller-participants and buyer-participants, and g
and gy, are the latent preferences, the distributions of reserve prices for sellers and
buyers respectively.

A flow competitive equilibrium (FCE) is defined by 1) a price P at which the arrival
rate of buyers with reservation prices at or above P is equal to the arrival rate of sellers
with reserve prices at or below P, and 2) a rate of trade associated with P. That is, the
FCE is a price, P, and flow competitive equilibrium transaction rate Arce defined by:

FCS(P,) =n,4,G,(P) =n,4,(1-G,(P))= FCD(P,)

" (3.2)
Arce =4, J-Pe g, (x)dx

The FCE price is the price such that the flow of supply 