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Abstract

Simulation of three-dimensional dynamic fracture events constitutes one of the most

challenging topics in the field of computational mechanics. Spontaneous dynamic

fracture along the interface of two elastic solids is of great importance and interest

to a number of disciplines in engineering and science. Applications include dynamic

fractures in aircraft structures, earthquakes, thermal shocks in nuclear containment

vessels and delamination in layered composite materials.

This thesis presents numerical modeling of laboratory experiments on dynamic shear

rupture, giving an insight into the experimental nucleation conditions. We describe a

methodology of dynamic rupture simulation using spectral boundary integral method,

including the theoretical background, numerical implementation and cohesive zone

models relevant to the dynamic fracture problem. The developed numerical imple-

mentation is validated using the simulation of Lamb’s problem of step loading on an

elastic half space and mode I crack propagation along a bonded interface. Then the

numerical model and its comparison with experimental measurements is used to in-

vestigate the initiation procedure of the dynamic rupture experiments. The inferred

parameters of the initiation procedure can be used in future studies to model the

experimental results on supershear transition and rupture models.
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Chapter 1

Introduction

1.1 Goal and outline

Modeling and simulation of dynamic fracture events is an important topic of com-

putational and experimental mechanics. Dynamic fracture is especially important in

the field of geophysics, in the simulation of earthquakes. Earthquakes are destructive

processes that occur as dynamical ruptures along the pre-existing faults (interfaces)

in the Earth’s crust. The practical goal of earthquake seismology is to prevent or re-

duce human and material losses by estimating the earthquake hazard at a given site

or by forecasting the occurrence of the next strong event. Detailed seismic inversions

have significantly improved our understanding of earthquake rupture processes. But

yet the progress has been less due to the fact that Earth is a complex system.

This highlights the necessity for controlled laboratory experiments and extensive nu-

merical modeling of the dynamic rupture process along an interface. One example of

such experiments is work of Xia et al. (2004) which demonstrated, for the first time,

the transition of shear mode II ruptures from sub-Rayleigh to supershear speeds.

Further experiments were conducted by Lu et al. (2009), Lu (2009) to study the su-

pershear transition and rupture modes. An approximate numerical modeling of the

experiment was developed by Lu et al. (2009).

This thesis presents numerical modeling of laboratory dynamic rupture experiments,
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giving an insight into the experimental nucleation conditions. In chapter 1, we present

a review of the experimental techniques used in the laboratory dynamic rupture exper-

iments and relevant experimental observations. In chapter 2, we discuss the method-

ology of dynamic rupture simulation using spectral-boundary integral method - both

theoretical formulation and numerical implementation. Also in the same chapter we

discuss the various cohesive laws relevant to the dynamic fracture problem. In chapter

3, the numerical model developed in chapter 2 is validated using a half-space simula-

tion of Lamb’s problem. In chapter 4, the numerical model is used for investigating

the initiation procedure in dynamic rupture experiments (Xia (2005), Lu (2009)).

Using conceptual loading profiles, we determine the propagation of an opening mode

due to the explosive initiation procedure and compare our simulations with experi-

mental results of Lu (2009). In chapter 5, we discuss the conclusions of the work and

directions for future work.

Understanding whether supershear transition observed in rupture experiments (Xia

et al. (2004), Lu et al. (2009)) is affected by nucleation procedure is the ultimate goal

of the present work. Supershear transition has been a topic of research dating back

to early 70’s (Burridge (1973); Andrews (1976); Das & Aki (1977); Burridge et al.

(1979); Freund (1979); Day (1982); Broberg (1989); Needleman & Rosakis (1999);

Abraham & Gao (2000); Madariaga & Olsen (2000); Gao et al. (2001); Geubelle &

Kubair (2001); Dunham & Archuleta (2005); Festa & Vilotte (2006); Rosakis et al.

(2007); Liu & Lapusta (2008); Shi et al. (2008)). The occurrence of supershear tran-

sition has been inferred from observations of large earthquakes. This has been further

confirmed in the laboratory (Xia et al. (2004), Lu (2009)) and numerical models have

been developed to approximately simulate the experiments (Lu et al. (2009)).

We numerically model the effects of experimental nucleation procedure using spectral

boundary-integral method (BIM). Boundary integral methods have been widely used

to investigate spontaneous propagation of cracks in elastic media (e.g., Das (1980);

Andrews (1985); Das & Kostrov (1988); Cochard & Madariaga (1994); Lapusta et al.
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(2000)). Formulations discussed by Perrin et al. (1995) and Geubelle & Rice (1995)

allowed for 3D dynamic crack propagation in a homogeneous linearly elastic solid.

Further formulations of Geubelle & Breitenfeld (1997) and Breitenfeld & Geubelle

(1998) extended the earlier formulations and dealt with the problem of dynamic

crack propagation on bimaterial interfaces accounting for both tangential and normal

displacements of the fracture surface.

One of the approaches to modeling fracture is based on cohesive zone models. The

idea of a crack tip cohesive zone was first proposed by Barenblatt (1959). A similar

model was suggested by Dugdale (1960) to account for the plastic zone at the crack

tip. The physical motivation for postulating a cohesive model is different in different

applications but the form of cohesive models is similar in all cases. The fracture is

regarded as a gradual process in which the separation is resisted by cohesive trac-

tions. The relationship between the cohesive traction and the opening displacement

is governed by a cohesive law. The cohesive zone models used in problems of dynamic

crack growth include the cohesive models developed by Camacho & Ortiz (1996) and

Xu & Needleman (1994).

The algorithm developed has been tested in the case of the Lamb’s problem of step

loading on a half space by a concentrated normal force on its boundary. The original

formulation of the problem was by Lamb (1904). The numerical solutions were also

directly compared with the closed form analytical solutions to the Lamb’s problem

was given by Pekeris (1955).

1.2 Description of experiments that motivate our

modeling

In this section, we describe the experimental setup and techniques developed by Xia

(2005) and Lu (2009). The experiment is designed to reproduce the basic physics
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governing the rupture dynamics of crustal earthquakes while still preserving enough

simplicity to make conclusions by direct observation.

1.2.1 Configuration of the experiment

The experimental setup mimics a fault in the Earth’s crust. The crust is simulated by

a large Homalite plate of dimensions 150mm×150mm×10mm (Figure 1.1). Relevant

properties of Homalite-100 are listed in the Table. 1.1 from Lu (2009). The Homalite

plate is cut into two identical quadrilaterals and are put together to introduce a

frictional interface. The interface has an inclination angle α with respect to one of the

plate edges. The frictional interface is used to simulate a fault. A uniaxial pressure

(P ) acts uniformly on the top and the bottom ends of the sample. Experimental

parameters (P and α) determine the resolved shear traction τ = P sinα cosα and

resolved normal traction σ = P cos2 α along the fault. Varying α allows to vary the

nondimensional fault prestress τ/σ = tanα and study its effects on rupture dynamics

and varying P allows for the study of the effect of absolute prestress.

Reflective
Membranes

Polarized Laser
Beam

Collimator
Laser

Circular Polarizer I

Leads

Capacitor Bank
Exploding
WireCircular Polarizer II

Laser
Beams

Laser Heads
Pressure P

P

Velocimeter Controller

Focusing Lens

High Speed
Camera

C1 C2

Figure 1.1: Experimental Setup. Adapted from Lu (2009)
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Material Property Homalite-100

Young’s modulus E (MPa) 3860
Shear modulus μ (MPa) 1429.63
Shear wave speed cs (m/s) 1078.10
Dilatational wave speed cp (m/s) (Plane-strain) 2244.24
Dilatational wave speed cp (m/s) (Plane-stress) 1891.11
Poisson ratio 0.35
Density ρ (kg/m3) 1230

Table 1.1: Summary of mechanical properties of Homalite-100

1.2.2 Rupture nucleation mechanism

The triggering of a natural earthquake can be achieved either by increase of the shear

loading or by decrease of the fault strength at a specific location. Both mechanisms

have been applied in numerical simulations of earthquake rupture dynamics (Andrews

(1976); Andrews & Ben-Zion (1997); Cochard & Rice (2000); Aagaard et al. (2001)).

In the experiments, the dynamic rupture is initiated by means of explosion of a thin

nickel wire as shown in Figure 1.2. A nickel wire with a diameter of 0.08 mm is em-

bedded within a 0.1 mm hole through the thickness of the entire plate. The ends of

the wire are connected to a capacitor (15 μF) that is charged by a high voltage power

supply (1-3 kV). Upon closing the switch, the electric energy stored in the capacitor

causes a high current in the thin nickel wire for a short duration. The high current

turns the nickel wire into high temperature, high pressure plasma. The explosion

either changes fault normal pressure to tensile and drives the dynamic rupture as a

mixed-mode rupture or reduces it locally and facilitates a pure mode II rupture along

the interface.

An order of magnitude estimate for the pressure created by the explosion was given
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Figure 1.2: Schematic diagram of the exploding wire system coupled with a photoe-
lastic fault model. Adapted from Xia (2005)

by Xia (2005) using the Grüneisen equation of state:

p0 − px =
γ(v)

v
(E − Ex) (1.1)

where γ is the Grüneisen parameter (approximately 1.88 for Nickel), E and Ex are

the total internal energy and cold internal energy, p0 and px are the total pressure

and cold pressure and v is the volume of the material. The cold pressure and the cold

energy are due to the mechanical interaction of atoms and are negligible. The total

energy supplied by the capacitor is

Etotal =
CV 2

2
(1.2)

For a case of V = 1 kV, the total energy is 7.5 J. Assuming losses of the order of 1 J

due to wire expansion, from (1.1) we can calculate the peak pressure of the order of

10 GPa. In the subsequent chapters we study the effect of the nucleation procedure

in further detail.
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1.3 Relevant experimental observations

Detailed experiments were conducted by Lu (2009) to understand the nucleation con-

ditions due to the explosion procedure. The diagnostic methods used were dynamic

photoelasticity and laser velocimetry. In addition to photoelastic imaging, two laser

velocimeters were used to measure the particle velocity histories of two points, one

above and one below the fault interface. Experiments were conducted on interfaces

of zero inclination and the particle velocities were measured at a distance of 10 mm

from the point of explosion. Particle velocities measured included fault-parallel ve-

locity along the interface and fault-normal velocity at a point directly above the point

of explosion.

One set of such measurements (Lu (2009)) is shown in Figures 1.3 & 1.4. If the explo-

sion were axisymmetric, the response of both points would be the same but different

response was observed during the experiments (Figures 1.3 & 1.4). Thus one could

infer the possibility of a mode I crack opening due to explosion.

The aim of this thesis is to extend the existing code for modeling shear ruptures

(Lapusta et al. (2000), Day et al. (2005), Lu et al. (2009)) to include the mode I

component and to use the developed code and experimental measurements of Lu

(2009) to infer parameters of the initiation procedure. These parameters can be used

in future studies to model the experimental results on supershear transition (Xia

(2005), Lu (2009)) and rupture modes (Lu et al. (2007)).
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Chapter 2

Spectral Boundary Integral
Method And Its Numerical
Implementation

2.1 Introduction to dynamic fracture simulations

Dynamic fracture mechanics simulations and the problem of spontaneously propagat-

ing cracks have been an important area of fracture mechanics research in engineering

and geophysics. Dynamic fracture mechanics simulations require high degree of refine-

ment in spatial and temporal discretization to accurately represent the rapid changes

in field variables associated with traveling crack tips and elastic waves. On the other

hand, large domains of analysis are required to reduce the interactions due to domain

boundaries. This results in a substantial challenge in terms of computational cost.

Various numerical techniques have been developed over the years to investigate the

problem of spontaneous crack propagation, including finite element and finite dif-

ference methods (e.g., Ortiz & Pandolfi (1999), Yu et al. (2002), Templeton et al.).

However both methods incorporate simulation of wave propagation in the bulk, which

makes them applicable to problems with heterogeneous bulk but computationally ex-

pensive. For dynamic rupture of plane interfaces embedded in a uniform elastic space,

boundary integral methods have emerged as the most accurate and efficient choice

(e.g. Das (1980), Andrews (1985), Das & Kostrov (1988), Cochard & Madariaga



10

(1994), Geubelle & Rice (1995), Perrin et al. (1995), Ben-Zion & Rice (1997), Geubelle

& Breitenfeld (1997), Kame & Yamashita (1999), Aochi et al. (2000), Lapusta et al.

(2000), Lapusta & Rice (2000), Day et al. (2005)). The boundary integral method is

based on restricting the consideration to the interface plane. The elastodynamic re-

sponse of the surrounding elastic media is expressed in terms of integral relationships

between interface displacements and tractions. These integral relationships involve

convolutions of space and time of displacement discontinuities and histories. The

histories are obtained through integral relationships between displacement disconti-

nuities and convolution kernels. The convolutions account for the wave propagation

and are analytically derived through closed-form Green function. This eliminates the

need to simulate the wave propagation through elastic media.

In the study of anti-plane shear study of a slip on a planar fault, Perrin et al. (1995)

adopted the spectral representation of a slip distribution as a Fourier series in the

space coordinate along the fracture plane, instead of dealing with the approximations

to the space-time convolution integral, as in standard BIM. In this work, we follow

Perrin et al. (1995) in adopting the spectral representation of the relation between

the tractions and the resulting discontinuities.

The spectral scheme has been developed over the years (Perrin et al. (1995); Geubelle

& Rice (1995); Geubelle & Breitenfeld (1997); Breitenfeld & Geubelle (1998), Day

et al. (2005)). It provides an attractive alternative for the simulation of spontaneous

crack propagation. The spectral formulation allows one to study in great detail the

spontaneous initiation, propagation, and arrest of one or more planar cracks and

faults embedded in an infinite medium and subjected to space- and time-varying dy-

namic loading. It provides a major advantage in comparison with the conventional

boundary integral method. The spectral scheme involves a convolution in time as the

dynamic stresses are computed in the spectral domain while the conventional scheme

involve a triple convolution integral.
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2.2 Theoretical formulation of the spectral bound-

ary integral method

The spectral formulation is based on the Fourier representation of stresses and dis-

placements in spatial coordinates along a fracture plane in an infinite, homogeneous,

linearly elastic body. The formulation embodies an exact elastodynamic representa-

tion of the relation existing between the Fourier coefficients of tractions and corre-

sponding displacement discontinuities. In this section, we give the theoretical formu-

lation of the spectral method for the two-dimensional case following Breitenfeld &

Geubelle (1998).

X3

X

X1

2

crack

unbroken

Figure 2.1: Problem Geometry

Let the Cartesian coordinates be defined as shown in Figure 2.1 such that the frac-

ture plane coincides with x2 = 0. Hence x1 and x3 are coordinates in the plane and

elastodynamic fields will exist in the adjoining half spaces x2 > 0 and x2 < 0.

Considering a 2D formulation, we consider that the displacements and the stress fields

solely depend on x1 and x2. Let σij(x1, x2, t) and ui(x1, x2, t) denote the elastodynamic
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stress and displacement field, respectively. Let Tα(t : q) and Uα(t : q) denote the qth-

mode Fourier coefficients of the in-plane traction stresses and displacements such

that:

σ2α(x1, 0
±, t) = Tα(t; q)eiqx1

u±α (x1, 0
±, t) = U±

α (t; q)eiqx1

(2.1)

The first two components of the displacement field ui(xα, t) can be expressed as:

u1(xα, t) = φ,1(xα, t) + ψ,2(xα, t)

u2(xα, t) = φ,2(xα, t) − ψ,1(xα, t)
(2.2)

where the potentials φ and ψ satisfy the wave equations:

c2dφ,αα = φ,tt

c2sψ,αα = ψ,tt

(2.3)

while the third displacement component is such that

c2su3,αα = u3,tt (2.4)

Considering one particular spectral component

[φ(xα, t), ψ(xα, t), u3(xα, t)] = eiqx1 [Φ(x2, t; q),Ψ(x2, t; q),Ω(x2, t; q)] (2.5)

Now introducing the Laplace transform, the scalar wave equations (2.3) and (2.4)

reduce to:

Φ̂′′(x2, p; q) = q2α2
dΦ(x2, p; q)

Ψ̂′′(x2, p; q) = q2α2
sΨ(x2, p; q)

Ω̂′′(x2, p; q) = q2α2
sΩ(x2, p; q)

(2.6)
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where

( )′ = ∂/∂x2

αd =

√
1 +

p2

q2c2d
, αs =

√
1 +

p2

q2c2s

(2.7)

Bounded solutions for (2.6) for x2 > 0 has the form as in (2.8). Similar analogous

solution can be derived for x2 < 0.

Φ̂(x2, p; q) = Φ̂0(p; q)e
−|q|αdx2

Ψ̂(x2, p; q) = Ψ̂0(p; q)e
−|q|αsx2

Ω̂(x2, p; q) = Ω̂0(p; q)e
−|q|αsx2

(2.8)

Combining the equations (2.2), (2.5) and (2.8), the Laplace-transformed displacement

field for the particular mode is given to be:

û1(xα, p) = eiqx1

(
iqΦ̂0(p; q)e

−|q|αdx2 − |q|αsΨ̂0(p; q)e
−|q|αsx2

)
û2(xα, p) = eiqx1

(
−|q|αdΦ̂0(p; q)e

−|q|αdx2 − iqΨ̂0(p; q)e
−|q|αsx2

)
û3(xα, p) = eiqx1Ω̂0(p; q)e

−|q|αsx2

(2.9)

We are concerned with the tractions acting along the fracture plane x2 = 0 and

the resulting displacements. Considering the Fourier coefficients as defined in (2.1),

relations (2.9) reduce to:

Û1(p; q) = iqΦ̂0(p; q) − |q|αsΨ̂0(p; q)

Û2(p; q) = −|q|αdΦ̂0(p; q) − iqΨ̂0(p; q)
(2.10)
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which can be inverted to obtain

Φ̂0(p; q) =
−iqÛ1(p; q) + |q|αsÛ2(p; q)

q2 (1 − αsαd)

Ψ̂0(p; q) =
|q|αdÛ1(p; q) + iqÛ2(p; q)

q2 (1 − αsαd)

(2.11)

Using (2.10) and (2.11) in (2.9), we obtain the solution for the displacement fields

ûi(xα, p) for the upper half space in terms of the components Ûi(p; q) along the upper

side x2 = 0+ of the fracture plane.

û1(xα, p) = eiqx1

[
Û1(p; q)

e−|q|αdx2 − αsαde
−|q|αsx2

1 − αsαd

+ Û2(p; q)
iqαs

|q|(1− αsαd)

(
e−|q|αdx2 − e−|q|αsx2

)]

û2(xα, p) = eiqx1

[
Û1(p; q)

iqαd

|q|(1− αsαd)

(
e−|q|αdx2 − e−|q|αsx2

)
+ Û2(p; q)

e−|q|αsx2 − αsαde
−|q|αdx2

1 − αsαd

]

(2.12)

Now using (2.1) and (2.12) the Fourier coefficients of the traction components of the

two half spaces can be obtained to be:

T̂1(p; q) = ∓μ±|q|α
±
d (1 − α±2

s )

1 − α±
s α

±
d

Û±
1 (p; q) + iμ±q

(
2 − 1 − α±2

s

1 − α±
s α

±
d

)
Û±

2 (p; q)

T̂2(p; q) = −iμ±q

(
2 − 1 − α±2

s

1 − α±
s α

±
d

)
Û±

1 (p; q) ∓ μ±|q|α
±
d (1 − α±2

s )

1 − α±
s α

±
d

Û±
2 (p; q)

(2.13)

Next, we extract the instantaneous responses of the two half-spaces which are given
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by:

[T̂1]inst = ∓μ
±

c±s
pÛ±

1 (p; q)

[T̂2]inst = ∓ c±d
c±2

s

μ±pÛ±
2 (p; q)

(2.14)

Now rewriting (2.13) we obtain the expressions for Fourier coefficients of traction

components

T̂1(p; q) = − μ±

c±s
pÛ±

1 (p; q) ∓ μ±|q|
[
α±

d (1 − α±2

s )

1 − α±
s α

±
d

− p

|q|c±s

]
Û±

1 (p; q)

+ iμ±q

[
2 − 1 − α±2

s

1 − α±
s α

±
d

]
Û±

2 (p; q)

T̂2(p; q) = ∓ c±d
c±s
μ±pÛ±

2 (p; q) ∓ μ±|q|
[
α±

s (1 − α±2

s )

1 − α±
s α

±
d

− c±d
c±s

p

|q|c±s

]
Û±

2 (p; q)

− iμ±q

[
2 − 1 − α±2

s

1 − α±
s α

±
d

]
Û±

1 (p; q)

(2.15)

Thus in the space-time domain we have the 2D elastodynamic relations, between the

traction components of the stress (τα) acting on the fracture plane and the resulting

displacements (u±α ), are given by:

τ1(x1, t) = τ 0
1 (x1, t) ∓ μ±

c±s

∂u1(x1, t)

∂t
+ f±

1 (x1, t)

τ2(x1, t) = τ 0
2 (x1, t) ∓ c±d

c±s

μ±

c±s

∂u2(x1, t)

∂t
+ f±

2 (x1, t)

(2.16)

where τ 0
α(x1, t) are the externally applied traction stresses and f±

α (x1, t) represents

the convolution terms corresponding to the last two terms of (2.15).
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The Fourier coefficients of the functional are related to the displacement discontinu-

ities through the convolution kernels and are given by

F1(t; q) = ± μ±|q|
t∫

0

H11(|q|c±s t′)U±
1 (t− t′; q)|q|c±s dt′

+ i(2 − η±)μ±qU±
2 (t; q)

+ iμ±q

t∫
0

H12(|q|c±s t′)U±
2 (t− t′; q)|q|c±s dt′

F2(t; q) = ∓ μ±|q|
t∫

0

H22(|q|c±s t′)U±
2 (t− t′; q)|q|c±s dt′

− i(2 − η±)μ±qU±
1 (t; q)

− iμ±q

t∫
0

H12(|q|c±s t′)U±
1 (t− t′; q)|q|c±s dt′

(2.17)

where η = cd/cs.

This formulation is known as the “Displacement Formulation” because the convo-

lutions are done on the histories of the Fourier coefficients of displacement discon-

tinuities. To separate the static (long-term) and transient dynamic responses, the

integrals in (2.17) are integrated by parts to obtain the Velocity Formulation (Perrin

et al. (1995)). The Fourier coefficients of the functional in the velocity formulation



17

are given to be:

F1(t; q) = ± μ±|q|
⎡
⎣L11U

±
1 −

t∫
0

K11(|q|c±s t′)U̇±
1 (t− t′; q) dt′

⎤
⎦

+ iμ±q

⎡
⎣L12U

±
2 −

t∫
0

K12(|q|c±s t′)U±
2 (t− t′; q) dt′

⎤
⎦

+ i(2 − η±)μ±qU±
2 (t; q)

F2(t; q) = ± μ±|q|
⎡
⎣L22U

±
2 −

t∫
0

K22(|q|c±s t′)U̇±
2 (t− t′; q) dt′

⎤
⎦

+ iμ±q

⎡
⎣L12U

±
1 −

t∫
0

K12(|q|c±s t′)U±
1 (t− t′; q) dt′

⎤
⎦

− i(2 − η±)μ±qU±
1 (t; q)

(2.18)

The Kernels in Displacement Formulation (H11, H12 and H22) are as calculated in

Breitenfeld & Geubelle (1998) and the Kernels in Velocity Formulation, K11, K12,

K22, are given to be:

K11 = L11 −
T∫

0

H11(η) dη

K12 = L12 −
T∫

0

H12(η) dη

K22 = L22 −
T∫

0

H22(η) dη

(2.19)



18

where L11, L12 and L22 are given to be:

L11 =

∞∫
0

H11(η) dη

L12 =

∞∫
0

H12(η) dη

L22 =

∞∫
0

H22(η) dη

(2.20)
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Figure 2.2: Convolution kernels in displacement formulation for a Poisson ratio ν =
0.35

The displacement convolution kernels and velocity convolution kernels are presented

in Figure 2.2 and Figure 2.3 respectively for a Poisson’s ratio ν = 0.35

2.3 Numerical implementation of the spectral scheme

The implementation of the 2D spectral formulation in this work is based on the

developments of Perrin et al. (1995), Geubelle & Rice (1995), Breitenfeld & Geubelle
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Figure 2.3: Convolution kernels in velocity formulation for a Poisson ratio ν = 0.35

(1998), Day et al. (2005) and Liu (2009). It starts by expressing the u±j and f±
j

distributions on the fracture plane as a double Fourier series with period X in the x1

direction such that

⎧⎨
⎩u

±
j (x1, t)

f±
j (x1, t)

⎫⎬
⎭ =

K/2∑
q=−K/2

⎧⎨
⎩U

k±
j (t)

F k±
j (t)

⎫⎬
⎭ e2πi( kx1

X ) (2.21)

A conventional FFT algorithm is used to link spatial and spectral representations,

with K sampling points distributed uniformly over the X cells of the fracture plane.

Once the convolution term is computed using (2.18) in the spectral domain and trans-

fered back to the spatial domain, (2.16) is used to calculate the updated velocities

u̇±k (x1, t). This is then integrated in time with an explicit scheme to derive the dis-

placement field.

ua±j (x1, t+ Δt) = u±j (x1, t) + Δtu̇±j (x1, t) (2.22)

during the first iteration.

ub±j (x1, t+ Δt) = u±j (x1, t) + 0.5Δt
(
u̇±j (x1, t) + u̇a±j (x1, t+ δt)

)
(2.23)
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during the second iteration. uaj and ubj represent the displacements from first and

second iterations respectively. u̇aj and u̇bj represent the velocities from the first and

second iterations respectively.

The time step Δt is chosen to be a fraction of time needed for the shear wave to

propagate the smallest distance between the grid points defined on the fracture plane

as

Δt = β
Δx

max(c+s , c
−
s )

(2.24)

The user-defined parameter β plays a critical role in stability and precision of the nu-

merical scheme for the bimaterial code as discussed in Breitenfeld & Geubelle (1998).

Continuity conditions are incorporated along the interface plane and a cohesive failure

model is introduced to allow for spontaneous propagation of an interface crack. The

failure models discussed in this work are the Camacho-Ortiz Model (Camacho & Or-

tiz (1996)) and a reversible rate-independent model (Breitenfeld & Geubelle (1998)).

The cohesive laws and the theoretical formulation will be discussed in detail in the

subsequent sections.

The sequence of operations performed, at each iteration, at each time step is summa-

rized below:

1. Update the displacement distributions u±j using (2.22) and (2.23).

2. Update the externally applied loads τ 0
j .

3. Update the interface strength using the cohesive relations.

4. Compute the convolution terms using (2.18) and use a FFT algorithm to link

the spatial and spectral domains.

5. Initially we assume that the interface does not undergo further failure and the

two half space move together (u̇+
j = u̇−j = u̇j), i.e. the relative displacements
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between the two half space in the normal direction are zero. Under this as-

sumption we compute the resulting interface velocity u̇j and resulting tractions

τ in
j using the relations

u̇1 =
c+s
μ+

(
f+

1 − f−
1

1 + ξ
ζ

)
, τ in

1 = τ 0
1 + f+

1 − μ+ u̇1

c+s

u̇2 =
c+s
μ+

(
f+

2 − f−
2

η+ + ξ
ζ
η−

)
, τ in

2 = τ 0
2 + f+

2 − μ+η+ u̇2

c+s

(2.25)

where ξ = c+s /c
−
s and ζ = μ+/μ− are the mismatch parameters.

6. Compare the calculated normal component of the interface traction with the

normal component of the interface strength given by the cohesive model.

7. If no failure is detected, step (5) is valid.

8. If failure is detected, then the top and the bottom half spaces move at different

velocities and the velocities need to be recalculated using

u̇+
2 =

c+s
μ+η+

(
τ 0
2 + f+

2 − τ str
n

)

u̇−2 =
ζc+s
ξμ+η−

(
τ str
n − τ 0

2 − f−
2

)
(2.26)

9. In the region where the crack surfaces move independently, check for possible

overlapping by computing the predicted normal crack opening displacement

(COD).

δpred
2 = u+

2 − u−2 + Δt
(
u̇+

2 − u̇−2
)

10. If the predicted COD is negative, then the local motion of the crack surface is
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modified to ensure a vanishing COD and a continuity of normal traction.

u̇+
2 =

c+s

η+ + ξη−
ζ

[
τ 0
2 + f+

2 − τ 0
2 − f−

2

μ+
− ξη−

ζ

(
u+

2 − u−2
c+s Δt

)]

u̇−2 = u̇+
2 +

u+
2 − u−2
Δt

τ2 = τ 0
2 + f+

2 − η+μ+ u̇
+
2

c+s

(2.27)

11. However the interface could close under a compressive stress. In such a case,

the velocities are recalculated using (2.26) and checked for penetration of the

two half space using (2.27).

12. Finally the knowledge of the normal compressive stresses can be used in conju-

gation with a Coulomb friction model to introduce a frictional resistance to the

relative motion in shear of the fracture surfaces. Cases with frictional sliding

are not considered in this work, but mixed mode crack propagation with friction

is a goal for future work.

This concludes the description of the algorithm used in this work. Further results

and conclusions are discussed in the subsequent chapters.

2.4 Theoretical formulation of cohesive zone laws

In the cohesive zone model approach, fracture is regarded as a gradual process in which

the separation is resisted by cohesive tractions. The relation between the cohesive

traction and the opening displacement is governed by a cohesive law. Some of the

cohesive zone models used in dynamic rupture simulations include those developed

by Xu & Needleman (1994) and Camacho & Ortiz (1996). In this section we discuss
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Ortiz-Camacho cohesive zone model and Reversible rate-independent cohesive zone

model.

2.4.1 Ortiz-Camacho Model

In this section we discuss the cohesive law proposed by Camacho & Ortiz (1996).

This cohesive law accounts for the tension-shear coupling through the introduction of

an effective scalar opening displacements. The form of effective opening displacement

allows for different weights to be applied to the normal and tangential components of

the opening displacement vector. The cohesive behavior of the material is assumed to

be rigid, or perfectly coherent, up to the attainment of an effective traction, at which

point the cohesive surface begins to open. The cohesive law is rendered irreversible

by assumption of linear unloading to the origin.

An effective opening displacement δ, which assigns different weights to the normal δn

and sliding δs displacements such that

δ =
√
β2δ2

s + δ2
n, δn = δ · n̂, δs = δ · t̂ (2.28)

The Ortiz-Camacho cohesive zone model assumes that the fracture process is irre-

versible in nature and accounts for the damage in the material. The cohesive forces

which resist opening and sliding weaken irreversibly with increasing crack opening

displacement. When the velocity changes sign, the cohesive forces are ramped down

to zero as the opening displacement diminishes to zero. The tensile cohesive relation

is as shown in Figure 2.4.

In the tensile case, when the normal opening displacement δσ increases monotoni-

cally, the cohesive stress (σ) are ramped down linearly as a function of δσ (Figure

2.4). The cohesive tractions reduce to zero at critical opening displacement δσ = δσcr

and remain zero upon further opening or closing. This forms a new surface and the

cohesive tractions vanish.
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Figure 2.4: Tensile cohesive relation - Ortiz-Camacho cohesive relation

However since in the laboratory earthquake experiments, an interface already exists,

the cohesive traction is completely due to cohesion between the two half spaces. Also

since no new surface is being formed and the opening is small, we can assume that the

surface is not irreversibly damaged due to the increasing crack opening displacement.

2.4.2 Reversible rate-independent cohesive model

In this section we discuss reversible rate-independent cohesive model. The rate-

independent cohesive model is similar to the Camacho-Ortiz model discussed earlier

except that it does not take into account the irreversible effects due to damage.

In the laboratory dynamic rupture experiments the damage can be considered neg-

ligible. Also since an already interface exists, new surface is not formed during the

rupture as assumed in the cohesive law in Camacho & Ortiz (1996). Hence the open-

ing and closing modes can be considered reversible and without permanent set. The

reversible rate-independent cohesive model related the opening tractions (τn) and
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Figure 2.5: Reversible rate-independent cohesive model

the opening displacement (δn). The reversible rate-independent cohesive model is as

shown in Figure 2.5.

When the normal opening displacement δσ increases monotonically, the cohesive stress

σ is ramped down linearly as a function of δσ. The cohesive tractions reduce to zero

at critical opening displacement δσ = δσcr. When the velocity changes sign and the

interface begins to close, the cohesive is linearly ramped up to maximum strength of

the interface.
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Chapter 3

Validation of the developed
numerical approach

3.1 Study of Lamb’s problem on an elastic half-

space

The numerical algorithm developed has been validated using the test case of a Lamb’s

problem on an elastic half space. The problem is to determine the motion of the sur-

face of a uniform elastic half-space produced by the application of a point force pulse

varying with time like the Heaviside unit function. The original problem was pro-

posed by Lamb (1904). Closed form analytical solutions were derived for the Lamb’s

problem by Dix (1954) and Pekeris (1955).

3.1.1 Theoretical formulation of Lamb’s problem

In this section, we discuss briefly the closed form analytical solutions derived for the

Lamb’s problem (Pekeris (1955)). Let us consider a cylindrical coordinate system.

The variation of the normal force (pzz) on the surface with time is represented by the

Heaviside unit function H(t) and it’s spatial localization is such that it is everywhere

zero, except at the origin of coordinates where it becomes infinite in such a manner
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that:

2π

∞∫
0

pzz(r)r dr = Z (3.1)

where Z is a negative constant. The horizontal and the vertical displacements are

given to be Lamb (1904):

q = φr + χrz

w = φz + χzz − k2χ
(3.2)

where the subscripts denote partial differentiation, and the potentials φ and χ satisfy

the wave equations for educational and equivoluminal motion respectively:

∇2φ− h2φ = 0

∇2χ− k2χ = 0
(3.3)

where h2 = p2

c2p
, k2 = p2

c2s
, c2s = μ

ρ
, c2p = λ+2μ

ρ
= 3c2s. cp represents the p-wave speed,

cs represents the s-wave speed, p denotes the ∂
∂t

. λ and μ are the elastic constants of

the medium.

The surface being traction free, both normal and shear stresses reduce to zero. The

shear stress prz and the normal stress pzz are given by

prz = μ

(
∂

∂t

)(
2φz + 2χzz − k2χ

)
= 0

pzz = λh2φ+ 2μ
(
φzz + χzz − k2χz

)
= 0

(3.4)

The actual vertical displacement, w(r, z, t) can be obtained by performing the inte-

gration over the Bromwich contour.

w(r, z, t) =
1

2πi

a+i∞∫
a−i∞

(
ept

p

)
w(r, z, t) dp (3.5)

Solving for the actual form of w(r, z, t) (Pekeris (1955)) we have the operational
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expression for the vertical displacement in the case of a surface source to be given by

the integral

w(p) =
Zk2

2πμ

∞∫
0

J0(ξr)ξα
[(

2ξ2 + k2
)2 − 4k2ξ2αβ

]−1

dξ (3.6)

where α =
(ξ2+h2)

1
2

k
and β =

(ξ2+k2)
1
2

k

A closed form solution has been derived for rocks (Poisson’ ratio (ν) = 0.25) for the

3-D case by Pekeris (1955). The expressions for the vertical displacement (w(x1, t))

of the interface for ν = 0.25, assuming a traction-free boundary, are given to be:

w(x1, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if τ < 1/
√

3

− Z
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(3.7)

where τ = cst/x1 is the reduced time and x1 is the distance to the point of application

of the force.

3.1.2 Numerical investigation of Lamb’s problem

The spectral boundary integral algorithm developed has been tested using the Lamb’s

problem of step loading on a half space. In addition to the fact that it allows direct

comparison with closed form analytical solutions, this also provides the opportunity
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to visualize the distinctive effects of dilatational, shear and Rayleigh waves.

The numerical simulation was performed on a square domain [0, X] by [0, X] using

a 600 by 600 spatial discretization, so that Δx1 = Δx3 = X/600, and a value of

β = csΔt/Δx1 = csΔt/Δx3 = 0.25. The point load was applied at the center of the

square by assigning τ 0 = P/Δx1Δx3 at that node and τ 0 = 0 elsewhere.
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Numerical
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Figure 3.1: Evolution of displacement normal to the traction-free surface at a point
located at a distance L from the point of application of load. Dotted lines denote the
arrival times of dilatational, shear and Rayleigh waves.

A direct comparison is presented in Figure 3.1 and it illustrates the evolution of the

displacement component u2 normal to the free surface at a distance of 64 elements

away from the point of application of force. We can observe a good agreement be-

tween the two solutions. The numerical scheme is also able to capture the arrival

of dilatational, shear and Rayleigh waves. The solution shows spurious numerical

oscillations of small amplitude prior to and at the arrival of the dilatational wave.

These oscillations are associated with the truncated spectral representation. Further



30

at the arrival of the Rayleigh wave, the numerical computed crack opening smoothes

out and experiences a Gibbs effect before settling down to the final constant value.

This effect is attributed to the discrete Fourier representation of the fields which are

unable to capture a discontinuity.

z/X

Figure 3.2: Displacement field on the surface of the half space after 200 time steps,
showing the concentric waves expanding from the point of application of point load

Figure 3.2 shows the three-dimensional view of the displacement field after 200 time

steps. It clearly shows the dilatational precursor which creates the small displace-

ment in the direction opposite to that of the applied force, the singular Rayleigh wave

expanding radially from the point of application of force and the 1/r singularity after

the passage of various waves.

In summary, we find that the numerical results match the theoretical closed-form

analytical solution for the Lamb’s problem of step loading on an elastic half space.
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3.2 Propagating mode-I crack in a plate

There are four length scales in dynamic rupture simulations.

1. The macroscopic scale L characterizes the geometry of the body.

2. The critical crack size (2Lc) is the length of the crack at equilibrium. Upon any

further loading, the crack becomes unstable and grows rapidly.

3. The cohesive zone length (lz) is the measure of the length over which the cohesive

constitutive relation plays a role.

4. The mesh size Δx provides a non-physical length scale. It is necessary that Δx

is smaller than all the physical scales 1-3 for the mesh to provide an accurate

resolution.

3.2.1 Critical crack length

In this section we review the procedure adopted by Griffith (1920) to computing the

critical crack length by considering a body with an internal crack and which is sub-

jected to external loads as shown in Figure 3.3.

According to the law of conservation of energy, the work performed per unit time by

the applied loads (Ẇ ) must be equal to the rates of change of the internal elastic

energy (U̇E), plastic energy (U̇P ), kinetic energy (K̇) of the body, and the energy per

unit time (Γ̇) spent in increasing the crack area.

(Ẇ ) = (U̇E) + (U̇P ) + (K̇) + (Γ̇) (3.8)

where a dot over the letter refers to differentiation with respect to time.

Since all the changes with respect to time are caused by changes in crack size, we

have
∂

∂t
=

∂

∂A

∂A

∂t
= Ȧ

∂

∂A
(3.9)



32

Figure 3.3: A funnel crack in a plate subjected to external loads.
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where A represents the crack area, and is equal to 2LcB for the system shown in

Figure. 3.3. B represents the thickness of the plate and Ȧ denotes the crack surface

area growth rate per unit time. Thus (3.8) can be rewritten to be

−∂Π
∂t

=
∂K

∂t
+
∂UP

∂t
+
∂Γ

∂t
(3.10)

where Π = UE −W is the potential energy of the system. Thus (3.10) indicates that

the reduction of potential energy is equal to the energy dissipated in kinetic energy,

plastic work and surface creation.

However considering a perfectly brittle solid, the energy dissipated in plastic defor-

mation is negligible and can be ignored, i.e. UP = 0. Since the energy spent in

increasing the crack area is independent of the crack size, (3.10) can be written as

−∂Π
∂t

=
∂K

∂t
+
∂Γ

∂t
=
∂K

∂t
+ 2γ (3.11)

where γ represents the surface energy, i.e. energy required to form unit new material

surface area or open an interface to separate the two surfaces. The factor 2 represents

the two new material surfaces formed or material surface seperated during the crack

growth.

Now considering an equilibrium crack of size Lc,
∂K
∂t

= 0. Thus (3.11) reduces to:

−∂Π
∂t

=
∂Γ

∂t
= 2γ (3.12)

where A = 2LcB for the cracked system shown in Figure 3.3. The above equilibrium

equation means that sufficient potential energy must be available to overcome the

surface energy of the material.
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Griffith (1920) used the stress analysis of Inglis (1913) to show that

Π = Π0 − πσ2
0L

2
cB

E
(3.13)

where Π0 is the potential energy of the uncracked plate and σ0 is the external loading.

Since the formation of a crack requires the creation of two new surfaces, Γ is given by

Γ = 4LcBγ (3.14)

Thus we have

−∂Π
∂A

=
πσ2

0Lc

E
(3.15)

∂Γ

∂A
= 2γ (3.16)

Equating (3.15) and (3.16) and solving for the critical crack size 2Lc we have

2Lc =
2Eγ

πσ2
0

(3.17)

The surface energy can be given to be γ = 1
2
σmaxδσcr and E = 2μ(1 + ν). Thus we

have the critical crack length to be given by:

2Lc =
2μ(1 + ν)σmaxδσcr

πσ2
0

(3.18)

3.2.2 Cohesive zone length

In this section we review the procedure adopted by Rice (1980) to derive the cohesive

zone length for a body with an internal crack and which is subjected to external loads

as shown in Figure 3.3.

As discussed in Muskhelishvili (1975), for a single crack lying between −a and +a
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the cohesive zone length is given by

dδlz(x)

dx
= − 2(1 − ν)

πG
√
a2 − x2

+a∫
−a

√
a2 − s2δσ(s)

x− s
ds− D

π
√
a2 − x2

(3.19)

The stress intensity factor at the crack tips ±a are given to be

K =
1√
πa

+a∫
−a

√
a± x

a∓ x
δσ(x) dx± GD

2(1 − ν
√
πa)

(3.20)

Solving the above nonlinear integral equations as in Rice (1980) for a non-propagating

crack, i.e. the crack velocity is zero we have the cohesive zone length to be given to

be

lz =
9π

32

(
E

1 − ν2

)
2γ

σ2
max

(3.21)

For the system in Figure 3.3 the surface energy γ can be given to be γ = 1
2
σmaxδσcr

and E = 2μ(1+ν). Thus we have that the cohesive zone length of a crack propagating

at 0+ speeds is given by:

lz =
9π

16

(
μ

1 − ν

)
δσcr

σmax
(3.22)

The cohesive zone length decreases as the crack velocity increases.

3.2.3 Numerical resolution

Lc is relevant for the cohesive-zone models of cracks in situations when the cohesive

zone sizes at the crack tips of quasi-static cracks are small compared to the overall

crack size, which means that cracks are still quasi-static when opening exceeds δσcr

over most of the length.

It is important to numerically resolve the cohesive zone and the critical crack length.

Both cohesive zone length (lz) and critical crack size (2Lc) need to be discretized by

certain number of cells to accurately predict the crack propagation. The discretiza-
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σ̄0 = σ0

σmax
0.33 0.25 0.20 0.08

Nc = Lc/Δx 100 100 100 800

lz/Δx 65.79 37.01 23.68 30.31

Table 3.1: Numerical resolution of critical crack length and cohesive zone length for
various levels of prestress

tion in this work has been done as described in Day et al. (2005) and Liu & Lapusta

(2008) and the numerical discretization has been described in Table 3.1.

The rupture propagation in simulated on a uniform grid with the cell size Δx = Lc/Nc

and constant time step Δt = Δx/(βcs). Nc is the number of cells in Lc and β deter-

mines the time step as a fraction of time for the shear wave to travel through Δx.

The β chosen in the present work is 4 based on the stability study done by Breitenfeld

& Geubelle (1998).

This completes the theoretical formulation for the various length scales in dynamic

rupture simulations. In the subsequent sections we discuss the results of mode I crack

propagation.

3.2.4 Numerical simulation of propagating mode I crack in

rocks

In this section we discuss the results obtained by numerical simulation of mode I

crack propagation on a bonded interface as shown in Figure 3.3. The plate is made

of rocks (Poisson ratio ν = 0.25, density ρ = 2670 kg/m3 and shear wave speed

cs = 2887 m/s). In these simulations we consider Ortiz-Camacho cohesive model

with dc = 1.3μm. The rupture is initiated by application of load over the critical
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crack size.

The dynamic fracture is simulated on a domain of 30 mm in length. The cohesive

strength of the bonded interface is assumed to be 20 MPa. The rupture is simulated

for the prestress level of 0.33. The critical crack size (2Lc) is calculated to be 10.8

mm and the cohesive zone length (lz) is calculated to be 3.4 mm. Both the critical

crack size and the cohesive zone are resolved as described for a prestress level of 0.33

in the earlier section.

The loading is applied on the critical crack size (2Lc) for the entire duration of the

simulation (60μs). The loading profiles that are applied on the critical crack size are:

1. Loading Profile 1: 6.6 + t MPa

2. Loading Profile 2: 6.6 + 10 × t MPa

3. Loading Profile 3: 6.6 +H(t) MPa

4. Loading Profile 4: 6.6 + 10 ×H(t) MPa

where t is the time in μs.

The interface normal and interface parallel displacements, velocities and stresses are

recorded for the entire duration of the simulation.

The results of the simulations for the first 8μs are as shown in Figure 3.4-3.7. For

each of the four conceptual loading profiles we observe a propagating mode I crack.

As theoretically expected, when the loading applied on the critical crack size is a step

function, the particle velocities and the crack tip velocities are higher than when the

loading applied on the critical crack size is more gradual.

Once the crack starts to propagate as in Figure 3.5 and Figure 3.6 the crack gradu-

ally accelerates to the Rayleigh wave speed, which is the theoretical speed limit for

a propagating mode I crack. As can be seen in Figure 3.6, the crack tip for the
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Figure 3.4: Propagation of mode I crack across the domain with time (0, 0.10, 0.20,
0.30 μs)
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Figure 3.5: Propagation of mode I crack across the domain with time (0.35, 0.40,
0.45, 0.50 μs)
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Figure 3.6: Propagation of mode I crack across the domain with time (1, 2, 3, 4 μs)
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Figure 3.7: Propagation of mode I crack across the domain with time (5, 6, 7, 8 μs)
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loading rates of 6.6 MPa+t×10 MPa and 6.6 MPa+H(t)×10 MPa, traveled about 2

mm between 5 − 6μs, i.e the average crack tip velocity is about 2000 m/s. Similarly

for the loading rates of 6.6+H(t) MPa and 6.6+t MPa, between 5− 6μs the crack tip

is traveled about 1.8 mm, i.e. the average crack tip speed is 1800 m/s. The Rayleigh

wave speed in rocks is 2654m/s.

Thus in this section we have shown that our approach can simulate the propagation

of a mode I crack along a bonded interface for various loading profiles and also the

acceleration of the crack tip speed to the Rayleigh wave speed. In the subsequent

section we discuss the mode I crack propagation due to the explosion nucleation used

in dynamic rupture experiments.
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Chapter 4

Simulations of nucleation
procedure in laboratory
earthquake experiments

In this chapter we simulate the nucleation conditions of the laboratory dynamic rup-

ture experiments. The triggering mechanism in the experiments is an explosion of a

nickel wire in the middle of the interface. During the experiments, a bright flash was

observed by Xia (2005) and Lu (2009) for about 5μs and this bright flash is attributed

to the wire explosion process (heating up of the nickel wire, conversion of the wire

to plasma, cooling down of the plasma). They also observed a region of metallic

particles deposited on the interface of about 5 to 15 mm in size. This deposition is

believed to be due to spreading of plasma along the interface.

Experiments were conducted by Lu (2009) to study the process of electrical wire ex-

plosion. Interface parallel displacements and velocities were recorded at a distance

of 10 mm from the point of explosion. Also the particle displacements and velocities

were measured at a point 10 mm directly above the point of explosion. Lu (2009) ob-

served that the two points showed different behavior as shown in Figure 1.3 and 1.4.

In this chapter, we model the nucleation process and compare the interface-parallel

displacements obtained numerically and experimentally.
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4.1 Comparison of numerically computed and ex-

perimentally measured interface-parallel dis-

placements

We numerically simulate the explosion process using conceptual loading profiles and

study the effect on the interface-parallel velocities at 10 mm from the point of explo-

sion. The dynamic rupture events are simulated on an interface of 150 mm length

using plane stress approximation. Compressive far-field stress of 8.7 MPa is applied.

The explosion is simulated using conceptual pressure profiles, as described below,

initially over a length of 0.1 mm at the center of the interface. The interface-parallel

velocities and displacements are recorded at a distance of 10 mm from the point of

explosion. Thus obtained interface-parallel displacements are compared with the ex-

perimental results of measurement of interface-parallel velocities by Lu (2009) for a

range of parameters of simulated nucleation procedure.

Note that we use a plane stress approximation to model an experiment that has 3D

effects. In the experiments the width of the plate is 10 mm and the measurements are

done at 10 mm from the explosion site. The oscillatory nature of the measurement

(Figures 1.3 & 1.4) is due to the plate thickness and 3D free surface effect (Lu (2009))

and cannot be matched by the modeling. Hence here we are looking for an order of

magnitude fit between the numerical and experimental results.

In the numerical model, the cohesive tractions and displacements are related by a

cohesive relation. We use both Ortiz-Camacho cohesive zone model and reversible

rate-independent cohesive zone model. The maximum cohesive strength of the inter-

face is considered to be 1 MPa and the critical crack opening displacement is 5 μm.

The loading profile used to simulate the explosion process is shown in Figure 4.1.

That is the profile of pressure that would act over the 0.1 mm explosion site if the
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interface were constrained against any opening. As the loading causes a mode I crack,

we recompute the pressure and the region of its application as follows.

The cross-sectional area of the notch in which the nickel wire is embedded is given by

Awire = πr2,

where r = 0.1 mm.

As the interface opens, the pressure due to the plasma acts on all or part of the

interface that has opened. The recomputed pressure is given by

P =
(Pexplosion × πr2)

A
,

where A is the area of the opened crack to which the plasma has spread plus the area

of the initial notch. A is given by

A =

∫ Cplat

−Cplat

δ2 dx+ πr2,

where Cpla is the speed of plasma propagation and δ2 is the opening of the interface.

4.1.1 Effect of the explosion pressure

In this section we access the effect of parameter Pmax on the interface-parallel dis-

placements. The experimental results of Lu (2009) of interface-parallel displacements

are compared with the numerical results of interface-parallel displacements at a dis-

tance of 10 mm from the point of explosion, Pmax = 1, 2, 3, 4, 10 GPa, and with plasma

speed Cpla the same as the crack tip speed. The interface-parallel displacements are

studied for two time-dependence of the loading profile given in Table 4.1. Figure 4.2

compares the interface-parallel displacements at 10 mm from the point of explosion

for loading profile 1 and Ortiz-Camacho cohesive zone model. Figure 4.3 compares
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P

t0

max

3

Pexplosion

ttt t1 2

Figure 4.1: The pressure profile used to model the explosion. Pmax is the maximum
pressure. t1, t2 and t3 are the time parameters of the loading profile.

Loading profile Time parameter Plasma speed

Loading profile 1 t1 = 0μ, t2 = t3 = 5μs same as crack speed
Loading profile 2 t1 = 1μ, t2 = 4μ, t3 = 5μs same as crack speed

Table 4.1: Summary of loading parameters used to study the effect of Pmax

the interface-parallel displacements at 10 mm from the point of explosion for loading

profile 1 and reversible rate-independent cohesive zone model. Figure 4.4 compares

the interface-parallel displacements for loading profile 2 and Ortiz-Camacho cohesive

zone model. Figure 4.5 is for loading profile 2 and reversible rate-independent cohe-

sive zone model.

Based on Figures 4.2-4.5, we conclude that Pmax should be of the order of 10 GPa

to fit the amplitude of the experimentally measured displacements. This is the same

value as the theoretically calculated value of explosion pressure by Xia (2005). We also
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Figure 4.2: Comparison of interface-parallel displacement at a distance of 10 mm from
the point of explosion for loading profile 2 and parameters Pmax = 1,2,3,4,10 GPa and
t1 = 0μ, t2 = t3 = 5μs. The numerical simulation being governed by Ortiz-Camacho
cohesive zone model.
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Figure 4.3: Comparison of interface-parallel displacement at a distance of 10 mm
from the point of explosion for loading profile 2 and parameters Pmax = 1,2,3,4,10
GPa and t1 = 0μ, t2 = t3 = 5μs. The numerical simulation being governed by
reversible rate-independent cohesive zone model.
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Figure 4.4: Comparison of interface-parallel displacement at a distance of 10 mm
from the point of explosion for loading profile 2 and parameters Pmax = 1,2,3,4,10
GPa and t1 = 0μ, t2 = 4μs, t3 = 5μs. The numerical simulation being governed by
Ortiz-Camacho cohesive zone model.
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Figure 4.5: Comparison of interface-parallel displacement at a distance of 10 mm
from the point of explosion for loading profile 2 and parameters Pmax = 1,2,3,4,10
GPa and t1 = 0μ, t2 = 4μs, t3 = 5μs. The numerical simulation being governed by
reversible rate-independent cohesive zone model.
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observe that the arrival time for the dilatational wave matches between the numerical

simulations and the experiments. However, the total width of the displacement pulse

is smaller than observed in the experiments.

4.1.2 Effect of the cohesive zone models

In this section, we discuss the effect of the cohesive zone models. From Figures 4.6

and 4.7, we observe that both cohesive zone relations result in nearly identical histo-

ries of interface-parallel displacements.
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Figure 4.6: Comparison of interface-parallel displacement, for numerical simulations
governed by Ortiz-Camacho cohesive zone model and reversible rate-independent co-
hesive zone model, at a distance of 10 mm from the point of explosion for loading
profile 1 with parameters Pmax = 10 GPa and t1 = 0μ, t2 = t3 = 5μs.

Ortiz-Camacho cohesive zone model and reversible rate-independent cohesive zone

model have identical behavior except during closing and reopening of the interface.
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Figure 4.7: Comparison of interface-parallel displacement, for numerical simulations
governed by Ortiz-Camacho cohesive zone model and reversible rate-independent co-
hesive zone model, at a distance of 10 mm from the point of explosion for loading
profile 2 with parameters Pmax = 10 GPa and t1 = 0μ, t2 = 4μs, t3 = 5μs.
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According to Ortiz-Camacho cohesive zone model, the cohesive tractions are reduced

linearly to zero during closing and the cohesive tractions are revamped from zero

during reopening. According to the reversible rate-independent cohesive zone model,

the cohesive tractions increase to the maximum cohesive strength of the interface

during closing and the cohesive tractions decreases linearly from maximum cohesive

strength of the interface to zero during reopening. In the experiments, the existence

of a far-field compressive loading does not allow for the reopening of the interface.

The difference in the behavior during closing will be discussed in the next section

during the discussion of the propagating mode I crack. Hence this configuration of

the experiment causes the two cohesive laws considered to have nearly identical effect.

4.1.3 Effect of loading duration

In this section we discuss the effect of time parameter t1, t2 and t3. First, here we

study the effect of time parameter t1. From Figure 4.8 we conclude that variation in

time parameter t1 has an effect on the width and amplitude of the displacement profile.

Based on Figure 4.8, we conclude that t1 of 2 μs gives the best fit to the experimentally

measured displacement profile.

Next we discuss the effect of time parameter t2 − t1, keeping t1 = 2μs. From Figure

4.9 we conclude that variation in time parameter t2−t1 has an effect on the amplitude

of the displacement profile.

Based on Figure 4.9, we conclude that t2 − t1 between 3-5 μs provides a similar fit to

the width and amplitude of the displacement pulse.

Based on the results presented so far, we conclude that, for the loading profile con-

sidered and with the plasma spreading speed the same as the crack tip speed, the

best-fitting loading parameters are Pmax = 10 GPa, t1 = 2μs, t2 − t1 = 4μs and

t3 − t2 = 1μs. This best match is shown in Figure 4.10. Note that as discussed in the
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Figure 4.8: Comparison of interface-parallel displacement, for numerical simulations
governed by Ortiz-Camacho cohesive zone model, at a distance of 10 mm from the
point of explosion for loading profile 1 with parameters Pmax = 10 GPa and t1 =
1,2,3,4 μ, t2 - t1 = 3 μs and t3 - t2 = 1 μs.
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Figure 4.9: Comparison of interface-parallel displacement, for numerical simulations
governed by Ortiz-Camacho cohesive zone model, at a distance of 10 mm from the
point of explosion for loading profile 1 with parameters Pmax = 10 GPa and t1 = 2
μ, t2 - t1 = 3,4,5 μs and t3 - t2 = 1 μs.
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earlier section we do not expect a perfect fit due to the 3D effects.
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Figure 4.10: The best match between the simulations and the experimental results.
The parameters used are Pmax = 10 GPa, t1 = 2 μs, t2 - t1 = 4 μs, t3 - t2 = 1 μs and
Cpla = crack tip speed.

4.1.4 Effect of plasma spreading speed (Cpla)

In the previous sections we assumed that the plasma from the wire explosion expands

fast enough to fill the entire opening crack. In this section, we assume that the plasma

spreading speed is less than the crack tip speed. We compare the results with three

plasma spreading speeds, Cpla = 250 m/s, 340 m/s, 500 m/s. The results are shown

in Figure 4.11. We find that the amplitude of the displacements decreases, but the

width of the displacement pulse increases for smaller Cpla. Hence the best-fitting

nucleation parameters may not involve slower-moving plasma. The detailed study of

this phenomenon including the physical modeling of how fast the plasma can spread

inside the propagating cracks is left for future work.
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Figure 4.11: Comparison of interface-parallel displacement, for numerical simulations
governed by Ortiz-Camacho cohesive zone model, at a distance of 10 mm from the
point of explosion for loading profile plasma speeds of Cpla = 250 m/s, 340 m/s, 500
m/s. The loading parameters are Pmax = 10 GPa, t1 = 1 μ, t2 = 4 μs, t3 = 5 μs
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4.2 Mode I crack propagation due to the nucle-

ation procedure

In this section we study mode I crack caused by the explosive nucleation. We use the

loading profile with parameters Pmax = 10 GPa, t1 = 1μs, t2 = 4μs and t3 = 5μs.

we consider the growth of mode I crack in the region of -1 mm to +1 mm around

the point of explosion. The snapshots of opening velocity are shown in Figures 4.12

- 4.14 and the snapshots of opening displacements are shown in Figures 4.15 - 4.17.
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Figure 4.12: Opening velocity in the nucleation region (at t = 0, 25, 50, 75 ns)

The further growth of crack on the scale of -10 mm to +10 mm from the point of

explosion, is shown in Figures 4.18 - 4.23.

We find that the opening mode propagates several mm away from the point of explo-

sion on either side. Figure 4.22 shows that at t = 7 μs, when most of the interface

closes, the mode I crack has propagated about 14 mm. This region is comparable
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Figure 4.13: Opening velocity in the nucleation region (at t = 0.1, 0.2, 0.3, 0.4 μs)
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Figure 4.14: Opening velocity in the nucleation region (at t = 0.5, 0.6, 0.7, 0.8 μs)
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Figure 4.15: Opening displacement in the nucleation region (at t = 0, 25, 50, 75 ns)

to the length of the metallic particle deposition observed in the experiments. Note

that in Figures 4.12-4.23, the results are plotted for two cohesive zone laws Ortiz-

Camacho cohesive zone law and reversible rate-independent cohesive zone law. As

expected from the results described in the earlier sections, the simulations with both

laws give nearly identical results. Only in Figures 4.19 and 4.20 the closing velocities

as governed by the two cohesive zone models differ as theoretically expected.

4.3 Conclusions

Thus, in this chapter we have modeled the effects of the nucleation mechanism in the

dynamic rupture experiments and determined parameters that would simulate the

explosion conditions. The parameters were determined by comparing the interface-

parallel displacements from the numerical simulations with the experimental results

of Lu (2009). We have numerically observed the existence of mode I crack due to the

nucleation conditions. From the parameter study we conclude that:
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Figure 4.16: Opening displacement in the nucleation region (at t = 0.1, 0.2, 0.3, 0.4
μs)
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Figure 4.17: Opening displacement in the nucleation region (at t = 0.5, 0.6, 0.7, 0.8
μs)



61

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10
−50

0

50
Mode I propagation: opening velocity along the domain (at 5.7972 ns)

O
pe

ni
ng

ve
lo

ci
ty

V
2 (

m
/s

)

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10
−50

0

50
Mode I propagation: opening velocity along the domain (at 1 μs)

O
pe

ni
ng

ve
lo

ci
ty

V
2 (

m
/s

)

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10
−50

0

50
Mode I propagation: opening velocity along the domain (at 2 μs)

O
pe

ni
ng

 
ve

lo
ci

ty
V

2 (
m

/s
)

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10
−50

0

50
Mode I propagation: opening velocity along the domain (at 3 μs)

O
pe

ni
ng

ve
lo

ci
ty

V
2 (

m
/s

)

Domain length in mm (0 is the point of explosion)

 

 

Ortiz−Camacho relation
Reversible relation

Figure 4.18: Opening velocity in the domain (at t = 1, 2, 3, 4 μs)
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Figure 4.19: Opening velocity in the domain (at t = 5, 6, 7, 8 μs)
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Figure 4.20: Opening velocity in the domain (at t = 9, 10, 11, 12 μs)
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Figure 4.21: Opening displacement in the domain (at t = 1, 2, 3, 4 μs)
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O
pe

ni
ng

di
sp

la
ce

m
en

t
δ 2 (

μ 
m

)

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10
0

10
20
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Figure 4.22: Opening displacement in the domain (at t = 5, 6, 7, 8 μs)
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Figure 4.23: Opening displacement in the domain (at t = 9, 10, 11, 12 μs)
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1. The loading profile considered matches the experimentally measured particle

velocities reasonably well, given the anticipated discrepancies between 2D mod-

eling used and the 3D nature of the experiments.

2. The maximum pressure due to the wire explosion is of the order of 10 GPa.

3. For the loading profiles considered, and the plasma spreading speeds that are

equal to the crack tip speed the time parameters that best simulate the explosion

process are t1 = 2μs, t1 = 6μs and t1 = 7μs.

4. The plasma spreading speed has a significant effect on the interface-parallel

velocities and needs further investigation.

5. The cohesive zone models considered have negligible effect on the opening dis-

placements and velocities due to the fact that there is no reopening of the

interface.

6. The extent of the mode I crack created by the explosion is comparable to the

length of the metallic particle deposition observed in the experiments.

4.4 Future work

The loading profiles considered resulted in narrower pulse of interface-parallel motion

than the explosion process in the dynamic rupture experiments. So future work is

needed to investigate more loading profiles.

Another direction for future work involves understanding the process of explosion

from the point of view of plasma physics and to build more accurate models that can

predict the flow of plasma as the crack propagates.

The finite thickness of the plate used in the dynamic rupture experiments creates

three dimensional effects close to the nucleation region. Future work is needed to



65

study the three-dimensional effects using the Spectral Element Method developed by

Kaneko et al. (2008).
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