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Abstract 

 The synthesis for a sterically encumbered, strong-field 

tris(diisopropylphosphino)borate ligand, [PhBPiPr
3] ([PhBPiPr

3] = [PhB(CH2PiPr2)3]-), is 

reported to probe aspects of its conformational and electronic characteristics within a host 

of complexes. To this end, the Tl(I) complex, [PhBPiPr
3]Tl, was synthesized and 

characterized in the solid state by X-ray diffraction analysis. The Tl(I) complex was used 

to install the [PhBPiPr
3] ligand onto complexes of Fe, Co, and Ru. The spectroscopic, 

electrochemical, magnetic, and structural features of these complexes are compared with 

similar, previously described examples.         

 Trigonally coordinated “[PhBPiPr
3]M” platforms (M = Fe, Co) support both π-

acidic (N2) and π-basic (NR) ligands at a fourth binding site. Methylation of monomeric 

[M0(N2)-] species successfully derivatizes the β-N atom of the N2 ligand and affords the 

diazenido product [MII(N2Me)]. MI(N2)MI complexes provide clean access to the 

chemistry of the “[PhBP3]M(I)” subunit. For example, addition of RN3 to MI(N2)MI 

results in oxidative nitrene transfer to generate [PhBPiPr
3]M≡NR with concomitant N2 

release. 

 A tetrahedrally coordinated L3Fe-Nx platform that accommodates both terminal 

nitride (L3FeIV≡N) and dinitrogen (L3FeI-N2-FeIL3) functionalities is described. The 

diamagnetic L3FeIV≡N species featured has been characterized in solution under ambient 

conditions by multinuclear NMR (1H, 31P, and 15N) and infrared spectroscopy. The 

electronic structure of the title complex has also been explored using DFT. The terminal 

nitride complex oxidatively couples to generate the previously reported L3FeI-N2-FeIL3 

species.  



 vi
 The [PhBPiPr

3] ligand can support a single iron or cobalt center in a pseudo-

tetrahedral environment in which dinitrogen is bound in the fourth coordination site. 

Zero-valent metal-dinitrogen complexes have the general formula, [([PhBPiPr
3]M(µ-

N2)]2[Mg2+], while bridging structures can also be obtained as neutral [MI]—N2—[MI] or 

as anionic [(M)2(N2)]- species. The nature of the structural distortions observed in both 

[M](µ-N2)]2[Mg2+] and [Mn]—N2—[Mn] complexes are described. Magnetic 

characterization of the neutral and mixed-valence dimeric complexes reveal the 

complexes remain ferromagnetically coupled over all temperatures investigated. 

 The coordination chemistry of group VIII metals featuring the bis(8-

quinolinyl)amine (HBQA) ligand is presented. The electrochemical behavior of several 

Fe, Ru, and Os complexes bearing the BQA ligand is reported and compared to related 

ligand platforms. Halide and phosphine ligand exchange reactions are examined from 

complexes of the type (BQA)MX(PR3)2 (M = Ru, Os). Carbonyl and dinitrogen 

complexes of Ru and Os are prepared from halide abstraction from divalent Ru and Os 

precursors. The spectroscopic and structural features of these complexes are compared 

with similar, previously described examples. 
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