Coordination Chemistry from Trigonally Coordinated Iron Platforms: Chemistry Relevant to Dinitrogen Reduction

Thesis by

Theodore Alexander Betley

In partial fulfillment of the requirements for the degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2005

(Defended April 18, 2005)

© 2005

Theodore Alexander Betley

All rights reserved.

Acknowledgements

My experience at Caltech over the last five years has been quite memorable. Whether bad or good, one thing was guaranteed: it was always intense. That sentiment most deservingly goes to my advisor, Prof. Jonas Peters. His passion for chemistry was evident from the onset and has waned little during my time here. I am indebted to him forever for mentoring me through my formative years as a scientist, and for his infinite kindness during times of need.

I would like to thank my committee members, Prof. Jacqueline Barton, Prof. Brian Stoltz, and Prof. John Bercaw for their patience, advice, and scientific criticism. They adhere to a high standard of excellence, one that I will always strive to achieve.

301 Noyes would not have been my home for the last several years, if not for the family and company I had there. I have learned much from the wisdom of my senior lab members, both professionally and personally. Dr. Cora MacBeth, Dr. Bruce MacKay, Dr. Mark Mehn, and Dr. Christopher Thomas, I thank each of you for your ideas, your generosity, and all the wonderful discourse we have shared. Seth Harkins, Connie Lu, Dr. David Jenkins, and Christine Thomas have filled each day with laughter and mindless banter. Kathleen Hand, thank you for being the glue of sanity that kept our lab from bursting at the seams. I would like to personally thank Steven Brown, my box-mate, my roommate, my brother. The experiences we have shared have provided me with enough amusement to last a lifetime. I cannot wait to see what the future may bring for us.

My path has crossed many gifted scientists, some of whom have influenced my career path greatly. Prof. Mark Banaszak-Holl, thank you for convincing me early on that

I would be much happier in graduate school than I would have been, had I pursued the "riches beyond the dreams of avarice" awaiting me in industry. Prof. Alan Heyduk has always been one of my harshest critics. His advice is, and will always be, invaluable to me. Dr. Kevin Schneider, if not for your constant reminding of how science was like a coy lover, I may have abandoned my pursuit long before getting to first base.

I would like to thank my parents, Ted and Maria Betley. I can never repay you for all the love and encouragement you have unconditionally provided. I love you both dearly and hope that I will always make you proud. My final thanks must go to my best friend, Bever Leigh Barroga. Though our love may often be unpredictable, I will always find you for I only feel truly at home when I am with you. The synthesis for a sterically encumbered, strong-field tris(diisopropylphosphino)borate ligand, $[PhBP^{iPr}_{3}]$ ($[PhBP^{iPr}_{3}] = [PhB(CH_2P^iPr_2)_3]^{-}$), is reported to probe aspects of its conformational and electronic characteristics within a host of complexes. To this end, the Tl(I) complex, $[PhBP^{iPr}_{3}]$ Tl, was synthesized and characterized in the solid state by X-ray diffraction analysis. The Tl(I) complex was used to install the $[PhBP^{iPr}_{3}]$ ligand onto complexes of Fe, Co, and Ru. The spectroscopic, electrochemical, magnetic, and structural features of these complexes are compared with similar, previously described examples.

Trigonally coordinated "[PhBP^{*i*Pr}₃]M" platforms (M = Fe, Co) support both π acidic (N₂) and π -basic (NR) ligands at a fourth binding site. Methylation of monomeric [M⁰(N₂)⁻] species successfully derivatizes the β -N atom of the N₂ ligand and affords the diazenido product [M^{II}(N₂Me)]. M^I(N₂)M^I complexes provide clean access to the chemistry of the "[PhBP₃]M(I)" subunit. For example, addition of RN₃ to M^I(N₂)M^I results in oxidative nitrene transfer to generate [PhBP^{*i*Pr}₃]M=NR with concomitant N₂ release.

A tetrahedrally coordinated L_3Fe-N_x platform that accommodates both terminal nitride ($L_3Fe^{IV}\equiv N$) and dinitrogen ($L_3Fe^I-N_2-Fe^IL_3$) functionalities is described. The diamagnetic $L_3Fe^{IV}\equiv N$ species featured has been characterized in solution under ambient conditions by multinuclear NMR (¹H, ³¹P, and ¹⁵N) and infrared spectroscopy. The electronic structure of the title complex has also been explored using DFT. The terminal nitride complex oxidatively couples to generate the previously reported $L_3Fe^I-N_2-Fe^IL_3$ species. The [PhBP^{*i*Pr}₃] ligand can support a single iron or cobalt center in a pseudotetrahedral environment in which dinitrogen is bound in the fourth coordination site. Zero-valent metal-dinitrogen complexes have the general formula, [([PhBP^{*i*Pr}₃]M(μ -N₂)]₂[Mg²⁺], while bridging structures can also be obtained as neutral [M^I]—N₂—[M^I] or as anionic [(M)₂(N₂)]⁻ species. The nature of the structural distortions observed in both [M](μ -N₂)]₂[Mg²⁺] and [Mⁿ]—N₂—[Mⁿ] complexes are described. Magnetic characterization of the neutral and mixed-valence dimeric complexes reveal the complexes remain ferromagnetically coupled over all temperatures investigated.

The coordination chemistry of group VIII metals featuring the bis(8quinolinyl)amine (HBQA) ligand is presented. The electrochemical behavior of several Fe, Ru, and Os complexes bearing the BQA ligand is reported and compared to related ligand platforms. Halide and phosphine ligand exchange reactions are examined from complexes of the type (BQA)MX(PR₃)₂ (M = Ru, Os). Carbonyl and dinitrogen complexes of Ru and Os are prepared from halide abstraction from divalent Ru and Os precursors. The spectroscopic and structural features of these complexes are compared with similar, previously described examples.

Table of Contents

Acknowledgements	iii
Abstract	iv
Table of Contents	vii
List of Figures	xiii
List of Tables	xviii
List of Abbreviations and Nomenclature	XX
Dedication	xxvi

Chapter 1. Background and context for the development of Fe-mediated

dinitrogen reduction chemistry	1
1.1. Introduction	2
1.2. Biological N ₂ reduction	2
1.3. Biomimetic systems that model structure and function	3
1.3.1. Cluster models	3
1.3.2. Molecular models	3
1.3.3. Mechanistic implications	7
1.4 Tris(phosphino)borate ligands to support low-coordinate complexes	8
1.5 Chapter summaries	10
References cited	12

Chapter 2. The strong-field tripodal phosphine donor, [PhB(CH₂PⁱPr₂)₃]⁻,

provides access to electronically and coordinatively unsaturated transition

metal	complexes	17
	Abstract	18
	2.1 Introduction	20
	2.2 Results	21
	2.2.1 Synthesis and characterization of [PhBP ^{<i>i</i>Pr} ₃][Tl]	21
	2.2.2. Synthesis of $[PhBP^{iPr}_{3}]M(X)$ Complexes (M = Fe, Co, Ru)	22
	2.2.3. Magnetic Characterization of [PhBP ^{<i>i</i>Pr} ₃]MX Complexes (M	
	= Fe, Co)	26
	2.2.4. Electrochemical Comparisons between [PhBP ^{<i>i</i>Pr} ₃]MX and	
	$[PhBP_3]MX (M = Fe, Co).$	28
	2.2.5. Reactivity toward CO, O ₂ , and PMe ₃	30
	2.3 Discussion.	32
	2.3.1. Relative electron-releasing character of [PhBP ^{<i>i</i>Pr} ₃]	32
	2.3.2. Conformational considerations	34
	2.3.3. Consideration of the Different Spin States Observed for	
	[PhBP ₃]CoI and [PhBP ^{iPr} ₃]CoI	36
	2.4. Experimental section	40
	2.4.1. General considerations	40
	2.4.2. Magnetic measurements	41
	2.4.3. EPR measurements	43
	2.4.4. X-ray crystallography procedures	43

ix	
2.4.5. Syntheses of compounds	45
References cited	54

Chapter 3. Dinitrogen chemistry from trigonally coordinated iron and cobalt

platforms	57
Abstract	58
3.1. Introduction	59
3.2. Results and discussion	60
3.3. Conclusions	69
3.4. Experimental section	70
3.4.1. General considerations	70
3.4.2. X-ray crystallography procedures	71
3.4.3. Syntheses of compounds	71
References cited	85

Chapter 4. A tetrahedrally coordinated L₃Fe-N_x platform that

accommodates terminal nitride ($Fe^{IV} \equiv N$) and dinitrogen ($Fe^{I}-N_2-Fe^{I}$) ligands.87Abstract.884.1. Introduction.894.2. Synthesis: results and discussion.904.3. XAS analysis.994.3.1. XANES.994.3.2. EXAFS.101

4.4. Reactivity	105
4.5. Conclusions	106
4.6. Experimental section	107
4.6.1. General considerations	107
4.6.2. X-ray crystallography procedures	108
4.6.3. X-ray absorption spectroscopy	108
4.6.4. Syntheseis of compounds	108
4.6.5. UV-vis kinetics	114
4.6.6. Electronic structure calculations	119
References cited	127

Chapter 5. Redox properties and electronic structure of iron and cobalt

supported dinitrogen complexes	131
Abstract	132
5.1. Introduction	133
5.2. Results and discussion	135
5.2.1. Synthesis of dinitrogen complexes	135
5.2.2. Electrochemistry of ([PhBP ^{<i>i</i>Pr} ₃]M) ₂ (μ -N ₂) complexes (M =	
Fe, Co)	136
5.2.3. Structure	137
5.2.4. Bonding geometries and molecular orbital considerations	142
5.2.5. Magnetic characterization of $[PhBP^{iPr}_{3}]M(\mu-N_{2})M'$	
complexes (M = Fe, Co, M' = Fe, Co, Mg)	144

5.2.6. Electronic structure for monomer and dimer complexes	151
5.3. Conclusions	153
5.4. Experimental section	154
5.4.1. General considerations	154
5.4.2. X-ray crystallography procedures	155
5.4.3. Magnetic measurements	155
5.4.4. EPR measurements	156
References cited	157

Chapter 6. Group VIII coordination chemistry supported by the

bis(quinolinyl)amido ligand	161
Abstract	162
6.1. Introduction	164
6.2. Results and discussion	168
6.2.1. Preparation of BQA complexes of Fe	168
6.2.2. Preparation of BQA complexes of Ru and Os	170
6.2.3. Electrochemical analysis of (BQA) _n M complexes	174
6.2.4. Ligand exchange reactions	178
6.2.5. Formation of cationic species	183
6.3. Conclusions	187
6.4. Experimental section	190
6.4.1. General considerations	190
6.4.2. X-ray crystallography procedures	191

6.4.3. EPR measurements	191
6.4.4. Syntheses of compounds	191
References cited	207

List of Figures

Chapter 1.

Figure 1.1. Picture of the FeMo-cofactor including an interstitial nitride	3
Figure 1.2. Dinitrogen cleavage by (Ar(R)N) ₃ Mo ^{III} complexes	5
Figure 1.3. Dinitrogen reduction to ammonia at a single Mo center	6
Figure 1.4. Stepwise reduction of bound N ₂ for bimetallic, three-	
coordinate Fe complex	7
Figure 1.5. Molecular orbital diagram for [PhBP ₃]Co complexes	9

Chapter 2.

Figure 2.1. Displacement ellipsoid representation of [PhBP ^{iPr} ₃]FeCl,	
[PhBP ^{<i>i</i>Pr} ₃]CoCl, and [PhBP ^{<i>i</i>Pr} ₃]CoI	24
Figure 2.2. Displacement ellipsoid representation for $\{[PhBP_3]Ru(\mu-Cl)\}_2$	
and [PhBP ₃]RuCl(PMe ₃)	25
Figure 2.3. SQUID data shown for [PhBP ^{<i>i</i>Pr} ₃]CoI	27
Figure 2.4. EPR spectrum of [PhBP ^{<i>i</i>Pr} ₃]CoI	28
Figure 2.5. Cyclic voltammetry of [PhBP ^{<i>i</i>Pr} ₃]FeCl and [PhBP ₃]FeCl	29
Figure 2.6. Cyclic voltammetry of [PhBP ^{<i>i</i>Pr} ₃]CoI and [PhBP ₃]CoI	30
Figure 2.7. Displacement ellipsoid representation of	
$[PhB(CH_2P(O)^iPr_2)_2(CH_2P^iPr)]CoCl and [PhB(CH_2P(O)^iPr_2)_3]CoCl$	32
Figure 2.8. Space-filling models of (a) [PhBP ₃]FeCl and (b)	
[PhBP ^{<i>i</i>Pr} ₃]FeCl generated from X-ray crystal structures	36

Figure 2.9. Structural representations of the immediate coordination	
sphere of (a) [PhBP ₃]CoI, (b) [PhBP ^{<i>i</i>Pr} ₃]CoCl, and (c) [PhBP ^{<i>i</i>Pr} ₃]CoI	36
Figure 2.10. Qualitative orbital correlation diagram of [PhBP ₃]CoI,	
[PhBP ^{<i>i</i>Pr} ₃]CoCl, and [PhBP ^{<i>i</i>Pr} ₃]CoI	38

Chapter 3.

Figure 3.1. Displacement ellipsoid representation of $\{([PhBP'^{Pr}_3]Fe(\mu - \mu - \mu - \mu))\}$	
$N_{2}) \}_{2} \{ Mg(THF)_{4} \} \text{ and } \{ ([PhBP^{iPr}_{3}]Co(\mu-N_{2}) \}_{2} \{ Mg(THF)_{4} \} \dots \dots \} \}_{2} \{ Mg(THF)_{4} \} \}_{2} \}_{2} \{ Mg(THF)_{4} \}_{2} \}_{2} \}_{2} \}_{2} \{ Mg(THF)_{4} \}_{2} \}_{2} \}_{2} \{ Mg(THF)_{4} \}_{2} \}_{2} \}_{2} \}_{2} \{ Mg(THF)_{4} \}_{2} \}_{2} \}_{2} \}_{2} \}_{2} \}_{2} \}_{2} \}_{2} \{ Mg(THF)_{4} \}_{2} \}$ _{2} \}_{2} \}_{2} \}_{2} \}_{2} \}_	61
Figure 3.2. Displacement ellipsoid representation of $\{([PhBP^{iPr}_3]Fe)_2(\mu -$	
N_2 } {Na(THF) ₆ }·THF	63
Figure 3.3. Displacement ellipsoid representation of $\{(PhBP^{iPr}_{3}]Co)_{2}(\mu - E_{i})\}$	
N_2) { $Na(THF)_6$ } · THF	64
Figure 3.4. Displacement ellipsoid representation of (a)	
$[PhBP^{iPr}_{3}]Fe \equiv NAd, (b) [PhBP^{iPr}_{3}]Co \equiv NAd, and (c) [PhBP^{iPr}_{3}]Co \equiv NAd$	66

Chapter 4.

Figure 4.1. ¹ H NMR and ³¹ P NMR of [PhBP ^{iPr_3}]Fe=N	93
Figure 4.2. ¹⁵ N NMR [PhBP ^{<i>i</i>Pr} ₃]Fe= 15 N	93
Figure 4.3. Molecular representation of $\{[PhBP^{iPr}_3]Fe\}_2(\mu^2-N_2)$	95
Figure 4.4. IR of $[PhBP^{iPr}_{3}]Fe \equiv {}^{14}N$ and $[PhBP^{iPr}_{3}]Fe \equiv {}^{15}N$	96
Figure 4.5. Theoretically predicted geometry and electronic structure for	

$S = 0 [PhBP^{iPr}_{3}]Fe \equiv N$	98
Figure 4.6. X-ray absorption spectra	100
Figure 4.7. Fourier transform of the EXAFS and EXAFS spectrum of	
$([PhBP^{iPr}_{3}]Fe)_{2}(\mu^{2}-N_{2})$	103
Figure 4.8. Fourier transform of the EXAFS data and EXAFS spectrum of	
$([PhBP^{iPr}_{3}]Fe \equiv NAd$	104
Figure 4.9. Fourier transform of the EXAFS data and EXAFS spectrum of	
$([PhBPiPr3]Fe=N and ([PhBPiPr3]Fe)2(\mu^2-N2)$	105
Figure 4.6.1. ¹ H NMR of [PhBP ^{<i>i</i>Pr} ₃]Fe=N	111
Figure 4.6.2. ε vs. λ for [PhBP ^{<i>i</i>Pr} ₃]Fe(dbabh)	115
Figure 4.6.3. ¹ H NMR of nitride coupling experiment	117
Figure 4.6.4. ¹ H NMR of nitride coupling experiment under Argon	118
Figure 4.6.5. DFT predicted structure for $[PhBP^{iPr}_{3}]Fe \equiv N$	119
Figure 4.6.6. Theoretically predicted geometry and electronic structure for	
the complex [PhBP ^{<i>i</i>Pr} ₃]Fe≡N	120
Figure 4.6.7. Displacement ellipsoid representation of ${[PhBP^{iPr}_{3}]Fe}_{2}(\mu$ -	
N ₂)	121
Figure 4.6.8. Displacement ellipsoid representation of [PhBP ^{<i>i</i>Pr} ₃]FeNPh	124

Chapter 5.

Figure 5.1. Cyclic voltammetry of $[PhBP^{iPr}_3]Fe)_2(\mu^2-N_2)$			
Figure 5.2. Molecular structures determined by X-ray diffraction studies			
of (a) $[(PhBP^{iPr}_{3})Fe(N_{2})]_{2}[Mg(THF)_{4}], (b)$			

xvi	
$[(PhBP^{iPr}_{3})Co(N_{2})]_{2}[Mg(THF)_{4}], (c) [([PhBP^{iPr}_{3}]Fe)_{2}(\mu-N_{2})][Na(THF)_{6}],$	
(d) [([PhBP ^{<i>i</i>Pr} ₃]Co) ₂ (μ -N ₂)][Na(THF) ₆], and (e) ([PhBP ^{<i>i</i>Pr} ₃]Fe) ₂ (μ -N ₂)	139
Figure 5.3. Limiting structure types for four-coordinate "[PhBP ^{<i>i</i>Pr} ₃]M"	141
Figure 5.4. The core structure representations for (a) Fe^0 ($S = 1$), (b) Fe^I (S	
= 3/2), (c) $\operatorname{Fe}^{II}(S = 2)$, and (d) $\operatorname{Fe}^{III}(S = 1/2)$	142
Figure 5.5. Molecular orbital bonding diagram for species of the type	
$[PhBP^{iPr}_{3}]M - N_2 (M = Fe, Co)$	143
Figure 5.6. Molecular orbital bonding diagram for species of the type	
$([PhBP^{iPr}_{3}]M)_{2}(\mu-N_{2}) (M = Fe, Co)$	144
Figure 5.7. (a) SQUID magnetization data for	
$[(PhBP^{iPr}_{3})Fe(\mu-N_{2})]_{2}[Mg(THF)_{4}] \text{ and } [(PhBP^{iPr}_{3})Co(\mu-N_{2})]_{2}[Mg(THF)_{4}].$	146
Figure 5.8. (a) SQUID magnetization data for $[([PhBP^{iPr}_{3}]Fe)_{2}(\mu$ -	
N_2][Na(THF) ₆], [([PhBP ^{<i>i</i>Pr} ₃]Co) ₂ (μ -N ₂)][Na(THF) ₆], and [PhBP ^{<i>i</i>Pr} ₃]Fe(μ -	
N ₂)	148
Figure 5.9. EPR spectrum of $[(PhBP^{iPr}_{3})Co(\mu-N_{2})]_{2}[Mg(THF)_{4}]$	149
Figure 5.10. (a) EPR spectrum of $[(PhBP^{iPr}_3]Co)_2(\mu-N_2)][Na(THF)_6]$	150
Figure 5.11. (a) EPR spectrum of $[([PhBPiPr_3]Fe)_2(\mu-N_2)][Na(THF)_6]$	151
Figure 5.12. The ground state electronic structures observed for	
mononuclear Fe and Co complexes	152
Figure 5.13. The ground state electronic structures observed for	
dinitrogen-bridged, dinuclear species	152

Figure 6.1. Examples of early and mid transition metal complexes	
employing amide-based ligands	165
Figure 6.2. Stepwise oxidation of bound ammonia molecules in a	
diruthenium, cofacial porphyrin complex	166
Figure 6.3. Chemistry observed from a [(tpy)Os(N)Cl ₂]Cl complex	166
Figure 6.4. Electronic spectrum of [Fe(BQA) ₂][BPh ₄]	170
Figure 6.5. EPR spectrum of solid [Fe(BQA) ₂][BPh ₄]	170
Figure 6.6. Displacement ellipsoid representation of (BQA)RuCl(cod),	
(BQA)RuCl(PPh ₃) ₂ , and (BQA)OsCl(PPh ₃) ₂	172
Figure 6.7. Cyclic voltammetry of [Fe(BQA) ₂][BPh ₄]	175
Figure 6.8. Cyclic voltammetry of $[(tpy)_2Ru]^{2+}$, $[(tpy)Ru(BQA)]^+$,	
Ru(BQA) ₂	176
Figure 6.9. Cyclic voltammetry of (top) (BQA)RuCl(PPh ₃) ₂ and (bottom)	
(BQA)OsCl(PPh ₃) ₂	178
Figure 6.10. Displacement ellipsoid representation of (BQA)Ru(3,5-	
(CF ₃) ₂ Ph-QA)(PPh ₃) and [(Ph ₂ BP ₂)RuCl(BQA)][NEt ₄]	182
Figure 6.11. Displacement ellipsoid representation of	
[(BQA)Os(N ₂)(PPh ₃) ₂][PF ₆]	187

List of Tables

Chapter 2.

Table 2.1 Carbonyl stretching frequencies for $(\kappa^3-L)Co(CO)_2$ and $(\kappa^3-L)Co(CO)_2$					
L)RuCl(CO) ₂	34				

Table 2.2. X-ray diffraction experimental details for [PhBP ^{<i>i</i>Pr} ₃][Tl],	
$[PhBP^{iPr}_{3}]FeCl, [PhBP^{iPr}_{3}]CoCl, [PhBP^{iPr}_{3}]CoI, \{[PhBP_{3}]Ru(\mu-Cl)\}_{2},$	
[PhBP ₃]RuCl(PMe ₃)	44

Chapter 3.

Table 3.1	. Structural	and infi	ared data	for	complex	xes pi	resented	68
-----------	--------------	----------	-----------	-----	---------	--------	----------	----

Chapter 4.

Table 4.1. Bond distances from EXAFS and X-ray crystallography			
Table 4.6.1. Crystal data for ${[PhBP^{iPr}_{3}]Fe}_{2}(\mu-N_{2})$	122		
Table 4.6.2. Bond lengths and angles for ${[PhBP^{iPr}_{3}]Fe}_{2}(\mu-N_{2})$	123		
Table 4.6.3. Crystal data for [PhBP ^{iPr} _3]FeNPh2	125		
Table 4.6.4. Bond lengths and angles for [PhBP ^{iPr} 3]FeNPh2	126		

Chapter 5.

Table 5.1. Relevant bond distances and	d angles for specified complexes	40
--	----------------------------------	----

xviii

Chapter 6.

List of Abbreviations and Nomenclature

[PhBP ₃]	$[PhB(CH_2PPh_2)_3]^-$
[PhBP ^{<i>i</i>Pr} ₃]	$[PhB(CH_2P^iPr_2)_3]^-$
Ср	cyclopentadienyl
Cp*	pentamethyl-cyclopentadienyl
[Tp]	hydrotris(pyrazolyl)borate
$\{^{1}H\}$	hydrogen-1 decoupled
0	degrees in measure of angles
°C	degrees Celcius
$^{1}\mathrm{H}$	hydrogen-1
$^{11}\mathbf{B}$	boron-11
¹³ C	carbon-13
¹⁹ F	fluorine-19
¹⁵ N	nitrogen-15
³¹ P	phosphorous-31
²⁰³ Tl	thallium-203
²⁰⁵ Tl	thallium-203
Å	Angstrom, 10 ⁻¹⁰ m
Ad	adamantyl
Anal. Calcd.	elemental analysis calculated
Ar	aryl group
av	average
B3LYP	Becke three-parameter functional with Lee-Yang-Parr correlation

BM	Bohr magnetons
br	broad
Bu	butyl
BQA	8-bis(quinolinyl)amine
C_{3v}, C_s, S_6	Schoenflies symmetry designations
Calcd	calculated
CCD	charge coupled device
cm	centimeter(s)
cm ⁻¹	inverse centimeters or wavenumbers
cm ³	cubic centimeters
cod	1,4-cyclooctadiene
d	doublet
dbabh	2,3:5,6-dibenzo-7-aza bicyclo[2.2.1]hepta-2,5-diene
dd	doublet of doublets
dt	doublet of triplets
DC	direct current
D _{calcd}	calculated density
deg	degrees in measure of angles
d ⁿ	d-electron count of n-electrons for a transition metal
DFT	density functional theory
Е	an atom or functional group forming a metal-ligand multiple bond
EPR	electron paramagnetic resonance
Eq	equation

xxi

equiv.	equivalents
ESI/MS	electrospray ionization mass spectrometry
Et	ethyl
EXAFS	extended X-ray absorption fine structure
fac	facial coordination
g	gram
G	Gauss
GC/MS	gas chromatography mass spectrometry
GHz	gigahertz
g _{iso}	isotropic g-factor
h	hour(s)
Н	applied magnetic field
Hdbabh	1-H-2,3:5,6-dibenzo-7-aza bicyclo[2.2.1]hepta-2,5-diene
НОМО	highest occupied molecular orbital
Hz	hertz
ⁱ Pr	isopropyl
IR	infrared
JT	Jahn-Teller
Κ	degrees in Kelvin
kcal	kilocalories
kHz	kilohertz
L	dative ligand for a transition metal
LAVCP	Los Alamos core valence potential

xxii

LFT	ligand field theory
LUMO	lowest unoccupied molecular orbital
m	multiplet
М	general metal
Me	methyl
Mes	mesityl
mg	milligram(s)
MHz	megahertz, 10 ⁶ Hertz
min	minute(s)
mL	milliliter(s)
mmol	millimole(s)
MO	molecular orbital
mol	mole(s)
MS	mass spectrometry
mT	millitesla(s)
mV	millivolt(s)
mW	milliwatt(s)
NA, na	not applicable
ⁿ Bu	<i>n</i> -butyl
$^{n}J_{A-Z}$	in NMR spectroscopy, coupling constant between nuclei A and Z
	over n bonds (n, A, or Z omitted if not known)
nm	nanometer(s)
NMR	nuclear magnetic resonance

xxiii

OTf	-OSO ₂ CF ₃
<i>p</i> -	para position on aryl ring
Ph	phenyl
ppm	parts per million
q	quarted
R	general alkyl or aryl substituents
rt	room temperature
S	second(s)
S	solvent peak in NMR
S	spin
SOMO	singly occupied molecular orbital
SQUID	superconducting quantum interference device
t	triplet
Т	temperature
TBA	tetrabutylammonium
^t Bu	<i>tert</i> -butyl
THF	tetrahydrofuran
tmeda	tetramethylethylenediamine
TMS	trimethylsilyl
tolyl	$-C_6H_4CH_3$
triphos	H ₃ CC(CH ₂ PPh ₂) ₃
Ts	-S(O) ₂ - <i>p</i> -tolyl
UV-vis	ultraviolet-visible

xxiv

	XXV
V	volume
Х	monoanionic atom or group, such as halide
XANES	X-ray absorption near-edge spectroscopy
XAS	X-ray absorption spectroscopy
XRD	X-ray diffraction
δ	delta, chemical shift
3	extinction coefficient in M ⁻¹ cm ⁻¹
η^n	hapticity of order n
ĸ ⁿ	number of single ligating atom attachments of a polyatomic ligand
λ	wavelength
λ_{max}	wavelength of maximum absorption
μ	absorption coefficient (XRD)
μ^{n} -A	bridging atom to n metal centers
$\mu_{\rm B}$	Bohr magnetons
μ_{eff}	effective magnetic moment, measure in Bohr magnetons
μL	microliter(s)
ν	frequency
θ	Weiss constant
χ	magnetic susceptibility
χm	molar magnetic susceptibility

xxvi

Dedication

This work is dedicated to my parents Ted and Maria,

for their encouragement and patience.