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Abstract

Long-term memories are established in the neocortex under the influence of hippocam-

pal activity. The precise circuit mechanisms underlying this process, however, remain

poorly understood. According to the dominant paradigm, memories are formed in two

stages: first, neocortical activity during awake behavior embeds traces in hippocam-

pal circuits; second, spontaneous hippocampal activity during offline periods, such as

sleep, drives synaptic changes across cortical circuits so as to produce a stable, long-

term memory trace. Evidence for this two-stage model at the level of neural activity,

however, is incomplete. In this thesis we study interactions between the hippocampus

and medial prefrontal cortex (mPFC) to elucidate the basic principles of how these

brain circuits work in concert in support of long-term memory. Using recordings of

single-unit actvity from multi-tetrode arrays in the hippocampus and mPFC of freely

behaving rats, we performed two sets of experiments, each addressing one stage of

the two-stage model. First, during awake behavior, we find a class of mPFC cells

whose firing reflects the strength of a learned association and show that these tend to

be strongly modulated by the hippocampus. Second, during sleep, we identify precise

spike timing relationships between single mPFC and hippocampal cells that are consis-

tent with information flow from the hippocampus to the prefrontal cortex, and show

that these timing relationships are highly dependent on sleep stage. Taken together,

these results provide key constraints on the circuit mechanisms of long-term memory

formation.
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Chapter 1

Introduction

1.1 Memory Consolidation

Like many brain faculties, memory provides important clues to its normal function

when it fails. Anterograde amnesia has been particularly instructive since it stems

from a failure of memory formation. This pathology is often due to hippocampal

insult, as in the case of the patient Henry Molaison (H.M.), famously studied by

Brenda Milner1. Since this revolutionary work, a large body of lesion experiments in

animals has confirmed that the hippocampus is required to form new memories but is

not the long-term site of memory storage2, thought instead to be widely distributed

across the neocortex.

A number of studies have measured the time course of hippocampal dependence

for a given task by performing hippocampal lesions at varying points in the animal’s

training. These typically reveal complete learning deficits after early lesions and nearly

intact learning relative to control animals after longer time intervals2. This timeline

suggests that memories have a life cycle: they are initially dependent on the hip-

pocampal circuits, but after a critical period—weeks to months in rodents, years in

humans—they can be recalled by the neocortex even after the hippocampus is removed

(Figure 1.1). The neural mechanisms of this transformation, known as consolidation,

are poorly understood and will be the general subject of this thesis.

The consolidation literature is vast3 and inconsistent in its nomenclature. To
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Figure 1.1: Opposite temporal gradients for dependence on hippocampal and cortical
circuits. Adapted from6.

avoid confusion, we note that what we call consolidation is sometimes referred to

as systems- or network consolidation, to distinguish it from cellular consolidation and

reconsolidation, which are other processes that modulate the strength of recently

acquired or reactivated memories over much shorter time scales (minutes to hours).

Cellular consolidation refers to how short-term changes in synaptic efficacy induced by

conditioning or tetanic stimulation are prolonged through transcriptional regulation,

protein synthesis, and other molecular cascades4. Reconsolidation refers to the process

by which previously consolidated memories become labile when they are retrieved and

require de novo protein synthesis to remain stable, long-term memories5.

1.2 The Two-Stage Model of Memory Formation

The essential but time-limited role of the hippocampus has motivated a widely held

model whereby memories are formed in two stages7. In the first stage, sensory stimuli

reach the neocortex during awake behavior, and the resulting cortical activity embeds

traces in hippocampal circuits (Figure 1.2, left). In the second stage, spontaneous

hippocampal activity in the absence of sensory stimuli drives synaptic changes across
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Figure 1.2: The two-stage model of memory formation.

cortical circuits so as to produce a stable, long-term memory trace (Figure 1.2, right).

This latter stage is postulated to occur during offline periods such as sleep.

Besides providing a fit to lesion data, and perhaps an explanation of why we sleep,

this two-stage model also solves a computational problem endemic to auto-associative

storage: catastrophic interference. Neural networks that learn quickly, after just one

or a few training rounds, tend to overfit the data, so that adding another item to

the store can destroy earlier memories. Mating a fast-learning hippocampus to the

slower-learning neocortex solves this problem by having the hippocampus, in effect,

train the neocortex using repeated presentations. With this slower training schedule,

the cortical network can discover higher-level regularities in the data that enable more

robust storage patterns.8.

1.3 The Link between Sleep and Memory

A key prediction of the two-stage model is that brain activity during sleep is critical for

memory consolidation. Testing this prediction is complicated by the fact that experi-
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mentally regulating sleep, either up or down, can modulate many other physiological

variables, such as vigilance, that are not specific to memory but can still affect the

performance of memory tasks. Nevertheless, a large number of behavioral studies

have found relationships between sleep and memory performance9, although the link

remains controversial10.

At the level of neural activity, however, it is clear that the sleeping brain is highly

active and plastic11. Moreover, mammalian sleep is comprised of several distinct

stages, collectively referred to as rapid eye movement (REM) sleep and slow-wave

sleep (SWS), featuring dramatically different neural activity patterns across the neo-

cortex and hippocampus. Coupled to spike timing dependent plasticity mechanisms12,

this activity during sleep would modify synaptic strengths throughout the brain, per-

haps in different ways depending on sleep stage. Thus, even without definitive be-

havioral evidence that sleep supports memory, it is highly likely that brain circuits are

reorganized during sleep—a key requirement of the two-stage model—and therefore

important to understand the precise nature of cortico-hippocampal activity patterns

across all sleep stages.

1.4 The Prefrontal-Hippocampal Pathway

While the two-stage model is an attractive theory for memory formation, experimental

evidence and possible mechanisms at the level of neural activity have been difficult to

obtain. Focusing on interactions between the prefrontal cortex and the hippocampus

provides a useful starting point for this investigation for several reasons:

1. The prefrontal cortex receives direct projections from CA1 pyramidal cells, prin-

cipally to the prelimbic and infralimbic cortices13, that are excitatory14,15, glu-

tamatergic, and plastic16,17.

2. The prefrontal cortex in rats has been implicated in a number of hippocampus-

dependent memory tasks, including associative learning18, and fear condition-
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ing19. Moreover, for these tasks, the involvement of the hippocampus and pre-

frontal cortex follow the opposite temporal gradients illustrated in Figure 1.1.

3. Imaging studies have found differential expression of immediate-early genes in the

prefrontal cortex and hippocampus during the retrieval of recent versus remote

memories consistent with these gradients20.

4. There is electrophysiological evidence for coordinated activity between area CA1

and the prefrontal cortex during both awake behavior21 and slow-wave sleep22,23.

This combination of direct connectivity, differential engagement in learning tasks

and electrophysiological coordination strongly favor the chances of detecting neural

activity patterns across the hippocampus and the neocortex that could provide mech-

anistic understanding of the consolidation process. In this work, therefore, we have

focused on the prefrontal-hippocampal pathway. To be sure, it is possible that these

patterns, should they exist, may apply only to the prefrontal cortex and not to the

rest of the neocortex. Even in this case, however, the importance of the prefrontal

cortex in learning and memory would make these regularities of general interest.

1.5 Preview

The rest of this thesis is divided into three parts. First we will focus on awake be-

havior and show that prefrontal cells that interact strongly with the hippocampus are

preferentially recruited to form a neural correlate of associative learning, providing a

possible electrophysiological signature of consolidation. Second, we will present a se-

ries of results concerning the existence of precise spike timing relationships between

the hippocampus and prefrontal cortex during sleep. Finally, we will synthesize these

findings and suggest directions for future work.
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Chapter 2

Prefrontal-Hippocampal Interactions
during Learning

2.1 Introduction

According to the predominant model of memory formation, long-term memories are

gradually consolidated in the neocortex under the influence of the hippocampus2. Ev-

idence for this model has come from a range of experimental approaches, from gene

expression patterns24,6,20 to lesion studies25,26,18,19. Precisely how hippocampal activ-

ity reorganizes cortical circuits to form stable memories, however, remains unknown.

Understanding this process requires directly observing the neural activity corresponding

to a specific neocortical memory formed under the influence of the hippocampus in a

freely behaving animal. Two crucial steps towards this goal are first, to find cells in the

cortex whose responses change systematically during training in a well-defined learning

paradigm; and second, to show that these cortical cells are influenced by hippocampal

activity.

Eyeblink conditioning is a form of associative learning that engages the hippocam-

pus across a wide range of species and parameters27. When the conditioned and

unconditioned stimuli do not overlap in time (trace eyeblink conditioning), learning

the task requires an intact hippocampus in rabbits26, rats28, mice29, and humans30.

Furthermore, lesions to the medial prefrontal cortex in rats disrupt the recall of the

conditioned eyeblink response if they are performed one month, but not one day,
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post-learning18. Hence, trace eyeblink conditioning provides what may be the simplest

model system for hippocampus-prefrontal mediated memory consolidation.

The prefrontal cortex has received particular attention in the study of cortico-

hippocampal interactions because the hippocampus projects to this area via a plastic,

monosynaptic pathway17,13. In addition, electrophysiological activity patterns in the

mPFC are tightly coupled to the hippocampus during sleep22,23,31 and awake behav-

ior21,32,33. One form of coupling is through the theta rhythm, a prominent 4-10 Hz

local field oscillation in the hippocampus34. Most principal cells in the hippocam-

pus fire around a preferred phase of the theta oscillation35, a phenomenon known as

phase-locking. Modulation with respect to hippocampal theta has also been identified

in mPFC21, which suggests theta phase-locking as a natural measure of hippocampal

influence over a particular cortical cell. Indeed, theta phase-locking has been shown

to be a necessary condition for a prefrontal cell to have significant cross-correlations

with cells in the CA1 subfield of the hippocampus21.

The reliance of trace eyeblink conditioning on the prefrontal cortex and hippocam-

pus, combined with the existence of hippocampus-modulated cells in the prefrontal

cortex, raises two key questions. First, do prefrontal cells alter their firing to a condi-

tioned stimulus (CS) in a manner that is consistent with a long-term cortical memory?

Second, what role do phase-locked cells play in this process?

2.2 Results

2.2.1 Task-dependent firing in mPFC neurons

In this study, we recorded single-unit activity from the mPFC of three freely behaving

rats over the entire course of trace eyeblink conditioning (89 sessions; N = 851 cells

total). Figure 2.1 shows examples of the behavioral response to paired presentations

of a tone (CS) and mild eyelid shock (US) early and late in learning. All three animals

developed robust conditioned eyelid responses within 1,200–1,800 trials (Fig. 2.2).
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Figure 2.1: Examples of eyelid during conditioning . For each subpanel, the lower trace
shows the electromyogram (EMG) activity from the orbiculari oculi muscle of the eyelid during
the presentation of the conditioned stimulus (CS), a 250 ms tone, followed after 250 ms by
the unconditioned stimulus (US), a 10 ms bipolar shock. The stimulus artifact is blacked out.
The upper trace is the RMS power of the lower trace using a 50 ms Hann window. (a) Early
in training, there is an unconditioned response (UR) to the US but no response to the CS;
(b) Late in training, a robust conditioned response (CR). (c) A CS-only “probe” trial late in
learning reveals a CR without the stimulus artifact.

Of the 851 mPFC cells recorded, 63 (7.4%) exhibited excitatory responses during

the period between the onset of the CS and the US. These cells were designated CS-

excited (CSe). Figure 2.3a,b shows examples of event-triggered rasters and peri-event

spike histograms for two CSe cells. These CSe cells also illustrate the phenomenon of

phase-locking to hippocampal theta oscillations (Fig. 2.3c,d).

Unlike the conditioned EMG response, which increased just before the onset of the

US (Fig. 2.2a,b), the majority of CSe responses peaked around 125 ms after the CS

onset, with a second mode around 125 ms after the CS offset (Fig. 2.4). Thus, the

prefrontal CSe responses do not form a model of the eyelid EMG profile, as in the case

of hippocampal responses during delay eyeblink conditioning36, nor do they uniformly

bridge the temporal gap between CS and US.

2.2.2 Evolution of prefrontal responses during learning

Given prefrontal cells whose firing was modulated by the learning task, we first asked

whether these task-dependent responses varied over the course of learning. To this

end, we assigned to each training session (and to each cell recorded in that session)
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as calculated above. EMG power has been set to zero during the stimulus artifact. Sidebar:
Fraction of trials in 50-trial blocks where EMG power exceeds the CR threshold (see Methods).
(b) Evolution of eyelid responses with training. All training trials were ordered and divided into
three equal subsets. For each rat, the red, green, and blue curves show the mean EMG power
in the first, second, and third subsets, corresponding to early, middle, and late trials. The CS
onset is at time zero and the US onset is at 500 ms for rat D and 750 ms for rats T,R.
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a rank, defined as the fraction of training, measured in trials, completed up to and

including that session. We then measured the mean firing rates of each CSe cell during

the period between the CS and US onsets, and plotted these as a function of rank.

As shown in Figure 2.5a, the firing rate of CSe cells tended to increase with training,

and this relationship was highly significant (R2 = 0.26, p < 10−4; linear regression).

In order to show the evolution of CSe responses, we divided training into three equal

intervals and computed the average CSe response during those intervals (Fig. 2.5b).

The evolution of CSe responses is also revealed by plotting all of the CSe rasters in

series, ordered by rank (Fig. 2.7).

To verify that growing CSe responses were not merely due to a general increase

in neural or behavioral excitability, we performed two sets of control analyses. First,

as shown in Figure 2.6, we plotted the mean firing rates of CSe cells outside CS/US

presentations throughout the training session as a function of rank and found no

significant increase (R2 = .06, p > .05; linear regression). Similarly, we found no

relationship between firing rate and rank for non-CSe cells (R2 = .002, p > 0.2; linear
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regression). Second, we computed the average acceleration of the animal around the

CS onset as a function of rank and found no relationship between the two (R2 = .001,

p > 0.8; linear regression).

2.2.3 Hippocampal modulation of CS-excited cells

Having identified a set of prefrontal cells whose CS-response increased with learning,

we turned to our second question, namely, whether cortical cells that encode learned

associations have a special relationship to the hippocampus. As a metric of hip-

pocampal modulation, we used the degree of phase-locking to the hippocampal theta

rhythm21. In general, we found that CSe cells tended to be significantly more phase-

locked than non-CSe cells. In particular, the distribution of the Rayleigh Z-statistic,

a measure of circular unimodality, for CSe cells was significantly higher (more phase-

locked) than non-CSe cells (p < 2 × 10−6, one-sided Kolmogorov-Smirnov test).

Figure 2.8a–d illustrates the difference between these distributions. Specifically, 39%

of non-CSe cells were significantly phase-locked, compared to 68% of CSe cells.

Finally, as shown in Figure 2.8e, we found that the fractions of CS-excited or

phase-locked cells did not vary significantly with training. The fraction of CSe cells

that were phase locked did decrease with training, although this decrease was not

statistically significant.

2.3 Discussion

We have identified in freely behaving animals a class of prefrontal cells that encode

a fundamental building block of learning: the association between a CS and US.

Moreover, we have found that the strength of the encoding, as measured by firing

rates, systematically increases with the strength of the association, as measured by

the behavioral output. Finally, we have shown that the prefrontal cells that encode

the CS are predominantly phase-locked to the hippocampal theta rhythm.
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Figure 2.6: Verification that evolution of CSe firing is not due to non-specific ex-
citability. (a) Firing rates of CSe cells outside CS-US intervals as a function of training. The
small positive trend is not statistically significant (p > 0.05). (b) Firing rates of non-CSe
cells during the entire session as a function of training. There is no significant relationship
between general excitability and training. Note that one data point (red) has been displaced
in order to keep the same y-axis as A. (c) Average acceleration in a 400 ms window centered
at the CS-onset time for each dataset as a function of training. Note that there is an overall
tendency for the animal to increase its speed after the CS, but no trend. (d) Mean firing rate
of CSe cells as a function of training. Same as Figure 2.7a, included here for comparison with
a and b.
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Previous work with trace eyeblink conditioning has found CS-excited cells in the

anterior cingulate cortex of restrained rabbits38. In contrast to the present study, these

excitatory responses peaked in the first training session and decayed to baseline levels

as the animal became fully trained. Consistent with this response profile, pre-training

lesions of the same brain area in rabbits have been found to impair learning of trace

eyeblink conditioning39. The CS-excited responses reported here were recorded in the

prelimbic and infralimbic regions of the mPFC, which receive monosynaptic projections

from the hippocampus13, as opposed to the anterior cingulate, which does not40.

Taken together, these results suggest a functional specialization within the mPFC,

where anterior cingulate neurons signal the novelty and salience of the conditioned

stimulus while prelimbic and infralimbic circuits encode the association itself. How this

specialization might depend on differential innervation from the hippocampus remains

an open question.

Two previous studies have analyzed the behavioral modulation of theta phase-

locking in prefrontal cortex during linear track traversals32 and a spatial working mem-

ory task33. Neither study recorded from prefrontal cells during the learning process,

and as a result the relationship between phase-locking and learning was not previously

explored.

In the awake state, theta oscillations are most prominent during exploratory behav-

iors such as locomotion and generally absent during immobility41. The phase-locking

statistics in our study were computed during periods of elevated theta power as the

animal moved freely within its environment during each training session. As a result,

they are likely to reflect an intrinsic property of a prefrontal cell, perhaps due to actual

or effective connectivity between that cell and the hippocampus, rather than a purely

task-driven property. This observation suggests that phase-locked cells in prefrontal

cortex, tuned to theta-modulated hippocampal input, are recruited to form the ini-

tial representation of the CS (Fig. 2.9). This idea is supported by the observation

that presenting CS-US pairs during periods of ongoing theta oscillations accelerates

the learning of trace eyeblink conditioning42, since, by the definition of phase-locking,
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theta waves would increase temporal precision specifically across phase-locked circuits.

By showing a link between hippocampal phase-locking and CS representations, we

have identified a hippocampus-dependent task (trace eyeblink conditioning) as well as

an electrophysiological tag (theta phase-locking) that are well suited for probing the

dynamics of the consolidation process, both during awake behavior as well as preced-

ing and subsequent sleep. Future studies could include comparing the hippocampal

dependence, via phase-locking, of recent versus remote cortical memories over time

spans relevant to consolidation as identified by lesion studies, typically one or more

months. Conversely, tracing the co-evolution of CS-responsiveness and phase-locking

after asymptotic learning could provide animal-specific milestones during the consoli-

dation process by which to guide lesions or other manipulations.

2.4 Methods

2.4.1 Electrophysiological recordings.

Electrophysiological signals were acquired using tetrode recordings43. Three male

Long-Evans rats from 3-5 months old (weight = 350-450g) were implanted with a

custom-built microdrive array allowing the independent adjustment of 24 individual

tetrodes. Twelve tetrodes targeted the prelimbic and infralimbic regions of the mPFC

(AP: 1.5-3.5mm from bregma; ML: 1-1.75mm, angled at 15 degrees from the saggital

plane) and twelve tetrodes targeted the dorsal CA1 subfield of the hippocampus (AP:

-3.75 to -4.75mm from bregma; ML: 1.5-3.5mm). Individual tetrodes were gradually

lowered to their targets over several days and further micro-adjusted to optimize yield

and stability. Each tetrode signal was buffered by a unity-gain headstage preamplifier

and further differentially amplified with a gain of 2000. The broadband amplified

signals were digitally acquired at 25kHz as 24-bit samples (National Instruments PXI-

4472) and stored to disk using custom acquisition software that we have developed. In

addition, four 0.005" stainless steel wires were implanted in the animal’s contralateral
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Figure 2.9: Classification of prefrontal cells engaged in learning a hippocampus-
dependent task. Approximately 40% of prefrontal cells are phase-locked to hippocampal
theta oscillations (yellow), and the subset of CA1-correlated cells in prefrontal cortex is en-
tirely phase-locked (blue)21. It is reasonable to believe that the converse is also true, i.e.,
that phase-locked prefrontal cells are CA1-correlated, but difficult to verify because of finite
sampling of hippocampal cells. In this work we show that cells that form the initial encoding of
the CS-US association are recruited from the theta phase-locked subset (green), which have
a special relationship with the hippocampus.
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upper eyelid. The caudal pair were used for bipolar stimulation (see Behavioral Training

below); the rostral pair, used for eyelid EMG measurements, were buffered by a unity-

gain headstage preamplifier, highpass filtered at 100Hz, differentially amplified with a

gain of 2000, and fed to the same acquisition system as the neural signals. Three light-

emitting diodes were fixed to the top of the microdrive array to allow tracking of the

animal’s position from video recordings. Each frame of video, all tone and stimulation

events, and the acquisition system sample clock were timestamped by a 10MHz clock

to synchronize position, behavioral, and neuronal data. All animal procedures were

done in accordance with NIH guidelines and with approval of the Caltech Institutional

Animal Care and Use Committee.

2.4.2 Spike and local field analysis

Spikes and LFP traces were obtained by digitally filtering the broadband signal. For

spikes, a bandpass filter was designed using the Parks-McClellan algorithm with transi-

tion bands of 500-600Hz and 6000-6100Hz and maximal ripple of 10−5 in the stopband

and 10−3 in the passband. LFPs were computed by downsampling the broadband signal

by a factor of 12 in three stages (2,2,3); each stage used a 500-tap FIR linear-phase

lowpass filter designed using the window method. Spikes were clustered into single

units on the basis of their amplitudes recorded on each of the four tetrode channels.

2.4.3 Behavioral training

Animals were trained in either a 50 cm by 70 cm box or on a 170 cm by 10 cm

track, both of which were in the same room as the animal’s sleep box. The walls

and ceiling were covered with anechoic foam, and the room was electromagnetically

shielded and acoustically sealed. The conditioned stimulus was a 250ms, 5kHz tone

delivered through a Fostex FX-120 speaker at 80 dB SPL above the environment.

The unconditioned stimulus was a 10 ms bipolar current pulse (5 ms for each cycle)

delivered though an isolated current source (WPI A360). This relatively short stim-
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ulation time was used to minimize the temporal extent of the stimulation artifact44.

The magnitude of the stimulation current was set during a habituation session before

training at a level that produced a reliable unconditioned response, between 2 and 5

mA, and fixed throughout conditioning. For two animals (Rats T,R), the US onset

was 500 ms after the CS offset; for one animal (Rat D), the gap was 250 ms. Both of

these intervals have been shown to be hippocampus-dependent in rats28,45. Intertrial

intervals were uniformly random between 20 and 40 seconds. Every fifth trial, the

animal received a “probe” trial consisting of a tone alone. Tones for probe trials were

either 5kHz (training frequency) or 11kHz, 7.42kHz, 3.37kHz, or 2.27kHz (testing

frequencies), counterbalanced. Animals performed two sessions per day of 50 or 100

trials, separated by at least four hours of sleep. Each animal’s performance reached a

behavioral plateau where CRs were performed at an average rate of at least 60% over

250 consecutive trials, which was considered the stopping criterion for this analysis.

Number of trials to reach criterion were 1642, 1693, and 1281 for rats T, R, and

D, respectively. CRs were defined as trials where the eyelid EMG power (see EMG

analysis below) exceeded threshold for an interval longer than 10 ms between T-360

and T-10 ms, where T is the onset time for the unconditioned stimulus. The threshold

was defined as the mean plus one standard deviation of the EMG power calculated

over the 2 seconds immediately preceding the CS onset.

2.4.4 EMG analysis

Differential EMG signals were downsampled by a factor of 12. We then computed

EMG power as the RMS value of the downsampled EMG over a sliding 50 ms Hann

window.

2.4.5 Analysis of unit responses

All trials in a given session at the training frequency were aligned at the time of the

tone presentation. To eliminate the possibility of stimulus artifacts, spikes between
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US-onset - 10 ms and US-onset + 40 ms were dropped. Remaining spikes were

counted in 20 ms bins, and the counts summed across trials to yield a peri-event spike

histogram. To assess responsiveness to the CS, the bins between the CS-onset and

US-onset - 10 ms were compared to the same number of bins immediately preceding

the CS-onset using an unpaired t-test. To assess responsiveness to the US, the bins

between US-onset + 40 ms and US-onset + 290 ms were compared to the same

number of bins immediately preceding the CS-onset using an unpaired t-test. In both

cases, the one-sided p-value of the t-test was used a measure of CS excitedness.

Unless otherwise stated, we used p < 0.01 as a definition of excited or inhibited.

2.4.6 Analysis of phase-locking

We analyzed phase preferences of prefrontal units using methods described here21. We

selected a single hippocampal tetrode per animal on the basis of the most robust theta

oscillations; all theta phases for were calculated relative to that tetrode throughout

all sessions. To measure phase-locking properties independently of CS/US responses,

spikes that fell within 4 seconds of a CS-onset were excluded from phase-locking

calculations. Including all spikes did not materially change any of the results and is

therefore not shown.
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Chapter 3

Prefrontal-Hippocampal Interactions
during Sleep

3.1 Introduction

Many lines of evidence have shown that the hippocampus is critical for the formation

of long-term memories and that this hippocampal involvement is time-limited 2,46,26.

The predominant conjecture is that memories are gradually established across neocor-

tical circuits under the influence of the hippocampus47,48. This circuit reorganization

is believed to result from coordinated activity between and within the hippocampus

and the neocortex not only during awake behavior, but also during sleep49,22,50,51,52.

Consistent with this conjecture, cortical and hippocampal networks remain highly ac-

tive and plastic during sleep. One of the most striking features of mammalian sleep

is the existence of discrete stages—slow-wave sleep (SWS) and rapid eye movement

(REM) sleep—with different electrical and biochemical profiles. In particular, SWS

and REM sleep differ drastically in the level of synchronous firing in the hippocampus

(Fig. 3.1). Given the importance of synchrony and spike timing in synaptic plasticity,

and given the putative role of sleep in learning and memory, a key open question is

whether there exist consistent spike timing relationships across cortico-hippocampal

circuits during sleep, and whether these differ in SWS versus REM sleep.

The hippocampal-prefrontal circuit is of particular interest given its importance in

spatial and associative learning53,18, as well as the known interactions between the
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two areas during awake behavior21,32,33 and sleep22,23. Previous work has shown that

hippocampal and prefrontal multi-unit activity are significantly correlated during SWS,

with the hippocampus leading the prefrontal cortex22,23. However, key questions re-

main open concerning the interactions between these areas: How common are direc-

tional interactions across prefrontal-hippocampal cell pairs? Is there diversity in their

directionality, time lag, and strength? How are these interactions structured relative

to prominent electrophysiological events in the sleeping brain, such as hippocampal

ripples and neocortical spindles? Do they differ during SWS and REM sleep? The

present study addresses these questions.

3.2 Results

3.2.1 Directionality in prefrontal-hippocampal spike timing

In order to assess hippocampal-prefrontal timing relationships at the single cell-pair

level during all stages of sleep, we used chronic multi-tetrode recordings to monitor the

simultaneous activity of CA1 and medial prefrontal (mPFC) cells of freely behaving

rats during long intervals of natural sleep (Fig. 3.1). We computed cross-covariances

between all pairs of simultaneously recorded prefrontal and hippocampal single units

(219 CA1, 76 mPFC cells). We restricted our analysis to putative pyramidal cells in

the hippocampus (183 CA1 cells), using a mean firing rate criterion of less than 1 Hz,

and we considered only pairs where the firing rates of both cells exceeded 0.05 Hz in

SWS and REM sleep (2779 total mPFC-CA1 pairs).

Figure 3.2 shows an example of the cross-covariances computed between one

mPFC cell and all of the simultaneously recorded CA1 cells in one dataset during

SWS and REM sleep. Each row in Figure 3.2(ii) represents the cross-covariance be-

tween the given mPFC cell and one CA1 cell as a function of lags ranging from -500

to 500 ms, where positive lags signify that prefrontal activity follows hippocampal

activity.
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Figure 3.1: Hippocampal and prefrontal spiking activity during sleep. A: Spikes from 86
CA1 (red) and 18 mPFC (blue) simultaneously recorded units during approximately 11 minutes
of sleep. Note the abrupt transition in CA1 between the vertical stripes of synchronous bursting
during SWS to the horizontal stripes of theta-modulated firing in REM. B,C: Close-up views
of REM and SWS, respectively, of the subsets of cells marked by rectangles in (A), as well
as simultaneously recorded local field potentials. Note the prominent theta oscillations in the
hippocampal (red) traces during REM (B) and the sharp-wave/ripple events with population
bursts in SWS (C), marked by rectangles.
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Figure 3.2: State-dependent cross-covariances between single cells in the hippocampus
and prefrontal cortex. A: (i) The standardized mean cross-covariance between a single
mPFC cell and all of the simultaneously recorded CA1 cells during SWS. Horizontal dashed
lines indicate significance at the p = 0.01 level. (ii) Each row shows the standardized cross-
covariance between the mPFC cell and a single CA1 cell. Note that several rows show high
cross-covariances between 0 and 100ms (CA1 leads mPFC). (iii,iv) The rows marked by the
horizontal dashed lines in (ii), showing two examples of prefrontal-hippocampal cell pairs with
significant cross-covariance. B: (i-iv) The same cells and dataset as in (A) but during REM.
Note the absence of significant cross-covariances in REM. The calculation of standardized and
mean standardized cross-covariances is described in this reference21 (see also Methods).
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We note three features from this example. First, several CA1 cells show significant

positive cross-covariances during SWS (Fig. 3.2A(ii)), indicating that they tended to

exhibit consistent spike timing relative to this prefrontal cell. Second, the significant

cross-covariances have peaks at positive time lags, between 0-100 ms. This shows

that this prefrontal cell tended to fire 0-100 ms after these hippocampal cells. Third,

the same cell pairs with significant correlations in SWS are uncorrelated in REM sleep

(Fig. 3.2B(ii)).

To test the generality of these observations, we computed all cross-covariances

between mPFC cells and simultaneously recorded CA1 cells in both SWS and REM

sleep across all datasets. First, we found that 11% (304 out of 2779) of prefrontal-

hippocampal cell pairs were significantly correlated in SWS (false discovery rate of

1%; see Methods.) Second, we observed that, for these correlated cell pairs, the

distribution of peak lags deviated from uniformity in several key respects. Prefrontal

cells tended to fire after hippocampal cells for 70% of correlated cell pairs, a signif-

icant directional bias (p < 10−11, binomial test; Figure 3.3A(iii)). More specifically,

prefrontal firing followed hippocampal firing by an average of 36 ms (n = 304; s.e.=

12 ms). The concentration of peak lags in the range of 0-100 ms (39% of pairs) was

also highly significant (p < 10−20; binomial test).

Both prefrontal and hippocampal neurons may show spike-timing relationships with

themselves in the form of significant auto-covariances. The structure of these auto-

covariances could, in principle, color the cross-covariances between these two struc-

tures. We therefore verified that the observed structure in the cross-covariances be-

tween correlated prefrontal and hippocampal units is mainly due to genuine prefrontal-

hippocampal timing relationships and not to the auto-covariances of the constituent

brain areas (Figure 3.4).
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Figure 3.3: Population analysis of state-dependent prefrontal-hippocampal interac-
tions. A: (i) Each row shows the standardized cross-covariance between a single mPFC and
CA1 cell during SWS. Cell pairs are sorted from top to bottom by the significance of their
cross-covariance (p values increasing from top to bottom). Only the top 304 rows out of
2779 pairs are shown, corresponding to the pairs deemed significant using a false discovery
rate of q = 0.01. (ii) The standardized mean cross-covariance of the cell pairs in (i). (iii)
Distribution of time lags of peak cross-covariance for significantly covarying pairs during SWS.
Note the concentration between 0-100 ms. B: (i-iii) The same calculations as in A(i-iii) re-
stricted to spikes that occur during sharp-wave/ripple (SWR) events. Cell pairs are shown
in the same order as in A. Note the similarity of pairwise correlations (i), standardized mean
cross-covariance (ii), and distribution of peak lags (iii). C: (i,ii) The same calculations as A(i,ii)
restricted to spikes that occur during SWS outside of SWR events. Cell pairs are shown in the
same order as A. Note the near-absence of significantly correlated pairs in (i) and substantial
diminution in mean cross-covariance in (ii). D: The same calculations as A(i,ii) restricted to
REM sleep. Note the absence of significant cross-covariance, either for individual cell pairs (i)
or in the mean (ii). E: (i) and (ii) are zoomed in views of A(ii) and B(ii) respectively.
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Figure 3.4: Absence of relationship between cortico-hippocampal cross-covariances
and respective auto-covariances. Each panel uses spike data from the same representative
correlated cell pair. A: The standardized cross-covariance, showing significant directional
interactions. B: The same as A but where the prefrontal spikes have been reversed in time.
This operation preserves the auto-covariances of CA1 and mPFC firing exactly but abolishes
all structure in the cross-covariance, confirming that this is mainly due to genuine prefrontal-
hippocampal timing relationships. C,D: The auto-correlations of the mPFC and CA1 units,
respectively. E,F: Inter-spike intervals (ISI) of the mPFC and CA1 units, respectively. The
mode of the mPFC unit’s ISI illustrates its intrinsic burstiness, while that of the CA1 unit
around 5 ms matches the period of ripple oscillations, to which it is highly phase-locked41.
G: Blue trace: CA1 spike-triggered average of a simulated excitatory post-synaptic potential
(EPSP) kernel54 triggered by CA1 spikes. The simulated EPSP (black trace) has the form
αte−αt , with α = 0.075 ms−1. Note that this simulated prefrontal response to CA1 input is
a poor match to the actual cross-covariance between these brain areas shown in A.
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3.2.2 State-dependence of prefrontal-hippocampal spike timing

In order to understand better the origin of these correlations, we tested the hypothe-

sis that they are driven by coordinated activity during hippocampal sharp-wave/ripple

(SWR) events. We therefore computed cross-covariances using only the subset of

spikes from both brain areas during ±250 ms windows around the center of SWR

events (ripple band power > mean + 2 s.d.; see Methods). These subsets com-

prised 26% of overall SWS and contained 28% of prefrontal and 50% of hippocampal

spikes, respectively. We found that 141 out of 304 pairs still showed significant cross-

covariances (Fig. 3.3B) during this subset. In contrast, only 32 of the 304 showed

significant cross-covariances when this subset of SWR-driven spikes was excluded from

SWS (Fig. 3.3C). Focusing on the correlated cell pairs in SWS with peak lags between

0 and 100 ms, 78% (94/120) were also correlated in SWS restricted to SWR events,

while only 14% (17/120) were correlated in SWS excluding SWR events.

We next addressed the question of whether the cell pairs that were significantly

correlated in SWS also exhibited strong correlations during REM sleep. Surprisingly, we

found that these significant prefrontal-hippocampal covariances were nearly abolished

in REM sleep. In particular, only 3 of the cell pairs that were significantly correlated

in SWS showed significant correlations during REM sleep (Fig. 3.3D). Finally, only

19 out of all 2779 pairs showed significant correlations in REM sleep. The restriction

of prefrontal-hippocampal interactions to discrete episodes during SWR events is also

apparent in the time evolution of the short-term cross-covariance of mPFC and CA1

multi-unit activity (Fig. 3.5).

Detecting correlations depends on the number of events, and rats spend 7-8 times

longer in SWS than in REM sleep. We therefore examined whether the absence

of significant correlation during REM might be due to this imbalance. First, we

verified that firing rates during REM sleep and SWS do not differ grossly, neither

on the whole (Figure 3.6) nor for cell pairs that are significantly correlated in SWS

in particular (Figure 3.6, red points). Second, we computed all cross-covariances
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Figure 3.5: Illustration of discrete interactions between mPFC and CA1 across sleep
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between prefrontal and hippocampal multiunit activity for a 20 minute segment of sleep that
includes a transition from SWS to REM sleep and back. From top to bottom, other panels
show: the multiunit firing rates in CA1 and mPFC respectively, in 1 sec bins smoothed over 5
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Hz); and the density of sharp-wave/ripple events in 5 second bins. Theta, delta, and spindle
band amplitudes were computed using the Hilbert transform of the local field filtered in the
appropriate band. Hot colors in the top panel indicate episodes of higher cross-covariance.
Note that these hot spots are short, strongly biased to positive lags (CA1 leads prefrontal
cortex), and restricted to SWS. Meanwhile, spindle power and ripple density diminish greatly
during REM, while mean firing rates in CA1 and mPFC do not.
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Figure 3.6: Mean firing rates across SWS and REM sleep. A: Scatter plot of firing
rates in REM and SWS for all 183 CA1 pyramidal cells used in the analysis. The diagonal
represents equal firing rates in SWS and REM. Each point is one cell; red points are cells
that are significantly correlated with one or more cells in the other brain region. Note that
deviations from the diagonal are much smaller than the variation in firing rates across cells.
CA1 firing rates in REM and SWS are significantly correlated (ρ = 0.66; least-squares slope of
SWS versus REM = 0.74). B: Same as (A) for all mPFC cells (ρ = 0.86; least squares slope
= 0.70).

during SWS using randomly drawn subsets of SWS of the same duration as REM

sleep (Figure 3.7). We then confirmed that the significant covariances identified

by analyzing all of SWS (Figure 3.3A(i)) are still apparent when using REM-sized

subsets of SWS (Figure 3.7A(i)), and these differ significantly from the scarcity of

correlations observed during REM sleep (Figure 3.7A(ii)). As additional verification

that SWS and REM differ in their overall short-term correlation structure, for each

cell pair we counted the number of prefrontal spikes arriving within 0-100 ms of a CA1

spike and found significantly higher standardized counts in SWS compared to REM

(p < 10−15, paired t-test; see Methods).

To measure the prevalence of significant correlations at the level of single cells,

as opposed to cell pairs, and to verify that our results were not driven by a handful

of highly interacting cells, we computed a functional connectivity matrix between

mPFC and CA1 for all datasets, including every cell used in this study (Figure 3.8).
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Figure 3.7: Randomization procedure for testing the effect of unequal sample sizes in
SWS versus REM. A: (i) Each row shows the standardized cross-covariance of a cell pair
averaged over 1000 random subsets of SWS of the same length as REM. Rows are in the same
order as in Figure 3A(i). (ii) The black curve shows the standardized mean cross-covariance
averaged over all SWS-subsets; colored bands show 1- and 2-standard deviations around the
mean. The red curve shows the standardized mean cross-covariance during REM, which differs
significantly from the distribution of standardized mean cross-covariances over random SWS
subsets. (iii) The distribution of peak lags in (i) for the same cell pairs as in Figure 3A(iii). B:
All 1000 cross-covariances from random subsets of SWS for the example cell pair indicated by
the arrow, ordered by the total number of spikes in the SWS subset for that pair. Note that
the significant cross-covariance identified using all of SWS is clearly visible in most REM-sized
subsets of SWS.
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We defined the interaction rate of a cell as the fraction of cells in the other brain

area with which it is significantly correlated. Interaction rates show a continuum of

values in both brain regions, with median values of 10% and 7% for hippocampal and

prefrontal units respectively. Moreover, interaction matrices (Figure 3.8A) show that

the significant interactions are distributed widely (though not uniformly) across cells

in both brain regions and not dominated by a few cells in either region.

3.2.3 Biphasic structure of prefrontal responses

Finally, we investigated the fine temporal structure of prefrontal responses to the firing

of pyramidal cells in the hippocampus. Consistent with the result that significantly

correlated prefrontal cells fire in a tight window after hippocampal cells, the aggre-

gate cross-covariance of the 304 significantly correlated cell pairs (Figs. 3.3, 3.9A(ii),

red) shows a single peak at approximately 10 ms. Surprisingly, the aggregate cross-

covariance of all 2779 cell pairs shows two peaks: the first at 10 ms and a second

prominent peak at approximately 100 ms (Figure 3.9A(i), gray). Consistent with this

observation, the aggregate cross-covariance of all but the 304 most correlated pairs

reveals the second peak at 100 ms but not the first (Figure 3.9A(ii), black). Thus,

the prefrontal response to hippocampal SWR events consists of two phases: a few

highly correlated cell pairs at short latency followed by many cell pairs with weak but

coherent interactions 100 ms later. These latter interactions at 100 ms are not statis-

tically significant for individual cell pairs (Figure 3.9A(iii), black) but their aggregate

cross-covariance is.

Next, we tested the hypothesis that the form of the prefrontal response to hip-

pocampal bursts depends on the strength of the excitatory drive from the hippocam-

pus. To study this question, we used multi-unit spiking activity to identify hippocampal

bursts (see Methods). We then sorted all bursts in order of their strength, measured as

the total number of spikes in the burst divided by the number of CA1 cells in the dataset

(Figure 3.11A(i)), and plotted the corresponding multi-unit prefrontal response to
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Figure 3.8: Incidence of prefrontal-hippocampal interactions during SWS. A: Matrix of
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For each single unit in one brain area, we define its interaction rate as the fraction of cells in
the other brain area with which it has significant cross-covariance between -500 and 500 ms.
The distribution of interaction rates for each dataset and the population are summarized in
histograms in the left (mPFC) and right (CA1) columns. At the population level, the median
interaction rates are 7% and 10% for mPFC and CA1, respectively.
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B: (i-iii) Zoomed-in views of A(i-iii) respectively.
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each burst (Figure 3.11B(i)). This arrangement reveals a systematic change in the

prefrontal response: smaller hippocampal bursts lead to a single-peaked, short-latency

prefrontal response, while sufficiently large hippocampal bursts lead to an additional

prefrontal response 100 ms later. These more powerful hippocampal bursts are associ-

ated with significantly higher power in the spindle band of prefrontal LFPs, consistent

with increased spindle activity surrounding these events. Moreover, this increase in

spindle power is significantly biased after the onset of these events (Figure 3.11C).

While stronger hippocampal bursts lead to increasingly asymmetric prefrontal spiking,

in the form of a second peak (Fig 3.11B), the hippocampal bursts themselves show no

such trend (Figure 3.11A(ii)). This argues that the second peak is not simply due to

asymmetric hippocampal drive, and suggests instead that it emerges from spindle band

activity within sufficiently excited cortical or cortico-thalamic circuits, as supported by

Figure 3.11C. We note that for one of the datasets, the aggregate prefrontal response

to hippocampal bursts also grew with burst strength but with an opposite, inhibitory

sign, and without a secondary peak (Figure 3.12).

3.3 Discussion

These results demonstrate the existence of consistent spike timing relationships be-

tween the hippocampus and the neocortex within the window of plasticity during sleep

that can be detected at the single cell-pair level. Previous work has shown monosynap-

tic projections from CA1 to mPFC13 that are excitatory15 and plastic17. Combined

with these studies, our results show in a naturally sleeping animal that the hippocampus

and mPFC satisfy two major requirements of activity-dependent plasticity mechanisms

as they are currently understood: synaptic contact and consistent spike timing.

In addition to plasticity at CA1-mPFC synapses, the combination of population

bursts in CA1 and consistent CA1-mPFC spike timing could lead to precise timing in

cortico-cortical networks within the window of plasticity, perhaps under the additional

organizing influence of contemporaneous cortical spindles22,23. Such hippocampus
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driven reorganization of cortical circuits is a key building block of current models of

memory consolidation. The potential link between prefrontal-hippocampal interactions

and systems-level consolidation is further strengthened by evidence that the mPFC

is differentially activated20 and required18 for the recall of remote, but not recent,

hippocampus-dependent memories.

A critical parameter for any theory of memory consolidation is the direction of

signal flow during sleep, namely, whether the hippocampus leads the neocortex or vice-

versa. In particular, a prominent model of memory consolidation requires evidence for

information flow from the hippocampus to the neocortex during sleep55. Our data

provide a clear answer at the single cell-pair level, at least for mPFC and area CA1,

to this key question, on time scales relevant to synaptic plasticity.

Over longer time scales, recent studies have found that neocortical activity, in turn,

can bias the timing of SWR events relative to cortical “slow” oscillations (0.5-1.5 Hz)

or up and down states23,56,57,31,58,59,60. Because of the differences in time scales
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Figure 3.11: Prefrontal and hippocampal responses to hippocampal bursts as a function
of burst strength. A: (i) Each row is the multi-unit firing rate of CA1 pyramidal cells triggered
by a hippocampal burst event at t = 0; all multi-unit rates are computed using 5 ms bins and
smoothed with a σ = 17 ms window, then converted to Z scores. Rows are sorted from top to
bottom in order of increasing burst size, defined as the mean multi-unit CA1 firing rate, divided
by the number of cells in each dataset, integrated between -100 and 100 ms around the peak
of the burst, and converted to a percentile for each dataset. Rows are averaged using a rolling
20000 trial window. (ii)Mean hippocampal firing in the 500 ms interval before (blue) and after
(red) the center of each burst. Note that hippocampal firing is nearly symmetric in time around
bursts. B: (i) Prefrontal responses to the corresponding hippocampal bursts in A(i) displayed
in the same manner. Blue and red arrows indicate the onsets of the first (0–30 ms) and second
(80–110 ms) peaks, respectively, of the prefrontal response. Note that the short first peak
arises even for weaker hippocampal bursts while the second peak only emerges in response to
hippocampal bursts of sufficient strength (red arrow). (ii) Mean standardized prefrontal firing
at the first (blue) and second (red) peaks. The dashed line indicates the one-sided p = 0.05

significance level. Note that the first peak is significant for all four quartiles while the second
becomes significant only for the third and fourth quartiles of bursts. C: (i) Mean standardized
amplitude of spindle band activity in the prefrontal cortex for each of the bursts in A(i) (see
Methods). (ii) Mean standardized spindle band amplitude in the 500 ms interval before (red)
and after (blue) the center of each burst. Vertical bars indicate one standard error of the
mean. Note that spindle power increases significantly with the size of hippocampal bursts
(p < 0.01 for each quartile; unpaired t-test). In addition, for hippocampal bursts of sufficient
size, spindle power becomes directional, with post-burst spindle power significantly exceeding
pre-burst levels (p < 5× 10−3, p < 7× 10−12, in Q3 and Q4 respectively; unpaired t-test).
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responses to CA1 bursts sorted by burst size, calculated in the same manner as Figure 3.11B(i),
for dataset 3. Note the inhibitory short latency response that grows with burst size.

(tens versus hundreds of milliseconds), these results are not inherently incompatible

with those presented here. Taken together, they are consistent with a hippocampal-

prefrontal dialog over many time scales59,61. In addition, the current results may be

specific to the CA1-mPFC circuit, and the timing of cortico-hippocampal interactions

may differ in other cortical areas59. Studying these differences in multiple cortical

areas using the experimental and analysis framework presented here could substantially

enrich our understanding of how hippocampal activity effects circuit-level changes

across the neocortex.

A unitary role for hippocampal population bursts in memory consolidation has been

previously proposed based on their ability to drive cortical targets and engage plasticity

mechanisms62. Our data confirm the critical importance of these population events for

establishing consistent lead-lag relationships between hippocampal and prefrontal unit

activity during sleep. Moreover, our results identify a non-linear relationship between

the magnitude of hippocampal bursts and the patterning of the prefrontal response,

with more potent bursts leading to biphasic cortical responses and an increase in
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spindle band activity after the burst. Thus, while SWR bursts are unitary events in

the hippocampus, variations in their strengths lead to qualitatively different cortical

responses that may serve different functions.

In one of the four datasets we found a low-latency prefrontal response that grew

with burst strength but with an inhibitory sign (Figure 3.12). A possible explanation

for this difference is that this dataset samples disproportionately from prefrontal cells

receiving inhibitory input from other prefrontal units that are highly correlated with

hippocampal cells63. In this case one would expect an aggregate prefrontal response

resembling that of correlated cell pairs (Figure 3.9A(ii), red curve) but with an opposite

sign. This hypothesis could also explain the absence of a secondary response around

t = 100 ms for this dataset. Despite this difference in aggregate prefrontal response,

the incidence of correlated cell pairs and their characteristics are not atypical of the

other three (Figure 3.8).

Given the relatively short duration of REM sleep, its resemblance to the awake

state in the hippocampus, and its association with dreaming, the function of REM

sleep has been a persistent mystery, and its possible role in memory formation has been

a longstanding controversy50,51. This study identifies a major distinction in cortico-

hippocampal interactions between SWS and REM sleep. Computational theories of

memory consolidation have identified the needs both for gradual transfer of memory

traces from the hippocampus to the neocortex8 as well as reorganization of the mem-

ory traces themselves driven by intrinsic activity rather than external input52,64,65,66.

The former requires concerted activity in the hippocampus and neocortex; by contrast,

the latter benefits from a functional disconnection of the two brain areas. One pos-

sibility consistent with our findings, therefore, is that these two needs—transfer and

reorganization—are met by SWS and REM sleep, respectively. We note the possibility

that although correlated cell pairs in REM sleep are rare, both overall and relative to

SWS, they may play an important role in memory consolidation. Nevertheless, we

speculate that the scarcity of coordinated cortico-hippocampal spiking during REM

sleep may explain why the awake-like neural activity in prefrontal cortex during REM
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does not interact strongly with the hippocampus and therefore why dreams are, on

the whole, forgotten.

3.4 Methods

3.4.1 Electrophysiological recordings

Electrophysiological signals were acquired using tetrode recordings43. Three male

Long-Evans rats from 3-5 months old (weight = 350-450g) were implanted with a

custom-built microdrive array allowing the independent adjustment of 24 individual

tetrodes and four single-channeled reference electrodes. Twelve tetrodes targeted the

prelimbic and infralimbic regions of the mPFC (AP: 1.5-3.5mm from bregma; ML: 1-

1.75mm, angled at 15 degrees from the saggital plane) and twelve tetrodes targeted

the dorsal CA1 subfield of the hippocampus (AP: -3.75 to -4.75mm from bregma;

ML: 1.5-3.5mm). Individual tetrodes were gradually lowered to their targets over

several days and further microadjusted to optimize yield and stability. Each tetrode

signal was buffered by a unity-gain headstage preamplifier and further differentially

amplified with a gain of 2000. The broadband amplified signals were digitally acquired

at 25kHz as 24-bit samples (National Instruments PXI-4472) and stored to disk using

custom acquisition software that we have developed. A skull screw above the ipsilateral

cerebellum served as an electrical reference for all signals. Three light-emitting diodes

were fixed to the top of the microdrive array to allow tracking of the animal’s position

from video recordings. Each frame of video was timestamped by the acquisition system

in order to synchronize position and neuronal data. All recordings were conducted

immediately after the animal had performed a variety of spatial tasks (linear track

traversal, T-maze) in a sleep box that was highly familiar to the animal. All animal

procedures were done in accordance with NIH guidelines and with approval of the

Caltech Institutional Animal Care and Use Committee.
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3.4.2 Sleep sessions

Sleep sessions lasted several hours (n = 4 sessions, 222 ± 19 min; range = 166 to

246 min) and contained multiple SWS and REM epochs, with a total of nearly one

half-hour per session spent in REM sleep (n = 4, 29±3 min; range = 23 to 38 min) and

the rest in SWS. We concatenated all SWS and REM episodes to create aggregate

SWS and REM epochs for each sleep session.

3.4.3 Spike and local field analysis

Spikes and LFP traces were obtained by digitally filtering the broadband signal. For

spikes, a bandpass filter was designed using the Parks-McClellan algorithm with transi-

tion bands of 500-600Hz and 6000-6100Hz and maximal ripple of 10−5 in the stopband

and 10−3 in the passband. LFPs were computed by downsampling the broadband signal

by a factor of 12 in three stages (2,2,3); each stage used a 500-tap FIR linear-phase

lowpass filter designed using the window method. Spikes were clustered into single

units on the basis of their amplitudes recorded on each of the four tetrode channels.

3.4.4 Sleep stage identification

Sleep sessions were segmented into periods of SWS and REM using custom software

on the basis of three physiological criteria: (1) muscle tone, recorded from a bipolar

EMG electrode in the animal’s neck and bandpass-filtered to 100-300Hz; (2) theta

power; (3) the ratio of delta / theta power. Theta and delta power were measured

by computing the energy of a selected hippocampal LFP in the theta (4-10Hz) and

delta frequency bands (0.5-2Hz), respectively. Plotting these three features over the

course of sleep typically reveals two clusters whose boundary can be cleanly selected

by the user. One cluster of relatively low muscle tone, high theta, and low delta /

theta power was designated as REM; the remainder was designated as SWS. REM

sleep segments separated by less than 10 seconds were merged into one; following this

step, putative REM sleep segments shorter than 30 seconds were eliminated. Brief
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periods of awake behavior during sleep sessions were identified by thresholding the

speed of the animal using position data and removed from the analysis.

3.4.5 Cross-covariance analysis

Cross-covariances between two cells were first computed as raw spike counts using 10

ms bins. These counts were then normalized to unit normal Z-scores at each lag; this

computation is described in21 as a standardized cross-covariance. This standardized

cross-covariance was smoothed using a 3-bin boxcar centered around 0. The average

cross-covariance between multiple cell pairs was computed by summing the standard-

ized cross-covariances between all of the pairs and dividing by the square-root of the

number of pairs. This computation is described in21 as the standardized mean cross-

covariance. For a given cell pair (i , j) we defined the peak lag time τi j as the time

bin of maximal cross-covariance, and the peak value Ci j as the median of the cross-

covariance at the peak lag and neighboring ± 3 bins. This peak value was used as the

test statistic for the interaction strength of cell pair i j . To convert Ci j to a p value

(i.e., to find a cumulative density function for Ci j), we used one of two Monte-Carlo

estimates for each cell pair depending on the value of λ = T∆tRiRj , where T is the

total length of the dataset in seconds, ∆t is the bin size in seconds, and Ri ,j are the

mean firing rates of cells i and j in spikes per second. Under the null hypothesis of

independent Poisson spiking, λ is the intensity of the Poisson process governing the

number of spikes in a given bin of the cross-covariance histogram. When λ > 10,

the Poisson process can be approximated with a normal distribution and each bin of

the standardized cross-covariance will be distributed as a unit normal. To compute

the effect of the smoothing and median filtering that goes into the computation of

Ci j , we generated 107 101-dimensional vectors of unit normals and computed peak

values for each, as defined above, to build an empirical distribution of Ci j . The dimen-

sionality of the vectors comes from the number of 10 ms histogram bins centered at

0,±10,±20, . . . ,±500 ms. The empirical distribution of Ci j could be approximated



45

very closely by a Gaussian with µ = 1
2
and σ = 1

3
. When λ < 10, the normal ap-

proximation is invalid; for these cases we generated 108 101-dimensional vectors with

values (J − λ)/
√
λ, where J is Poisson with intensity λ.

3.4.6 Multiple Comparison Corrections

In order to manage Type I error in the face of multiple comparisons while maintaining

statistical power, we used the false discovery rate (FDR) framework67 to compute a

single p value threshold for all individual cell pairs such that the expected number of

false positives as a function of all positives is a desired fraction q. Because of the

dependencies, both positive and negative, between cell pairs, we used a version of

FDR that does not assume independence nor positive dependence between tests68. In

all of this work, we use q = 0.01. This criterion led to p values for individual tests of

1.3× 10−4 for SWS and 7.9× 10−6 for REM sleep.

3.4.7 Population tests of interactions across sleep stages

To compare the cross-covariance of all prefrontal and hippocampal cell pairs over short

timescales across SWS and REM, for each cell pair i j we computedK(m)i j , defined as the

number of prefrontal spikes from prefrontal unit i falling 0-100 ms after hippocampal

unit j during sleep stage m, where m = (1, 2) for SWS and REM, respectively. Under

the null hypothesis of independent Poisson firing, K(m)i j is Poisson with intensity λ(m)i j =

N
(m)
i N

(m)
j ∆t/T (m), where N(m)i ,j is the total number of spikes from the prefrontal unit

i (or hippocampal unit j) in sleep stage m, T (m) is the duration of sleep stage m, and

∆t = 100 ms. Because λ(m)i j > 10 for all pairs, we used the normal approximation to

the Poisson to create standardized counts Z(m)i j = (K
(m)
i j − λ

(m)
i j )/

√
λ
(m)
i j ; under the

null hypothesis, Z(m)i j are standard normal variables. We then compared the samples

Z
(1)
i j to Z(2)i j using a paired t-test.
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3.4.8 Sharp-wave/Ripple (SWR) event identification

For each CA1 tetrode, we filtered the broadband signals between 80-250 Hz using

Parks-McClellan FIR filters, and extracted the instantaneous amplitude and phase of

the filtered signals using the Hilbert transform. We identified candidate events as

deviations in the amplitudes of the filtered traces that exceeded a threshold set as the

mean plus twice the standard deviation. Candidate events separated by less than 15

ms were merged. From the remaining events, we identified ripples as candidate events

that exceeded 20 ms in duration and that were consistently detected across multiple

CA1 tetrodes (average amplitude from all CA1 tetrodes exceeding 30 µV).

3.4.9 Hippocampal burst analysis

Hippocampal bursts were identified by using the peaks of the mean multi-unit firing

rate, rH(t), which was computed by binning the multi-unit activity of putative CA1

pyramidal cells in 5 ms bins, smoothing the counts with a Gaussian window with

3σ = 50 ms, and dividing by the number of single units. The peaks of the resulting

time series, t̂i , were identified as local maxima with amplitudes at least two standard

deviations above the mean. Each row of Figure 3.11A was computed by sorting

bursts by their spiking integrated ±100 ms around their peak value, in ascending order,

extracting rH(t) at intervals Ti = {t : |t − t̂sort(i)| ≤ 500 ms} to form each row, and

standardizing each row by subtracting its mean and dividing by its standard deviation.

Each row of Figure 3.11B was computed in the same way as A, substituting mPFC

firing for CA1, but using the same time intervals Ti . Finally, spindle amplitudes in

Figure 3.11C were computed by filtering the LFP signal from a selected prefrontal

tetrode in each dataset in the spindle band (7 to 15 Hz) using Parks-McClellan FIR

filters, calculating the magnitude of its Hilbert transform, and smoothing the resulting

envelope with a Gaussian window with 3σ = 120 ms. To enable comparison across

datasets, the envelopes were normalized by subtracting their means and dividing by

their standard deviations. Each row of Figure 3.11C corresponds to the same time
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intervals Ti as in panels A and B.
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Chapter 4

Discussion

4.1 The two-stage model revisited

How do the preceding results bring us closer to proving or refuting the two-stage

model of memory formation (Section 1.2)? One of the chief difficulties in providing

evidence for this theory, or any mechanistic theory of memory formation, is knowing

which of the myriad physiological signals in the brain may be relevant to the process,

which brain structures or cells they arise in, and at what times. This work narrows

the search for these relevant signals during both awake behavior and sleep, by (1)

constraining the set of prefrontal cells that respond to conditioned stimuli during

learning; and (2) identifying discrete time intervals during slow wave sleep, sharp-

wave/ripple events, that contain the vast majority of coordinated spiking between

hippocampal and prefrontal cells.

4.1.1 Awake behavior

In the case of awake behavior, our results provide an electrophysiological marker—

phase-locking to hippocampal theta oscillations—that predicts which prefrontal cells

are eligible to increase their firing in response to a conditioned stimulus. This property

of prefrontal cells was measured outside of CS-US presentations, suggesting that it is

an intrinsic property of the prefrontal cell. Earlier work has found a close correspon-

dence between theta phase-locking and significant cross correlations with hippocampal
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Figure 4.1: A model of consolidation during eyeblink conditioning.

cells21. One possibility consistent with these observations is that phase-locking reflects

an anatomical property of prefrontal cells that receive projections from hippocampal

cells, either directly or within a small number of synapses. This suggests the intriguing

hypothesis that prefrontal cells become responsive to the CS because of repeated, well-

timed inputs from the hippocampus around the CS during training; it could therefore

explain why trace eyeblink conditioning requires the hippocampus early in learning.

Pushing this model further, if CS-excited prefrontal cells consistently excite other

prefrontal cells that are not phase-locked, this could strengthen cortico-cortical synapses

between these two classes of cells, biasing some of the these non phase-locked cells

to become CS-excited. One might therefore expect the set of CS-excited prefrontal

cells—initially mostly phase-locked—to include an increasing fraction of non phase-

locked units as learning and consolidation progress (Figure 4.1). It is then tempting to

speculate that the degree to which a cortical memory is independent of the hippocam-

pus, i.e., its state of consolidation, relates to the fraction of cortical cells engaged

by this memory that are phase-locked to hippocampal theta oscillations. As we dis-

cuss further below, in the context of trace eyeblink conditioning, this is a testable

hypothesis.
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4.1.2 Sleep

In the case of sleep, our results confine the search for precise prefrontal-hippocampal

spike timing, and its possible reorganization of the underlying circuits, to ∼100 ms win-

dows during sharp-wave/ripple events. This patterned activity is well suited for modify-

ing CA1→mPFC synapses16,69, but also highlights the question of how cortico-cortical

synapses are systematically modified. One possible mechanism is that hippocampal

drive during SWR bursts to prefrontal targets A and B could lead to consistent spike

timing between A and B, thereby modifying A→B or B→A synapses, should they exist.

This logic also extends to the cortical efferents of A and B, and their efferents, etc.,

with the variance of each intervening synapse adding noise and therefore diluting the

efficacy of STDP.

Seen in this light, the multiphasic response of prefrontal cells to population bursts in

CA1 (see Section 3.2.3) may reveal an additional mechanism for preserving consistent

cortico-cortical spike timing. Extending the observation that hippocampal ripples and

prefrontal spindles tend to co-occur22, our results show a close relationship between

spindle-band activity in mPFC and the emergence of a second phase of cortical firing

starting 100 ms (one spindle period) after the short-latency response (Figure 3.11). A

model of this process is illustrated in Figure 4.2. Thus, cortical spindles may serve to

format the firing of prefrontal cells in response to hippocampal drive so as to enhance

consistent cortico-cortical spike timing relationships and their associated plasticity

mechanisms.

4.2 Directions for Future Work

4.2.1 Experience dependence of mPFC-CA1 correlations

We find significant spike timing relationships between CA1 and prefrontal cells within

the window of STDP that are consistent with information flow from the hippocampus

to the neocortex. However, further work is required to understand the nature and
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t = ~10-30 ms

t = ~100 ms

CA1 PFC

Figure 4.2: A model of prefrontal responses to hippocampal bursts.

content of this flow, and to what extent it supports the establishment of long-term

memories. An important set of questions concerns how the animal’s experience may

influence the statistics of hippocampal-prefrontal co-firing during subsequent sleep.

Reactivation of hippocampal70,49 and prefrontal71 awake firing patterns during sleep

have been reported, but the reactivation of joint prefrontal-hippocampal patterns re-

mains unexplored.

This work also motivates a number of circuit manipulations to demonstrate causal

relationships between the activity patterns reported here and the formation of long-

term memories. These manipulations could be effected using electrical stimulation of

target structures, such as the mPFC, or prominent fiber bundles such as the anterior

commissural pathway72. Alternatively, they could be carried out using optogenetic

stimulation or silencing techniques73. The goal of these experiments would be to

perturb cortico-hippocampal circuits transiently, delivering either current or light during

defined network events, and measuring the effect on subsequent learning. These

defined network events include hippocampal ripples, prefrontal spindles, and subsets

of these, such as spindles that immediately follow ripples.
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4.2.2 Theta phase-locking of recent versus remote memories

In Chapter 2 we showed that prefrontal CS-excited cells tend to be influenced by

the hippocampus in the sense that their firing outside of CS-US presentation is theta

phase-locked. Our measurements of this hippocampal influence cover the period from

the beginning of training to asymptotic performance, a span when recall of the con-

ditioned response is known to require the hippocampus18. As mentioned above and

illustrated in Figure 4.1, this correspondence begs the question of whether the influ-

ence of the hippocampus over CS-excited prefrontal cells drops off commensurately

with the waning effect of hippocampal lesions late in learning.

To test this idea, we can measure the theta phase-locking properties of CS-excited

prefrontal cells one month after asymptotic learning, a time when conditioned eyelid

responses are independent of the hippocampus but sensitive to prefrontal lesions18.

If theta phase-locking is indeed a marker of hippocampal dependence, then we would

expect theta phase-locking to be less common among CS-excited prefrontal cells than

early in learning. Identifying an electrophysiological signature of consolidation would

provide an invaluable tool for the study of learning and memory since, among other

things, it would enable continuous, repeated assays for consolidation within the same

animal without disturbing the underlying neural activity or tissue, a measurement that

is currently not available.
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