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Abstract 
 
 An accurate force field is essential to computational protein design and protein 

folding studies.  Proper force field tuning is problematic, however, due in part to the 

incomplete modeling of the unfolded state. The first part of this thesis discusses the 

optimization of a protein design force field by constraining the amino acid composition 

of the designed sequences to that of the wild-type protein.  According to the random 

energy model, the unfolded state energies of amino acid sequences with the same 

composition are identical.  Under these constraints, unfolded state energies are 

inconsequential and any discrepancies between computational predictions and 

experimental results can be directly attributed to flaws in the force field’s ability to 

properly account for folded state sequence energies.  This aspect of fixed composition 

design allows for force field optimization by focusing solely on the interactions in the 

folded state.  In addition, the fixed composition requirement imposes a large negative 

design constraint that is used to ensure fold specificity.  Several rounds of fixed 

composition optimization of the β1 domain of protein G yielded force field parameters 

with significantly greater predictive power:  optimized sequences exhibited higher wild-

type sequence identity in critical regions of the structure and the wild-type sequence 
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showed an improved Z-score.  Experimental studies revealed a 24-fold mutant to be 

stably folded with a melting temperature comparable to that of the wild-type protein. 

 The second part of the thesis discusses the optimization of HIV protease substrate 

specificity using a combination of positive and negative design.  HIV protease is a 

homodimeric protein with a symmetrical binding region that recognizes and cleaves 

asymmetrical substrates that exhibit little sequence homology.  The designs attempt to 

increase specificity towards one of HIV protease’s wild-type targets by optimizing 

hydrogen bonds and electrostatic interactions using a positive design approach.  Explicit 

negative design is incorporated by modeling predicted mutations on multiple substrates.  

A scoring function that selects for mutations that pack favorably with the target substrate 

but result in large steric clashes in alternate substrates is used.  A three point mutant was 

designed and experimentally shown to have increased specificity towards the target 

substrate.  
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Chapter 1 

Introduction to Computational Protein Design 

 

1.1 Protein Design 

The fact that many naturally-occurring proteins fold reliably and quickly to their 

native state despite the astronomical number of possible configurations has come to be 

known as Levinthal's paradox or the protein folding problem [1].  A protein folding 

algorithm must exhaustively search conformational space to obtain the one three-

dimensional structure with the lowest energy of the sequence in question (Fig. 1-1).  In 

order to accomplish this task, the calculation requires an accurate force field that 

precisely describes all inter-atomic physical interactions and a search algorithm that 

eliminates all structures except the native conformation [2]. 

 The same two requirements that apply to protein folding also apply to 

computational protein design (CPD).  Protein design deals with the inverse protein 

folding problem; instead of predicting a structure from a sequence, the goal is to predict 

sequences that will fold into a target tertiary structure [3].  However, designing a protein 
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poses less of a challenge than protein folding, because there are multiple sequences that 

can fold into the intended structure (Fig. 1-1).  As a result, protein design can be carried 

out successfully with a less stringent force field [4].  The design of difficult structures, 

however, such as those with a limited pool of compatible sequences, may only become 

feasible with a highly tuned force field.  

1.2 Computational Force Fields 

A handful of force fields are commonly used for protein folding and/or protein 

design: AMBER, CHARMm, GROMOS, OPLS-AA, and DREIDING [5-9].  These force 

fields are composed of pair-wise decomposable potential functions that are summed to 

obtain the overall energy of the system (Eq. 1-1).  Certain potential functions, such as the 

one used to calculate van der Waals energies, break down easily into pair-wise 

interactions; while others require the use of approximations to make them compatible 

with CPD.    

The potential energy functions used in CPD are meant to score inter-residue 

contacts that have been shown to stabilize the target structure.  All CPD force fields 

optimize for van der Waals (vdw), electrostatics (elec), and atomic solvation (as).   

 Enonbonded = Evdw + Eelec + Eas ….   (Eq. 1-1) 

Force fields differ in their inclusion of other terms such as hydrogen bonding, secondary 

structure propensities, side-chain conformational probabilities, etc. [10].  Some force 

fields, (e.g., DREIDING) calculate hydrogen bonds explicitly [9], while others (e.g., 

AMBER) omit hydrogen bond energies under the assumption that the electrostatics term 

is inclusive enough to compensate for it.  All force fields scale each potential function to 

account for their relative contributions to the total energy.  The main differences between 
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the force fields are in the values of the scale factors and parameters applied to each of the 

potential functions.  As of yet, no consensus on the optimal set of parameters and 

potential functions has been reached. 

1.3 ORBIT’s Force Field 

The work presented here was carried out using the Optimization of Rotamers by 

Iterative Techniques (ORBIT) computational protein design software.  Potential functions 

and scaling factors relevant to what is discussed in upcoming chapters are touched on in 

the following sections of this chapter.  The ORBIT software suite is based on the 

DREIDING force field and utilizes many of its potential functions to score the fitness of 

predicted sequences.  Details on many of the potential functions have been previously 

published [11-15].  ORBIT works best on high-resolution crystal structure scaffolds that 

have been minimized to reduce strain and atomic overlap.  The backbone is held fixed 

while side-chain conformations are optimized to yield the best scoring sequence.   

1.3.1 van der Waals Forces 

The van der Waals forces are the weak, non-covalent non-ionic forces between 

atoms that favor close atomic interactions.  DREIDING scores these packing interactions 

with an atomic Lennard-Jones 12-6 potential, which includes a long-range attractive 

component, and a short-range repulsive component, as described in Eq. 1-2.  
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  (Eq. 1-2) 

The van der Waals energy (Evdw) is a function of the distance between the two atoms (R).  

R0 and D0 are the geometric means of the van der Waals radii and the well depth of the 
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two atoms at equilibrium, respectively (Fig. 1-2).  The van der Waals potential function 

describes the rapid increase in unfavorable energy as R decreases relative to Ro.  As R 

gets smaller, the electronic clouds of each of the atoms start to overlap and repel each 

other.  As a result, sequences that can pack well in the folded structure without resulting 

in atomic clashes are strongly favored by the van der Waals potential.  The scale factor, 

α, serves to attenuate overlap between the two atoms.  A value of 0.9 for α has been 

shown to work well when carrying out CPD [12].    

1.3.2 Hydrogen Bonds 

Like most protein design force fields, ORBIT explicitly accounts for hydrogen 

bond energies (EH-bond).  The hydrogen bond potential is a function of the donor to 

acceptor distance and includes more restrictive angle-dependent terms to limit 

unfavorable hydrogen bond geometries (Eq. 1-3).  Hydrogen bonds are only calculated 

for polar heavy atoms that are within 2.6–3.2 Å.    

 ( )ϕφθ ,,65
10

0
12

0
0 F

R
R

R
R

DE bondH
⎥
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⎛=−  (Eq. 1-3) 

R is the distance between the two heavy atoms involved in the hydrogen bond, and R0 is 

set to 2.8 Å, the ideal distance at equilibrium.  D0 is the hydrogen bond well depth, and is 

historically set to 8.0 kcal/mol, the maximum possible benefit for hydrogen bond 

formation.  The hydrogen bond potential's angle dependence function, F, is elaborated on 

in Fig. 1-3 B.     
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1.3.3 Electrostatics 

 The energies due to electrostatic interactions, Eele, are scored using Coulomb’s 

law (Eq. 1-4).   

 
r
qqEele ε

21=  (Eq. 1-4) 

The values q1 and q2 pertain to the assigned atomic charges.  The dielectric constant, ε, is 

one of two variables that can be changed to scale the impact of electrostatics on the 

design.  A dielectric constant of 40, similar to what is used for water, is commonly used 

in ORBIT.  The second variable is the distance, r; electrostatic interactions can be set to 

be inversely proportional to either r or r2.  Squaring the distance emphasizes local 

interactions over long-range interactions.  Every atom in the force field can be assigned a 

charge and is able to contribute to the electrostatic potential.  Naturally, the largest 

contributors are atoms associated with acidic or basic side chains.  In addition to the 

electrostatic component, salt bridge interactions are reinforced by the hydrogen bond 

potential. 

1.3.4 Atomic Solvation 

 An atomic solvation potential function is required to recover sequences with a 

hydrophobic core and a polar surface.  It is widely believed that the hydrophobic effect is 

the main driving force for protein folding [16].  The need to exclude solvent molecules 

from the core and maximize hydrophobic packing is thought to result in a structural 

collapse that initiates the folding process [17].    

There are two commonly used solvation models in ORBIT, a surface area-based 

model and a solvent exclusion-based model.  The surface area-based solvation model is 
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conceptually straightforward to understand, but computationally expensive to run.  The 

idea is to quantify atomic burial by calculating how much surface area is buried in the 

folded state relative to how much is buried in the unfolded state.  To obtain the surface 

area buried in the folded state, a dot surface is calculated for each pair of amino acids 

using the Connolly algorithm.  The algorithm roles a virtual sphere with a set radius over 

the amino acids; the surface is defined as the area accessed by the sphere.  Non-polar 

surface area is favored by 0.026 kcal/mol/Å2 when buried and penalized by the same 

amount when exposed.  Polar surface area is penalized by 0.1 kcal/mol/Å 2 when buried 

[18].  

The solvent exclusion-based solvation model used in ORBIT is fast since most of 

the necessary information, such as the volume of surrounding atoms (Vj) and the 

reference solvation free energy (ΔGi
ref), is predetermined [19].  During the scoring 

process, the only variable is a function dependent of the atomic distance (fi(rij)) (Eq. 1-5).  

Solvent exclusion is assumed to be proportional to atom burial.  As a result, the distance 

and volume of surrounding atoms is used to determine the extent of solvent exclusion 

(Fig. 1-4).  Solvent exclusion is favored for non-polar atoms and disfavored for polar 

atoms. 

 ( )∑ ∑ ⎥
⎦

⎤
⎢
⎣

⎡
−Δ=

≠
i

ij
jiji

ref
ias VrfGE  (Eq. 1-5) 

1.4 Side-Chain Conformational Libraries  

 In addition to an accurate force field, a complete design procedure requires a 

search algorithm that will find the global minimum energy conformation (GMEC).  This 

in itself can be a considerable obstacle due to the vast size of conformational space.  
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Historically, CPD has been carried out on a fixed backbone to simplify the problem.  

However, efforts to incorporate backbone flexibility are well on their way [20].  The first 

design of a novel fold was achieved by combining protein design with protein folding 

technology, which allows backbone flexibility [21].   

 Amino acid side-chain flexibility is taken into account by using a side-chain 

conformational library.  Instead of dealing with a continuum of side-chain conformations, 

the library is composed of statistically significant low energy conformations that are 

obtained from high resolution structures [22].  Two types of amino acid side-chain 

libraries are available: rotamer libraries, which are composed of side-chain conformations 

that have been minimized and have idealized bond lengths and angles; and conformer 

libraries, which are composed of side-chain conformations that take their bond lengths 

and angles directly from protein crystal structures [23-25].       

1.5 Search Algorithms 

 A search algorithm is used to sort through all the potential conformational 

sequences and identify those that take on the desired tertiary structure.  Designing a small 

100-residue protein, for example, would require sorting through 10130 unique amino acid 

sequences if all 20 amino acids are considered at each position.  The search problem 

becomes increasingly complex as more positions and multiple conformations per amino 

acid are considered.  

Two types of search methods are typically used in CPD: stochastic methods and 

deterministic methods [26].  Monte Carlo simulations are commonly used in combination 

with simulated annealing for stochastic searches, since a Monte Carlo algorithm can 

easily be incorporated into the design procedure and the run time is dictated by the user 
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[27].  However, stochastic methods cannot guarantee that the resulting sequence is the 

GMEC.  On the other hand, a deterministic method such as Dead-End Elimination (DEE) 

always provides the GMEC if it converges [28].  However, convergence is not assured.   

In recent years, the FASTER algorithm has proven to be an effective and useful 

alternative [29, 30].  FASTER is orders of magnitude more efficient than DEE and can 

often recover the GMEC.  The procedure relies on the idea that optimization of the 

individual components in the design will result in optimization of the total design.  The 

result is an increase in speed obtained by carrying out multiple rotamer perturbations in 

each step before evaluating the success of the overall change. 

1.6 Energies Independent of the Unfolded State  

Since there is no accurate method to calculate the energy of the unfolded state, 

most force fields, including DREIDING, fail to fully characterize the unfolded state.  As 

a result, the energies predicted are taken to be absolute energies that are, for the most 

part, independent of the unfolded state energies.  It is assumed that the difference in 

unfolded state energies between distinct sequences is insignificant; hence, unfolded state 

energies can be omitted without adverse effects on the design [31].  This assumption can 

pose serious problems if incorrect, since all design sequences are analyzed and compared 

by determining their thermodynamic properties, and thermodynamic constants such as 

ΔG (free energy of folding) are relative to the unfolded state energy as shown in Eq. 1-6.   

 A
unfolded

A
folded

A GGG −=Δ  (Eq. 1-6) 

The free energy of sequence A in a specific folded conformation is defined as the 

difference between the energy of sequence A in the folded state and the energy of 

sequence A in the unfolded state.  Hence, sequence energies obtained computationally 
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can only be accurately compared with those obtained experimentally if the energy of the 

unfolded state is included in the force field or if it is shown to be insignificant.  A 

situation can be imagined in which a mutation is predicted to be stabilizing in a sequence 

due to the formation of a favorable inter-residue interaction in the folded state, but is 

determined to be destabilizing experimentally due to its stabilizing effects on the 

unfolded state. 

 Also, the free energy of each of the sequences must be accurately determined in 

order to rank the compatibility of a group of sequences to a specific scaffold.    

 ( ) ( )A
unfolded

B
unfolded

A
folded

B
folded

AB GGGGGGG −−−=Δ−Δ=ΔΔ  (Eq. 1-7)  

 A
unfolded

B
unfolded GG ≈  (Eq. 1-8) 

 ( )A
folded

B
folded

AB GGGGG −=Δ−Δ=ΔΔ  (Eq. 1-9) 

As Eq. 1-7 states, calculating the difference in ΔG between two sequences (A and B) 

requires each of their unfolded state energies as well as their folded state energies.  Since 

force fields do not accurately predict the energy of the unfolded state, the predicted 

energies will be intrinsically incorrect.  Yet, if the energies of the unfolded state can be 

ignored by keeping them constant (Eq. 1-8), the change in ΔG will only be dependent on 

the energies of sequences A and B in the folded conformation (Eq. 1-9).  One method that 

theoretically keeps the unfolded state energies constant is to restrict designs to sequences 

with a fixed amino acid composition. 

1.7 Fixed Amino Acid Composition Protein Design 

 Fixed composition calculations allow us to disregard energy contributions from 

the unfolded state, since sequences with fixed composition are assumed to have 
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equivalent unfolded state energies [32, 33].  This assumption stems from the random 

energy model (REM) of polymers.  REM was first solved for spin glasses by Derrida in 

1980 [34].  In the late 1980s, Shakhnovich and Gutin [35] and Byngelson and Wolynes 

[36] derived models based on REM for proteins.  They concluded that the density of 

energy of all thermodynamically accessible conformations takes on a Gaussian 

distribution as defined by Eq. 1-9 below. 

 
( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
−= 2

2

2 2
exp

2
)(

uu

N

Nz
UNzE

Nz
En

σπσ
γ   (Eq. 1-9) 

N  =  number of residues in the protein 

z  =  average number of contacts per residue 

U  =  average energy per contact 

γN  =  number of conformations accessible to the sequence 

σu =  standard deviation (SD) of the contact energies 

n = number of conformations 

 

Here, n(E) gives the density of energy levels that results from all the conformations 

accessible to a particular sequence.  As a direct result of the Gaussian energy distribution, 

the energy spectrum for a given sequence is divided into a continuous part and a discrete 

part (Fig. 1-5).  At n(E) = 1, the continuous energy levels separate into individual lower 

energy conformations, forming the discrete part of the spectrum [33]. The energy at 

which this occurs is called the critical energy (Ec) (Fig. 1-5).  The continuous part of the 

spectrum represents all the conformations accessible to the sequence at higher 

temperature (unfolded state).  At higher energies, the interactions made by the different 



11 

   

conformations average out due to the rapid introversions between the accessible 

structures, making the energy of the continuous part of the spectrum composition 

dependent [33].  On the other hand, the discrete part of the spectrum relies on best fit 

contacts to stabilize the individual conformations, making it sequence dependent.  

Therefore, by keeping the composition of the predicted sequences constant, we can 

assume that the energy of the unfolded state stays constant.   

 Forcing a fixed amino acid composition has the added benefit of imposing 

specificity to the target structure [37, 38].  The drastic reduction in sequence space will 

dramatically reduce the number of alternative folds.  Fixing the composition essentially 

serves as a strong negative design constraint on the calculations.   

1.8 Negative Design 

 For a successful computational protein design result, the procedure must consider 

negative design in addition to positive design.  Positive design predicts sequences that 

will stabilize the target fold.  However, positive design does little to rule out sequences 

that exhibit a lower energy in alternate states or folds.  To address this concern, negative 

design is used to design against alternate conformations [39].  In addition to fixed 

composition, there are multiple examples in which explicit and implicit negative design 

have been used in protein engineering.  

 Explicit negative design is commonly used in the engineering of α-helical 

structures such as coiled coil domains and α-helical bundles [39-42].  The repetitive 

nature of α-helices and their well studied inter-helical interactions make them ideal for 

rational design.  Strategically placed charged and polar residues at the protein interfaces 

have been shown to provide fold specificity by stabilizing hetero-oligomerization or by 
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destabilizing homo-oligomerization [40, 42].  Negative design of coiled coil domains was 

taken a step further by using computer automation to design against aggregated and 

unfolded states [41].    

 Implicit negative design is used to design against alternate states without 

explicitly considering any.  The design of the first novel fold, Top7, used amino acid 

reference energies to ensure natural-like amino acid compositions throughout the protein 

[21].  As a result, the predicted sequences were guaranteed to have hydrophobic cores 

and polar surfaces.  Another approach that has been used is to impose a pseudo-binary 

pattern by restricting the core to hydrophobic residues and the surface to polar residues 

[43-45].  A properly folded protein with a polar surface is less likely to aggregate due to 

exposed hydrophobic surface area.       
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Fig. 1-1:  Inverse Protein Folding 
 
The concept behind protein folding is shown in orange.  The purpose is to take one 
sequence (depicted as an orange dot in sequence space) and find the lowest energy 
conformation.  Protein design strives to take a low energy conformation and identify any 
sequence that will fold to it (compatible sequences are represented by the purple region 
within sequence space).   
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Fig. 1-2: van der Waals Potential Function 
 
The form of the Lennard-Jones 12-6 potential used to calculate the van der Waals 
interaction energy, Evdw, is shown below. The two spheres represent atoms for which Evdw 
is being calculated.  R1 and R2 are the atomic radii for each of the respective atoms.  Ro is 
the average of R1 and R2.  Do is the average of the well depth of the two atoms.  The 
distance between the two atoms (R) dictates the atomic van der Waals energy.   
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Fig. 1-3: Hydrogen Bond Potential 
 
The form of the hydrogen bond potential (panel A) is similar to that of the van der Waals 
potential.  R0, however, is not a variable, but is set to 2.8 Å, the optimal donor to acceptor 
distance for a hydrogen bond.  The three angles used to calculate the angle dependence 
function, F, are illustrated in the diagram in panel B. 
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Fig. 1-4:  Solvent Exclusion-Based Solvation 
 
Solvent exclusion is assumed to be proportional to atom burial.  In this example, the 
yellow atom’s solvation is being calculated.  Panel A shows the yellow atom in its fully 
solvated reference state that is used to calculate the reference solvation energy (ΔGi

ref).  
The atoms that make up the rest of the side-chain are shown in gray.  Panel B shows the 
yellow atom fully buried.  Surrounding atoms in the folded state are shown in white and 
are depicted taking up the space once held by the solvent.  The distance (rij) and volume 
(Vj) of the surrounding atoms are used to determine the extent of solvent exclusion.    
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Fig. 1-5: Conformational Energy Spectrum 
 
The energy spectrum is divided into a continuous region and a discrete region.  
Conformations above the critical energy, Ec, are only accessible at high temperature and 
are in the continuous region.  Conformations with energy below Ec are in the discrete 
region.  Sequences with identical amino acid composition have identical continuous 
regions and sequence specific discrete regions. 
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Chapter 2 

Application of Fixed Composition Protein Design* 

 

2.1 Introduction 

A major aim of CPD is to reproducibly design sequences that adopt a desired 

tertiary structure.  This requires a CPD procedure yielding sequence scores that 

accurately reflect experimentally determined stabilities.  Since experimental energies are 

determined with respect to an unfolded state, a CPD force field should accurately model 

interactions in both the folded and unfolded states.  However, modeling the unfolded 

state in a useful way has proven difficult.  As a result, most CPD force fields omit the 

specific effects of sequence changes on the unfolded state and only optimize interactions 

in the folded state [1].  This disregard of the unfolded state is partly to blame for 

discrepancies between computationally derived and experimentally determined protein 

stabilities and for the difficulty of developing a properly tuned CPD force field [2, 3]. 

 Separating the tuning of a CPD force field into two logical components, the 

unfolded and folded states, could ultimately lead to force fields with significantly 
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improved predictive power.  The work presented here demonstrates a procedure for 

achieving this separation by invoking the random energy model (REM) [4] in order to 

minimize the influence of the unfolded state in determining sequence designs.  In this 

way, force field evaluation and tuning can be focused on the more tractable folded state.  

REM was initially developed for spin glass models and later adapted for proteins [5-7].  

REM asserts that the energy spectrum for any specific amino acid sequence is divided 

into continuous and discrete regions (Fig. 2-1).  The conformational energies in the 

discrete region rely on best-fit contacts, making them sequence-specific.  The continuous 

region, however, represents conformations that are only accessible at higher temperatures 

where the rapid inter-conversion between conformations leads to a distribution of 

conformational energies that depends solely on the amino acid composition.  

Consequently, all sequences with identical amino acid composition are expected to have 

identical continuous region distributions and, thus, unfolded state energies (Fig. 2-1 D, E, 

and F) [8].  As a result, the free energy of folding of fixed composition sequences are 

directly correlated to their folded state energies.  The same cannot be said when 

comparing sequences with varied composition (Fig. 2-1 A, B, and C).  In this case, the 

continuous region varies between sequences and the free energy of folding cannot be 

directly compared without explicit consideration of the unfolded state.  A sequence can 

potentially have the best energy in the folded state and fail to have the largest change in 

energy (Fig. 2-1 C). 

 Here, we exploit the fixed composition concept by limiting designs to sequences 

with fixed amino acid composition [9, 10].  By doing so, we can eliminate unfolded state 

contributions and focus on evaluating and optimizing the force field for the folded state.  
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If the unfolded states for fixed sequence designs are inconsequential, any discrepancies 

between experimental and computational stabilities can be attributed to the force field’s 

inability to predict the impact of sequence variation on the folded state.   

Application of a fixed composition method imposes a large negative design 

constraint on the system [9, 10].  The importance of negative design for protein sequence 

selection was revealed with hydrophobic/polar lattice model simulations [11, 12].  Early 

studies on lattice models demonstrated that in order to recover sequences that specifically 

folded to the target structure, polar monomers had to be explicitly considered at surface 

positions even though they did not impart favorable energy to the system [11].  The 

alternative led to sequences dominated by solvent exposed hydrophobic monomers.  

Incorporation of an explicit negative design constraint on amino acid sequence selection 

was demonstrated by Dahiyat and Mayo [13] who went on to show that CPD could be 

successfully applied to complete protein domains [14].  In that and related work, either a 

pseudo-binary pattern or an explicit binary pattern of polar and non-polar amino acids 

was used to impose fold specificity [14, 15].  Less restrictive negative design alternatives 

include the use of amino acid reference energies to control amino acid composition [16-

18]. 

In addition to normalizing folded state energies, fixed composition design directly 

considers the fold specificity of sequences (i.e., the ability of an amino acid sequence to 

adopt a single or limited number of structures).  REM theory indicates that as ∆E 

increases, the accessible conformations for a sequence exponentially decrease [19].  

Since the unfolded state energies are identical for amino acid sequences with the same 

composition, finding sequence arrangements that optimize the energy of the folded state 
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is equivalent to maximizing ∆E (Fig. 2-1 D, E, and F).  Optimized sequences with large 

favorable scores on the target fold are thus expected to exhibit an energy spectrum in 

which it is improbable to achieve an alternative conformation with lower energy. 

 Explicitly fixing the amino acid composition for a design has the inherent 

problem of requiring knowledge of the composition before the design calculation is 

started.  For the work presented here, the wild-type sequence of the β1 domain of 

streptococcal protein G (Gβ1) is used.  Because Gβ1 has a high thermal stability (Tm of 

88°C) its wild-type amino acid sequence is expected to be near optimal (given the 

constraint of maintaining the wild-type amino acid composition).  Consequently, the CPD 

force field can be evaluated and optimized based on its ability to recover the wild-type 

sequence prior to laborious experimental testing of designed sequences.  More 

specifically, the use of a wild-type sequence bias can be used in a stepwise fashion to 

force recovery of the wild-type sequence and to identify problematic force field 

components.  The computed Z-score of the wild-type sequence and the experimental 

testing of unbiased designs can then be used to assess the overall quality of the CPD force 

fields. 

2.2 Results and Discussion  

2.2.1 The Standard Force Field:  Identifying the Inaccuracies 

 Standard force field parameters and potential functions [13, 14, 20-22] were used 

for our initial fixed composition designs, since these have been previously tested and 

successfully applied to a wide range of protein design problems [14, 15, 23].  The initial 

force field included terms for van der Waals interactions [13], hydrogen bond formation, 
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and electrostatic interactions.  Solvation was modeled using a solvent-accessible surface 

area-based term that encourages hydrophobic burial and polar exposure.  Side-chain 

flexibility was taken into account using expanded versions of the backbone-dependent 

rotamer library of Dunbrack and Karplus [24]. 

 The success of the standard force field has required imposing some type of binary 

pattern, either explicitly or by restricting buried positions to non-polar amino acids and 

exposed positions to polar residues [14, 15, 23]. In our fixed composition designs, 

however, we removed these restrictions, and within the fixed composition limits, allowed 

all amino acids at all positions. Without any binary pattern or regional restrictions, we 

expected the resulting fixed composition sequences to reveal previously hidden 

inaccuracies in the standard force field, and allow us to identify aspects that could be 

improved. 

 Fixed composition designs were first performed on Gβ1 using the initial 

(standard) force field.  All non-Gly and non-Met positions were included in the design 

and the amino acid composition was fixed to that of the wild-type protein.  A wild-type 

sequence bias was imposed and incrementally increased until the wild-type sequence was 

recovered.  Fig. 2-2 A shows the top-ranked sequences obtained from each calculation.  

At lower sequence biases, the predicted sequences exhibited poor recovery of the wild-

type amino acids, revealing substantial inaccuracies in the initial force field.  The 

unbiased design (sbias0.0) had 16% sequence identity with the wild type, an increase of 

only 5 percentage points over random fixed composition sequences (Table 1).  Only two 

out of ten designed core positions were predicted to take on wild-type amino acids, and 
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even fewer boundary and surface positions recovered the wild-type amino acid identities 

(8% and 17%, respectively). 

The inaccuracies in the initial force field were further highlighted by the poor 

quality of the sequences predicted using lower sequence biases.  All the predicted 

sequences contained charged and polar amino acids at core positions (Fig. 2-2 A).  The 

sequence recovered at a sequence bias of 5.0 replaced a core Leu with a Glu.  In a small 

protein with a well-packed hydrophobic core, it is unlikely that substituting non-polar 

amino acids with charged residues would result in a more stable variant [25].  

Exploratory modifications to the force field suggested that changing to a solvent 

exclusion-based solvation model would result in improved prediction of core residues.  

This model emphasizes polar interactions, which results in a larger penalty for burial of 

polar atoms; consequently, charged or polar amino acids in the core are strongly 

disfavored. 

 Further inspection of the predicted sequences revealed a bias towards sequence 

arrangements that benefit from the strong hydrogen bond potential contained in the initial 

force field.  Certain core positions were predicted to take on polar side chains, partly 

because they were able to form strong inter-residue hydrogen bonds.  For example, core 

position 20 mutated from Ala to Gln in order to form two hydrogen bonds with surface 

residues.  The predicted Gln side chain assumes a strained conformation in order to 

satisfy the interactions.  Similarly, Thr at core position 30 is predicted to form a hydrogen 

bond with the α-helical backbone.  Due to Thr’s low α-helical propensity, this mutation 

is likely to be destabilizing.  We anticipated that lowering the benefit for hydrogen bond 

formation would reduce this unwanted preference for polar side chains in the core.   
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 The discrete nature of rotamer libraries also appears to be problematic in that a 

suitable conformation for the wild-type amino acid may not be available for certain 

positions.  For example, the absence of a rotamer with chi angles similar to those seen in 

the crystal structure for core Leu7 resulted in spurious predictions: in all of the predicted 

sequences, Trp 43 swings out into the solvent, even though the crystal structure clearly 

depicts the Trp to be buried.  The poor choice of conformation at position 7 propagates 

throughout the core and results in the expulsion of Trp 43 (Fig. 2-3 A).  The use of a 

larger, more representative rotamer library should mitigate this type of problem, since it 

is more likely to contain conformations comparable to those observed in the crystal 

structures. 

Three of the predicted sequences obtained with the initial force field were selected 

for further study.  Sequences obtained at a sequence bias of 0.0, 2.0, and 5.0 (sbias0.0, 

sbias2.0, and sbias5.0) were chosen for physical characterization.  Not surprisingly, 

circular dichroism (CD) experiments showed that proteins with the largest difference 

from wild type (sbias0.0 and sbias2.0) were unfolded (data not shown).  Sbias5.0, on the 

other hand, was folded but significantly destabilized compared to wild type (Fig. 2-4). 

2.2.2 Optimizing the Force Field 

Multiple rounds of optimization were required to obtain a set of parameters that 

yielded viable sequences.  In an effort to hinder the selection of charged or polar residues 

in the core, we first changed the model used to calculate atomic solvation: the surface 

area-based model was replaced by a solvent exclusion-based model [26].  In addition, the 

benefit for hydrogen bond formation was decreased, especially at the surface.  These 

changes, particularly switching to a different solvation model, yielded the most dramatic 
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improvements.  To increase the chances of recovering native conformations, we also 

replaced the rotamer library with a larger conformer library [27, 28] consisting of side-

chain conformations closely resembling those observed in wild-type crystal structures.  

Since the reduction in the benefit for hydrogen bond formation also affects the benefit for 

salt bridges, we compensated by adjusting the dielectric constant (from 40 to 20) to 

improve electrostatic interactions throughout the protein.  Further details on the impact of 

the modifications are discussed in Chapter 3. 

The sequences predicted with the improved force field are shown in Fig. 2-2 B.  

Unlike the sequences obtained with the initial parameters, the improved parameter 

sequences exhibited no obvious irregularities that discouraged further evaluation.  All 

core positions in every sequence adopted wild-type amino acid identities, ensuring that 

the core was well-packed and hydrophobic (Table 2-1 and Fig. 2-2 B).  In addition, the 

larger conformer library selected core conformations that overlaid nicely with those seen 

in the wild-type crystal structure, even though the Gβ1 structure was not included in the 

set of structures used to generate the conformer library (Fig. 2-3 B).  Trp43 swung out 

into the solvent with the smaller rotamer library, but with the conformer library, Trp43 

was packed into the core. 

Further improvements in our CPD procedure are illustrated in Table 1.  The total 

wild-type recovery of the unbiased sequence (sbias0.0) increased from 16% to 53%.  

Wild-type recovery was 100% for core, 50% for boundary, and 38% for surface 

positions, representing 5-fold, 6-fold, and 2-fold improvements, respectively.  The 

sequence bias required to recover the wild-type sequence decreased from 6.0 to 2.0 
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kcal/mol.  The improvement in the predictive power of the force field was further 

confirmed by improved Z-scores.  

The Z-score, a value previously used for force field optimization [29], was 

calculated for the wild-type sequence.  As the force field improves, the Z-score for the 

wild-type sequence should increase [30, 31].  Initial parameters gave a Z-score of 2.7 for 

the wild-type sequence, while the improved parameters yielded a Z-score of 3.5 (Fig. 

2-5).  A clearer picture of the improvement is seen by comparing the wild-type sequence 

with sequences obtained using no sequence bias.  Initial parameters yielded a Z-score of 

8.6 for the predicted unbiased sequence (sbias0.0), a difference of 5.9 compared to the 

2.7 value obtained for the wild-type sequence (Fig. 2-5 A).  The fact that a sequence 

resulting in an unfolded protein had such a large Z-score relative to that calculated for the 

wild-type sequence is further evidence of the poor predictive power of the initial force 

field.  In contrast, the improved parameters produced a Z-score for the unbiased sequence 

(sbias0.0) of 4.7, a difference of only 1.2 relative to the wild-type sequence (Fig. 2-5 B). 

Definitive validation of the improved parameters was provided by experimental 

analysis of the predicted sequences.  Proteins corresponding to sbias0.0, sbias0.5, 

sbias1.0, and sbias1.5 were all shown to be folded by CD.  The unbiased sequence, which 

had the lowest wild-type recovery (53%), was also shown to be folded by NMR (data not 

shown).  Temperature denaturation experiments revealed all the predicted proteins to be 

highly thermostable (Fig. 2-6).  Sbias0.0, sbias0.5, sbias1.0, and sbias1.5 exhibited Tms of 

73.6, 83.1, 85.0, and 83.7ºC, respectively.  In contrast to the unbiased sequence obtained 

with the initial parameters, the unbiased sequence obtained with the improved parameters 

resulted in a protein that was folded and well-behaved.    
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2.2.3 Evaluating Improved Parameters on Engrailed Homeodomain 

 To determine whether the improved force field parameters showed a preference 

for the Gβ1 scaffold, fixed composition designs were carried out on Engrailed 

homeodomain from Drosophila melanogaster (ENH).  ENH is a small globular protein 

with no sequence or structure homology to Gβ1. 

Table 2-1 shows the resulting sequence statistics from the fixed composition 

designs on ENH.  The wild-type sequence was recovered at a sequence bias of 2.5 

kcal/mol/pos.  The unbiased design (sbias0.0) predicted a sequence with 42% wild-type 

sequence identity, with the core recovering 80% of the wild-type amino acids.  Core 

position 34 mutated from Leu to Phe to achieve improved packing interactions (Fig. 2-7).  

In the absence of a Gln rotamer that can hydrogen bond with the N-terminus at position 

44, the force field selected a polar residue that can hydrogen bond with the backbone at 

residue 41. Using the improved force field parameters, the Z-score difference for the 

unbiased design vs. wild type was only 1.65 (4.59 – 2.94).  This is in contrast to a Z-score 

difference of 5.51 (8.0 – 2.49) when using the initial parameters. 

The improved force field predicted reasonable sequences for ENH with improved 

Z-scores when compared to the initial force field.  These results support an assertion that 

the idea that the modifications to the force field are not specific for the Gβ1 scaffold.  

However, in order to best eliminate bias towards a particular scaffold, the optimization 

procedure would need to be carried out simultaneously on multiple scaffolds. 

2.2.4 Removal of Fixed Composition Constraint 

 A simple and straightforward way to show the importance of negative design in 

CPD is to compare the results obtained under a fixed composition restraint with the 
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results obtained without it.   We therefore used the improved parameters to design Gβ1, 

except this time we removed the requirement for a fixed composition.  This resulted in a 

sequence dominated by large hydrophobic residues (Fig. 2-8).  Similar to what is 

observed in lattice models when the composition at surface residues is not restricted, the 

CPD procedure predicted a hydrophobic surface to be stabilizing. 

 This result is further evidence that negative design must be explicitly considered 

in CPD to promote specificity of the target fold [10, 15, 16, 32].  The hydrophilic 

composition at the surface in native proteins is crucial for dissuading aggregation, 

increasing solubility and ensuring proper folding [33].  Although not always energetically 

favorable, polar and charged residues have naturally evolved at the surface to ensure 

highly specific folding [15].  In the absence of any negative design terms, physically 

based force fields will select hydrophobic residues at the surface since these residues can 

form strong packing interactions.  Consequently, a strong negative design term is 

required to provide folding specificity in designed sequences. 

 Negative design can be incorporated in a number of ways.  Surface positions can 

be limited to polar side chains, or reference energies that ensure a native-like composition 

at surface positions can be used.  The solvation term can also include negative design 

terms that serve as an incentive to select polar residues at the surface (e.g., a benefit for 

polar solvent exposure can be included). 

2.3 Conclusion 

 Fixed composition design proved to be an effective way to optimize the positive 

design parameters in our CPD force field.  By limiting the designs to sequences with 
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identical amino acid composition, inconsistencies between experimental and 

computational results could be attributed to the force field’s inability to accurately model 

the folded state.  Direct comparison between experimental and computational results was 

possible since the unfolded state energy is presumed to be equal for all sequences. 

 Iterative use of fixed composition design allowed for a set of force field 

parameters to be identified that consistently predicted folded and well-behaved 

sequences.  The implementation of this procedure is straightforward and generalizable to 

any protein design force field, provided the sequence for the selected scaffold is shown to 

be near optimal for its folded structure.  To dissuade unintentional bias towards the target 

scaffold, the fixed composition optimization procedure should be carried out on multiple 

scaffolds. 

 Limiting the force field optimization procedure to fixed composition designs is a 

conceptually straightforward way to optimize positive design parameters; however, it 

does little for negative design parameters.  To address this issue, it would be useful to 

include a step in the procedure that optimizes the negative design parameters in the 

absence of a fixed composition restraint. 

 The work presented here describes a procedure for systematically optimizing a 

CPD force field.  The experimental results clearly show a dramatic improvement in 

sequence prediction after optimization. Whereas the starting force field failed to predict a 

stable sequence in the absence of a sequence bias, the improved force field predicted a 

23-fold mutant that was stably folded, and displayed 6-fold, 3-fold, and 2-fold 

improvements in predictive power at core, boundary, and surface, respectively. 
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2.4 Materials and Methods 

2.4.1 Fixed Composition Scaffolds 

Coordinates for the backbone structure of Gβ1 and ENH were obtained from the 

Protein Data Bank entry 1PGA and 1ENH, respectively.  Any strain or steric clashes in 

the structure were removed by performing 50 steps of energy minimization.  Residue 

classification into core, boundary, and surface groups was performed as described 

previously [14].  All 51 non-Gly and non-Met positions were included in the design, and 

within fixed composition restraints, all amino acids found in the wild-type Gβ1 sequence 

list were allowed at all designed positions. 

2.4.2 Fixed Composition Force Fields 

The initial force field used standard potential functions and parameters including 

scaled van der Waals, hydrogen bonding, electrostatic, and surface area-based solvation 

terms, as described previously [13, 14, 20-22].  Expanded versions of Dunbrack and 

Karplus’ 1995 backbone-dependent rotamer library were used [24].  Aromatic residues 

were expanded 1 SD about their χ1 and χ2 values, and hydrophobic residues were 

expanded 1 SD about their χ1 values; polar residues were not expanded. 

 The improved force field used a solvent exclusion-based solvation potential [26].  

All published solvation parameters were used with the exception of polar burial, which 

was decreased by 40% [26].  The benefit for side chain-side chain hydrogen bond 

formation was decreased by 50% for core and boundary residues.  Hydrogen bond 

energies were decreased by an additional 75% if predicted between immediate neighbors 

(n+1 and n–1 positions).  Hydrogen bonds at surface positions received a benefit from the 
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electrostatic potential, but not from the hydrogen bond potential.  The dielectric constant 

was reduced from 40 to 20. 

The improved force field used a larger backbone-dependent conformer library 

[28] instead of the rotamer library.  The conformer library was constructed using 

Cartesian coordinates taken directly from high-resolution crystal structures as described 

by Lassila et al. [27].  Conformer probabilities were taken into account: the p value for 

non-polar amino acids was set to 0.3; a p value of 0.6 was used for Asp, Glu, Asn, and 

Gln; and representative conformers for Arg and Lys were obtained with a p of 0.8. 

2.4.3 Fixed Composition Sequence Optimization 

Prior to sequence optimization, an energy matrix containing all one-body and 

two-body interactions was created.  The one-body term for each rotamer was modified to 

reflect a specified sequence bias energy.  Each rotamer that differed in identity from the 

wild-type amino acid at a particular position received a penalty.  The resulting sequence 

was thus penalized for each residue that differed from the wild-type sequence.  All 

calculations were first carried out in the absence of a sequence bias.  The bias energy was 

then incrementally increased by 1.0 or 0.5 kcal/mol/position, while keeping all other 

parameters fixed, until the wild-type sequence was recovered. 

A stochastic algorithm, Monte Carlo simulated annealing, was used for the fixed 

composition Gβ1 designs.  A fixed composition restraint was imposed by creating a new 

version of Monte Carlo, FMONTE.  The FMONTE algorithm randomly picks four 

positions and arbitrarily switches the amino acids at two, three, or all four of the 

positions.  A random rotamer is chosen at each of the switched positions, and the 

sequence energies are compared.  All calculations were carried out for 1,000 annealing 
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cycles at 1,000,000 steps per cycle and the temperature was cycled from 4,000 K to 150 

K.  Fixed composition designs on ENH were performed using a fixed composition 

version of the FASTER algorithm [34]. 

2.4.4 Sequence Optimization in the Absence of a Fixed Composition Constraint 

Designs were carried out on Gβ1 using the improved parameters.  All amino acids 

were allowed at all positions with the exception of Met, Gly, Cys, and Pro.  The sequence 

search was carried out using the FASTER algorithm [35]. 

2.4.5 Protein Expresion and Purification 

Mutant plasmids were created by site-directed mutagenesis of the wild-type gene 

in pET-11a or ordered from Blue Heron Biotechnology.  Electroporation was used to 

transform the completed plasmids into BL21 (DE3) cells.  Cells were allowed to express 

protein for 3 hr after induction with IPTG, then harvested and lysed by sonication.  Cell 

extracts were spun down and precipitated by addition of 50% acetonitrile.  The soluble 

protein was separated from the precipitate by centrifugation and HPLC purified.  Pure 

proteins were analyzed by either trypsin digest or by collision-induced dissociation mass 

spectrometry. 

2.4.6 Experimental Studies 

CD studies were done in an Aviv 62A DS spectropolarimeter with a 

thermoelectric cell holder.  Samples were prepared in 50 mM sodium phosphate buffer at 

pH 5.5.  Guanidinium denaturations were carried out in a 1 cm path length cuvette at a 

protein concentration of 5 μM (1,800 μl).  An autotitrator was used for the chemical 

denaturations and data was collected at 218 nm and 25ºC.  After each injection of 
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denaturant, samples were stirred for 10 min before data was collected (100 sec averaging 

time).  Wavelength scans and temperature denaturations were carried out in cuvettes with 

a 0.1 cm path length at a concentration of 50 μM (300 μl).  Three wavelength scans were 

done at 25ºC.  Data was collected from 200 nm to 250 nm at 1 nm intervals and averaged 

for 1 sec.  Temperature denaturations were carried out from 0ºC to 99ºC, sampling every 

1ºC.  Samples were equilibrated for 90 sec before data was collected (averaging time 30 

sec).  1D NMR experiments were done on a Varian Unityplus 600-MHz spectrometer at 

25ºC.  Samples were prepared in 50 mM sodium phosphate buffer pH 5.5 using 9:1 

H2O/2H2O. 
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Table 2-1:  Percent Wild-Type Sequence Identity Before and After Force 

Field Optimization 
 
      

  Percent Sequence Identity*  

Predicted Sequences Total Core Boundary Surface 

Gβ1 - Initial Parameters 
sbias0.0 16 20 8 17 
sbias2.0 55 70 33 59 
sbias4.0 84 80 67 93 
sbias5.0 92 90 92 93 
sbias6.0 100 100 100 100 

Gβ1 - Improved Parameters     
sbias0.0 53 100 50 38 
sbias0.5 76 100 50 86 
sbias1.0 92 100 83 97 
sbias1.5 96 100 92 97 
sbias2.0 100 100 100 100 

ENH – Initial Parameters 
sbias0.0 22 20 9 28 
sbias2.0 46 30 27 59 
sbias4.0 66 60 55 72 
sbias6.0 96 90 91 100 
sbias8.0 96 90 91 100 
sbias9.0 100 100 100 100 

ENH – Improved Parameters 
sbias0.0 42 80 45 28 
sbias0.5 64 80 55 62 
sbias1.0 86 90 82 86 
sbias1.5 90 90 91 90 
sbias2.0 94 90 100 93 
sbias2.5 100 100 100 100 

*Wild-type sequence identity was determined using only the positions in the 
design.  Values are rounded to the nearest integer.  Wild-type sequence 
identities for random fixed composition sequences for Gβ1 were calculated to 
be 11, 8, 11 and 12 percent for total, core, boundary, and surface positions, 
respectively. 

 

 



42 

 

Fig. 2-1: Conformational Energy Spectra for Six Sequences   
 
Each spectrum is divided into a continuous and a discrete region.  The continuous region 
is depicted as a solid black bar above the red marker, while the discrete region is shown 
below the red marker.  The lowest energy conformation for each of the sequences is 
shown in green.  ∆E is defined as the energy difference between the lowest energy 
conformation and the energy at the transition between the continuous and discrete 
regions.  Energy spectra A, B, and C represent sequences with different amino acid 
compositions obtained from standard, non-fixed composition designs.  Energy spectra D, 
E, and F represent sequences with identical amino acid composition.   
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Fig. 2-2: Predicted Sequences for Gβ1 Fixed Composition Designs 
 
Designed core, boundary and surface positions are shown in red, green, and blue, 
respectively.  The wild-type sequence is shown followed by the sequences predicted at 
increasing sequence bias values (kcal/mol/position).  Dots represent wild-type amino 
acids.  (A) Sequences obtained using the initial parameters.  (B) Sequences obtained using 
the improved parameters.     
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Fig. 2-3: Predicted and Wild-Type Crystal Structure Conformations for Four 

Gβ1 Designed Core Residues 
 
(A) Conformations obtained using a standard rotamer library.  (B) Conformations 
obtained using the conformer library.  Predicted conformations are shown in orange; 
wild-type crystal structure conformations are depicted in gray.  The conformer library 
does a much better job at recapitulating the conformations seen in the wild-type crystal 
structure.  With the standard rotamer library, the absence of a rotamer with a 
conformation similar to that in the crystal structure at position 7 results in Trp 43 
swinging out into the solvent. 
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Fig. 2-4: Denaturation Curves of the Wild Type and a Mutant Obtained 

With the Standard Parameters  
 
The sequence predicted at a sequence bias of 5.0 kcal/mol/pos using the standard 
parameters is shown.  Thermal denaturation (A) and chemical detautration (B) 
experiments clearly depict the decrease in stability of sbias5.0 relative to the wild-type 
protein. 
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Fig. 2-5: Energies and Z-Scores for Wild Type and Unbiased Sequences 

Predicted in Gβ1 Fixed Composition Designs   
 
(A) Designs used initial force field parameters. (B) Designs used improved force field 
parameters.  The energy distributions were obtained by evaluating the energy of 1000 
random sequences with the wild type’s amino acid composition.  The energy scores omit 
contributions from the van der Waals potential function.     
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Fig. 2-6: Temperature Denaturation of Gβ1 Mutants Obtained With the 
Improved Parameters 

 
The data clearly show that mutants predicted at sequence biases of 0.5 or higher have 
thermal stabilities comparable to wild type.  Sbias0.0 has 53% sequence identity with the 
wild-type sequence, is folded and exhibits a Tm that is only 10ºC lower than wild type.  
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Fig. 2-7: Predicted Sequences for ENH Fixed Composition Designs   
 
Designed core, boundary, and surface positions are shown in red, green and blue, 
respectively.  The wild-type sequence is shown followed by the sequences predicted at 
increasing sequence bias values (kcal/mol/position).  Dots represent wild-type amino 
acids.  (A) Sequences obtained using the initial parameters.  (B) Sequences obtained using 
the improved parameters. 
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Fig. 2-8: Full Sequence Design of Gβ1 With the Improved Parameters   
 
The figure shows the resulting sequence from a design that omits the fixed composition 
constraint.  Designed core, boundary, and surface positions are shown in red, green, and 
blue, respectively.  Dashes in the predicted sequences represent wild-type amino acids.  
The majority of positions are selected to be Phe or Trp.   
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Chapter 3 

Step by Step Force Field Optimization 

 

3.1 Introduction 

This chapter is in many ways a continuation of Chapter 2, since it deals with the 

same topic of force field optimization using fixed composition protein design.  However, 

while Chapter 2 addresses the general applicability of fixed composition protein design, 

this chapter takes a close look at each modification that led to the final improved force 

field.  It includes a detailed discussion of the changes in the force field, the reasoning 

behind each modification, and the resulting sequences.  It is important to show the logical 

progression of the process that resulted in successful optimization of ORBIT’s force 

field.   

The computational protein design cycle is an iterative process of predicting 

sequences, analyzing the sequences experimentally, and using this information to 

improve the design [1, 2].  Fixed composition force field optimization is implemented in 

a similar fashion (Fig. 3-1).  Fixed composition sequences are obtained at increasing 
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wild-type sequence biases.  The predicted sequences are analyzed, and if no obvious 

discrepancies are observed, experimental testing is performed.  The information obtained 

from sequence analysis and experiments is then used to decide on modifications that are 

most likely to improve the predictive power of the force field.  This stepwise approach to 

force field optimization is expected to yield improvements with each round.   

3.2 Results and Discussion 

3.2.1 Solvent Exclusion-Based Solvation Model 

The standard force field (also referred to as the initial force field) was the first 

force field tested using fixed composition protein design.  The predicted sequences and 

the experimental results are thoroughly discussed in the previous chapter.  In an effort to 

prevent the selection of polar amino acids at core positions, the surface area-based 

solvation model was replaced with a solvent exclusion-based one [3].  The change in 

solvation model had a dramatic effect on the quality of the predicted sequences (Fig. 3-2 

B).  With the exception of one position in one of the sequences, all core positions took on 

a hydrophobic residue.  The unbiased design exhibited 2.5-, 4.0-, and 1.4-fold 

improvements in wild-type sequence recovery at core, boundary, and surface positions, 

respectively.   

While large improvements were observed at the protein core, little change was 

seen at the surface.  The initial parameters, as well as those using the new solvation 

model, predicted surface mutations that form hydrogen bonds.  Both sets of parameters 

also predicted the unbiased design to have side-chain-side-chain hydrogen bond energies 

four times greater than the wild-type sequence.  However, the large entropic cost 
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associated with hydrogen bond formation at the surface makes these bonds energetically 

unfavorable.  As a result, the predicted surface mutations were not expected to increase 

surface stability.  

An example of this is seen with E19D/D36E, which both sets of parameters 

produced as the highest scoring two-point mutant.  This mutant was predicted to form 

two new hydrogen bonds at the protein surface (Fig. 3-3 A).  Experimental analysis, 

however, revealed no increase in stability relative to the wild-type protein (Fig. 3-3 B, C), 

suggesting that the benefit for hydrogen bond formation between side chains at the 

surface was too high.  Consequently, the hydrogen bond potential was modified to 

eliminate the benefit for inter-rotamer hydrogen bonds at surface positions. 

3.2.2  Rotamer Library and Side-Chain-Side-Chain Hydrogen Bonds 
 

The van der Waals and hydrogen bond potentials are both extremely sensitive to 

small changes in rotamer conformation [4].  The presence or absence of a specific 

rotamer can mean the difference between a design with a well-packed core and one with 

cavities in the core.  It is beneficial to use the largest possible library to maximize the 

possibility of identifying the lowest energy conformation for each predicted sequence.  

However, as the size of the rotamer library increases, the sequence search becomes 

exponentially more difficult.  One must always weigh the advantages of using the largest 

possible library with the tractability of the optimization.  For our next set of designs, we 

employed a larger rotamer library that included rotamer probabilities [5]. 

The larger rotamer library and modification to the hydrogen bond potential 

resulted in an unbiased design sequence with lower wild-type sequence recovery (Table 

3-1 C).  This result was expected, since the design was more stringent, and fixed 
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composition Monte Carlo (FMONTE) was run for the same number of cycles and steps.  

As anticipated, surface mutations were no longer driven by the hydrogen bond potential; 

instead, they were determined by the van der Waals potential and the rotamer polar burial 

solvation term.   

3.2.3 Rotamer Probability Scale Factor 

A rotamer library is composed of side-chain conformations in local minima [6].  

Each rotamer is a side-chain representation of all the conformations in that specific 

minimum.  During optimization, the current implementation of fixed composition design 

considers each rotamer equally, and thus does not take the density of conformations in 

each of the minima into account.  Rotamer probabilities can be used, however, to 

incorporate the likelihood of finding a specific amino acid side chain in a particular 

conformation into the side-chain selection procedure.  A penalty is assigned to each 

rotamer based on its probability of occurrence; the lower the rotamer probability, the 

higher the penalty, and the less likely it will be selected.  A scaling factor is used to 

control the magnitude of the penalty.     

 We investigated the ideal scale factor for rotamer probability penalties by 

performing side-chain placement designs using Gβ1 as a scaffold.  The force field was 

allowed to select the lowest energy conformation for the wild-type amino acid at each 

position.  The ideal scale factor was expected to yield the conformation with the lowest 

RMSD compared to the crystal structure.  Scale factors of 0.8 and 1.0 provided the lowest 

overall RMSDs (Table 3-2).  Interestingly, the optimal scale factor varied for different 

regions in the protein.  The core exhibited the lowest RMSD in the absence of a rotamer 

probability term (scale factor of 0.0), while surface and boundary residues required a 
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scale factor of 0.8 or higher to achieve their lowest RMSDs.  It became apparent that, 

unlike core designs, fixed composition design at the surface and boundary would benefit 

from the use of rotamer probabilities.  Due to the results observed for core positions, 

however, the optimal scale factor would most likely be below 0.8. 

 The fact that core residues exhibited the lowest RMSD in the absence of rotamer 

probability penalties is not surprising.  It is not uncommon to have core residues assume 

less than optimal conformations in order to tightly pack into the core.  In such instances, 

the closest rotamer to the crystal structure would receive a large penalty.  Gβ1’s core 

Leu7 for example, takes on a conformation so rare that it is not included in any of the 

rotamer libraries tested.  However, the only way to identify the best scaling factor for the 

entire protein is to systematically vary the scale factor in fixed composition designs.   

Six sets of designs were carried out, each with a different rotamer probability 

scale factor (RPSF) that varied from 0.0 to 0.5.  Surprisingly, the best RPSF for core 

residues proved to be larger than the best for boundary or surface residues (Table 3-3).  

Wild-type recovery at boundary and surface positions was highest at an RPSF of 0.1, 

while an RPSF of 0.2 or 0.3 was required to recover the largest number of core residues.  

At an RPSF of 0.3, 70% of core positions were recovered, compared to 50% using no 

RPSF; similarly, recovery for surface residues jumped from 17% to 28%.  Unfortunately, 

recovery at boundary positions decreased from 25% to 17%.  Nevertheless, the high 

recovery at core positions made 0.3 extremely attractive for the RPSF, so this value was 

chosen for subsequent designs. 

 One weakness in the sequences obtained with an RPSF of 0.3 was the persistent 

prediction of a polar residue at core position 52 (Fig. 3-2 D).  Thr at position 52 was 
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considered to be more stabilizing than Phe, since it was predicted to form a hydrogen 

bond with Asn45.  However, the mutation from a large hydrophobic amino acid to a 

much smaller polar residue is drastic and results in the formation of a cavity.  Force field 

energy analysis revealed a score of −6.6 kcal/mol for this hydrogen bond, only 1.4 

kcal/mol shy of the maximum allowed.  Despite the decrease in van der Waals energy, 

the mutation was predicted to be stabilizing due to the high score from the hydrogen bond 

potential.  To mitigate this problem, we decreased the hydrogen bond well depth from 8.0 

kcal/mol to 4.0 kcal/mol, expecting that this would sway the force field towards 

predicting mutations with improved van der Waals and solvation scores.  

3.2.4 Decrease of Hydrogen Bond Well Depth 

 The predicted sequences obtained after lowering the hydrogen bond well depth 

contained no polar residues at the core (Fig. 3-2 E).  The wild-type amino acid was 

recovered for 70% of core positions in the unbiased design, and total core recovery was 

achieved at a sequence bias of 1.0 kcal/mol/pos.  The gap in energy between the unbiased 

design and the wild-type sequence was calculated to be only -20.3 kcal/mol, the smallest 

thus far.  Energy analysis revealed the unbiased design had a van der Waals energy 15.6 

kcal/mol less than the wild-type sequence, suggesting that the unbiased sequence was not 

as well packed.  The poor van der Waals energy for the unbiased design was largely 

compensated for by the rotamer polar burial score, which was 20.1 kcal/mol more 

favorable than the polar burial score for the wild-type sequence.  This observation 

indicated that the force field would benefit from scaling down the polar burial term in the 

solvation model.   
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3.2.5 Polar Burial Scale Factor 

 Reduction of the polar burial term resulted in a significant improvement in the 

quality of the predicted sequences (Fig. 3-2 F).  For the first time, the unbiased design 

recovered 90% of the wild-type core residues (Table 3-1 F).  Wild-type sequence 

recovery at the surface jumped 10%.  In addition, there was a significant improvement in 

the calculated Z-score, which increased from 2.1 to 3.2 [7, 8].  The same two-point 

mutant was predicted at a sequence bias of 1.0 and 1.5 (Fig. 3-2 F).  We expected these 

two mutations would stabilize the protein by improving van der Waals interactions and 

by forming a new hydrogen bond with the backbone.  Experimental analysis of the two-

point mutant showed a slight increase in stability relative to the wild-type (Fig. 3-4 A and 

B).  The sequence predicted at a sequence bias of 0.5 was a 15-fold mutant; we found it to 

be folded and slightly destabilized, with a Tm only 6ºC lower than wild type (Fig. 3-4 A 

and B).  Unfortunately, thermodynamic analysis of the unbiased design (sbias0.0) was not 

possible, since the protein aggregated in solution.  Further refinement of the force field 

was clearly required before a full set of predicted sequences could be shown to be 

properly folded. 

3.2.6 Hydrogen Bonds Between Immediate Neighbors 

 Structural analysis of the sequences obtained after reducing polar burial revealed 

minor problems with the predicted hydrogen bonds.  Specific positions were consistently 

mutated to residues predicted to form local side chain-backbone hydrogen bonds.  Take 

for example the T55Q mutation predicted for sbias0.0 and sbias0.5 or the T18D mutation 

predicted for sbias0.5 (Fig. 3-4 C); both mutations form hydrogen bonds with their 

respective +1 position.  Neither mutation is expected to increase specificity for the target 
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fold due to the local nature of the hydrogen bond.  It is more likely that formation of such 

a hydrogen bond would be destabilizing due to its entropic cost.  We anticipated that 

lowering the benefit for hydrogen bonds between immediate neighbors (+1 and -1 

positions) would reduce the frequency of mutations similar to those observed at positions 

55 and 18. 

 This latest tweak to the force field was expected to have a minor effect on the 

overall predictions.  The resulting sequences, however, had significantly worse wild-type 

sequence recovery (Table 3-1 G).  In the unbiased design (sbias0.0), wild-type recovery 

at core positions dropped from 90% to 80%.  Most concerning was the fact that sbias0.5 

replaced a core Leu at position 7 with an Asn (Fig. 3-2 G).  The mutation was predicted 

to alleviate steric strain at the core, since the proper rotamer for Leu7 was absent in the 

rotamer library used.  We therefore repeated the design using a rotamer library that 

included the crystallographic conformation for Leu7.   

3.2.7 Rare Crystallographic Conformations  

The sequences predicted with the new rotamer library are shown in Fig. 3-2 H.  

Unlike previous unbiased sequences, all wild-type core positions were recovered, 

ensuring that the core was well-packed and hydrophobic.  The total wild-type sequence 

recovery increased from 37% to 53% (Table 3-1 H).  There was a two-fold improvement 

at boundary positions and a 10% improvement at the surface.  The two-point mutant 

predicted at a sequence bias of 1.0 and 1.5 is identical to that previously tested, which 

was shown to be as stable as the wild-type protein (Fig. 3-5).  CD wavelength scans of 

the other two sequences in the set (sbias0.0 and sbias0.5) indicated they were well folded 

and well-behaved.  The unbiased protein, which had the lowest wild-type recovery 
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(53%), was also shown to be folded by NMR.  In addition, thermodynamic analysis of the 

protein revealed a Tm of 79.5ºC, only 10º lower than the wild-type sequence (Fig. 3-5).   

3.2.8 Fixed Composition Design on Alternative Scaffolds 

The overwhelming success obtained with this latest set of parameters required 

validation on alternate scaffolds.  We chose engrailed homeodomain from Drosophila 

melanogaster (ENH) and the β1 domain of Pepetotreptococcus magnus protein L (Lβ1), 

both small soluble proteins with distinct characteristics.  Like Gβ1, Lβ1 is very stable 

with both β-sheet and α-helical secondary structure.  Its tertiary structure and 

hydrophobic core are also similar to those of Gβ1.  ENH, on the other hand, is mostly 

α−helical and significantly less stable than either Lβ1 or Gβ1. 

Table 3-4 shows the resulting sequence statistics from fixed composition designs 

on these two scaffolds.  The wild-type sequence was recovered at a sequence bias of 1.0 

for Lβ1 and 1.5 for ENH, both less than the 2.0 value required for Gβ1.  Lβ1’s unbiased 

design predicted a well-packed hydrophobic core with 60% sequence identity with the 

wild-type core, and ENH’s unbiased design predicted a core with 70% sequence identity 

with the wild-type sequence.  

ENH’s unbiased design predicted two polar residues in the core.  Position 12 took 

on the wild-type Asn, which serves as a bridge between two helices by hydrogen bonding 

the backbone.  Position 44 replaced a Glu with a Thr.  Similar to the wild-type Gln, Thr 

forms a hydrogen bond with position 1, stabilizing the N-terminus (Fig. 3-6 B).  Unlike 

with the designs on Gβ1, the prediction of polar side chains in ENH’s core is a positive 

result, since it recapitulates what is seen in the wild type.  It shows that the optimized 

force field was able to predict stabilizing polar interactions in the core when required.   
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The unbiased fixed composition designs on Lβ1 and ENH predicted reasonable 

sequences.  In both cases, the interactions in the core were consistent with what is 

observed in the wild-type structure.  These results, in conjunction with recovering the 

wild-type sequence at a low sbias (1.5 or less), suggested that the optimized force field 

parameters were not strongly biased towards the Gβ1 scaffold. 

3.2.9 Conformer Library  

One drawback with the fixed composition designs at this point was the required 

use of the crystallographic rotamer at position 7 for Gβ1.  Ideally, one would like to 

provide as little information on the wild-type conformation as possible.  However, the 

lack of a rotamer that could satisfy the constraints required for proper packing at core 

position 7 left few choices.  Fortunately, the recent availability of conformer libraries 

provided a good alternative to rotamer libraries [6, 9].  The different approach used in 

generating conformer libraries allows for the incorporation of new side-chain 

conformations.   

Fixed composition designs were performed on Gβ1 using the optimized force 

field parameters, but with a conformer library.  The predicted sequences showed slightly 

less wild-type sequence recovery than those obtained with the rotamer library (Table 

3-1 I).  All the core residues were still recovered in the absence of any sequence bias 

(Fig. 3-2 I).  Despite the slightly worse performance of the conformer library, it is 

preferred since it doesn't rely on information on the Gβ1 crystal structure.  We expected 

additional force field modifications could easily improve sequence recovery and result in 

sequences comparable to those predicted with the "informed" rotamer library.   
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3.2.10  Dielectric Constant 

The modifications to the hydrogen bond potential had rather far-reaching effects, 

causing salt bridges to be penalized to the same extent as traditional hydrogen bonds.  In 

order to compensate, we next decreased the electrostatic potential's dielectric constant by 

one-half, thus increasing the interaction energy of salt bridges by a factor of two.  Fixed 

composition designs using the lower dielectric showed an increase in wild-type sequence 

recovery at surface and boundary positions (Table 3-1 J).  The unbiased design had 

identical statistics to those of the best unbiased design obtained using the rotamer library 

(Table 3-1 H).  The experimental results were also comparable to those obtained for the 

proteins predicted with the rotamer library.  A detailed discussion of the sequences and 

experimental results obtained with these final force field parameters is given in Chapter 2 

in the section on improved force field parameters.   

3.3 Conclusion 

Fixed composition protein design was successful in improving the ORBIT force 

field.  The optimization procedure exploited the iterative process of the protein design 

cycle, producing two final sets of parameters.  Both include the same modifications to the 

solvation, hydrogen bonding, rotamer probabilities and polar burial terms, but differ in 

their dielectric constant and side-chain library.  Each set of final parameters predicted 

sequences that are folded and well behaved.  The stepwise approach to force field 

optimization provided insightful information that can be incorporated into future 

applications of the process.   

 The protein design cycle typically requires experimental verification at each step.  

However, experimental validation is time consuming and costly.  The stepwise 
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improvement of the force field revealed that optimization can be streamlined by 

bypassing the experimental steps and focusing solely on sequence and energy analysis.  

Success at each step can be measured by calculating the Z-score for the wild-type 

sequence [8].  Elimination of the experimental step results in a computational 

optimization procedure that can be easily automated.   

 This fixed composition optimization procedure should be carried out using 

multiple scaffolds to avoid bias to a particular structure or fold.  The automated 

procedure starts by selecting a random force field parameter to adjust.  Simultaneous 

fixed composition designs can then be carried out on all the protein scaffolds.  The Z-

score for the wild-type sequences can be calculated and used to determine if the 

modification to the force field will be kept.  The iterative process can be repeated for 

multiple rounds until no improvement in Z-score is obtained.  The final force field can 

then be experimentally tested on a scaffold not used in the optimization procedure to 

verify the accuracy of the predictions.  The major drawback with the automated 

procedure is the computational cost of the designs.  The large scale of the optimization 

procedure will require the use of FC-FASTER on multiple processors to limit the run 

time [10].    

3.4 Materials and Methods 

3.4.1 Fixed Composition Scaffolds 

Coordinates for the backbone structure of Gβ1, Lβ1, and ENH were obtained 

from the Protein Data Bank entry 1PGA, 1HZ5, and 1ENH, respectively.  Any strain or 

steric clashes in the structure were removed by performing 50 steps of energy 
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minimization.  Residue classification into core, boundary, and surface groups was 

performed as described previously [11].  All non-Gly and non-Met positions were 

included in the design, and within fixed composition restraints, all amino acids found in 

the wild-type sequence were allowed at all designed positions. 

3.4.2 Fixed Composition Force Fields 

The initial force field used standard potential functions and parameters including 

scaled van der Waals, hydrogen bonding, electrostatic, and surface area-based solvation 

terms, as described previously [1, 11-14].  Expanded versions of Dunbrack and Karplus’ 

1995 backbone-dependent rotamer library were used [15].  Aromatic residues were 

expanded 1 SD about their χ1 and χ2 values, and hydrophobic residues were expanded 1 

SD about their χ1 values; polar residues were not expanded. 

 Sequences shown in Fig. 3-2 B-J were obtained using a solvent exclusion-based 

solvation potential [3]; for B-E, all published solvation parameters were used; for F-J, the 

polar burial scale factor was decreased to 0.6 [3].  For sequences listed in C-J, hydrogen 

bonds at surface positions received a benefit from the electrostatic potential, but not from 

the hydrogen bond potential; for C-H, a larger rotamer library from Dunbrack and Cohen 

was also used [5].  The rotamers in the library were expanded in a similar fashion as with 

the smaller Dunbrack and Karplus library.  The force field used to obtain sequences 

under D-H included the following rotamer probability term: 

Erotamer probability = - W log (ρ)   

Rotamer probabilities (ρ) were taken directly from the published rotamer library 

and the scale factor, W, was set to 0.3.  The benefit for hydrogen bond formation between 

side chains was decreased by 50% for core and boundary residues to predict sequences 
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shown in E-J.  Sequences under G-J required the hydrogen bond energies to be decreased 

by an additional 75% if predicted between immediate neighbors (n+1 and n–1 positions).  

The force field that predicted sequences under I and J used a larger backbone-dependent 

conformer library [6] instead of the rotamer library.  The conformer library was 

constructed using Cartesian coordinates taken directly from high-resolution crystal 

structures, as described by Lassila et al. [9].  A p value for non-polar amino acids was set 

to 0.3; a p value of 0.6 was used for Asp, Glu, Asn, and Gln; and representative 

conformers for Arg and Lys were obtained with a p of 0.8.  For the final set of sequences, 

listed under J, the dielectric constant was decreased from 40 to 20. 

3.4.3 Fixed Composition Sequence Optimization 

Prior to sequence optimization, an energy matrix containing all one-body and 

two-body interactions was created.  The one-body term for each rotamer was modified to 

reflect a specified sequence bias energy.  Each rotamer that differed in identity from the 

wild-type amino acid at a particular position received a penalty.  The resulting sequence 

was thus penalized for each residue that differed from the wild-type sequence.  All 

calculations were first carried out in the absence of a sequence bias.  The bias energy was 

then incrementally increased by 1.0 or 0.5 kcal/mol/position, while keeping all other 

parameters fixed, until the wild-type sequence was recovered. 

A stochastic algorithm, Monte Carlo simulated annealing, was used for the fixed 

composition Gβ1 designs.  A fixed composition restraint was imposed by creating a new 

version of Monte Carlo, FMONTE.  The FMONTE algorithm randomly picks four 

positions and arbitrarily switches the amino acids at two, three, or all four of the 

positions.  A random rotamer is chosen at each of the switched positions, and the 
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sequence energies are compared.  All calculations were carried out for 1,000 annealing 

cycles at 1,000,000 steps per cycle and the temperature was cycled from 4,000 K to 150 

K.  Fixed composition designs on ENH were performed using a fixed composition 

version of the FASTER algorithm [10]. 

3.4.4 Protein Expression and Purification   

Mutant plasmids were created by site-directed mutagenesis of the wild-type gene 

in pET-11a or ordered from Blue Heron Biotechnology.  Electroporation was used to 

transform the completed plasmids into BL21 (DE3) cells.  Cells were allowed to express 

protein for 3 hr after induction with IPTG, then harvested and lysed by sonication.  Cell 

extracts were spun down and precipitated by addition of 50% acetonitrile.  The soluble 

protein was separated from the precipitate by centrifugation and HPLC purified.  Pure 

proteins were analyzed by either trypsin digest or by collision-induced dissociation mass 

spectrometry. 

3.4.5 Experimental Studies  

CD studies were done on an Aviv 62A DS spectropolarimeter with a 

thermoelectric cell holder.  Samples were prepared in 50 mM sodium phosphate buffer at 

pH 5.5.  Guanidinium denaturations were carried out in a 1 cm path length cuvette at a 

protein concentration of 5 μM (1,800 μl).  An autotitrator was used for the chemical 

denaturations and data was collected at 218 nm and 25ºC.  After each injection of 

denaturant, samples were stirred for 10 min before data was collected (100 sec averaging 

time).  Wavelength scans and temperature denaturations were carried out in cuvettes with 

a 0.1 cm path length at a concentration of 50 μM (300 μl).  Three wavelength scans were 
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done at 25ºC.  Data was collected from 200 nm to 250 nm at 1 nm intervals and averaged 

for 1 sec.  Temperature denaturations were carried out from 0ºC to 99ºC, sampling every 

1ºC.  Samples were equilibrated for 90 sec before data was collected (averaging time 30 

sec).  1D NMR experiments were done on a Varian Unityplus 600-MHz spectrometer at 

25ºC.  Samples were prepared in 50 mM sodium phosphate buffer pH 5.5 using 9:1 

H2O/2H2O.   
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Table 3-1: Percent Wild-Type Sequence Identity of Gβ1 Predicted Fixed 
Composition Sequences 
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Table 3-2: RMSDs Following Side-Chain Placement of Wild-Type 
Sequence on Gβ1 Scaffold Using Different Rotamer Probability Scale 
Factors 
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Table 3-3: Percent Wild-Type Sequence Recovery for Unbiased Fixed 
Composition Designs Using Different Rotamer Probability 
Scale Factors  
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Table 3-4:  Percent Wild-Type Sequence Identity of Lβ1 and ENH 
Predicted Fixed Composition Sequences 
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Fig. 3-1: Force Field Optimization Flow Chart 
 
Force field optimization was carried out in an iterative procedure that included fixed 
composition designs followed by sequence analysis and experimental verification of 
sequence predictions.  A hypothesis was formed after sequence and experimental analysis 
and used to make adjustments to the force field.  A correct hypothesis would lead to 
improved fixed composition design sequences.  In cases where sequence analysis 
revealed clear violations in protein stability, the experimental step was skipped.   
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Fig. 3-2: Fixed Composition Predicted Sequences 
 
Predicted sequences for Gβ1 fixed composition designs.  Designed core, boundary, and 
surface positions are shown in red, green, and blue, respectively.  The wild-type sequence 
is shown followed by the sequences predicted at increasing sequence bias values 
(kcal/mol/position).  Dots represent wild-type amino acids.  The title for each set of 
sequences states the change made to the force field; all other parameters are identical to 
those in the preceding set of sequences.   
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Fig. 3-3: Thermodynamic Data on E19D/D36E Mutant 
 
(A) The two-point mutant, E19D/D36E, is predicted to form the two hydrogen bonds 
shown.  (B) Temperature denaturations of the two-point mutant and the wild-type protein 
show overlapping data points.  The Tm for both molecules was calculated to be 88°C.  (C) 
Chemical denaturation with guanidinium hydrochloride shows no significant difference 
between the free energy of folding of the two-point mutant and the wild-type protein.  A 
ΔG of 5.07 kcal/mol and 5.23 kcal/mol was calculated for the two-point mutant and the 
wild-type protein, respectively. 
 

 
 

 



76 

 
Fig. 3-4: Thermodynamic Data for Sequences Obtained After Reducing 

Polar Burial Benefit 
 
Sequences of mutants are given in Fig. 3-2 F.  Thermodynamic data is shown for mutants 
predicted after reducing the rotamer polar burial scale factor to 0.6.  (A) Tms of 88, 89, 
and 81.8˚C were calculated from the temperature denaturation of the wild-type, sbias1.0 
and sbias0.5 proteins, respectively.  (B)  Free energy of folding (ΔG) was calculated to be 
5.2, 5.3, and 3.3 kcal/mol for the wild-type, sbias1.0, and sbias0.5 proteins, respectively. 
(C) Residue 55 and 18 are shown hydrogen bonding with their respective +1 position in 
the predicted conformation for sbias0.5. 
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Fig. 3-5: Thermodynamic Data for Sequence Obtained After Including 
Crystallographic Rotamer at Position 7 

 
Sequences of mutants are given in Fig. 3-2 G.  Thermodynamic data is shown for mutants 
predicted after addition of the crystallographic rotamer at position 7. 
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Fig. 3-6: Conformational Comparison of Position 44 in the Engrailed 
Scaffold 

 
(A) In the wild-type sequence, Gln44 is shown hydrogen bonding to the backbone at 
position 6 (first residue in the crystal structure).  (B) In the unbiased fixed composition 
design, Thr44 forms a similar hydrogen bond as in the wild-type sequence with position 
6.  Instead of hydrogen bonding to the backbone, Thr44 hydrogen bonds to the side chain 
of Asn6. 
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Chapter 4 

Collision-Induced Dissociation of Gβ1 

 

4.1 Mass Spectrometry Background  

Mass spectrometry (MS) can be broadly defined as the use of magnetic or electric 

fields to isolate and identify molecules with distinct mass to charge ratios (m/z).  Some of 

the first work on this topic was carried out in the late 19th century by Sir Joseph John 

Thomson, who is credited for inventing the first mass spectrometer.  Since then, multiple 

Nobel Prizes have been awarded to scientists who developed techniques that have 

advanced the field of mass spectrometry.  The latest was awarded in 2002 to John Fenn 

and Koichi Tanaka for developing methods that allow mass analysis of biological 

macromolecules.   

 Currently, several instruments can be used to identify the m/z of a sample (linear 

quadruple ion trap, orbit trap, quadruple, quadruple ion-trap, sector, and time-of-flight), 

each with its specific strengths and weaknesses [1, 2].  Time-of-flight (TOF) is a 

commonly used method for ion detection and is the most conceptually straightforward.  
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TOF relies on the fact that the potential energy (Ep) of a charged particle can be equated 

to its kinetic energy (Ek) when it is accelerated using an electric field (Eq. 4-3).  The 

resulting equation reveals that m/z is dependent on the distance of the chamber (d), the 

electric field charge strength (V), the elementary charge constant (e = 1.602 x 10-19C) and 

the time the ion took to reach the detector (t) (Eq. 4-4).  The larger the molecule, the 

smaller the velocity, and hence the longer the time required to reach the detector. 
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 One of the benefits of TOF is its compatibility with matrix-assisted laser 

desorption/ionization (MALDI) [3-5].  MALDI is a gentle method used to ionize and 

analyze large biomolecules that are easily fragmented, such as proteins and 

polysaccharides.  The matrix is composed of a small acid that co-crystallizes with the 

biomolecule and is able to protect the delicate analyte during desorption by a nitrogen 

laser beam.  A good alternative to MALDI is electro-spray ionization (ESI), which uses a 

charge capillary to vaporize the sample [6].  All the solvent in the sample is evaporated 

off before redirecting the charged biomolecules towards the mass analyzing chamber.   

 ESI is extremely useful when coupled with a high-performance liquid 

chromatography (HPLC) system.  LC-MS (liquid chromatography–mass spectrometry) is 

often used when analyzing samples containing multiple species.  Before analyzing the 
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mass distribution of the sample, the components are separated using HPLC, and MS is 

used to analyze specific fractions.  The pharmacokinetics field routinely uses this 

technique when identifying trace amounts of doping agents in an individual’s blood.  In 

the last decade, the proteomics field has also greatly benefited from the use of LC-MS in 

conjunction with tandem mass spectrometry (MS/MS) [7, 8].    

 Proteomics is a quickly growing field that focuses on the large-scale study of 

protein expression, structure, and function.  The field is largely driven by the fact that 

genomics, the study of genes and gene expression, drastically underestimates protein 

diversity in a living cell.  In order to obtain information on protein expression levels, 

scientists are developing high-throughput methods to identify the presence or absence of 

specific proteins in cell extracts.  Innovations in mass spectrometry technology are 

leading the way by providing highly accurate, reproducible and rapid data on a cell's 

proteome [8, 9].  The first step in the process is always enzymatic digest of a cell extract 

to yield small peptide fragments that can be easily analyzed by LC-MS and quickly 

followed by tandem MS/MS (Fig. 4-1).    

 MS/MS is the process of determining the mass of a sample before and after 

collision-induced dissociation (CID) [10].  The initial mass determination is used to 

identify all the species in solution and to isolate ion species with the target mass.  The 

isolated ions are re-directed to a chamber where they are forced to collide with an inert 

gas, usually nitrogen or helium.  The high-energy collision results in fragmentation of the 

peptides, which are used for a second mass determination.  The results yield a distribution 

of masses that can serve as a fingerprint to identify specific proteins in the original 

sample [11, 12]. 
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 Two types of software are used to identify protein fragments.  The first type is 

referred to as the top-down method and requires the use of a database of known protein 

fragments to identify the protein in question [11, 13].  Success using this method is 

highly dependent on the size of the database and the quality of the data.  Low-expressing 

proteins are less likely to be characterized and are thus unlikely to yield a match.  In such 

cases, the second method, referred to as the bottom-up approach, can be of great use.  

This method attempts to piece together an amino acid sequence from the data provided 

[14].  The bottom-up approach uses known CID fragmentation trends to identify 

sequences de novo [15, 16]. 

 The work presented in this chapter attempts to use CID to analyze Gβ1 variants 

with identical amino acid composition and tertiary structure.  Since all the variant 

sequences have identical amino acid composition, they all have identical mass and are 

indistinguishable by standard MS.  CID in combination with analysis using a bottom-up 

approach was expected to successfully distinguish between them.  The resulting spectra 

for each of the sequences were analyzed and were shown to be consistent with previously 

observed CID trends.  The observations made in this study helped us identify a 

straightforward method of distinguishing between Gβ1 variants with identical amino acid 

composition. 

4.2 Results and Discussion 

 The work presented in Chapters 2 and 3 relied on the use of sequences with fixed 

amino acid composition.  Given that all the fixed composition sequences have identical 

mass, alternate methods to standard MS were required for sequence identification.  The 

shotgun method used in proteome screening provides insight into potential alternatives 
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(Fig. 4-1) [8].  In our case, the degree of complexity was significantly less, since we were 

dealing with a single protein sequence instead of an entire proteome.   As a result, only 

partial implementation of the procedure was sufficient to specifically identify each 

protein.   

 The procedure laid out in Fig. 4-1 requires the fragmentation of the sample at two 

distinct stages.  The first is obtained from enzymatic cleavage by a protease and the 

second by CID.  Each fragmentation step can be used independently for sequence specific 

analysis of fixed composition proteins (Fig. 4-2).  Although each intact fixed composition 

sequence has identical mass, protein fragmentation results in smaller peptides with 

distinct amino acid compositions and masses that can be traced back to the original 

protein sequence.   

 Trypsin is a reliable protease commonly used for fragmentation since it is highly 

specific for the positively charged amino acids, Arg and Lys.  The Gβ1 protein contains 

no Arg and seven Lys, making it ideal for trypsin fragmentation (Fig. 4-3).  Three fixed 

composition sequences were analyzed using the trypsin digest method.  In all cases, the 

resulting MS of the fragmentation reactions were convoluted with side products that were 

unidentifiable.  LC-MS was run on the digested samples and clearly shows that the 

reactions yield a number of fragments; most were not consistent with the expected 

masses of peptides resulting from the C-terminal cleavage of a lysine (Fig. 4-4).   

Rot-sbias0.0 and rot-sbias0.5 (sequences pertain to those in Fig 3-2 G and were 

obtained with the use of a rotamer library and a sequence bias of 0.0 and 0.5, 

respectively) were the only two sequences that produced unique peptides that were 

successfully traced back to their original sequences.  The wild-type sequence and rot-
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sbias1.0 were too similar to be distinguishable using this method.  The procedure 

required cleavage after Lys28 or Lys31 and successful identification of either the C-

terminal or N-terminal fragment to distinguish these two sequences; however, none of the 

required peptides were observed.  Given the poor performance of trypsin fragmentation, 

CID of fixed composition sequences was attempted. 

 CID was carried out on the five fixed composition sequences predicted by the 

final force field discussed in Chapters 2 and 3 (Fig. 2-2).  Similar to the previous set of 

sequences, all of these were shown to be folded and well behaved.  The wild-type 

sequence identity for the sequences ranged from 53% to 96%.  Initial MS of all the 

samples showed a nice distribution of charged states confirming the purity and 

ionizability of the proteins.  The +4 charge state was selected for CID since it exhibited 

the largest signal to noise and had an m/z of 1550.6, approximately halfway between 

1000 and 2000, the limit of the instrument. 

 CID of the selected fixed composition sequences resulted in a clean distribution of 

fragments; most of the predominant species were successfully assigned (Fig. 4-5).  All of 

the identified fragments were produced from backbone dissociation at the amide bond.  

From the resulting products, the vast majority were assigned to the N-terminus peptide 

(the b fragments from Fig. 4-6).  Due to the large sequence variation between the 

proteins, a random fragmentation pattern was expected.  However, close analysis of the 

resulting spectra suggested that dissociation along the protein backbone occurred in 

identical locations. 

 Table 4-1 lists some of the observed ions for the five proteins analyzed; four of 

the five peptides produced seven identical fragments (b22
+2, b36

+3, b40
+3, b46

+3, b47
+3, b54

+4, 
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and b55
+4).  Con-sbias0.0 (sequence pertains to that in Fig 3-2 J and was obtained with the 

use of a conformer library and a sequence bias of 0.0) produced only four of the seven 

fragments common to the other sequences; the b22
+2, b40

+3, and b47
+3 ions were not 

observed.  The absence of three out of the seven fragments could result from either low 

detection or unsuccessful dissociation at the required loci.   

 Fig. 4-7 A highlights fragmentation sites along the Gβ1 scaffold.  Dissociation of 

the proteins seemed to cluster around surface exposed turns and loops.  As a result, it was 

initially hypothesized that conserved backbone dissociation was dependent on the tertiary 

structure of the proteins [17].  To establish a solid connection, CD wavelength scans were 

carried out under conditions similar to those used for mass analysis of the two sequences 

with the lowest thermostability, con-sbias0.0 and con-sbias0.5.  The wavelength scans 

overlapped nicely with the wild-type sequence and confirmed the presence of folded 

protein (Fig. 4-8).  In addition, two other fixed composition sequences obtained at low 

sequence bias, rot-sbias0.0 and rot-sbias0.5, were also shown to be folded under these 

stringent conditions (Fig. 4-8).   

 Sequence comparison between the wild type, rot-sbias0.0, rot-sbias0.5, con-

sbias0.0, and con-sbias0.5 showed sequences with 57.1–83.9% sequence similarity 

(Table 4-2).  If CID fragmentation patterns were dependent on tertiary structure, CID on 

rot-sbias0.0 and rot-sbias0.5 would be expected to exhibit similar spectra to those 

observed for con-sbias0.0, con-sbias0.5, and the wild-type.  Unfortunately, only three out 

of the seven fragments were conserved throughout the five sequences, suggesting that 

dissociation is independent of tertiary structure (Table 4-3). 
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 However, closer inspection of the wild-type sequence revealed that five out of the 

seven cleavages occurred after an Asp (Fig. 4-3).  In fact, variant sequences that did not 

contain an Asp immediately preceding a cleavage site were not fragmented at the 

expected sites.  The b40
+3 fragment, for example, is observed in all the sequences except 

in con-sbias0.0, since it contains Asn instead of Asp at position 40.   

 Previously published work reported a similar phenomenon in Arg-containing 

sequences [18, 19].  Gβ1, however, contains no Arg but does have five Lys, another basic 

amino acid.  It is believed that successful backbone cleavage requires protonation of the 

amide nitrogen.  In the presence of excess protons, cleavage occurs randomly along the 

backbone [20].  However, when the number of protons is equal to or less than the number 

of Arg (or in our case, Lys) in the sequence, there are no free protons to bind to the amide 

nitrogen.  As a result, cleavage occurs specifically after Asp residues.  

 There are a few proposed mechanisms that attempt to explain the sequence of 

events [21].  All of them require a proton transfer from the aspartate to the amide 

nitrogen, forming two charged species (negatively charged aspartic acid and positively 

charged backbone amide).  The main difference in the mechanisms is in the role of Arg.  

In some mechanisms, the Arg is predicted to form a salt bridge with the aspartic acid, 

while in others it ideally stands by (Fig. 4-9) [22, 23].  After proton transfer, the carbon 

center of the protonated amide bond is either attacked by the aspartate’s carboxyl oxygen 

or by the N-terminal neighbor amide oxygen, resulting in a cyclic anhydride or an 

oxazolone, respectively.   

Insight into the potential mechanism can be obtained by noting the locations of all 

the Asp and Lys in the folded structure of Gβ1.  A Lys must be physically close to an 



87 

 

Asp to form the salt bridge.  However, in some instances, there are Asp residues with no 

Lys residues in close proximity in the folded structure (Fig. 4-7 B).  This observation 

supports the idea that a Lys salt bridge is unnecessary for successful backbone cleavage 

by an Asp.  In order for the previous statement to be true, it must be shown that the 

sequences are folded during the fragmentation step.  CD wavelength scans show the 

sequences to be folded in solvent conditions used for MS analysis (Fig 4-8), but fail to 

prove that the proteins are still properly folded after solvent evaporation.  A sequence 

could easily unfold and possibly aggregate as soon as it goes into vacuum, allowing for 

formation of the salt bridge.  However, the low protein concentration required for MS 

analysis and studies on folded proteins in vacuo support the idea that the proteins retain 

their tertiary structure prior to fragmentation [24, 25]. 

Most of the fragmentation patterns of the fixed composition sequences can be 

explained by the Asp effect.  However, fragmentation after position 54 and 55 cannot, 

since Asp is absent at those positions.  Yet, cleavage at the C-terminus is often observed 

when Glu is the last residue in the sequence [26].  The predicted mechanism involves Glu 

folding back and carrying out a nucleophilic attack on the carbonyl carbon of an adjacent 

residue (Fig. 4-10).  In the case of Gβ1, the Glu attacks either the -1 or -2 position, 

resulting in the b54
+4 or b55

+4 ions. 

4.3 Conclusion  

Specific cleavage of Gβ1 fixed composition sequences during CID can be 

explained by either the Glu or Asp effect.  Fragmentation after Asp residues was shown 

to be successful in sequences free of Arg.  The presence of Lys, another positively 

charged basic amino acid, is believed to serve as a good substitute for Arg.  The absence 
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of a basic residue within salt bridging distance of a specific Asp suggests that basic 

amino acids are required to be present for the Asp effect, but are not directly involved in 

the fragmentation of the peptide backbone.  The presence of a basic amino acid prevents 

indiscriminate fragmentation by capturing the acidic protons that would otherwise initiate 

random backbone cleavage.  These observations suggest that the mechanism shown in 

Fig 4-9 A is correct [22]. 

Segmentation after Asp residues provides a reliable method for specifically 

identifying fixed composition sequences.  CID is a clean and rapid method for sequence 

fragmentation and identification.  Trypsin digest, while successful in identifying some 

fixed composition sequences, is significantly more time consuming and less reliable.   

One drawback with both methods is their inability to identify contamination by a second 

fixed composition sequence.  The methods confirm the presence or absence of sequences 

by successfully matching expected masses with those observed.  As a result, the amino 

acid sequence must be known prior to analysis.  In the case of a contaminating sequence, 

the user may have no prior knowledge of the sequence of the contaminant and will be 

unsuccessful in identifying its fragments. 

In a heterogeneous mixture, the contaminant is expected to be one of the fixed 

composition sequences being investigated, since an arbitrary fixed composition sequence 

is highly unlikely to randomly arise.  As a result, a database can be easily generated that 

contains all the fragmentation patterns for every fixed composition sequence in the study.  

The resulting CID fragmentation pattern can then be cross-referenced with the database 

to confirm the purity of the sample. 
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4.4 Materials and Methods 

4.4.1 Fixed Composition Sequences 

All fixed composition sequences were generated using ORBIT.  Details on 

potential functions and parameters can be found in the Material and Methods section of 

Chapters 2 and 3.  The genes were obtained from BlueHeron and expressed in BL21 

(DE3) cells at an OD600 of 1 at 37oC for three hr after IPTG induction.  Cells were lysed 

by sonication and pelleted.  An equal volume of acetonitrile was added to the supernatant 

and centrifuged.  The supernatant from the resulting sample was purified by HPLC.  Pure 

samples were flash frozen and lyophilized. 

4.4.2 Circular Dichroism 

Lyophilized samples were taken up in 8 M guanidinium and refolded in water.  

Samples were diluted down to a final concentration of 50 uM in 50% ethanol and 0.1% 

acetic acid.  Wavelength scans were carried out on a Aviv 62A DS spectropolarimeter 

with a thermoelectric cell holder set to 25˚C.  Acquired data was averaged for 1 sec every 

1 nm from 200 nm to 250 nm. 

4.4.3 Mass Spectrometry 

Samples were diluted down to a final concentration of 5 μM in 50% ethanol and 

0.1% acetic acid.  CID was carried out on a ThermoFinnigan LCQ Deca XP quadrupole 

ion trap mass spectrometer with normalized collision energy of 23.  The +4 ion with m/z 

of 1550.6 was isolated and used for dissociation.  Protein prospector was used to identify 

the observed ions. 
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Table 4-1: Successfully Identified Fragmentation Ions From Fixed 
Composition Gβ1 Designed Sequences 
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Table 4-2: Percent Sequence Similarity of Predicted Fixed Composition 
Gβ1 Variants 
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Table 4-3: Successfully Identified Fragmentation Ions From Fixed 
Composition Gβ1 Designed Sequences Obtained at a Low 
Sequence Bias 

    

 
 



96 

 

Fig. 4-1: The Shotgun Method:  Using LC-MS and CID for High-
Throughput Proteome Screening 
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Fig. 4-2: Fragmentation Options for Gβ1 
 
Two fragmentation options are shown, chemical and mechanical.  Chemical 
fragmentation includes trypsin digest, HPLC of fragmented peptides and mass 
spectrometry of HPLC fractions.  Mechanical fragmentation requires isolating an ion of 
the intact protein followed by CID.   
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Fig. 4-3: Fixed Composition Sequences Used in CID 
 
Fixed composition Gβ1 sequences used for MS analysis are listed below.  Positions with 
wild-type amino acids are represented by a dot.  Vertical dashed lines show observed 
cleavage after Asp residues in the wild-type sequence.  No cleavage is observed after 
residues highlighted in red since they replaced the wild-type Asp.  Vertical solid lines 
show non-selective C-terminus cleavage observed for all the fixed composition sequences 
analyzed.  The five Lys in the wild-type sequence are shown in blue. 
 

 
 



99 

 

Fig. 4-4: LC-MS of Gβ1 Variant Rot-sbias0.0  
 
The HPLC chromatograph from trypsin digest of rot-sbias0.0 is shown below.  Masses 
pertaining to observed fragments are shown above each peak.  Boxed masses belong to 
known trypsin digest product.     
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Fig. 4-5: CID on the Wild-Type Gβ1 Sequence 
 
Assigned fragments are highlighted in color.  Note that only b ions were successfully 
identified.  The Gβ1 wild-type sequence spectrum is typical of other fixed composition 
sequences. 
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Fig. 4-6: Nomenclature for Backbone Fragmentation 
 
CID preferentially fragments along the peptide backbone.  Each of the vertical lines 
shows a potential fragmentation site.  The labels above the vertical lines are assigned to 
the C-terminal fragment and those below the vertical lines are assigned to the N-terminal 
fragment.  Fragmentation along the red vertical line results in two peptides.  The 
C-terminal end is referred to as y3 and the N-terminal end is referred to as b2. 
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Fig. 4-7: Gβ1’s Wild-Type Crystal Structure 
 
(A) The crystal structure of Gβ1 is shown in orange with fragmentation sites along the 
backbone highlighted in green.  (B) All the Lys residues are shown in cyan and Asp36 in 
orange.  It is clear from (B) that none of the Lys residues are close enough for salt bridge 
formation with Asp36.     
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Fig. 4-8: CD Wavelength Scans of Fixed Compositions Sequences in 
Conditions Required for CID 

 
Wavelength scans were carried out in 50% methanol and 0.1% acetic acid.  All of the 
fixed composition sequences studied (wild-type, con-sbias0.0, con-sbias0.5, rot-sbias0.0, 
and rot-sbias0.5) showed CD wavelength scans typical for folded α/β proteins.   
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Fig. 4-9:  Proposed Mechanisms for Asp Effect 
 
Two possible mechanisms for fragmentation of the peptide backbone are shown below.  
In both cases, the presence of Arg is required to capture acidic protons; however, its role 
in the cleavage differs.  In the first mechanism (A), Arg ideally stands by while the Asp 
carries out the cleavage.  The resulting fragment contains a cyclic anhydride at the C-
terminus.  In the second mechanism (B), Arg forms a salt bridge with the deprotonated 
Asp following proton transfer.  Backbone cleavage is initiated by the carbonyl oxygen of 
the preceding residue.  The resulting fragment contains an oxazolone moiety at the C-
terminus.   
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Fig. 4-10:  Proposed Mechanisms for C-Terminal Glu Effect  
 
C-terminal cleavage is commonly observed when Glu is the last residue in the sequence.  
The mechanism depicts the Glu folding back and carrying out a nucleophilic attack on the 
carbonyl carbon of a preceding residue.   
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Chapter 5 

Optimizing HIV-1 Protease Specificity  

 

5.1 Background on HIV Protease 

 HIV protease is a 99-residue homodimer essential for viral maturation.  Its main 

function is to recognize and cleave sequences in the Gag and Pol polyproteins.  Due to 

HIV protease's unique role, a major effort to engineer potent inhibitors has resulted in a 

number of successful therapeutics.  Protease inhibitors are seen as crucial components in 

the multi-prong approach used to fight HIV infection.  While there is currently no cure 

for HIV infection, state of the art therapeutics can keep the virus at bay for decades.  The 

biggest threat to patients is the adaptability of the virus and its enzymes.  HIV protease is 

notorious for mutating and developing resistance to inhibitors.  There are countless 

examples of mutations along the substrate binding pocket that decrease the enzyme's 

specificity for inhibitors while retaining its ability to hydrolyze its native substrates.   

 Hydrolysis of the peptide backbone is carried out by two aspartic acids at the 

center of the substrate binding cleft.  HIV protease was first categorized as belonging to 
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the aspartate protease family after successful inhibition by pepstatin, a nonspecific 

inhibitor of aspartate proteases [1].  There is currently no consensus on the detailed 

chemical mechanism of hydrolysis.  However, it is widely believed that a water molecule 

serves as the nucleophile and that the aspartates serve as a general acid-base catalyst [2].  

The aspartate residues are essential for hydrolysis; mutating them to asparagines results 

in a dead enzyme [3].  This fact was used by Schiffer and colleagues, who co-crystallized 

wild-type substrates with an inactive variant of HIV protease [4, 5].   

The enzyme is of unique interest because its symmetrical binding region 

recognizes and cleaves asymmetrical substrates.  While highly specific, HIV protease 

recognizes and hydrolyzes sequences that exhibit little sequence homology (Table 5-1).  

Studies on substrate binding have shown that specificity is driven by steric 

complementarity of the peptide side chains [5].  Hydrogen bonds to the side chains are 

rarely formed, and those that do form are not conserved between substrates [5].  All the 

conserved hydrogen bonds occur between the enzyme and the substrate backbone.  An 

extensive network of hydrogen bonds is formed, which locks the substrate backbone into 

the proper conformation for peptide hydrolysis. 

Hydrogen bonds are often seen as crucial for substrate specificity, and it has been 

suggested that HIV protease's lack of specific hydrogen bonds to peptide side chains 

allows it to bind to a broad range of sequences [5].  If this hypothesis is correct, then 

variants that can form specific hydrogen bonds to wild-type substrates should exhibit an 

increase in specificity [6].  The question of specificity has already been addressed in 

computational protein design for other proteins.  However, the impact of negative design 

on specificity has yet to be fully addressed.  Optimizing for hydrogen bonding can be 
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seen as a purely positive design approach, whereas emphasizing differences in 

electrostatics or van der Waals interactions can be used to incorporate negative design.  

Electrostatics can be important in discriminating between side chains with opposite 

charges, while van der Waals forces can be used to select for side chains of different 

dimensions.   

 Positive design proved to be a successful approach in the computational protein 

design of calmodulin (CaM) specificity [7, 8].  CaM is a protein that interacts with a large 

number of α-helical peptides.  Upon binding, it undergoes a drastic conformational 

change to maximize contacts with its ligand.  Designs on CaM used the bound compact 

structure to produce mutants with increased specificity towards a target peptide [7].  The 

substrates were either known wild-type CaM-binding sequences or sequences engineered 

to have increased specificity [7, 9].  The designs were limited to positions known to 

directly contact the peptide.  A similar approach was also shown to be effective by Rein 

et al., who re-engineered PDZ domains to bind to novel sequence targets [10].    

 In addition to designing variants with increased specificity towards peptides, 

computational protein design has been used to engineer proteins with improved protein-

protein specificities.  Bolon et al. showed that focusing on positive design resulted in 

more stable complexes, whereas including negative design provided specificity at the cost 

of stability [11].  Negative design was also shown to be crucial in the design of 

coiled-coil interfaces.  The computational algorithm used by Havranek and Harbury 

explicitly considered the aggregated, denatured, homo-dimeric and hetero-dimeric states 

[12].  While optimizing for one state, the algorithm designs against (predicts destabilizing 

mutations for) the other three states.  Another example is the redesign of a protein 
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complex between colicin E7 DNAse and Im7 immunity protein.  In this design, a new 

hydrogen bond network was predicted at the interface that provided increased specificity 

for the cognate dimer over the non-cognate dimer [13].  The success of the redesign was 

attributed to using positive design on an ensemble and designing against the native 

complex.   

 The work presented in this chapter attempts to increase the specificity of HIV 

protease by designing variants using a combination of positive and negative design 

strategies.  Previous attempts to engineer protease specificity have largely focused on the 

rational design of trypsin [14-18].  Trypsin is a hydrolase that is highly specific for Lys- 

and Arg-containing peptides, while chymotrypsin favors peptides with aromatic residues 

such as Phe, Tyr, and Trp. In 1992, Headstrom et al. successfully engineered a trypsin 

mutant with specificity similar to that of chymotrypsin [19].  Since both enzymes have 

similar tertiary structures, replacing trypsin residues around the catalytic binding pocket 

and surface loops with those of chymotrypsin resulted in a preference for hydrophobic 

amino acids.  The work done on trypsin focused on changing the specificity of the S1 

binding pocket. 

Our redesign of HIV protease considers the entire binding region, which is 

composed of eight binding pockets.  In this work, we bridged the gap between the 

computational design of specificity and engineering for improved catalytic activity [20].  

The computational approach aimed to re-engineer the binding pockets to have increased 

specificity for one of HIV protease's natural substrates.  Unlike CaM or PDZ domains, 

HIV protease is catalytic, and the designs were expected to preserve its hydrolase activity 

in addition to increasing its specificity. 
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5.2 Results and Discussion 

5.2.1 Design Calculations and Prediction of Mutants 

Due to the large binding region of HIV protease, only side chains directly 

contacting the substrate were considered.  In order to conserve function, the catalytic 

aspartates at positions 25 and 125 were kept in their crystallographic conformations.  

Given that HIV protease, a symmetrical dimer, binds to asymmetrical peptides, the two-

fold symmetry of the binding region was not conserved.  Three crystal structures of HIV 

protease, each bound to a different native substrate, were used in the designs (PDB files 

1F7A, 1KJG, and 1KJ7).  Early design calculations indicated that the RT-RH bound 

structure (1KJG) showed the most promise, so it was selected for further optimization. 

 Due to HIV protease’s large binding region, the design was initially divided into 

eight small calculations, one for each binding pocket.  For each pocket, residues within 

4.2 Å of a substrate side chain were defined as being in the 1st shell, and residues within 

4.2 Å of any 1st shell residue were defined as being in the 2nd shell.  1st shell residues 

were allowed to mutate, whereas 2nd shell residues and the substrate's side chains were 

floated (their conformations were allowed to change, but their amino acid identities were 

fixed to wild-type).  Optimization of interactions within the binding region was expected 

to increase specificity [21].      

The individual pocket designs were carried out in the following sequential order: 

S1 S1′ S2 S2′ S3 S3′ S4 S4′ 

Mutations predicted from preceding calculations were carried over to the next design.  As 

a result, the final design on the S4′ binding pocket contained all the mutations from 

preceding designs. 
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One of the major drawbacks with designing individual pockets is their discrete 

nature.  As implemented thus far, the optimization procedure had no means of predicting 

inter-pocket mutations that might be beneficial.  To mitigate this problem, positions that 

predicted reasonable mutations in the individual pocket calculations were simultaneously 

designed in the context of the entire binding region.  In the case of the 1KJG crystal 

structure, four positions (30, 48, 82, and 130) were selected for simultaneous design.  All 

the other positions that had been considered in individual binding pocket calculations 

were floated.  Not surprisingly, the design predicted mutations at all four of the selected 

positions (Fig. 5-1).  Position 30 was mutated to Phe due to improved van der Waals 

interactions with AlaP4, and position 48 replaced Gly with Arg to form a salt bridge with 

GluP3.  The mutations predicted at positions 82 (V I) and 130 (D N) were 

conservative, and were expected to have little impact on specificity for the target 

substrate, RT-RH.   

 Changing force field parameters can be helpful in revealing promising new 

mutations.  We switched the solvation model from a solvent exclusion-based one to a 

surface area-based one and repeated the individual pocket designs.  The resulting 

sequence predicted an Ala to Ser mutation at position 28 that forms a hydrogen bond with 

the P2 Thr of the substrate (Fig. 5-2).  After considering the mutations from all the 

preceding designs, a four-fold mutant (A28S/D30F/G48R/V82I) was selected for further 

evaluation.  Side-chain placement calculations were carried out on this mutant and on the 

wild type using three substrate-bound crystal structures (1KJG, 1F7A, and 1KJ7) in 

which the protease was bound to the RT-RH, CA-P2, or P2-NC peptide, respectively.  

Energy analysis of the side-chain placement results indicated that the four-point mutant 
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would stabilize the RT-RH substrate by 7.8 kcal/mol relative to the wild-type sequence 

(Table 5-2).  In contrast, a much smaller increase in stability (1.96 kcal/mol) was 

predicted for the P2-NC peptide, and a decrease in stability was predicted for the CA-P2 

peptide.  The bulk of the stability for RT-RH arises from the new hydrogen bond and salt 

bridge that are predicted to form as a result of the A28S and G48R mutations.        

 The G48R mutation appears to stabilize interactions with RT-RH, while 

disfavoring binding of CA-P2 and P2-NC.  Arg at position 48 is able to form a nice salt 

bridge with Glu at the P3 position on RT-RH (Fig. 5-2).  The absence of Glu at P3 in the 

other two substrates clearly prevents a similar interaction (Table 5-1).  Position P3 in 

P2-NC is a Thr, a residue too small to accommodate even a hydrogen bond.  CA-P2 

contains an Arg at P3, forcing an interaction between two side chains with similar 

charges.  The unfavorable electrostatic contact would normally be expected to 

significantly destabilize binding of CA-P2.  However, due to the two-fold symmetry in 

the binding region of HIV protease, substrates can bind in either of two orientations.  To 

avoid interacting with Arg48, the CA-P2 substrate is likely to bind in the opposite 

orientation where P3Arg can interact with Ala148 instead.  Loss in specificity would still 

be observed, since there would be limited binding in one of the two possible binding 

orientations.  The same argument can be made about substrate P2-NC; although there are 

no unfavorable interactions predicted between Arg48 and P3Thr, binding in the alternate 

conformation would result in Arg48 having direct contact with P3′Arg (Table 5-1).  As a 

result, the mutation at position 48 to an Arg can be said to contain negative design 

features in addition to its positive design attributes. 
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5.2.2 Kinetic Experiments 

 Experimental results support the idea that Arg at position 48 results in a change in 

specificity of the S3 and the S3′ binding pockets [22].  Replacing Gly48 with Arg in the 

wild-type protein has previously been shown to decrease affinity for negatively charged 

residues at the P3 and the P3′ positions [22].  Since our designs allowed asymmetrical 

mutations, in constructing the wild type and mutant proteins we used a tethered dimer to 

ensure a heterodimer complex.  Given that the crystal structure of the dimer shows that 

the N-terminus of one monomer is adjacent to the C-terminus of the second monomer, 

using a linker to covalently attach the monomers seemed reasonable. 

5.2.3 Positive Design Results 

 After evaluating all the positive design results, we constructed an asymmetrical 

mutant, HIVpr-positive, which included three of the mutations predicted to stabilize 

RT-RH binding from the positive design calculations (A28S, D30F, and G48R) (Fig. 

5-2).  Kinetic experiments for the tethered wild-type protein and for HIVpr-positive were 

carried out and kinetic parameters were compared.  Due to minimal peptide solubility, 

limited data was obtained for substrates with Kms larger than 50 μM.  Nevertheless, 

Vmax/Km values were successfully obtained using hydrolysis rates at low substrate 

concentrations.  The wild-type protein showed a preference for the CA-P2 peptide: 

Vmax/Km for CA-P2 was 1.44 times larger than for RT-RH (Table 5-3).  The P2-NC 

peptide was the least efficiently hydrolyzed of the three substrates, with a Vmax/Km 

slightly lower than the RT-RH value.  The three-point mutant, HIVpr-positive, exhibited 

a significantly different specificity profile.  It was most efficient in hydrolyzing RT-RH, 

followed by the other two substrates, which were hydrolyzed at about one-third the 
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RT-RH rate.  The normalized values show that, relative to wild type, specificity towards 

the RT-RH substrate increased three-fold and four-fold over the P2-NC and CA-P2 

substrates, respectively.  

 The experimental results obtained from the three-point variant support the idea 

that using only positive design to optimize for the target structure is an effective way to 

increase substrate specificity.  Positive design is extremely effective in optimizing 

hydrogen bonds and salt bridges.  In the case of HIV protease, new hydrogen bonds are 

especially important for improving specificity because substrate side chains in the wild-

type protein contain buried unsatisfied hydrogen bond acceptor and donor atoms.  As 

observed in the optimization of the RT-RH substrate, the incorporation of salt bridges can 

have the additional benefit of incorporating unintentional negative design features in the 

predicted mutants.       

5.2.4 Incorporating Negative Design 

 In an attempt to increase the specificity exhibited by the three-point mutant, an 

explicit negative design approach was implemented.  The calculation required the design 

of all three crystal structures, 1KJG, 1KJ7, and 1F7A, in parallel.  A scoring function was 

used that benefited mutations having favorable interactions with RT-RH in 1KJG and 

unfavorable interactions with the CA-P2 and P2-NC substrates in 1F7A and 1KJ7, 

respectively.  Initial designs used the following simple scoring function: 

 AFKJKJG EEEScore 71711 −−=  (Eq. 5-1) 

Only sequences that exhibited energies within 20% of the global energy minimum 

conformation in the 1KJG structure were considered.    

 ( )8.0min
11 ×≤ KJGKJG EE  (Eq. 5-2) 
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Sequences predicted to have energies above 200 kcal/mol in the 1KJ7 and 1F7A 

structures were assigned an energy of 200 kcal/mol.  This hard energy ceiling caps the 

large unfavorable energies that result from overlapping atoms.  A successful negative 

design will predict mutations that pack nicely into the 1KJG structure, but cause at least 

one van der Waals clash in both the 1F7A and the 1KJ7 crystal structures.  The extent of 

the atomic clash is not crucial and there is little benefit in discriminating between them.  

Any sequence with a reasonable clash will hit the hard energy ceiling of 200 kcal/mol, at 

which point the best sequence is the one with the lowest energy in the 1KJG crystal 

structure (Fig. 5-3).    

 This negative design approach was carried out on individual pockets in the hopes 

of identifying positions predicted to clash with the bound substrate in the 1KJ7 and 1F7A 

structures.  Unfortunately, only three of the eight designs predicted sequences with 

clashing residues in the desired structures (Table 5-4).  Energy analysis of the predicted 

sequences revealed that only P1 pocket mutations resulted in extremely unfavorable 

interactions in both the 1F7A and 1KJ7 structures.  The P3′ pocket design predicted a 

sequence with unfavorable energies in the 1KJ7 structure, but reasonable energies in the 

1F7A and the 1KJG structures.  The fact that only one of eight pocket designs predicted 

clashing mutations in both 1F7A and 1KJ7, and not in 1KJG, supports the idea that the 

binding pockets are optimized for steric complementarity for all three substrates.  

Mutations that clash in the 1F7A and 1KJ7 scaffolds are likely to also clash in the 1KJG 

structure and, thus, are not predicted.     

 Closer inspection of the ten best-scoring sequences for the P1 pocket design 

showed position 180 was consistently mutated to an Ala and position 184 was mutated to 
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a large hydrophobic amino acid (Phe, Trp, or Tyr).  Since it is unlikely that replacing a 

Thr at position 180 with an Ala would result in large clashes, we focused our attention on 

mutations at position 184.  The large hydrophobic residues selected at position 184 were 

predicted to cause large van der Waals clashes with Met and Leu at the P1 position in the 

P2-NC and CA-P2 peptides.  Interestingly, position P1 in the RT-RH substrate is a Phe, a 

residue much bulkier then either Met or Leu.  Phe at P1 was predicted to take on a 

conformation that allows it to make good п-stacking interactions with the hydrophobic 

aromatic residues predicted at 180.  Met and Leu, on the other hand, were unable to 

accommodate the change at position 184. 

 Experimental analysis was carried out on a four-point mutant, HIVpr-negative, 

which included a I184F mutation in addition to A28S, D30F, and G48R mutations.  

Relative to the results observed for HIVpr-positive, the four-point mutant showed 

decreased specificity (Table 5-3).  Specificity for CA-P2 reverted back to a value closer 

to that observed for the wild-type protein:  1.63 compared to 1.44 for the wild-type 

protein.  Mutating position 184 to Phe apparently did not increase specificity for the 

target peptide; instead, it increased specificity for CA-P2.   

 It is difficult to predict the true impact of van der Waals clashes in a 

computational protein design procedure that requires the use of a fixed backbone.  

Proteins are intrinsically dynamic and can adapt to mutations in order to prevent van der 

Waals violations.  With the fixed backbone restriction, there is no means of modeling 

protein motions that might accommodate unfavorable van der Waals energies.  In 

addition, the discrete nature of the rotamer library can exclude side-chain conformations 

that might prevent atomic clashes.  One possible solution to the problem is minimization, 
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in which the protein backbone and predicted side-chain conformations are relaxed.  

Minimization, however, is computationally expensive, since it would have to be 

performed at every step in the sequence search.  If minimization had been incorporated 

into the negative design procedure, the mutation at position 184 would not have been 

selected, since the clash would have been alleviated in all the scaffolds.  A good 

alternative to minimization is the parallel design of multiple static backbone structures 

that represent a protein's dynamic range.  Future studies in computational protein design 

will most likely incorporate methods that include protein backbone motion.    

5.3 Conclusions  

 Positive design proved to be an effective way to alter protein specificity.  Positive 

design can easily identify stabilizing electrostatic interactions and hydrogen bonds that 

will increase substrate specificity.  Negative design was shown to successfully recover 

mutations predicted using positive design alone and to predict mutations that clash in 

alternate substrates.  Experimental results support the idea that hydrogen bonds and salt 

bridges increase specificity for the target substrate.  Steric complementarity is known to 

be crucial for specificity; however, designing optimal steric complementarity for one 

substrate and destabilizing another is complicated by protein dynamics.   

5.4 Materials and Methods 

5.4.1 Computational Positive Design  

The crystal structure of HIV protease bound to the RT-RH substrate (PDB code 

1KJG) was used as the positive design scaffold.  The crystal structure was put through 50 

steps of minimization to relax van der Waals interactions, atomic bonds, and angles.  
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Residues within 4.2 Å of a substrate side chain were selected for design (1st shell 

residues); residues within 8.4 Å not selected to be in the 1st shell (2nd shell residues), and 

substrate side chains were floated (allowed to change conformation but not amino acid 

identity).  Five conserved water molecules, residues hydrogen bonding to the waters (8, 

29, 87, 108, 129, and 187) and catalytic residues (25 and 125) were fixed in their 

crystallographic conformations.  In addition, proline-containing positions (81 and 181) 

were only allowed to change conformation. 

 A Dunbrack and Cohen-based backbone dependent rotamer library was used for 

side-chain optimization.  χ1 and χ2 values were expanded 1 standard deviation for all 

amino acids.  In addition, the crystallographic rotamer at every design position was 

included.  Either a solvent exclusion-based or an atomic surface area-based solvation 

potential was used.  A rotamer probability scale factor of 0.3 proportionally penalized 

side-chain conformations based on their pre-calculated probabilities.  All other 

parameters and potential functions have been described in previous Mayo lab 

publications [23-26].  An optimization algorithm based on the Dead-End Elimination 

(DEE) theorem was used in the design of individual pockets [27].  Designs on the entire 

binding region required the use of the FASTER algorithm to achieve convergence [28].  

A combination of energy analysis and visual inspection of the predicted low-energy 

conformations was used to identify promising mutations. 

5.4.2 Computational Negative Design 

Crystal structures of HIV protease bound to the CA-P2 and P2-NC peptides (PDB 

codes 1F7A and 1KJ7, respectively) were used as negative design scaffolds.  Both 

structures were minimized in the same fashion as the 1KJG crystal structure.  All force 
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field parameters were identical to those used in the positive design procedure.  

Computational negative design, however, carried out sequence optimization using all 

three scaffolds simultaneously.  The search algorithm selects an amino acid mutation and 

determines the lowest energy conformation for that amino acid on each of the scaffolds.  

The scoring function then subtracts the predicted energies on the negative scaffolds from 

that of the positive scaffold (Eq. 5-1) to yield a fitness value representative of the final 

objective of the calculation. 

 Design of specificity requires a scoring function that favors stabilizing mutations 

in the target substrate while destabilizing alternate substrates.  Equation 5-1 is simple but 

effective when adequately restricted.  In order to ensure reasonable sequences for the 

target substrate, a DEE calculation is carried out to identify the global minimum energy 

conformation (GMEC) in the target's scaffold.  Only sequences within 20% of the GMEC 

energy are evaluated, ensuring that the predicted sequences are reasonable.  In addition, 

scoring for the undesired substrate is capped at a cutoff of 200 kcal/mol. 

5.4.3 Protein Kinetics  

HIV protease variants were expressed from a Pet11A E. coli plasmid vector.  The gene 

construct coded for two copies of the HIV monomer linked by the nucleotide sequence 

that codes for Gly-Gly-Ser-Ser-Gly.  The nucleotide sequence that coded for each 

monomer was unique; the use of two different sequences allowed for site-directed 

mutagenesis to be targeted to a specific monomer.  Cysteines at position 67, 95, 167, and 

195 were mutated to Leu, Met, Leu, and Met, respectively.   

 HIV protease variants were expressed in two liter cultures of E. coli BL21(pLys) 

cells at 37˚C.  Protein expression was initiated at an OD600 of 0.6 by adding IPTG.  Cells 
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were harvested after three hr and lysed using an emulsiflex.  The inclusion bodies were 

isolated and resuspended in 66% acetic acid and diluted ten-fold in water.  The soluble 

fraction was isolated after centrifugation and dialyzed overnight against 100% water.  

Any precipitate was removed and the resulting sample was purified using cation 

exchange chromatography.  The pure sample was desalted and lyophilized.  Active 

enzyme was produced by taking the lypholized sample in 8 M guanidinium and refolding 

the protein at 0.6 mg/ml in 55 mM Tris pH 8.2, 10.56 mM NaCl, 0.44 mM KCl, 0.055% 

PEG 3350, 550 mM guanidine HCl, 1.1mM EDTA, 440 mM sucrose, and 1mM DTT at 

0˚C.  Kinetics were determined using three DABCYL/EDANS substrates: NH2-

D(Edans)-KARVLAEAM-K(Dabcyl)-R-COOH, NH2-D(Edans)-ATIMMQRGN-

K(Dabcyl)-R-COOH, and NH2-D(Edans)-AETFYVDGA-K(Dabcyl)-R-COOH, which 

are derivatives of CA-P2, P2-NC, and RT-RH substrates, respectively [29].  Hydrolysis 

was monitored at 490 nm while exciting at 340 nm in a PTI fluorimeter.  The reaction 

buffer was composed of 0.1 M sodium acetate, 1 M NaCl, 1 mM EDTA, 1 mM DTT, 1 

mg/ml BSA, and 10% DMSO at a pH of 4.7.   
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Table 5-1:  Sequences of Peptide Substrates Hydrolyzed by Wild-Type 

HIV-1 Protease 
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Table 5-2: Energy Scores of Side-Chain Placement Calculation on the 
Binding Region of Wild-Type HIV Protease and a Predicted 
Four-Point Mutant 
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Table 5-3: Experimental Kinetic Values for HIV Protease and Two 
Variants Using Three Peptide Substrates 
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Table 5-4: Energies and Scores for Individual Pocket Negative Designs of 
Three HIV Protease Structures 
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Fig. 5-1: Predicted Conformation of Four-Fold HIV Protease Mutant: 
D30F/G48R/V82I/D130N 

 
Peptide substrate, RT-RH, is shown in orange and HIV protease positions are shown in 
green.  Hydrogen bonds are depicted by a dashed green line.  The G48R mutation is 
predicted to form a nice salt bridge with Glu at position P3.  The wild-type hydrogen 
bond between residue 130 and 145 is preserved due to the conservative mutation from 
Asp to Asn at position 130. On the other hand, Phe at position 30 is predicted to form 
improved van der Waals interactions with Ala at P4, which might significantly increase 
substrate specificity.  A conservative mutation from Val to Ile at position 82 is unlikely to 
significantly impact specificity. 
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Fig. 5-2: Predicted Conformation for HIV-positive Mutant in the RT-RH 
Bound Scaffold 

 
The Arg at position 48 is predicted to form a nice salt bridge with P3 Glu of RT-RH.  A 
hydrogen bond is predicted to form between the Ser at position 28 and a Thr at P2.  The 
mutation at position 30 is selected for its improved van der Waals interactions with P3 
Ala.   
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Fig. 5-3: Schematic Representation of Negative Design Sequence 

Optimization Procedure 
 
The optimization procedure is represented below by a handful of time points that proceed 
from left to right.  The sequence search is limited to sequences with energies within 20% 
of the global minimum energy conformation (highlighted in yellow) of the positive 
design scaffold, 1KJG.  For the negative design scaffolds, 1F7A and 1KJ7, sequences 
with energies greater than 200 kcal/mol automatically receive a score of 200.  The 
GMEC for the positive design scaffold is used as the starting sequence; the energy in the 
alternative scaffolds tends to be fairly optimal (A).  As the negative design optimization 
proceeds, sequences that exhibit unfavorable energies in the negative design scaffolds are 
chosen until they hit the hard energy ceiling of 200 kcal/mol (B, C, and D).  Once the 
ceiling is reached, the sequence score is only improved by optimizing the positive design 
structure represented in blue (D and E). 
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