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Abstract

Advanced numerical methods based on exponential propagation have been applied to mag�

netohydrodynamic �MHD	 simulations
 This recently developed numerical technique e�

volves the system of nonlinear equations using exponential propagation of the Jacobian

matrix
 The exponential of the matrix is approximated by projecting it onto the Krylov

subspace using the Arnoldi algorithm
 The primary advantage of the exponential propa�

gation method is that it allows time steps exceeding the Courant�Friedrichs�Lewy �CFL	

limit
 Another important aspect is faster convergence of the iteration computing the Krylov

subspace projection compared to solving an implicit formulation of the system with similar

iterative methods
 Since the time scales in the resistive MHD equations are widely sepa�

rated the exponential propagation methods are especially advantageous for computing the

long term evolution of a low�beta plasma
 We analyze several types of exponential propa�

gation methods and highlight important issues in the development of such techniques
 Our

analysis also suggests new ways to construct schemes of this type
 Implementation issues�

including scalability properties of exponential propagation methods� and performance are

also discussed


In the second part of this work we present numerical MHD models which are constructed

using exponential propagation methods and which describe the evolution of the magnetic ar�

cades in the solar corona
 Since these numerical methods have not been used before for large

evolutionary systems like resistive MHD� we �rst validate our approach by demonstrating

application of the exponential schemes to two existing magnetohydrodynamic models
 We

simulate the reconnection process resulting from shearing the footpoints of two�dimensional

magnetic arcades and compute the three�dimensional linear force�free states of plasma con�

�gurations
 Analysis of these calculations leads us to new insights about the topology of

the solutions
 The �nal chapter of this work is dedicated to a new three�dimensional nu�

merical model of the dynamics of coronal plasma con�gurations
 The model is motivated

by observations and laboratory experiments simulating the evolution of solar arcades
 We

analyze the results of numerical simulations and demonstrate that our numerical approach

provides an accurate and stable way to compute the solution to the zero�� resistive MHD
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system
 Based on comparisons of the simulation results and the observational data we o�er

an explanation for the observed structure of eruptive events in the corona called coronal

mass ejections �CME	
 We argue that the diversity of the images of CMEs obtained by

the observational instruments can be explained as two�dimensional projections of a unique

three�dimensional plasma con�guration and suggest an eruption mechanism
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Chapter � Introduction

As the complexity of problems tackled by scientists grows� computer simulations of physical

processes become an ever more important part of research e�orts in many scienti�c �elds
 A

research project which integrates advanced numerical modeling with experimental and the�

oretical studies can bring especially valuable insights into the nature of physical processes


The main results of this thesis are twofold
 First� we demonstrate how the recently intro�

duced numerical technique of exponential propagation can be used to e�ciently integrate

large sti� systems of equations
 Second� we present a theory of the solar magnetic arcades�

motivated by computer simulations performed using these new numerical techniques� that

describes the structure and evolution of active magnetic regions in solar atmosphere
 In

the �rst part of this thesis �Chapters ���	 we provide a detailed description of the main

building blocks of numerical exponential propagation methods� describe the advantages of

this technique and demonstrate its performance on a test problem
 Chapters � and � con�

centrate on numerical models of physical processes occurring in the plasma which comprises

the solar atmosphere
 While material in chapters � and � would be of interest to a reader

with some background in numerical analysis� chapters � and � could be read independently

if the primary subject of interest is the results of computer simulations of solar plasma

con�gurations


The primary objective of using exponential propagation methods is to avoid the restric�

tive Courant�Friedrichs�Lewy �CFL	 condition which constrains the maximum allowed time

step for explicit schemes ����
 This becomes important if a large system of di�erential equa�

tions is sti�
 In this case the ratio of the largest to the smallest eigenvalues of the system�s

Jacobian is very large
 Since the CFL condition is determined by the fastest modes of the

system �these correspond to the largest eigenvalues	 the time step in an explicit scheme

has to be very small in order to obtain a stable method
 In a system of partial di�erential

equations the Jacobian comes from discretization of spatial di�erential operators� and the

sti�ness of the system grows as the spatial resolution is increased
 Thus� the time step

restriction becomes severe and� if the system has to be integrated over long periods of time�

one is forced to seek an implicit numerical scheme which does not have the CFL restriction




�

An integral part of an implicit scheme is solution of a linear system
 Since the problems

we are interested in are large� a Krylov�projection�based iterative method has to be used to

invert a matrix in such a linear system ����
 Due to the sti�ness of the Jacobian matrix we

can expect the convergence of an iterative method to be very slow� so that the larger time

step advantage of an implicit methods is overweighed by the number of iterations required

to invert the matrix
 Exponential propagation methods provide an alternative to avoid the

limitations of both explicit and implicit methods
 First� they allow a stable time integration

to be performed with the time step greatly exceeding the CFL bound
 Second� as was shown

in ����� the convergence of the Krylov projection method used in an exponential propagation

scheme exceeds that of the same Krylov projection technique used to invert a matrix in an

implicit method
 The latter statement will be clari�ed below as well as discussed in detail

later in this work


The two main concepts that the exponential numerical methods presented in this work

are built upon are the exponential propagation and the Krylov approximation of functions

of matrices
 The former notion refers to the formal solution of the systems of equations

describing time evolution of a physical process
 If the system of �rst�order in time di�erential

equations is written in an integral form� the dynamics of the problem is described by an

exponential of the spatial di�erential operator integrated over the time interval of interest


In most cases the exponential cannot be computed or integrated exactly and has to be

estimated using asymptotic techniques
 The idea of computing the integral approximately

and using the resulting formula as a numerical scheme to integrate the system of equations

in time is not new and has been used to study small systems of di�erential equations

as far back as the �����s �see ���� and references therein	
 The use of this technique to

integrate large systems of di�erential equations has been considered impractical� however�

since computing an exponential of a general large non�symmetric matrix was prohibitively

expensive
 By the �����s there were a number of algorithms proposed for calculating an

exponential of a matrix
 None of these methods� however� could signi�cantly reduce the

complexity of this task for problems with general large matrices ����
 The solution to this

problem was found in the �����s with the development of the Krylov subspace projection

methods for large linear systems


The Krylov subspace approximations to functions of matrices are based on an idea of

projecting the function of a large matrix onto a small Krylov subspace� calculating this



�

function using the small projection matrix as an argument and then transforming the result

back to the original linear space ����
 The advent of these methods revolutionized the

solution of linear systems with large matrices
 Initially they were used to solve linear

systems of equations and to �nd eigenvectors of large matrices
 In particular� Gear and

Saad ���� used Krylov methods to solve the systems arising in the Newton iteration of

implicit multistep schemes
 In ���� Nauts and Wyatt ���� successfully utilized a Krylov

method for symmetric matrices �i
e
 Lanczos algorithm	 to compute the exponentials of

discrete Hamiltonian operators for an application in chemical physics
 Later this technique

was used by Park and Light ���� to exponentially propagate the Schr�odinger equation
 The

idea of approximating general functions of matrices using the Krylov subspace projection

has also been proposed by Van der Vorst ����
 Combining exponential propagation and

the Krylov methods for estimating the exponential of a large matrix was presented for

the �rst time as a numerical technique to integrate general systems of non�linear ordinary

di�erential equations by Friesner et al� ����
 They later extended this method to systems of

partial di�erential equations ���� with particular application to the Navier�Stokes system


Gallopoulos and Saad ���� presented their version of these methods for linear parabolic

equations with a forcing term and proved some results about the accuracy and stability of

this type of exponential propagation techniques
 Finally� Hochbruck and Lubich utilized

the framework of Runge�Kutta methods to develop an e�cient and robust exponential

propagation method ���� and presented a numerical theory that provided an insight into

the advantages of exponential propagation techniques and estimated the error of Krylov

approximation for functions of matrices ����
 The main di�erence between the nonlinear

exponential propagation methods proposed by Friesner et al� ���� and Hochbruck and

Lubich ���� is the technique used to approximate the integral of the exponential propagator


Friesner et al� propose a multistep�type approach and develop an iterative technique for this

purpose� while Hochbruck and Lubich advocate the framework of the Runge�Kutta method


Chapters � and � present a summary of the numerical theory of exponential propagation

methods developed to date and highlights their advantages and limitations


In Chapter � we introduce the main concepts of exponential propagation technique
 We

explain how the methods are constructed and then concentrate on the analysis of the Krylov

approximation to the exponential of a general large matrix
 We provide error estimates

and present numerical analysis results for this approximation
 In particular� we discuss
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the theory presented in ����� which explains the faster convergence rates of the Krylov

projection methods applied to approximating matrix exponential compared to the same

procedure used to solve a linear system that involves this matrix
 This gives an insight

into why exponential propagation methods can be superior to implicit schemes
 In the last

section of the chapter we construct a simple second order exponential propagation method

for linear systems of di�erential equations and discuss its accuracy and stability


Chapter � is dedicated to studying exponential propagation techniques for general sys�

tems of nonlinear di�erential equations
 First� we introduce the iterative exponential prop�

agation methods of Friesner et al� Our analysis highlights the shortcomings of the technique

and suggests important issues in construction of an exponential propagation method
 We

conclude that this iterative exponential method in the form presented in ���� ��� has many

limitations and does not guarantee the accuracy of the computed solution
 However� the

understanding these problems gives insight into how the multistep�type approach can be

used to develop a better method
 While we plan to pursue this line of research in future

work� here we turn to the Runge�Kutta�type exponential propagation methods proposed

in ���� ���� that do not have these limitations
 Sections �
� and �
� describe the construc�

tion of an exponential propagation method using the Runge�Kutta framework and discuss

one of the main advantages of this approach � the automatic control mechanism� which

can be directly transferred over to the exponential propagation method from Runge�Kutta

schemes
 Finally� in Section �
� we demonstrate the advantages of the exponential Runge�

Kutta method over the explicit methods on a test problem
 We solve Burgers equation using

a fourth�order exponential Runge�Kutta method and a fourth�order explicit Runge�Kutta

scheme
 We use the same automatic error control mechanism for both techniques
 The

results of this test clearly demonstrate the advantages of exponential Runge�Kutta meth�

ods over explicit schemes as the spatial grid size increases and the sti�ness of the problem

grows
 We also discuss ssues of practical implementation of the exponential propagation

method
 In particular� we mention that the algorithm is easily parallelizable� but has large

memory requirements


The second part of this work �Chapters ���	 is dedicated to numerical modeling of

physical processes that determine the behavior of the solar atmospheric plasma
 The events

occurring in the upper part of solar atmosphere� called the �corona� have a direct impact on

the conditions in the Earth�s geophysical environment� this is callled a space �weather
 The



�

corona consists of rare�ed plasma which is dominated by magnetic forces and is arranged

into a complex network of magnetic arcades
 Such plasma con�gurations can exist stably

for long periods of time �days to months	� some disappear eventually� others� however�

suddenly erupt ejecting billions of tons of plasma into interplanetary space
 One of the

largest types of such spectacular plasma explosions are called the coronal mass ejections

�CME	 ����
 CMEs greatly enhance so�called �solar wind� the constant stream of charged

particles from the Sun into space� which a�ects the environment around and on Earth


In particular� large solar storms can disrupt radio communications� damage spacecrafts�

electric power grids and pipelines and endanger the astronauts working in Earth�s orbit


Therefore� it is important to understand the mechanisms underlying CMEs and to be able

to predict these events
 At present� however� both the understanding and the predictive

capabilities for CMEs are poor
 We provide a more detailed overview of the challenges in

understanding the dynamics of the coronal plasma con�gurations and the research in this

area in Section �
�


Our models of coronal plasma con�gurations are based on resistive magnetohydrody�

namics �MHD	� a theory which describes the large scale behavior of plasma con�gurations


Many applications in �elds ranging from fusion research to astrophysics are based on this

theory
 While a detailed treatment of MHD theory can be found in numerous references

���� ��� ��� ���� we present a brief discussion of the resistive MHD equations in Section �
�


Due to the complexity of the system of resistive MHD equations� numerical simulations

are often the only option to obtain a solution
 Solving the system numerically� however�

poses numerous challenges to a computational scientist
 One of the di�culties in solving the

equations of magnetohydrodynamics numerically is the widely separated time scales in the

system
 The fast modes in the system� represented by electromagnetic waves called Alfven

waves� propagate much faster than the slowest� resistive� modes
 This causes sti�ness in

the system of resistive MHD equations and consequent di�culties in numerical integration

of the equations
 The exponential propagation methods described in Chapters � and � help

resolve this problem and allow the integration of the resistive MHD system with a time step

exceeding the CFL bound and have better e�ciency than a fully implicit scheme
 In Section

�
� we give an overview of previous work on numerical MHD� describe the challenges of this

research area and show why exponential propagation methods are advantageous compared

to other numerical techniques used for MHD simulations




�

There have only been a few previous studies that explored the potential of exponential

propagation methods
 Aside from numerical integration of the Schr�odinger equation in the

context of quantum dynamical simulations� the methods have only been used for small test

problems ���� ��� and the performance of these methods for large�scale three�dimensional

systems of equations have not been studied in any detail
 Thus� in order to validate these

numerical schemes in the context of the resistive MHD system we use the exponential Runge�

Kutta method for two commonly used models of coronal plasma processes and compare our

results with previously published studies �Section �
�	
 First� we simulate a magnetic re�

connection process in two�dimensional magnetic arcades �Section �
�
�	
 We show that our

numerical solution agrees with the dynamics calculated using other numerical methods
 We

also obtain an interesting result about the topology of the reconnection process �Fig
 �
��	�

which� to our knowledge� have not been previously noted
 The second model we present

in Section �
�
� allows computation of three�dimensional force�free magnetic con�gurations�

which are often used to model the stable coronal magnetic arcades
 This problem highlights

another application of the exponential propagation methods� namely� the use of these tech�

niques for relaxation problems
 So far we discussed the exponential propagation methods

in a context of computing the dynamics of a physical system� i
e
 problems� where the

accurate numerical solution has to be obtained for the time interval of interest
 In Sec�

tion �
�
� we propose the use of the methods for steady state problems� where an accurate

computation of the system dynamics at every moment of time is not required as long as

the �nal equilibrium solution can be obtained accurately
 We demonstrate that a simple

second�order in time exponential propagation method is very well suited for these types of

problems because it can integrate the equations with a large time step and o�ers a fast and

e�cient way to obtain the steady state
 The excellent stability properties of the method

are also discussed


In Chapter � we present a three�dimensional model of the evolution of the coronal ar�

cades inspired by observational data and also laboratory simulations of coronal magnetic

con�gurations
 Section �
� provides a detailed description of the model
 In particular� the

boundary conditions� that we formulate and use� are discussed at length
 The conclusions

drawn from the results of our three�dimensional numerical model are presented in Section

�
�
 We demonstrate that the topology of the magnetic �eld obtained from simulations is in

excellent agreement with the observational data of structure and dynamics of the eruptive



�

magnetic con�gurations
 One of the major di�culties in understanding the structure of

CMEs is the two�dimensional nature of the images obtained by the observational instru�

ments
 The variety of structures seen in these images does not allow simple categorization

of the di�erent eruptions and makes it di�cult to explain these events as a result of the

same physical process
 The results from our model resolve this problem
 Based on the

magnetic topology obtained from the simulations we present a theory which interprets the

di�erences in the observational images as di�erent angle projections of a single� speci�c

three�dimensional coronal structure
 We verify this result by comparing the observations

to the numerical results and demonstrate how the boundary conditions cause formation of

such three�dimensional con�gurations
 We present several simulations and discuss how the

solution depends on the parameter values used in the computation
 These simulations give

much insight into the mechanism of evolution and eruption of coronal magnetic arcades
 We

also present several numerical studies which verify the accuracy of our numerical solution

and demonstrate that it is robust with respect to the boundary conditions and that it is

not polluted by numerical boundary e�ects


Finally� we summarize the results obtained in this work and discuss possible future

research objectives in Chapter �




�

Chapter � Linear exponential propagation method

In this chapter we introduce the linear exponential propagation method
 We begin by de�

scribing how exponential propagation can be used to solve systems of di�erential equations


Then we discuss methods used to approximate functions of a matrix argument
 In the �nal

section we present the properties of the resulting exponential propagation scheme


��� Exponential propagation

Consider the following initial value problem for the system of ordinary di�erential equations�

dU

dt
� AU� ��
�	

U�t�	 � U��

where U is a vector in RN and A is an N �N constant matrix in RN�N 
 This system can

also arise from the application of the method of lines to a system of linear partial di�erential

equations �PDE�s	
 In this case the vector U will have values of the unknown function on

a given grid as its elements� the matrix A will represent the discrete form of the spatial

di�erential operator of the PDE and N will be the number of grid points times the number

of unknowns in the system


The formal solution of problem ��
�	 at time t � t� � �t is

U�t	 � exp�A�t� t�		U� � exp�A�t	U�� ��
�	

where the action of the operator exp�A�t	 on the vector U� is de�ned as

exp�A�t	U� � U� �
�A�t	

� 
U� �

�A�t	�

� 
U� � � � � �

�A�t	n

n 
U� � � � � � ��
�	

Suppose the matrix A is diagonalizable and we can calculate its eigenvalues 	�� � � � � 	N

and eigenvectors v�� � � � � vN 
 Then we can express A in terms of a matrix V which has

eigenvectors of A as its columns

�
V �

h
v�� v�� � � � � vN

i�
� its inverse V �� and a diagonal



�

matrix

! �

�BBBBBB�
	� � � � � �

� 	�

 
 












 
 


 
 
 �

� � � � � 	N

�CCCCCCA
as A � V !V �� and easily calculate the exponential operator in ��
�	 using

exp�A�t	 � V exp�!�t	V �� � V

�BBBBBB�
exp�	��t	 � � � � �

� exp�	��t	

 
 












 
 


 
 
 �

� � � � � exp�	N�t	

�CCCCCCAV ���

For most practical applications� however� A is a very large and full matrix
 For instance�

if problem ��
�	 is the spatial discretization of a heat equation in three dimensions on a

Cartesian grid with n points in each coordinate direction� matrix A is a discretized Laplacian

operator of size N�N withN � n�
 Diagonalizing such a matrix directly is an expensive and

ine�cient way to solve the system ��
�	
 Instead we would try to solve it by approximating

the time derivative in ��
�	 with a �nite di�erence and computing the approximate solution

"U at time t by solving the resulting system of di�erence equations
 Depending on which

�nite di�erence approximation to the time derivative is used the resulting numerical method

is either explicit or implicit
 For example� if we use simple backward di�erence and de�ne

the approximate solution at time t to be "U and at time t� to be "U� the resulting scheme

will be the Euler method�

"U� "U�

�t
� A "U��

or

"U � "U� � A�t "U� ��
�	



��

If the forward di�erence approximation to the time derivative is used the implicit scheme

"U� "U�

�t
� A "U�

or

"U � �I ��tA	�� "U� ��
�	

is obtained
 Suppose now that we need to calculate the solution of the system over a long

period of time and the absolute value of the ratio of magnitudes between the largest 	l and

the smallest 	s eigenvalues of A is very large� i
e
 system ��
�	 is sti�
 It is well known

���� ��� that the time step in explicit calculations is restricted by the Courant�Friedrichs�

Lewy �CFL	 stability condition
 For the Euler method ��
�	 the CFL condition reduces to

j	lj�t 
 � if we are solving a system of ODEs and if for example� A is the second order

discretized Laplacian in one dimension� the CFL condition is j	lj�t 
 ��x	�
 Clearly� if our

system is sti� the restriction on the time step is quite severe� and if we want to integrate

system ��
�	 to a large t many intermediate time steps will be required


Implicit methods� on the other hand� will allow us to perform calculations with larger

time steps
 In this case� however to calculate the solution at the next time step we have

to invert the matrix �I ��tA	 
 Since we are interested in large sti� systems of type ��
�	

direct inversion of this matrix is infeasible
 We have to apply iterative methods to solve the

linear system ��
�	
 As we know from the Kaniel�Page theory ���� ��� the convergence rate

of the iterative methods will be a�ected by the sti�ness of the matrix and unless a good

preconditioner is available the iteration will converge very slowly


Given the limitations of the numerical schemes discussed in the previous paragraphs we

would like to develop a new iterative numerical procedure which will allow us to accurately

compute the solution using time steps larger than the CFL limit with faster convergence

rate than that of an iterative method used to invert matrix �I ��tA	 at each time step


Consider the following numerical scheme arising from approximation ��
�	 of the exact

solution of the system ��
�	�

"U � exp�A�t	 "U�� ��
�	



��

or equivalently�

"U � "U� �
exp�A�t	� I

A
A "U�� ��
�	

where the action of the operators exp�A�t	 or ��A�t	 � �exp�A�t	� I	�A on vectors "U�

or A "U� respectively is approximated using an iterative method
 In the subsequent sections

we will discuss this numerical scheme in detail and show how this method compares with

the explicit and implicit techniques


��� Approximating the matrix exponential

The most e�ective way of approximating the matrix exponential is Krylov subspace projec�

tions
 This technique was �rst introduced in the chemical physics literature ���� ���
 Later

Van der Vost proposed using this iteration to approximate general functions of a matrix

����
 The convergence analysis and error estimates for such an approximation to the matrix

exponential appeared later in the articles by Saad and Gallopoulos ���� ���
 The derived

estimates� however� did not fully explain the rapid error reduction in the projection iteration

and its relation to the convergence of the iterative techniques for implicit methods
 Later

Hochbruck and Lubich ���� ��� generalized the convergence analysis to arbitrary functions

of a matrix and obtained error bounds which give a better understanding of the properties

of Krylov subspace approximations
 In this section we will summarize these results and

discuss their application


����� Krylov subspace projection

Consider the problem of approximating the action of a matrix exponential operator on a

vector
 Recall the series expansion form of the matrix exponential e�A multiplied by a

vector U�

exp��A	U� � U� �
��A	

� 
U� �

��A	�

� 
U� � � � � �

��A	m

m 
U� � � � � � ��
�	

where � � R is a number which corresponds to the time step in problems of type ��
�	

and A � RN�N 
 Clearly� the vector exp��A	U� belongs to an in�nite dimensional space

of vectors fU�� AU�� A
�U�� � � � � A

mU�� � � � g
 To approximate ��
�	 we will project the



��

operator exp��A	 and the vector U� onto a �nite dimensional Krylov subspace

Skry � spanfU�� AU�� A
�U�� � � � � A

m��U�g�

In order to do this we compute an orthonormal basis fv�� � � � � vmg of the subspace Skry

using the Arnoldi algorithm ���� as follows�

�
 v� � U��kU�k��
�
 For j � �� � � � �m do

a	 for i � �� � � � j compute hi�j � �vi� Avj	

b	 calculate w � Avj �
jP

i��
hi�jvi

c	 compute hj���j � kwk�

d	 if hj���j � � then stop� else compute the next basis vector vj�� � w�hj���i


Arnoldi iteration can be interpreted as the Gram�Schmidt orthogonalization procedure per�

formed on the vectors fU�� AU�� A
�U�� � � � � A

m��U�g
 If we de�ne the matrix H with

elements hi�j � �vi� Avj	� i� j � �� � � � �m� we can rewrite the Arnoldi algorithm in a matrix

form as

AVm � VmH � hm���mvm��e
T
m� ��
�	

where em � �� � � � � �� is a unit vector in Rm and Vm � �v�� � � � � vm� is a m �m matrix

with vectors vi as its columns
 If the iteration stopped with hm���m � � ��
�	 will become

AVm � VmH� ��
��	

which implies that the computed Skry is invariant under A
 Since fv�� � � � � vmg is an or�

thonormal basis of the Krylov subspace Skry� it is clear that if V T
m is the transpose of Vm�

V T
mVm is a m�m identity matrix and VmV

T
m is a projector from RN onto Skry
 From the

construction of the basis we can see that each vector vi is orthogonal to all vectors Avj with

j 
 i� �� which implies hi�j � �vi� Avj	 � � so that H is upper Hessenberg
 Using V T
mvm��

� � from ��
�	 we have

H � V T
mAVm� ��
��	



��

The projection of a matrix A onto a Krylov subspace is then VmV
T
mA and similarly any vector

v projected onto Skry is VmV
T
m v
 So if we want to use projection onto Skry to approximate Av

we can write Av � VmV
T
mAVmV

T
mv� or substituting ��
��	 gives Av � VmHV T

m v
 Similarly

we can approximate the action of any operator f�A	 on a vector U� using the Krylov

subspace projection as follows�

f�A	U� � Vmf�H	V T
mU� � Vmf�H	V T

m v�kvk� � kvk�Vmf�H	e�� ��
��	

where we used v� � U��kU�k� and V T
mv� � e�
 In particular� to approximate the exponen�

tial in ��
�	 we write

exp��A	U� � kU�k�Vm exp��H	e�� ��
��	

Now suppose the error of the approximation ��
��	 is within some prede�ned tolerance for

a relatively small m �m� N	
 Then since H is m�m it is relatively cheap to diagonalize it�
H � E!E��

�
and compute exp��H	 � E exp��!	E��
 The approximation to a function

of A then becomes�

f�A	U� � kU�k�VmEf�!	E��e�� ��
��	

In the following subsections we will discuss the convergence and error of such an approxi�

mation and will show that even for very large matrices arising from the discretization on a

PDE on a three�dimensional grid it is possible in cases of interest to obtain desired accuracy

by computing only ����� Krylov vectors


����� Convergence and error of the Krylov approximation

First let us consider the case when the Arnoldi algorithm has stopped with hm���m � �


Then from ��
��	 we have that for any j 	 �

AjVm � VmH
j � ��
��	

If function f is analytic on a open set containing the spectrum of the matrix A we can



��

expand f�A	 in a Taylor series as in ��
�	 and using ��
��	 we have

f�A	v �
�X
j��

f �j���	
Aj

j 
v �

�X
j��

f �j���	Vm
Hj
m

j 
v � Vmf�Hm	v� ��
��	

so that approximation ��
��	 in this case is exact


Now suppose that we performed m iterations of the Arnoldi algorithm and 
j � m

hj���j �� �
 In this case we would like to understand the behavior of the error

�m � f�A	v � Vmf�Hm	v ��
��	

We begin by following Saad�s argument ���� to show that approximating a function of a

matrix using Krylov iteration is equivalent to interpolating it by a polynomial
 First� the

following lemma can be proven by induction

Lemma ��� If Vm and Hm are the matrices obtained by performing a Krylov subspace

projection method ����� on the matrix A with the starting vector v�� then for any polynomial

qj of degree j � m� � the following holds	

qj�A	v� � Vmqj�Hm	e�� ��
��	

From the theory of matrices ���� we know that a function f is said to be de�ned on the

spectrum of A if for each eigenvalue 	j of A with multiplicity nj values

f�	j	� f
����	j	� � � � � f

�nj��	j	

exist and the following theorem holds�

Theorem ��� If g�		 is the general Hermite interpolatory polynomial of the minimum

degree determined by the values of f on the spectrum of A� then f�A� 
 g�A��

It is also known that if hj���j �� � for any j � �� � � � �m � � in the Hessenberg matrix

Hm then all the eigenvalues of Hm have multiplicity one
 In this case Hermite interpolatory

polynomial on the spectrum of Hm is just a Lagrange interpolant pm�� of degree m and



��

theorem ��
�
�	 gives us

f�Hm	 � pm���Hm	� ��
��	

Applying lemma ��
�
�	 and theorem ��
�
�	 now to the approximation ��
��	 we get

Vmf�Hm	v � Vmpm���Hm	v � Vmpm���A	v� ��
��	

where pm�� is the Lagrange interpolation polynomial of degree m� � on the eigenvalues of

Hm


As we can see from this result the accuracy of the approximation ��
��	 will depend

on how well the interpolatory polynomial pm�� constructed on the eigenvalues of Hm will

approximate the Hermite interpolatory polynomial g on the spectrum of A
 It is also clear

that the properties of the function f are also important
 An interpolant for the exponential

function exp�z	� for instance� will have a smaller remainder for a given number of iterations

than the interpolant for the rational function ���� � z	
 This will correspond to the error

for the Krylov approximation of the exponential of a matrix eA being reduced faster during

projection iteration than the error of the same procedure applied to compute the inverse

matrix �I �A	��


Gallopoulos and Saad ���� ��� derived error estimates for the Arnoldi approximation

based on the formula for the remainder of the interpolating polynomial
 As was mentioned

in these papers the derived bounds are too large to fully explain the error reduction speed

observed in numerical experiments
 Hochbruck and Lubich ���� ��� presented a theory which

gives a deeper insight into the dependence of the error on the spectrum of the matrix and

the function being approximated and provides sharper error bounds
 Therefore here we will

follow their approach


The error estimates are derived from applying the Cauchy integral formula to the ex�

pression f�A	v
 Suppose f is analytic in a neighborhood of the numerical range

F �A	 � fx�Ax � x � CN � kxk � �g



��

of a matrix A and # is a contour that surrounds F �A	
 Then

f�A	v �
�

��i

Z
	
f�		�	I �A	��vd	� ��
��	

Since Hm � V T
mAVm then F �Hm	 � F �A	
 So if 	 is outside F �A	 then neither �	I � A	

nor �	I �Hm	 are singular matrices and we can also write

Vmf�Hm	e� �
�

��i

Z
	
f�		Vm�	I �Hm	��e�d	� ��
��	

Therefore the error in Arnoldi approximation can be written as

�m � f�A	v � Vmf�Hm	e� �
�

��i

Z
	
f�		f�	I �A	��v � Vm�	I �Hm	��e�gd	� ��
��	

The error bounds are obtained by estimating the error of �	I�A	��v�Vm�	I�Hm	��e��

multiplying this estimate by jf�		j and integrating the result along the appropriate contour

#
 Proceeding in this manner will lead to the following estimate on the error of the Arnoldi

approximation ��
�	�

Theorem ��� �Hochbruck�Lubich� Suppose E is a convex� closed bounded set in the

complex plane which contains the numerical range of the matrix A and G� � CnE is its

complement� Let ��z	 be a unique conformal mapping determined by the Riemann mapping

theorem which carries G� onto the exterior of the unit circle fjwj  �g and has the Laurent

expansion ��z	 � c�	 � c� � c��	
�� � � � � with c�  �� Then for every polynomial qm�� of

degree at most m� � and matrices Vm and Hm determined by ����� the following inequality

holds	

kf�A	v � Vmf�Hm	e�k � M

��

Z
	
jf�		� qm���		j � j��		j�m � jd	j ��
��	

with M � l��E	��d��E	 � d�#		� where l��E	 is the length of the boundary curve �E of

E and d�S	 is the minimal distance between numerical range F �A	 and a subset S of the

complex plane� If E is a straight line segment or a disk� then ������ holds with M � ��d�#	�

The detailed proof of this theorem can be found in ����
 Here we will only outline the



��

proof as follows
 Note that ��
��	 is derived by �rst observing that since

V �m�	I �A	Vm � 	I �Hm�

we have

��	I �A	���Vm�	I �Hm	��V T
m �v �

��	I �A	�� � Vm�	I �Hm	��V T
m ��v � �	I �A	Vmym	 ��
��	

for any vector ym � Cm
 But v��	I�A	Vmym can always be written as pm�A	v� where pm is

a polynomial of degree � m and pm�		 � �
 Therefore using k�	I�A	��k � dist�	� F �A		��

and k�	I �Hm	��k � dist�	� F �A		�� we get an estimate

k�	I �A	��v � Vm�	I �Hm	��e�k � �d�#	�� � kpm�A	k ��
��	

for every polynomial pm of degree at most m with pm�		 � �
 Then using the Cauchy

integral ��
��	 representation of pm�A	 and the optimality properties of Faber polynomials

generated by the conformal mapping ��z	 described in the theorem ��
�
�	 the estimate

k�	I �A	��v � Vm�	I �Hm	��e�k �M � k��		k�m ��
��	

the bound on kpm�A	k is derived
 Finally� the estimate ��
��	 is obtained using lemma �
�
�

and formulas ��
��	 and ��
��	


Bounds in Theorem �
�
� can be made more precise for classes of matrices with a speci�c

spectrum by choosing the appropriate mapping ��z	 and analyzing di�erent functions f 


Below are additional results from ���� for approximating the exponential of a matrix exp��A	

for special classes of matrices� where we include a parameter � corresponding to the time

step in the numerical schemes for the time dependent problems


Lemma ��� If A is a Hermitian negative semide�nite matrix with eigenvalues in the



��

interval ����� �� then the error �m in the Arnoldi approximation of exp��A	v is bounded as

�m � ��e�m
���
����

p
��� � m � ���� ��
��	

�m � �����	��e���
�
e��

m

�m

� m 	 ���� ��
��	

And for general matrices�

Lemma ��� If numerical range of a matrix A is contained in the disk jz � �j � �� then

the error in the Arnoldi approximation of e�Av is bounded by

�m � ��e���
�
e��

m

�m

� m 	 ���� ��
��	

These error bounds can now be used to assess how the numerical methods for solution

of problems of type ��
�	 compare with the explicit and implicit schemes
 It is clear that

Theorem �
�
� can also be used to derive the error of the Arnoldi approximation to the

inverse matrix �I��A	��
 The results obtained in this way help explain why approximating

the exponential of the matrix exp��A	 to a speci�ed accuracy may be a faster iteration

procedure than computing the approximation to �I � �A	��
 For example� if the matrix A

is symmetric negative de�nite then applying the Arnoldi approximation algorithm ��
�	 to

invert �I� �A	 is equivalent to using the conjugate�gradient method to solve �I� �A	x � v

and the error derived using Theorem �
�
� is

kx� xmk � �
p

� � ���

�
�� �p

� � ��� � �

�m

� ��
��	

Comparison of the error bounds ��
��	 and ��
����
��	 shows that the error in approx�

imating the exponential of the function will be reduced faster in the course of Arnoldi

iteration
 This is demonstrated on speci�c examples in ����


��� Practical implementation of the Arnoldi iteration

����� Residual and stopping criterion for the Arnoldi algorithm

In practice� in order to use the Arnoldi algorithm to approximate a function of a matrix

we have to consider the following issues
 First� we need to have a stopping criterion for the



��

Krylov projection iteration
 Clearly� since we do not usually know the spectral radius of

the matrix in question� the error bounds in the previous section cannot be used for that

purpose
 Let us recall the integral form of the error in the Arnoldi approximation to the

function f��A	v�

�m � f��A	v � Vmf��Hm	e� �
�

��i

Z
	
f�		f�	I � �A	��v � Vm�	I � �Hm	��e�gd	

��
��	

De�ne

em�		 � �	I � �A	��v � Vm�	I � �Hm	��e�� ��
��	

From this expression we can see that em�		 � x � xm is exactly the error of the mth

Arnoldi approximate xm � Vm�	I � �Hm	��V �mv � Vm�	I � �Hm	��e� to the solution of

the equation �	I � �A	x � v
 Let us de�ne the residual of this approximation as

rm�		 � v � �	I � �A	xm� ��
��	

Using these expressions we can rewrite the error em�		 as follows�

em�		 � �	I � �A	��v � xm

� �	I � �A	��
�
v � �	I � �A	xm

	
� �	I � �A	��rm�		� ��
��	

So minimizing the norm of the residual krm�		k will result in minimizing the error in the

same norm kem�		k
 As is usually done in iterative methods we can use estimates of the

residuals to monitor the accuracy of the approximation
 From the construction of the

Arnoldi iteration we have

�	I � �A	Vm � Vm�	I � �Hm	 � kvk�hm���mvm��e
T
m ��
��	



��

where hm���m and vm�� are routinely computed in the course of iteration at no additional

cost
 Therefore we can calculate the residual as

rm�		 � v �
�
Vm�	I � �Hm	 � kvk�hm���mvm��e

T
m

	
� �	I � �Hm	��V �mv

� �kvk�hm���mvm��e
T
m�	I � �Hm	��eT�

� �kvk�hm���mvm����	I � �Hm	���m��� ��
��	

The error of the Arnoldi approximation to f��A	v is

�m � f��A	v � kvk�Vmf��Hm	e� �
�

��i

Z
	
f�		em�		d	� ��
��	

It was proposed in ���� ��� to use the norm of the generalized residual de�ned by

�m �
�

��i

Z
	
f�		rm�		d	

� � �

��i
kvk�hm����vm��

Z
	
f�		��	I � �Hm	���m��d	

� �kvk�hm�����f��Hm	�m��vm��� ��
��	

as an accuracy check
 This quantity can be computed at no additional cost during Arnoldi

iteration using ��
��	


As we can see from the expression for the residual and the error estimates in the previous

section� in order to reduce the norm of the error or the residual we have the option of

either increasing the number of iterations� i
e
 the number of Krylov vectors computed�

or decreasing the time step
 The optimal combination should be determined based on the

available computing resources
 If we are performing computations on a computer with large

memory we might want to store more Krylov vectors and take a large time step
 If� on the

other hand� only a limited amount of memory is available we can decrease the time step

and complete fewer iterations


It is appropriate at this point to mention the e�ect of �nite precision on the Arnoldi

iteration
 The di�culty arises when in the process of computing the orthonormal basis

fv�� � � � � vmg the use of �nite precision computation results in the loss of orthogonality

of the basis vectors and consequently loss of accuracy as the iteration proceeds
 If this



��

becomes a problem the Arnoldi iteration can be augmented by either complete or partial

reorthogonalization of each newly computed Krylov vector against its predecessors
 The

discussion of algorithms accomplishing this task can be found� for example� in ���� ��� and

references therein
 In our numerical experiments we found� however� that to achieve the

desired accuracy with the appropriate time step we only needed to compute an average

of �� and a maximum of �� Krylov vectors
 There was no signi�cant loss of accuracy in

computing such a small Krylov basis for the operators of interest and the straightforward

implementation of the Arnoldi algorithm provided us with a tool to compute an accurate

approximation to the Krylov vectors and consequently to the exponential of a matrix


����� Calculating operators eHm and ��Hm� �
eHm�I
Hm

For linear problems of type ��
�	 we have to decide whether to use the exponential propa�

gation method formulated as

Un�� � exp�A�t	Un ��
��	

or

Un�� � Un �
exp�A�t	� I

A
AUn� ��
��	

In these formulas Un is the approximate solution computed at time tn � �t�� tfinal�
 The

product of the operator eA�t with the vector Un or the product of the operator ��A�t	 �

eA�t�I
A with the vector AUn are computed using the Arnoldi algorithm with the starting

vectors Un or AUn respectively
 Formulation ��
��	 as we will see later is also relevant in

the generalization of exponential propagation methods to nonlinear di�erential systems of

equations
 Let us derive a formula which will link the error in the Arnoldi approximation

of exp�A�t	 and ��A�t	
 To simplify the notation we de�ne v � Un and the errors in the

Arnoldi approximations of exp�A�t	 and ��A�t	 as

�exp � exp�A�t	v � Vm exp�Hm�t	V T
mv

� exp�A�t	v � kvk� � Vm exp�Hm�t	e� ��
��	



��

and

�phi � ��A�t	v � Vm��Hm�t	V T
mv

� ��A�t	v � kvk� � Vm��Hm�t	e�� ��
��	

From the discussion of the Arnoldi iteration in the previous sections we recall the formula

AVm � VmHm � hm���mvm��e
T
m� ��
��	

and the fact that the matrix Vm has the orthonormal basis fv�� � � � � vmg as its columns with

the �rst vector being v� � v�kvk�� which gives

V T
mv � vT� v � kvk� � e�� ��
��	

Using these expressions we can write

e�tAv � �I � A�
e�tA � I

A
	�v

� v � A���tA	v ��
��	

and

Vme
�tHmV T

mv � Vm�I �Hm���tHm	�V T
m v

� kvk� � Vme� � kvk� � VmHm���tHm	e�

� v � kvk� � �AVm � hm���mvm��e
T
m	���tHm	e�

� v � AVm���tHm	V T
m v � kvk� � hm���m����tHm	�m��vm��� ��
��	

Subtracting ��
��	 from ��
��	 we obtain

�exp � A�phi � kvk� � hm���m����tHm	�m��vm��� ��
��	

Noting now that the second term on the right hand side of the above formula is exactly

the expression for the generalized residual �m we derived in the previous subsection� we

arrive at the following formula linking the errors for the Arnoldi approximations of e�tA



��

and ���tA	�

A�phi � �exp � �m ��
��	

This easily leads to an inequality

k�phik � kA��k�k�expk� k�mk	� ��
��	

If we take k�k to be a two�norm k�k� and remember that we expect �m � const ��exp we can

see that� for example� in the case when even the magnitude 	min of the smallest eigenvalue

of a matrix A satis�es 	min  � so that the spectral radius of A�� is kA��k � ��	min � �

then �phi can be smaller than �exp� so that formulation ��
��	 can be preferable over ��
��	


Finally� we should consider the issue of computing f��Hm	
 It was mentioned before

that we expect Hm to be rather small
 Hence� we have an option of either computing

eigenvalues and eigenvectors of Hm and calculating f��Hm	 using ��
��	 or approximating

it directly
 If the matrix A is Hermitian and� consequently due to ��
��	� matrix Hm is also

Hermitian the former approach will be more e�cient and we can diagonalize Hm using the

symmetric version of the QR algorithm
 In particular� in the case of a symmetric operator

we used a diagonalization routine from the LAPACK package after completing the Arnoldi

iterations
 The time required to compute diagonalization of Hm in this way was insigni�cant

compared to the total time required to integrate the equations over one time step since Hm

is small �m � �� � ��	 
 For a general nonsymmetric operator A and a larger number of

computed Krylov vectors other strategies can be used
 The description of such methods is

given in ����� ���� 
 One of the most e�ective ways to accomplish this in case of computing

the exponential of a matrix H � �Hm is to use Pad$e approximation de�ned by

Rpq�H	 � �Dpq�H	���Npq�H	� ��
��	

where

Npq�H	 �

pX
j��

�p � q � j	 p 

�p � q	 j �p � j	 
Hj ��
��	



��

and

Dpq�H	 �

qX
j��

�p � q � j	 q 

�p � q	 j �q � j	 
��H	j � ��
��	

The properties of this approximation are discussed in detail in ����
 Here we will just note

that� due to roundo� errors� the computation via the Pad$e formula has to be applied to a

scaled matrix H��k rather than H� where k is chosen so that kH��kk 
 ���
 Then� since

eH � �eH��k 	�
k
� we can approximate as eH � �Rpq�H��k	��

k

 This is done because the

roundo� error and the cost of computing Pad$e approximates both increase as kHk grows


The optimal choice of Pad$e approximation for the matrix H��k is the diagonal version of

��
����
��	� i
e
 p � q
 Such an estimate provides us with the solution accurate to order �q

with qm� �ops required for computation of the diagonal Pad$e approximate


If we chose formulation ��
��	 we have to calculate

��H	 �
eH � �

H

rather than the exponential of H
 We can use Pad$e approximation to the exponential of a

matrix 
�H e�

� �

�
and using the formula derived by Saad ����

exp


�H e�

� �

� �


�exp�H	 ��H	e�

� �

� ��
��	

calculate ��H	
 Alternatively� as proposed by Hochbruck and Lubich ���� we can use Pad$e

approximation to the function ��H��k	 and the recurrence

���z	 �
�

�
�ez � �	��z	 ��
��	

e�z � ezez ��
��	

to obtain the required approximation




��

��� Accuracy and stability of the linear exponential propa�

gation method

To solve a linear problem

dU

dt
� AU ��
��	

U�t�	 � U�

we will use the following numerical method

Un�� � Un �
exp�A�t	� I

A
AUn ��
��	

where Un is approximation to a solutionU at time tn� t� 
 t� 
 ��� 
 tn 
 tn�� 
 ��� 
 tfinal

and the matrix�vector product

��A�t	Un �
exp�A�t	� I

A
AUn

is computed using the Arnoldi algorithm with the matrix ��A�t	 and a starting vector

AUn as described in the previous sections
 Clearly� if ��A�t	AUn is computed directly�

the method would be exact for linear problems
 Since we use Krylov projection to compute

this operator the accuracy of the approximate solution will depend on the size of the �nal

residual ��
��	 in the Arnoldi iteration and the error in the Pad$e approximation of the

operator ���tHm	
 The time stepping algorithm will proceed as follows� we determine the

maximum number of Krylov vectors that we can store �this will be de�ned by the amount

of memory available	� then we proceed with the Arnoldi iteration and if after computing all

the Krylov vectors the residual is not satisfactory the time step is reduced and the procedure

is repeated with the new time step


Before analyzing stability of the linear exponential propagation method we emphasize

that the system ��
��	 is assumed to be well�posed
 This implies that all eigenvalues of the

matrix A have negative real parts and therefore the inequality keA�t�t��k � � holds for any

time t � �t�� tfinal�
 Since the exact evolution operator exp�A�tn � tn��		 is approximated

by the Krylov subspace projection Vm exp�Hm�tn � tn��		V
T
m and for unitary matrices

kVmk � � the numerical exponential propagation method will be stable if the inequality



��

k exp��tHm	k � � holds
 Following Gallopoulos and Saad�s argument ���� we address this

problem in two parts
 First� we consider the case when exp��tHm	 is calculated exactly

and then talk about the stability of Pad$e approximation to this operator


Assuming e�tHm is calculated exactly� let us bound the exponential of the matrix �tHm

in terms of the exponential operator of �tA
 To accomplish this we use properties of a

logarithmic norm de�ned as

��A	 � lim
h���

kI � hAk � �

h
� ��
��	

If the norm used in this de�nition is the two�norm then

��A	 � 	max�
A �A�

�
	� ��
��	

where 	max is the maximum absolute value eigenvalue of the symmetric part of A
 While

the set of full properties of the logarithmic norm ��A	 can be found for example in ���� here

we will only use the following inequality

keAk � e��A�� ��
��	

Lemma A
� in ���� proves that

��Hm	 � ��A	 ��
��	

and therefore we have

kVme�tHmV �mk � ke�tHmk � e���tHm� � e���tA� � �t exp

�
	max�

A � A�

�
	

�
� ��
��	

Obviously� if matrix A is Hermitian and negative de�nite so that 	max�A	 � � then from

the inequality ��
��	 it follows that

kVme�tHmV �mk � � ��
��	

and therefore method ��
��	 is stable


Stability properties of the diagonal Pad$e approximation to the exponential e�tHm �



��

Rpp��tHm	 have been studied by many authors ���� ��� ��� ���
 The detailed discussion of

this topic is beyond the scope of this work
 Therefore we will refer the reader to the sources

above for a thorough study of this issue and limit ourselves to stating the result which can

be found� for example� in ���� that if ��Hm	 � � then the diagonal Pad$e approximation is

stable� i
e


kVmRpp��tHm	V T
m k � �� ��
��	

To summarize� we have unconditional stability of the method when the matrix A is

symmetric positive de�nite or if the maximum eigenvalue of the symmetric part of A is

negative
 Obviously� we cannot have stability for an arbitrary matrix A� but in all of our

computations described in the later chapters we found that for the matrices of interest the

method was stable and in fact exhibited unconditional stability in many cases
 Therefore

we would like to note that this method is particularly e�ective for relaxation problems�

where we need to obtain some equilibrium state and are not interested in computing the

dynamics accurately
 We will reiterate this point later when we discuss computing the

force�free plasma states using exponential propagation method




��

Chapter � Exponential propagation methods for systems of

nonlinear di�erential equations

In the previous chapter it was shown how exponential propagation together with the Krylov

subspace projection algorithm can be used to solve systems of linear di�erential equations


Ultimately� however� the problems of interest are systems of nonlinear partial di�erential

equations
 In the following sections we will discuss how the concepts of Chapter � can

be extended to solve such systems and compare the resulting methods with conventional

numerical techniques


��� Introduction and formulation

Let us consider the general autonomous nonlinear initial value problem

dU�t	

dt
� F �U�t		 ��
�	

U�t�	 � U�� ��
�	

If we have a system of ordinary di�erential equations then U � RN is a vector of unknowns

and F �U	 is a exact nonlinear operator acting on this vector
 If a system of partial di�er�

ential equations is to be solved then U � RN is the vector consisting of the values of all the

unknown variables on a given spatial grid and F �U	 is a discretized version of the spatial

di�erential operator on this grid
 Note that considering only autonomous problems does

not impose any loss of generality since any non�autonomous system of type

dU�t	

dt
� F �t�U�t		 ��
�	

can be converted to an autonomous system by creating a new solution vector

W�t	 �


�U�t	

t

�



��

which includes the time variable as a component� and adding an equation for this variable

to the system ��
�	 to get

��dU�t�
dt

dt
dt

�A �

��F �t�U�t		

�

�A � ��
�	

or if we de�ne

G�W�t		 �

��F �t�U�t		

�

�A ��
�	

the autonomous problem is formulated as

dW�t	

dt
� G�W�t		 ��
�	

Now let us return to the original problem ��
�	 � ��
�	
 Suppose that the Jacobian

DF �U�	 exists and is continuous on the interval �t�� t� � t�� and we want to compute a

solution to ��
�	 at time t� � t
 Then we can linearize F �U�t� � t		 around the initial state

U� and rewrite system ��
�	 as

dU�t� � t	

dt
� F �U�	 � DF �U�	

�
U�t� � t	�U�

�
�

�
F �U�t� � t		� F �U�	�DF �U�	

�
U�t� � t	�U�

�	
� ��
�	

To simplify the notation� let us de�ne the Jacobian matrix as A � DF �U�	 and the nonlinear

remainder

R�U	 � R�U�t� � t		 � F �U�t� � t		� F �U�	�DF �U�	�U�t� � t	�U�	� ��
�	

so that ��
�	 becomes

dU�t� � t	

dt
� F �U�	 � A�U�t� � t	�U�	 � R�U�t� � t		� ��
�	



��

We can write this equation in an integral form as follows�

U�t� � t	 � U� �
eAt � I

A
F �U�	 �

tZ
�

eA�t�s�R�U�t� � s	�U�	ds� ��
��	

In the discussion of the exponential propagation method for linear systems� i
e
 the

case of R�U	 � �� we computed the solution using expression ��
��	 and approximated the

action of the operator

eAt � I

A

on a vector F �U�	 by projecting onto a Krylov subspace
 If the contribution of the integral

tZ
�

eA�t�s�R�U�t� � s	�U�	ds

in ��
��	 to the right hand side of ��
�	 over the time interval �t�� t� � t� is signi�cantly

smaller than that of the rest of the terms� i
e
 the dynamics of the system is dominated by

the linear part of the right hand side� we can generalize the linear method ��
��	 and use

the scheme

"U � "U� �
eA�t � I

A
F � "U�	 ��
��	

to integrate the system to the next time step
 Clearly� such a method will be second order

in time
 We turned to exponential propagation methods because we wanted to increase the

time step compared with explicit methods
 Since we want to take large time steps� second

order accuracy in time might not be enough to accurately compute the time dynamics of the

nonlinear system of interest
 Therefore� the core of the discussion below will be dedicated

to the development of methods which estimate the nonlinear integral in ��
��	 to a higher

order
 There is another set of problems� however� for which we think the method ��
��	 is

very useful


Suppose that we only want to compute a steady�state of the system and we have some

independent of the time integration scheme criterion to verify whether the desired state is

achieved
 For example� suppose we want to obtain a �nal temperature distribution of a



��

body given some boundary conditions
 Once we obtain such a distribution we can verify

that it is an equilibrium state by computing its Laplacian with the appropriate boundary

conditions and checking whether it is close to zero
 In such problems we are not interested

in computing the time dynamics accurately and we want to take a very large time step

to march to a steady�state as quickly as possible
 This is exactly the goal that can be

achieved with the method ��
��	
 The discussion of stability from the previous chapter can

be carried directly over to this method and we can expect it to be stable if all eigenvalues

of the Jacobian matrix have negative real parts
 If it takes a long time for the system to

settle to a steady state� then using exponential propagation with a large time step could be

very e�ective
 As discussed in the next chapter� this method can be used to compute the

nonlinear relaxed force�free states of solar magnetic arcades


Now we return to the question of solving dynamical nonlinear problems with a large

time step
 In this case� the nonlinear integral in ��
��	 has to be computed with high

accuracy
 Noting that the integrand in ��
��	 has a familiar from the last Chapter form of

an exponential operator eAt acting on a vector R�U	� we would like to use the favorable

properties of the Krylov subspace projection iteration in approximating this integral
 To our

knowledge two di�erent extensions of the exponential propagation methods to the nonlinear

systems have been proposed in the literature
 In the following sections we will describe these

two approaches and discuss their limitations and advantages


��� Iterative approximation to the nonlinear integral

����� Formulation

Friesner et�al� proposed an iterative process to approximate the nonlinear integral in ��
��	


The authors applied this method to nonlinear systems of ordinary di�erential equations in

���� and later extended it to solve the Navier�Stokes system ����
 Below we describe their

method and discuss its performance in the next subsection


First let us simplify the notation by de�ning b � F �U�	 and formulating the integral

form of the system ��
�	 in terms of a shifted variable

u�t	 � U�t� � t	�U�� ��
��	



��

The integral formula ��
��	 can be then written as

u�t	 �
eAt � I

A
b �

tZ
�

eA�t���R�u��		d�� ��
��	

Friesner et�al proposed to use the following iteration to calculate the approximation to a

solution at each time step

u�l����t	 �
eAt � I

A
b �

tZ
�

eA�t���R�u�l���		d� ��
��	

with the initial guess being the solution of the linear equation with R�u	 � �

u����t	 �
eAt � I

A
b� ��
��	

Once iteration ��
��	 has completed� the solution U�t� � t	 can be easily computed using

��
��	� so for now we will just concentrate on the algorithm the authors use to compute

��
��	
 To approximate the nonlinear integral on the right�hand�side of ��
��	 an approach

of multistep type is used
 The integral is computed by �tting a polynomial to the function

R�u�l��s		
 Since the nonlinear integral is the second order term in the solution� the lowest

power in the polynomial is chosen to be two
 R�u�s		 is evaluated on the grid of Chebyshev

points � 
 �� 
 �� 
 ��� 
 �Jl � t with

�i �
t

�
��� cos�

i�

Jl
	�� ��
��	

and the following Jl collocation equations are solved for the coe�cients r
�l�
j �

R�u�l���i		 �

Jl��X
j��

� ji r
�l�
j � i � �� � � � � Jl� ��
��	

where rj are the coe�cient vectors of length N 
 The iteration now takes form

u�l����t	 �
eAt � I

A
b �

tZ
�

Jl��X
j��

eA�t���r
�l�
j � jd�� ��
��	



��

Now the matrix�vector products eAt�I
A b and eA�t���r

�l�
j are computed using the Arnoldi

algorithm
 Suppose that eAt�I
A b is accurately approximated with m Krylov vectors and mj

such vectors were calculated to estimate eA�t���r
�l�
j for each j
 We can write these Krylov

projection iterations as

AVm � VmHm � hm���mvm��e
T
m ��
��	

AV �j�
mj

� V �j�
mj

H�j�
mj

� h
�j�
mj���m

v
�j�
mj��

eTmj��� ��
��	

To simplify the notation we drop the sub� and superscripts and de�ne Hj � H
�j�
mj � Vj � V

�j�
mj �

H � Hm and V � Vm
 Note that H is an m�m matrix and Hj are matrices of sizes mj�mj


Now iteration ��
��	 becomes

u�l����t	 � V
eHt � I

H
V T b �

tZ
�

Jl��X
j��

Vje
Hj�t���V T

j r
�l�
j � jd�� ��
��	

After diagonalizing the Krylov projection matrices H � E!E�� and Hj � Ej!jE
��
j

and substituting these expressions in ��
��	 we obtain

u�l����t	 � V E
e�t � I

!
E��V T b �

tZ
�

Jl��X
j��

VjEje
�j�t���E��j V T

j r
�l�
j � jd� ��
��	

or equivalently�

u�l����t	 � V E
e�t � I

!
E��V T b �

Jl��X
j��

VjEj

� tZ
�

e�j�t���� jd�

�
E��j V T

j r
�l�
j � ��
��	

Here the integrals

Ij �

tZ
�

e��t���� jd� ��
��	

which represent the elements of the diagonal matrix
tR
�

e�j�t���� jd� are evaluated using the



��

recurrence

I� �
e�t � �

	
��
��	

Ij �
jIj�� � tj

	
� ��
��	

The algorithm proceeds by computing the iterant u�l����t	 at the Chebyshev points t � �i

according to the formula ��
��	


An important point we want to emphasize here is how the parameters m� mj and J

are determined in the algorithm proposed in ���� ���
 These quantities are set in advance

and do not vary from time step to time step
 In other words� Friesner et�al� are using

a �xed number of Krylov vectors for each Krylov subspace projection without computing

the residuals and estimating this number based on the norm of the residuals
 In the next

section we will discuss how this a�ects the algorithm�s performance


Finally� we describe the automatic error control mechanism that is used to estimate the

accuracy of the solution and determine whether the approximation to u�t	 is acceptable or

if the time step should be reduced and the procedure repeated for smaller t
 From ��
��	

and ��
�	 it follows that

du�t	

dt
�

dU�t� � t	

dt
� F �U�t� � t		 � F �U� � u�t		� ��
��	

If u�l����t	 is the last approximation in the iteration ��
��	� du�l��dt can be computed by

di�erentiating this expression and using VjV
T
j r

�l�
j � r

�l�
j to get

du�l���

dt
�t	 � V EeHtE��V T b �

Jl��X
j��

VjEj!j

� tZ
�

e�j�t���� jd�

�
E��j V T

j r
�l�
j �

Jl��X
j��

tjr
�l�
j � ��
��	

Based on this formula the residual vector is de�ned via

�u � t

�
du�l����t	

dt
� F �U� � u�l����t		

	
� ��
��	

If the prede�ned relative and absolute tolerances are �rel and �abs respectively� and

� �
�abs
�rel



��

then the accuracy check used is

k�uk � �rel ��
��	

where the norm k � k is de�ned either as

k�uk �

�
�

N

NX
i��

�
�ui

jU�i j� �

��	���
��
��	

or

k�uk �

max
��i�N

j�uij�
�
N

NP
i��
U�
�j

���� � ��
��	

Now the residual is computed at each of the Chebyshev points ��� � � � � �J 
 If inequality

��
��	 is satis�ed at neither of the points �i� � � i � J � then the time step is reduced by

some factor C and the algorithm is repeated on the interval ��� t�C�
 Otherwise� the ap�

proximation at the largest value of �p for which the inequality ��
��	 is satis�ed is accepted�

the solution is advanced as U�t� � �p	 � u�l�����p	�U� and the next time step is set to be

t � �p


����� Performance

Several numerical experiments using the iterative exponential propagation method in its

original form proposed in ���� ��� showed that the error in the approximation to the solution

can be large
 The method exhibited stability and therefore if the test system to be solved

was supposed to evolve to an equilibrium state the numerical scheme ��
��	 was also likely

to eventually converge to this steady state
 However� the time dynamics of the solution can

be computed incorrectly and the error evolves to a large value before eventually settling to

zero at the equilibrium
 To understand this performance let us consider the error checking

mechanism in the method and analyze why it does not necessarily re�ect the behavior of

the actual error


The number of Krylov vectors is predetermined and is not changed from time step to

time step based on the residuals in the iterative exponential propagation method
 Therefore

if the method is to perform well� we have to expect that the behaviour of the norm of the



��

residual vector �u de�ned in ��
��	 re�ects the evolution of the actual error and forces time

step reduction when the error becomes larger than a given tolerance
 Let us investigate

what exactly �u represents and why a small norm of this vector does not guarantee small

residuals in the Arnoldi algorithms used to approximate exponential operators in ��
��	 or

a small overall error


To make the analysis clearer� let us �rst assume that R�u�t		 � �� i
e
 analyze the linear

problem
 Without loss of generality we can just consider advancing the solution over one

time step from � to time t and assume zero initial value
 If the value of the initial vector or

the starting time are not zero we can just shift the variable as in ��
��	 and compute the

solution in terms of the new variable
 So the system we are interested in solving is

du

dt
� Au � b ��
��	

u��	 � �� ��
��	

For this problem� the iterative exponential propagation method ��
��	 reduces to the linear

scheme described in Chapter ��

"u�t	 � V
eHt � I

H
V T b � V ��Ht	V T b� ��
��	

where t represents the time step� "u is the approximate solution at time t� V and H are the

matrices obtained as the result of the Krylov subspace projection with the starting vector

v� � b�kbk�
 Let us de�ne the error of Arnoldi approximation to the function ��At	 as

�� �
eAt � I

A
� V

eHt � I

H
V T b � kbk�V ��Ht	e�� ��
��	

From expression ��
��	 we can compute d"u�dt to get

d"u

dt
� V eHtV T b� ��
��	

The residual vector used to check the accuracy of the approximation to the solution is

de�ned by ��
��	 as

�"u �

�
d"u

dt
� F �"u	

	
t� ��
��	



��

Now combining formulas ��
����
��	 and using the matrix formulation of the Arnoldi iter�

ation

AV � V H � hm���mvm��e
T
m� ��
��	

we express the residual as

�"u �

�
V eHtV T b�A"u� b

	
t

�

�
V eHtV T b�AV ��Ht	V T b� b

	
t

�

�
V eHtV T b� �V H � hm���mvm��e

T
m	��Ht	V T b� b

	
t

�

�
V eHtV T b� V �eHt � I	V T b � kbk�hm���mvm��e

T
m��Ht	e� � b

	
t

� kbk�hm���m���Ht	�m��vm��t� ��
��	

Recall the de�nition ��
��	 of the generalized residual �m derived in Chapter �
 Formula

��
��	 then gives us

�"u � �t�m� ��
��	

It is clear now that in the linear case the residual ��
��	 is simply the residual of the Arnoldi

approximation scaled by the time step
 Since the residual �m can be computed as a side

product of the Krylov projection operator from

�m � kbk�hm���m���Ht	�m��vm�� ��
��	

calculation of �"u via formula ��
��	 is unnecessary
 As we can also see from ��
��	 by �xing

the number of Krylov vectors in advance as it is done in ���� ���� we limit ourselves to having

only the option to reduce the time step to get an accurate solution� while the error can also

be reduced by increasing the number of Arnoldi iterations
 Despite these limitations and

extra work we have to do to check the accuracy� however� it is still true that in the linear

case the method of the previous section will provide us with the accurate solution and the

residual �"u will capture the behavior of the actual error




��

Now let us consider the general nonlinear problem

du

dt
� Au � b � R�u	 ��
��	

u��	 � �� ��
��	

solved as described in the previous section using the method

"u�l����t	 � V
eHt � I

H
V T b �

Jl��X
j��

Vj

� tZ
�

eHj�t���� jd�

	
V T
j r

�l�
j � ��
��	

Let us set "u�l��� to be the �nal iteration and just de�ne "u � "u�l���� J � Jl and rj � r
�l�
j 


To compute d"u�dt we di�erentiate ��
��	 and use VjV
T
j rj � rj to obtain

d"u

dt
� V eHtV T b �

Jl��X
j��

VjHj

� tZ
�

eHj�t���� jd�

	
V T
j rj �

Jl��X
j��

tjrj � ��
��	

We can also compute

F �"u	 � b � A"u � R�"u	

� b � AV ��Ht	V T b � A

Jl��X
j��

VjHj

� tZ
�

eHj�t���� jd�

	
V T
j rj � R�"u	� ��
��	

Now by subtracting ��
��	 from ��
��	 we can express the residual �"u as follows

�"u �V eHtV T b� bAV ��Ht	V T b

�

Jl��X
j��

VjHj

� tZ
�

eHj�t���� jd�

	
V T
j rj �A

Jl��X
j��

Vj

� tZ
�

eHj�t���� jd�

	
V T
j rj

�

Jl��X
j��

tjrj �R�"u	� ��
��	

As we showed earlier in ��
��	

V eHtV T b� bAV ��Ht	V T b � �m���Ht		� ��
��	



��

where �m���Ht	 is the residual of the Arnoldi approximation to ��Ht	
 Similarly by sub�

stituting

AVj � VjHj � h
�j�
mj���mj

vmj��e
T
mj

��
��	

in ��
��	 and de�ning the residual of the Arnoldi approximation to

�
tR
�

eA�t���rj�
jd�

	
as

�mj
� krjk�h�j�mj���mj

� tZ
�

eHj�t���� jd�

	
mj ��

vmj�� ��
��	

we obtain

�"u ��
�
�m���Ht		 �

J��X
j��

�mj

	
t

�

J��X
j��

tjrj �R�"u	� ��
��	

Finally� if we de�ne the error of the polynomial approximation to the nonlinear remainder

function R�"u	 as

�p � R�"u	�
J��X
j��

tjrj ��
��	

we get the expression for the residual vector

�"u � �
�
�m���Ht		t � t

J��X
j��

�mj
� �p

	
� ��
��	

The last expression means that the residual is actually the sum of the errors of di�erent

approximation stages in the method
 The residuals and the error in ��
��	 can have either

positive or negative signs
 So if� for example� the norm of the error of the polynomial

approximation to the nonlinear integral �p is large or the preset number of Arnoldi iterations

was not enough to obtain adequate accuracy in computing the exponential terms and the

residuals� norms k�m���Ht		k or k�mj
k are large we can still have �"u with a small norm

due to all the errors canceling each other in the expression ��
��	
 Once we diagonalize the



��

matrices H and Hj� the expression for the residual will also contain this approximation�

so that the residual �"u is even more unusable as a global accuracy test
 The correct

and cheaper way to check the actual error is to minimize k�m���Ht		k� k�m�k and k�pk
and advance the solution to the minimum time t which makes all these errors less than a

prede�ned tolerance


Our conclusions about this method are supported by the numerical tests that Friesner

et�al presented in ���� ���
 They tested the method on three problems� the nonlinear system

of ODEs called the Krogh model ���� for which the exact solution is available� a chemical

reaction�di�usion system with no exact solution at hand and the axisymmetric Taylor vortex

problem for which there is also no closed form solution
 First� note that in all of these

calculations the authors found that the behaviour of the error as well as the e�ciency of the

method is highly sensitive on the values of parameters m�mj� J and the number L of global

iterations in ��
��	
 In the Krogh problem� in order to �nd the set of these parameters

that provides the best e�ciency� a manual optimization had to be performed
 Such an

optimization would be impossible to perform for a general large problem� since completing

so many runs to determine the parameters would be too expensive and impractical
 This

result also indicates that the values of parameters m�mj� J� L could not be determined from

the residual �"u
 This agrees with our conclusion that this residual contains information

about all of the parameters� but the information is in the form of a summation which

does not allow determining what are the local errors at each stage of the computation and

consequently does not minimize the global error
 Moreover� the exact error in the Krogh

model computation actually increased when the number of the Krylov iterations for one of

the nonlinear terms in the scheme was increased
 If the polynomial �tting of the function in

the nonlinear integral was providing a good approximation then we would see a decrease in

the error since more Krylov vectors means a better approximation to an exponential matrix�

vector product
 In the Krogh problem the optimization of the parameters and calculation of

the exact error are easy to accomplish since the exact solution is available
 Let us know look

at the reaction�di�usion problem results obtained in ����
 Not only was the approximated

solution computed by the method sensitive to the parameters m�mj � J� L� but apparently

even the relative tolerance value a�ected the phase of the solution
 So the authors were not

able to perform any convergence study and mainly discussed the e�ciency of the method

without addressing the accuracy of the solution
 A very similar discussion was presented



��

for the Taylor vortex problem in ����� so it is hard to make a judgement on whether the

approximation to the solution computed by the iterative exponential propagation method

was actually accurate
 Since the importance of the parameters changes from problem to

problem and the numerical solution is found to be so sensitive to their values it seems

natural to optimize di�erent parts of the algorithm separately� i
e
 as we proposed above to

compute errors at di�erent stages and optimize the values of the parameters based on the

errors at the particular stage involving these parameters
 From the results of the numerical

tests on the three problems from ���� ��� we can conclude that the automatic error control

mechanism based on the residual �"u does not allow us to calculate the set of parameters

m�mj � J� L which would provide a consistent and accurate solution in the most e�cient way


Although the discussion above concludes that the iterative exponential propagation

method� in the form it is introduced in ���� ���� has many limitations we believe that

further research on the development of the multistep�type exponential propagation methods

can lead to very interesting results and powerful numerical schemes
 Having developed an

intuition and understanding of the issues involved in developing such methods we plan to

investigate this question further in our future research
 In this work� however� we take a

di�erent approach and use the methods proposed by Hochbruck and Lubich in ���� ����

which combine a Runge�Kutta framework with the exponential propagation ideas to design

numerical schemes
 In the subsequent sections we will describe these methods and their

advantages over the iterative method of Friesner et�al


��� Runge�Kutta exponential propagation methods

����� Introduction and formulation

First we would like to discuss brie�y the background and the motivation behind developing

the Runge�Kutta exponential propagation methods
 More detailed discussion of the indi�

vidual topics discussed in this summary can be found� for example� in ���� ��� ��� ���
 It

is well known that if we want to solve a sti� nonlinear system ��
�	 the numerical method

we use has to be tailored to handle the sti�ness
 The sti�ness of the problem implies that

the step length in the numerical scheme is constrained by the stability rather than accuracy

requirements
 This consideration led Dahlquist to introduce the notion of A�stability of a

numerical method
 By de�nition� a numerical scheme is called A�stable if its stability do�



��

main contains the entire left half of the complex plane C � 
 Dahlquist also proved that there

are no A�stable multistep methods of order greater than � and that the implicit trapezoidal

rule is the second order multistep method with the smallest error constant
 It was� how�

ever� possible to derive multistep methods with good stability properties� using backward

di�erentiation formulae �BDF	
 If we de�ne a solution of the autonomous problem ��
�	 at

times tn and tn�� to be Un and Un�� respectively � the standard form of the s�step s�order

BDF method is

sX
j��

ajUn�j � hbsF �Un�s	� ��
��	

where h � tn��� tn is a time step and coe�cients aj and bs are determined based on what

order method we want to derive
 Even though BDF methods do not possess A�stability

their e�ciency can compensate for this
 As it is true for any multistep method� however�

to change the time step in the course of integration is di�cult and the time step control

mechanism for this type of methods is expensive


The alternative to multistep schemes is to use the Runge�Kutta framework to derive

implicit methods
 Kaps and Rentrop ���� showed that it is possible to derive implicit

Runge�Kutta methods of order higher than � which are A�stable� e�cient and have simple

structure ����
 Another advantage of these types of methods is that it is possible to construct

a robust time step control mechanism via embedding of methods of a di�erent order
 The

latter feature will be described in detail in section �
�
 The general s�stage implicit Runge�

Kutta method to evolve the system from time tn to time tn�� can be formulated as

ki � F

�
Un � h

sX
j��

aijkj

�
� i � �� � � � � s ��
��	

Un�� � Un � h

sX
j��

biki�

where once again h � tn�� � tn is the time step and coe�cients aij and bi are determined

based on the order of the method we want to derive


As we can see from formulas ��
��	 and ��
��	 both BDF and implicit Runge�Kutta

methods require solving a nonlinear system using a Newton iteration� which adds greatly to

the complexity of the methods
 If we use the implicit Runge�Kutta method ��
��	 with the



��

full s�s matrix �aij	 then �N�s	 simultaneous implicit nonlinear systems have to be solved�

given N is the length of the vector Un
 To reduce the complexity of such methods it was

proposed in the early seventies ��� ��� ��� ��� �� to make the matrix �aij	 lower triangular�

i
e
 aij � � for i � j� so that the equations ��
��	 can be solved in s stages with only one

N �dimensional system to be solved at each stage
 These constitute the so�called diagonally

implicit �DIRK	 Runge�Kutta methods
 Finally� to decrease the operational count even

further we can set

aii � � i � �� � � � � s� ��
��	

so that the method becomes

ki � F

�
Un � h

i��X
j��

aijkj � �ki

�
i � �� � � � � s ��
��	

Un�� � Un � h

sX
j��

biki�

and is called the singly diagonally implicit method �SDIRK	
 Here we need to solve s

nonlinear systems by Newton�type iteration
 Since in this case at each of the s stages

the Jacobian matrix for the Newton iteration is �I � h��F��U	� we could perform LU�

factorization of this matrix only once and then use it at each stage to solve linear systems

of type

�
I � h��F��U

�
x � y� ��
��	

The development and success of the singly diagonally implicit Runge�Kutta methods led

to the following observation
 The numerical technique which performs well in solving sti�

systems ��
�	 uses not only function evaluations F �U	 but also information provided by the

Jacobian matrix �F��U
 Once this fact was recognized there were a number of methods

proposed which tried to incorporate the Jacobian matrix directly into the formulation of the

scheme rather then use it through the Newton iteration
 Some of the successful methods

of this type� which are also distinguished by a fairly simple structure� were proposed by

Rosenbrock ���� and are called semi�implicit� or just Rosenbrock methods
 Rosenbrock

noticed that one Newton iteration to solve ��
��	 with the starting value k
���
i can be written



��

as the linear system

ki � F

�
Un � h

i��X
j��

aijkj

�
� h

�F

�U

�
Un �

i��X
j��

aijkj

�
�ki� ��
��	

So instead of continuing the Newton iteration he proposed to evaluate the Jacobian matrix

at Un and formulate the s�stage numerical scheme as

ki � F

�
Un � h

i��X
j��

�ijkj

�
� hA

iX
j��

�ijkj � i � �� � � � s ��
��	

Un�� � Un � h

sX
j��

bjkj �

where A � �F��U�Un	 and the coe�cients �ij � �ij and bj are determined based on the

order we want to method to have
 To simplify the method further and reduce the number

of matrix factorizations to be performed at each of Runge�Kutta stages we can look for the

methods with �ii � � for i � �� � � � � s
 In this case we can also solve for ki in ��
��	 and

rewrite the method as

ki � �I � �hA	��
�
F �ui	 � hA

i��X
j��

�ijkj

�
� i � �� � � � s ��
��	

ui � Un � h

i��X
j��

�ijkj

Un�� � Un � h
sX

j��

bjkj �

In a number of numerical studies ���� ��� ��� it was shown that when the function evaluations

F �U	 are relatively cheap� Runge�Kutta methods are typically more e�cient than multistep

methods for initial value problems
 In general� Runge�Kutta methods are more robust�

provide easy mechanisms to estimate local error at each time step� and allow the time step

to be changed without the overhead of the time control process of the multistep methods


If the system to be solved is sti�� implicit methods with a variable time step have to be

used
 Then the major complexity of the integration of the system over one time step for

either multistep or Runge�Kutta implicit method comes from solving the linear systems of

type ��
��	 inside Newton iterations
 The function evaluations account for a lesser number



��

of total �ops
 So if exponential propagation ideas can reduce the time needed to solve

the linear systems ��
��	� then the considerations discussed in this subsection lead to an

idea of using the Runge�Kutta formulation and augment it with exponential propagation to

obtain an e�ective numerical method for sti� problems
 This is exactly what Hochbruck and

Lubich �rst proposed in ���� and later generalized in ����
 They combined the idea behind

the formulation of the Rosenbrock methods ��
��	 and the exponential Euler method ��
��	

to obtain the following general exponential Runge�Kutta method for the sti� nonlinear

systems of type ��
�	���
�	

ki �
e	hA � I

�hA

�
F �ui	 � hA

i��X
j��

�ijkj

�
� i � �� � � � s ��
��	

ui � Un � h

i��X
j��

�ijkj

Un�� � Un � h

sX
j��

bjkj�

As is evident from comparing the method above with the Rosenbrock methods� ��
��	 is

obtained by replacing the rational function of argument

��z	 � ��� z	�� ��
��	

of argument z � �hA in ��
��	 with the function

��z	 �
ez � �

z
� ��
��	

Since we expect the matrix A to be large� iterative methods have to be used to approximate

either of the functions
 From the analysis in the previous chapter� however� we concluded

that if we use Krylov subspace projection for this purpose� the error of the Arnoldi algorithm

applied to approximate ��
��	 can be reduced faster than if this algorithm is used to calculate

��
��	
 This gives us a hope that a method of type ��
��	 can o�er an e�cient and robust

technique to solve sti� nonlinear systems of di�erential equations




��

����� Order of the methods

As we noted before� methods of a certain order of type ��
��	 can be obtained by specifying

the coe�cients �ij � ���ij and bj
 Since the structure of these methods is very similar to

Runge�Kutta schemes we can use the same approach to determine these coe�cients as for

Rosenbrock methods
 Suppose our goal is to derive a method of order p� i
e
 we want the

local error to satisfy

U�tn � h	�U�tn	 � O�hp��	� ��
��	

One of the ways to achieve this is to substitute expressions ��
��	 into ��
��	� expand the

resulting formula for Un�� in Taylor series and chose the parameters in the method is such

a way that the coe�cients of the terms with hq� q � p� vanish
 To deal with the complexity

of the expression resulting from this procedure Butcher ���� developed a general theory

which used elementary di�erentials and their graphical representation as a rooted trees to

derive the order conditions for the Runge�Kutta methods
 The detailed description of this

theory can be found in a number of references� see for example ���� ���
 Hochbruck and

Lubich applied the results of this theory to Rosenbrock methods with the modi�cation of

the function ��z	 in ��
��	 and derived order conditions for the methods ��
��	
 Below we

present these conditions


Let us restate the formulation of exponential propagation Runge�Kutta methods�

ki �
e	hA � I

�hA

�
F �ui	 � hA

i��X
j��

�ijkj

�
� i � �� � � � s ��
��	

ui � Un � h
i��X
j��

�ijkj ��
��	

Un�� � Un � h

sX
j��

bjkj� ��
��	

After completing the Taylor expansion of these formulas we will obtain the coe�cients

of hq� q � p� in terms of elementary di�erentials of the function F �U	
 Now we will state

some de�nitions from ���� which will help us specify the order conditions in the simple form


De�nition ��� Let A be an ordered chain of indices A � fj � k � l � m � � � � g and

denote by Aq the subset consisting of the �rst q indices� A rooted labeled tree of order



��

q �q 	 �	 is the sonfather mapping

t � Aqnfjg � Aq ��
��	

such that t�z	 � z for all z � Aqnfjg� The set of all labeled trees of order q is denoted by

LTq� z is called the son of t�z	 and t�z	 the father of z� The order of the tree is equal to

the number of its vertices and denoted by q � ��t	�

De�nition ��� Two labeled trees t and w are equivalent if they have the same order q�

and if there exists a permutation � � Aq � Aq� such that ��j	 � j and t� � �w on Aqnj�
An equivalence class of qth order labeled trees is called a rooted tree of order q�

Now we can specify the correspondence between the elementary di�erentials and the

labeled trees
 The elementary di�erential can be written in tensor notation and de�ned as

De�nition ��� For a labeled tree t � LTq we call

fJ�U	 �
X
K�L�




F J
K�


�U	FK




 �U	FL�U	� ��
��	

the corresponding elementary di�erential� The summation is over q�� indices K�L� � � �

and the summand is a product of q F �s� where the upper index speci�es the component and

runs through all vertices of t and the lower indices are the corresponding sons� The lower

subscript represents di�erentiation with respect to a component�

Finally� let us set

�ij � �ij � �ij � ��
��	

and de�ne

De�nition ��� Let t be a labeled tree of order q with root j� denote

%j�t	 �
X
k�l�




�j�k�l�


 ��
��	

to be the sum over the remaining q � � indices k� l� � � � � The summand �j�k�l�


 is a product

of q � � factors which are



��

�kl � �kl � �kl if l is the only son of k�

�kl if l is a son of k and k has at least two sons�

Now by substituting formulas ��
��	 � ��
��	 into ��
��	� expanding the resulting expres�

sion for Un�� in Taylor series and setting the coe�cients of the low powers of h to zero the

following order conditions for ��
��	 will be obtained�

De�nition ��	 An exponential method ������������ is of order p i�

sX
j��

bj%j�t	 � Pt��	� ��
��	

for elementary di�erentials t up to order p� %j�t	 is speci�ed in De�nition ������� and Pt��	

is the polynomial in � which corresponds in the collection of terms involving � in the Taylor

expansion of �������

Table �
� lists %j�t	 and the polynomials Pt��	 corresponding to the elementary di�er�

entials up to order p � � as given in ����


It is clear that the second order method ��
��	 is exact for the linear systems when

the exponential of the Jacobian is computed directly without the Krylov projection
 Con�

sequently� if the linear problem is well�posed this method is A�stable
 In general if the

method of type ��
��	 � ��
��	 is exact for linear systems it is A�stable
 The following

theorem proved in ���� gives a condition under which methods ��
��	 � ��
��	 are exact for

linear systems


Theorem ��� The method ������  ������ is exact for linear di�erential equations i� for

all n � �� �� �� ���

X
bj��j��j��j��j� � � � �jn���jn �

�

n
�

�

n� �
� �	�

�

n� �
� �	 � � � ���� � �	�� � �	� ��
��	

As we can see from this theorem if � is the reciprocal of some integer only a few of conditions

��
��	 need to be ful�lled and for n large enough the rest of the conditions will be satis�ed

automatically
 In the next subsection we will show that this choice of � in fact produces

the most e�ective methods of type ��
��	 � ��
��	




��

Elementary di�erential t %j�t	 Pt��	

F J � �P
K

F J
KF

K
P
k

�jk ����� � �	

P
K�L

F J
KLF

KFL
P
k�l

�jk�jl ���

P
K�L

F J
KF

K
L FL

P
k�l

�jk�kl ������� � �	�� � �	

P
K�L�M

F J
KLMFKFLFM

P
k�l�m

�jk�jl�jm ���

P
K�L�M

F J
KMFK

L FLFM
P
k�l�m

�jk�kl�jm ���� ���

P
K�L�M

F J
KF

K
LMFLFM

P
k�l�m

�jk�kl�km ���� � ���

P
K�L�M

F J
KF

K
L FL

MFM
P
k�l�m

�jk�kl�lm ������� � �	���� � �	�� � �	

P
K�L�M�P

F J
KLMPF

KFLFMFP
P

k�l�m�p

�jk�jl�jm�jp ���

P
K�L�M�P

F J
KMPF

K
L FLFMFP

P
k�l�m�p

�jk�kl�jm�jp ���� � ���

P
K�L�M�P

F J
KPF

K
MLF

LFMFP
P

k�l�m�p

�jk�kl�km�jp ����

P
K�L�M�P

F J
KPF

K
L FL

MFMFP
P

k�l�m�p

�jk�kl�lm�jp ���� � ��� � ����

P
K�L�M�P

F J
KMFK

L FLFM
P FP

P
k�l�m�p

�jk�kl�jm�mp ���� � ��� � �����

P
K�L�M�P

F J
KF

K
LMPF

LFMFP
P

k�l�m�p

�jk�kl�km�kp ���� � ���

P
K�L�M�P

F J
KF

K
LPF

L
MFMFP

P
k�l�m�p

�jk�kl�lm�kp ���� � ����� � �����

P
K�L�M�P

F J
KF

K
L FL

MPF
MFP

P
k�l�m�p

�jk�kl�lm�lp ���� � ���� � ����

P
K�L�M�P

F J
KF

K
L FL

MFM
P FP

P
k�l�m�p

�jk�kl�lm�mp ������� � �	���� � �	���� � �	�� � �	

Table �
�� Order conditions for the exponential Runge�Kutta methods up to order �



��

����� Reducing complexity

The s�stage exponential propagation method ��
��	 � ��
��	 requires s Krylov subspace

projections and s function F evaluations to be performed to compute all the ki�s
 As in

the case of Friesner et� al��s iterative exponential methods of the previous section� this may

be prohibitively expensive to compute if the system if large and a higher order method is

used
 A special reformulation of the method proposed in ���� helps reduce the complexity

and derive more e�cient methods of type ��
��	 � ��
��	


In order to reduce the number of Arnoldi approximations we need to perform to calculate

matrix�vector products

���hA	v �
e	hA � I

�hA
v

we can use the recurrence relation which allows computing ��jz	� j � �� �� � � � once ��z	 is

calculated
 For example� ���z	 and ���z	 can be computed from

���z	 �
�

�

�
z��z	 � �

�
��z	 �

�

�
��z	 ��
��	

���z	 �
�

�

�
z��z	 � �

�
���z	 �

�

�
��z	� ��
��	

In general� it is easy to verify by simple algebra that for arbitrary n � �� �� � � � the following

formula allows computing ��jz	 recursively

��nz	 �
n� �

n

�
z��z	 � �

�
���n� �	z	 �

�

n
��z	� ��
��	

Therefore� if we approximated ���hA	v by the Krylov subspace projection to get

���hA	v � Vm���hHm	V T
m v� ��
��	

then rather than performing the Krylov projection again to compute ��j�hA	v we can use



��

recurrence ��
��	 and the fact that matrix Hm is small to cheaply calculate

����hA	 � Vm����hHm	V T
mv

� Vm

�
�

�

�
�hHm���hHm	 � Im

�
���hHm	 �

�

�
���hHm	

	
V T
mv ��
��	






��j�hA	 � Vm��j�hHm	V T
m v

� Vm

�
j � �

j

�
�hHm���hHm	 � Im

�
���j � �	�hHm	 �

�

j
���hHm	

	
V T
m v� ��
��	

We also employ another useful formula which will help us �nd the coe�cients �ij once

we reformulate the method


Lemma ��� If ��z	 � �ez � �	�z then for n � �� �� �� � � � the following relation holds	

��nz	 � ��z	

�
� �

z

n

n��X
j��

��jz	j

�
��
��	

Proof� By simple algebraic manipulation of the right hand side of ��
��	 we obtain�

��z	

�
� �

z

n

n��X
j��

��jz	j

�
�

ez � �

z

�
� �

z

n

n��X
j��

ejz � �

jz
j

�

�
ez � �

z

�
� �

�

n

n��X
j��

�ejz � �	

�

�
ez � �

nz

�
� �

n��X
j��

ejz
�

�
�

nz

�
ez � � �

n��X
j��

e�j���z �
n��X

j��

ejz
�

�
enz � �

nz

� ��nz	� �

��
��	

We de�ne auxiliary vectors

di � F �ui	� F �Un	� hA

i��X
j��

�ijkj � ��
��	



��

Since the expression for di corresponds to the �rst order Taylor expansion of F as more

stages are completed we can expect vectors di become smaller in norm
 The general method

��
��	���
��	 is then reformulated in terms of the newly introduced vectors di in such a way

that recurrences ��
��	 and ��
��	 are used� i
e


ki � k� � ���hA	di � ���hA	hA

i��X
j��

�ijkj� ��
��	

Now we set

� � ��p� ��
��	

where p is some small integer� and

�ij � �� j � i� i � �� � � � � p� ��
��	

so that

ui � Un� i � �� � � � � p ��
��	

and consequently

di � �� i � �� � � � � p� ��
��	

Since

k� � ���hA	F �Un	 ��
��	

the above choice of parameters reduces formula ��
��	 to

ki � ��
h

p
A	

�
F �Un	 � hA

i��X
j��

�ijkj

�
� i � �� � � � � p� ��
��	



��

In order to use the recurrence ��
��	 we choose coe�cients

�ij �
j�

i
�

j

ip
� j � i� i � �� � � � � p� ��
��	

This choice of �ij and the formula ��
��	 transforms ��
��	 to

ki � ��
i

p
hA	F �Un	� i � �� � � � � p� ��
��	

We also want to use recurrence ��
��	 for each of the other sets of p stages
 To accomplish

this let us consider each of these sets
 That is� �x l � �� � � � � s and derive parameters for

each of the stages pl � i� i � �� � � � � p
 First set

�pl�i�j � �pl���j� i � �� � � � � p� l� j 	 � ��
��	

which implies given the de�nition of ��
��	 that

upl�i � upl��� i � �� � � � � p� l 	 � ��
��	

dpl�i � dpl��� i � �� � � � � p� l 	 �� ��
��	

Now analogous to ��
��	 we would like to get

kpl�i � k� � ��
i

p
hA	dpl��� i � �� � � � � p� l 	 �� ��
��	

Here we will work in reverse and derive coe�cients �ij given ��
��	
 Let us split the sum

in ��
��	 to rewrite is as

kpl�i � k� � ��
h

p
A	dpl��

� ��
h

p
A	hA

� pX
j��

�pl�i�jkj �

plX
j�p��

�pl�i�jkj �

pl�iX
j�pl��

�pl�i�jkj

	
�

��
��	

First� we set

�pl�i�j � �� j � �� � � � � p� ��
��	



��

�pl�i�j � �� j � p � �� � � � � pl� ��
���	

and choose

�pl�i�j �
j � pl

pi
� j � pl � �� � � � � pl � i� ��
���	

Then using these parameters and substituting ��
��	 we reduce ��
��	 to

kpl�i � k� � ��
h

p
A	dpl��

� ��
h

p
A	hA

�
�pl�i��k� �

pl�iX
j�pl��

j � pl

pi

�
k� � ��

ih

p
A	dpl��

�	
�

��
���	

Finally� to obtain ��
��	 from ��
���	 we set

�pl�i�� � �
pl�iX

j�pl��

j � pl

ip
� � i� �

�p
� ��
���	

To summarize� in this subsection we derived the general formulas ��
��	� ��
��	� ��
��	�

��
��	� ��
���	� ��
���	 and ��
���	 for the coe�cients of the reduced methods proposed in

�����

ki � ��
i

p
hA	F �Un	� i � �� � � � � p ��
���	

ki � k� � ��
i

p
hA	dpl�i� i � �� � � � � p� l 	 �� ��
���	

Compared to the general form of the method ��
��	 � ��
��	 the new formulation reduces

the number of the function evaluations and the applications of the Arnoldi algorithm by a

factor p
 Only once at every p stages do we need to perform the Krylov subspace projection

to compute ���hA	v� while ��i�hA	v� i � �� � � � � p� can be computed using recurrence

��
��	
 Furthermore� since� as was mentioned before� vectors di decrease in norm� we can

expect the number of Krylov vectors needed to approximate ���hA	di will decrease for each

subsequent stage


One more simpli�cation to the reduced methods is made by expressing the scheme in



��

terms of shifted vectors

&kpl�i � kpl�i � k�� l 	 �� i � �� � � � � p� ��
���	

with the coe�cients �i� and b� modi�ed to re�ect this change as

&�i� � �i� �
X
m�p

�im� ��
���	

&b� � b� �
X
m�p

bm� ��
���	

From now on we will omit the tilde and just de�ne by �i�� b� and kpl�i the shifted coe�cients

and vectors in ��
���	� ��
���	 and ��
���	


These simpli�cations signi�cantly reduce the complexity of the method to make it e��

cient
 Since � is chosen to be the inverse of an integer ��p� according to the Theorem �
�
�

and discussion thereafter� it can be made A�stable with imposing only a few conditions on

coe�cients bj �s


����� Fourth�order exponential propagation Runge�Kutta methods

Two speci�c methods of order four were derived in ����
 The �rst one is constructed by

setting � � ���
 The method is three�stage and uses two function evaluations per step


The parameters in the method are given by the following matrices

� �


����
� � �

��� � �

� � �

���� � ��
���	

and

� �


����
� � �

� � �

��� ��� �

���� � b �


����
������

�

�����

���� � ��
���	



��

The resulting reduced method reformulated using the di vectors will be

k� � ��
�

�
hA	F �Un	�

k� � ��hA	F �Un	�

w� �
�

�
�k� � k�	�

u� � Un � hw�� ��
���	

d� � F �u�	� F �Un	� hAw��

k� � ��
�

�
hA	d��

Un�� � Un � h�k� �
��

��
k�	�

By Theorem �
�
� this method is exact for linear di�erential equations and therefore is

A�stable
 It requires only two applications of the Arnoldi algorithm to calculate k� and

k�� while k� can be calculated using the recurrence ��
��	
 It is impossible� however� to

derive a so�called embedded method of order three� i
e
 a method which will have the same

matrices � and � but di�erent coe�cients bj
 This fact will be important when we discuss

an automatic error control mechanism in the next section


Another� more complex seven stage method of order four can be constructed with � �

��� and coe�cient matrix

� �


����������������

� � � � � � �

��� � � � � � �

��� ��� � � � � �

� � � � � � �

���� � � ��� � � �

���� � � ��� ��� � �

� � � � � � �

����������������
� ��
���	



��

The reduced version of this scheme is given by

k� � ��
�

�
hA	F �Un	�

k� � ��
�

�
hA	F �Un	�

k� � ��hA	F �Un	�

w � � �

���
k� �

��

���
k� � ��

���
k��

u � Un � hw�

d � F �u	� F �Un	� hAw�

k � ��
�

�
hA	d�

k
 � ��
�

�
hA	d� ��
���	

k� � ��hA	d�

w� �
��

���
k� � �

��
k� �

���

���
k� �

�

�
�k � k
 � k � �	�

u� � Un � hw��

d� � F �u�	� F �Un	� hAw��

k� � ��
�

�
hA	d��

Un�� � Un � h�k� � k � �

�
k
 � k� �

�

�
k�	�

This method is also A�stable since it is exact for linear di�erential equations
 Even though

method ��
���	 is more economical than the scheme ��
���	 we will use the latter in our

future calculations
 The reason for our choice is the fact that it is possible to derive an

embedded method of order three for the scheme ��
���	
 In the next section we describe

this point in detail and another advantage of the Runge�Kutta exponential propagation

schemes � the robust automatic error control mechanism which can be constructed for these

methods


��� Automatic error control � Gustafson	s approach

As discussed above� error estimation is a crucial point in constructing a good exponential

propagation method
 We have already described how the generalized residuals can be used



��

to assess the error of the Arnoldi algorithm in approximation of ���hA	v
 Now we also

need a mechanism to estimate the error of the new approximation to the solution at the

next time step Un�� so that we can adjust the time step size based on this calculation
 An

approach proposed �rst by Gustafson for the regular Runge�Kutta methods can be naturally

extended to the Runge�Kutta exponential propagation methods


The key observation� which helps construction of an e�cient and robust automatic error

control mechanism for either ordinary or exponential Runge�Kutta schemes� is the fact that

for given matrices of coe�cients �ij � �ij and �ij and parameter � there can be several

methods derived which di�er only by the coe�cients bj�s
 Since the parameters bj are only

used to compute the �nal approximation

Un�� � Un �

sX
j��

bjkj ��
���	

once all the vectors kj are computed� it is cheap to calculate two approximations to Un�� at

the cost of s�� extra vector additions
 This leads to the following error control mechanism


Supposed we derived an exponential Runge�Kutta method of order q with certain coef�

�cients �� �ij � �ij � �ij and bj� with which we then compute an approximate solution Un��

to the system of di�erential equations ��
�	
 Assume also that we found an embedded expo�

nential Runge�Kutta method of order bq with coe�cients �� �ij � �ij � �ij and bbj � which gives

us another approximation to the solution bUn��
 We want the error between approximations

Un�� and bUn�� to be within a prede�ned tolerance componentwise� i
e


jUn��
i � bUn��

i j � sci� sci � Atoli � max�jUn
i j� jUn��

i j	 �Rtoli� ��
���	

where Atoli and Rtoli are the desired absolute and relative tolerances per component pre�

scribed by the user
 The measure of the total error �exrk is de�ned as

�exrk � k�Un��
i � bUn��

i 	�sck� ��
���	

where the norm k � k is taken to be either the normalized ��norm

kUk �

vuut �

N

NX
i��

U�
i � ��
���	



��

or the maximum norm

kUk � max
��i�N

�Ui	 ��
���	

depending on which of these provide a better error estimate for a particular problem


Since the numerical methods we used are of orders q and bq we expect the error to behave

as

�exrk � C � hr� r � min�bq� q	� ��
���	

The optimal step size hopt would ensure that

C � hropt � �� ��
���	

From the last two equations we can compute the optimal step size as

hopt � h �
�

�

�exrk

����r���
� ��
���	

In practice in order to avoid decreasing or increasing the time step too much using the

last equation and in this way ensure that the approximation at the next time step will be

accurate we can introduce safety factors in the formula ��
���	
 That is� we de�ne constant

growth and reduction factors fac� facmin and facmax and modify the last formula to

compute the next time step as

hnew � h �min�facmax�max�facmin� fac �
�

�

�exrk

����r���
		� ��
���	

The error control mechanism therefore� proceeds as follows
 First� we set some starting

value for the time step h and compute the approximations to the solution Un�� and bUn��


Then we calculate the error �exprk
 If the error is larger than � we reduce the size of the time

step and compute the solution approximations again with the new time step
 Otherwise

the solution is advanced with Un�� and the new time step size is calculated according to

the formula ��
���	


Coupling the procedure described above with the error control mechanism for the Arnol�
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di algorithm in the general scheme we estimate the new time step size hkry based on the

residual in the Krylov subspace projection and the time step hexprk from ��
���	 and pick

the minimum of the two to be the new time step size

hnew � min�hkry� hexprk	� ��
���	

With this new value for the time step size we proceed with integrating the system of

equations in time


Let us discuss now the application of this error control algorithm to the fourth�order

methods presented in section �
�
�
 As we mentioned before� it is impossible to derive an

embedded method of order � for the scheme ��
���	
 An alternative is to use the second

order scheme ��
��	 as an embedded method
 The error estimate in this case might be too

pessimistic and consequently the time step taken will be too small and the overall calculation

much slower
 For the seven stage method ��
���	� however� there is an embedded method

of order three which di�ers from ��
���	 only by the last formula

Un�� � Un � h

�
k� � �

�
k �

�

�
k
 �

�

�
k� �

�

�
k�

�
� ��
���	

So since it is important to us to make the time step as large as possible given the accuracy

requirements we choose to use method ��
���	 with an embedded method ��
���	 for most

of our calculations in this work


��
 Practical implementation of the exponential Runge�Kutta

methods and numerical example

����� Memory requirements and parallelization of the method

Since we hope to use the exponential Runge�Kutta methods to solve large systems of sti�

nonlinear partial di�erential equations we should consider the issues of memory storage

and e�ciency for the practical implementation of the algorithm
 First of all note that the

method is very memory intensive
 Suppose� for example� that it takes Nu megabytes to store

one vector of unknowns Un and that the maximum number of the Krylov vectors needed for

any of the stages in the scheme is m
 Then assuming that we reuse the space allocated for
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the Krylov vectors at each stage� including one vector to store intermediate values� we will

need at least �m� �	Nu megabytes of memory on our computer to implement the method


Even if m is a small number of the order of ����� vectors� if the number of nodes on our grid

times the number of unknown variables� which constitutes the length of Un� is large� the

increase in memory requirement on the order of �� is very signi�cant compared to the simple

explicit scheme
 For example� if Un is of length N � nvars � ngrid � �� ���� � �� ���� ���

elements� then Nu � N � sizeof�double	 � �� megabytes and if m � ��� we require a

computer to have at least � Gigabyte of memory
 In other words the memory requirement

increases by at least an order of magnitude compared to an explicit scheme
 It will also be

larger than the memory requirement for implicit schemes� since implementation of methods

like conjugate gradient or GMRES do not require the user to store all the Krylov vectors

until the end of the iteration and simply overwrite each computed vector with a new one

as the Arnoldi iteration progresses


The size and the sti�ness of the initial system also impose an e�ciency requirement on

the method
 We need to be able to run the code fast if we want to integrate the system

over long periods of time on a large grid
 These requirements lead us to the conclusion that

the method should be parallelizable so that we could create an e�cient implementation

which would run on a distributed memory parallel computer with large total memory size


Fortunately� the iterative nature of the exponential Runge�Kutta methods make achieving

this goal possible
 Note that the major part of the computations in these schemes involve

functional evaluations F �U	 and matrix�vector multiplications Av
 Recall that function

F �U	 for the systems of PDEs is just a discretized version of the spatial operators and A is

a Jacobian matrix of F �U	
 Therefore� e�ective parallelization can be achieved in the same

way as for the explicit and iterative implicit methods� i
e
 the development of an e�ective

and scalable parallel implementation of the action of the spatial di�erential operators on a

grid will ensure that the general exponential Runge�Kutta code will be e�cient and scalable

as well
 For example� suppose we discretize our system on a grid and use �nite di�erences

to approximate the spatial operators
 Then we can use the standard approach to parallelize

the algorithm by splitting the grid into patches and distributing the task of computing

F �U	 and Au on a single patch to a di�erent processor
 The only communication that will

have to be performed during this computations is passing the ghost cell values between the

processors� which is an ordinary parallelization issue considered in any parallel software or
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framework


The parallel properties of the exponential Runge�Kutta method make the algorithm

very suitable for a vector machine as well
 The largest numerical computations in this work

are performed on a vector Cray J�� supercomputer
 Our numerical experiments con�rmed

that the amount of parallelization in the algorithm depends mostly on the e�ciency of the

parallel implementation of F �U	 and Au with the former being more important since the

most time in the code is spent in this routine
 The second part of the code which a�ected

greatly the e�ciency was the implementation of the calculation of the vector norms
 An

e�ective vectorized implementation of these routines greatly reduced the overall computing

time and the splitting of the loops involved in calculating the norms signi�cantly increased

the scalability of the code
 The time spent on diagonalization of the Krylov projection

matrix Hm proved to be insigni�cant compared to the overall computation time even if it

is performed in serial


����� Implementation

Our current code is based on the package exp� mentioned in ����
 exp� constitutes the time

integrator part of the code
 We have optimized this package for vector supercomputers and

for large grid sizes ran it on the Cray J�� vector machine
 The calculations for problems of

smaller sizes were performed on a Pentium II ��� MHz Linux workstation
 The speci�cs for

each problem are implemented in a separate package interfaced with exp� through routines

performing the functional evaluation F �U	 and multiplication of a vector by a Jacobian

matrix
 Note that the Jacobian matrix does not have to be stored explicitly� we just have

to write a program which takes a vector as an input and outputs the resulting matrix�vector

product
 The code is written in the C programming language with all the low level linear

algebra operations accomplished by calls to Fortran BLAS routines
 When run on the Cray

J�� native vector routines of the BLAS optimized for Cray are used
 In the future we plan

to implement the method on a distributed memory massively parallel machine in the C

programming language using MPI


If we are solving a system of partial di�erential equations we should also carefully

consider the question of spatial discretization appropriate for this problem
 Unless otherwise

indicated we use central �nite di�erences to approximate the spatial di�erential operators

in this work
 The advantage of this approach is the high order of accuracy in space and fast
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computation of the spatial derivatives
 Most of the problems we solve are of the convection�

di�usion equation type and for these systems such spatial discretization proved to work well


For systems with hyperbolic behavior� however� upwinding should be used when discretizing

the convective terms
 We will return to this issue in our discussion of the future work in

the last chapter


����� Numerical example � Burgers equation

Since most of the systems of interest in our work are of the convection�di�usion type� we

will demonstrate the advantages of the exponential Runge�Kutta method on a simple one�

dimensional Burgers equation�

ut � uux � buxx� ��
���	

on an interval xmin � x � xmax
 This equation has an exact solution

u�x� t	 � a� ctanh

�
c

�b
�x� at	

	
� ��
���	

which represents a front moving with speed a
 We choose a � ���� c � ��� and integrate

��
���	 on an interval t � �t� � �� tfinal � ����� for di�erent values of the di�usion coe�cient

b
 Figure �
� shows the exact solution ��
���	 for the speci�ed values of the parameters and

b � ���� along with its approximation by the exponential Runge�Kutta method at times

t � ���� and tfinal � ���� on an interval �� � x � �


To demonstrate the advantages of the exponential Runge�Kutta method we will com�

pare method ��
���	 with the fourth�order explicit Runge�Kutta method as formulated by
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Figure �
�� Exact and numerical solution �as calculated by the fourth order exponential
Runge�Kutta method ��
���		 to the Burgers equation on an interval �� � x � � with
a � ���� c � ��� and b � ���� at times t � ���� �left	 and tfinal � �����right	
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We use exactly the same error control mechanism �due to Gustafson	 for both methods
 The

formula ��
���	 is used as an embedded method for the exponential Runge�Kutta scheme


For the explicit Runge�Kutta scheme the embedded numerical method is the following third

order explicit Runge�Kutta method that results in using formulas ��
���	 � ��
���	 together

with

bUn�� � bUn � h

�
� �

�
k� �

�

�
k� �

�

�
k� �

��

�
k � ��

�
k


�
��
���	

to obtain a second approximation to the solution
 The automatic error control parameters
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integration
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����� ����
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�e�� ����
� �
�e�� �
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Table �
�� Performance comparison of the exponential and explicit Runge�Kutta methods
for the di�usion coe�cient b � ���

used in the formula ��
���	 are set at the same values for both methods� speci�cally relative

and absolute tolerances are Atoli � Rtoli � ��� and the factors are given values fac � ����

facmin � ���� facmax � ���
 The maximum allowable number of Krylov vectors for each

stage of the exponential propagation method is set to be ��


We are interested in comparing the e�ciency of the methods for integrating the Burgers

equation over a time interval �t� � �� tfinal � ����� as we increase the spatial resolution


It is well known ���� that for the explicit Runge�Kutta method if we increase the number

of points on the spatial grid by a factor C we should expect the time step to be reduced

by C� due to the stability constraint
 We do not expect such a drastic reduction of the

time step for the exponential Runge�Kutta method and hope that as the number of grid

points increases the e�ciency of the exponential Runge�Kutta method compared to the

explicit scheme will also increase
 We expect the exponential Runge�Kutta methods to

make a di�erence in performance for large problems� so we start with N � ���� points

on the spatial interval ����� ���� then increase N and compute the total integration time�

the average time step and �nal relative error for both numerical methods
 Tables �
� and

�
� summarize our results for two di�erent values of the di�usion coe�cient b � ��� and

b � ����


As we can see from the data in both tables as the number of grid points N is doubled

the automatic error control mechanism reduced the time step for the explicit Runge�Kutta

�RK	 method by a factor of � as expected from the stability condition for the second�

order di�erential equation ��
���	
 This is also evident from the fact that even though

our tolerances are set at ���� which is exactly the order of the error maintained by the

exponential RK method� the explicit method computes the solution with smaller error


For the exponential propagation method the time step is reduced much less and in all
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Table �
�� Performance comparison of the exponential and explicit Runge�Kutta methods
for the di�usion coe�cient b � ���

of the calculations in both tables was restricted by accuracy requirements of the Krylov

approximation to the exponential operator� i
e


hnew � min�hkry� hexprk	 � hkry� ��
���	

As the size of the problem increases the extra time required to complete each time iteration

for the exponential RK method compared to the explicit scheme is o�set by the larger

allowed time step
 Consequently the exponential RK method integrates the equations faster

than the explicit scheme
 The ratio of the overall integration times by the explicit method

and the exponential RK scheme grows as the problem gets sti�er
 For equation ��
���	

the larger the di�usion coe�cient b� the bigger is the magnitude of the ratio between the

largest and the smallest eigenvalues of the Jacobian matrix dominated by the discretized

Laplacian part of the equation
 Therefore� b � ��� constitutes a sti�er problem than a

calculation with b � ����
 As we can see from the tables the di�erence between e�ciency

of the exponential RK versus explicit RK becomes more dramatic as N increases
 Note

that given this improvement� the number of Krylov vectors computed for each stage stays

relatively small� i
e
 the largest Hmi
matrix for which eHmiv has to be computed directly is

only of order �����
 Given a computer with a larger memory and faster processor we could

increase the number of Krylov vectors even further which would result in greater savings in

the size of the time step and overall computation time


The computations presented in the latter chapters involve yet larger grids and greater

number of variables
 Those problems will demonstrate even larger savings o�ered by the

exponential propagation methods� e
g
 a time step ��� times larger than the explicit limit

and an order of magnitude reduced overall time of integration
 The data for the example
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calculation in this section� however� gives an idea of what savings we can expect for the

large problems and shows how the performance of the method changes as we increase the

size of the system
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Chapter � Magnetohydrodynamics calculations for solar

coronal applications using exponential propagation methods

A set of applications which can bene�t from the properties of the exponential propagation

methods lies in the realm of solar magnetohydrodynamics �MHD	
 In the beginning of this

chapter we brie�y discuss the solar phenomena of interest
 Then we introduce the theory

of MHD and explain how it is used to study certain processes in the solar corona
 We

concentrate on two models widely used to describe the evolution of certain con�gurations

of plasma in the solar corona
 We present and discuss the results of numerical modeling of

these problems using the exponential propagation methods of the previous chapter


��� Challenges of the solar corona

Three regions of plasma with di�erent physical properties comprise the visible part of the

solar atmosphere �Fig
 �
�	 ����
 A thin �� ��� km thick	 bottom layer is responsible

for most of the emitted solar radiation and is called the photosphere
 Just outside the

photosphere lies the almost completely transparent ���� km wide chromospheric region


Finally� the outermost layer of the atmosphere extends from � solar radius ��R	 � ���� ���

km	 to millions of kilometers into space
 This region can be seen directly during eclipse

or by blocking the photosphere with a special telescope� the coronagraph �Fig
 �
�	
 Such

images of the region gave it the name corona� which is derived from the Latin word �crown


The plasma properties change drastically with height going the photosphere to the outer

corona
 The temperature increases from about ���� Kelvin in the photosphere to an average

temperature of � million Kelvin in the corona
 The density on the other hand falls rapidly

from ���� m�� in the photosphere to ���
 m�� in the outer chromosphere and ���� m��

at a height of �R	
 A feature which plays a very important role in the dynamics of all

the regions in the solar atmosphere is presence of a strong� topologically complex magnetic

�eld
 Due to the drastic change in physical parameters the plasma dynamics di�ers in the

three regions
 In the high density photospheric plasma the interplay between hydrodynamic

pressure and magnetic forces determines the dynamics
 In contrast� dynamics in the highly
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Figure �
�� The structure of the Sun �image credit� Kaler� James B
 Stars 
 New York�
Scienti�c American Library� ����	


Figure �
�� The solar corona as seen on an eclipse image taken by a team from the High
Altitude Observatory �left	 and an image from LASCO coronagraph�right	




��

Figure �
�� An image of the coronal loops obtained by the TRACE telescope

rare�ed corona is dominated by magnetic forces only
 If P is the hydrodynamic pressure

and B������	 is the plasma magnetic pressure ��� is the magnetic permeability	 then the

parameter comparing the importance of these quantities is de�ned as

� �
���P

B�
� ��
�	

Typically� for the active regions of the corona � � � � ����
 The behavior of such low �

plasma can be determined by examining the plasma response to its internal and external

magnetic �elds


Under the in�uence of the strong photospheric magnetic �eld coronal plasma becomes

organized into elaborately interleaved bundles of large�scale twisted magnetic loops and

arcades �Fig
 �
�	
 The stages in the evolution of these con�gurations range from long

periods of stable existence in equilibrium to violent explosions which eject billions of tons

of plasma material into interplanetary space
 Coronal activity is usually separated into

three distinct categories of eruptive events� solar �ares� prominence eruptions and coronal

mass ejections ����
 A solar �are is a violent eruptions of a cool �lament embedded in an

arcade of hot loops
 Flares cause massive releases of stored magnetic energy and raise the

temperature of surrounding plasma regions by tens of millions of degrees
 Prominences are

generally less violent than solar �ares
 They are giant elongated structures that consist of
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Figure �
�� Solar prominence

material hundreds of times cooler and denser than the surrounding coronal plasma �Fig


�
�	
 Prominences can be stable for weeks or months at a time and then either slowly

dissolve or suddenly erupt
 Most large �ares and prominence eruptions are associated

with consequent large�scale ejections of mass and magnetic �ux from the lower corona

into the solar wind
 Such events are called coronal mass ejections �CMEs	�Fig
 �
�	
 An

average CME carries roughly ���� kg of plasma and ���
 Wb of magnetic �ux into the

interplanetary space
 The frequency of CMEs ranges from several events a day to a few

times a week depending on where the Sun is in its �� year activity cycle
 The scale and

frequent occurrence of these events make them some of the most important contributors to

space weather
 It takes � to � days for the CME to reach Earth and� when this happens�

the environment near and on Earth is a�ected in many di�erent ways
 Solar storms a�ect

Earth�s ionosphere causing disruption of short�wave radio communications� navigational and

radar systems
 They can also cause electric power blackouts and corrosion pipelines
 The

large surges of charged particles from the Sun can damage spacecrafts and increase radiation

to levels dangerous for astronauts in orbit about the Earth
 These e�ects demonstrate the

importance of understanding the mechanism of the solar eruptive events and developing an

ability to predict CMEs and prevent possible damage to equipment or hazards to astronauts


As more and better observational data has been collected it has become evident that

all of these events are likely to be di�erent manifestations of the same physical process�

namely loss of equilibrium of large�scale coronal loops and arcades due to the evolution



��

Figure �
�� Large coronal mass ejection �CME	 from � November ���� as recorded by the
LASCO C� coronagraph at ����� UT


of their magnetic and velocity �elds
 Numerous di�erent numerical and analytical models

have been proposed to explain this process
 All of these theories presume eruption is a

loss of equilibrium of the large�scale coronal con�gurations
 However� the timing �gradual

versus sudden	 and the cause of the instability �mass loading versus magnetic energy release	

di�er greatly among the models
 For the review of current theories see� for example� ����

���
 None of these theories� however� can fully explain the phenomena or predict all of

its properties
 Since the observations also have many limitations and do not reveal the

true three�dimensional topology and evolution of the coronal structures it is very hard to

de�nitively refute or prove any of the models
 The possibility that no single mechanism

exists and di�erent models can account for the dynamics of di�erent events also cannot be

ruled out due the variability of the activity


Although the physical processes of the corona are rooted in the photosphere� it is possible

to study the regions separately and model the connection between the coronal activity and

the �ow motions of the much more massive photosphere as boundary conditions
 This is the

approach we will use
 In this work we will focus on numerical modeling of the evolution of

the magnetic solar arcades in response to the motion of their footpoints being dragged by the

photospheric �ow
 In the following sections we will describe our mathematical model and

present some test computations
 Finally in Chapter � we will present a three�dimensional
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model of the dynamics of the solar arcades and then discuss the connection between solar

observations and our simulations


��� The theory of magnetohydrodynamics for solar applica�

tions

In order to model the dynamics of the large�scale plasma con�gurations arising in the solar

corona we invoke the theory of magnetohydrodynamics �MHD	
 The underlying justi�cation

of MHD theory can be found in numerous references� see for example ���� ��� ���
 Therefore

we provide here only a brief discussion of the MHD equations and describe the assumptions

used to derive the models for the coronal plasma


MHD describes plasma as an electrically conducting �uid� i
e
 as a continuum
 The

dynamics of this �uid results from an interplay between the motion of plasma and the

magnetic �elds and is completely de�ned by specifying the magnetic �eld B� the �uid

velocity V� density �� pressure P and temperature T 
 Typically MHD plasma is assumed

to be a perfect gas� so that the equation of state

P � kb�T� �kb is the Boltzmann constant	 ��
�	

can be used to eliminate temperature T from the evolution equations
 All plasma properties

are de�ned as averages over elements large compared with the microscopic structure of plas�

ma but small with respect to the macroscopic phenomena of interest
 This approximation

is valid in the collision�dominated situation� i
e
 the situation where the mean free path is

small compared to the region of interest
 In particular� it is a valid assumption for study�

ing the large�scale coronal plasma con�gurations
 Sometimes MHD also gives good results

even in relatively collision�free situations due to the tendency of plasma particles to gyrate

around the magnetic �eld lines ����
 One has to be careful� however� in applying MHD to

such problems and understand the limitations of this description
 Typically� a magnetohy�

drodynamic description is used to investigate the stability properties of large�scale plasma

con�gurations� which is exactly our interest in studying solar corona


To derive the MHD equations we need to combine the standard conservation of mass

and momentum equations for a �uid� Maxwell equations that take into account magnetic
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properties of the plasma� and develop an energy conservation equation to describe the

evolution of the pressure
 The form of the latter equation for solar coronal applications is

still under much debate� since it is not clear how radiative transfer and thermal heating

sources should be modeled
 In most numerical studies of the corona though� the plasma is

assumed to be thermally isolated from its surroundings and its motion adiabatic� i
e
 if �

is the polytropic index� the energy equation is taken to be

DP

Dt
� �P

�

D�

Dt
� ��

�
D

Dt
� �

�t
�V � r

�
��
�	

which means that the quantity P��	 remains constant in a moving �uid element
 In our

models the issue of the correct form of the energy conservation equation evolution will not

be important since we assume the plasma parameter � de�ned in ��
�	 to be zero
 We will

return to this point and discuss it in more detail later in the section


The forces acting on the plasma are the Lorentz force� pressure gradients� gravitational

Fg and viscous forces F� � ��r�V� which gives us the conservation of momentum equation

�
DV

Dt
� J�B�rP � Fg � ��r�V� ��
�	

where J is the current density and � is the coe�cient of kinematic viscosity �assumed

uniform	
 Using Ampere�s law

r�B � ��J�
�

c�
�E

�t
� ��
�	

where E is the electric �eld� �� is the magnetic permeability �� �������Hm�� in vacuum	

and c is the speed of light
 One of the major assumptions of magnetohydrodynamics is that

displacement current term can be neglected because all characteristic velocities are non�

relativistic� i
e
 V � c� so

J �
�

��
r�B� ��
�	

so that ��
�	 becomes

�
DV

Dt
�

�

��
�r�B	�B�rP � Fg � ��r�V� ��
�	
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The induction equation is derived from Faraday�s law

�B

�t
� �r�E� ��
�	

and the assumption that the electric and magnetic �elds obey Ohm�s law

E � �V �B � J�� �� is the electric conductivity	� ��
�	

Combining these equations with ��
�	 we obtain

�B

�t
� r� �V �B	�r� ��r�B	� ��
��	

where � � ������	 is the magnetic di�usivity
 Adding to this the conservation of mass

equation� assuming that � is uniform and using the vector identity

r�B � r�r �B	�r� �r�B	� ��
��	

along with the fact that the magnetic �eld is divergence free r � B � � we obtain the

following closed system of equations

�B

�t
� r� �V �B	 � �r�B� ��
��	

�V

�t
� �V � rV �

�

�

�
�

��
�r�B	�B�rP �Fg

�
� �r�V� ��
��	

��

�t
� �r � ��V	� ��
��	

�P

�t
� �V � rP � �Pr �V� ��
��	

If � � � the equations above describe the processes of the ideal magnetohydrodynamics�

otherwise this is the system of equations for resistive MHD
 The physical parameters of

a particular plasma phenomenon determine which theory better describes the dynamics


Either of the systems� ideal or resistive� include the descriptions of a variety of complex

physical processes� which makes solving the equations a di�cult task
 To model the coronal

plasma we choose the resistive MHD description and use some properties of the corona

to simplify the equations
 First� we recall that the dynamics of the very rare�ed coronal



��

plasma is dominated by the strong magnetic forces
 This implies that we can discard

pressure gradients and the gravitational force in our model of the coronal arcades
 Since

we use zero � plasma approximation in our calculations� only the Lorentz force will remain

in the induction equation and we can ignore the pressure equation altogether
 Another

approximation we make is that the density is uniform
 This assumption is harder to justify

on physical grounds
 We argue that the overall magnetic �eld topology of the plasma

con�gurations will be dominated by the dynamics between the magnetic and velocity �elds

and since our primary interest is the changes in the magnetic �eld topology� as a �rst

approximation we can assume density to be constant and uniform
 Additional support for

this approximation comes from a number of numerical studies ���� �� �� that investigated zero

� plasmas and found that giving the density various nonuniform pro�les did not signi�cantly

alter the dynamics or topology of the magnetic �eld
 In the future we plan to enhance our

code by including equations ��
��	 and ��
��	 and investigate how this change a�ects the

dynamics
 Given all these assumptions� the system of equations we are interested in solving

is

�B

�t
� r� �V �B	 � �r�B� ��
��	

�V

�t
� �V � rV �

�

��
�r�B	�B� �r�V� ��
��	

� � constant� ��
��	

Let us now concentrate on these equations and nondimensionalize all of the variables

to simplify our calculations
 Denote the nominal value of the velocity magnitude and the

strength of the magnetic �eld as V� and B�� and let the typical length and time scales be

l� and t�
 We want to perform our computations in terms of the nondimensional variablesbx � x�l�� "t � t�t�� bV � V�V�� bB � B�B�
 After expressing all variables in ��
��	 and

��
��	 in terms of these nondimensional quantities and performing some simple algebra we

obtain the non�dimensional system

� bB
�t

�
V�t�
l�
br� �bV � bB	 �

t��

l��
br� bB� �br �

�

l�
br	 ��
��	

� bV
�t

� �V�t�
l�

bV � brbV �
B�
�t�

��V�l�
�br� bB	� bB �

t��

l��
br� bV� ��
��	



��

A fundamental MHD electromagnetic waves phenomena called Alfven waves are described

by solutions of the linearized equation ��
��	
 These waves can be categorized as shear

Alfven waves� that propagate along the magnetic �eld B� and compressional Alfven waves

that travel at arbitrary directions with respect to B �for detailed description of Alfven waves

see ���� ���	
 The propagation speed in both cases is called the Alfven velocity

VA �
B�

���	���
� ��
��	

In the parameter regime of interest these waves are the fastest modes of the system ��
��	

� ��
��	
 We choose our normalization velocity V� to be

V� � VA �
B�

���	���
� ��
��	

and normalize time by the time it takes Alfven wave to propagate the distance l�� i
e


t� � tA �
l�
VA

� ��
��	

Using the values from ��
��	 and ��
��	 in ��
��	 � ��
��	 and dropping the hats we reduce

these equations to

�B

�t
� r� �V �B	 �

�

S
r�B� ��
��	

�V

�t
� �V � rV � �r�B	�B �

�

R
r�V� ��
��	

The nondimensional parameters in this system are the Reynolds number

R �
VAl�
�

� ��
��	

which gives the ratio of the size of the inertial term to the viscous term in the momentum

equation and the Lundquist number

S �
l����

tA
� ��
��	

which is the ratio of the resistive to the Alfven time scales in the system
 The latter pa�

rameter is very important in the theory of MHD
 Although the value of the Lundquist



��

number in the corona is very large �� ����	 the resistive term provides a very important

dissipative mechanism by which magnetic �eld lines di�use across plasma and so drastically

change the topology of the overall magnetic �eld
 This process is called reconnection ����

and it is believed to be at the heart of the eruptive processes in the corona
 Using real�

istic coronal values of the Lundquist number in numerical simulations is beyond current

computational resources� and so S is normally chosen as large as the numerical methods

and the computing tools allow� typically on the order of �� � ��

 While the importance

of the Lundquist number is usually emphasized in the numerical magnetohydrodynamics

literature� the magnitude of the Reynolds number is not given much attention
 Even though

for the corona R should be larger than the Lundquist number it is normally chosen to be

on the order ��� mostly out of numerical rather than physical considerations
 Our numer�

ical experiments showed that the Reynolds number is important and its magnitude a�ects

the dynamics of the plasma by changing the rate at which evolution is occurring
 We will

present calculations supporting this conclusion later in this work


To summarize� we are interested in numerically modeling the evolution of the coronal

magnetic arcades using the simpli�ed system of magnetohydrodynamic equations ��
��	�

��
��	 and studying the dependence of the dynamics on the parameters R and S
 In

the next section we will discuss the computational di�culties this system presents and

the advantages that exponential propagation methods o�er compared to the traditional

numerical techniques used to solve these equations


��� Numerical magnetohydrodynamics

The magnetohydrodynamic description is used for a variety of astrophysical and laboratory

plasma applications
 Due to the complexity of the equations the only opportunity to obtain

a solution for many problems is through a numerical approach
 Depending on the plasma

regime di�erent numerical techniques should be used to solve the MHD equations ����
 For

example� for problems where MHD shocks arise �e
g
 in modeling the global structure of

the Earth�s magnetosphere	 the equations have to be formulated in a conservative form and

Godunov�type explicit schemes have to be used to solve the system
 Many such schemes have

been developed and used for di�erent plasma applications� see for example ���� ��� ��� ���


We are interested in solving the resistive MHD equations in a parameter regime where no



��

shocks develop
 The major numerical di�culty arising in this type of problems is existence

of widely separated time scales in the system
 For the coronal applications the Ludquist

number S � �R��A represents the ratio of the slowest or resistive time to the fastest or

Alfven time scales and is very large
 This implies that the system ��
��	���
��	 is sti�
 As

we mentioned before� coronal plasma con�gurations can exist stably for very long periods

of time
 Thus� it is the long term evolution that we want to obtain by solving the resistive

MHD equations
 The time scale of such evolution is expected to be much larger than the

Alfven time scale but smaller than the resistive time scale
 Using the explicit techniques

suggested in the references above� however� would require the time step to conform to the

CFL condition de�ned by the fast Alfven scale


The use of explicit schemes is even more inappropriate when we take into account yet

another numerically challenging aspect of our problem� namely� that the spatial scales of

coronal arcade con�gurations and their evolution are also quite spread out
 The reconnec�

tion process will be happening in a very narrow region having size determined by the inverse

of the Lundquist number� while the overall scale of the coronal arcade is many orders of

magnitude larger
 Also� since the computational domain is �nite but the real arcades are

not con�ned to any limited space� we would like to extend the boundaries of our compu�

tational domain far enough so that the solution is not polluted by non�physical boundary

e�ects
 These considerations lead to the conclusion that the spatial grid required for this

three�dimensional problem with six unknown variables should be very large� this makes the

CFL restriction on the time step even more severe
 In fact� the use of explicit techniques

might make numerical integration of the resistive MHD equations over the time period of

interest infeasible even for the fastest current supercomputer


The alternative approach is to turn to implicit techniques to solve the equations of

interest
 To develop a fully implicit scheme �i
e
 a scheme where all the terms on the right

hand side of the equations are handled implicitly	 for the resistive MHD equations is a very

complicated task because the matrices arising from the spatial discretization of the full

implicit operator are very large and complex to invert
 It is also not always clear how much

accuracy was sacri�ced and how much physics �ltered out in such implicit computations

in order to get savings over the explicit schemes by taking a large time step
 Due to

these complications there have been fewer attempts to develop implicit methods for the

resistive MHD system compared to the number of explicit schemes proposed
 The main
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approaches that have been taken in this direction try to approximate implicitly only some

terms in the equations� while treating the rest of the spatial operators explicitly
 Probably

the most notable of such methods are the �uid�implicit�particle �FLIP	 method developed

by Brackbill ���� and the semi�implicit methods �rst suggested by Harned and Kerner �����

then further developed by Harned and Schnack ���� and �nally generalized by Lerbinger and

Luciani in ����
 As the name indicates the FLIP method does not solve the MHD equations

in the form ��
��	���
��	� but complements the continuum plasma model with the particle

description
 In fact this method is mostly used for kinetic plasma simulations and is hard

to apply to the large�scale coronal phenomena
 The semi�implicit methods� on the other

hand� have been developed and used on stability problems for the coronal arcades
 We will

brie�y describe this numerical technique and explain what limitations of this method made

us choose an exponential propagation method instead


Semi�implicit methods are based on modifying the momentum equation by introducing

an extra arti�cial term and then evolving this term in an implicit fashion
 Speci�cally� if the

right�hand�side of the momentum equation is denoted by Fv� i
e
 if the original momentum

equation ��
��	 can be written as

�V

�t
� Fv� ��
��	

then some linear operator G is chosen and the new momentum equation is introduced as

�V

�t
� Fv � �tG � �V

�t
� ��
��	

where �t is the time step
 The time derivatives in ��
��	 are discretized to get

Vn�� �Vn

�t
� Fv �G � �Vn�� �Vn	� ��
��	

Now in order to advance the velocity �eld in time� the following matrix system has to be

solved�

�I �G�t	Vn�� � Vn � �Fv �GVn	�t� ��
��	

where I is the identity operator
 The operator G is chosen in such a way as to attempt
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to include the fast Alfven modes of the system� so that they can be solved implicitly and

the severe CFL time step restriction can be relaxed somewhat
 In the original semi�implicit

method from ���� ��� ��� two forms of the operator G have been proposed
 The �rst one is

derived from the linearization of the equations ��
��	 and ��
��	 around some equilibrium

magnetic �eld B� and zero velocity �eld to get the linear Alfven wave equation

��V

��t
� �r�r� �V �B�	��B�� ��
��	

Then G is set to be

G � ��r�r� �V �B�	��B�� ��
��	

where � is a constant
 Since for such G the inversion of �I ��tG	 is still a complicated

problem� another much simpler form of the this operator has been proposed

G � �r�V� ��
��	

For both of the operators above the constant � is chosen in such a way as to ensure nonlinear

numerical stability for the method


In the version of the method proposed by Lerbinger and Luciani in ���� �� the Laplacian

plus the full linearized MHD operator is used as an implicit term� i
e


G �

�
c�r� � c��t���

�
r�B� �r� �V �B�	 �r� �r� �V �B�	��B�

	�
V�

��
��	

with some constants c� and c�


The advantage of using a simple Laplacian operator as G is� of course� the fact that

a simple conjugate gradient �CG	 method can then be used to solve the matrix equation

��
��	� while a much more complicated preconditioner had to be developed ��� to solve this

system with G de�ned by ��
��	


The semi�implicit method has several limitations which we would like to point out


First� even though the method does remove the restriction on the time step� no general

stability condition has been derived for any form of the semi�implicit operator� so there
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is no automatic procedure or conditions from which constants � in ��
��	 or c� and c� in

��
��	 yielding a stable method can be calculated
 Second� even if the scheme is proved

to be stable it is not clear how modifying the momentum equation a�ects the accuracy of

the solution
 Even though the added term vanishes as �t � �� the reason for using the

semi�implicit method in the �rst place is that it allows taking a large time step and in this

case the extra term will be large since it is proportional to �t
 Third� both versions of the

method are not easily generalized to arbitrary spatial grids
 Due to the widely separated

spatial scales we might want to use an adaptive nonuniform grids for this problem
 Such

grids� however� drastically change the matrix �I � �tG	� so that the symmetric positive�

de�nite property for ��
��	 required for using the conjugate gradient method to invert this

matrix or the speci�c matrix structure of ��� which the preconditioner in ��� is built upon�

might not be preserved
 Finally� for the general nonlinear MHD problem the equilibrium

magnetic �eld B� used to de�ne G in ��
��	 is not necessarily known in advance and while

the magnetic �eld calculated at a previous time could be used� it is not clear whether it will

preserve the properties of the system
 The semi�implicit method has been shown to perform

well for many problems� for examples see ���� ��� ��� �� ��� however� we feel that� from a

purely numerical point of view� there is no rigid theoretical analysis which would provide

error bounds and help determine the appropriate parameters for the method in the course

of a simulation
 The only way to check whether the solution obtained by the semi�implicit

method is accurate is to perform an a posteriori convergence analysis
 But as we discussed

before� to resolve the spatial scales of interest for threedimensional MHD problems we need

extremely large grid sizes which push computer memory and speed requirements to the

limit� so increasing grid size by several factors in order to study convergence might not be

feasible


Another important issue to be considered before developing an MHD code is the need

to satisfy the zero�divergence condition implicitly imposed on a magnetic �eld� i
e


r �B � �� ��
��	

Although analytic forms of the induction equation ��
��	 preserve this condition if the initial

magnetic �eld is divergence free� when the equations are discretized and evolved� numerical

errors can cause an accumulation of non�zero divergence
 There are a number of di�erent
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approaches proposed in the literature to deal with this problem
 For explicit Godunov�

type schemes the equations have to be reformulated and modi�ed in a special way ���� to

meet this requirement
 For semi�implicit methods the zero�divergence condition is satis�ed

by using second order discretization on a staggered grid for the spatial operators or by

expressing the magnetic �eld in terms of the magnetic vector potential A �r �A � B	


The disadvantage of the latter method is the di�culty in deriving the boundary conditions

for A from the given boundary conditions for B
 Brackbill and Barnes ���� proposed to

remove the nonsolenoidal part of the magnetic �eld by solving the Poisson equation

r�� � �r �B ��
��	

for the potential � after advancing the solution over a time step� then calculating the

divergence free �eld from

Bdf � B�r� ��
��	

and using this new �eld to compute the solution over the next time interval
 It is also

possible to avoid performing this projection at each time step and only use it once in a

while during the computation to get rid of the accumulated numerical divergence in B


We want to emphasize two issues in regard to keeping the magnetic �eld divergence free

that will be important for our numerical calculations
 In ���� it was shown that this problem

has a severe e�ect on the numerical solution when the MHD equations are formulated in a

conservative form� whereas the nonconservative formulation ��
��	 � ��
��	 does not lead to

signi�cant problems with the solution
 Zachary et al� ���� found that the numerical solution

did not change much whether or not the divergence free projection was used
 Based on these

results� since we use the nonconservative form of the equations� we do not expect the solution

to be signi�cantly in�uenced by the numerical errors in the divergence of the magnetic �eld


Another important issue is the formulation of the boundary conditions
 Obviously�

the imposed boundary conditions will also impact the divergence of B
 This is a di�cult

problem and di�erent boundary conditions have been proposed for MHD modeling� see

discussions in ��� ��� ��� ���
 We will describe the particular approach we take later in our

discussion
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��� Relaxation theory and the numerical coronal models

The main goal of this section is to show that exponential propagation methods o�er signif�

icant advantages for MHD problems compared to other numerical techniques
 We will now

introduce relaxation theory which is used to explain a variety of plasma phenomena� and

describe how it is applied to the coronal problems
 We then focus on two models of the

dynamics of the solar arcades and demonstrate that the results of our numerical simulations

using exponential propagation methods agree with previously published numerical studies


����� Introduction

The question of which physical constraints and processes govern coronal plasma dynamics

has long been a subject of scienti�c debate
 An argument based on a combination of the

Taylor relaxation theory and reconnection theory has probably been most frequently used

to describe the evolution of the coronal magnetic �elds
 We now present a brief account of

the history and conclusions of such theories


Since as we mentioned before� large�scale plasma con�gurations in the corona remain

in a stable equilibrium for long periods of time� the forces acting on this structures must

be in balance
 Plasma � in the corona is quite low �� � ����	 and so magnetic forces

dominate plasma dynamics
 Therefore we expect the magnetic �eld in equilibrium plasma

con�gurations to be nearly force�free� i
e
 the Lorentz force must vanish so that

J�B � �� ��
��	

Equation ��
��	 implies that the magnetic �eld is aligned with the electric current density

vector
 Taking into account ��
�	� Equation ��
��	 can be written as

r�B � ��r	B� ��
��	

where ��r	 is some scalar function of a position
 Taking the divergence of Equation ��
��	

and using the fact that the magnetic �eld is always divergence free we obtain

�B � r	� � �� ��
��	
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This implies that � is constant along each of the magnetic �eld lines
 The con�gurations

of the magnetic �eld that satisfy equation ��
��	 are called the forcefree �elds
 If � � �

equation ��
��	 describes a potential magnetic �eld� which can be easily calculated from

the Laplace�s equation
 To obtain the force�free �eld for the non�constant � case Equation

��
��	 has to be solved
 Depending on whether � is uniform or non�uniform in space�

the corresponding solutions to ��
��	 are called the linear �uniform��	 or nonlinear �non�

uniform��	 force�free states respectively
 For certain geometries it is possible to compute the

solutions to ��
��	 analytically
 For instance� the axisymmetric magnetic �eld in cylindrical

geometry can be calculated exactly from the Grad�Shafranov force�free equation ���� ���


For the case of a uniform � the problem is relatively easy to solve numerically as we will

demonstrate later in this chapter
 In a general case of non�zero �� however� to �nd a

solution of ��
��	 is a di�cult task because of an implicit nonlinearity of this equation
 It is

nevertheless important to solve these problems and compare the solutions with the actual

coronal plasma con�gurations for two reasons
 First� we want to check whether the stable

plasma structures in the corona are indeed in force�free equilibrium states
 Second� force�

free magnetic �elds are important in relaxation theory which has been successfully used to

explain the dynamics of the laboratory plasmas and is conjectured to be applicable to the

processes in solar corona


Before discussing relaxation theory we need to de�ne another important quantity that

characterizes a state of plasma
 If A is a magnetic vector potential corresponding to a

magnetic �eld B so that

r�A � B� ��
��	

and plasma is contained in a singly connected volume V � then the following integral

K �

Z
V
A �BdV ��
��	

measures the amount of twist and linkage of the magnetic �eld lines and is called the

magnetic helicity of the plasma
 Since the magnetic vector potential is a gauge dependent

quantity� so is the magnetic helicity K
 The only exception to this is the case when no

magnetic �eld lines penetrate the boundary �V of the volume V � then it can be shown ����
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that K is gauge independent
 In the case when the volume does not completely enclose all

of the magnetic �eld lines and some of them intersect the boundary the classical de�nition

of magnetic helicity ��
��	 becomes ambiguous and a so�called relative magnetic helicity

has to be de�ned
 Finn and Antonsen ���� introduced a gauge�independent relative helicity

by introducing a potential magnetic �eld Bvac� de�ned such that its normal component on

the boundary �V is equal to the normal component of B
 Such a potential magnetic �eld

is clearly unique and if the corresponding vector potential is denoted as Avac the relative

helicity is given by

Krel �

Z
V

�A�Avac	 � �B�Bvac	dV� ��
��	

This is a gauge invariant quantity which re�ects the topological properties of the magnetic

�eld� namely� it quanti�es how twisted and linked the magnetic �eld lines are


Now using the above de�nitions we will give a brief introduction to relaxation theory


In ���� Woltjer ���� proved that� for a perfectly conducting plasma �i
e
 in�nite Lundquist

number	 in a closed volume� the magnetic helicity K de�ned in ��
��	 is conserved and if

the plasma relaxes to a minimum energy state� such state is a linear force�free �eld
 Taylor

extended Woltjer�s theory to explain why a reversed toroidal �eld was developing near the

wall in the laboratory reversed �eld pinch experiments� in which plasma was contained in

a torus with rigid perfectly conducting walls and allowed to relax
 It was also conjectured

that for a slightly dissipative plasma� i
e
 plasma with the small non�zero resistivity� during

the relaxation process the resulting changes in topology are accompanied by small changes

in B so that the magnetic helicity K �
R
V A � BdV stays nearly constant compared to

the changes in the magnetic energy
 By Woltjer�s theorem this means that plasma relaxes

to the minimum energy state � the linear force�free �eld
 This theory cannot be directly

applied to explain the behavior of the coronal plasma con�gurations since the magnetic

�eld lines of these structures are rooted in the photosphere which has di�erent physical

properties
 However� because of the success of the relaxation theory in understanding the

behavior of laboratory plasmas with the use of the notion of relative helicity the conjecture

has been proposed to explain the dynamics of the coronal magnetic arcades
 While there is

still much variation in the details of di�erent theories� much of the coronal modeling based

on relaxation theory concentrates on solving the following problem
 The dynamics of the
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solar coronal arcades is interpreted as the evolution of the low�beta plasma through a series

of force�free con�gurations in response to motion of the footpoints of the magnetic �eld

lines that are carried along by the �ow of the much more massive� compared to the corona�

photosphere
 As a result the coronal magnetic �eld lines get sheared and twisted and the

magnetic energy gets stored in the stressed magnetic �eld
 This evolution is assumed to be

constrained by the requirement that the total relative helicity is preserved
 One of the key

problems in modeling the evolution of the coronal arcades is explaining the �nal eruptive

stage during which a sudden massive release of energy occurs
 There are two most widely

debated theories that attempt to describe the eruptions
 In the �rst one it is argued that

during the slow evolution of plasma through a series force�free states an unstable equilibrium

or an instability are reached and this causes the eruption
 There is no reconnection process

changing the magnetic �eld topology in this case
 The alternative theory uses the fact

that the resistivity is non�zero and suggests that once a certain magnetic con�guration has

developed the reconnection process acts locally to drastically change the topology of the

magnetic �eld and cause the release of energy


A number of analytical and numerical studies have been undertaken in an attempt to

understand the dynamics of the coronal arcades
 The complexity of the resistive magne�

tohydrodynamic equations� the complicated three�dimensional structure of the magnetic

con�gurations and the limitations of the observational data make con�rming or disproving

a theory a very di�cult task
 An important step towards this goal has been investigations

of sheared magnetic arcades in two�dimensions via numerical solution of the equations of

resistive MHD
 In the next section we brie�y summarize previous studies that addressed

this problem� then present a speci�c problem and discuss the results of using exponential

propagation methods for this problem


����� Two�dimensional simulations of periodic solar arcades using the

fourth�order exponential propagation method

The problem of the evolution of an axisymmetric magnetic arcade under imposed bound�

ary shear has been the subject of many previous analytical and numerical studies
 These

studies have characterized the evolution as a quasi�static ideal MHD problem ���� ��� ���

or as a dynamical system ���� ��� ��� ���
 For a short review of this research area see

���
 The problem is typically prescribed by assuming an initial dipole magnetic �eld� and
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Figure �
�� Sheared two�dimensional magnetic �eld line� the shearing velocity is indicated
by the arrows labeled V

then imposing slow shearing motion of the footpoints as boundary conditions �Fig
 �
�	 at

a base plane corresponding to the photospheric surface
 The equations are then evolved

using either a full or a reduced set of the magnetohydrodynamic equations ��
��	 � ��
��	


Frequently several such potential magnetic arcades are positioned next to each other and

used as the initial condition for the simulation
 The calculation is usually carried out for

several hundreds of Alfven times
 While di�erent parameters� initial con�guration and im�

posed boundary conditions have been used in various studies� a certain dynamical behavior

of the arcade in the course of evolution have been identi�ed in many simulations
 In particu�

lar� it is typically found that for some time after the onset of the shearing motion the arcade

undergoes slow quasi�static evolution through a sequence of force�free states
 During this

quasi�static phase current concentrations develop which eventually lead to a drastic change

of magnetic �eld topology via the reconnection process
 In the latter stages of the evolution

a plasmoid is formed and is ejected at approximately the Alfven speed
 We now present a

speci�c example exhibiting such behavior


Since our primary objective here is to demonstrate that exponential propagation meth�

ods can be successfully applied to resistive MHD problems� we pick a typical two�dimensional

coronal model described by Miki$c et al� in ���� and check whether the dynamics we obtain

with our code are similar to the solutions presented by Miki$c et al�
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We solve the resistive MHD system ��
��	���
��	 on a rectangular domain

' � f�y� z	 � � � y � Ly� � � z � Lzg ��
��	

using the fourth�order exponential propagation method ��
���	 described in Chapter �
 The

boundary z � � corresponds to the photospheric base plane
 The initial magnetic �eld is

assumed to be vacuum �eld�i
e
 current�free r�B � �	 B � �Bx� By� Bz	 that consists of

two magnetic arcades and can be expressed analytically as

By�y� z� �	 � B�e
�k�z cos�k�y	� ��
��	

Bz�y� z� �	 � �B�e
�k�z sin�k�y	� ��
��	

Bx�y� z� �	 � �� ��
��	

where k� � ���Ly 
 The problem is assumed to be invariant in x�direction� so that ���x � �

in Equations ��
��	���
��	
 The photospheric �ow is modeled by imposing the line�tied

boundary condition at the base plane z � �� speci�cally� the velocity is prescribed to satisfy

Vx�y� �� t	 � �V�f�t	 sin�k�y	� ��
��	

Vy�y� �� t	 � �� ��
��	

Vz�y� �� t	 � �� ��
��	

where the time pro�le of the �ow is assumed to be a linear ramp up of the velocity� i
e


f�t	 � t�tR� for � � t � tR� ��
��	

f�t	 � �� for t 	 tR� ��
��	

The con�guration is assumed to be periodic in the y�direction
 The top boundary z � Lz

is removed as far as possible so that it does not in�uence the solution and a zero�derivative

condition is imposed on all the variables at this boundary
 At the base boundary Bz is �xed

to be

Bz�y� �� t	 � Bz�y� �� t � �	 � �B�e
�k�zsin�k�y	� ��
��	



��

The conditions for Bx and By at z � � are derived from the constraint imposed on the

tangential electric �eld and Ohm�s law
 It is assumed that

Ex�y� �� t	 � �� ��
��	

Ey�y� �� t	 � �Vx�y� �� t	Bz�y� �� t	� ��
��	

Since by Ohm�s law

Ex � ��VyBz � VzBy	 � ��
�Bz

�y
� �By

�z
	 ��
��	

Ey � ��VzBx � VxBz	 � ��
�Bx

�z
� �Bz

�x
	� ��
��	

imposing conditions ��
��	 and ��
��	 on the electric �eld E is equivalent to setting the

following boundary conditions for the tangential components of the magnetic �eld at the

base plane

�Bx

�z
�y� �� t	 � �� ��
��	

�By

�z
�y� �� t	 �

�Bz

�y
�y� �� t	 � �B�k� cos�k�y	� ��
��	

and can also be interpreted as the zero condition on the tangential component of the current

density J � ����r�B


The parameter values that we use for V�� B�� tR and the Lundquist and Reynolds

numbers S and R are chosen to be exactly the same as used in the simulation presented

in ���� in order to our exponential propagation method code with the results presented in

����
 The maximum applied photospheric �ow velocity is taken to be V� � ����VA� where

VA is the Alfven velocity
 For the nondimensionalized variables in the equations ��
��	 �

��
��	 VA � �
 The �ow is increased linearly up to tR � ����A according to ��
��	� with

�A being the Alfven time� which corresponds to t � � in the equations ��
��	 � ��
��	
 The

resistive and the viscous time scales are chosen as �r � ���A and �� � ����A� which gives

the Lundquist number S � �� and the Reynolds number R � ���
 The size of the box

in the nondimensionalized spatial variables is Ly � � and Lz � �� the latter corresponding

to removing the upper boundary as far as possible to avoid the boundary e�ecting the

computation
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a	 t � ����A b	 t � ����A c	t � ����A d	 t � ����A

e	 t � ����A f	 t � ����A g	 t � ����A h	 t � ����A

Figure �
�� The evolution of the �eld lines of the magnetic �eld B projected onto yz�plane
over ��� Alfven times




��

a	 t � ����A b	 t � ����A

c	 t � ����A d	 t � ����A

e	 t � ����A f	 t � ����A

Figure �
�� The three�dimensional side view of the magnetic �eld lines at di�erent Alfven
times
 The contour plot of Bz component is displayed at the base plane




��

a	 t � ����A b	 t � ����A c	 t � ����A d	 t � ����A e	 t � ����A

Figure �
�� The reconnection process in the arcade of adjacent magnetic �eld lines in the
uniform dimension projected onto yz�plane
 In �gure e	 the velocity streamlines are shown
as blue lines with arrows


Figures �
�� �
� show the temporal evolution of the magnetic �eld lines from t � � to

t � ����A �recall that t is measured in Alfven times �A	
 As we can see from these pictures

the behavior is very similar to the dynamics obtained by Miki$c et al�
 As shown in Figures

�
��a	� �
��a	 the evolution starts with the unsheared con�guration of the initial potential

magnetic �eld lines of the potential B given by Equations ��
��	���
��	
 As the �ow velocity

at the base plane is ramped up� the �eld lines become sheared and the con�guration evolves

through a series of quasi�static force�free states for a period of roughly ��� Alfven times


At this point �Fig
 �
��c		 a current sheet forms in the central arcade and the reconnection

process starts
 As a result of the reconnection� the topology of the magnetic �eld lines

changes drastically and a plasmoid like structure forms
 Figures �
�� �
�� show a more

detailed view of the reconnection process
 Magnetic arcades are assumed to be uniform

in the x�direction and as Figures �
��c	� �
���c	 demonstrate� the shear causes the �eld

lines that have the same x coordinate to come together and eventually reconnect forming a

spiral �eld line that outlines the surface of the plasmoid
 Note that lower lying �eld lines are

sheared more that the ones at the higher altitude
 This is consistent with the observations

of the coronal magnetic arcades and will also be demonstrated in the three�dimensional

simulations in the next chapter
 The formed plasmoid is being ejected and travels upwards

as we can see from Figure �
��e	� that shows the streamlines of the velocity relative to the

position of the plasmoid
 The reconnection is fast� i
e
 it occurs on the Alfven time scale�



��

a	 t � ����A b	 t � ����A

c	 t � ����A d	 t � ����A

Figure �
��� The three�dimensional view of reconnection process in the arcade of adjacent
�eld lines in the uniform dimension



��

which is consistent with the result in ����


The overall dynamics as calculated by our code closely resembles the results published in

���� and is completely consistent with the behavior expected from this model on the physical

grounds
 This result serves as a validation for our code
 There is a di�erence� however�

between the solutions we obtain with exponential propagation code and the ones presented

in Miki$c et al�
 The timing of the distinct stages in the evolution is di�erent� e
g
 the onset

of the reconnection in our calculations happens at roughly ��� Alfven times� while Miki$c

et al� notice the formation of the plasmoid at around ��� Alfven times
 We attribute these

di�erences to the numerical aspects of solving the resistive MHD equations
 In particular� it

is possible that the numerical boundary conditions di�er somewhat in the two codes or the

use of semi�implicit methods versus exponential propagation scheme has an e�ect on the

solution
 Additional numerical experiments with both codes and close comparisons of the

implementations have to be made in order to determine exact causes for these di�erences

in an undertaking we will attempt in the future
 The close monitoring of the error by the

automatic error control mechanism embedded in our code� however� makes us con�dent in

our results


Our numerical model was based on the exp� code described in section �
�
�
 The spatial

discretization was performed using fourth�order central �nite di�erences on a grid and the

time integration was accomplished with method ��
���	 using the automatic error control

mechanism as described in the previous chapter
 For the �gures in this section we used the

data from the calculation with a ���� ��� grid
 We compared the e�ciency of the method

with the fourth�order explicit Runge�Kutta method with an identical error control scheme

in the same way as was done in Chapter � for Burgers equation
 The computations were

performed on a ��� MHz Pentium II Linux workstation
 The comparison study showed

that in order to compute the solution for a given accuracy� the time step used by the exp�

code can be ��� times larger than the maximum time step size allowed by the stability

constraints for the explicit Runge�Kutta scheme �Fig
 �
��	
 The overall integration time

was reduced by a factor of ����� depending on the size of the grid and the �nal integration

time used
 This speed�up is expected to increase if a more re�ned grid is used or the system

is integrated over longer periods of time
 Also better results should be obtained if the

parameters in the equations are changed so that the system becomes more sti�




��

Figure �
��� Comparison of the time step size between the ��th order exponential Runge�
Kutta method and the ��th order explicit Runge�Kutta method

����� Computation of the three�dimensional plasma force free�states

As discussed earlier the behavior of the coronal arcades can be studied not only by solving

the dynamical resistive MHD equations� but by modeling the arcades as a series of force�

free plasma con�gurations
 A clear demonstration of the connection between the dynamical

simulations and the solutions to the force�free equation ��
��	 has been presented in several

papers ���� ��� ���
 In particular� Finn et al� ���� showed the similarity between the solutions

to ��
��	 and the results of the full MHD simulations for the axisymmetric case
 Finn et al�

demonstrated that the axisymmetric solutions to ��
��	 have similar plasmoid�like structures

that appear in the simulations of the type presented in the previous subsection
 Finn et

al� examined the stability of the solutions to ��
��	 by computing the eigenfunctions �B

and the eigenvalues 	 of this equation and established that the equilibrium solutions of the

force�free equation

r�B � �B ��
��	

are stable as long as �� � 	��� where 	� is the eigenvalue of

r� �B � 	�B ��
��	



��

with the smallest magnitude
 They associated loss of equilibrium of the magnetic arcade

with its reaching an unstable force�free state
 It was argued that the nonlinear stage of the

evolution begins with the X�line being formed and the subsequent reconnection causes the

ejection of the plasmoid


Having demonstrated the connection between the slow evolution through force�free e�

quilibria speci�ed by the footpoint motion in the dynamical simulations and the constant �

force�free states in the axisymmetric case� Finn analyzed the three�dimensional solutions to

��
��	
 In order to obtain force�free �elds in �D� given a certain distribution of the normal

component of the magnetic �eld on the boundary� the following equation is solved for the

magnetic vector potential A �r�A � B	

�A

�t
� r�A� �B� ��
��	

The computational domain is taken to be a Cartesian box

' � f�x� y� z	 � xmin � x � xmax� ymin � y � ymax� zmin � z � zmaxg ��
��	

The boundary condition on the tangential component At of the vector potential is set in

such a way as to be consistent with the given normal component of the magnetic �eld

Bn � B � "n� and the normal component An is speci�ed so that the condition r �A � � is

preserved on the boundary �'
 Using r�A � B and substituting the vector identity

r�A � r�r �A	�r�r�A ��
��	

into ��
��	 we obtain

�A

�t
� r�r �A	�r�B � �B� ��
��	

From the last equation we can see that since r �B � � we have

�

�t
r �A � r�r �A� ��
��	

This means that if r � A � � is maintained on the boundary� then r �A � � as t � �
and if the equation ��
��	 is evolved to a steady state then from ��
��	 we can see that this



��

steady state satis�es

r�r�A � �r�A� ��
��	

which is equivalent to the force�free equation

r�B � �B� ��
��	

In other words� if we obtained the steady state of ��
��	 the curl of this solution A is the

three�dimensional force�free magnetic �eld B with the speci�ed normal component Bn on

the boundary �'


To complete the numerical model the boundary conditions are given as follows
 The

normal component Bn of the magnetic �eld is set to be zero on the side and the top

boundaries of the box '� while at the base plane z � zmin it is given by

Bn � Bz � Cl

�
W �

�W � � x� � �y � y�	�����
� W �

�W � � x� � �y � y�	�����

�
� ��
��	

where Cl� W � y� and y� are constants
 The boundary conditions on the tangential compo�

nent of the vector potential At are derived from the above conditions on Bn
 Finn et al�

use the fact that expression ��
��	 can be integrated and set At � � on the side and top

boundaries� Ay � � and

Ax �
ClW

�

W � � x�

� ��y � y�	p
W � � x� � �y � y�	�

�
�y � y�	p

W � � x� � �y � y�	�

	
� ��
��	

The disadvantage of this approach for deriving the boundary conditions on At is that for

an arbitrary Bn the equation r � A � B cannot be integrated exactly� so At cannot

be determined analytically at the boundary
 So if� for example� Bn is not given by a

simple analytical expression but derived from such observational data as magnetograms� the

problem of deriving boundary conditions for At from such Bn becomes more complicated


To avoid this di�culty we propose to use a more general approach that was originally

developed by Hirasaki and Hellums ���� for the problems of incompressible hydrodynamics

formulated in terms of velocity and vorticity �elds


To derive the boundary conditions for A the following question needs to be addressed�



��

if a normal component of a vector �eld Bn is given on a boundary �' of some space region

' and A is a vector potential �eld� such that

B � r�A in '� ��
��	

r �A � � in '� ��
��	

"n � r �A � "n �B � Bn on �'� ��
��	

what should the conditions on A be at the boundary �'( Hirasaki and Hellums developed

a general form of the boundary conditions on A and proved that a vector potential �eld A

that satis�es these conditions yields� in fact� a unique vector potential determined by ��
��	�

��
��	
 Suppose that �' consists of faces Si with the boundary edges Ci
 Note that the

boundary conditions for A have to be consistent with the Coulomb gauge condition ��
��	


According to ���� the tangential component At of the vector potential can be determined

by de�ning a vector G on �' such that

At � rt �G� �rt �G � �"n� �"n� �r�G��	� ��
��	

and the following conditions are satis�ed�

�a	 the component of rt�G tangential to the edges on �' is continuous across each edge

Ci�

�b	 on each face Si of �' the vector rt �G satis�es

Z
Si

"n �Bds �

I
Ci

�rt �G	 � dl� ��
��	

As proven in ���� a necessary and su�cient condition for the existence of a vector G that

satis�es conditions �a	 and �b	 is

Z
��
B � "nds � �� ��
��	

This is automatically satis�ed in our case since B is a divergence free magnetic �eld
 For

general tensor form of the equations that determine G for an arbitrary region ' we refer



���

the reader to ����
 In our case of a Cartesian box domain the conditions are simpli�ed and

G has only a normal component Gn� while Gt � �
 Then we can calculate the tangential

component At � rt � Gn at each of the boundary faces Si� i � �� � � � � � from a set of

problems

r�
tGn � �Bn on Si ��
��	

together with the conditions �a	� �b	 on the edges of Si
 Equation ��
��	 is derived as follows

r�At � rt � �rt �Gn	 � rtrt �Gn �r�
tGn � Bn� ��
��	

To ensure the zero�divergence condition for A at the boundary� the condition ��
��	 on

the tangential component At is complemented by the following condition on the normal

component An of the magnetic potential

�An

�n
� � ��
��	

at each face Si
 In general� the set of problems ��
��	 and conditions �a	� �b	 has to

be discretized and solved simultaneously as a large matrix system
 For our calculations�

however� we simplify the procedure using the fact that we can satisfy condition �a	 by

requiring that At � � on the edges Ci of the Cartesian box domain ' and since we set

Bn � � on all the boundaries except the base plane� where it is given by ��
��	� condition

�b	 is automatically satis�ed
 Then the boundary condition on An is de�ned by ��
��	 and

the tangential component At is given by At � rt �Gn� where Gn is calculated by solving

� Neumann problems for each face of the box '�

r�
tGn � �Bn� ��
��	

�Gn

�n
� �� ��
��	

The initial vector potential �eld is taken to be A � �




���

Since the equation

�A

�t
� r�A� �r�A� ��
��	

is linear we use the linear exponential propagation method described in Section �
� with

the Jacobian matrix A derived from discretizing the spatial operator on the right hand side

of ��
��	
 This is a steady state problem� so we are not interested in accurately calculating

the evolution of A and only want to know the topology of the �nal con�guration of B such

that

J � r�B � �B� ��
��	

In fact we can check whether our solution is accurate by computing J and checking whether

��
��	 holds
 Therefore� we use only �rst order upwind discretization in space for the term

�r � A and discretize r�A using standard second�order centered �nite di�erences
 For

each value of � we want to calculate the force�free �eld� so we evolve equation ��
��	 to

a steady state� compute the �elds B and J and study their topology by plotting the �eld

lines
 Recall that we expect stable solutions to exist as long as �� � 	��� where 	� is the

eigenvalue of the force�free equation with the smallest magnitude
 Finn et al� studied the

case when the parameters in ��
��	 are given as W � ���� Ca � �� Cl � �� y� � ����

y� � ����� xmin � ymin � zmin � �� and xmax � ymax � zmax � � for di�erent values of �


Since we used a di�erent form of the boundary conditions for the problem we do not expect

exact agreement with the results in Finn et al�
 Our calculations� however� resembled very

closely the solutions shown in ����
 Figures �
����
�� display the results of the computations

with � taking the values �� �� �
�� �
�� �
��
 In all of the �gures the contour plot of the

z�component of the magnetic �eld is displayed at the base plane and the selected �eld lines

are shown in di�erent colors
 As in ���� we also found that as � increases� the magnetic

�eld lines corresponding to the solutions of ��
��	 become more twisted and for the values

of � close to �
� knots start to develop


Figures �
���a	��b	 show the side and top view of the �eld lines of a potential magnetic

�eld� which is a solution to ��
��	 when � � ���
 To demonstrate that the solutions are

in fact force�free we plot the �eld lines for the magnetic �eld B and the current density



���

a	

b	

Figure �
��� The side �a	 and the top �b	 view of the �eld lines of the force�free magnetic
�eld B corresponding to � � ���



���

Figure �
��� The �eld lines of the force�free magnetic �eld B �above	 and the current density
J �below	 corresponding to � � ���



���

a	

b	

Figure �
��� The side �a	 and top �b	 view of the �eld lines of the force�free magnetic �eld
B for � � ���
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a	

b	

Figure �
��� The side �a	 and top �b	 view of the �eld lines of the force�free magnetic �eld
B for � � ���
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a	

b	

Figure �
��� The di�erent angle views of the �eld lines of the force�free magnetic �eld B

for � � ����



���

a	

b	

Figure �
��� The side �a	 and top �b	 view of the �eld lines of the force�free magnetic �eld
B for � � ����
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J � r � B in �gures �
���a	��b	 for � � ���
 As evident from these �gures� B is in

fact parallel to J� so that J � B � �
 As � gets larger more twist is introduced into the

topology of the magnetic �eld lines
 The low lying magnetic �eld lines start developing a

characteristic S�shape �purple �ux tube in Fig
 �
���b		� which is frequently observed on

the Sun in the pre�eruption plasma con�gurations
 Such structures are called sigmoids


Another feature appearing with the increase of � is the upwards expansion of the �eld

lines at higher altitudes
 While our calculations agree almost identically with the images

obtained in ���� for � � �� for larger values of � our results di�er somewhat from Finn et

al�� which is probably due to the di�erence in boundary conditions of the two models
 The

images in ���� indicate that even for � 	 ��� the magnetic �eld lines become knotted
 In

our calculations the knots do not appear for � � ���
 In fact the solutions for the values

of � smaller than those corresponding to the knotted �eld lines� e
g
 Fig
 �
���a	��b	�

lead to an important observation� while the low lying �eld lines become S�shaped �see the

top view of a red �ux tube on Fig
 �
���b		� the �eld lines at higher altitudes form large

arcades and loops that overlay the sigmoids
 As seen from the top view these arcades are

positioned perpendicular to the sigmoids� together forming con�gurations that are seen in

the observations ����
 In fact we will see that topologically the force�free solutions of ��
��	

for ��� � � � ��� resemble the magnetic �eld at certain stages of the evolution of the

magnetic arcades in response to the footpoint motion when we discuss our results of the

dynamical three�dimensional simulations in the next chapter
 Note also that the neutral

line of the Bz component at the base plane gets tilted� this is also a feature that matches the

observational data� in particular� the results of the vector magnetograms of the magnetic

�eld normal to the surface of the Sun


As � gets larger than �
� the stable equilibrium solutions cease to exist
 The twist

and knottedness of the �elds lines keep increasing in the course of evolution without ever

settling to a steady state
 From the results obtained by this model we could conjecture

that if plasma evolves through a series of force�free states as it reaches the states with

more twisted �eld lines in the presence of small resistivity a reconnection process would

follow
 This will prevent the knots from forming in the dissipative plasma and will cause

the plasmoid like structures to be formed and ejected as in the axisymmetric case


Let us now discuss the performance of the exponential method for the problem in this

section
 Due to the discretization we chose for the spatial operators the resulting Jacobian



���

matrix for ��
��	 was symmetric�positive de�nite
 As predicted by the theory the method

proved to be unconditionally stable in this case and the time step size was limited only by

accuracy requirements
 Since for this problem we were only interested in the �nal steady

state solution to the equation ��
��	 and not the intermediate solutions� we took a very large

time step in order to obtain the equilibrium as fast as possible
 While in this subsection

we focused on the problem of computing the constant�� force�free solutions of ��
��	� it is

possible to use a similar approach and set up pseudo�evolutionary equations to compute the

nonlinear non�constant�� force�free states as� for example� was done in ����
 In general� it is

important to be able to calculate the non�linear non�constant�� states from the boundary

data on the magnetic �eld B� since they seem to model the observed in coronal plasma

structures better than the linear force�free solutions
 One application of the non�linear

force�free problem is reconstructing the structure of a quiet corona from the magnetograms

that measure the magnetic �eld at its base
 For a review of the current research on this

problem and a description of di�erent numerical methods used to solve it see ���� ��
 We

would like to note that the stability properties of the exponential propagation methods can

overcome some di�culties associated with the numerical solution of this problem and help

to e�ciently compute the force�free states by evolving a pseudo�evolution equation with a

large time step
 We plan to investigate this further in our future work




���

Chapter 
 Three�dimensional numerical modeling of the

evolution of magnetic arcades in solar and laboratory

plasmas


�� Motivation for the study

As discussed in the previous chapter� coronal mass ejections �CMEs	 are massive eruptive

events that make a drastic impact on space weather
 The e�ect of these sudden ejections of a

billion tons of plasma from the solar atmosphere into the solar wind changes the geomagnetic

environment of the Earth and can adversely a�ect and even damage critical systems such as

communication devices� power grids� or navigational tools
 While predicting these eruptive

events is very important for the welfare of many public and commercial infrastructures�

the present understanding of the cause and evolution of CMEs and the capabilities for

predicting of these events is very limited


The magnetic structures involved in the eruption have topologically complex three�

dimensional structure
 The physical processes responsible for the evolution of the pre�

and post�eruptive magnetic arcades have very involved mathematical descriptions that do

not yield simple solutions in most cases
 Other obstacles in understanding the CMEs are

the limitations of the observations
 The corona is optically thin and it is very di�cult to

deduce the �D pre�eruption con�gurations from the two�dimensional images obtained by

observational instruments
 The coronal regions lying below a CME magnetic arcades� are

very important in the evolution of the eruptive magnetic arcades� and yet are inaccessible

to observations altogether
 Due to all these complications one has to dissect the problem

of modeling the CMEs and study it in simpler parts with the appropriate analytical or

experimental tools
 While we brie�y discussed some of the existing analytical models in the

previous chapter� a more detailed review of such research can be found in ����


An interesting and promising approach to modeling the eruption of the magnetic arcades

has been undertaken by Bellan and Hansen ���� at Caltech
 They used modi�ed spheromak

technology to create plasma con�gurations having the geometry similar to solar prominences



���

Figure �
�� A photograph of a prominence�like con�guration produced in a laboratory
experiment using the modi�ed spheromak technology �image courtesy of J
F
 Hansen and
P
M
 Bellan	

�Fig
 �
���
�� �
�	
 To simulate the geometry and boundary conditions of solar prominences

the experiment uses a large ��
� m in diameter	 vacuum chamber
 The simulated prominence

is created between the magnetic poles of a horseshoe electromagnet
 The plane of the pole

faces �D�shaped plates in Fig
 �
�	 corresponds to the ground plane of the solar surface

and the horseshoe magnet vacuum magnetic �eld emulates the vacuum magnetic �eld of

the Sun
 A large capacitor is then connected to create a potential di�erence between the

horseshoe magnet poles
 This causes currents to �ow in the plasma and to generate a

self�magnetic �eld which twists up the background magnetic �eld lines
 Thus the twisted

prominence is simulated and its evolution is observed over the duration of the experiment


Fig
 �
� demonstrates a typical evolution of the laboratory prominence over a time period

of �
� �s� which in this parameter regime is equivalent to two hundred Alfven times
 The

evolution of plasma in the experiment has been modeled analytically as a sequence of the

linear force�free solutions of the equation

r�B � �B� ��
�	

obtained using an expansion of B in terms of Bessel and trigonometric functions ����
 While
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Figure �
�� Photographs displaying a typical evolution of the laboratory prominence over
�
� �s �image courtesy of J
F
 Hansen and P
M
 Bellan

these analytical solutions can capture some large scale trends in the evolution� such analysis

has limitations in describing the dynamics of the plasma
 For example� the boundary

distribution of these analytical force�free solutions have speci�c structure corresponding

to the base functions of the expansion� i
e
 Bessel and trigonometric functions in this

case
 The actual boundary conditions in the experiment correspond to the dipole magnetic

�eld created by the horseshoe magnet
 Additionally� the plasma in the experiment is not

ideal� and so the small resistive e�ects can change the topology of the magnetic �eld lines

signi�cantly as discussed in the previous chapter
 In general� a model that better describes

the plasma and captures the continuous evolution and the topology of the magnetic �eld

lines would be more desirable
 The mathematical description of such a time�dependent

model is too complicated� however� to allow an analytical solution


The above considerations lead us to the conclusion that the three�dimensional numerical

models of CMEs can provide much needed and important insights into the dynamics of

these events
 If such models are in agreement with the observational data and experimental

data they can greatly augment these with information about the small scale structure of

the plasma con�gurations� the overall topology of the magnetic �elds and more detailed

information about the evolution of the coronal magnetic structures
 In this chapter we will

present a numerical model that models the evolution of the magnetic arcades that have



���

the geometry and the plasma parameter values that are close to those of the solar and

experimental con�gurations
 We study the results of the simulations and try to compare

them to observations of the evolution of solar structures and laboratory experiments of

prominence eruptions



�� Numerical three�dimensional model description

����� Equations

Since we are interested in large�scale topology and stability of the magnetic plasma con�

�gurations� we employ once again the theory of resistive magnetohydrodynamics for our

three�dimensional model
 In the prominence eruption experiment as well as in the solar

corona� magnetic forces dominate plasma dynamics� signi�cantly exceeding other in�uences

such as pressure gradients� gravity and thermal e�ects
 The ratio of the hydrodynamic

to the magnetic pressure� i
e
 the plasma � de�ned by ��
�	� is small in both the exper�

iment �v ���� � ���	 and the corona �v ��� ����	
 Therefore� just as we did for the

two�dimensional case of Chapter �� we use the zero � approximation for our �D calculation�

s
 This implies that we do not evolve hydrodynamic pressure and eliminate the pressure

gradient term from the momentum equation
 Another assumption we make is the uniform

plasma density approximation
 To justify this approximation� we repeat the argument p�

resented in section �
� and argue that the dynamics of the interaction of the magnetic and

velocity �elds will contribute most to the overall topology of the magnetic �eld and a con�

stant density pro�le could be used as the �rst approximation in the model
 As was shown

in several numerical studies ���� �� �� that investigated zero � plasmas� prescribing di�erent

nonuniform density pro�les did not signi�cantly alter the dynamics or the topology of the

magnetic �eld
 We want to emphasize that the above approximations are made to simplify

the very complex system of resistive MHD and determine the basic evolution trends in the

magnetic �eld
 Future studies will enhance the system and include the e�ect of pressure

gradients and nonuniform density


As shown in section �
�� the above assumptions and the nondimensionalization of vari�



���

ables in the resistive MHD equations leads to the following system�

�B

�t
� r� �V �B	 �

�

S
r�B� ��
�	

�V

�t
� �V � rV � �r�B	�B �

�

R
r�V� ��
�	

where B is the magnetic �eld vector� V is the velocity� S is the Lundquist number and R is

the Reynolds number
 The nondimensional parameters S and R represent the ratio of the

resistive to Alfven time scales and the ratio of the viscous to Alfven time scales respectively�

and are de�ned as

S �
l����

�A
� ��
�	

R �
l����

�A
� ��
�	

where l� is a characteristic spatial scale for the con�guration� � is the magnetic di�usivity�

� is the coe�cient of kinematic viscosity and �A � l��VA is the Alfven time de�ned using

the Alfven velocity VA� the average strength of the magnetic �eld B�� the density � and the

magnetic permeability of vacuum �� as

VA �
B�

����	���
� ��
�	

We numerically solve equations ��
�	� ��
�	 in Cartesian coordinates in a rectangular

domain

' � f�x� y� z	 � jxj � Lx� jyj � Ly� � � z � Lzg� ��
�	

with initial and boundary conditions described below


����� Initial and boundary conditions

At the beginning of the simulation we take B to be a current�free� or potential� bipolar

magnetic �eld
 This corresponds to a coronal magnetic arcade in which plasma aligns

itself with the strong magnetic �eld of the Sun
 In the experimental setting this initial

con�guration represents the moment in the prominence formation when the gas is fully



���

ionized and the current starts �owing in plasma between the poles of the electrodes
 From

potential theory we know that a �eld B that satis�es conditions

r�B � �� ��
�	

r �B � �� ��
�	

can be expressed as the gradient of some potential function %� i
e


B � r%� ��
��	

If we specify the value of the normal component Bn of the magnetic �eld on the boundary �'

then a unique �eld B can be obtained from ��
��	 by solving a three�dimensional Neumann

problem for the Laplace equation

r � �r%	 � �� ��
��	

�%

�n
� Bn� ��
��	

In general an arbitrary distribution of the normal component Bn on �' can be prescribed

as long as the total �ux of B over this boundary vanishes
 For example� the value of Bn

might come from magnetogram data
 In this case Equations ��
��	���
��	 has to be solved

numerically
 These systems of equations are encountered in many scienti�c �elds� so a large

number of numerical methods exist for solving it
 We could� for example� use a simple con�

jugate gradient scheme or a multigrid technique depending on which spatial discretization

of the Laplacian operator we wish to use
 We will not concentrate on this problem since

the discussion of it can be found in any standard numerical analysis textbook
 Since we

want B to have a potential bipolar structure we can avoid introducing numerical errors

associated with solving ��
��	���
��	 computationally and prescribe % to be a potential of

a dipole located below the base plane of the rectangular domain '
 A magnetic dipole ��m
located at ��r� produces a magnetostatic potential

%���r 	 � �
��m � ���r ���r� 	

j��r ���r� j���
� ��
��	



���

Figure �
�� Initial magnetic �eld B resulting from a dipole placed below the base plane
z � �
 The contour plot of the Bz component at z � � �left	 and the magnetic �eld lines of
the potential B �right	


We choose the location of a dipole to be a point ��� �� z�	 and the dipole moment to be

aligned with the y�axis so that ��m � m��� �� �	
 In this case the magnetic �eld calculated

from ��
��	 is

Bx�x� y� z	 � m
�xy

�x� � y� � �z � z�	��
��
��
��	

By�x� y� z	 � m
�x� � �y� � �z � z�	

�

�x� � y� � �z � z�	��
��
��
��	

Bz�x� y� z	 � m
�y�z � z�	

�x� � y� � �z � z�	��
��
� ��
��	

At time t � � the velocity �eld V is chosen to be zero� i
e
 we start simulation with a static

potential dipole magnetic �eld con�guration
 We want the maximum value of the magnitude

of the nondimensionalized magnetic �eld B in the domain ' initially to be �� which for the

dimensional variable corresponds to the value B�
 To achieve this we choose parameters

in ��
��	���
��	 to be z� � ���� and m � ���
 This choice also de�nes the characteristic

length scale of the system because it determines the separation of the magnetic poles in

nondimensional spatial variables that in real variables corresponds to the parameter l�
 For

the prominence eruption experiment this means that an electrode pole separation of �� mm

corresponds to an interval of length �
� in our nondimensionalized Cartesian box
 Figure

��
�	 shows the contour plot of the Bz component at the base plane z � � and the magnetic

�eld lines for the initial magnetic �eld for the speci�ed parameters




���

There are two versions of boundary conditions on the magnetic �eld that we use in

the simulations presented in this chapter
 In the experiment� the ambient potential mag�

netic �eld is the strongest component of B and the vacuum chamber is much larger than

the initial plasma con�guration
 These considerations suggest that we can just impose a

Dirichlet boundary condition on the magnetic �eld with B�x� y� z� t	j�� � B�x� y� z� �	j�� 


This condition� however� does not implicitly ensure that r � B � �
 In general� the in�ux

of the divergence from the boundaries is possible if the Dirichlet boundary conditions are

set on B
 This leads us to reformulate the boundary conditions on B as follows
 Let us

prescribe the tangential component Bt of the magnetic �eld at the boundary �'
 Note that

this condition �xes the normal component of the current Jn since

Jn � r�Bt� ��
��	

If Bn is the normal component of B and ���n is a derivative normal to the boundary� the

divergence�free condition can be written as

�Bn

�n
�r �Bt � �� ��
��	

Therefore if we specify the Neumann boundary condition on the normal component as

�Bn

�n
� �r �Bt� ��
��	

it will ensure that the divergence is maintained zero at the boundary
 So the second version

of the boundary conditions that we use in the simulations is giving the Dirichlet boundary

conditions on the tangential component Bt as

Bt�x� y� z� t	j�� � Bt�x� y� z� �	j��� ��
��	

while maintaining the Neumann condition ��
��	 on the normal to the boundary component

Bn
 We conducted our simulations with both versions of the boundary conditions and

discovered that the overall dynamics does not change drastically
 We will present these

comparisons later in this chapter


One of the major limitations of the observational data is the lack of reliable and conclu�
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sive measurements of the plasma velocity at the boundary of the corona and the photosphere


Therefore� in order to formulate the boundary condition for the velocity� we rely on the set�

up for the prominence eruption experiment
 First� we impose the condition that there is

no �ow of plasma through the boundary� i
e
 the normal component Vn of the velocity at

the boundary �' is zero
 Then we also assume that the side boundaries are removed far

enough and the plasma at those boundaries remains relatively undisturbed at the end of the

simulation� so that the tangential component Vt at the sides of the box ' is also set to zero


To specify the tangential component Vt at the base boundary z � � we will examine the

electric �eld at this plane and derive the condition on Vt using Ohm�s law
 First� we ignore

the tangential currents along the surface of the electrode plates and assume that at the base

plane the current is normal to the boundary� i
e
 J�x� y� �� t � �	 � ��� �� Jz�x� y� �		
 Then

if E is the electric �eld� we can write Ohm�s law at the base boundary for the tangential

components of E as

Ex � VzBy � VyBz� ��
��	

Ey � VxBz � VzBx� ��
��	

There is no �ow of plasma through the boundary so Vz�x� y� z � �	 � �
 Using Ohm�s law

��
��	���
��	 we can express the tangential components of V at z � � as

Vx �
Ey

Bz
� ��
��	

Vy � �Ex

Bz
� ��
��	

Now considering the experimental setup it is natural to assume that the electric �eld at

the base boundary is determined by some electrostatic potential � created on the electrode

plates by the discharge of the capacitor bank� i
e


E � �r�� ��
��	



���

Therefore� we can write the tangential velocity at z � � as

Vx � �����y
Bz

� ��
��	

Vy �
����x

Bz
� ��
��	

One observation that can be made from these expressions is that the �rst derivatives of the

electrostatic potential � have to take zero value at the neutral line of the Bz component

of the magnetic �eld �i
e
 where Bz � �	 so that velocity does not become in�nite there


Since the voltage is only measured at the poles of the electrode plates and we do not know

the precise distribution of the potential � throughout the base plane� we can model �

qualitatively using an analytical function that has properties that match the experimental

setup
 For example� such a function can be obtained by using the expression ��
��	 for Bz

and de�ning

��x� y� �	 � ����Bz�x� y� �		�� ��
��	

where �� is a constant value
 This choice ensures that the electrostatic potential peaks at

the magnet poles and vanishes where Bz � � in order to simulate the experimental setup


We will return to the question of setting the correct value for ��� which would correspond to

the experimental strength of the electrostatic potential� a little later in the discussion and

for now set �� � �
 Figure �
� shows the plot of such � and as we can see such de�nition

of the electrostatic potential has the shape that we would expect the real potential to

have
 For � de�ned in such a way we can calculate the tangential components Vx�x� y� �	

and Vy�x� y� �	 of the velocity by substituting ��
��	 into the expressions ��
��	 and ��
��	


Figure �
� displays the velocity vector at the base plane obtained in this way
 As we can

see from this �gure the velocity �eld corresponds to two vortices both rotating in the same

direction with centers located at the poles of the magnetic poles


In the experiment the plasma velocity is estimated to be roughly ����VA � ���VA
 Similar

values for the velocity at the base plane are usually used in numerical simulations of this type

���� ��
 Since we model � phenomenologically and the exact distribution of the electrostatic

potential is unknown� we might as well �nd an analytical expression for the tangential

velocity at z � � which will qualitatively match the �eld shown in Figure �
� and scale



���

Figure �
�� The electrostatic potential ��x� y� �	 � ��Bz�x� y� �		� at the base plane z � �
� three�dimensional view �left	 and pro�le ���� y� �	 �right	


Figure �
�� The tangential velocity �eld at the base plane z � � when ��x� y� �	 �
��Bz�x� y� �		�




���

Figure �
�� Tangential velocity �eld at the base plane z � � speci�ed by expressions ��
��	�
��
��	


it according to the characteristic value of the velocity we want to set
 Such an approach

will simplify the parameter search to provide desirable pro�le of the tangential velocity

and the correct magnitude
 We found that if the velocity streamline function is given by

the following analytical expression� these requirements are ful�lled and the correct velocity

pro�le at the base plane is obtained as�

��x� y	 � V�
Cy�

�x� � y� � C���
� ��
��	

Vx�x� y� �	 �
��

�y
� ��
��	

Vy�x� y� �	 � ���
�x

� ��
��	

where V� and C are given constants
 Figure �
� shows the tangential velocity vector �eld

at the base plane for V� � ���� and C � ���
 Note that the electrostatic potential � can

always be recovered from a given pro�le of the tangential velocity by integrating equations

��
��	� ��
��	


Finally� we specify the time pro�le of the tangential velocity at the base plane z � �


In a typical simulation we ramp up the velocity linearly to its maximum value and then

maintain it at that magnitude for the rest of the integration time
 Using expression ��
��	



���

we specify the boundary conditions on the velocity at z � � as

Vx�x� y� �� t	 � f�t	
��

�y
� ��
��	

Vy�x� y� �� t	 � �f�t	
��

�x
� ��
��	

Vz�x� y� �� t	 � �� ��
��	

where

f�t	 �

�����
t�ts if t � ts�

� if t 	 ts�

��
��	

����� Spatial discretization� time integration scheme and implementation

The spatial discretization of the di�erential operators on the right hand side of equations

��
�	���
�	 and the Dirichlet�Neumann formulation of the boundary conditions ��
��	� ��
��	

is accomplished using fourth�order central �nite di�erencing on a uniform grid
 The ad�

vantages of using such a discretization is the e�ciency of computing the spatial di�erential

operators compared� for example� to a fourth�order upwinding scheme� and the fact that

computation of the Jacobian becomes straightforward in this case
 We want to obtain the

solution to high accuracy and since we are already using a fourth�order scheme to integrate

the equations in time we avoid using second�order �nite di�erence scheme in space to pre�

vent degradation of accuracy in the numerical solution
 The approach of using a uniform

grid and central �nite di�erences for spatial discretization has some limitations� however


Since we would like to prevent boundary e�ects from polluting the solution we extend the

side and top boundaries as far as possible� and so the resolution requirements for the region

of primary interest located near the magnet poles might require a grid size which is unnec�

essarily large
 Another disadvantage is that such �nite di�erencing does not automatically

ensure that at the boundary the discretized equations preserve the discrete analog of the

divergence�free condition on the magnetic �eld over time
 While we are aware of these

limitations and plan to improve this aspect of the code in the future �see the discussion in

Chapter �	� the e�ciency and simplicity in formulation provided by our spatial discretiza�

tion scheme outweigh the disadvantages for the calculations presented in this work
 In

Section �
�
� we will assess the error from the spatial discretization and discuss the issues
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of the numerical error in the divergence of the magnetic �eld and the e�ects of boundary

conditions


As in the two�dimensional case we use the fourth�order exponential Runge�Kutta method

��
���	 with an automatic error control mechanism described in Section �
� for integrating

equations ��
�	���
�	 in time
 For a detailed discussion of this time integration scheme and its

implementation we refer the reader to Chapter �
 Here we will only brie�y describe the code

for the three�dimensional problem
 Once again� we have vectorized the exp� code from ����

and combined it with our implementation of the discretized resistive magnetohydrodynamic

equations
 The code runs on both Unix systems and the vector Cray SV� supercomputer


The e�ciency of the code results from the use of native BLAS libraries for each platform

for the low order linear algebra operations
 As mentioned before� the memory requirements

of the exponential propagation methods are larger than those for conventional numerical

techniques
 In our numerical experiments we found that calculations involving integration

of the equations for ���� Alfven times on a �� � �� � �� grid could be performed on

a ��� MHz Pentium II Linux workstation with ��� MBytes of memory� while the same

computations with a grid of ��� nodes had to be performed on a supercomputer since they

required memory larger than ��� MBytes
 For example� if the boundary velocity is rapidly

increased to a maximum magnitude of ����VA over ��� Alfven times� the Lundquist number

is S � ���� and the Reynolds number is R � ��� then the integration of the equations on

a ��� grid for ��� Alfven times required �� MBytes of memory and ran on the ��� MHz

Pentium II computer for � hours
 A similar run but with a grid size of ��� required ���

MBytes of memory and ran on Cray SV� vector supercomputer for �� hours
 Since the

computational resources on the vector supercomputer are shared� the total computation

time on the SV� cannot be directly compared with the runs on a dedicated Pentium PC


These timings cannot be used as indicators of a parallel speed up of the code
 Only a

dedicated run on the vector supercomputer could make a fair comparison possible
 Since

we did not have an opportunity to perform such a study we can only indicate that for the

SV� runs we obtained a speedup of at least a factor of �� compared to a serial PC
 We plan

to investigate this issue further when we implement the method for a distributed memory

machine in future work
 We emphasize though that since the exponential propagation

methods are iterative and most computing time is spent in the routines that calculate

the right hand side of the resistive MHD equations and its Jacobian� the speed�up should



���

be close to what is obtained for an explicit method or an iterative linear system solver


If the functions that compute discretized spatial derivatives of the system variables are

implemented in an e�ective parallel way the code will have very good scalability on a

parallel computer



�� Three�dimensional simulations of the evolution of mag�

netic arcades under the in�uence of their footpoints mo�

tion

In this section we present the results of three�dimensional simulations using the model

described above
 First� we describe a particular simulation and compare the numerical

results to the observational data
 We show that the three�dimensional topology of the

magnetic con�gurations provided by the numerical model replicates the two�dimensional

projection images from coronagraph and that the dynamics of such structures in simulations

agrees with the observational results
 Secondly� we present numerical accuracy veri�cation

studies where we show that the boundary conditions do not seem to signi�cantly a�ect the

solution and compare the simulations at di�erent grid resolutions
 Finally� we describe how

the simulation results change as we vary di�erent parameters
 In particular� we demonstrate

the e�ect of changing the magnitude of the boundary velocity and the value of the Reynolds

number on the numerical solution


����� Numerical three�dimensional model of the topology of the magnetic

	eld in a CME event
 a proposed explanation for the classical three�

part�structure of a CME

One of the key unanswered questions about the coronal mass ejections concerns the de�

termination of their structure
 As mentioned earlier the three�dimensional topology of the

magnetic �eld lines in the pre�eruptive plasma con�gurations is di�cult to determine from

the two�dimensional images obtained by observational instruments
 Certain characteristic

features of the CME have been determined� however� and any theoretical model of these

events should reproduce these properties
 Almost every model to date of a CME su�er�

s from some limitations� i
e
 it will reproduce some characteristics of the eruptions� but
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be inconsistent others
 Hence� the quality of a model greatly depends on whether it can

predict not one but many aspects of the CME
 In this section we discuss several charac�

teristics observed in the evolution of the magnetic con�gurations that produce CMEs and

demonstrate how our numerical model reproduces these features
 Figure �
� shows the time

evolution of a typical CME
 In the two pictures taken at ����� and ����� the characteristic

three�part CME structure� consisting of a bright frontal loop� a dark cavity underneath and

an embedded bright core� can be seen
 Two standard models �Fig
 �
�	 have been used to

model the topology of the magnetic �eld lines in a CME ���� � the magnetic arcade and the

�ux rope geometries
 The arcade model postulates an interaction between several stressed

arcades in a multipolar magnetic �eld region �Fig
 �
� �a		
 The �ux rope model has more

adherents and interprets CME structure as an edge�on view of a �ux rope
 The �ux rope

based eruption scenarios typically involve a reconnection process during which the twisted

part of the �ux rope gets separated �Fig
 �
��b		


While both arcade and �ux rope models can produce some of the observed CME fea�

tures� they attempt to describe the con�guration a posteriori� i
e
 they do not show an

evolutionary change from an unsheared and untwisted magnetic �eld to a topology resem�

bling the observed images
 Additionally� some observed features� for example� the bright

embedded core of the CME� do not �t naturally with the proposed overall topologies
 We

will demonstrate here that our calculations do not have these limitations
 We simply follow

the evolution of the initially dipolar potential magnetic �eld in response to the motion of the

footpoints and� as a result� obtain magnetic topologies consistent with the observed plasma

con�gurations
 Thus� our model gives a natural explanation of the structures seen in a real

CME
 Moreover� we show that to explain the structure of a CME at a stage captured in

Figure �
��� we do not need to invoke reconnection
 In fact� this state of the con�guration is

nearly force�free and it is the persistent motion of the footpoints that causes the instability

and forces the further dynamical changes of the geometry of the magnetic �eld lines


The �rst simulation we present is performed using the following choice of parameters� the

Lundquist number is taken to be close to its value in the laboratory experiment S � �����

the Reynolds number is set at R � ��� and the velocity magnitude is increased linearly to

a maximum value of V� � ����VA over the time interval from �� to ��� Alfven times
 For

t 	 ����A the velocity is maintained constant at V�
 Our computation is performed in a

rectangular domain ' � f�� � x � ���� � y � �� � � z � �g using a uniform grid with
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Figure �
�� Arcade �left	 and �ux rope �right	 magnetic topologies adopted by most CME
models ���� �image courtesy of J
A
 Klimchuk	

��� internal nodes
 We will label the calculation with this set of parameters and refer to it

as simulation �A	 in the future
 The total simulation time is ��� Alfven times
 We are able

to carry out this computation on a Pentium II ��� MHz computer in �� hours because the

exponential propagation methods allow us to perform calculations with a time step greatly

exceeding the CFL limit
 We use Dirichlet�Neumann boundary conditions for the magnetic

�eld B for this run
 We will justify the choice of parameters and the boundary conditions

and investigate what e�ect they have on the solution later in this chapter
 In particular�

we will discuss our choice of the Reynolds number in the last section of this chapter
 For

now� we concentrate on understanding how magnetic �eld lines topologically evolve from a

potential con�guration to twisted and sheared structures


Figures �
�� �a	� �b	 show the time evolution of the maximum norm of the x�component

of the velocity and the norm of the magnetic energy de�ned as

kBk �

vuut �

NxNyNz

X
��i�Nx

X
��j�Ny

X
��k�Nz

��Bx	�ijk � �By	�ijk � �Bz	�ijk�� ��
��	

First� let us examine the con�guration of the magnetic �eld lines at t � ����A right before

the simulation is stopped
 Figure �
�� shows selected magnetic �eld lines in di�erent colors


The magnetic con�guration is viewed from di�erent angles as the coordinate frame is rotated

around the z�axis from �gure �a	 to �d	 and tilted down
 As we can see� it consists of the

low lying orange colored �eld lines that have a conic shape if viewed as a projection on

a x � z�plane �Fig
�
���d		� and the overlaying arcade �purple� green� yellow and red �eld

lines	 perpendicular to the orange �eld lines
 Figures �
��� �
�� show the same magnetic

con�guration but add the velocity streamlines to the picture
 In Figure �
���a	 the velocity
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�a� �b�

Figure �
��� A characteristic three�part structure of an observed CME at two di�erent times
in the evolution
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Figure �
��� a	 Time pro�le of the maximum norm of the x�component of the velocity
 b	
The time evolution of the norm of the magnetic energy vector de�ned by ��
��	
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streamlines are shown as black lines with arrows on top of the magnetic �eld lines and

Figure �
���b	 displays them as cyan colored lines as they are positioned with respect to

the magnetic �eld
 Finally� Figure �
�� gives a three�dimensional perspective on where the

velocity streamlines are located with respect to the magnetic con�guration
 As we can see

from these pictures the velocity streamlines close to the base plane z � � plane re�ect the

imposed boundary conditions on the tangential component of V� i
e
 in the area of low lying

orange magnetic �eld lines they form vortices rotating around the magnetic poles
 As the

altitude increases� however� the vortices become tilted with respect to the ground plane and

�nally expand upwards as a fan� indicating that the plasma material rises up from the base

plane
 Now let us compare the coronagraph image of an actual CME with the con�guration

that is obtained numerically
 In order to demonstrate the similarities between the two we

enhanced the image in Figure �
�� so that the main features can be seen better
 Figure

�
�� �a	 displays the enhanced coronagraph image of a rising CME� while the image �
���b	

shows the magnetic con�guration and the velocity streamlines of the numerical solution to

the resistive MHD model as projected onto the x � z plane
 It can clearly be seen that

the simulation captured the main features of the image �a	� i
e
 the conical shape close to

the photospheric surface of the CME� the heart shaped feature in the cavity and �nally the

bright halo�like structure which constitutes the front edge of the CME which is represented

as an arcade of the magnetic �eld lines in �gure �b	
 Image �a	 clearly shows that the CME

expands outwards
 Figure �
�� shows the contour plot of the normalized magnitude of the

Lorentz force jJ�Bj��jJj � jBj	 acting on the magnetic con�guration in the simulation
 This

quantity decreases rapidly with height and the overall con�guration is seen to be relatively

magnetic force�free
 Given this fact and the topology of the velocity streamlines we can see

that the upwards expansion is in fact present in the numerical solution and if the model

would include density and pressure this could be shown directly




���

Figure �
��� Contour plot of the normalized magnitude of the Lorentz force jJ�Bj��jJj�jBj	
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Figures �
����
�� make it clear that neither �ux rope� nor conic shaped magnetic lines�

or multiple arcade geometries need be used to explain the classical three�part�structured

CMEs �Fig
 �
��	� which constitute about a third of all mass ejections observed in the corona

����
 The numerical results clearly demonstrate that it is the two�dimensional projection

produced by the coronagraph that creates such CME con�gurations and� in fact� at this

stage in the evolution of the CME its magnetic �eld can be relatively force�free
 The motion

due to residual J �B forces will in turn cause the expansion of the magnetic �eld
 Since

the resistivity is small the magnetic �eld is almost frozen into the plasma as in ideal MHD


The importance of the MHD forces is also indicated by the fact that the motion of the

magnetic con�guration in the simulation is tightly related to the increase of the velocity

at the boundary
 While the velocity magnitude at the boundary is being increased� the

topology of magnetic �eld undergoes modi�cations
 Once we stop increasing the velocity

and maintain it at a �xed value of t � ����A� the magnetic con�guration stays relatively

unchanged and the images from t � ����A look virtually the same as those in Figure �
��


This can also be seen from the time pro�le of the magnetic energy �Fig
 �
���b	� which stays

nearly constant for the time interval t � �����A� ����A�
 To understand the time evolution of

the magnetic �eld we now discuss the observed evolution of an eruptive solar con�guration

and examine the time change in the topology of the magnetic �eld lines in the simulation
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�a� �b�

�c� �d�

Figure �
��� The topology of the magnetic �eld lines at t � ����A as viewed from two
di�erent angles in a	 and b	
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�a�

�b�

Figure �
��� The velocity stream lines a	 projected on top of the magnetic �eld lines shown
as black lines with arrows� b	 shown as positioned with respect to the magnetic �eld con�
�guration as cyan colored lines
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�a�

�b�

Figure �
��� The velocity streamlines �cyan colored	 with respect to the magnetic �eld
con�guration as viewed from di�erent angles
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�a�

�b�

Figure �
��� a	 Coronagraph image of CME from �gure �
�� with enhanced brightness
to emphasize a heart shaped structure in the CME cavity
 b	 xz�plane projection of the
magnetic con�guration and the velocity streamlines of the numerical model of a CME
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����� Sigmoid�to�arcade evolution of the magnetic con	gurations
 com�

parison of the observational data and the numerical simulation re�

sults

Sterling et al����� published an observational study where they trace the evolution of so�

called halo CMEs
 This term de�nes the eruptions that result in a CME traveling directly

along the line of sight of an observer� i
e
 the images of such events capture the magnetic

con�guration involved as looked at from above
 The authors found that the pre�eruptive

formations are usually the sigmoids� which during the eruption are replaced with the mag�

netic arcades positioned perpendicular to S shapes of the initial sigmoid
 Figure �
���a	��j	

shows an evolution of a typical halo CME as seen on a soft X�ray image
 The picture �a	

displays the initial sigmoid con�guration and �j	 shows the newly formed arcade that runs

normal to the direction of the pre�eruption sigmoid
 Figure �
�� reprinted from ���� shows

schematically the change that the magnetic con�guration undergoes during the eruption


Figure �
��� Sketch summarizing morphological properties of sigmoid�to�arcade observation�
s� a	 pre�eruption sigmoid structure� b	 post�eruption arcade with the sigmoid structure
dimmed or absent �reprinted from ����� courtesy of A
C
 Sterling	
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�a�

�b� �c�

Figure �
��� a	 Soft X�Ray image of the developed arcade �left	 and the preexisting sigmoid
with the overlaid contour of the arcade �right	
 �b	��c	 The image of the sigmoid and the
overlaying arcade in a numerical model of a CME
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Now let us once again look at the magnetic con�guration that we obtained from the

numerical simulation
 Figures �
���b	��c	 show selected magnetic �eld lines as viewed from

the top and side and compares them with the sigmoid�arcade transformation in an actual

CME as displayed in �
���a	
 As we can see� the positioning of the arcade relative to the

sigmoid in the numerical model matches the images from the observations
 To demonstrate

the sigmoid�to�arcade transformation we will examine the evolution of the magnetic con�

�guration as it changes in time during the simulation
 For this purpose we plot magnetic

�eld lines at di�erent altitudes that cross the line fx � �� y � �� � � z � �g for di�erent

times in the simulation and trace the changes in their topology
 The colors of the �eld lines

indicate the altitude at which they cross the z�axis in the following order with increasing

height� orange� yellow� purple and green
 Figure �
���a	��f	 shows the evolution as seen

from the top� Figure �
���a	��f	 examines the time changes from the side view and Figures

�
���a	��f	 and �
���a	��c	 display the structure as projected onto a x� z and y� z planes

correspondingly


A number of features of a real CME can be seen in the numerical solution
 First� the top

view clearly demonstrates the sigmoid�to�arcade evolution seen in Figure �
��
 The higher

lying �green	 magnetic �eld lines rotate at a slower rate� thus forming an arcade normal

to a sigmoid formed by more twisted �eld lines at lower altitudes �orange	
 Secondly� it

becomes evident that the cusps observed in the solar magnetic con�gurations are merely

an artifact of a two�dimensional projection of a three�dimensional magnetic topology
 Fig�

ures �
���b	��c	 and �
���b	��c	 demonstrate this property and resemble closely cone�shaped

structures called helmet streamers that can be seen routinely in the corona �Fig
 �
�	 as

well as the cusps described in ���� �Fig
 �
��	
 Thirdly� the low lying cone�like structures

constituting the inner part of the CME con�guration in Figure �
�� �right	 can be identi�ed

as a projections of sigmoids at a low altitude �orange magnetic �eld lines	
 Finally� Figure

�
���d	 shows another side view of the magnetic con�guration� where the sigmoids are also

seen as cusp�like structures� that are usually explained as the post�reconnection arcades

similar to the two�dimensional models described in Chapter �� but can clearly be simply

a result of a projection e�ect as well
 We want to emphasize that all of these features

commonly observed in the corona are usually described by di�erent models as results of

distinct mechanisms and di�erent topological con�gurations
 The magnetic con�gurations

produced by our simulations� however� show that all these characteristics can be united as



���

representations of the same process and topology and viewed as di�erent projections of a

single con�guration
 Additionally� the computations indicate how such magnetic con�gu�

rations can be obtained from an untwisted and unsheared potential con�guration simply

by imposing a rotating velocity �ow at the base plane
 Thus we do not use any arti�cial

boundary conditions that are hard to justify from the physical point of view as is done in

some models
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����� The e�ect of boundary conditions on the numerical solution

One of the major issues for any numerical study is the formulation of the correct boundary

conditions
 It is well known that numerical errors� resulting from incorrect values imposed on

the variables at the boundaries� can pollute the solution and introduce unphysical dynamics


Therefore� we carried out a study to verify the robustness of our calculations with respect

to the imposed boundary conditions and investigated how changes in the formulation of the

boundary conditions a�ect the numerical solution


First� we performed a computation that uses the same set of parameters as the simulation

�A	 of the previous section� but instead of Dirichlet�Neumann boundary conditions on the

magnetic �eld B� imposes purely Dirichlet conditions on B �xing them at the values of

the initial potential B�x� y� z� t	 � B�x� y� z� �	
 Both types of boundary conditions are

described in detail in Section �
�
�
 Figure �
�� shows the magnetic con�guration obtained

from the calculation with pure Dirichlet boundary conditions at t � ����A
 Let us compare

these images to Figures �
���a	� �
���c	� �
���c	 and �
���c	� which show the same view

of the simulation �A	 con�guration at t � ����A
 While the overall topology and the

time dynamics of the magnetic con�gurations are very similar in both simulations a careful

examination of these images indicates that the twisting of the magnetic �eld lines proceeds

somewhat more slowly in the computation with pure Dirichlet boundary conditions
 This

is especially evident if we look at the lower lying orange colored magnetic �eld lines that

comprise the initial sigmoid con�gurations
 The top views in particular indicate that these

�eld lines are less twisted and do not expand as much as in simulation with the Dirichlet�

Neumann boundary formulation
 This can be explained by the fact that if the magnetic �eld

lines are �xed at the base plane at the initial values it somewhat reduces their �exibility and

movement� so that the shearing process proceeds more slowly
 We emphasize� however� that

the overall dynamics is almost unchanged which indicates the robustness of our numerical

model
 Another con�rmation of this conclusion can be seen from the plots showing how

magnetic energy changes with time for both calculations �Fig
 �
��	
 The pro�les are

very similar
 However� because the �eld lines twist faster in the calculation with Dirichlet�

Neumann boundary conditions� the magnetic energy increases faster in this case as well
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�a� �b�

�c� �d�

Figure �
��� Magnetic con�guration at t � ����A computed using Dirichlet boundary
conditions for all components of the magnetic �eld B in a computational box of size �����
���� MHz Pentium II calculation	
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Another check that we have performed is to extend the side boundaries of the computa�

tional domain further and then examine the resulting changes in the solution
 We ran the

simulation again with the same set of parameters and the Dirichlet boundary conditions on

B� but in this case doubled the number of grid points and the size of the computational

box in the x� and y�directions
 Figure �
�� displays the resulting magnetic con�guration

from this computation and Figure �
�� compares the magnetic energy and the maximum

norm of the velocity component Vx for the two simulations
 Comparing Figures �
�� and

�
�� we notice that the con�guration in a smaller box matches exactly the topology of the

�eld lines in a larger domain within its boundaries
 The green colored magnetic lines es�

pecially highlight this observation� since in a large computational box we see them in full

length perfectly matching the dynamics of lower lying �eld lines
 Figure �
�� con�rms this

as well by indicating that the time pro�les of the magnetic energy and Vx are the same


The di�erence between the magnetic energy curves in �
���a	 can be easily explained from

the de�nition of the norm kBk in ��
��	
 Since this norm is inversely proportional to the

number of grid nodes� if the magnitude of the magnetic �eld at the base plane has nearly

compact support� increasing the number of grid points will result in a decreased total norm


In our future simulations we plan to use better scaled norm de�nitions


We can draw two important conclusions from this investigation of the e�ect of boundary

conditions
 First� this study shows that the overall dynamical change of the magnetic topol�

ogy is nearly una�ected by the di�erences between the two types of boundary conditions


Second� we learned that calculations performed in smaller domains truthfully portray the

topology of the resulting magnetic con�guration� thus� increasing the size of the computa�

tional box does not change the magnetic con�guration in the smaller volume� but simply

gives extra information about the magnetic �eld outside the small box
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Figure �
��� Comparison of the calculations with Dirichlet�Neumann vs
 Dirichlet boundary
conditions imposed on the magnetic �eld B� a	 time pro�le of the magnetic energy norm
de�ned by ��
��	� b	 time evolution of the maximum norm of the x�component of the
velocity Vx
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Figure �
��� Comparison of the calculations in a small ����� vs large ����� computational
domain� a	 time pro�le of the magnetic energy norm de�ned by ��
��	� b	 time evolution
of the maximum norm of the x�component of the velocity Vx
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����� The assessment of the numerical error in the simulations

Another issue that needs to be addressed in any numerical study is the e�ect of the spatial

discretization and the grid resolution on the numerical solution
 Due to the complexity of the

resistive MHD equations and a large number of di�culties in solving this system numerically�

this issue is typically not given enough attention in numerical MHD research
 The minimum

grid size required for the appropriate resolution in MHD simulations sometimes is already

pushing the boundaries of the computational resources and therefore� increasing the grid

size to perform the resolution study can be simply impossible
 Given our computational

resources we were able to double the grid size and perform simulation on a Cray SV� vector

supercomputer to verify the convergence of the solution


Simulation �A	 of Section �
�
� was performed on a �������� grid
 We executed another

computation with the formulation and the parameters identical to those of simulation �A	

but with the grid size increased to ��� nodes
 Figures �
���a	 and �
�� plot the norm kBk
de�ned by ��
��	 and the maximum norm of the velocity components Vx and Vz for each grid

size
 While the plots in Figure �
�� con�rm that the velocity undergoes essentially the same

evolution in both calculations� they cannot really be used as an indicator of the convergence

since the maximum norm is an inappropriate measure for this
 A better perspective is

provided by the norm of the magnitude of the magnetic �eld� which according to the plot

in Fig
 �
���a	 only di�er by about �)
 Taking into considerations the limitations of norm

��
��	 discussed earlier we can only interpret this result as an indication that the convergence

is in fact achieved� but will perform a more detailed study with better formulated norms in

the future


We wish to mention another accuracy check that complements the resolution study for

our numerical model
 Recall that in order to solve the MHD equations using the exponential

propagation method we formulate them as an autonomous system �Section �
�	� i
e
 the

time variable is evolved using the equation

t� � �� ��
��	

This gives us an opportunity to perform an additional check of the accuracy of the solution

by comparing the computed value of the time variable with the time calculated from the

time steps used by the numerical time integration scheme
 We show the result of this



���

comparison in �gure �
���b	
 The absolute and relative tolerances for the automatic error

control mechanism are set at ���� and ���� respectively
 As we can see from the plot of

the relative error� its value is well under the tolerance required
 This check reassures that

the numerical solution of a discretized MHD system is accurate to within the tolerance we

speci�ed
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Figure �
��� Comparison of the calculations using grid size ��� performed on ��� MHz
Pentium II vs
 ��� grid nodes used in a SV� vector supercomputer simulation run� a	 time
pro�le of the magnetic energy norm de�ned by ��
��	� b	 time evolution of the relative error
in the time variable evolved according to the equation t� � �
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Figure �
��� Comparison of the calculations on a grid of sizes ��� ���� MHz Pentium II
calculation	 vs ��� �SV� vector supercomputer calculation	
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As mentioned before another important contribution to the error in the MHD compu�

tations which must be controlled is the numerical divergence of the magnetic �eld
 The

non�zero divergence of B results from the �nite precision nature of the simulations and the

fact that the discretized equations do not necessarily satisfy the discrete versions of vector

identities that enforce r � B � � in the continuum equations
 Since we used a uniform

grid and a straightforward fourth�order central��nite�di�erence discretization of the spatial

operators� we do observe the divergence condition not being satis�ed in our calculations

to the precision we would like throughout the whole volume of the computational domain


The regions of maximum error in the divergence� however� are limited to the small patches

close to the base plane where the magnetic �eld is the strongest �Fig
 �
��	
 We do not

observe any instabilities in the solution or unlimited growth in the divergence if the grid

resolution is increased or the parameters of a simulation changed
 The error in the diver�

gence is explained by the fact that we do not use special discretization for spatial operators

at the boundaries to keep the discrete version of a divergence condition satis�ed
 In the

future we plan to use a staggered grid and a special discretization of the spatial operators

that ensures that the equation for the evolution of the divergence of the magnetic �eld is

kept identically zero in time �see discussion in Chapter �	


�a� �b�

Figure �
��� Contour plot of the numerical divergence of the magnetic �eld at t � ����A
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����� Increasing the magnitude of the boundary velocity

The dynamics of the numerical solution seems to be closely related to the time pro�le of

the velocity �ow imposed at the ground plane
 Therefore� in this section we will investigate

how the evolution the magnetic con�gurations changes when we increase the maximum

magnitude of the boundary velocity and change the time interval over which it is ramped up


We have performed several simulations similar to �A	� where we ramped up the boundary

velocity to di�erent maximum values at a di�erent speed
 For the calculations with Vx� �

���� the resulting dynamics of the numerical solution were very close to the evolution in the

simulation �A	� i
e
 the initial potential magnetic �eld gets sheared and twisted up until

the moment when the boundary velocity becomes constant in time and then settles to some

stable equilibrium state
 We observe no reconnection occurring in the computational domain

for V� in this range
 In cases where Vx� reaches values larger than ��� the magnetic topology

of the magnetic con�gurations is di�erent from the structures obtained in simulation �A	


In this section we present two simulations with di�erent values of the maximum velocity

V� and discuss the possible connection of the evolution in these regimes with the eruptive

stages in the dynamics of coronal magnetic con�gurations


In the �rst calculation� which we will label �B	� the boundary velocity is increased over

��� Alfven times in such a way that a maximum value �
� of Vx� is reached at t � ����A

�Fig
 �
��	
 The computational domain is taken to be a rectangle

' � f�� � x � ���� � y � �� � � z � �g� ��
��	

Other parameters are chosen to have the same values as in simulation �A	
 The shape of

the magnetic energy plot in this simulation is very similar to the computations we discussed

before
 However� despite the fact that the velocity in simulation �B	 is increased to a larger

value than for calculation �A	� the maximum of the magnetic energy for �B	 is actually �
��

vs �
� for �A	
 The key to explaining this result lies in examining the magnetic con�guration

resulting from simulation �B	


Figure �
�� shows the magnetic �eld lines that cross the z�axis at di�erent heights �color

coded as before	 at the end of the simulation at the point where a relatively steady state

has been achieved at t � ����A
 As we can see the major di�erence in the geometry

of the magnetic �eld compared to the images obtained in simulation �A	 is the presence
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Figure �
��� a	 Time evolution of the magnetic energy
 b	 The contour plot of the normalized
magnitude of the Lorentz force jJ�Bj��jJj � jBj	
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Figure �
��� Time pro�le of the velocity components a	 Vx and b	 Vz
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of topologically di�erent �ux�rope�like �eld lines �Fig
 �
���f		
 We examined how this

con�guration forms and discovered that it is the result of the �eld lines of the overlaying

arcade coming close together at a particular point near the base plane and reconnecting


Figure �
���a	��c	 shows the pre�reconnection arcades and the resulting post�reconnection

�ux rope
 It is the reconnection process that causes release of energy and explains the

overall lower magnetic energy level for simulation �B	 compared to the calculation �A	
 The

reason that the releases of energy caused by the reconnection do not appear as oscillations

in the plot of the magnetic energy �Fig
 �
���a		 is the continuous injection of energy

by continuous increase of the boundary velocity at the base plane
 Apparently� the latter

process occurs at a faster rate than the loss of energy through reconnection and therefore

we do not see clear indication of the energy releases in the magnetic energy plot
 In the

next simulation presented in this section this will not be the case and we will be able to

identify the reconnection process by looking at a time pro�le of the magnetic energy


Once again projection of the magnetic topology at di�erent angles �Fig
 �
��	 resemble

the coronagraph images taken at di�erent times during a CME
 Figure �
���b	� for example�

shows the loop of a �ux rope and the sigmoid�like �eld lines projected in such away as to

appear to have cusps in the middle� this could be incorrectly interpreted as a plasmoid

being ejected due to the reconnection below in a fashion similar to the two�dimensional

axisymmetric models
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In the next simulation we ramp up the velocity to an even higher value over ��� Alfven

times
 Except for the time pro�le of the imposed boundary velocity this simulation di�ers

from computation �B	 only in the size of the computational domain
 Here ' � f�� �
x � ���� � y � �� � � z � �g
 Other parameters are kept the same as in calculations

�A	 and �B	
 We will refer to this computation by the label �C	 in the future
 There

are two major departures from the dynamics and the magnetic topology of the previous

simulations in the results from calculation �C	
 First we notice that the evolution of the

magnetic energy at the stage where boundary velocity is kept �xed is no longer represented

by a nearly horizontal line
 In fact� we see oscillations �Fig
 �
���a		 that indicate multiple

releases of energy� followed by immediate replenishing by the constant velocity �ow at the

base plane
 The magnetic topology also changes signi�cantly �Fig
 �
��	
 We no longer

see the clearly de�ned regions of morphologically di�erent �eld lines forming sigmoids and

overlaying arcades� instead the con�guration becomes much more complex and resembles

more the �nal stage of a CME shown in Figure �
�
 In fact� the twisted �arms of the real

CME can be identi�ed with the spiral �eld lines observed in the numerical model� which

we show separately in �gure �
���d	
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Figure �
��� Time pro�le of the a	 magnetic energy and b	 the maximum norm of the
velocity componentVx


Another interesting aspect of the magnetic con�guration obtained in the simulation �C	

is the reconnection process that occurs between the spiral �eld lines that extend upwards

and exit the box
 Figure �
���d	��f	 depicts this reconnection process by showing the pre�

reconnection spirals �d	 and the post�reconnection magnetic �eld lines �e	
 Our study of
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boundary condition e�ects above showed that if the computational domain is extended�

the magnetic con�guration in the initial small box is simply a part of a larger structure


Thus we can rightfully assume that the initial spiral �arms exiting the domain are simply

a part of a larger loop and the post�reconnection con�guration shown in �gure �
���e	 is

simply a lower part of a large plasmoid like plasma structure that is being ejected upwards

according to the topology of the velocity streamlines
 While the ejection of such a plasmoid

in three�dimensional magnetic con�guration has been conjectured before� to our knowledge�

it has never been observed in three�dimensional dynamic MHD calculations
 In order to

con�rm our theory we need to analyze the simulation in a larger domain which will capture

the full length of the spiral �eld lines and determine whether the con�guration in �
���e	 is

a closed curve
 We were unable to perform such a simulation due to the limitation in hard

disk space available on the workstation where we visualize and analyze the data
 We plan

to conduct such study in a near future though as soon as the appropriate resources become

available


We also observe the following trend in the dynamics of the magnetic con�gurations

in the simulations
 As the boundary velocity is driven to a larger magnitude there is a

corresponding increase in the normalized magnitude of the Lorentz force jJ�Bj��jJj � jBj	

To see this� compare the contour plots of jJ � Bj��jJj � jBj	 for simulations �A	� �B	� �C	

�Fig
 �
��� �
���b	 and �
��	
 This indicates that the magnetic con�guration departs from

a force�free state further as the velocity �ow at the ground plane gets stronger
 This means

that the eruptive stage in the dynamics of the magnetic structures cannot be explained as

evolution through a series of force�free equilibrium con�gurations and has to be studied as

a dynamical model


Figure �
��� The magnitude of the Lorentz force jJ�Bj��jJj � jBj	 at t � ����A
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We conclude this section by presenting two more coronagraph images of di�erent CME

events and view them as the projections of the magnetic con�gurations obtained by our

numerical model
 One of the major obstacles in understanding the structure of the CME is

the di�culty in separating the events into di�erent categories according to their topology


Images of di�erent CME events obtained via observations� like those shown in �gures �
��

�
���c	��d	� di�er greatly and provoke researchers to use di�erent models to describe each

event
 We emphasize that the important characteristic of our numerical model is that

the magnetic con�gurations obtained via dynamical simulation match quite distinct CME

images if observed from a di�erent angle
 This eliminates the need to use di�erent arti�cial

boundary and initial conditions to reproduce di�erent CME images and provides a clear

explanation for the diversity of structures seen on two�dimensional coronagraph projections

of the coronal magnetic con�gurations
 Figure �
�� demonstrates another example where

the coronagraph images �c	��d	 can be the two�dimensional projections of the magnetic

con�gurations in �gures �
���a	��b	 or �
���a	��b	


In the future we plane to collaborate with observers to verify our results and compare

the numerical simulations with more images obtained by observational instruments
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����� The importance of the Reynolds number

We conclude this chapter with a brief note on the dependence of the numerical solution on

the value of the Reynolds number� this number was de�ned in ��
�	 as a ratio of the viscous

to Alfven time scales
 The majority of numerical MHD studies of the coronal magnetic

arcades set the viscosity time scale �� to be of order of �����A
 This is done for numerical

rather than physical considerations� because the real viscosity of the coronal plasma is

extremely small
 Some rough estimates indicate that R in the corona is actually larger than

the Lundquist number by several orders of magnitude
 While aware of this problem in this

work we adopted the conventional strategy of taking a rather low value of the Reynolds

number
 In this section we justify our approach by studying how the dynamics of the

calculation changes if the Reynolds number is increased
 We performed several simulations

where we kept all of the parameters identical to the simulation with the Dirichlet boundary

conditions described in Section �
�
� except for the value of the Reynolds number� which

we increased
 The study showed that while the topological changes that the magnetic �eld

undergoes in the course of the simulation did not change for the larger values of R� the

time rate at which these changes occur became much slower
 Consider� for example� the

simulation where we set R � ���
 Figure �
�� shows the magnetic con�guration obtained

at t � ����A
 In general� we see the same type of twisting motion in this simulation as we

encountered in the simulations of section �
�
�
 If we compare Figure �
�� to the magnetic

con�guration in the simulation with R � �� shown in Figure �
�� at t � ����A we can see

that the twisting and shearing proceeds much faster in the latter case
 We have to perform

a more detailed study to �nd a full explanation for this behavior of the numerical solution


At this moment we can only speculate about the causes for the slow down in the twisting

rate of the magnetic �eld lines as the Reynolds number increases
 Here we mention one

possible explanation
 Consider two open containers with �uids of di�erent viscosities
 If we

introduce a perturbation in the shape of rotating vortices at the surface of each �uid� then

we can expect that the rotational motion will propagate into the container better for more

viscous �uid
 A similar process occurs for more viscous plasma as the twist in the magnetic

�eld lines driven by a velocity �ow at the boundary is propagated faster if the viscosity is

larger
 We have to carry out more numerical simulations to verify that this explanation

is� in fact� valid
 For now� we will just indicate that the only di�erence in the dynamics
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that we observed for the simulation with increased Reynolds number was the rate at which

the twisting occurs
 Since the real value of the viscosity in the corona is very low� it could

be argued that the puzzling long term stability of the coronal magnetic arcades before the

eruption could be obtained in a numerical simulation by giving the Reynolds number a very

large value


�a� t � ��	�A� xz plane view �b� t � �	�A� xz plane view

�c� t � ��	�A� yz plane view �d� t � ��	�A� top view

Figure �
��� The resulting magnetic con�guration from a simulation with the Reynolds
number R � ��� �Dirichlet boundary conditions are imposed on B	
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Chapter � Conclusions and future work

��� Summary and conclusions

In this work we have analyzed new exponential propagation methods and used them to

model physical processes which determine the dynamics of the solar coronal plasma
 In the

�rst two chapters of the thesis we introduced the ideas of exponential propagation and the

Krylov subspace approximation to the functions of matrices and showed how these concepts

can be used to construct an e�cient numerical technique for time integration of large s�

ti� systems of di�erential equations
 Our analysis of the proposed exponential propagation

methods highlighted important issues in developing such techniques and outlined the proce�

dure for building new methods of this type
 We also demonstrated the advantages that the

exponential propagation technique has compared to the explicit and implicit schemes
 In

particular� in a numerical example of Section �
�
� we presented a quantitative comparison

of the exponential Runge�Kutta method and the explicit Runge�Kutta scheme and showed

that the former provides an e�cient and stable scheme for integration of di�erential equa�

tions with the time step greatly exceeding the CFL bound
 We have discussed the issues of

practical implementation of exponential propagation method� including its favorable parallel

scalability and the computational resource requirements
 In general� we demonstrated that

exponential propagation methods provide a promising alternative to explicit and implicit

schemes for e�cient numerical integration of sti� systems of di�erential equations


In Chapters � and � we applied exponential propagation methods to a particular ap�

plication in solar physics and presented new theories based on the results of our numerical

simulations
 We have validated our numerical approach on two existing models
 Our com�

putations of the evolution of two�dimensional magnetic arcades highlighted an important

topological feature of the reconnection process that� to our knowledge� was not emphasized

before �Fig
 �
��	
 Our studies demonstrated that exponential propagation methods can be

e�ectively used for solution of both dynamical systems of equations and steady state prob�

lems
 In particular� we have computed the evolution of two�dimensional magnetic arcades

and also three�dimensional linear force�free states of MHD plasma
 We furthermore de�
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scribed the design of a code� based on the exponential propagation techniques� that models

nonlinear force�free states of plasma con�gurations
 We discussed the advantages of the ex�

ponential propagation methods over other numerical techniques currently used in numerical

magnetohydrodynamics
 In particular� we demonstrated how the automatic error control

mechanism available for the exponential propagation methods allows an assessment of the

accuracy of the numerical solution
 Comparisons with explicit methods clearly showed the

advantages of the exponential propagation technique for resistive MHD systems


Finally� we presented the results of a numerical three�dimensional model of the evolution

of the coronal magnetic arcades in response to the motion of the footpoints
 We proposed

a novel formulation of the boundary conditions� inspired by the laboratory simulations of

prominence eruptions
 Our numerical simulations lead us to a theory which o�eres an

explanation for the topologically complex structure and evolution of the eruptive plasma

con�gurations in the corona
 We proposed that the observed structural diversity of di�erent

eruptive events can be explained as di�erent angle projections of a unique complex three�

dimensional magnetic topology
 We have compared the dynamics of the magnetic arcades

obtained in the simulation with the observational studies and demonstrated their agreement


Several numerical tests con�rmed the accuracy of the solution and indicated how it depends

on the values of the parameters in the simulations


��� Future work

There are two major research directions we plan to pursue
 First� we will work on developing

new exponential�propagation�type methods and extend the application of exponential prop�

agation techniques to problems in �elds other than plasma physics
 In particular� we will

investigate the possibilities of combining a multistep�type approach and exponential prop�

agation concepts to create new numerical schemes
 We believe a theoretical study could be

carried out which would help to identify the types of problems that would bene�t from the

use of exponential propagation methods
 More speci�cally� we would like to determine the

classes of di�erential operators that can be exponentially propagated to obtain an accurate

numerical solution to corresponding evolution problems
 We could also try to derive bet�

ter error estimates for speci�c problems
 Another interesting issue to explore is the e�ect

of di�erent discretization schemes for spatial di�erential operators on the time integration
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scheme
 We would also like to study the application of exponential propagation methods

to hyperbolic systems
 In particular� we want to investigate whether the combination of

the high�order upwind�type spatial discretization and the exponential propagation in time

will yield an e�ective numerical method for hyperbolic equations
 Our experiments with

Burger�s equation indicate that this could be a promising approach for such problems
 S�

ince the linear exponential propagation methods of Chapter � are much easier to implement

and require less �ops per time step than the exponential methods for nonlinear problems

described in Chapter �� we would also like to explore the following idea
 Suppose we need

to solve a nonlinear system of equations in which each equation is linear in the variable it

evolves �MHD is an example of such system	
 Then we could use a predictor�corrector�type

approach and integrate the equations using a linear exponential propagation method con�

secutively� substituting the new values for the evolved variables into the next equation to be

integrated
 Surely� such an approach will reduce the size of a time step in the integration to

maintain the accuracy of the solution� the savings obtained from a reduction of the number

of �ops per time iteration could� on the other hand� overweigh the decrease of the time step


We would also like to make the following improvements to our current code
 First�

we plan to develop a version of the code for distributed memory parallel machine using

MPI
 This will allow us to run larger problems and study the scalability of the methods


Due to the structure of the exponential propagation methods we expect them to be highly

parallelizable and allow computations with large spatial grids
 The resistive MHD part of

the code will be rewritten using di�erent grid structure and discretization for the spatial

di�erential operators
 Using a staggered grid and natural discretizations for the divergence�

gradient and curl operators developed by Hyman and Shashkov ���� ��� will allow us to

eliminate errors in the divergence of the magnetic �eld
 Such a grid could also be made

nonuniform to reduce the grid size for problems and capture the small spatial scales of

the system
 Finally� we would like to include a multigrid solver which would compute the

initial magnetic con�gurations from an arbitrary distribution of the normal component of

the magnetic �eld at the boundary
 This improvement would be useful for problems of

reconstruction of the coronal magnetic topology from magnetogram data �see paragraph

below	
 Further study of the boundary conditions in the problem will also be performed


Another direction for our research lies in further investigations based on our resistive

MHD model of the coronal plasma con�gurations
 We plan to carry out more studies of



���

the dependence of the behavior of the numerical solution on the parameter values� e
g
 the

size of the magnetic con�guration� the values of the Lundquist and Reynolds numbers� the

maximum magnitude and the rate of change of the velocity
 A further validation of our

theory will bene�t from a collaboration with observers and more comparisons of results

from the numerical and observational studies
 It would also be interesting to explore the

predictive capabilities of our model by running simulations with the parameters scaled to

correspond to coronal values at a particular time
 Our numerical approach can also provide

e�cient means of solving another problem in coronal modeling � the reconstruction of the

coronal magnetic topology from magnetogram data ����
 A pseudo�evolutionary approach

of Klimchuk et al� ���� can be used together with the exponential propagation method to

compute the nonlinear force�free states of the plasma con�gurations to accomplish this task


As our understanding of the behavior of the coronal magnetic arcades progresses� we will

extend our model to include additional physical processes
 We will incorporate the conti�

nuity and energy equations into the model and study how the nonuniform density pro�le

and non�zero � assumptions change the behavior of the numerical solution
 This modi�ca�

tion of the model will allow us to generate images qualitatively similar to those obtained

by observational instruments and then compare them directly
 It would be interesting to

incorporate the actual magnetogram data as boundary conditions in our computations and

compare the results with the observed structures
 We would also like to pursue the model�

ing of the laboratory simulations of the prominence eruptions
 We plan to investigate how

the simulation parameters should scale to match the experimental values and compare the

images obtained from the computations and experiments
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