
CRYSTALLINE WHISPERING GALLERY MODE
RESONATORS FOR QUANTUM AND NONLINEAR

OPTICS

Thesis by

Ivan S. Grudinin

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2008

(Defended April 22, 2008)



ii

c© 2008

Ivan S. Grudinin

All Rights Reserved



iii

Acknowledgements

Upon my arrival at Caltech in July 2003 I started work as a research assistant in the LIGO, Thermal

Noise Interferometer group led by Prof. Ken Libbrecht, who has been a very supportive advisor all

my graduate school years. Some of the first Americans I met were Eric Black and Akira Villar. I am

grateful to them for helping me to adapt to a new life in Pasadena and for being very welcoming and

friendly individuals. I am also grateful to Eric for teaching me better experimental research style.

Vladimir Ilchenko inspired my transition to JPL. The main theme of my work has been shaped

under his influence. Andrey Matsko not only has always been friendly, but also provided great

deal of scientific mentoring and useful advice. As an outstanding theorist he provided constructive

feedback and guidance to my experimental research. I was also happy to learn some article-writing

skills from him. Anatoliy Savchenkov, on the other hand, being an outstanding and highly creative

experimentalist, taught me many techniques and useful tricks in the laboratory. Many results of

my work would not have been possible without his encouragement. Lute Maleki, who has been

a supervisor for the Quantum Science and Technology Group at JPL and my advisor there, is a

unique person. Not only has he managed scientific and financial issues with great success, but also

provided fair critique and judgement to personal issues in the group. His ability of finding ways of

making the experimental projects feasible has been the ultimate driver of my work. He has been a

wonderful person to talk to and learn from. I have also enjoyed collaboration with Enrico Rubiola.

The accuracy of his notebooks and electronic circuits has been a good example for me. Bill Diener

has been notably friendly and helpful in actually making things work on a larger scale. Much of my

cryogenic work has greatly benefited from the advice and support of Rabi Wang. Allyson Beatrice

and Diana Parsegian have been helpful and friendly. Makan Mohageg has been a nice person to work

with. Talking to him has been a great relief from the long working days in the lab. Thanh Lee has

also been a very friendly person. Nan Yu, who became the new group supervisor, has shared a great

deal of scientific knowledge and expertise in laser stabilization and related experimental questions.

Dave Aveline and James Kellogg, as well as James Kohel and Robert Thompson, have been friendly

and helpful in terms of hardware that could be borrowed. I would also like to mention the support

I got on many occasions from such great people as Dmitry Strekalov, Meirong Tu, Daphna Enzer,

Lawrence Lim, Sang Chung, Jon Dick, John Prestage, Ertan Salik and Nicole Czakon.



iv

On the personal side I was also lucky to have friendly roommates Justin Bois and Shaunak

Sen. Rasul Karabalin notably stands out as a bright and positive person. My other friends Dmitry

Pavlov, Konstantin Taganov, Dmitry Kogan, Todor Tsankov, Vadim Borokhov, Mikhail Kislitsyn,

Peter Mikhalev, and many others from Caltech Russian Club have made the years of study at

Caltech much brighter. Tatyana Derevinska has been my inspiration through the years, especially

during the long months of studying for my written Physics candidacy exams.

I also thank the Optical Society of America, Elsevier, the American Physical Society, and the

American Institute of Physics for permission to reuse material of the papers published in their

journals.

Special thanks to Professors Ken Libbrecht, Kerry Vahala, Lute Maleki, Yanbei Chen and Mark

Wise for serving on my candidacy and defense committees.



v

Abstract

This work describes a series of projects and technology developments aimed at the realization of

a solid-state photonic-ionic trap for quantum optics experiments. The projects however, are not

constrained to this goal and explore the fields of nonlinear optics and fabrication techniques.

Fabri-Perot resonators have transformed the optical technology and can be found in many devices

that utilize laser radiation. Whispering gallery mode resonators (WGMR) are relatively new ele-

ments and have such advantages as compactness, highest optical quality factors, and relative ease of

fabrication. Small optical mode volume and long storage times allow record low thresholds of various

nonlinear processes. Raman and Brillouin lasing, second and third harmonic generation, parametric

oscillations and four wave mixing have all been enhanced in WGM resonators. Compared to glass

microspheres, crystalline WGM resonators have higher nonlinear coefficients, may not be sensitive

to water vapor, and have generally higher purity leading to record optical quality (Q) factors. Zero

phonon lines of ions in crystals enable applications in cavity QED with single ions.

A novel application of diamond turning to fabrication of axially symmetric crystalline optical res-

onators is described. This technique enabled crystalline WGM microresonators, multiple resonators

coupled via the evanescent field, and a single mode resonator. Crystalline resonators having a record

high optical Q of 1011 were demonstrated. Fundamental limits of the Q factor were investigated

and Q = 1015 was predicted at cryogenic temperatures. Record low threshold and high efficiency of

stimulated Raman and Brillouin scattering led to the first observations of these effects in crystalline

cavities. Brillouin and Raman lasers based on WGM resonators are expected to have very narrow

linewidth. A cryogenic setup was developed that allowed observation of WG modes at low temper-

atures. Crystalline cavity was used as a reference for narrowing a linewidth of a commercial diode

laser with a Pound-Drever-Hall technique for the first time. A device based on a fused silica WGMR

was used to generate beams with large angular momenta. In addition, a Fabri-Perot cavity was used

to sense thermal expansion of mirrors to derive thermal expansion and temperature conductivity of

thin optical coatings.
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Timeline of research

I started my work at Caltech in July of 2003 by joining Professor Ken Libbrecht and his TNI group

of LIGO. After learning some basic experimental techniques I started to work on the measurement

of thermal conductivity and expansion coefficients in thin films with an interferometric method.

My work was to expand and enhance the thin-film interferometer built by senior student Shanti

Rao. In place of a light chopper I installed an electro-optical modulator, which led to dramatic

increase of operational frequency range and sensitivity of the setup. I also brought software and

hardware together to automate these measurements. I used mirrors with thin dielectric coatings

which I additionally coated with a thin gold layer to perform the measurements. Upon completion

of this project and a brief trip to a LIGO Livingston site as a scientific monitor in 2003, I joined the

Quantum Science and Technology group at JPL, led by Lute Maleki.

Initially, the work included learning the various optical techniques used in the lab, such as

fabrication of disk resonators and optical couplers, fiber splicing and polishing. The grand project

goal of my work was set as the fabrication of crystalline microresonators with high Q factor and

their subsequent utilization in cryogenic spectroscopy experiments with single ions. For that reason

I also conducted a large literature survey on single-molecule spectroscopy techniques, rare-earth ion

properties and zero phonon lines, cavity QED, crystalline blank suppliers, and polishing techniques.

At that time the cryogenic setup started to take some shape on paper in numerous discussions with

V.S. Ilchenko. This planning however, was still too far from any real implementation. Rudimentary

attempts of making microcavities with crystals involved usage of dental handpieces, burs, and other

miniature motors. Electro- and magneto-rheological polishing techniques were also adopted for early

trials. After several trial-and-error months a simple cavity was fabricated. It was a MgF2 resonator

with a quality factor of only one million (Fig. 1). It was clear that a novel fabrication technique

would be required. I started to develop a diamond turning apparatus in 2004. In initial attempts

the computer hard drive brushless motors were used as spindles on which the crystalline workpiece

was installed. Manual positioning of a cutter, sometimes represented by a grain of diamond or a

piece of sapphire, was achieved with a 3-axis positioner from Thorlabs. It later became clear that

brushless motors from hard drives, while being very stable, do not provide the necessary rigidity. A

custom air bearing was made in the lab’s machine shop for the 2nd attempt. This air-bearing spindle
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Figure 1: First and second attempts to make a resonator 450µm in diameter

was more robust, rigid, and could operate at speeds of up to 20000 rpm. Stepper motors controlled

by a computer program were now positioning the diamond cutter and the microresonators were

finally fabricated. Polishing of the resonator improved the quality factor. The polishing technique

finally converged to a manual polishing with diamond abrasives and some tricky cleaning procedures.

Soon afterwards a single-mode cavity was fabricated, along with several other multimode cavities

on the same cylinder, representing coupled chains of resonators. Mechanical squeezing tunability of

a magnesium fluoride microcavity was tested with success. In early 2005 it was also clear that the

biggest challenge to any cryogenic operation of WGMRs would be coupling of light to the modes.

Initial designs were developed that involved cunning applications of levers and PZT elements, such

as shown on Fig. 2. The biggest challenge was the small available diameter of the cryogenic insert.

It was difficult, if not impossible, to package all necessary functionality into such a small tube, as

seen in Fig. 2, lower part.

In September of 2005 I also fabricated the first Bessel beam generating devices after a design

suggested by A. Savchenkov and A. Matsko. At the same time there were some attempts at obtaining

lasing with some residual Yb3+ impurities in the excimer grade fluorite bought from Corning. This

was not successful, due to extremely low concentration of Ytterbium. The Q factor at that point was

only 1.5 billion for 1.4 mm CaF2 cavity and a search for the optimal polishing technique continued.

This was all a bit frustrating as A. Savchenkov had already achieved 20 billion Q factor and the

techniques seemed to be state of the art in a hard-to-repeat way. By November 10th the Q of 25

billion was achieved. Such a quality factor required a new laser for it to be measured, so a Lightwave

Nd:YAG was installed instead of a “New Focus velocity” laser. By December 15, 2005 a Q factor of
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Figure 2: Evolution of designs for cryogenic operation of WGM resonators. Cantilevers are controlled
by piezo elements and can be adjusted with a set-screw. Final design is described in Chap. 7.

63 billion was achieved and it was decided that further improvements would come only in a cryogenic

environment. Later, however, A. Savchenkov showed that additional improvement by a factor of 5

could be achieved by repeatedly annealing and polishing the resonator at ' 600◦ C.

At the same time three possible solutions to a cryogenic setup were discussed. One approach

would involve gluing all the couplers, holders and a resonator together so that thermal expansion

would be engineered and coupling would be maintained after cooling. Another approach involved

purchasing the cryogenic nanopositioners which would do the job of coupling — in a compact setup.

The problems included 4-inch-diameter limitation for the complete cryogenic insert and the absence

of windows in a cryostat that I was given. This cryo was built 18 years ago by another student for

measurements on He3 samples at millikelvin temperatures. Subsequently I spent multiple months

fixing leaks in this cryo, which led to almost complete rebuilding of the insert. The 2 positioner

options we had were German Attocube’s XYZ scanner with 30 micrometer translation at 4 K, and

the three stick-slip stages with a millimeter scale translation. The former solution was $10,000 and

provided some chance of success while the latter was $22,000 and was sure to do the trick. On

a meeting with Lute Maleki and V. Ilchenko it was decided to take the risk and save the money.

After about 3 months the XYZ scanner was delivered. The other solution of monolithic gluing was

explored in the mean time.
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In April of 2006 I implemented a simplified Pound-Drever-Hall technique to lock the laser to a

WGM cavity, which allowed me to observe new phenomena in a CW mode. This included Raman

lasing which I observed earlier in the CaF2 cavities, despite the skeptical aptitude of other researchers.

Raman threshold of the 1st and 2nd Stokes components was measured and proved to be the record

low threshold for any Raman laser. Multiple cascaded lasing Stokes components were also observed.

In June of 2006 I was also involved in a project aimed at accurate measurement of the parametric

oscillation threshold in fluorite cavities. Enrico Rubiola was responsible for it, while A. Savchenkov

was also involved; my role was to help Enrico with resonator technology. I made a cavity for him

and helped him with locking a laser to it at 1550 nm. At the same time I was measuring Raman

emission at around 1100 nm in my own setup. While the sought after parametric oscillation regime

provides two symmetric sidebands in the optical spectrum, which are separated by cavity FSR

around the pump mode, the sidebands Enrico and Anatoliy observed had unequal power. Moreover,

they observed regimes with only a single sideband present as well as multiple asymmetric sideband

regimes. Their sidebands were separated by a cavity FSR. I also observed a single sideband regime

in my Raman lasing measurements at the same time with (arguably) the same disk they used , which

was believed to be some sort of unconventional parametric oscillation. A year later when I started

to process the data from my Raman measurements I found, to my great surprise, that the offset of

the Stokes component, or a single sideband, in my case, was consistently not equal to the cavity

FSR. Careful analysis and some estimations showed that a doubly resonant stimulated Brillouin

scattering was being observed for the first time in crystalline cavities. In the end of June of 2006 a

highly efficient Raman lasing was also observed, as well as lasing in microcavity, and a single mode

cavity. Later the analysis was carried out to determine the limit of Q factor for crystalline cavities.

Raman gain of fluorite was derived, which gave some hints as to why Raman lasing is rarely observed

in the 1550 nm band, while parametric oscillations are hard to see in the 1064 nm band.

In November 2006 I invented a new way of making disk resonators with a small radius of curvature

without diamond turning (see Sec. 3.4). On December 6, it was clear the cryogenic setup with an

Attocube scanner was not working, as thermal drifts much larger than the useful positioning range

were discovered. It was also learned that another group at Caltech, had obtained the cryogenic setup

I hoped for by pursuing exactly the same approach that we couldn’t afford. Despite frustration, we

decided to move on and pursue a monolithic gluing approach. Careful analysis of thermal contraction

properties of various available materials finally showed that it was simply not possible to build a

setup in this way. Required mechanical precision of assembly was beyond our reach. In addition,

the stiffness of the resulting assembly would not be high enough for coupling to be stable. On

December 10 I started to play with a prototype of a stick-slip-based positioning mechanism and

tried to reverse-engineer the Attocube positioners from the information available on the web. By

the end of February I had a working and stable prototype which was analogous to the Attocube’s
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positioners and provided millimeter range positioning in 3 dimensions at low temperatures. In March

I also developed a cryogenically compatible modification of a commercial web camera, so the two

toughest problems of the cryostat, namely coupling and imaging, were resolved to some degree. The

WG modes were observed at liquid nitrogen temperature in March 2007. At the time I was working

on a cryo, I also designed a new experiment — spectroscopy of impurities with high Q WG modes.

If I could measure Q factor at several wavelengths around the expected absorption line of residual

Yb doping, I could derive some very low absorption coefficients. This would require a stable tunable

laser, which could be used to measure Q factor at several wavelengths. If the Q factor were limited by

impurities, which was widely believed, the variations in Q would provide information about spectral

dependence of extremely weak absorption.

At the same time, in March of 2007 Lute decided to retire and leave the group, which he did in a

matter of several months. After that, all the experimental work was even more difficult to carry on,

due to funding limitations that followed. A Nd:YAG laser was finally returned to its owners and I was

left with a New Focus Velocity laser, which has a wide linewidth of 300 kHz, making it impossible to

measure high Q factor without additional stabilization. On May 3rd I finally found out how to clean

the disks to an absolutely clean surface, which was very inspiring. I conducted the first experiment

in spectroscopy, trying to obtain cavity Q factors in the range of 960–990 nm with a New Focus

laser, but it turned out that the stability of the laser was not adequate and that a stabilized laser

is the only practical solution. On the cryogenic front, a cold leak was found in the cryo, a leak that

only opens at low temperature. Such a leak was not possible to locate with a helium leak detector.

In May I started to work on laser stabilization and also planned to attend a conference in Munchen,

Germany, at the end of June, returning in July. I designed a simplistic holder for a reference cavity

that allowed for mechanical tuning and temperature control. While waiting for my return visa in

Moscow I found the Brillouin scattering in the data I took a year ago. Unfortunately, bureaucracy

at JPL and the Department of State prevented me from attending the conference and I got stuck in

Moscow until August of 2007. Upon my return I discovered that there was virtually zero funding

available for my research in the lab at JPL and I was expected to graduate soon. Nevertheless,

there were hopes for a better situation and I continued to stabilize a laser. The hopes for a tunable

laser had to be abandoned as well, as the tunable Velocity New Focus laser revealed pronounced

phase and amplitude noises at frequencies up to 10 MHz, probably because of its age, which made

it impossible to lock. So I adopted a New Focus Vortex laser, which was only marginally tunable.

By December 2007 I had stabilized this laser to 10 KHz of linewidth. While I managed to make a

servo electronics and some transimpedance photodetectors, the absence of funding finally took its

toll and by December all work had to be halted. Subsequently my JPL badge was being renewed for

about 2 more months. My last month at JPL was March, 2008, during which I participated in some

simple experiments and helped others with WGM technology. I also observed parametric frequency
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combs which are generated when a fluorite WGM resonator is pumped by 20–30 mW of radiation at

1550 nm.

0.1 Summary

The work presented in this dissertation may be characterized as a sequence of related projects. The

relation between these projects is in their utility for realization of a major goal set forth at the

beginning of my graduate work, without specific timeline or likelihood of achieving such goal. This

major abstract goal may be defined as an experimental ability to optically detect and interrogate

single ions embedded into a crystalline resonator. Thus a crystalline resonator would operate as a

photonic and ionic trap at the same time. The goal requires several prerequisite technologies, some

of which had to be created in the present work. Some projects appeared naturally from the creation

of a new technology and produced interesting results. Chapters of this dissertation represent these

projects and often contain portions of corresponding published papers.

The introductory chapter of this dissertation contains a short review of WGM resonator technol-

ogy, historical outline, and related mathematical descriptions. Chapter 2 contains basic information

on the fabrication techniques that were developed in the course of this work. The single-mode

project [1] described in Sec. 3.1 was proposed and theoretically analyzed by A. Savchenkov and A.

Matsko based on analogy with planar and regular single-mode waveguides and ring resonators. D.

Strekalov developed the initial version of diamond turning control software in Labview. The author

has debugged and improved the software, developed the fabrication technique and setup, fabricated

the single-mode resonator and performed all measurements. Attempts to fabricate the single-mode

resonators led to the results of Sec. 3.2, where coupled resonators are presented. Work presented in

Sec. 3.3 was done mostly by the author. Most of the material presented in that section was previously

published in the journal Optics Communications [2]. Structures in Sec. 3.4 resulted from playing

with polishing regimes. The work presented in Sec. 4.1 was done mostly by the author with some

participation and advising on the part of V.S. Ilchenko and L. Maleki. The results were published in

Physical Review A [3]. Section 4.2 resulted from analytical work done together with A. Matsko and

was published in Optics Express [4]. Lute Maleki and Andrey Matsko participated in theoretical

analysis and editing of Sec. 5.1 and 5.2. Results presented there were published in Optics Letters,

Journal of Optical Society of America B and Physical Review Letters [5, 6, 7]. Work presented in

Sec. 6 and 7 was done by the author, as well as most of the experimental part of [8] (Sec. 8.1). The

author’s major contribution to the work in Sec. 8.2 was extending the frequency range by upgrading

the experimental setup, automating the procedure, and carrying out all of the measurements.

Parts of this dissertation were presented at 6 conferences, and were distinguished by a best

student presentation prize at the IQEC/CLEO-PR 2005 conference in Tokyo. New results were
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marked by 3 NASA awards [9, 10], and were reported in industrial journals [11] and 9 peer-reviewed

publications [1, 2, 8, 3, 5, 4, 7, 6, 12].

Conferences:

1. “Crystalline Cavities for Quantum and Nonlinear Optics”, CLEO-QELS, San Jose, CA. May

4–9, 2008. Poster session.

2. “Crystalline whispering gallery mode cavities for quantum optics”, Workshop on the Storage

and Manipulation of Quantum Information in Optically-Addressed Solids, Bozeman, Montana,

January 25–27, 2008.

3. “Crystalline cavities for quantum and nonlinear optics”, IQEC Europe, 2007, München, Ger-

many. (Not attended)

4. “Towards cavity QED with crystalline microcavities”, CLEO 2006 Long Beach, California.

Oral presentation.

5. “Crystalline microresonators: status and applications”, Photonics West 2006, San Jose, Cali-

fornia. Oral presentation.

6. “Ultra high Q crystalline microcavities”, IQEC/CLEO-PR 2005 Tokyo, Japan July 12, 2005.

Oral presentation.
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Chapter 1

Introduction

1.1 History of whispering gallery mode resonators

Optical whispering gallery modes are named after the whispering gallery at St. Paul’s Cathedral in

London. Acoustical modes supported by this gallery were analyzed by Rayleigh in 1910 [13]. In 1939

Richtmyer [14] described electromagnetic modes of a dielectric sphere analytically and predicted

high Q factors of these modes. Optical quality factors on the order of 106 were predicted but

deemed potentially unattainable given a relatively poor quality of optical materials at that time. A

subsequent more elaborate theoretical treatise may be found in a book written by Stratton [15].

Whispering gallery modes were implemented by numerous microwave and acoustic technologies.

WG modes of the ionosphere of Earth were also analyzed. A significant body of research emerged

from observation of WGMs in liquid microdroplets [16, 17], which inspired solid-state WG microres-

onators. One of the first experimental evidence of the optical WGMs known to the author was

the observation of lasing in CaF2:Sm++ polished spheres in 1961 [18]. Another milestone, which

launched optical WGM resonators into modern science and technology, was achieved in 1987 when

the first optical fused silica resonators were demonstrated [19]. One of the important contributions

of this work was the demonstration of a WGM resonator and a coupling technique as a vehicle, which

could be deterministically used in optical experiments. Another technological advance came in 2003

with the fabrication of fused silica microtoroids using a combination of lithography and laser heating

[20]. Similar techniques also enabled silicon microtoroids in 2004 [21, 22]. The WGM resonances,

also known as morphology-dependent resonances, have proven to be useful in many photonics and

optics applications. Miniaturization of these resonators makes new applications possible in precision

physics experiments [23, 24].

Although whispering gallery modes were discovered almost a century ago, significant advances

in their actual utilization in optics appeared only during the last couple of decades, following the

invention of efficient resonator-light coupling methods. Development of the coupling techniques

beyond a prism coupler has been equally important for this field. Angle-polished [25] and tapered
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[26] fiber couplers have evolved into conventional laboratory coupling elements. Prism remains a

coupler of choice where fibers with suitable refractive indices are unavailable. This is the case for

lithium niobate WGMRs, which require a diamond prism coupler.

Historically, the WGM resonators have been fabricated with a variety of materials including,

sapphire, fused silica, calcium fluoride, lithium niobate and other optical glasses and crystals. Even

such exotic medium as solid hydrogen [27] was used. It was found in the 1980s that crystals such

as sapphire offer extremely low loss for microwave WGMs, especially at low temperatures [28]. One

of the first optical crystalline WGM resonators known to the author was fabricated in 2002 with a

lithium niobate and used as an efficient microwave receiver [29]. Subsequently a Q factor in excess of

1010 was demonstrated in CaF2 resonators [30]. The optically transparent crystals are particularly

interesting for fabrication of the resonators because they naturally have many specific nonlinear-

optical [31] and spectroscopic features, such as zero phonon lines, which are not so pronounced

in amorphous materials. Another advantage of crystalline materials for the fabrication of the res-

onators is that the quality of the surface can be immune to humidity, as in the case of CaF2 and

MgF2. Quality (Q) factor of the fused silica microspheres and microdisks degrades when exposed

to atmospheric water vapor [32]. The high Q factor of the resonators and their small size (small

volume of the WGMs) is of great importance for a number of applications.

Contributions of the present work to the resonator technology and physics are described in the

following chapters. A good account of the theory and applications of WGM resonators may be found

in [33] and the work referenced there.

1.2 Analytical description of WG modes in dielectric res-

onators

Similarly to acoustic modes of a whispering gallery, optical WGM modes are formed when total

internal reflection of light beams occur inside the dielectric resonator — be that an ideal sphere, a

spheroid, or a thin disk. In optical WG modes this reflection takes place under an angle of incidence

close to π/2, so that the beam is trapped inside the resonator and forms a closed trajectory. From the

electromagnetic field point of view, most of the energy in a WG mode is located close to the surface.

The structure of this field, as well as eigenfrequencies of the resonator and radiative losses may be

analytically found in the case of an ideal sphere or a cylinder. For a non-ideal sphere this analytical

solution may be used only approximately. Generally, in a non-spherical resonator represented by an

arbitrary body of rotation the exact solutions for the WGM field is not known. Numerical methods

have decreasing precision with increase of the resonator in terms of an optical wavelength. Some

approximate methods still give good results.
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1.2.1 Modes of a dielectric sphere

Analytical expressions for WG modes of an ideal sphere may be derived [14, 15] using, for example,

a scalar Debye potential approach. It can be shown that in an isotropic dielectric, the field vectors
−→
E ,
−→
B,
−→
D,
−→
H, vector potential −→A and a Hertz vector −→P satisfy the following equation:

4−→C − ε

c2
∂2−→C
∂2t

= 0, (1.1)

where −→C — any of the field vectors, ε = n2 — permittivity of a dielectric. By choosing a time

dependence as eiωt, this equation transforms into the vector Helmholtz equation:

4−→C + k2
n
−→
C = 0, (1.2)

where kn = nω/c = kn = 2πn/λ — wave number in the medium. This equation can always be

represented by the equivalent system of three scalar equations. However, in non-cartesian systems

of coordinates it is almost always impossible to resolve the resulting system with respect to any

particular component. It is possible to build a solution in a spherical system of coordinates by

involving the Debye potential, which satisfies the following scalar equation:

4Ψ + k2
nΨ = 0. (1.3)

The three independent solutions of this Helmholtz equation are vector functions:

−→
L = ∇Ψ, −→M = ∇× (−→r Ψ), −→N =

1
kn
∇× (−→M), (1.4)

where −→r — radius-vector and ∇ represents a Laplace operator. These vectors are mutually orthog-

onal and form a basis. The vector −→L describes the potential part of the field and equals zero in the

absence of free charges. The vectors −→N and −→M are solenoidal. The conventional notations for the

types of modes are:

H-type (transverse-electric TE–modes), −→E ∼ −→M,Er = 0,

E-type (transverse-magnetic TM-modes), −→E ∼ −→N,Hr = 0.

The variables can be separated and the solution for the scalar equation is represented by

Ψ = AYlm(θ, φ)zl(knr), (1.5)

where A is a constant and Ylm(θ, φ) — spherical function, usually normalized to unity:

∫ π

0

∫ 2π

0

Ylm(θ, φ)Y ∗l′m′(θ, φ)dφdθ = δll′δmm′
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Ylm(θ, φ) =

√
(l −m)!
(l +m)!

(2l + 1)
(4π)

e±imφP lm(cos θ).

Here P lm(cos θ) are the associated Legendre polynomials, zl(knr) — radial spherical functions. In

expression (1.5), when the area inside the sphere is described, zl represents Bessel functions jl(knr)

(finite at r = 0). When the space outside the sphere is described, zl corresponds to the Hankel

functions h(1)
l (knr), which are limited at infinity. The l index is called radial index or mode’s order.

It corresponds to the number of wavelengths along the resonator surface l ' 2πnR/λ. There are

l −m+ 1 maximums in θ direction, where m is the azimuthal index of the mode. The factors eimφ

and e−imφ account for the two counter-propagating waves.

By applying a spherical Laplace operator

∇× F =
1

r sin θ

(
∂(sin θFφ)

∂θ
− ∂Fθ

∂φ

)
er +

1
r

(
1

sin θ
∂Fr

∂φ
− ∂(rFφ)

∂r

)
eθ

+
1
r

(
∂(rFθ)
∂r

− ∂Fr
∂θ

)
eφ

to the solution of the scalar equation we obtain electric and magnetic field components in a Gaussian

system of units for the time dependence of eiωt for TE-mode :

êTE = CTE
[
m

sin θ
Ylm(θ, φ)zl(kr)eθ + i

∂Ylm(θ, φ)
∂θ

zl(kr)eφ

]
, (1.6)

b̂TE = CTE
1
k0c

[
l(l + 1)Ylm(θ, φ)

zl(kr)
r

er +
∂Ylm(θ, φ)

∂θ

∂(rzl(kr))
r∂r

eθ+

+
im

sin θ
Ylm(θ, φ)

∂(rzl(kr))
r∂r

eφ

]

and TM–mode:

êTM = CTM
1

n2k0

[
l(l + 1)Ylm(θ, φ)

zl(kr)
r

er +
∂Ylm(θ, φ)

∂θ

∂(rzl(kr))
r∂r

eθ (1.7)

+
im

sin θ
Ylm(θ, φ)

∂(rzl(kr))
r∂r

eφ

]
b̂TM = −CTM 1

c

[
m

sin θ
Ylm(θ, φ)zl(kr)eθ + i

∂Ylm(θ, φ)
∂θ

zl(kr)eφ

]
,

where zl(kr) denote spherical Bessel functions jl(nk0r) inside the sphere and spherical Hankel func-

tions h(2)
l (k0r) outside the sphere.

From the equality of tangential components of the field on the boundary (r = R):

Eiθ = Eeθ , E
i
φ = Eeφ, (1.8)

Biθ = Beθ , B
i
φ = Beφ, (1.9)
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we obtain the relations

CTEe = CTEi jl(nk0R)/h(2)
l (k0R), (1.10)

CTMe = n2CTMi jl(nk0R)/h(2)
l (k0R) (1.11)

which connect field amplitudes outside and inside the resonator. The boundary conditions also give

a characteristic equation
p∂[xjl(x)]/∂x

jl(x)
=
∂[xh(2)

l (x)]/∂x

h
(2)
l (x)

. (1.12)

Here p = (1/n)2 for TM oscillations, and p = 1 for TE modes; x = k0R — is the so-called

dimensional parameter of the sphere. This equation has many solutions which define the eigen

numbers klq of oscillations of the dielectric resonator. Imaginary parts of solutions give radiative

quality factor Qrad. = Re(x)
2Im(x) . In an ideal sphere, all eigen numbers correspond to the same

frequency, they are degenerate. If the geometry of the resonator is different from a sphere, frequencies

of different klq are not the same. Thus the WGM is characterized with one more index — q. This

index roughly corresponds to the number of wavelengths between total internal reflections of the

beam.

1.2.2 Mode volume

The effective volume occupied by the electromagnetic field of a whispering gallery mode may be

defined as follows:

Veff ≈
(
∫

E2d3r)2∫
E2E2d3r

, (1.13)

where E(r, θ, φ) describes the mode’s electric field distribution. For this definition of volume it is

possible to obtain the estimate for Elm1, Hlm1 modes [34, 19]:

Veff ≈ 3.4π3/2

(
λ

2πn

)3

l11/6
√

2(l −m) + 1,
(
l =

2πan
λ

)
. (1.14)

Here l is the radial index of the WGM, a is the radius of the resonator and m is the angular index

of the mode. For the fused silica resonators, He–Ne laser wavelength of λ =633 nm and the modes

with the most compact θ–angle distribution of energy (modes Ell1, Hll1) one may estimate:

Veff ≈ 3× 10−11 cm3 (l = 100, D ≈ 14µm),

Veff ≈ 2× 10−9 cm3 (l = 1000, D ≈ 140µm).
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1.2.3 Modes of a spheroid

Virtually any practically available WGM resonator may be approximated with a spheroid, so a

recently obtained solution for WG modes in an arbitrary spheroid [35] appears to be especially

useful in practice. Quasi-classical approach may be used to compute WG mode frequencies and

radiative quality factors of a spheroidal resonator with equatorial axis “a” and polar axis “b”:

nka = l − αq
(
l

2

)1/3

+
2p(a− b) + a

2b
− χn√

n2 − 1
+

3α2
q

20

(
l

2

)−1/3

− αq
12

(
2p(a3 − b3) + a3

b3
+

2nχ(2χ2 − 3n2)
(n2 − 1)3/2

)(
l

2

)−2/3

+O(l−1), (1.15)

where k = λ
2π is the wavenumber, l � 1, p = l − |m| = 0, 1, 2... and q = 1, 2, 3... are integer mode

indices. αq are negative zeros of order q of the Airy function, n — refractive index of the optical

material. For quasi-TE modes χ = 1 and for quasi-TM modes χ = 1/n2.

Figure 1.1: Crystalline WGM resonator and the approximating spheroid in cross section
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Chapter 2

Fabrication of crystalline cavities

Unlike fused silica resonators, crystalline cavities may not be formed by a heat-assisted reflow pro-

cess. No lithography techniques are known to work for the majority of optical crystals in terms of

generating polished surfaces. A mechanical fabrication technique is required. Such technique was

developed at JPL and significantly improved as described in this thesis. It allowed fabrication of

crystalline resonators with arbitrary geometry of surface, including microresonators.

The present work was motivated by a project in which single dopant ions would be strongly

coupled to the mode of a resonator. The strong coupling required fabrication of micro–resonators,

for which the technique available in the lab at that time was not suitable. Straightforward extension

of fabrication capabilities could be provided by application of a single point diamond turning process

(SPDT). The field of SPDT and polishing is akin to jewelry, as it looks more like a set of engineering

tricks rather than an implementation of predictions of a scientific theory. One of the reasons may be

that the processes involved are too complicated and involve chemistry, tribology, solid mechanics,

and thermodynamics. These tricks are based on empirical research and are usually hidden behind

corporate walls. Consequently, the literature on the topic is anywhere from scattered to non-existent.

Some papers still offer valuable pieces of information [36, 37, 38, 39, 40, 41, 42].

2.1 Application of diamond turning

After a significant trial-and-error stage, a prototype computer-controlled SPDT apparatus was devel-

oped. This allowed me to fabricate crystalline axially symmetric optical elements with any desirable

surface structure and good surface roughness. The key elements include a heavy mounting plate,

a precision air-bearing spindle, a dc motor, a custom-made diamond cutter, a motorized cutter

positioning stage, PC, and software.

The starting point of resonator fabrication is a crystalline cylinder which is obtained from a

crystal blank with a special coring drill and a diamond suspension used as an abrasive.
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Figure 2.1: Fabrication of crystalline cylinder with a coring drill

2.1.1 Air-bearing spindle

Initially, the experiments on SPDT were carried out on simple DC motors and later on DC brushless

motors of commercial hard disk drives (HDD). These motors, especially those with fluid dynamic

bearing technology, have very stable rotational repeatability and stability at high speeds, mandated

by precision HDD technology. Unfortunately for my application, these motors did not provide high

stiffness of the spindle, required in SPDT. Soft spindle leads to rotational instabilities under mechan-

ical load and a diamond tool damage. It was realized that air-bearing technology is conventionally

used in SPDT and, after an initial successful prototype, a working model of a compact air bearing

measuring 1/2 inch in diameter was assembled in the laboratory. While the spindle has several

resonances, it allows smooth operation at speeds of up to 15000 rpm. Air bearing is generally a

Figure 2.2: Model of the air-bearing spindle
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shaft with a polished surface, which is enclosed in a holder. The inner surface of a holder follows the

geometry of the shaft and is also polished. Pressurized dry air is supplied to a small gap between the

shaft and the enclosure, serving as an almost perfect lubricant. The biggest challenge in fabricating

the air bearing is smallness of the air gap, typically around 20–50 micrometers. Such a bearing has

a near zero friction and a high stiffness, comparable and even exceeding that of conventional ball

bearings of similar size. In addition, such bearings have very good repeatability of rotation.

A brushless 5-watt motor from Maxon was coupled to the spindle on one end via a magnetic

clutch. Powerful and compact neodymium magnets provided torque transfer while isolating motor

vibrations. A tight-fitting cap with fixation screws was attached to the other end of the spindle and

the crystalline workpiece could be glued to that cap.

2.1.2 Diamond cutter

Diamond turning of crystals may be carried out in two modes: ductile and brittle. The brittle mode

machining results in a surface pitted with numerous cracks and fractures and hence is not practical

for optical fabrication. In a ductile machining mode the surface undergoes phase transition and the

material is removed evenly resulting in an optically smooth surface. Achieving this regime generally

requires implementing certain machining parameters such as workpiece rotation speed, depth of

cut, feed speed, diamond tool rake and relief angle, and are specific for various crystals. The tools

used in this work were designed in Solidworks and custom made by Chardontool for the optimal

machining of calcium fluoride CaF2. They had a -20 degree rake angle and 2 degree relief angle of

the cutting edge. The shape was designed so as to allow fabrication of micrometer scale features

and cavities with diameter down to 40µm. Alternatively, good cutting results were obtained with

usage of commercial optical diamond prisms instead of a cutter.

Figure 2.3: Model of a cutter for fluorite machining
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2.1.3 Cutter positioning

Positioning of a diamond cutting tool was carried out with help of two Thorlabs positioning stages,

two stepper motors “Z625B” and a vertical positioning stage. The cutter was mounted onto the

X-Y stages via magnetic kinematic base plate. Stepper motors were controlled by a PC with a

Labview-based software, which had options for manual control of the position and automatic motion

along a programmed trajectory. Calculated resolution of the motors is 40 nm and measured backlash

is around 3µm. This backlash was compensated programmatically. Programmed trajectories used

to fabricate microstructures took cutter geometry into account.

2.1.4 Speeds and feeds

Even though the machining setup was designed to be rather stiff, it was not stiff enough by com-

mercial standards. Minute vibrations in a spindle and positioning mechanics led to accelerated

degradation of a cutting edge, as shown on Fig. 2.4. In some cases only a couple miles of optically

Figure 2.4: Diamond tool wear

ideal surface, on which no fractures could be seen at ×400 magnification, could be obtained. Ideally,

cutter position should be controlled with nanometer precision to reduce accidental jumps and vibra-

tion. Cutting speed should be chosen such that would provide the longest tool life. Cutting edge

wear is a major problem of SPDT. For fluorite machining rotation speeds of 90–3000 rpm, feeds of

0.25–5µm per revolution, and depth of cut of 0.25–2µm were found useful. Further optimization is

possible. The described SPDT apparatus allowed me to fabricate structures with features as small

as 3µm, and the Q factor of resonators right after the turning step was as high as 107, corresponding

to a good surface roughness.
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2.2 Polishing and cleaning techniques

Surface roughness and cleanliness are critical for ultrahigh optical Q factors. Surface roughness

of better than 0.2 nm rms was achieved with a hand-polishing method. Much better results may

be possible with application of other advanced techniques such as magneto- or electro-rheological

polishing.

A diamond suspension from Alliedhightech were used for resonator polishing. Pure isopropanol

and water were used for cleaning. Acetone may be used in some cases, but is not generally required.

Low lint paper napkins were used as polishing and cleaning cloth.

Specific polishing sequence depends on the goal of the process. If polishing of SPDT-fabricated

structures is required, initial diamond grit of 0.25µm may be used. If the starting point is a plain

crystalline cylinder, the initial stage of polishing can be accomplished with diamond grits of up to

20µm at high speed. This initial polishing can also be used to define resonator shape. Thus SPDT

may not be required when relatively simple large resonators are needed. In fact, it is possible to

formulate a resonator with radius of curvature as small as 5µm or even less (as shown in Sec. 3.4)

without SPDT. On the other hand, single-mode or micro resonators are likely to require SPDT or

other advanced fabrication techniques.

Thin stripes of polishing cloth are cut and twisted to form threads, which are then soaked with

a diamond suspension. Before the suspension grit size can be reduced, a cleaning step is required.

This is usually accomplished by polishing with alcohol instead of diamond suspension, followed by

a wiping step. Generally, the grit size sequence is as follows: 20, 3, 1, 0.25, 0.1, 0.05µm. A Q factor

exceeding 1010 is usually achieved after a 0.25µm polishing step.
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Chapter 3

New resonant structures

Each whispering gallery mode in an arbitrary resonator is identified by three indices, which define

distribution of optical field nodes over the volume of the resonator. Frequencies corresponding

to each combination of these indices are generally different, which leads to a rather complicated

spectrum. Geometry of a resonator imposes boundary conditions which define the spectrum and

may exclude certain combinations of indices. Thus modifying the resonator surface and diameter is a

way to control its spectrum. Development of a diamond turning apparatus has enabled this control

over surface geometry and allowed the author to fabricate several new types of resonators. This

chapter includes material presented in an Optics Letters paper [1] and an Optics Communications

paper [2]. Materials reproduced with permissions from OSA and Elsevier.

3.1 Single-mode cavity

There are two general ways to engineer optical modes. The most common approach is to use optical

waveguides to confine and guide light. The waveguide is based on the refractive-index contrast

between its material and the surroundings to support light confinement and guiding. In the other

approach, a photonic bandgap crystal [43] provides confinement and guiding of photons by use of

the morphology of the structure. One achieves this by placing defects in otherwise periodic arrays

of a dielectric material.

The utility of WGM-based devices and the efficiency of nonlinear optical interactions of WGMs

depend on accurate engineering of the cavity mode structure. Achieving the required level of control

over the mode spectrum has eluded scientists working on WGM resonators. Thus WGM resonators

have as yet neither entered the mainstream of photonic device engineering nor been embraced by the

optical physics. Practically all WGM resonators have more-or-less complicated modal structures,

in other words they have more than one mode per free spectral range. This is an obstacle for

many practical applications. The nature of the dense spectrum can be easily understood. The

special functions that describe WGM in a perfect dielectric sphere are degenerate. In other words,
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many modes have the same eigenfrequency. This degeneracy is lifted when the geometry of the

resonator is changed to anything different from a perfect sphere. Generally speaking, the special

functions should also be different and in most cases it is impossible to resolve the electromagnetic

field into any possible kind of special functions. Only approximate analytical and numerical methods

may be helpful [35]. The modes that have identical eigenfrequency in a spherical resonator would

have different eigenfrequencies in a non-spherical one. This creates a rich optical spectrum in real

resonators, which are always non-spherical. However, the same degeneracy lifting can be useful.

In this section a new approach to designing the geometry of the resonator and controlling the

structure of its optical spectrum is demonstrated. It relies on generating an effective refractive-

index contrast produced by shaping the geometry of a whispering gallery mode (WGM) resonator.

With this technique, single and multiply-coupled WGM resonators can be designed for a wide variety

of applications.

It is reasonable to note that these new resonators are no longer pure WGMRs, but rather a

hybrid incorporating the features of an optical planar waveguide, or a ridge waveguide [44, 45, 46],

and a conventional WGM resonator. Single-mode WGM resonator is topologically different from

these waveguides and the WGM feature is critical in achieving ultra high optical Q factor. The

analysis of this cavity is based on the similarity with a single-mode gradient waveguide [47]. The

resonators profile serves as a confinement structure, in analogy to the refractive index gradient in

the single-mode optical fiber.

A single-mode homogeneous dielectric waveguide is realized when the frequency of the propa-

gating light is close to the cutoff frequency of the channel. This means that the thickness of the

waveguide approaches half the wavelength of light in the host material of the waveguide. It is imprac-

tical to fabricate a single-mode optical fiber by decreasing the fibers diameter. Instead, single-mode

operation is ensured by the specially selected radial profile of the refractive index of the fiber mate-

rial. The core of the fiber has a larger index of refraction than the surrounding cladding material.

The difference of the indices is small, so only one mode propagates inside the core, while the others

decay into the cladding (Fig. 3.1 (a)). For instance, the condition for the single mode operation of

a planar waveguide is [48]

dco <
λ

2
√

∆ε
, (3.1)

where dco is thickness of the core, λ is wavelength of light in vacuum, and ∆ε is the difference

between the susceptibilities of the core and the cladding material, respectively. As a result, the

core may have a reasonably large diameter. Note that the core of a single-mode fiber becomes a

multimode waveguide when the cladding is removed.

Let us consider the WGM resonator as a multi-mode gradient waveguide [49] (Fig. 3.1 (b)).

The resonator becomes an ideal single-mode-family resonator only if the waveguide is thin enough.
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Figure 3.1: (a) Structure and mode localization in the optical fiber. Only one propagating mode,
shown by the solid arrow, survives in the core of the fiber, while others (dotted arrows) penetrate
into the cladding and dissipate. (b) Mode localization in the WGM resonator. The resonator
corresponds to a multimode gradient fiber for which the index of refraction is set by the resonator
shape, not by the change of the refractive index of the resonator host material, which is constant.
Both the fundamental and the auxiliary modes survive. (c) Mode localization in a low-contrast
WGM resonator. Only a single-mode family survives. The other modes penetrate into the cylinder
rod and dissipate. The coupling to the single-mode family is achieved with, e.g., an angle-polished
fiber coupler.

Following this trivial approach the WGM resonator should be designed as an approximately half-

wavelength-thick torus to support a single-mode family. Recent experiments confirmed this conclu-

sion and nearly single-mode resonators have been demonstrated [20].

There is another, nontrivial, approach to the problem based on the analogy with single-mode

optical fiber. It is shown here that a WGM resonator made of any transparent material with any

size can be transformed into a single-mode resonator if the appropriate geometrically defined core

and cladding are developed (Fig. 3.1(c)).

To show that WGM modes can be described by use of a waveguide formalism, we start with the

usual wave equation

∇× (∇×E)− k2ε(r)E = 0, (3.2)

where k = ω/c is the wave number, ε(r) is the coordinate dependent dielectric susceptibility, E is

the electric field of the mode, and r is the radius vector.

Higher-order WGMs (i.e., those with the wavelength much smaller than the resonator size)

of both TE and TM kinds are localized in the vicinity of the equator of the resonator. Here

cylindrical coordinates can be conveniently used. Applying the technique of separation of variables,

and assuming that the resonators radius changes as R = R0 + L(z) (R0 � |L(z)|) in the vicinity of
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the equator, we transform Eq. 3.2, for TE mode family, to

∂2E

∂r2
+
∂2E

∂z2
+
[
k2ε

(
1 + 2

L(z)
R0

)
− ν2

r2

]
E = 0, (3.3)

where ν is the angular momentum number of the mode (we assume that ν � 1), E(r, z) is the

scalar field amplitude, and ε in the susceptibility of resonator material. Equation 3.3 is similar to

the gradient waveguide equation. It is easy to see that, for instance, modes of a spherical WGM

resonator coincide with modes of a gradient waveguide with parabolic distribution of the refractive

index in the z direction. Hence it is the geometry of the surface that should be modified to produce

an ideal single-mode WGM resonator. A core for the WGM waveguide can be obtained by proper

design of the resonators surface in the vicinity of the equator. The rest of the resonator body acts

as the cladding (Fig. 3.1(c)).

Consider a resonator consisting of a cylindrical drum and a small, ring-like protrusion, L(z) = L0

for d ≥ z ≥ 0, on its surface. The drum’s effective susceptibility does not depend on the z coordinate

and is equal to ε. The effective susceptibility of the ring, ε(1 + 2L0/R0) (see Eq. 3.3), is slightly

larger. Therefore, the ring is the core that confines the light in the z direction, while the drum is

the cladding. The condition for single-mode operation of the resonator by use of inequality (3.1) is:

1 >
d

λ

√
2L0ε

R0
>

1
2
. (3.4)

Condition (3.4) stays valid for a resonator with an arbitrary large radius. Both the width and

the height of the ring can be much larger than the wavelength of light. The ratio L0/R0 acts

the same way as the ratio ∆ε/ε in an optical fiber. The author of this dissertation has fabricated

Figure 3.2: (A) Scanning electron microscope images of the resonator whose spectrum is shown in
Fig. 3.4 and 3.5. The resonator has a nearly Gaussian shape, with 2.5µm height and 5µm full-width
at half-maximum. (B) Image of the profile of the resonator shown in (A). (C) Intensity map of the
field in the resonator shown in (A) simulated by numerical solution of Eq. 3.3.

a 5 mm diameter monocrystalline fluorite rod. The spectrum of such a rod is extremely dense,
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having enormous number of modes in each FSR. A small ring with dimensions on the order of

several micrometers was then fabricated on the surface of the cylinder by removing some additional

material (Fig. 3.2). The resonator spectrum changed drastically. The resonator has a single TE

Figure 3.3: Geometrical profile of the resonator and a Gaussian fit

and a single TM mode family shifted by a few gigahertz relative to each other. A single TM mode

family was selected by the polarization of incoming light. Loaded Q factors of both families of modes

shown in Fig. 3.4 are equal to 8 × 106. The particular resonator’s Q-factor was limited by residual

surface roughness. The profile of the resonator is nearly Gaussian, as shown in Fig. 3.3. The spectra

shown on Fig. 3.4 and Fig. 3.5 were obtained with two angle-polished fiber couplers [25], one for the

input and one for the output. The fiber couplers were made with a standard single-mode fiber with

cladding diameter of about 150µm and core of about 5µm. The photodetector signal represents

transmission of the resonator. Logarithmic detector measurements have shown that besides the two

mode families there were no other modes down to -30 dB level. It should be noted that, given the

geometrical parameters of the resonator and the couplers, the single mode regime of this resonator

is not a function of coupling but an intrinsic property. Here we present the spectrum of a multimode

resonator made by the same technique on the same cylinder (Fig. 3.4(b)) to demonstrate that the

coupling does not affect the observed mode structure. Moreover, the logarithmic measurements were

performed in a loaded configuration, when the couplers are in contact with the resonator. Numerical

simulation of resonator parameters were carried out as well, which clearly demonstrated that only

the fundamental modes survive.

This kind of resonator could, in principle, be fabricated with lithium niobate, the refractive index
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Figure 3.4: (A) Spectrum of a nearly ideal single-mode resonator obtained by use of a 980 nm
laser, as well as the angle-polished fiber couplers (Fig. 3.1(c)). The mode number is approximately
ν = 2 × 104. The low-Q modes on the spectrum background are the modes of the cylinder. (b)
Spectrum of the multimode resonator made on the same cylinder (2.5µm height and 15µm width)
and detected with the same coupling technique. The resonator is partially visible in the lower right
corner of Fig. 3.2(a).

of which can be controlled by applying an electric field. Such a resonator could be used for unique

optical measurements and filtering applications.

The type of the dielectric medium used for the single-mode resonators is not important in achiev-

ing the single-mode regime as long as it is solid and transparent. Generally, as the behavior of the

system is defined only by the systems geometry, it is not even important for what kinds of wave the

structure is a resonator. Microwave, acoustical, or mechanical chains of resonators of this type have

the same features and basis of design as their optical counterparts.

With the approach described here, one can make a single-mode optical WGM resonator of any

size. A resonator the size of an orange requires a ring with a dimension of tens of micrometers

for single-mode propagation of 1µm wavelength light. This is counterintuitive because the size

of the single-mode channel is much larger than the wavelength. This type of experiment may be

interesting in fundamental research investigations. For practical applications, small resonators are

of more interest.

In conclusion, the high density of modes in spherical and cylindrical WGM resonators has limited

their usefulness in optical science and technology. Light sent into these cavities occupies a large

multiplicity of overlapping and possibly interacting modes, thus complicating device performance

and limiting the accuracy of physical measurements. A single-mode family resonator that avoids

this pitfall by design is demonstrated. By engineering the photonic density of states to minimize

interaction between the modes and force all input energy into one eigenstate, science is provided with
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Figure 3.5: Linear spectrum that contains transmission of the resonator represented by modes with
spacing of around 11 GHz and that of the reference 1.2 GHz Fabri-Perot etalon

a new tool with which to study the threshold dynamics of nonlinear and quantum optical processes

and for sensing chemical concentrations and fluid flow. It also creates a new class of photonic circuit

elements that could expand the capabilities of communications technology.

3.2 Coupled resonators

A single-mode cavity was fabricated on a fluorite cylinder along with two other cavities shown on

Fig. 3.6, which had larger dimensions and supported more than one mode per FSR. These cavities

were fabricated at separations of around 70µm and 140µm from the single-mode cavity, which was

deemed far enough for these cavities to be independent, given the wavelength of light used to excite

resonances is 1µm. Coupling to the resonators was achieved by means of an angle-polished fiber

coupler [25]. Modes were excited in a multimode cavity by scanning laser frequency over several

tens of gigahertz, which corresponded to about two cavity FSR. Some of the energy was resonantly

transferred to a single-mode cavity as it happened to have modes at the same frequency as some of

the modes in a multimode cavity. This resonant energy transfer is mediated by an evanescent field

of the modes which spreads out to a comparatively large distance inside the crystalline cylinder.

Coupling over such a large distance is spectacular and may be explained by a high quality factor of

participating modes. This effect may be used for delay lines, where multiple resonators are fabricated

in a way similar to Fig. 3.6, as was theoretically proposed recently [50]. Realization of the delay lines

seems feasible if the precision of the fabrication process is adequate.
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Figure 3.6: Three resonators: single-mode (on the left) and two multimode cavities. Cylinder
diameter is 5 mm.

Figure 3.7: Resonant coupling of two resonators separated by 70µm via an evanescent field inside
the cylinder. Upper spectrum represents the reflected signal from a middle resonator on Fig. 3.6.
Middle curve is the output of the single-mode resonator. Lower spectrum is a transmission of a
reference 1.2 GHz Fabri-Perot etalon.

3.3 Crystalline microcavities, Q factor, and tunability

Starting with a cylinder 1.5 mm in diameter it was possible to fabricate cylinders as small as 40µm

and then formulate a waveguide on the surface. The diameter of the resonators can be as small as

a few tens of microns and their geometrical features, such as surface curvature or profile, can be

precisely engineered. Resonators were polished after the diamond-turning step to improve optical

Q factor. CaF2 resonators as small as 100µm in diameter having quality factor Q = 4 × 108 were

fabricated from magnesium and calcium fluoride. Some of these cavities are shown in Fig. 3.8.

The fabrication process includes two steps. The first step is the diamond-turning process, which

employs computer control of a precision lathe. The structures obtained at this step are engineered

to about 40 nm precision and have optical Q factors of up to 107. If higher Q factors are needed,

additional optical polishing has to be performed. This polishing step naturally modifies the structure

that was initially obtained by the diamond-turning process.
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Figure 3.8: Crystalline microresonators

Special diamond-turning regimes should be employed to avoid brittle machining and to achieve

a required smoothness of the surface. Such parameters as speed of rotation of the workpiece, feed

and cutting angle, diamond cutter geometry and sharpness, as well as lubricant, are very important

in achieving ductile regime of machining [51]. Special attention should be paid to vibration isolation

of the turning process. In our diamond-turning setup we use a homemade air bearing to provide

the required stiffness and repeatability of workpiece rotations. A commercial brushless motor and

a simple magnetic clutch are used to rotate the bearing. Polishing with polycrystalline diamond

abrasives is performed in several steps with decreasing diamond grit sizes followed by the cleaning

process. It was found that small particles are extremely difficult to remove from the surface of the

material. The cleaning process is the most critical in achieving ultrahigh Q factor. Cleaning was

performed in a clean-room environment with use of organic solvents.

The optical Q factor of the resonators after polishing is limited by contributions from four main

sources: scattering by the dust particles accumulated on the resonator surface, absorption in the

resonator material, radiation leakage, and surface scattering. We assume that the optical power

circulating inside the resonator is below the threshold of nonlinear effects, such as Raman lasing or

thermo-optical instability [52].

Scattering by the dust particles would be the main restriction on the quality factor if a clean-room

environment is not provided. Once inside the clean room environment or vacuum, the Q factor can

be preserved on a very high level for a long time. Aside from dust accumulation, optical polishing

leaves some amount of nanoparticles embedded into the resonator surface.

It is known that water is detrimental for the Q factor of fused silica devices due to formation

of irregularly adsorbed layers [53]. Fortunately, such crystals as CaF2 and MgF2 have chemical

properties that reduce accumulation of water on the surface. Diffusion of water into crystalline

lattice is inhibited, while a monomolecular layer of water is always present on the surface.

The intrinsic absorption of the resonator material is the second important effect restricting the

value of the measured Q factor. The absorption is a function of the crystal-growing process and is
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defined by the optical properties of a crystal at a given wavelength. This parameter is particularly

small in crystalline materials, since they can be produced with high purity. Recent developments

in UV lithography have stimulated the production of extremely pure CaF2 monocrystals. However,

even in those purest crystals the reference-sheet absorption rarely falls below 10 ppm/cm, which

corresponds to quality factors on the order of 1010. Unfortunately, not much data are available for

the optical absorption coefficients, since there is no technique capable of measuring this coefficient

with high precision when absorption becomes very weak. Interestingly, the WGM resonators may be

used to measure internal absorption with good precision if the Q factor is known to be limited only

by internal absorption. For example, the absorption coefficient reported by the crystal producer

is α = 2 × 10−5 cm−1. According to the expression for the internal absorption limited Q factor

Q = 2πn/(αk), this corresponds to Q = 4.2 × 109 at wavelength of λ =1064 nm. Here, n is

the refractive index of material. On the other hand, with this piece of crystal the author has

measured Q = 5.3× 1010, which gives a more accurate upper limit estimate of absorption coefficient

α = 1.6× 10−6 cm−1.

The radiation leakage is significant only for the resonators with extremely small diameters not

exceeding several micrometers, which is not the case in our study.

Finally, the surface roughness is made small by our polishing technique, as confirmed by measure-

ments with an atomic force microscope (AFM). In its contribution to surface scattering factor, the

surface roughness is accompanied by the subsurface material damage. This damage is represented

by the microfractures and embedded particles and is usually confined within a shallow surface layer

of the material. The thickness of this layer is determined by the polishing and grinding process.

AFM studies have shown the small amount of diamond particles embedded into the resonator sur-

face. This could be useful in quantum optics, since a quantum dot containing diamonds or other

nanoparticles can be embedded this way to create a coupled system without noticeable degradation

of Q factor.

The author has fabricated a calcium fluoride resonator with 100µm diameter and optical Q

factor of 4×108, as derived from resonant curves shown on Fig. 3.9. The surface roughness does not

restrict the value of the quality factor. The measurements performed with AFM showed that the

surface roughness of small resonators is about the same as for the large disks with Q factor of 109

and is practically negligible. Let us estimate the maximum Q factor that could be achieved in the

resonators with measured surface roughness. We will use the previously derived [54] expression:

Q ' 3λ3a

8nπ2B2σ2
(3.5)

where λ is the wavelength, a is the radius of the resonator, n is the refraction index of the resonator

material, B is the correlation length (length of exponential decrease of the autocorrelation function
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Figure 3.9: Resonant curve with Lorentzian fit for CaF2 resonator 100µm in diameter. Rayleigh-
scattering-induced splitting is present.

for surface hight), and σ is the roughness (standard deviation of surface hight). Let us assume that

λ=1µm, a = 50µm, n = 1.43, B = 2 nm, and σ = 0.33 nm. For this set of parameters, we obtain

Q = 4× 1012. The estimated value of the Rayleigh-scattering-limited Q factor scales proportionally

to the radius and is still much higher than any Q factor observed in WGM resonators. The resonator

was fabricated with vacuum UV grade CaF2 and its Q factor was limited by residual contamination

of the surface with polishing agents. It was found that when an excimer grade CaF2 is used, it is

possible to achieve a Q factor higher than in any other open resonator and any other WGM resonator.

The 5.5-mm-diameter CaF2 WGM resonator was fabricated with Q factor of (5.31 ± 0.04) × 1010

measured with a Nd:YAG laser at wavelength of 1064 nm. Even higher Q factors were achieved

in our laboratory. In microresonators, the role of Rayleigh and surface scattering becomes more

important, so the Q factor is lower for smaller cavities [54].

3.3.1 Tuning crystalline microresonators by mechanical deformation

Ability to tune frequencies of WG modes of crystalline microresonators is beneficial for quantum

optics and other experiments. Tuning of fused silica resonators by mechanical deformation has been

previously demonstrated [55]. Tuning by an electric field via Kerr effect may also be used. The

author and V.S. Ilchenko have carried out an experiment on tuning the WG modes by mechanical

pressure. The 500µm resonator made with MgF2 was installed onto a piezo element and clamped

under slight pressure as shown on Fig. 3.10. By adjusting the piezo voltage we were able to reversibly

shift the WGM frequencies with a sensitivity of around 1 GHz/V (see Fig. 3.11). To couple light

in and out of the resonator, the angle-polished fiber couplers were used [25]. Tuning by as much as

100 GHz was possible but finally led to damage of the resonator. Similar experiments with a 5 mm

CaF2 resonator in a different setup showed tunability of around 10 MHz/V. These results show that

if tunability of a crystalline microresonator is required, it can be achieved by accurate mechanical
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Figure 3.10: MgF2 resonator is deformed along its axis with a piezo element. Resonator diameter
is 500µm.

deformation of the crystal.

3.3.2 Precision spectroscopy of single ions

Ultrahigh Q crystalline microresonators with small mode volumes are suitable for applications in

quantum cavity electrodynamics and quantum optics. For instance, the resonators could be used

to demonstrate the strong coupling between a WGM and an atom, or to modify the spontaneous

emission of an atom interacting with the WGM. Various quantum optics experiments become pos-

sible with the new microresonators as the combination of high Q and small mode volume make it

easier to utilize optical nonlinearities of the crystalline material. It may be possible to arrange for

an interaction of single ions in a crystalline lattice and the optical WG mode leading to such intrigu-

ing applications as a single ion clock without a magneto-optical trap. In this section we consider

spectroscopy of a single ion in a doped crystalline microresonator as a possible application.

The dopants in crystalline WGMR are influenced by the host material of the resonator and

by the WGM field structure. The absorption profile of each individual doping ion is broadened

homogeneously through interaction with lattice phonons and shifted through the influence of the

crystalline lattice. This inhomogeneous shift of transition frequency is caused by the slight differences

in electronic configurations at the various lattice sites, which create different electric fields for each

individual doping ion. The observed inhomogeneous broadening of atomic transition profile in a

crystalline host is caused by these shifts. The spectrum of the doping in a crystal is formed as

a combination of many overlapping but relatively shifted spectra of single ions. Inhomogeneous

broadening varies over a wide frequency range for different host materials. In most crystals the

absorption lines of atomic impurities get narrower with decreasing temperature. At liquid helium

temperatures the phonon-originated homogeneous broadening fades, leaving the inhomogeneously
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Figure 3.11: Resonator spectrum during mechanical deformation. Lower spectrum corresponds to
zero voltage applied to the piezo element. Voltage was increased to 20 V gradually and then reduced
back to zero. Some permanent deformation took place as the mode on the upper graph is displaced
as compared to the lower graph.

broadened impurity absorption line with greatly increased intensity. These so-called zero phonon

lines make it possible to optically detect single impurity molecules or ions in such crystals [19] using

the single molecule spectroscopy techniques. The application of the WGM crystalline resonators may

be fruitful for this kind of single ion spectroscopy. Rare earth ions are convenient for observation

of the effect because they have many zero phonon line transitions, and relatively strong associated

dipole moments for selected transitions. For example, a Sm+ ion in CaF2 has a dipole moment

of 0.63 D for λ=709 nm transition [56], which is comparable to organic molecules of pentacene in

p-terphenyl matrix, 0.7 D at λ=592 nm [57]. Debye is a non-system unit of electric dipole moment.

It is equal to the electric dipole moment created by the two charges of 10−10 Franklin (or esu)

separated by 10−10 m (1D = 10−18 Fr cm= 3.3356410−30 C m).

The WGM can be used to observe the absorption profile of a single ion if a small enough resonator

is doped with rare earth ions in low concentration. At low temperatures the absorption profile of

the dopant ions transforms into a “forest” of absorption profiles, corresponding to the individual

ions. If the modes of the resonator are scanned over the absorption profiles of the ions, one may

expect to observe the interaction of individual photons in a WGM and an ion, resulting in quantum

effects such as Rabi splitting [58]. The frequency of a WGM can be shifted by use of nonlinear

properties of the resonator material (e.g., electro-optical effect in lithium niobate) or by a change of

the resonators geometry (see, e.g., Sec. 3.3.1).
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Alternatively, a first step towards this experiment, which requires a very low light level and

photon counting, may be the spectroscopy of a very low dopant concentration with large resonators.

The Q factor of a 5 mm resonator is limited by dopant absorption. By measuring the Q factor over

the span of wavelengths that includes the absorption peak, it may be possible to detect such peak

even for very small concentrations, such as 10 ppb.

Let us estimate the efficiency of coupling of a single ion and a WGM for the resonators at hand.

Consider a CaF2 resonator with diameter of 100µm and optical Q factor of 4 × 108. Assume that

it is doped with rare earth ions that have an electric dipole transition moment of µ = 1D at a

wavelength of 1µm (ν = 3 × 1014 Hz, ω = 2πν). The CaF2 refractive index at this wavelength is

n = 1.43. Let us assume that we have only one such ion inside the volume occupied by the WGM

and that it is located at the point of maximum of the electric field of the WGM. The single photon

Rabi frequency and a strong coupling condition may be written as follows:

Ωr =
µE

h̄
, Ωr � (γcavity, γrad). (3.6)

Here γcavity and γrad are the cavity decay rate and the atomic radiative decay rate. E is the electric

field amplitude (CGS units) resulting from a single photon stored in the WGM [59]

E =

√
2πh̄ω
Veffn2

, (3.7)

where the effective volume of the mode Veff can be derived using expression 1.14 from Sec. 1.2.2.

The formula for the volume is derived for silica microspheres and is assumed to be appropriate

for our case, as the shape of an active region of our resonator is close to spherical. For the given

parameters of the resonator we have l = m = 422 and Veff = 2 × 10−9 cm3. The single photon

Rabi frequency is then Ωr/2π = 8 MHz, which is significantly larger than the radiative decay rate

γrad = 71 kHz and the cavity decay rate γcavity = 0.7 MHz. Thus the strong coupling condition (3.6)

can be realized. The radiative decay rate of an ion embedded in a lossless dielectric and the cavity

decay rate were calculated using the following expressions [59]

2πγrad =
4nµ2ω3

3h̄c3
, 2πγcavity =

ω

Q
. (3.8)

The idea of coupling a WGM cavity mode to optical transitions of ions is not new by itself. State of

the art demonstration of this idea has recently been published [60]. The novelty of the idea discussed

here is in the way the ions are coupled to WGMs, and in potential advantages a combination of

zero phonon lines and crystalline cavities may bring. The optical cavity and the atomic trap are

combined in a single crystalline microresonator. Taking into account the possibility of making

smaller resonators with higher Q factors and a wide range of available inorganic dopants, we see
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that crystalline WGM resonators open new horizons in quantum optics and atomic physics.

3.4 Resonators with reduced spectrum

In some situations it is desirable to obtain a high-Q-factor resonator which would have as few

modes per FSR as possible and a relatively large diameter of around 5 mm. Such a resonator may

be fabricated without the diamond-turning procedure. A simple polishing may produce a high-Q

cavity with a light-guiding surface curvature radius as small as 10µm or even less. Calcium fluoride

Figure 3.12: Resonator having small radius of curvature of the light guiding surface. Single mode
fiber tip with 125µm diameter is present on the left photo for scale. Shadow photograph on the
right represents resonator’s edge and contains a 16µm diameter circle for scale. Such resonators
approach single mode regime.

is a crystal with cubic lattice. It has a mechanical hardness anisotropy which leads to uneven removal

rates during polishing and consequently to a surface that deviates from circular. This effect may be

reduced to a minimum if special polishing conditions are applied. The resonator shown in Fig. 3.13

Figure 3.13: Fluorite resonator with narrow edge and a single mode fiber for scale.

and 3.12 may approach single-mode regime if the coupling element is small. An angle polished fiber

coupler may be used. In this case the coupling may be adjusted so that only the fundamental mode

is efficiently coupled and the observed spectrum has only several modes per cavity FSR.
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Chapter 4

Optical quality factors of
crystalline cavities

Optical quality factor Q is one of the most important parameters of the WGM resonators. These

resonators demonstrate the highest optical Q ever achieved in resonators. The only notable excep-

tion are 4-kilometer-long LIGO interferometers. In these large Fabri-Perot resonators Q factor is

proportional to resonator length.

For a linear oscillator, Q is numerically equal to the ratio of frequency to the width of the

resonance curve at the level where amplitude decreases to 1/
√

2 of its maximum: Q = ω/∆ω.

Alternatively, Q = ωW/P , where W is the energy stored in an oscillator and P is a power of losses.

Quality factor determines the frequency discriminating ability of a system. In optical cavities it

also defines how long a photon is stored in a cavity on average: τ = Q/ω — cavity ringdown time.

In a cavity with radius a and refractive index n the resonant increase of the intracavity intensity

Ic over the input light intensity I at a free space wavelength λ is proportional to the Q factor:

Ic/I0 = Qλ/(π2na). For crystalline cavities presented in this dissertation this intensity may be

increased by a factor of more than 107. Even higher values may be possible in the future.

There are two basic methods of Q factor measurement for optical WGM resonators. One method

measures the cavity ringdown directly or indirectly. A cavity mode may be excited and the excitation

may be disabled much faster than the expected cavity ringdown time. The resonator will then

continue to emit optical energy with exponentially decaying power. The time constant is the cavity

ringdown time. This method requires good optical shutters, for which various electro optical and

acousto-optical modulators may be used. In another method a laser having a linewidth narrower

than the expected cavity resonance is scanned in frequency over a window which is expected to

contain a resonance of the cavity. Recording the cavity response provides one with a Lorentzian-

shaped curve, the width of which can be measured directly, thus providing a Q factor. Here a

good laser is required and the measurement power must be low to avoid nonlinear processes in the

resonator. There are also indirect methods for Q factor measurement. These include derivation of
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cavity Q from the stimulated Raman scattering (lasing) threshold and a homodyne method. In the

latter, the laser frequency is scanned quickly over the resonance and the cavity emission is mixed

with laser. This produces oscillations with growing frequency and exponentially decaying amplitude

(see Sec. 4.2.3 for an example).

The following sections provide examples of measurement of the record optical Q factors in crys-

talline WGM resonators. Theoretical analysis of Q factor limitations is also presented. Section 4.1

is based on a paper by I.S. Grudinin, V.S. Ilchenko, and L. Maleki published in Physical Review A

[3]. Section 4.2 is a transcript of a paper by I.S. Grudinin, A.B. Matsko, and L. Maleki published

in Optics Express [4]. Material is reproduced with permissions from APS and OSA.

4.1 Q factors of CaF2 cavities in linear regime

Experimental demonstration of a record optical quality factor of (6.3 ± 0.8) × 1010, corresponding

to cavity ring-down time of τ ' 36µs, is made possible by avoiding nonlinear effects in a crystalline

whispering-gallery-mode resonator. Various loss mechanisms in CaF2 cavities and ways of achieving

higher quality factors are discussed.

4.1.1 Introduction

Long storage times or long effective optical path lengths are important for efficient nonlinear in-

teractions and for cavity quantum electrodynamics (CQED) experiments. It has been shown that

extreme material purity and higher nonlinearities of crystalline WGM resonators may provide im-

proved photon confinement times [30], enhanced second harmonic generation [31] and low threshold

hyperparametric oscillations [61].

The interest in ultrahigh quality factors in support of new applications of WGM resonators

requires new strategies for the fabrication and characterization of the resonators. The Q factor, for

example, is commonly measured using either cavity ringdown or linewidth calibration techniques.

The presence of strong nonlinear processes makes it difficult to properly determine the Q with these

traditional techniques. The nonlinear processes include thermal and Kerr nonlinearities, stimulated

Raman scattering and thermo-optical instability, all of which can influence an accurate determination

of the intrinsic Q.

The purpose of the present work is to study the ultimate limit of the Q of the crystalline resonators

and describe techniques for measuring ultrahigh values. The outline of the section is as follows. The

results of Q factor measurements at three wavelengths are presented, including a record value for the

quality factor of a WGM resonator. Difference in cavity resonance curves obtained at different pump

power levels are also demonstrated. In the next section we analyze loss mechanisms that limit the Q

factor of crystalline cavities and give estimates for CaF2 resonators. In the section on the nonlinear
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processes we discuss the influence they have on the shape of a resonant curve. The thresholds for

Raman lasing, thermo-optical oscillations, thermal, and Kerr bistabilities are also discussed. It is

shown that it is only possible to measure ultrahigh Q in the linear regime, by lowering the optical

power. In the final section we discuss the role of impurities and means for achieving higher optical

Q factors in crystalline cavities, together with some potential applications.

4.1.2 Fabrication of the WGM resonators

Figure 4.1: CaF2 cavity with a record Q factor of (6.3 ± 0.8) × 1010, 5.5 mm in diameter. White
brackets show the area of WGM localization.

Crystalline WGM resonators were fabricated with a novel technique developed in our laboratory.

A small cylinder is first cut out of a crystalline window. The axis of the cylinder coincides with

the window axis, which is along [111] crystalline orientation. This cylinder is mounted onto an air

bearing spindle of a home-made diamond-turning apparatus. Diamond cutting of a desired profile

is performed with a precise computer-controlled lathe. This step produces resonators with optical

Q factors of about 107. The next step involves hand polishing with a sequence of diamond abrasives

of decreasing grit sizes. A thorough cleaning procedure is performed after each polishing step. An

example of a resonator is shown on Fig. 4.1. This fabrication technique is applicable to many optical

crystals due to the versatility of the diamond grinding process. Resonators may be fabricated with

any diameter down to a few tens of microns (Sec. 3.3). Moreover, many resonators may be fabricated

on the same rod with small separations (Sec. 3.2). The resulting resonator chains may be utilized in

filtering and other applications and are similar to coupled pendulums in mechanics [50].

4.1.3 Measurement of a Q factor

The author has measured the optical Q factor of CaF2 resonators at laser wavelengths of 1064 nm and

1550 nm using direct observation of cavity resonances. Measurements were also performed at 780 nm
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using a homodyne method (Fig. 4.2). Noise from our 780 nm grating-stabilized diode laser made it

impossible to resolve the resonance curve directly. In a homodyne method, Q factor is derived from

the decay time of the interference pattern formed by two beams. The first is the laser beam with its

optical frequency linearly dependent on time and the second beam is the cavity emission. As the laser

frequency is scanned, at some point it excites a cavity mode and stores some energy in it. This energy

will then be emitted into the coupling element as a single-frequency, exponentially decaying optical

beam. Interference of this beam with the laser beam results in exponentially decaying oscillations,

from which a decay time may be extracted and the Q factor computed according to Q = ωT/2

(Fig. 4.2).

In order to achieve the flexibility of using various wavelengths of light we utilized a conventional

prism coupler to excite the modes of the cavity. The critical coupling efficiency was above 30 % at

all wavelengths. All measurements were performed in a strongly undercoupled regime, where only a

small fraction of light enters the cavity, leaving the measured Q factor close to the intrinsic value.

The 1064 nm Lightwave Nd:YAG and 1550 nm Coheras Adjustik lasers have narrow line of a few

kilohertz, which made it possible to use direct observations of cavity resonances. Laser frequency

was modulated with an internal piezo actuator. Signal generators were used to feed the sum of two

signals to the laser head. The first is a sawtooth-shaped voltage for scanning the frequency back

and forth over the cavity resonance. The second is a weak sinusoidal signal at 100 kHz for sideband

modulation of the laser carrier. Sideband modulation provides calibration peaks shifted by 100 kHz

both ways around the cavity resonance frequency. These peaks were recorded simultaneously with

the cavity resonance curve and used for frequency calibration. A direct high-frequency modulation

of the laser carrier through an internal piezo element results in a weak amplitude modulation. This

amplitude modulation was rejected by the detector with long response time. Example of the Q

factor measured with this method is shown on Fig. 4.3. The best value measured at 1550 nm was

Q = 1.1 × 1010. The quality factor was also measured for a 1.5 mm CaF2 cavity at 1064 nm and

found to be 4× 1010. In a fluoride microresonator 100µm in diameter values as high as Q = 4× 108

were found to be achievable for a UV-grade material at 1064 nm. The free spectral range of our

cavities comprises many WGMs and the process of measurement included a search for the modes

with the highest values of Q.

4.1.4 Q factor and pump power

In order to observe the influence of the input optical power that was used to excite the WGMs on the

effective Q factor, we performed a series of measurements for a selected cavity mode. Measurements

were performed for coupled pump power levels ranging from a few nanowatt to a microwatt. For each

power level the laser was swept over the cavity resonance twice, first as its frequency was decreasing

and second as it was increasing. This produced two resonant curves for each pump power level.
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Figure 4.2: Example of “self-homodyne” measurement of ringdown time at 780 nm at low power.
The insert shows the exponentially decaying oscillations resulting from the interference of the laser
beam and the cavity emission.

Quality factors were obtained by fitting the cavity response curves to a Lorentzian for both laser

frequency scan directions. We fit the dependence of the quality factor on power to exponentials for

illustration — to delineate the data points. These exponentials converge to a single value of Q for

low optical power, as expected. It should be noted that the intrinsic Q factor of a cavity generally

should not depend on the optical excitation power. The observed divergence is generated by the

method used to derive the Q factors. Fig. 4.5 serves to clarify this statement. It represents four

measurements of the same WGM at coupled pump powers of 60 nW and 1µW. These measurements

correspond to points A,B,C,D in Fig. 4.4. For the upper trace the pump power is well below the

threshold of nonlinearities and the resonant curve is Lorentzian. For the lower trace the higher

pump power causes the curves to deviate from the Lorentzian shape and become non-symmetric.

The asymmetry arises from thermal nonlinearity, which in our case causes the cavity eigen-frequency

to decrease as the laser beam begins to heat up the cavity material. As will be discussed in the

following sections, measurements A and B correspond to a power level that is below the Raman

lasing threshold, and thresholds of other nonlinear effects. For these measurements one may observe

the linear oscillator response independent of the direction of the frequency scan and thus be able to

obtain a reliable estimate for the cavity’s intrinsic Q factor. Occasional deviations from a Lorentzian

were still observed, due to the acoustic noise perturbations and the high-pass filter in the AC-coupled

input of the oscilloscope.

4.1.5 Losses in crystalline cavities

Given the Beer-Lambert law for light absorption I(x) = I0e
−αx, which holds when the nonlinear

optical processes are not present, the maximum value of the optical Q factor of a dielectric WGM
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Figure 4.3: CaF2 cavity resonance showing record optical Q factor and a Lorentzian fit. Measured at
a coupled pump power of 100 nW in a strongly undercoupled regime. Out-of-resonance photodetector
level is -0.5 mV.

resonator is given by

Qmax =
2πn
λα

. (4.1)

Here α is a total optical loss coefficient in nepers per meter, which is a measure of the cumulative

attenuation caused by different mechanisms:

α = αss + αmat + αcoupling + αrad. (4.2)

The contributions from several loss mechanisms are added: surface scattering, material losses, influ-

ence of the coupler, and the radiative loss. Surface scattering is induced by the imperfections of the

surface. Material losses are caused by the fundamental absorption in the material, atomic impurities,

and three types of bulk scattering: Raman, Brillouin, and Rayleigh. Radiative loss is only significant

in small microresonators. The coupler losses can be made small by performing measurements in a

strongly undercoupled regime.

4.1.5.1 Surface scattering

Surface roughness may be induced by frozen capillary waves, as in the case of the fused silica

resonators, or by imperfections of polishing, in the case of crystalline resonators. In addition, some

amount of micro- and nano-particles is almost always present on the surface of a resonator. One

approach of estimating the surface-limited Q factor uses surface roughness (standard deviation σ)

and B — length of exponential decay of surface autocorrelation function [54]:

Qss =
KTE,TM

(KTE,TM + 1)
3λ3a

8nπ2B2σ2
. (4.3)
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Figure 4.4: The quality factor measured by fitting the cavity response curve to a Lorentzian for
several pump power levels. Measurements at points A,B,C,D were used to build Fig. 4.5.

Figure 4.5: Cavity resonances recorded at pump power P ' 60nW and P ' 1µW . Red traces show
Lorentzian fit. It can be seen that the resonance curves are not Lorentzian for higher values of the
input power.

Here KTE = 2.8, KTM = 9.6 are scattering suppression coefficients for TE and TM whispering

gallery modes in fused silica. Since the refractive index of fused silica n = 1.45 is close to that of

CaF2, n = 1.43, we shall use fused silica suppression coefficients for our estimates. The formula

was obtained as an approximation which takes the correlation length to be much smaller than the

wavelength of light (σB2 � λ3). We may use this equation to analyze the atomic force microscope

(AFM) images of CaF2 resonators taken in the WGM localization area (Fig. 4.6). Since noise due to

the AFM and that of the surface roughness are independent, the variance of the image data is a sum

of the surface and noise variances σ2
image = σ2

surface + σ2
noise. Given the AFM empty image (noise)

standard deviation of σnoise = 0.07 nm we calculate surface roughness σ for the left and right image

to be 0.186 nm and 0.151 nm, correspondingly. Calculations were made with a standard expression
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Figure 4.6: AFM surface scans of 2 regions of WGM localization and images of corresponding
2-dimensional autocorrelation functions. Squares are 1 x 1 micrometer.

for the unbiased variance. These values are significantly smaller than those typical of fused silica

resonators [32], and demonstrate the capability of our fabrication technique. It is possible to achieve

even better results if advanced polishing techniques are used. In order to use the analysis, the

correlation length B should also be computed. We are interested in the correlation length along the

direction of light propagation, which in our case is coincident with the direction of polishing traces.

Computer algorithms of the image rotation generally alter the correlation function. In addition, the

autocorrelation function depends on the direction of computation for our type of surface. In order

to overcome these problems, a two-dimensional correlation function may be computed with the use

of a Wiener-Khinchin theorem and fast Fourier transform algorithms. Computed autocorrelations

are shown in Fig. 4.6 below the surface scans and are represented as levels in white. The black

color corresponds to zero. Since polishing leaves some traces, as can be seen on Fig. 4.6, the two-

dimensional autocorrelation functions decay slowly in the direction of polishing, masking short-range

surface structures in this direction. We may use the correlation length measured in the direction

orthogonal to polishing traces to obtain the characteristic radius of the surface features. Such

an approach is justified as the shape of the scatterer is irrelevant [62]. For both images this gives
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B ' 40nm. These computed parameters give Qa = 4.3×1011 and Qb = 6.6×1011 for surface-limited

Q factors.

A number of inclusions with diameters of 30–50 nm protrude from the surface by only about 1–

2 nm, and can be seen in Fig. 4.6. These inclusions could possibly be the “shadows” of the diamond

nanoparticles, used in the polishing process, that were buried in the surface layer. The assumption

that there are particles inside the surface is reasonable as it is known that a thin 0.1µm surface

layer may flow when the surface is being polished, thus trapping the polishing particles [63]. Particle

scattering limited Q when K 50 nm diamond spheres are embedded into the surface is given by

Qsp =
2πnVlm1

Kλσsp
, αsp =

Kσsp
Vlm1

. (4.4)

Here σsp is a classical cross section of a spherical scatterer [64]:

σsp =
8π
3
k4r6

(
εs − εc
εs + 2εc

)2

, (4.5)

αsp is a corresponding loss decrement and Vlm1 is a WGM volume, which may be estimated as (see

Sec. 1.2.2)

Vlm1 ' 3.4π3/2

(
λ

2πn

)3

l11/6
√

2(l −m) + 1. (4.6)

Here l and m are the mode indices, l ' 2πan/λ. This gives Q = 7× 1012/K which means that even

with 100 such embedded particles, a scattering limited Q of 7×1010 can be achieved. Unfortunately,

available images cover only a minor portion of the surface area, so it is difficult to determine the

actual concentration of nanoparticles on the surface of our resonators.

Another possible explanation for the observed particle-like structures in Fig. 4.6 might be the

chemical reactions between the CaF2 surface layer and the constituents of air. Air-induced roughness

of cleaved CaF2 surface was found to be characterized by randomly distributed nanometer-sized

features. These features are believed to be induced by oxygen, and remain stable after formation

[65].

4.1.5.2 Material absorption and scattering

An ideal crystal with no impurities and defects has its window of transparency defined by the tail

of multiphonon absorption on the long wavelength side and by the tail of absorption caused by elec-

tronic transitions on the short wavelength side, also known as the Urbach tail. Raman, Rayleigh,

and Brillouin scattering mechanisms are also present in ideal crystals. It was experimentally found,

and theoretically verified, that the behavior of multiphonon and Urbach tails can be quite gener-

ally described by an exponential law. As will be discussed later, of all scattering processes, only

Raman scattering plays a significant role in crystalline cavities. Thus, bulk losses in CaF2 may be
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approximated by the following phenomenological expression [63, 66]:

αmat = αuve
λuv/λ + αrm

(
λr
λ

)−4

+ αire
−λir/λ. (4.7)

Here αuv, αir, λuv, and λir are the constants obtained by fitting the experimental data for UV and IR

absorption coefficients. Coefficient αrm accounts for scattering suppression in the case of whispering

gallery modes αrm = K−1
(TE,TM)αr, where αr is mostly Rayleigh scattering losses measured at λr.

Experimental data on the UV absorption for determining the parameters of the Urbach tail in

CaF2 are rather scarce. Another complication is the dependence of the parameters on temperature.

Impurities may have a strong effect on the UV absorption spectra of CaF2 [67]. The UV absorp-

tion coefficient is also known to be fluence dependent [68]. From Fig. 4.7 it can be seen that as

Figure 4.7: Absorption in CaF2 and Urbach tail. Data from 1965 [69] corresponding to the three
shortest wavelength points were also used to estimate the Urbach tail parameters. The 1933 data is
from [70]. Saint Gobain and Corning data were obtained from the websites of these manufacturers.
The scattering data was derived from [71]. Measurements by Ch. Goerling [68] are the first to
separate the coefficients of bulk and surface absorption. Lines connect the data from the same
source.

technology has advanced, CaF2 blanks of higher purity have appeared. We assume that absorption

for wavelengths longer than the UV cut-off is determined by impurities. The absorption coefficient

for the cut-off wavelengths follows an exponential law. We have found that the data by Laufer et

al. [69] may be used to estimate the parameters of the Urbach tail as they represent measurements

in the UV-cut off region. Parameters of the multiphonon absorption wing were estimated from IR

absorption data for Corning CaF2.
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In a thorough study it was found [71] that in the best samples of CaF2 Raman scattering

accounts for less than 10 % of the total scattering and thus can be neglected. Stimulated Raman

scattering, however, can not be neglected in our cavities as will be shown below. Elastic component

of Rayleigh scattering in CaF2 was found to be equal to the bulk Brillouin scattering in a crystal.

In a WGM cavity the acoustic phonon spectrum is modified and Brillouin scattering is further

inhibited. As will be shown in Sec. 5.2, however, stimulated Brillouin scattering can be observed

under special conditions in WGM resonators. In comparison to high-purity fused silica (HPFS),

for the best CaF2 specimens the intrinsic Rayleigh scattering loss is 0.0035, Brillouin loss is 0.005,

and extrinsic, defect induced Rayleigh is 0.0015. The total scattering measured in CaF2 samples

at 90 degree is α(90◦) = 6 × 10−4 Np/m at 193 nm. This gives a total integrated loss coefficient of

αr = 8πα(90◦)/3 = 5× 10−3 Np/m.

4.1.6 Maximum Q factor and its limitations

With the parameters from the two previous sections we have determined the maximum bulk-loss-

limited Q factor of a CaF2 WGMR (Fig. 4.8). Experimental dependence of the refractive index on the

wavelength was taken into account. Curve “a” shows what Q factor is possible for an ideal-surface

resonator. Electronic absorption is responsible for a sharp decline of the transparency and Q factor

for λ < 200 nm. In the visible and near the IR region, the Q factor is mostly determined by Rayleigh

scattering. The decline of Q beyond 3µm is explained by multiphonon absorption processes. Curve

“b” shows that surface scattering would be the main limitation on the Q factor of our cavities if

there were no impurities.

The TM modes are closer to the surface, so more scattered light goes back into the modes as

compared to the TE modes, giving the higher Q. For the real cavity the TM modes suffer from

additional surface scattering and the difference in Q factors is not so pronounced anymore.

4.1.7 Nonlinear processes in crystalline WGM resonators and optical Q

factor

When measuring the optical Q factor, it is important to ensure that nonlinear processes are not

present. One way to make sure this is the case is to directly observe the resonant response of a

cavity, which for a linear oscillator is known to be described by a Lorentzian lineshape. Deviations

from the ideal linear oscillator behavior could serve as a qualitative measure of nonlinearity. In

our experiments we found that when the optical power approaches the bistability or the stimulated

Raman scattering threshold, the resonator’s response is no longer Lorentzian. The Raman lasing

threshold is inversely proportional to the square of the Q factor [72], so when ultrahigh Q factors

are expected, reducing the optical power used for measurements to low-enough levels is a challenge.
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Figure 4.8: Maximum intrinsic Q factor of CaF2 resonator at room temperature. a) Q factor limited
by Rayleigh scattering, multiphonon absorption and electronic absorption in an ideal crystal, along
with values modified by the geometry of a WGMR for TE and TM modes; b) surface roughness
limited Q factors; and c) experimental data.

Thermo-optical oscillatory instability and thermal nonlinearity [52, 73] were also observed in the

nonlinear regime. Linear resonant curves were only observed in a 5.5 mm cavity at coupled pump

power levels of less than 100 nW.

As an example, we measured the cavity response at a pump power of 3µW. This power was

found to be slightly higher than the Raman lasing threshold in our 5.5 mm cavity and is more than

an order of magnitude lower than the smallest reported threshold value so far (for an integrated

fused silica device [72]). The cavity response at this pump power is strongly non-Lorentzian, with

thermo-optical oscillations also present. Interestingly, the onset of the thermo-optical instability

was found to be approximately coincident with the Raman lasing thresholds in large (5 mm) and

small (0.1 mm) cavities. Further investigations might show that Raman lasing may be involved in

the generation of the oscillations in thermo-optical instability.

Kerr and thermal nonlinearities may explain the departure of the cavity response from the

Lorentzian shape, as seen in Fig. 4.5 and 4.4. We may derive the bistability threshold, or the power

needed to shift the eigenfrequency of a WGM by its width at half maximum ∆f = c/(λQ), using a
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semiclassical approach. Nonlinear index of refraction ∆n is given by [74]

n = n0 + n2 < E2 >= n0 +
n2E

2
0

2
= n0 + ∆n. (4.8)

The shift of the cavity’s eigenfrequency f is related to a change in the refractive index:

∆f = −∆n
n0

f. (4.9)

It follows, that the change in refractive index that would shift the cavity resonance by its width is

∆n =
cn0

fλQ
. (4.10)

For the energy density created by the K photons stored in a cavity we have

E2
0ε0n

2
0

2
=
Kh̄ω

Veff
, (4.11)

hence the nonlinear refractive index is

∆n =
n2E

2
0

2
=

n2Kh̄ω

Veffε0n2
0

. (4.12)

Combining the expression for the nonlinear part of the refractive index and the required ∆n we

obtain K, the number of photons in the cavity sufficient for bistability:

K =
Veffε0n

3
0

Qn2h̄ω
. (4.13)

The intensity buildup factor,
I

I0
=

Qλ

π2an0
= α (4.14)

implies that if we send K/α photons per second to the cavity, the resulting intensity inside the

cavity will be equivalent to K photons per second passing each cross section of the WGM. Since

each photon completes νphoton = c/(2πan0) round trips around the cavity each second, one needs

to send
Kνphoton

α
=
Kω

4Q
=
K

4τ
(4.15)

photons per second as an external excitation to have K photons present in the cavity. This flux of

photons gives us the bistability threshold power:

Wbist = h̄ω
ω

4Q
Veffε0n

3
0

Qn2h̄ω
=
ωVeffε0n

3
0

4Q2n2
. (4.16)
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If one uses the relation for third-order susceptibility given in [74], which is valid for a linearly

polarized laser beam in isotropic materials and for the beam linearly polarized along [100] axis of a

cubic crystal,

n2 =
12πχ(3)

1111

n0
, (4.17)

and a relation between the systems of units [75]

(n2)MKS =
1
9
× 10−8(n2)esu, (4.18)

the CGS units formula for bistability threshold is

Wbist =
Veffωn

4
0

192πχ(3)Q2
. (4.19)

In comparison with equation (3) in [19], this formula is different by a factor of 1/6, but it correctly

gives the values of bistability threshold cited in that paper.

The value of the nonlinear refractive index of CaF2 is n2 = 4.78× 10−23 m2/V2 [76, 74]. Thus

the bistability threshold for 1.5 mm cavity (Vll1 = 2.93× 10−13 m3, Q = 4× 1010) is Wbist =44 nW.

For a 5 mm cavity with Q = 6 × 1010 the threshold is about 0.2µW. This shows that a very low

input power could shift the eigen-frequency of a crystalline cavity. The fact that the resonant curves

presented on Fig. 4.5 for a pump power of 60 nW are Lorentzian even though the power is 1/3 of

the bistability threshold implies that the excited mode was probably not a fundamental WGM, but

rather a mode with a large effective volume, l−m > 1. For such a mode the bistability threshold is

larger than 200 nW and scales with the modal volume, proportional to
√

2(l −m) + 1 (see Sec. 1.2.2).

The third-order susceptibility associated with the thermal nonlinearity and a specific response

time depending on mode configuration may be estimated for TElm1, TMlm1 modes as follows (for-

mula in CGS units from [19]):

χ
(3)
T '

n0αcτT
80π2NkT

, τT =
λ2l2/3ρcp
βn2

0π
2
. (4.20)

Here α is a bulk attenuation coefficient, k-Boltzmann constant, β-thermal conductivity, and cp-

heat capacity. We have observed that the difference in Q factors for TE and TM modes was much

smaller than what might be expected if the Q were limited by scattering. In this case Q factors

would have been proportional to the scattering suppression coefficients QTE/QTM ∼ KTE/KTM .

The demonstrated Q factor of (6.27±0.78)×1010 gives a new upper limit on the absorption coefficient

in CaF2 at 1064 nm of α ' 1.4 × 10−4 Np/m, derived from equation (4.1). Thus, the given value

of α reflects losses in the bulk crystal and the optical Q factor in our cavities is limited by the

internal absorption. Using parameters for CaF2: β =12 W/(mK), ρ = 3180 kg·m−3, cp =853 J/(kg·
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K), a=2500µm and λ =1.064µm we estimate room temperature values τT ' 10µs and χ
(3)
T '

7.3× 10−12 cm3/erg= 8.1× 10−21 m2/V2. The concentration of CaF2 was computed as N = 2.45×

1028 m−3. We see that the thermal nonlinearity is dominating in our cavity, which agrees with the

experimental observation.

4.1.8 Impurities and possibilities for higher Q factors

Measurements of the Q factor at 1550 nm yielded Q = 1.1×1010, which is smaller than the previously

reported value of Q = 1.7 × 1010 in [30]. This may be explained by the difference in specific

fluorite blanks and by the fact that the resonance curve in that work is nonlinear. While theoretical

estimates show that the Q factor should increase with the wavelength in the region of experimental

measurements (780–1550 nm), we found the opposite to take place, indicating an increase of bulk

losses for longer wavelengths (Fig. 4.8). The development of pure fluorite blanks is mostly driven by

the industrial demand for high quality crystals suitable for lithographic lenses transparent in the UV

region. Thus one may expect such fluorite blanks to have a reduced amount of impurities absorbing

at shorter wavelengths, explaining the lower Q at longer wavelength. For the best fluorite blank from

Corning, the total absorption is about an order of magnitude larger than the bulk light scattering

[71]. Taking into account the argument from the previous section regarding surface scattering, it

follows that the absorption and scattering by impurities is the main loss mechanism in our crystalline

WGM cavities.

The crystals used for fabrication of WGMR in this work are the purest available excimer-grade

CaF2 blanks. Nevertheless, these crystals contain significant amounts of atomic impurities such

as rare earths and other elements. For a typical excimer-grade CaF2 there may be more than

20 impurities with more than 10 ppb concentration, and the total amount of impurities exceeds

10 ppm, a significant fraction of which is represented by strontium, magnesium, iron, and zinc

in the case of our crystals. Strontium was found to improve the radiation resistance of CaF2 [77].

Ultrahigh Q factors are only achievable at low circulating optical power, where even a minor amount

of impurity ions can influence the response of the crystalline medium through resonant Mie-type

atomic fluorescence. Unfortunately, the information on the absorption spectra of certain ions in

CaF2 is not always available. The optical properties of impurities are characterized by sharp lines,

which correspond to optical transitions. The width of these lines increases with temperature. Thus,

one possibility of avoiding the influence of impurities in WGM cavities is to operate them at lower

temperatures outside of the spectral regions corresponding to optical transitions of the impurities.

According to the analysis presented in Fig. 4.8, one may expect the Q factor to approach the surface

scattering limit of Q = 1012 at λ = 1µm if the impurities are “frozen out”. If a better surface is

fabricated, the material-limited Q factor for the available fluorite crystals should approach Q = 1014

at λ = 1µm and Q = 1015 at λ = 3µm if the impurities are not taken into account. The latter would
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give an average photon confinement time in excess of one second. There are other ways of improving

optical quality of crystals. Annealing may be used to modify absorption spectra of color centers and

reduce concentration of dislocations and other defects. This technique has recently been used on

CaF2 and the evidence of significant improvements in Q factor were recorded [78]. Thermoelectric

oxidization has also been found useful for improvement of optical damage characteristics of lithium

niobate crystals [79].

4.1.9 Possible applications and conclusion

As the intrinsic optical Q factor of a WGM cavity increases, the power buildup coefficient grows,

which in turn lowers the threshold for nonlinear processes. We have shown that by reducing the

optical power circulating in an ultrahigh Q crystalline cavity it is possible to achieve a linear mode

and reliably measure the ultrahigh optical Q factors. We have demonstrated values as high as

(6.27± 0.78)× 1010, which gives a new upper limit on the absorption coefficient in untreated CaF2

at 1064 nm of α ' 1.4 × 10−4 Np/m. The measured Q factors are the highest values reported for

any optical resonator with these dimensions, making crystalline cavities extremely attractive tools in

optics. Possible applications of crystalline cavities include compact integrated Raman lasers, cavity

QED experiments with crystalline microresonators, and quantum nondemolition measurements.

As the threshold of Raman lasing is inversely proportional to the square of the Q factor, crystalline

cavities represent new possibilities for the realization of tunable, fiber-compatible Raman lasers

operating with high efficiency. Another interesting application of high Q crystalline cavities is based

on optical parametric oscillations [61]. It might be possible to fabricate an all-optical, fiber-coupled,

solid-state frequency standard and a single ion clock based on these devices.

Estimates for a 100µm LiNbO3 cavity show that a single photon would shift the cavity resonance

by as much as 6 Hz. Such a shift can be detected with optical techniques. This opens new possibilities

for quantum nondemolition (QND) measurements of the number of photons in a cavity. However,

thermal effects may cause much larger random shifts at room temperature [24].

As was discussed in Sec. 4.1.5.1, a number of polishing particles remain attached to the surface

of the cavity and if the particles are small enough, the high Q factor is preserved. Observation

of these particles suggests the possibility for imprinting quantum-dot-containing diamond or other

nanoparticles into the surface while preserving the Q factor on a very high level, even for the small

WGM cavities suitable for cavity QED experiments. In similar experiments with silica microspheres,

the application of nanoparticles through deposition usually leads to a significant degradation of the

Q factor of the cavity.

The extreme Q factors of crystalline cavities open new opportunities in optical filtering and

spectroscopy. A single-mode cavity made with lithium niobate could operate as a tunable, fiber-

coupled etalon, more compact and with a higher finesse than a Fabry-Perot cavity. For these
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applications, resonators with large mode volumes must be selected to reduce the undesirable effects

of nonlinearities.

In conclusion, we have demonstrated measurements of a record-high optical Q factor of a fluorite

WGMR, fabricated with a diamond-grinding technique. We analyzed possible loss mechanisms in

crystals and the influence of nonlinear processes. We showed that in order to measure the higher Q

factors in linear regime, lower pump power levels must be used to avoid nonlinear processes.

4.2 Fundamental limits and cryogenic Q factor of crystalline

resonators

This section is based on a paper published in Optics Express [4] called “On the fundamental limits

of Q factor of crystalline dielectric resonators”.

The temperature dependence of the processes which fundamentally limit optical quality factor

of ideal crystalline whispering-gallery-mode resonators is investigated. The example of CaF2 is used

to show that spontaneous Raman scattering is the main limitation of the quality factor at low

temperatures. Stimulated Raman scattering is also shown to be important at any temperature.

We experimentally demonstrate nonlinear absorption due to stimulated Raman scattering in a real

cavity at room temperature and theoretically derive Raman gain of CaF2. We conclude that optical

storage times in excess of one second could be achieved in millimeter-sized cavities.

Recent progress in fabrication of whispering-gallery-mode (WGM) resonators with crystalline

materials has resulted in the highest demonstrated quality factors (Q) for these types of cavities

[30, 78], (Sec. 4.1). The mechanical polishing techniques used in the fabrication process essentially

eliminate surface scattering and surface absorption as loss mechanisms at the achieved material

transparency levels (see Sec. 3.3). The only remaining physical mechanisms limiting the ultimate

achievable Q with this approach are linear and nonlinear attenuation in the dielectric material.

Optical transparency of ideal dielectric crystals is restricted by the fundamental blue and red

wings of photon absorption. The blue wing is defined by optically allowed transitions between valence

and conduction electron bands. The red wing results from the interaction between light and phonons

in the crystalline medium. Both absorption mechanisms have a strong frequency dependence, so the

absorption of light in a dielectric within the transparency band can be extremely low. The question

is how low it can be, and is there any other transparency-limiting mechanism. A similar question has

been discussed for optical fibers [62]. It was shown that the scattering loss mechanisms — such as

Rayleigh, Brillouin and Raman — determine the extent of optical attenuation. These mechanisms

are present in ideal optical crystals and limit their transparency as well.

In this section we analyze the minimum light attenuation achievable with ideal crystals at room

and cryogenic temperatures. We use a real, almost-perfect fluorite crystal as an example. It was
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shown previously that the attenuation of UV light in artificially grown CaF2 is nearly completely

limited by Brillouin and thermodynamic Rayleigh scattering [71] at room temperature. We show

that the spontaneous Raman scattering is primarily responsible for the attenuation in an ideal crystal

at low temperatures. Applying this result to the crystalline WGM resonators, we find the limits to

the IR quality factors. We also show that, in contrast to the low-temperature regime, spontaneous

Brillouin scattering, as well as stimulated Raman scattering (SRS), determine the Q factor of a

WGM resonator under realistic experimental conditions at room temperature. We measure the

influence of SRS on the Q factor of a millimeter-sized resonator using a ring-down technique, and

show that this scattering becomes important at input power levels higher than a few microwatts.

4.2.1 Three types of scattering

Let us consider Rayleigh, Brillouin, and Raman scattering in a perfect crystal. Thermodynamically

limited Rayleigh scattering is small in an ideal crystal, and Brillouin scattering dominates. The

quantitative ratio of Rayleigh and Brillouin scattering can be estimated using the Landau-Plachek

relationship (see, e.g., [80]):
αRi
αB
' βT
βS
− 1 (4.21)

where βT and βS are the isothermal and isobaric compressibilities, respectively. This ratio is gener-

ally less than unity in crystals and vanishes with temperature decrease in the low-temperature limit

([81], p. 219):
βT
βS
− 1 =

CP
CV
− 1 ∼ T 4|T→0, (4.22)

where CP and CV are the specific heat capacities at constant pressure and constant volume, respec-

tively. Rayleigh scattering can be neglected in a perfect crystal at low temperature, as the result of

(4.22).

Temperature dependence of spontaneous Raman and Brillouin scattering mechanisms is deter-

mined by the number of participating phonons, given by a Bose population factor [82]. The corre-

sponding light attenuation coefficient accounting for both Stokes and anti-Stokes components may

be estimated as follows (see also [80], p. 99)

αB,R ≈ αB0,R0

(
λ0

λ

)4
[(

exp
h̄ΩB,R
kBT

− 1
)−1

+
1
2

]
(4.23)

where λ is the wavelength of light, αB0,R0 are the scattering parameters given by the properties of

a particular crystal corresponding to λ0, ΩB is the Brillouin frequency shift for 90◦ scattering, and

ΩR is the Raman frequency shift.

In writing of (4.23) we have assumed that the crystal has a single phonon branch. Using data

evaluated for CaF2 at T=300 K in [71]: h̄ΩB/kBT ' 1/300, h̄ΩR/kBT ' 1/4, λ0 = 0.532µm, αB =
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2.411×10−7 cm−1, αR ' 4.34×10−8 cm−1 we obtain αB0 ' 8×10−10 cm−1, αR0 ' 1.1×10−8 cm−1.

It is easy to see that Brillouin scattering is significantly suppressed and the attenuation of light in a

perfect crystal is determined by the spontaneous Raman scattering at low temperature. The room

temperature attenuation, on the other hand, is given by spontaneous Brillouin scattering.

It is shown in [71] that the existing calcium fluoride crystals have transparency close to the

fundamental limit (4.23) in the UV. However, such a low attenuation is yet to be demonstrated in

experiments with visible and infrared light. The measured transparency is two to three orders of

magnitude lower than the fundamental limit in those frequency bands (see [30], Sec. 4.1 and Sec. 3.3)

because of the extrinsic and intrinsic impurities of the material.

4.2.2 Properties of fluorite WGM resonators

We now discuss the optical properties of fluorite WGM resonators. The maximum quality factor of

the resonator is given by Qmax = 2πn(λ)/[λα(λ)], where n(λ) is the refractive index of the material,

λ is the wavelength of light in vacuum, and α(λ) is the total loss coefficient of the bulk dielectric

material. This formula is not entirely correct for scattering losses. A coherent scattering loss, where

some part of scattered light is deflected back into the mode, leads to the enhancement of the Q

factor by up to an order of magnitude [54]. We still use the formula as the role of scattering is minor

in the case of an ideal fluorite cavity, which we consider in this study. In such a cavity the surface

roughness is given by the lattice constant and the corresponding optical storage time can reach 1 s

for a resonator having 1 cm in diameter for λ = 1µm.

In case of a real cavity, the surface roughness can limit Q factor. Some estimates made in Sec. 4.1

for a particular fluorite cavity show an upper limit for Q of about 1012. However, this is a technical

limitation given by the particular polishing procedure. A further investigation is required before

storage time beyond 1 s is achieved.

In what follows we neglect the surface scattering and consider only unavoidable attenuation

mechanisms. The corresponding wavelength dependence of the attenuation as well as Q factor for

CaF2, given by Raman and Brillouin scattering as well as by blue and red wing absorption, are shown

in Fig. 4.9. The approximation of the maximum quality factor of CaF2 WGM resonators found in

[30] using existing experimental results nearly coincides with the fundamental limit presented in

this paper at room temperature. The wavelength dependence of the index of refraction of the

material at T = 300 K was found using the 4-term Sellmeier equation [83]. Blue and red absorption

wings can generally be approximated by a simple exponential dependence [63, 66]. Parameters for

the blue wing have been derived from [69]. Red wing parameters were obtained from [84] and the

experimental data publicly available for Corning CaF2. For our analysis we have assumed both wings

to be temperature independent, as the temperature dependence is known to be weak. According to

Fig. 4.9, the lifetime of a photon in a fluorite WGM resonator can exceed 1 s for λ = 1.5µm.
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Figure 4.9: Attenuation in ideal CaF2 (left), and Q factor (right) of ideal fluorite WGM resonators
at room and nearly absolute-zero temperature. Contributions from spontaneous Brillouin, Rayleigh,
and Raman scattering, as well as blue and red wing absorption, are added.

We now show that not only spontaneous, but also stimulated scattering is important in macro-

scopic WGM resonators. Stimulated Rayleigh scattering is not experimentally observable in high-Q

WGM resonators as it is suppressed by a mismatch of modal structure of a typical cavity and the

gain profile for this process [80]. Stimulated Brillouin scattering is suppressed because of the ab-

sence of phase matching between acoustical and optical modes in the WGM resonators (however, see

Sec. 5.2). The resonantly enhanced, stimulated Raman scattering is always possible if the frequency

difference between subsequent modes of the same mode family (free spectral range, FSR) is less

than the spectral width Γ of the optical phonons. In fluorite at room temperature Γ = 450 GHz [85].

Hence any resonator with radius R ≥ c/(2πn(λ)Γ) ' 75µm is not immune to SRS.

Stimulated Raman scattering, as well as spontaneous Raman scattering, is present in even an

ideal crystalline lattice at nearly absolute-zero temperature. It is one of the fundamental causes

of light absorption in a WGM resonator. The stimulated scattering generates optical phonons in

the material. The phonons decay due to the multiphonon scattering, which results in heating of

the crystal and growing of the entropy. To estimate the maximum quality factor achievable in

a crystalline WGM resonator if SRS is allowed, we consider a resonator supporting a pump and

several first-order Stokes modes. Such a system can be described at low temperature by a set of rate

equations [86]:

ṅS = −2γSnS + h̄ωp
c2

n2

gb
V
npnS , (4.24)

ṅp = −2γpnp − h̄ωp
c2

n2

gb
V

∑
S

npnS , (4.25)

where n is the refractive index, np � 1 and nS � 1 are the averaged photon numbers in the pump

and Stokes modes, V is the mode volume, and 2γS = α(λS)c/n and 2γp = α(λp)c/n are the total
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linear decay rates of Stokes and pump modes respectively. The rates take spontaneous scattering

decay into account. We assume that the modes completely overlap and have the same volume V .

These equations were derived from (25) and (26) of [87] by replacing spatial derivatives (dPp,S/dz,

Pp,S is the power of pump and Stokes light) with temporal derivatives (ṅp,S).

The bulk Raman gain gb is related to the attenuation due to spontaneous Raman scattering as

([86], p. 371)

gb(λp) =
αR(λp)λ4

p

8π2c2n2

ωp
h̄Γ

, (4.26)

where we assume that λS = λp. The wavelength dependence of the gain is shown in Fig. 4.10(c). It

is easy to see that for CaF2 the value of the bulk Raman gain is gb = 2.4×10−11 cm/W at λ = 1µm.

An approximate temperature dependence of the spectral width of the Raman phonons is given

by [88]

Γ = Γ0

[
1 +

2
exp(h̄ΩR/2kT )− 1

]
, (4.27)

if we assume that phonons experience degenerate two–particle anharmonic decay.

According to equation (4.25) the effective decay rate of the pump radiation due to SRS is

2γSRS = h̄ωp
c2

n2

gb
V
NSnS , (4.28)

where NS is the total number of Stokes modes the light decays into, and nS depends on the pump

power. The quality factor of the pump mode, QSRS , is going to be smaller than Q when the pump

power exceeds Pth [89]:
Q

QSRS
=
√

P

Pth
, (4.29)

where SRS threshold power is given by

Pth =
π2n2

gbQpQS

V

λpλS
, (4.30)

and the external pumping P is assumed to exceed the threshold significantly P � Pth. Selecting

the realistic values for a 1 mm cavity gb = 2.4 × 10−11 cm/W, n = 1.43, V = 1.4 × 10−7 cm3,

Qp = QS = 1010, λp = λS = 1µm, we obtain Pth ' 120 nW. Pumping the resonator with 1µW of

light for these parameters will result in a reduction of the effective quality factor of the corresponding

WGM down to QSRS = 3.5 × 109. It should be emphasized that this quality factor is related to

the pump light only. To observe this Q factor decrease, the Stokes light should be blocked from

reaching the photodetector when using a ringdown technique. We may combine equation (4.30)

with equations (4.27) and (4.26) to derive temperature dependence of SRS threshold power for this

cavity. It is also interesting to estimate the threshold power in terms of a photon number given

by the expression PthTR/h̄ω, where TR = Q/ω is the ringdown time. The results are presented in
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Fig. 4.10.

Figure 4.10: A) SRS threshold for a 1 mm ideal-surface cavity made with an ideal CaF2. B) Low
temperature SRS threshold for a 1 mm ideal cavity made with CaF2 in terms of photon number. C)
Theoretically evaluated wavelength dependence of the Raman gain in CaF2.

4.2.3 Experimental observation of nonlinear attenuation

We have performed an experiment to demonstrate the nonlinear attenuation caused by SRS. Mea-

surements at 780 nm were performed with an external cavity stabilized diode laser. Free beam

emission from the laser was coupled to a fiber, which had an output collimator attached. Light from

the collimator lens was sent into a glass prism, which served as a coupler for a CaF2 WGM resonator.

Coupling efficiency of the pump light to WGMs was better than 30 %. The output light that went

through the coupler was collimated with a lens and collected on a photodetector. Although the

Stokes light should be blocked to observe the nonlinear behavior, in this experiment we did not

employ specific measures to do so. We suppose the Stokes light was partially blocked accidentally

by dispersive properties of the setup components.

We observed ringdown signals obtained by periodic scanning of the laser frequency over many

resonator modes with the internal piezo of the laser head. Time–dependent signals resulted from

the interference between the pump radiation and the emission from the resonator. According to our

observations the signal had a clearly non-exponential time dependence (Fig. 4.11), which supports

the above discussion.
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Figure 4.11: Experimental observation of the ringdown signal of a calcium fluoride resonator and
setup scheme. The observations were performed at 780 nm. The threshold power of the SRS process
was on the order of a few microwatts. Linear fits of the amplitude decay are presented by red
lines, emphasizing two different ringdown constants at the beginning and at the end of the process.
Inset shows the actual signal recorded on the photodetector. Blue points in the graph represent the
amplitude of the signal shown in the inset.

4.2.4 Conclusion

We have presented theoretical as well as experimental studies of light attenuation resulting from

fundamental scattering in crystalline WGM resonators. We show that the spontaneous Raman

scattering results in the fundamental restrictions of the resonator quality factor at low temperatures.

Stimulated Raman scattering also restricts the quality factor at any temperature if the power of the

light used in the resonator exceeds the threshold of the stimulated process.
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Chapter 5

Photon–phonon interactions in
crystalline resonators

There are three major scattering mechanisms in optical fibers. These mechanisms are named after

Rayleigh, Raman, and Brillouin. If the intensity of light in fiber is high enough, a stimulated process

may occur in which the scattered wave is amplified at the expense of the input beam. All three

scattering mechanisms are present in WGM crystalline resonators. Rayleigh scattering is caused

by non-propagating, frozen density fluctuations and is theoretically absent in pure crystals at low

temperatures. At higher temperatures there may still be Rayleigh scattering due to microscopic

temperature fluctuations. Raman scattering is caused by interaction of photons and vibrational

states of molecules of which the crystal is made, or optical phonons. Brillouin scattering is an

interaction between photons and acoustic phonons, or scattering from density fluctuations caused by

acoustic waves. In a stimulated Brillouin scattering, the energy is transferred from the optical beam

to the acoustic wave through electrostriction and the frequency of phonons is clamped to a specific

value defined by energy and momentum conservation. It depends on optical wavelength, material

composition, and, to some extent, temperature and pressure. While spontaneous scattering events

limit the optical Q factor of a resonator, stimulated process is useful in that it enables WGM-based

Raman and Brillouin lasers, which are expected to have very good characteristics as compared to

the counterparts based on the fiber-ring resonators. Advantages include lower threshold and higher

conversion efficiency as well as narrow linewidth. Raman and Brillouin lasing in crystalline WGM

resonators are demonstrated in this work for the first time.

Results presented in this chapter are based on papers published in Optics Letters, Journal of

Optical Society of America B and Physical Review Letters (submitted) [5, 6, 7]. Reproduced with

permission from OSA.
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5.1 Stimulated Raman scattering.

5.1.1 Introduction

Scattering of light by optical phonons was experimentally discovered by Raman and Krishnan in

liquids, and independently by Mandelshtam and Landsberg in crystals [90, 91]. Lasers based on

the stimulated Raman scattering (SRS) effect have found numerous applications in material science,

molecular spectroscopy, and in many biological studies. SRS can be used to convert one optical

frequency into another, making it possible to access virtually any wavelength within the Raman-

active material’s transparency window. Generation of stimulated Raman scattering requires high

levels of optical power, which may be reduced if a Raman-active medium is placed into an optical

resonator. In this case, Raman laser characteristics are also defined by the properties of the resonator.

Existing configurations include Raman lasers based on variations of Fabry-Perot cavities [92], Bragg

grating resonators [93], fiber-ring cavities [94] and WGM resonators [72, 95]. The latter, while

being compact and fiber compatible, exhibit the lowest lasing thresholds as extremely high optical

power density in the cavity is easy to achieve. For example, in a 100µm fused silica WGMR with

Q = 5×108, injected power of 1 mW builds up to intensity of 12 GW/cm2. The high optical Q factors

of WGMRs make it possible to easily achieve high intracavity power to enhance nonlinear effects

[96, 33, 27, 31, 94]. Low threshold makes miniaturization of a Raman laser possible. The recently

demonstrated [95] integrated Raman laser based on a fused silica microsphere has a lasing threshold

on the order of 100µW, owing mostly to high intracavity intensity buildup factor. However, the Q

factor of fused silica cavities is subject to degradation due to atmospheric water and is limited to

about eight billions for mm-sized resonators by material purity achievable with today’s technology.

Fluorite cavities have certain advantages over their fused silica counterparts. The lower loss of

the crystalline material allows for higher Q factors and the associated intracavity optical power

buildup which, along with a higher Raman gain of the fluorite (Sec. 4.2), lead to lower thresholds

of Raman lasing. This material may easily be superpolished to subnanometer surface roughness

as demonstrated in Sec. 4.1, and the resulting surface does not absorb water vapor. The refractive

index of fluorite is smaller than that of fused silica, making it possible to use common optical fibers

to couple light in and out of the cavity. A coupling efficiency exceeding 80 % is routinely achieved

in our lab. Finally, it is possible to use diamond machining techniques to produce fluorite cavities

with a predesigned spectral response and single-mode cavities (Sec. 3.1).

We demonstrate efficient and ultralow threshold Raman lasing with ultrahigh Q CaF2 whispering

gallery mode (WGM) resonators. Continuous wave emission threshold is shown possible below

1µW with a 5 mm cavity, orders of magnitude lower than in any other non-WGMR Raman source.

Achieving a low lasing threshold may be possible by increasing the Q factor, as opposed to decreasing

the cavity diameter. Indeed, the threshold of Raman lasing in a WGM cavity is given by the following
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formula [87]:

Pth =
π2n2

ξgcQSQP

Vm
λPλS

. (5.1)

Here n is the refractive index, QP and QS are cavity quality factors for pump and Stokes wavelengths,

λP and λS . The cavity Raman gain factor gc is equal to the bulk Raman gain factor. Vm is the

WGM volume and the factor ξ accounts for non-critical coupling and imperfect overlap of pump and

Raman WGMs. If the Q factor is the same for pump and probe wavelengths, the Raman threshold is

proportional to the ratio Vm/Q2. In a realistic cavity the scattering-limited Q factor is proportional

to the mode volume Q ∼ Vm and the threshold becomes inversely proportional to the latter. From

equation (5.1) one can easily see that if a Raman lasing threshold for a 100µm cavity with Q = 108

is 100µW, then for a 5 mm cavity with Q = 5× 1010 the threshold decreases to 0.5µW.

To our knowledge, we present the first observation of regular and cascaded operation of CaF2

Raman laser, and the first observation of cascaded lasing in a fiber-compatible crystalline laser at a

pump power below 1 mW. Stokes components of up to 5th order were observed at a pump power of

160µW, and up to the 8th order at 1 mW. Lasing threshold of 15µW was also observed in a 100µm

CaF2 micro-cavity. Conversion efficiency above 60 % is demonstrated for a crystalline Raman laser.

The resonators are fiber compatible and are fabricated with a very simple technique. We also

demonstrate a single-mode operation of the laser in a multi-mode cavity, as well as a multi-mode

operation of the laser in a single-mode cavity. Potential applications are discussed.

5.1.2 Fabrication of the resonators

We have used a very simple polishing technique to fabricate WGM resonators out of a CaF2 crystal.

A small cylinder is initially cut from a UV-grade CaF2 blank. The cylinder is glued onto a cap which

is then installed onto a high speed motor and a thin thread with diamond abrasive is used to create

a region that supports the WG modes. This fabrication technique can be automated, and resonators

with radius of curvature down to 10µm and below may be produced (see Chap. 3). Diamond turning

of the crystalline workpiece, followed by a conventional polishing technique was also used to fabricate

single-mode resonators and microresonators. The cavities made with pure CaF2 monocrystals are

used as Raman lasing elements. One resonator was made with excimer-grade fluorite with a diameter

of 5 mm. The geometry of this multimode resonator is such that its free spectral range (FSR) is

13 GHz and the cavity supports many non-fundamental WG modes within each FSR. The other

cavity was made with a UV-grade fluorite with a diameter of 0.1 mm. The two resonators were cut

with their axes parallel to the crystalline (111) orientation.
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5.1.3 Low-threshold and cascaded generation of Raman Stokes

Cavity modes were excited with an angle-polished fiber coupler, which also serves as an output

coupler for the pump and Stokes radiation. The couplers are similar to those presented in [25] and

are made by cleaving the fiber at a right angle followed by angle-polishing. Such a coupler has a

phase-matching evanescent field region to couple light to the WGMs of the resonator (see Fig. 5.5).

In our case the fluorite resonator was 5 mm in diameter and the angle of the coupler was around 10◦.

We have used a single mode fiber “P3-980A-FC-5” from Thorlabs to fabricate couplers. The output

of the coupler was divided between the photodetector and the spectrum analyzer with help of a

beam splitter. A narrow linewidth Nd:YAG laser manufactured by Lightwave Electronics, emitting

at 1064 nm, was used to excite the WGMs in the cavity. Raman emission was observed with an

optical spectrum analyzer. All experiments were carried out in a clean room and all measurements

were performed for TE polarization of the WGMs. A simplified Pound-Drever-Hall (PDH) locking

technique [12] allowed us to continuously pump the WGM mode of the cavity, and the resulting

Raman emission was monitored in a CW mode. Simplified schematics of the setup are shown in

Fig. 5.1. In the process of threshold measurement, the laser was locked to a cavity mode at several

Figure 5.1: Setup diagram with inset showing the coupling schematics. A PDH-locking technique is
used to stabilize the power in a cavity.

pump power values. Pump power refers to the power absorbed in the cavity. The results presented

in Fig. 5.2 correspond to Raman lasing when a WG mode with a loaded optical Q = (2.6±0.3)×1010

is used, with a coupling efficiency of 40 % as measured from the critical coupling point. Clamping

of the intracavity power is evident at a point where the second Stokes component appears. This

behavior is natural for WGM-based Raman lasers, as was shown elsewhere [95]. Given the threshold

of 3µW at this Q factor and equation (5.1), we see that if a different mode with a Q factor of 5×1010

and the same effective volume is used, a threshold well below 1µW should be expected. It was shown

[95] that the optimal coupling for Raman lasing is about 89 % of critical, which also implies some
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Figure 5.2: The output optical power as a function of the pump power for non-optimized operation
of the Raman laser based on a 5 mm cavity

room for further optimization. Thus the crystalline WGM resonator has the lowest Raman lasing

threshold available today, as the threshold of other sources is at least 20 times higher. The efficiency

of our laser was made small by operating in an under-coupled regime with the purpose of measuring

the lasing threshold. The maximum observed unidirectional efficiency for the 1st Stokes component

was PStokes/Ppump = 0.24 in cascaded mode with 7 Stokes components present.

The vibrational spectrum of CaF2 has nine phonon branches — six optical and three acoustic.

Only one vibration with ν = 322 cm−1 is Raman-active. The Raman wavenumber and gain linewidth

depend on temperature [97, 98]. The wavelengths of the Stokes components may be computed and

are found to be in direct agreement with the experimental results presented in Fig. 5.3. The inset

Figure 5.3: Left panel: cascaded operation of the Raman laser. Insets show the photograph of a
cavity and the detailed spectrum of the first Stokes component. Power is as seen on the spectrum
analyzer; the actual pump power is 1mW. Right panel: cascaded operation of the Raman laser. The
pump power is 160µW. The spectrum is combined from 9 consecutive measurements obtained in an
unlocked regime.
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shows the 1st Stokes spectrum, which is formed by many WG modes lasing within each FSR of the

cavity. The spectrum width gives a rough estimate for the Raman gain linewidth δν ' 1.7 cm−1.

Cascaded operation of the laser with Stokes components of up to the 8th order was observed in

an unlocked regime, when the pump laser frequency is quickly scanned around the WGM. A high

pump power of about 1 mW produced a nonlinear behavior of the mode so pronounced that the

PDH locking was impossible. As a consequence, the power levels of Stokes components in Fig. 5.3

were fluctuating over the time of the measurement. These components only indicate the presence of

Raman emission at the given wavelengths. Cascaded Raman lasing has been previously observed in

microdroplets. One exotic example is SRS in liquid hydrogen droplets [27] observed at rather high

input power levels. Efficient Raman lasing with 5 Stokes orders was also observed in fused silica

microcavities [72].

We have also observed Raman emission from a smaller cavity made with a different specimen of

CaF2. It is interesting to compare the operation of our laser with the one discussed in [72]. The

Figure 5.4: Cascaded Raman lasing in a 100µm fluorite microcavity. The pump power is about
100µW.

microsphere with the lowest threshold had a diameter of about 55µm, a quality factor Q = 108,

and a first Stokes threshold of about 60µW. In the fluorite cavity presented here, the modes occupy

a larger space as the resonator diameter is 100µm. The value of the quality factor Q = 108 is

obtained with direct linewidth measurements. The Raman lasing threshold in the fluorite cavity is

estimated to be below 15µW, which may suggest a stronger Raman gain in CaF2. This argument

is supported by a study of scattering in fluorite [71] where the gain for CaF2 was found to be higher

as compared to fused silica, while having much narrower spectral width. Raman gain was also

theoretically estimated in Sec. 4.2. At a pump power of about 100µW, cascaded operation of the

Raman microlaser is observed. No anti-Stokes emission was found for our cavities.
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5.1.4 High-efficiency and single-mode Raman lasing

The example of the coupler and the profile of a resonator that was used in this set of experiments are

shown on Fig. 5.5. To implement a PDH frequency lock, the pump beam was phase-modulated at

Figure 5.5: An angle-polished fiber coupler (left). Single mode fiber is polished at an angle, which
was computed to optimize coupling to a 5 mm CaF2 disk. An approximate ray path is shown with
a white arrow. Shadow photograph of a CaF2 resonator (right). The white circle shows that the
radius of curvature of the disk in the WGM localization area is around 100µm.

0.6 MHz with a resonant electro-optical modulator (EOM) and the WGM cavity acted as a frequency

discriminator. The amplitude of the reflected portion of the pump beam, produced at the output

of the coupler contains a component at the modulation frequency. This component was recorded

by a Thorlabs photodetector “DET10C” and multiplied by a phase-shifted modulation signal with

the help of a mixer to obtain the PDH error signal. Schematics of the experimental setup is similar

to the one from the previous section and is shown on Fig. 5.6. Phase shifting, used to optimize the

Figure 5.6: The setup diagram. A PDH locking technique is used to stabilize the power in a cavity.
’A’ and ’B’ denote input and output angle-polished fiber couplers.

error signal, was achieved by varying the frequency of excitation of the resonance transformer in

the phase modulator. The error signal was amplified and filtered with a low noise voltage amplifier

“SR560”, and fed back to the laser piezo. Typical error, transmission, and reflection signals for the
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case of linear modes in a resonator are shown in Fig. 5.7. Pumping of the Raman laser is performed

Figure 5.7: Optical power from coupler “A” (channel 2), “B” (channel 1) recorded with the pho-
todetectors and the error signal

by the same mode that is used for frequency locking. It should be noted that the observed WG

modes were non-Lorentzian, as thermal and Kerr nonlinearities were present at the level of power

that was used. Nevertheless, the error signal still had a linear region which allowed us to successfully

lock the laser. When the laser was frequency-locked to a cavity, the amplitude noise of the reflected

signal was around 20 %, which may be significantly reduced by upgrading the servo.

When a resonator is pumped, the Raman gain is created symmetrically for the counter-propagating

sets of WG modes. It may be argued that the coupling losses seen by each of the modes in the pair

of counter-propagating modes might be different due to the asymmetry of the refractive index inside

the angle-polished fiber coupler. However, coupling losses are defined by the overlap integral between

the cavity mode and the field configuration in the fiber and do not depend on the sign of the wave

vector, as the WGM resonator is linear and symmetric [99, 100]. We assume that the power in each

of the Raman lasing modes of a pair is equal. The lasing linewidth, or coherence of the pair of lasers,

could in principle be measured by recording a beatnote of the pair of modes on the photodetector.

The two fiber couplers and the reflection port (90/10 coupler) were used to monitor these two

laser outputs simultaneously. The free beam formed by the coupler “A” suffered attenuation from

the reflection loss at the cleaved fiber surface, lens, and detector surfaces. If we assume these losses

to be 4% each, which corresponds to the reflection coefficient at a glass surface, then the power

inside the fiber is higher than that observed at the detector by a factor of ' (0.96)−4 = 1.18. This

correction is taken into account in the following estimates.

The maximum measured coupling efficiency was above 70 % for the input “A” and above 80 %

for the output “B” coupler. It is worth noting that critical coupling approaching 100 % may be
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achieved for the WGM resonators. The intrinsic optical Q factor of the WG mode, measured at

pump wavelength of 1064 nm, is found to be (6.9 ± 0.7) × 109. This value was derived from the

linewidth (' 40.5 kHz) of the mode resonances in the undercoupled regime, when no Raman lasing

was present. A splitting of around 135 kHz caused by the Rayleigh-scattering-induced coupling

between the counter-propagating modes was also observed. In a particular measurement, the mode

Figure 5.8: Spectra of input and output power as recorded by the coupler B and the fiber connected
to output 4 of the port. See Fig. 5.6 for details.

was pumped so that the input coupler transmission loss was around 244µW. This doesn’t include the

forward Stokes power which was emitted at a different angle and missed the detector. The maximum

achievable coupling for the WG mode corresponded to 277µW transmission loss or about 50 % of the

coupler transmission. Fig. 5.8 shows power spectra of the transmitted and reflected optical signals

as seen on the spectrum analyzer “Yokogawa AQ6319”. A transmission ratio for 4–1 direction of the

reflection port was measured to be 0.0145 at the pump wavelength, so the reflected power measured

with a spectrum analyzer was adjusted accordingly, giving the optical power values in the fiber.

The 90/10 coupler was designed for 1550 nm, so the actual transmission ratios at the wavelength of

1064 nm was different from 90 % and 10 %. From Fig. 5.8 it can be seen that there is 14µW of reflected

pump laser radiation and 80µW of backward Stokes radiation, shifted by 9.72 THz (38 nm) from the

pump laser frequency. From the forward coupler we see that the power of the pump laser and the

Stokes component are equal, and since Raman lasing is symmetrical for counter-propagating modes
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we derive the forward lasing Stokes and pump laser power of 80µW. This adds up to 254µW which

is the total power loss in the cavity, within the experimental uncertainty. Thus the bidirectional

Raman conversion efficiency for this particular mode is 100%×160/244 = 65%. As compared to

the 24 % unidirectional efficiency of Sec. 5.1.3 observed when 8 cascaded lasing multimode Stokes

components were present, the 32 % unidirectional efficiency in the present experiment is observed

for the single lasing Stokes component and a near-single-mode operation.

The refractive index of fluorite at pump and Stokes wavelength is 1.43 and the mode TEll1 of a

5 mm cavity has a volume of 2.7× 10−12 m3. We assume QS and QP to be 3.5× 109 and a Raman

gain coefficient of 2.4× 10−13 m/W (as derived in Sec. 4.2). Using equation 5.1 we obtain a Raman

threshold of 16µW for ξ = 1, comparable to the measured threshold of 78µW. The discrepancy may

be understood if we assume that the excited mode was not fundamental TEll1 mode, but rather

a mode with larger effective volume. The threshold would increase with increasing volume of the

mode. Additionally, the intermodal coupling which is responsible for the counter-propagating mode

splitting also leads to the reduction of the intracavity power buildup by a factor of 2 in the case of

strong modal coupling [95]. The factor ξ in equation (5.1) is less than 1 as the coupling and modal

overlap are not ideal.

From additional measurements it was found that the spectrum of Fig. 5.8 typically consists of

several lasing Stokes WG modes, as presented on the left panel of Fig. 5.9. The strongest lasing mode

exceeds the other modes by at least 15 dB, making it nearly a single-mode lasing spectrum. The right

panel of this figure presents a similar measurement on a linear scale. Only forward Stokes emission

was recorded, making it impossible to obtain the efficiency. The spectra in Fig. 5.9 were obtained

Figure 5.9: Optical power spectrum of lasing Stokes component on log-linear (left) and linear scales.
Spectra were recorded for 2 different pumping WG modes. Optical power is not calibrated.

for different pumping WG modes with intrinsic Q factor of 7 × 109 for the left spectrum and 1010
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for the right spectrum. It is seen that the lasing modes are separated by the resonator FSR, so that

only the modes from a particular family of modal indices lmq, with different l and similar l−m, are

lasing. The number of lasing modes was experimentally found to depend on loading conditions and

modal Q factor. Increasing the Q factor reduced the number of peaks in the spectrum. Even though

the spectrum of our multimode cavity is rich with higher-order azimuthal modes, the combination

of a high Q factor and a narrow Raman gain made it possible to observe single-mode lasing. In

these measurements the Stokes power was equal to the pump power in the forward direction, as

monitored by the output coupler in the undercoupled regime. The spectrometer’s resolution in

Fig. 5.9 is 0.012 nm, and the cavity’s free spectral range (FSR) is 0.049 nm.

We have also observed Stokes lasing modes in a special single-mode cavity (Fig. 5.10). This cavity

is a cylinder on which a small 5×3 micron waveguide is formed with a diamond-turning process. Such

a waveguide supports only one WG mode per cavity FSR. Although many Stokes modes separated

by the cavity’s FSR were found to be lasing in this resonator at a pump power of 2.4 mW, a true

single mode operation may be achieved if the Q factor is high enough and mode competition for

Raman gain is strong. The multimode lasing in a single mode cavity may be explained by weak

Figure 5.10: Pump and Stokes spectra for the single mode WGMR. Resolution is 0.01 nm. Pump
power is 2.4 mW. About 40 lasing modes were observed above the noise level.

mode competition. The loaded Q factor of around 4× 108, intrinsic Q = (7.2± 0.1)× 108, was too

low for any specific mode to consume all the Raman gain available. Our diamond-turning apparatus

was not accurate enough to provide the single-mode cavity with a Q factor higher than 109. The

application of a more elaborate diamond-turning process should enable higher Q factors, and thus a

true single-mode operation of a Raman laser based on a single-mode fluorite cavity. The sidebands

on the pump laser spectra were only observed in the forward direction. These weak features might

be explained by four wave mixing between the pump and the Stokes components.
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5.1.5 Conclusion

The power that can be obtained from our Raman lasers is limited by Kerr and thermal nonlinearities

and by cascaded Raman lasing process. Increasing the power in the pump mode leads to cascaded

lasing where higher-order Stokes components appear, which limits the efficiency of single-mode

operation. Nonlinearities also make the shape of the cavity mode significantly different from a

Lorentzian at higher pump powers, making the PDH locking technique unreliable. If a higher power

is required, a WG mode with a larger volume and lower Q factor may be selected. Another solution

would be to reduce the Q factor at the Stokes wavelength by introducing a wavelength-selective

absorber.

We have demonstrated Raman lasing with CaF2 WGM cavities. Lasing threshold at the mi-

crowatt level, high efficiency, and single-mode operation were achieved. The low Raman lasing

threshold and efficient cascaded operation are made possible by the ultrahigh optical quality fac-

tors of the WGMs of crystalline cavities. For a 5 mm cavity diameter, the threshold of the first

Stokes was demonstrated to be as low as 3µW. Cascaded operation with 8 Stokes components is

observed for the first time with only 1 mW of pump power. Efficiency of Raman conversion as high

as 65 % was observed. A high-Q-factor, single-mode WGMR may be used to generate a single-mode

emission. Alternatively, a smaller cavity with a near-single-mode spectrum and high Q factor may

be used. Single-mode Raman emission is useful in many spectroscopic applications. Additionally,

the multi-mode emission could be used to generate relatively stable GHz-range beatnote signals. It

was shown in [101] that the millimeter-sized cavity may have its mode frequency relatively stable

at the 10−14 level in 1 second, which corresponds to 3 Hz if the wavelength is 1µm. Thus one

may expect the Raman laser to be relatively stable and have a narrow linewidth, leading to narrow

microwave beatnote signals that may be generated. Fiber compatibility of our laser may be utilized

in compact and efficient optoelectronic devices. A wide variety of optical crystals in combination

with crystalline WGM technology make compact, fiber-compatible, tunable Raman lasers possible.

By a proper choice of a nonlinear crystal, one may achieve the generation of many different Stokes

components with low threshold power and high efficiency.

5.2 Stimulated Brillouin scattering

Stimulated Brillouin scattering with both pump and Stokes beams in resonance with different whis-

pering gallery modes of an ultrahigh Q CaF2 resonator is demonstrated for the first time. The

resonator is pumped with 1064 nm light and has a brillouin lasing threshold of 3.5µW. Potential

applications include optical generation of microwaves and ultrasensitive gyros.
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5.2.1 Introduction

Generation of the reflected Brillouin Stokes component in a fiber ring resonator may be viewed as

a lasing process. Instead of a population inversion, the gain is provided by light scattering on the

acoustic wave, which is generated through electrostriction. While scattering may be a power limiting

factor in fiber communications, Brillouin lasers have several attractive features. Stokes components

may be generated in a cascaded mode with threshold below 1 mW [102, 103, 104]. Detecting these

components together may generate microwave signals in the 10–100 GHz range. An interesting

feature of Brillouin lasers is the linewidth narrowing effect [105, 106] where width of the Stokes line

may be reduced by a factor of up to 104, as compared to the pump laser linewidth [107]. Stokes

linewidths as narrow as a few hertz were demonstrated [108, 109] in a fiber-ring cavity with finesse

of around 100, implying good short-term stability of a microwave signal that can be generated.

In addition, it was found that a relative intensity noise is also reduced in a Brillouin laser [110].

Thus applications of the Brillouin fiber-ring laser include laser gyros [111, 112], linewidth narrowing,

microwave frequency generation [113, 114] and high-rate amplitude modulation.

Ultrahigh Q WGM micro- and mini-resonators [49, 115, 96, 33] are optical elements in which the

efficiency of many nonlinear optical processes exceed what can be achieved with fiber-ring resonators

by orders of magnitude. These include three- [31, 116] and four-wave mixing [61, 117, 118]. Strong

spatial confinement of light combined with a long interaction time with the nonlinear medium of the

resonator results in a significant decrease of the threshold for regular lasing [119, 120], stimulated

Raman scattering, and other nonlinear processes [121, 23, 5]. Scattering of light from low-frequency

mechanical modes of the silica microtoroids has also been studied recently [122].

Unique features of WGM resonators and Brillouin fiber lasers lead one to expect superb charac-

teristics of a WGM-based Brillouin laser. In particular, the linewidth narrowing depends on both

the optical and acoustical quality factor of the resonator and may be computed as follows [105]:

∆νStokes =
∆νpump

(1 + πγB

ΓC
)2

(5.2)

where γB is the Brillouin gain bandwidth and ΓC is the optical loss rate of a cavity. We can estimate

reduction ratio for a crystalline CaF2 resonator. Brillouin gain bandwidth in fluorite is 12.2 MHz

[123], and resonators with a quality factor on the order of 1011 were recently demonstrated [3, 78].

Thus linewidth-narrowing factors on the order of 1.6 × 108 may be possible at a pump wavelength

of 1µm, which is 4 orders of magnitude better compared to fiber-ring resonators. If the pump laser

linewidth is 5 kHz, the expected Brillouin laser linewidth is just 30µHz. Mixing two Stokes from the

same cavity could produce microwave beatnotes with narrow linewidth:

∆νmicrowave =
√

∆ν2
B1 + ∆ν2

B2 = 42µHz. (5.3)
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Theoretical analysis shows [101] that a laser locked to a crystalline cavity may have stability on the

order of 10−14. Hence a crystalline WGMR-based Brillouin laser could be used for optical frequency

standards, sensitive optical gyros, and all optical compact microwave generators, as well as laser-

line-narrowing devices. It should be noted, however, that at room temperature the linewidth of the

Stokes component will be limited by noises caused by temperature fluctuations. If SBS were to be

observed in fused silica WGM resonators, the linewidth reduction ratio would be limited at around

2.8 × 106 by the value of the maximum optical Q factor. Silica resonators also require isolation

from atmospheric water, and do not support spectrum tailoring as was recently demonstrated for

crystalline resonators (Chap. 3).

Stimulated Brillouin scattering (SBS), while being a common nonlinear optical effect, is generally

believed not possible in the ultrahigh-Q solid-state microresonators, even though the bulk Brillouin

gain generally exceeds the Raman gain. One reason is that the width of an SBS gain is generally

around tens of MHz, while the FSR of WGM resonators is typically three orders of magnitude

larger, and the cavity resonance does not cover both pump and Stokes frequencies. It is argued, that

there would be no WG mode present at a Brillouin offset to support the Stokes beam. In addition,

the acoustic frequency has to be resonant with one of the mechanical modes of a microresonator,

otherwise the acoustic wave interferes destructively with itself. Finally, pump mode, Stokes mode

and acoustic mode must have a non-vanishing overlap integral. Speed of sound depends on direction

and polarization in crystals, making it harder to fulfil the resonant SBS conditions in crystalline

microresonators. This situation is alleviated in either large ring resonators, where FSR is comparable

to the Stokes offset, or in low-Q liquid microdroplets, where optical resonance covers both pump

and stokes frequencies [124, 125, 126, 127, 128, 129, 130, 131, 132]. Microdroplets, however, have

low Q and are not fiber compatible, while fiber-ring resonators have low Q and large dimensions.

The density of the WGM spectrum increases with WGM size. Therefore, it is reasonable to expect

that SBS could be present in any millimeter-scale WGM resonator.

This section shows that SBS can occur in ultrahigh-Q, millimeter-scale WGM resonators that

support two modes separated by the SBS frequency shift. The first ever observation of an efficient

SBS in a CaF2 WGM resonator is presented. It is shown that SBS can be either enhanced or

suppressed by manipulating the modal structure of the optical resonator.

5.2.2 Experimental observation of Brillouin and Raman lasing

Two ultrahigh-Q, single-crystal CaF2 WGM resonators were fabricated. Resonator 1 was fabricated

with a UV-grade fluorite from Edmund Optics and had a larger radius of curvature as compared

to resonator 2, made with an excimer-grade fluorite from Corning. A Nd:YAG laser with 5 kHz

linewidth manufactured by Lightwave Electronics was used to excite WGMs at the wavelength of

1064 nm. The diameters of the resonators were determined from the FSR, measured as a spacing
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between multiple Raman lines observed at 1102 nm, and the value of the refractive index of CaF2

at this wavelength, n = 1.4283. The cavities are shown in Fig. 5.11. The spectra of the resonators

contain an abundance of modes with the average spacing of 25 MHz for both polarizations. The laser

Figure 5.11: Fluorite resonators. WGM localization areas are highlighted with the white brackets
on the left. Shadow photographs of the highlighted regions are on the right. Diameters are 5.52 mm
for resonator 1 and 5.21 mm for resonator 2.

frequency was locked to a selected cavity mode using a simplified Pound-Drever-Hall technique. A

signal generator was used to provide the excitation for the resonant phase modulator. This signal

was also used to synchronize the lock-in amplifier SR844, which operated as a frequency mixer and

servo. This technique made it possible to maintain a fixed optical power in the cavity mode.

Alignment of the angle-polished fiber couplers, similar to those presented in [25], mounted onto

the three-axis piezo positioning stages provided input and output coupling efficiencies of up to 80%.

The light that was scattered backwards by the cavity mode was branched into the arm of a 90/10

fiber coupler. The setup schematically shown in Fig. 5.12 was used to measure the power and spectral

properties of both forward and backward beams with help of a Yokogawa AQ6319 optical spectrum

analyzer and a Thorlabs detector “DET10C”. A WGM was excited with approximately 50µW of

optical power in a measurement conducted with the first cavity. The spectrum of light from the

coupler B (Fig. 5.13) revealed the presence of a Stokes line offset by 34.9 GHz and a weak Stokes
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Figure 5.12: Experimental setup diagram. Laser is locked to a cavity mode; the optical power in
the fiber can be monitored in forward and backward directions.

line offset by 17.5 GHz. The intensity of the Stokes line at 34.9 GHz was 13.9 dB weaker than the

pump. Neither stimulated Raman scattering (SRS) nor four-wave mixing (FWM) oscillations were

observed in this measurement. The difference of intensities of the pump and the Stokes line at

34.9 GHz decreased to 9.4 dB when the pump optical power was further increased. Two groups

of SRS lines appeared around 1101.8–1102.3 nm and 1142.4–1142.9 nm with this increase of power.

The peak level of the Raman lasing lines were -16.2 dB for the 1st Stokes and -11.9 dB for the 2nd

Stokes with respect to the pump. A set of similar measurements was made with the second cavity.

Figure 5.13: (Left) Optical spectrum around the laser line for resonator 1 obtained from coupler
B. The pump power is 50µW. The gap between coupler B and the cavity was increased, which
explains lower power at the spectrum analyzer. The two Stokes lines have frequencies red-shifted by
17.465 GHz for the weak Stokes and by 17.465×2 = 34.93 GHz for the strong Stokes line. The width
of each line is limited by the optical spectrum analyzer resolution of 0.012 nm. (Right) Backward
signal from coupler C for resonator 2. Stokes offset is 18 GHz for the first and 17.5 GHz for the
second relative to the first.

This time the pump power was lower, and no Stokes line around 35 GHz was observed. However,

we carried out simultaneous measurements of the forward and backward optical spectrum using

couplers B and C (see Fig. 5.12). Typical spectra are shown on Fig. 5.14. From this spectrum we
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see that the intensity of the backscattered Stokes line exceeds the backscattered pump light. The

asymmetry of the spectra may be explained by the residual power leakage between inputs 2 and 1 of

the 90/10 coupler, increasing the backward signal at the pump wavelength. The excited WGM had

Figure 5.14: Typical optical spectra from couplers B and C, representing forward and backward
signals. Stokes offset is 17.7 GHz.

a coupling efficiency of 70%, loaded Q factor of 4×109, and an intrinsic Q of around 1.4×1010. The

spectrum of the light exiting the resonator in the backward direction is shown in Fig. 5.13 (right).

Optical pump power was reduced to 2.9µW, below which the first Stokes line was still present but

weak. Above this power the intensity of the Stokes line jumps by around 10 dB and grows quickly

until it reaches the levels presented in Fig. 5.13 (right). Hence, the threshold of the process was

estimated to be around 3µW for the mode with loaded Q of 4 × 109. At pump power well above

10µW Raman lasing was observed, the spectrum of which is shown on Fig. 5.15. A modulation of

the SRS intensity similar to the spectrum of the Stokes line observed near the pump is visible.

5.2.3 Interpretation of experimental results

The experimental data from the previous section represents a direct observation of SBS. The spectra

of the resonators had no observable resonance splitting, which means that only a minor amount of

Rayleigh scattering is present for any given WGM. The excitation of a WGM at 1064 nm created a

Stokes line offset by 17.5 GHz, which propagated in the direction opposite to the pump, as shown in

Fig. 5.13 (right). The optical field of this line creates a cascaded Stokes component at the additional
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Figure 5.15: Raman lasing stokes observed at pump power above 10µW in the second resonator

offset of 17.5 GHz propagating in the same direction as the initial pump beam (Fig. 5.13 (left)).

A small feature at the double offset on Fig. 5.13 (right) may be explained as Rayleigh scattering

from the second Stokes line visible at Fig. 5.13 (left). The weak feature at Fig. 5.13 (left) may be

understood also as Rayleigh scattering from the first Stokes line seen at Fig. 5.13 (right). These

two Stokes lines modify the Raman gain in the resonator, which leads to the SRS spectrum with

modulated intensity as seen in Fig. 5.15. Given the OSA resolution of 0.012 nm and the wavelength

repeatability of 0.002 nm (offset error of 1 GHz), we conclude that the two offsets of the observed

SBS stokes lines are multiples of 17.7 GHz. In what follows we show that this scattering is given by

the longitudinal phonon branch of the fluorite crystal.

5.2.4 Brillouin scattering in fluorite

Let us compute the Brillouin offset in a CaF2 WGM resonator. The WGM is modeled as a toroid

with axis along the (1,1,1) crystalline orientation. It is assumed that the phonons participating in

the SBS do not form standing waves in the resonator. The phonon lifetime τph ≈ 0.08µs is the

inverse of the spectral width of the SBS gain, which is approximately 12.2 MHz full width at half

maximum [123], and is much smaller than the roundtrip time of the sound wave in the resonator

— 2πa/Vs = 2µs. Hence stimulated Brillouin scattering in millimeter-sized resonators is similar to
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Brillouin scattering in bulk.

To find the frequency offset of the SBS one needs to know the direction of the wave vector

of light in the WGM with respect to the crystalline axes. Frequencies of the SBS active phonon

branches do not depend on the polarizations of participating photons. The propagation direction of

the electromagnetic wave is given by the following vector:

k =

(
cosφ√

6
− sinφ√

2
,

cosφ√
6

+
sinφ√

2
,−
√

2
3

cosφ

)
, (5.4)

where φ is the azimuth angle, representing different points along the resonator circumference. The

geometry of the system allows back scattering only, so the Stokes wave has a wave vector

k′ ' −k. (5.5)

The wave vector for the phonons participating in the scattering is q = k′ − k, so the unit wave

vector for the acoustic wave is ~κ = −k. Calcium fluoride is a cubic crystal described by three

independent elastic constants [133, 134, 135], which are also given in the specification sheet of

our fluorite sample: C11 = 1.6420, C12 = 0.4398, C44 = 0.3370 [×1011 Pa]. Substituting these

values into the set of equations presented in [80] we numerically find the frequency shifts of the

Brillouin Stokes components as a function of angle φ for three different elastic waves (see Fig.

5.16). Computations were carried out in “Maple” and “Mathematica” software packages. Only one

Figure 5.16: Characteristic frequency of the acoustic wave as a function of the azimuth angle

solution has a frequency shift that depends weakly on the azimuth angle. The standard deviation is
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computed to be 40 MHz for this case, with 112 MHz peak-to-peak frequency change. The other two

elastic waves have a standard deviation of frequency of about 0.4 GHz. Therefore, the 17 GHz branch

has the maximum probability for exciting the stimulated process in the resonator. This prediction

is in agreement with the experimental observations. It is worth noting that the Brillouin frequency

shift for the case of backscattering along the axis of a cubic crystal can be approximately found as

ν =
2n
λ

√
C11 + C12 + 2C44

2ρ
' 17.7 GHz. (5.6)

Fig. 5.16 corresponds to off-axis light scattering, as modeled for the resonator. Further analysis

shows that polarization of the phonons is nearly collinear with their wave vector in the case of the

highest-frequency branch. Hence, the observed SBS process results from the interaction of light and

longitudinal sound wave.

In the ideal case of spectrally singular pump and Stokes optical beams, the bulk Brillouin line-

center gain gb can be estimated as (see Eq. 8.3.24 of [86])

gb =
γ2
eω

2

2πnVsc3ρΓB
, (5.7)

where we assume that Stokes and pump wavelengths are equal: λSj = λp = 2πc/ω. The elec-

trostrictive constant is γe = [ρ(∂ε/∂ρ)]S ' 0.7 [136], the fluorite refractive index at λ = 1µm is

n = 1.429, the density ρ = 3.18 g/cm3, and the speed of sound is Vs = [(C11 +C12 +2C44)/(2ρ)]0.5 =

6.6 × 105 cm/s. It is easy to see that for CaF2 the value of the bulk Brillouin gain is equal to

gB = 2.8 × 10−9 cm/W at λ = 1µm, and is two orders of magnitude larger than the bulk Raman

gain (gr = 2.4× 10−11 cm/W).

The SBS threshold power for the first Stokes sideband can be computed similarly to the stimu-

lated Raman scattering case [87]:

Pth =
π2n2

gbQpQS1

V

λpλS1
. (5.8)

Selecting realistic values for a 5 mm cavity, V = 5× 10−6 cm3, Qp = QS1 = 109, λp = λS1 = 1µm,

one obtains Pth ' 3.6µW, which is close to the experimentally observed values.

5.2.5 Conclusion

To the best of our knowledge we have for the first time observed a stimulated Brillouin scattering in

high-Q whispering-gallery-mode resonators and provided theoretical analysis verifying the experi-

mental results. The observation of doubly resonant SBS in miniature optical WGM resonators opens

new possibilities for making ultranarrow-linewidth Brillouin ring lasers for sensitive optical gyros

and stable microwave-signal generation. The record-high optical Q factor, mechanical stability, and
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robustness of the crystalline WGM resonators make them naturally attractive elements for such

application.

Since Brillouin lasing may be detrimental in applications of crystalline WGM resonators other

than those involving Brillouin Stokes, a method of suppressing this effect would be valuable. Tai-

loring the resonator spectrum represents one such technique. A single mode fluorite resonator was

fabricated with Q factor approaching 109 and diameter of 5 mm. This cavity had an FSR of around

11 GHz and no modes were present at the Brillouin offset. No SBS was observed in this cavity.
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Chapter 6

Laser linewidth narrowing with a
WGM cavity as a frequency
reference

The present section is a work in progress, which has been periodically slowed down by funding issues

during the last months of the author’s affiliation with JPL. It was stimulated by a requirement of

a tunable and stable laser source. The narrow-linewidth laser can be used for spectroscopy and

specifically for the precise measurements of ultrahigh Q-factor values in crystalline resonators.

A commercial external cavity diode laser (ECDL), based on a Littman-Metcalf design, was locked

to a reference represented by a whispering gallery mode of a fluorite resonator. Phase lock is achieved

with a Pound-Drever-Hall (PDH) stabilization technique [137, 138, 139, 138, 140, 141, 142, 143, 144]

and linewidth is reduced from around 3 MHz to below 10 kHz.

Widely tunable laser sources with narrow linewidth are important for applications in spec-

troscopy, metrology, atomic physics, and quantum optics. Diode lasers provide good selection of

lasing wavelengths, however the frequency stability and linewidth are generally poor. Stabilizing the

diode lasers to an external cavity using an optical feedback provides linewidth on the order of mega-

hertz and tunability over tens of nanometers. Fabri-Perot resonators are typically used as external

cavities for laser stabilization. Diode laser linewidth was narrowed to about 10 Hz using the PDH

technique [145]. WGM resonators represent another alternative to a Fabri-Perot resonator for laser

stabilization. Optical feedback was used to lock a diode laser frequency to a mode of a fused silica

microresonator with resulting linewidth of 20 kHz [146]. This is impressive, as the WGM resonator

was not thermally stabilized or isolated. Using the optical feedback is not directly applicable to

ECDLs. Additional stabilization technique is required to further narrow the linewidth.

Crystalline WGM resonators appear particularly attractive as short-term frequency references. It

was shown that crystalline WGM resonators may be used as frequency references providing stability

on the order of 10−14 over a one second interval [101]. Crystalline resonators are tunable, so a
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stabilized diode laser with narrow linewidth and broad tunability may be possible. Mechanical

resonances of the WGM cavities are typically in the megahertz range. In contrast to bulky Fabri-

Perot resonators, crystalline cavities are compact, fiber compatible, and provide the highest possible

optical quality factors. Zero phonon lines in crystals have also been used as absolute frequency

references [147]. Combination of crystalline resonators and rare earth ions is of particular interest

for single-ion atomic clocks and secondary frequency standards.

Optical resonators made with CaF2 were used in the experiments presented in this section.

Quality factor of the optical modes was Q ' 5×108 and resonator diameter is 5 mm. Angle-polished

single mode fiber couplers were used to couple light in and out of the resonator, as shown on Fig. 6.1.

The resonator was installed into a holder which provided squeezing and temperature stabilization

functionality. The resonator was installed onto a piezo element, and a Peltier element was attached

to the holder for active temperature control. Mechanical axial squeezing provided tuning of the eigen

frequencies of the resonator over a range of 30 MHz with a voltage of 5 V. A New Focus ECDL Vortex

Figure 6.1: Fluorite resonator used as a frequency reference for ECDL laser stabilization

6000 laser was used for phase locking. Laser head model 6017, emitting at 794 nm, was installed

onto an optical breadboard with simple vibration isolation. Phase modulation of the laser beam

was provided by a resonant electro-optical modulator New Focus EOM 4001, operating at 10 MHz.

Optical isolator EOT 780 was also utilized. Setup schematics of Fig. 6.2 are shown. The laser and

the resonator were installed on two different tables. Phase modulator is used to place frequency

sidebands onto a laser beam. Signal reflected from the resonator contains phase-shifted sidebands,

which are detected with a photodetector equipped with a transimpedance amplifier (Fig. 6.3). The

electrical signal is multiplied by a phase-shifted copy of the modulation signal in a Minicircuits

ZAD-6 mixer. Phase shifting of the modulation signal is achieved by synchronous generation of a

phase-shifted copy of the signal with an auxiliary signal generator. The error signal from the mixer

is high-pass filtered with a simple RC filter and is conditioned with a servo. Laser frequency is

controlled through two channels. One is a slow piezo frequency modulation channel with a response
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Figure 6.2: Schematics of the optical installation for laser stabilization using a PDH locking tech-
nique

Figure 6.3: Circuit diagram of a “PIN”-type photodetector FGA-10 from Thorlabs in a configuration
with a transimpedance amplifier with 10 kΩ resistor. Peak response is tuned to be close to the
modulation frequency of 10 MHz.

of 0.58 MHz/V, and the other is a slow current modulation with a response of 11.4 MHz/V. The servo

electronics control these two channels independently, providing a higher gain for a piezo channel

with 40 dB per decade slope of the gain to suppress high noises at lower frequencies. The faster

current channel has a bandwidth of around 1 MHz and the piezo channel resonance is estimated to

be in the 100 Hz range. Consequently, the crossover frequency of the-two channel servo loop gain

functions is chosen to be around 90 Hz in order to avoid piezo-caused instability in the loop. Servo

electronics schematics is shown on Fig. 6.4. It includes two integrators for the piezo channel and two

faster integrators for the current channel. The gain of the faster channel is rolled off at frequencies

corresponding to the optical cavity roll-off. Usage of slower operational amplifiers for a PZT channel

has no special reasons besides lower cost. Faster amplifiers AD829 or similar may be used for all the

channels. Locking is achieved by first tuning the laser close to the WGM frequency and switching a
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Figure 6.4: Circuit diagram of servo control electronics

fast current gain channel on. This locks the laser to the cavity, once the laser frequency comes close

to the WGM frequency. The slower piezo channel is then turned on to compensate for low-frequency

noises and drifts. DC voltage offset of current and piezo channels can be adjusted separately. In

order to monitor the error signal, a voltage follower circuit capable of driving 50 Ω loads was added

to the schematics shown at Fig. 6.4. The monitoring of the error signal provides a measure of the

stability of the closed loop.

Fig. 6.5 is an example of signals observed in laser scan mode and in the locked mode. The

upper screenshot is obtained by scanning the laser frequency over a selected WGM frequency. A

Lorentzian profile of a cavity mode scanned by a laser which has significant frequency noise is itself

noisy, as can be seen on the picture. An optical resonator acts as a low-pass filter for this noise, so

cavity transmission has much less noise. Irregularities of the Lorentzian profile are caused by large

low-frequency noise. Another example of laser-lock performance is presented in Fig. 6.6. On the left
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side of this figure a cavity transmission signal is presented as it was recorded during a short, 60µs,

time interval. WGM Lorentzian is distorted by a high-frequency laser frequency noise. On the right

is the same signal when the servo electronics are keeping the laser locked to a cavity mode. Servo

bandwidth was limited by bandwidth of a current modulation channel in a laser controller to about

1 MHz. Noises at higher frequencies could not be efficiently suppressed. A good representation of

a lock performance is a spectral density of frequency fluctuations of the laser relative to the cavity

mode frequency. The error signal is an electrical representation of this, and can be recalibrated into

a relative frequency noise by known value of the cavity discrimination coefficient. For instance, if

the error signal is 20 mW peak-to-peak and the cavity mode is 0.5 MHz FWHM, then the coefficient

is D = 0.4 × 10−7 V/Hz. If the error signal spectral density is measured with a 50 Ω load in dBm

units, the spectral density of relative frequency noise may be obtained as follows:

S2
f =

50 · 10−3 · 10(
PdBm

10 )

D2 ·Bw
, (6.1)

where Bw denotes electronic spectrum analyzer bandwidth, and PdBm is a power spectral density

in dBm units. This equation was used to derive the frequency spectrum shown on Fig. 6.7. In case

of a tight servo lock, laser linewidth is given by a simple expression: πS2
f , which for our spectrum

corresponds to 10 kHz. The peak around 3 MHz on Fig. 6.7 is explained by relaxation oscillations

inside a laser diode. This is a work in progress and further improvements may be done. Noises could

be suppressed with proper filtration and servo gain function could be improved. Linewidth below

1 kHz should be achievable. If a servo loop is implemented to directly control laser head transducers

(piezo and fast current modulation) better results could be achieved, as laser control electronics

would not introduce unknown transfer functions. The phase-modulation frequency should be chosen

to be well outside the laser noise sidebands, and the error signal should be band-pass filtered before

the mixer.
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Figure 6.5: Upper panel: signals obtained from the photodetectors measuring reflection and trans-
mission of the optical resonators along with an error signal. Signals from top to bottom: cavity
reflection, error signal, cavity transmission. Right panel: signals in a locked state. Signals from
top to bottom: cavity reflection, cavity transmission, error signal. Note reduced amplitude noise in
cavity transmission signal, as the resonator acts as a low-pass filter.
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Figure 6.6: Scan of a WGM as a cavity transmission signal, where laser’s frequency noise is detected
by a cavity. On the right is the record of the same signal in a locked regime. Noise ripples are at
frequencies above 0.8 MHz, where the servo is not efficient enough.

Figure 6.7: Power spectral density of relative frequency noise in dBm units. This spectrum shows
how much the laser frequency deviates from the cavity mode frequency. Recalibration leads to a
linewidth of better than 10 kHz (corresponding to a horizontal line at -60 dBm level). The lower
spectrum represents electronic noise when the laser is not locked to the WGM.
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Chapter 7

Cryogenic apparatus

Prospects of interesting experimental results, such as ultrahigh optical Q factor and single-ion spec-

troscopy in crystalline resonators prompted development of a cryogenic setup. The major require-

ment was the operation of WGM resonators at cryogenic temperatures, which included optical input

and output, along with reliable coupling. The challenges included the small, 4 inch inner diameter of

the available cryostat, which was used for He3 research some 20 years ago. The insert included a 1 K

liquid helium evaporative cooling pot, with another lower temperature stage installed on it. Most of

the insert had to be removed or modified. An additional hurdle was the huge amount of time spent

on fixing numerous leaks in the insert, which arose from the notable age of the device. Nevertheless,

most of the problems were solved and the WGMs were observed at the temperature of 77 K. The

cryostat included a 5-foot-high superinsulated evacuated helium dewar with 4 inch inner diameter

and 11 liters volume (Fig. 7.1). The vacuum chamber of a cryostat insert is a copper cylinder on

Figure 7.1: Left: helium dewar with a pump and a laser. Right: optical setup of the insert. Copper
1 K pot, resonator, optical fibers, and the cryogenic nanopositioner are visible.

brass flanges with indium sealing. The chamber is 1.8 liters in volume. Optical input was provided
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through a single mode fiber glued into the insert. Multimode 1 mm fused silica fiber was used as

an output optical window. The 1 K pot served as a frame to the sides of which other parts were

attached. These included the post for holding the WGM resonator, a three-axis nanopositioner used

for moving the angle-polished fiber coupler, a web camera, a thermometer, and a light source.

One of the most critical parts of the setup is a positioner used for coupling. The optical fiber tip

must be put within 50 nm of the resonator surface and its position must be controllable to about

10 nm. The positioner must have a footprint of less than one inch and a range of motion of about a

millimeter at cryogenic temperatures. The only technology capable of meeting all these requirements

is a stick-slip positioning. Commercial devices are rather costly ($20 thousand) so an alternative was

built, which utilized the same principle (see Fig. 7.2). The positioner has three stages for the X,Y,Z

directions, 3 millimeter motion range, and can be controlled in either stepper mode or in continuous

scanning mode. The amplified oscillator circuit was built to provide a high-current sawtooth-shaped

signal to the piezo elements of the positioner. Slow expansion followed by a rapid contraction leads to

a slipping action resulting in a single step. Continuous variation of voltage applied to a PZT element

leads to a smooth position shift. A regular web camera was equipped with a set of resistors glued to

Figure 7.2: Prototype of a stick-slip nanopositioner on the left. Crystalline resonator and a coupler
as seen through a web camera on the right.

the circuit board. These were used for heating and for temperature sensing. The camera could be

heated inside the insert, which made its operation possible in a cryogenic environment. Heating of

a camera to 270 K in a cryogenic environment leads to radiative dissipation of only around 1 W of

heat. Since operation of a camera is only required for coupler adjustment, this heat did not interfere

with measurements (Fig. 7.2).

Unfortunately, in addition to many other leaks, a cold leak was found. This leak only revealed

itself when the dewar was filled with liquid nitrogen and could not be located with a helium leak

detector. This and other problems at JPL made it impossible to continue this experiment.
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Chapter 8

Applications of optical resonators

8.1 Bessel beam generation

The author of this dissertation was given an opportunity to perform the first experiment on gener-

ation of truncated Bessel beams with the fused silica devices. Full account of the work is given in

paper [8], of which this section is a partial reproduction. Material reproduced with permission from

OSA.

8.1.1 Introduction

We demonstrate a method of generating the beams of light with large angular momenta. The method

utilizes whispering-gallery-mode resonators that transform a plane electromagnetic wave into high-

order Bessel beams of a silica waveguide. Interference pattern among the beams as well as shadow

pictures induced by the beams are observed and studied.

Optical vortices or light beams with nonzero angular momenta are interesting not only because

of their underlying physics, but also because of potential applications. Generation of such vortices

and the study of their properties has recently attracted considerable attention. The beams have

been realized with both passive and active schemes (see [148, 149, 150, 151] for review). Generation

of beams with orbital angular momentum exceeding 104 h̄ per photon is possible [152] but is not

easily achievable experimentally. To our knowledge, the highest orbital angular momenta of photons

observed so far are approximately 25 h̄ [152] and 30 h̄ [153]. Beams with angular momenta of up

to 300 h̄ were recently demonstrated [154]. In this paper we discuss another method for generation

of photons with large orbital momentum. We report on a proof-of-principle experiment validating

the application of a low-contrast whispering-gallery-mode (WGM) resonator that supports modes

with high angular momenta for the generation of high-order Bessel beams [155]. By “low contrast”

we mean a new design whereby the resonator is a part of the waveguide, but has a slightly larger

radius than the waveguide. The resonator can be made by cutting and polishing a bump pattern
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on the waveguide surface. Such a resonator has an important distinction from the ordinary WGM

resonators since its modes decay primarily into the Bessel modes of the waveguide, and not to

the outside environment. By changing the resonator shape and the radius of the waveguide it

is possible to change the resonator loading and to allow light propagation from the resonator to

the waveguide. Free-space propagation distance of the beams with angular momenta defines the

Figure 8.1: Schematics of the device used to generate Bessel beams

feasibility of practical applications. A high-order Bessel wave that penetrates into a cylindrical

waveguide from the resonator through evanescent field coupling cannot leave the waveguide. It runs

until the end of the waveguide and reflects, because of the total internal reflection. It is possible to

manipulate the wave inside the waveguide. However, the complete confinement of the waves in the

waveguide reduces the spectrum of their applications. We used a cleaved waveguide to release the

Bessel beam into free space. We have been able to generate Bessel beams with orders exceeding a

thousand, and have studied interference of multiple beams with different angular momenta as well

as pictures of the shadow of an object placed in front of them. The shadow has properties that

arise from the far-field interference of the beams of different orders at different points at the exit

of the waveguide. This interference experiment allowed us to estimate the propagation distance of

the optical vortices. The distance drastically decreases with an increase of the value of the angular

momentum.

The experiments with shadows have shown that a shadow of a straight rod illuminated with

a Bessel beam is not a straight line. This result may be explained theoretically in the frame of

geometrical, not wave, optics [8].

8.1.2 Experimental generation of truncated Bessel beams

We fabricated several low-contrast fused-silica WGM resonators as integral parts of tapered waveg-

uides (Fig. 8.1). In one experiment, a segment of a fused-silica multimode fiber rod is cleaved and

the cleavage plane is polished. The diameter of the fiber is 1 mm. The other end of the rod is
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stretched into a conical shape in a hydrogen burner. This end is fused to form a WGM resonator

about 300µm in diameter as an integral part of a cone. This cone starts at the WGM resonator

at a diameter of about 250–280µm and expands to 1 mm in diameter over 1 cm distance (Fig. 8.2).

Another resonator we made has a 500µm diameter, and the taper diameter changes from 450µm

Figure 8.2: A low-contrast whispering gallery mode resonator for Bessel beam generation. The
resonator is created by the local increase of the waveguide radius. A tapered waveguide is used to
generate a Bessel beam in the free space. Increasing the waveguide radius changes the wave vector of
the light, guaranteeing escape of the light from the waveguide into the free space. (A) A low-contrast
fused silica WGM resonator attached to the tapered waveguide. (B) Coupling light into the WGMs
of the resonator using cleaved fiber. (C) Tapered fiber used to release generated Bessel beam into
free space

to 3 mm over a 3 cm distance. The resonators were optically pumped with 650 nm light using an

angle-polished fiber coupler. We excited a family of WGMs that interacted with the modes of the

tapered fiber. The fiber coupler is shown in Fig. 8.2(b). It is easy to see the glow on the resonator

surface resulting from the scattering of the light in the WGMs, which abruptly disappears in the

vicinity of the coupling point between the resonator and the tapered fiber. This glow shows the

geometric localization of light in the resonator. As the WGMs of the resonator decay into the fiber,

light propagates and exits the fiber into the free space as truncated Bessel beams. Because the

ratio of the taper entrance over the exit diameters was small (rexit/rentrance = 6 or less) and the

mode order was high (> 103), the propagation distance of Bessel beams in free space did not exceed

ten millimeters. The beams spread out creating peculiar interference shapes in the far-field region

(Fig. 8.3(a)). This observation has a certain similarity with the interference pattern of zero- and

first-order Laguerre-Gauss beams presented in [156]. The interference pattern in Fig. 8.3 could be

explained if we consider the interference of multiple radially truncated high-order Bessel waves with

nearly the same diameter but different angular momenta. Light from an angle-polished fiber coupler
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Figure 8.3: (A) Far-field interference pattern of multiple co-propagating Bessel beams. (B) Far-field
shadow of a 250-micrometers-thick needle placed in the path of the beam emerging from the fiber
taper.

Figure 8.4: (A) Close-up view of the fused silica waveguide output. (B) Carbon powder was applied
to the end of the waveguide and covered most of the surface. The red ring corresponds to the
localization of Bessel beam energy inside of the waveguide.

(Fig. 8.2(b)) excites many modes of the resonator with different quantum numbers and the same

frequency. These WGMs excite the Bessel waves in the tapered waveguide. The waves have differ-

ent propagation constants along the Z axis and, hence, different dispersion. The initially narrow

angular distribution of light in the taper broadens up with the propagation distance and forms the

spiral pattern.

Aside from the interference, we have observed peculiar shapes of the shadow of a straight, thin,

needle. This needle was 250µm thick and was set parallel to the waveguide surface so that it

crossed the symmetry axis of the beam with large angular momentum (Fig. 8.3(b)). The shadow is

orthogonal to the needle in the center of the interference pattern, and is parallel, but displaced, away

from the center. The shape of the shadow depends on the distance of the object from the surface

of the taper. The closer the wire is, the longer is the region of the orthogonal shadow. We have
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repeated the same experiment using a 532 nm laser and a 25-µm-thick piece of a tungsten wire, and

obtained similar result. Images and video in the paper elucidate this explanation and suggest that

the twisting of the shadow is a consequence of the beam’s angular momentum.

8.1.3 Conclusion

We have demonstrated the generation of optical beams with angular momentum exceeding a thou-

sand using fused-silica whispering-gallery-mode resonators. The beams propagate more than a

centimeter in the free space. Exactly the same approach would allow efficient generation of Bessel

beams with momenta exceeding 105. Interference patterns of the multiple beams, as well as the

peculiar shadow pictures created with the beams, are demonstrated experimentally and explained

theoretically.
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8.2 Enhanced photothermal displacement spectroscopy

This section is based on a study — “Enhanced photothermal displacement spectroscopy for thin-

film characterization using a Fabry-Perot resonator” — published in the Journal of Applied Physics

[12] and also attached below with permission from AIP. Prior to joining the JPL group, the author

participated in a project aimed at measuring thermal properties of thin optical coatings. These

properties define thermal noise caused by the surface of heavy mirrors of LIGO interferometers.

From thermal expansion of mirror surface caused by minute absorption of light pulse it is pos-

sible to derive thermal expansion and temperature conductivity coefficients for the material. The

expansion is measured with an interferometric technique where a Fabri-Perot cavity is used to boost

the pulse power and to enhance sensitivity to the surface expansion of the mirror. If a thin coating

is present on the mirror, it is possible to measure thermal properties of only the coating material

by applying high-frequency optical pulses to the surface. If the frequency is high enough, only the

coating is contributing to thermal expansion. The main result of this work is the upgrade of the pre-

vious technique, which made it possible to perform measurements at significantly higher frequencies

and probe the properties of thin coatings. An opto-mechanical beam chopper was replaced with an

electro-optical amplitude modulator and the experimental procedure was automated. This allowed

us to perform measurements at frequencies of up to 1 MHz, as compared to the previous limitation

of a few kilohertz.

Figure 8.5: Optical setup was initially built by Shanti Rao, part of which is shown here. It was
subsequently upgraded by the author.
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