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ABSTRACT 

Advances in nanoscience and nanotechnology hold enormous promises to benefit 

humankind in basic research, industry, and everyday life. One particular class of the vast field 

of nanodevices is resonant nanoelectromechanical systems (NEMS), which have recently 

attracted considerable research interest.  While many of obstacles have been overcome in 

fundamental physics and engineering research of NEMS, intriguing questions and technological 

challenges remain unmet.  This thesis is primarily focused on the studies of parametric, 

nonlinear, and coupled NEMS resonators.   

In this work the first very high-frequency (VHF) nanomechanical degenerate parametric 

amplifiers have been demonstrated by employing both magnetomotive and piezoelectric 

parametric pumping.  A mechanical gain of 1000 and quality factor enhancement of 75 have 

been achieved.  Such parametric resonators and nanomechanical amplification make it possible 

to evade the often-dominant transducer and amplifier noise, thus offering possibilities for 

improving the sensitivity of NEMS sensors, for exploring mechanical-domain signal 

processing, and for noise squeezing in precision physics measurements.   

The thesis also focuses on the rich dynamics and physics of coupled NEMS resonators.  

First, the major mechanisms of coupling are investigated both experimentally and analytically.  

The formalism for characterizing a new basis of vibration modes for strongly coupled 

nanoresonators is developed and experimentally demonstrated for systems with two, three and 

ten NEMS devices.  By employing a pair of coupled resonators for long-term drift 

compensation, considerable improvement in resonator frequency stability is demonstrated. 

Simple linear interaction in nonlinear nanomechanical resonators is shown to generate 

remarkably complex and rich behavior including spontaneous state transition and chaos.  



 vi 
Finally, the complexity of the system is further increased when coupled and parametric 

effects are combined.  A novel nanomechanical amplification mechanism has been discovered, 

based on the dynamical changes that an input signal induces in the topology of a bifurcation 

diagram of a system of two weakly coupled parametric resonators. Another interesting 

phenomenon—nondegenerate parametric NEMS amplification is demonstrated in the case of 

strong coupling. This is a promising route to low noise mechanical displacement sensing 

because it not only provides a fundamentally noiseless amplification mechanism, but also it 

decouples pump and signal frequency. 
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Chapter 1 

INTRODUCTION 

1.1 INTRODUCTION AND MOTIVATION 

Recent developments in the area of nanotechnology hold enormous promise to benefit 

humankind in basic research, industry and everyday life. In his visionary speech [1] made 50 years 

ago, Richard Feynman made a suggestion that there is no particular reason why we can’t make 

computers very small. “I don't know how to do this on a small scale in a practical way, but I do 

know that computing machines are very large; they fill rooms. Why can’t we make them very 

small, make them of little wires, little elements—and by little, I mean little. For instance, the wires 

should be 10 or 100 atoms in diameter, and the circuits should be a few thousand angstroms 

across.” Indeed today everyone has a laptop, which is capable of performing enormous amount of 

operations in no time and has the smallest wires just a few hundred atoms wide. This is just a small 

example of how rapid progress in a field of nanotechnology has made great social and economic 

impact. Currently the pace of the progress is not slowing down; to the contrary, in many segments 

it is even accelerating.  

One particular class within the vast field of nanodevices called resonant nanoelectromechanical 

systems (NEMS) is just starting to acquire global attention [2]. Their precursors, 

microelectromechanical systems, have been studied for decades with an increasing interest due to 

successful growth commercial applications. Nearly all modern projectors use arrays of microscale 

mechanical mirrors to display the image, inkjet printers use microfluidic chips for printing, and 

rapid development of optical crossbar switches has caused an explosion in the communication 

industry. Although reliable commercial NEMS applications are not on the market yet, the interest 
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of researchers is growing. A remarkable combination of such properties as small mass, high 

operating frequencies, easily accessible nonlinearity, large quality factor as well as standard 

semiconductor fabrication techniques hold great promise for providing superior mass [3], force [4] 

or charge [5] sensors, realizing quantum fock state detection in mechanical systems [6], and 

integrating mechanical switches with CMOS transistors [7].  

A number of obstacles have to be overcome in order to achieve the goal of large-scale 

utilization of nanoelectromechanical systems. Among the principal challenges are accurate motion 

transduction, efficient actuation, limiting the dissipation in ambient environments, as well as 

scalability for integration. This thesis provides possible solutions to all the problems above. When 

the size of the devices decreases it becomes increasingly difficult to read out the resonator’s 

mechanical motion because existing electromechanical coupling techniques do not provide large 

enough signal to overcome the noise in electric readout circuits. One possible solution discussed in 

this thesis is amplification of the signal in the mechanical domain using the idea of parametric 

oscillations before applying an electrical transducer. A subsequent part of the thesis presents a first 

step toward large-scale integration by carefully investigating a large variety of physical phenomena 

in arrays of interacting nanomechanical resonators. The last chapters present a theoretical and 

experimental study of a number of applications that arise from combining parametric, coupled and 

nonlinear properties of nanoelectromechanical systems. 

1.2 OVERVIEW 

The parametric resonance system is an interesting subject of research in many areas ranging 

from quantum optics [8], to superconducting circuits [9], to plasma physics [10]. A mechanical 

parametric resonant system was first demonstrated by Rugar and Grutter [11] and since then has 
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attracted significant attention [12, 13, 14, 15]. The simplest parametric amplification is obtained 

by periodic modulation of a dynamical parameter of the resonant system, namely the spring 

constant, at twice its fundamental resonance frequency. For the right phase relationship between 

the drive and parametric pump, a significant increase in amplitude and effective quality factor can 

be achieved. The nature of spring constant modulation has usually been capacitive [12, 13], 

although other methods such as intrinsic residual stress [15] or an external feedback loop [16] have 

been demonstrated. This thesis presents two interesting alternative schemes, based upon tuning the 

tensile stress of a nanoresonator using magnetic Lorentz force in chapter 3 and piezoelectric 

electromechanical coupling in chapter 4.  

In addition to enabling practical applications parametric effects introduce an entirely new type 

of dynamical system. Chapters 5 and 6 discuss the first steps in integrating simple nonlinear 

resonators and studying their interactions. And chapters 7 and 8 of this thesis present several 

important effects that are demonstrated using a system of many coupled parametric resonators. 

These topics will prove crucial for the large-scale integration of nanomechanical resonators.  
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Chapter 2 

PARAMETRIC THEORY 

This chapter begins with a basic theoretical background needed to understand the dynamics of 

nanoelectromechanical resonators. Then a new type of dynamical behavior is introduced by 

analyzing the simple harmonic resonator with a periodically modulated physical parameter. The 

parametric resonance that arises is described by special class of partial differential equations called 

Mathieu equations. Essential concepts and interesting phenomena are then illustrated. 

2.1 ELASTIC BEAM 

Consider a small rectangular mechanical bar with rigid supports on both sides as shown in 

figure 2.1. The structure is characterized by its normal modes of vibration. The lowest frequency 

mode is called the fundamental mode. For the particular device shown in figure 2.1 the 

fundamental resonant mode corresponds to out-of-plane flexural vibration at a frequency of 35 

MHz.  

 

Figure 2.1. Small rectangular structure supported at both 
ends is designated a doubly clamped beam 
nanomechanical resonator. The dimensions of this GaAs 
beam are 4 μm x 500 nm x 200 nm (L x w x t). 
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The most convenient way to describe the dynamics of a resonator is to model the behavior of 

its central point as a one-dimensional simple harmonic oscillator with fundamental frequency ω0 

and quality factor Q corresponding to those of the beam for a particular vibrational mode. Then the 

simplest equation of motion is given by:  

)(0 tFkxx
Q

m
xm =++ &&&

ω
. (2.1) 

The choice of mass m and stiffness constant k is constrained by the fact that their ratio k/m=ω0
2 is 

determined by the measured resonance frequency. Another constraint is a result of the choice of 

center of the beam as a point of one-dimensional vibration, then elastic constant is given by 

k=F0/x0, where F0 is the total force exerted on the beam by the employed actuation mechanism, 

and x0 is a corresponding static displacement of the central point. The mass m is then given by 

m=0.735ρLwth [17] for the beam of length L, width w and thickness th made out of structural 

material of Young’s modulus Y and density ρ. It is easy to show [18] that the expression for 

fundamental frequency is given by: 

ρ
π

ω Y
L

th
20

2
03.1= , (2.2) 

where th is a geometrical dimension in the direction of vibration. When a sinusoidal drive is 

applied to the resonator at angular frequency ω the mechanical response assumes a Lorentzian 

form: 

ωωωω
ω

ω 0
22

0

2
0

2
0

0

)( iQm
QF

x
+−

= . (2.3) 

The first important correction to the simple model just described is the effect caused by the 

longitudinal tensile stress in the beam. When the amplitude of the beams’ motion calculated to the 
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lowest order rises, the tension in the beams becomes high enough to cause deviations from 

linearity in the elastic force [19]. The resonator’s dynamics can then be approximated by the 

following equation of motion: 

)(30 tFxkxx
Q

m
xm D =+++ α

ω
&&& , (2.4) 

where 36.63
L

Ywt
D =α  is a coefficient of cubic nonlinearity (also known as the Duffing 

nonlinearity). Another important effect is caused by initial tension experienced by the beams 

arising either from fabrication or applied externally. When the beam is stretched or compressed the 

resonance frequency shifts up or down respectively [18, 20]: 

2

2

20 4.3
1

2
03.1

h

h

Yt
LY

L
t σ

ρ
π

ω += ,  (2.5) 

for tensile stress σ.  

2.2 PARAMETRIC AMPLIFICATION (MATHIEU EQUATION) 

In order to understand a parametric resonant system, consider a regular elastic beam, whose 

tensile stress is periodically modulated. The beam is approximated as a one-dimensional resonator, 

whose spring constant is modulated. The simplest parametric effects are realized when the 

modulation frequency ωp is close to twice the fundamental resonance frequency. Then the system 

dynamics is described by the following equation: 

)sin()cos( 0
30

DDpp tFxxtkkx
Q

m
xm ϕωαω

ω
+=++++ &&& . (2.6) 

Here )/(3.0 22
1 hp YtLkk σ=  is the amplitude of the spring constant modulation for a given stress σ. 
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In order to solve this equation we will employ secular perturbation theory [14]. We define the 

following parameters: 

k
k

m
k

h
m

F
g

Q
pp

pD 22
,

2
,

2
000 ωω

γ ==== . (2.7) 

We now rewrite the equation of motion (2.5) in a simplified form, that, at first pass, ignores the 

Duffing nonlinearity. Later in this chapter we will describe in greater detail the consequences of 

having nonlinear terms. The rescaled equation becomes: 

( ) )sin(2cos22
0 DDpp tgxthxx ϕωωωγ +=+++ &&& . (2.8) 

This expression is known as the Mathieu equation [21]. We solve (2.8) employing secular 

perturbation theory [14]. After introducing a small dimensionless parameter ε<<1 we rewrite the 

previously defined parameters in the above equation by considering their different scales:  

Ω+=Ω+=Γ=== εωωεωωεγεε 00
2/3 ,2,,, ppDp gghh , (2.9) 

where h, g, Γ, Ωp and Ω are not necessarily small dimensional parameters. Introduction of slower 

time scale T=εt allows us search for the solution to the above Mathieu equation (2.8) in the form: 

L+++= )(.).)(()( )1(2
3

2
1

0 txcceTAtx ti εε ω  (2.10) 

where the vibration at the resonance frequency is modulated by the function A(T), that evolves on 

a slower timescale. The correction to the solution x(1) is introduced with a higher power of small 

parameter ε. Complex conjugate terms are abbreviated as “c.c.”  

Time derivatives are given as follows, 

,)(.).)('')('2)(()(

,)(.).)(')('()(

)1(2
3

22
0

2
1

)1(2
3

2
1

0

0

L&&&&

L&&

+++++−=

++++=

txeccTATAiTAtx

txeccTAiTAtx

ti
o

ti
o

εεεωωε

εωεε

ω

ω

 (2.11) 
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where A' and A'' are the slower timescale derivatives. After substituting this expression into 

equation of motion (2.7) we obtain: 

),sin(2

)..)()())(cos(2(..)(

))(')('())('')('2)((

2
3

)1(2
3

2
1

2
0

)1(2
3

2
3

22
0

2
1

0

00

DD

ti
p

ti
o

ti
o

tg

cctxeTAthcctx

eTAiTAeTATAiTA

φωε

εεωεωε

ωεεεεωωε

ω

ωω

+=

++++++++

+Γ+++−

LL&&  (2.12) 

In this equation the O(ε1/2) terms cancel as they are the linear mode terms. Therefore by keeping 

O(ε3/2) terms we extract equation for the correction x(1)(t). 

.....(...))*2()()( 00 3
0

)1(2
0

)1( +++−−Γ−′−=+ ΩΩ cceeigeehAAiAitxtx titiTiTi
o

Dp ωωωωω&& , (2.13) 

On the left-hand side there is a resonator equation with zero damping, thus the term in brackets 

on the right-hand side should vanish so that the solution for x(1)(t) is finite. 

TiTi
o

Dp igeehAAiAi ΩΩ −=+Γ+′ *2 0ωω , (2.14) 

2.3 GAIN AND Q ENHANCEMENT 

The parametric modulation of a spring constant of a nanoresonator described above can provide 

significant amplification of mechanical vibration. The parametric gain is defined as the ratio of 

mechanical amplitude when the beam is pumped to the amplitude when the pump is turned off.  

In order to calculate the parametric gain on resonance we assume ω = ω0 and ωp = 2ω0. We 

write down the equation for steady-state time-invariant A and its complex conjugate A* based on 

equation (2.14). 

.**
,*

0

0

gAihA
gihAA

−=Γ+
−=−Γ

ω
ω

 (2.15) 

The solution to this regular linear equation is: 
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⎥
⎦

⎤
⎢
⎣

⎡
−Γ
+

+
+Γ
+

−=
−

h
i

h
egA DDi

00

4 )4/sin()4/cos(||
ω

πϕ
ω

πϕπ

. (2.16) 

When the pump is turned off the equation describes a simple driven resonator with known 

amplitude on resonance: 

Γ
−

=
−

0

||
ω

φ

i
egA

Di

offpump . (2.17) 

Therefore the mechanical amplitude gain due to parametric modulation is given by: 

⎥
⎦

⎤
⎢
⎣

⎡
Γ−

+
+

Γ+
+

==
−−

00

)
4

(

/1
)4/sin(

/1
)4/cos(

ω
πϕ

ω
πϕφ

π

h
i

h
e

A
A

G DDi

offpump

onpump E  (2.18) 

The second term in the brackets diverges when the pumping approaches a threshold value 

h→ω0Γ, which physically means that the mechanical signal is amplified due to parametric 

pumping. Above this threshold the beam breaks into spontaneous oscillations. The greatest 

enhancement is obtained when there is π/4 difference in phase between the drive and the pump, 

while at –π/4 the amplitude is attenuated.  

Rescaling these results to experimental physical quantities we define the stiffness constant at 

threshold as kt = 2k/Q. The rewritten equation (2.18) for the parametric gain then assumes the 

form: 

2
1

2

2

2

2

)/1(
)4/(sin

)/1(
)4/(cos

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
+

+
+

+
==

tp

D

tp

D

offpump

onpump

kkkkA
A

G πϕπϕ . (2.19) 

When a nanoresonator undergoes vibration, internal damping causes energy dissipation. The 

parametric modulation of a spring constant effectively pumps in energy that partially compensates 

for the loss, and this in turn leads to significant quality factor enhancement. This enhancement is 

observable experimentally as a narrowing and amplification of the resonance peak as described in 
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chapters 3 and 4. We calculate the spectral response while the pump is fixed at twice the 

resonance frequency Ωp=0, while ΩD varies. As in the previous calculation we write down the 

equations for A(T) analogous to equation (2.14) 

.***2

,*2

00

00
Ti

Ti

D

D

egAihAA

geihAAA
Ω−

Ω

−=Γ++′

−=−Γ+′

ωω

ωω
 (2.20) 

After substituting the expression for A* from the first of the above equations into the second one 

we obtain a differential equation for the amplitude A.  

Ti
D

Ti DD eigihgeAhAA Ω−Ω Ω+Γ−−=−Γ+′Γ+′′ )2()(44 0
222

0
2
0

2
0 ωωωω . (2.21) 

Two terms on the right-hand side imply that the solution to this equation includes two sidebands 

vibrating at ω and ωp-ω. Hence the total solution assumes the form:  

TiTi DD beaeA Ω−Ω += . (2.22) 

After substitution we obtain the solution for spectral responses: 

.
4)(4

*

,
4)(4
)2(

2
0

222
0

22
0

2
0

222
0

22
0

0

DD

DD

D

ih
ihgb

ih
ig

a

ΓΩ+−Γ−Ω
=

ΓΩ−−Γ−Ω
Ω+Γ

=

ωωω

ωωω
ω

 (2.23) 

The equation for the parametrically amplified resonance curve for the main side band in terms 

of original physical quantities has the form: 

)/1()(4)(4
)(2

222
000

2
0

2

2
000

2
0

0

tp kkiQQ
iQ

m
QF

A
−+−+−−

−−
=

ωωωωωω
ωωωω

ω
. (2.24) 

This resonance curve is substantially higher and narrower than the regular Lorentz peak without 

application of a pump. Thus we define the effective quality factor enhancement by using the ratio 

of the peak frequency to the full width at half maximum (FWHM). In the region much narrower 
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than the Lorentz peak where ω-ω0<< ω0/Q the parametric resonator’s frequency response is 

described by the equation: 
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This is a regular resonance curve with Q then enhanced by )/1/(4 22
tp kk−  and the driving force 

decreased by factor of 4. 

In a simpler case when the parametric pumping is locked to twice the drive frequency ωp=2ω at 

the maximum amplification phase, the drive frequency sweep yields the following spectral 

response:  
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This configuration is more convenient to utilize the device in measurement applications such as 

frequency shift-based sensing.    

2.4 GAIN-DYNAMIC RANGE TRADE OFF 

We will describe the important differences between parametric amplification and regular linear 

amplification, focusing specifically upon nanoelectromechanical systems. Regular linear 

amplification is characterized by gain and linear dynamic range. Dynamic range is the ratio of the 

largest possible linear output signal to the smallest one, and is usually expressed in dB. The signal 

ceiling is usually defined by the onset of nonlinearities, while the lowest detectable signal is 

determined by the amplifier’s output noise floor.  

The performance of a mechanical device can be characterized by its mechanical noise floor [22] 

and the onset of nonlinearity. For mechanical systems of submicron sizes, it is extremely 
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challenging to devise an efficient method of displacement transduction, therefore in most of our 

experiments the noise in the measurements is dominated by electronic amplifier noise. In the case 

of signal ceilings, nonlinearity in nanomechanical systems starts at rather low excitation levels, 

lower than that of electronic amplifiers. As a result the available dynamic range is determined by 

the mechanical device’s signal ceiling and amplifier’s output noise floor (see figure 2.2(a)). 

 

Figure 2.2 (a) Regular linear amplifier operation basics. 
Dynamic range is determined by mechanical signal 
ceiling and amplifier’s noise floor. (b) Parametric 
amplifier does not have a noise floor but it has low signal 
ceiling.  

The operation of a parametric amplifier is different than that of a linear amplifier, as described 

above. To begin with it is phase dependent, but we assume the pump is synchronized, so that it is 

always at phase difference for maximum amplification. An important feature of the parametric 

amplifier is that it does not have its own characteristic noise floor, but amplifies the mechanical 

internal noise the same way it amplifies signal. Therefore use of a parametric amplifier in physical 

measurements certainly increases the signal resolution, because it can be used in the mechanical 
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domain in order to match intrinsic NEMS resonator noise to the electric amplifier characteristic 

noise (see figure 2.2(b)). 

To determine the dynamic range we need to consider the largest possible output signal. In the 

above derivation of parametric amplifier’s gain, equation (2.18) implies that the gain diverges 

when the pump amplitude approaches the threshold value. Experimentally such divergence does 

not occur because at large amplitudes the small signal equation (2.7) is no longer valid. Instead, in 

this regime the nonlinearities have to be taken into account. If the Duffing nonlinearity is 

considered, one finds that the output signal ceiling occurs approximately at the regular onset of 

nonlinearity in a mechanical resonator [23]. As a result, in the presence of parametric gain the 

signal ceiling referred to input is smaller than the NEMS device’s own onset of nonlinearity, and 

therefore dynamic range is not increased.  

As a conclusion the employment of a parametric amplifier will be advantageous in terms of 

improving signal resolution by matching intrinsic mechanical noise to the readout amplifier’s noise 

(figure 2.2(b)), but it is not advantageous for increasing the dynamic range.  

2.5 BISTABILITY AND PARAMETRIC TONGUE 

When the pump amplitude approaches and exceeds threshold, the amplitude diverges according 

to equation (2.18). Hence Duffing nonlinear terms have to be considered in the equation of motion 

(2.7) in order to correctly describe the behavior of the NEMS parametric amplifier above threshold 

[14]. The derivation is similar to the procedure described in sections 2.1 and 2.2 up to equation 

(2.13). The vanishing term in brackets on the right-hand side of the equation (2.13) now includes 

additional terms arising from the Duffing nonlinearity: 

03*2 2
0 =−−−Γ−′− ΩΩ TiTi

o
Dp igeAAehAAiAi αωω . (2.27) 
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α is the reduced (or specific) cubic nonlinearity coefficient with no 

scaling. 

When system is parametrically driven with pump amplitude above threshold h>ω0Γ and with 

no resonance frequency drive applied g=0, then the mechanical nanoresonator vibrates at half the 

parametric frequency. Hence we search for a solution of the form:  
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Ω

=′+=
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 (2.28) 

After substituting these expressions into (2.27), the equation for a assumes the form: 

*3 0
2 haaiaaa po =Γ+Ω− ωωα . (2.29) 

Upon first observation, one finds that the trivial solution of this equation, a=0 is a valid one for 

all Ωp. In order to calculate other possible solutions we solve this algebraic equation for the 

intensity |a|2. 

2222
0

222 ])3[( ahaa po =Γ+Ω− ωωα . (2.30) 

The nontrivial solution is: 

)(
3
1 2

0
222 ωω

α
Γ−±Ω= ha po . (2.31) 

A detailed analysis of this solution is given in [14, 24]. As was mentioned earlier, the nontrivial 

solution is valid only above threshold h>ω0Γ. One of the most notable features of the behavior of 

this solution is that there is a region in the plane of Ωp and h where the trivial solution becomes 

unstable. The instability region can easily be calculated by requiring |a|=0 in the expression (2.31). 

The threshold is situated at  
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2
0

22 ωΓ−±=Ω hp  (2.32) 

It has a shape of a tongue (discussed in [14]), hence it is commonly referred to as an instability 

tongue or parametric tongue. Its lowest point is Ωp=0 and h= Γω0, which is exactly at the 

parametric threshold introduced in equation (2.18).  

If the parametric drive is above threshold and the frequency is swept upward, then outside the 

instability region the resonator is at rest. At the left edge of the tongue the trivial solution loses 

stability and the resonator undergoes a supercritical bifurcation, which is characterized by motion 

at half the parametric frequency. As the frequency is swept further the amplitude of motion rises 

with a square root dependence on frequency according to equation (2.31). Subsequently after 

crossing the right edge of the tongue, the solution becomes bistable, causing the oscillations to 

continue to rise until other factors, particularly nonlinear viscous damping causes the vibration to 

drop to the trivial solution (see [14]). On the other hand when the frequency is swept downward, 

the motion does not start until the edge of the instability region is crossed because the trivial 

solution is also stable to the right of the parametric tongue. When the frequency reaches the right 

edge of the tongue, a subcritical bifurcation occurs and the amplitude jumps to a high value and 

then decreases to zero at the left edge of the tongue. Thus downward sweeps can be used to map 

the instability region. 

SUMMARY 

This chapter is crucial for grasping the theoretical background needed to understand the physics 

of the studied system and thus be comfortable reading subsequent chapters. The mechanical 

nanoresonator is a standard topic covered in many textbooks. Here we outlined the most important 
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parts that will be used later. The rich behavior of the parametrically excited nanomechanical 

resonator is studied and exploited in a variety of ways in chapters 4, 7, and 8. 
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Chapter 3 

LORENTZ FORCE VHF PARAMETRIC AMPLIFIER 

The first realization of high frequency NEMS parametric amplifier was demonstrated by Darrell 

Harrington and Michael Roukes [25]. In their experiment parametric pumping is achieved using a 

scheme where the tensile stress of nanomechanical resonator is modulated by magnetic Lorentz 

force. This chapter presents the next generation of similarly designed parametric resonators scaled 

up to a very high resonance frequency 130 MHz. The results of the experiments and limitations of 

this design are discussed in the latter part of this chapter.  

3.1 LORENTZ FORCE PARAMETRIC AMPLIFIER DESIGN 

The first implementation of nanomechanical parametric amplifier employs the magnetic 

Lorentz force as a method of spring constant modulation [26]. This mechanism is used in order to 

obtain broad dimensional and frequency scalability because it proved to be scalable up to 

microwave NEMS applications [27]. Our parametric resonator design is based on the coupled 

beam structure shown in figure 3.1. The “H”-shaped structure consists of a signal beam with length 

L1, width w1, and thickness t1 supported by two pump beams with corresponding dimensions L2, w2 

and t2. By applying a periodic force to the external sides of the pump beams we are effectively 

changing the signal beam's tension, thus modifying its spring constant. 

The device was fabricated by newly developed 2-step process out of 100 nm epitaxially grown 

structural layer of silicon carbide on silicon. The first electron beam lithography step patterned 

pump beams followed by evaporation of 70 nm silicon oxide in order to serve as isolation between 

metal electrodes as well as dry plasma etching mask, thus avoiding undesirable wet etching steps. 
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The second step included electron beam lithography of the pump and signal electrodes followed 

by 5 nm titanium on top of 40 nm aluminum layer  

 

Figure 3.1 (a) SEM image of the Lorentz force NEMS 
parametric amplifier. The device dimensions are: 
L1=3.1μm, L2=5.1μm, w1=150nm, w2=630nm t1=100nm. 
(b) Finite element modeling of the parametric amplifier's 
stress profile distribution.  

deposition. This step is especially challenging because it included smallest features of 100 nm 

pitch and required 20 nm alignment precision. In addition to their function as electrical conduction 

purposes the metal layers served as a mask for dry plasma etching. An electron coupled resonance 

plasma (ECR) etching system with nitrogen trifluoride was used for anisotropic silicon carbide 
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etch as well as subsequent isotropic silicon suspension etch, thus avoiding undesirable wet etch 

steps.  

According to equation (2.5) from the previous chapter, the resonance frequency shifts when the 

longitudinal tensile stress is applied to the beam. The corresponding spring constant change is then 

given by:  

2
1

2
13.0

Yw
kL

k p
σ

= . (3.1)  

When a DC current IDC is passed through the pump beam electrode in magnetic field B the 

tension force is given by: 
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pump
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22 −=−== , (3.2) 

where ς=0.23 is a geometrical factor that accounts for finite stiffness of supporting beams. Rpump is 

the ohmic resistance of the pump beam electrode (typically 50-100 Ω) and VDC is a voltage drop 

across it. Numerical finite element simulations were performed to determine the parameter ς and to 

optimize the resonator's geometry (Figure 3.1(b). As a result, the fractional frequency shift due to 

the force is given by: 
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where coefficient ξ depends only on magnetic field, intrinsic properties of the material and 

geometry of the device. The subscript “DC” is intentionally removed because it the equation is 

valid for both DC and RF voltages. Since the expression for threshold stiffness constant 

modulation amplitude is kt = 2k/Q, the threshold voltage is given by:  
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Q
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1
= . (3.4) 

This equation is crucial for the analysis of limitations of current design performed later in this 

chapter.  

3.2 MEASUREMENTS RESULTS 

All the measurements of Lorentz force parametric amplifier were performed at low temperature under 

high vacuum conditions.  

After fabrication the sample was wirebonded to a specially designed sample stage that included a 

CERNOX resistive temperature sensor along with a resistor for heating purposes. The sample stage was 

then mounted to a holder that was fixed inside a “dipper” cryostat. After pumping its interior to less than 

10
–6 

torr, the dipper was precooled in liquid nitrogen before being immersed in liquid helium. The dewar 

for these experiments was equipped with a superconducting coil capable of producing magnetic fields up 

to 8 Tesla. The magnet was used for magnetomotive actuation and detection of the beam's motion [28]. 

The first measurements performed after a given device is cooled to its lowest equilibrium temperature 

around 10K is the resonance search. All the candidate peaks have to be carefully examined by performing 

magnetic field magnitude sweeps in order to determine their authenticity.  

Overall three samples were carefully measured during the course of these experiments. Most of the 

data presented were taken with the last of these devices, although the first device was the only one with 

which the mechanical spectral response was investigated in detail. In order to facilitate the search for 

resonant peaks the first device was first rotated 90o so that out-of-plane modes of vibration were 

detectable. In this condition the device in Fig 3.1 produces two resonance peaks at 28.7 and 44.7 MHz. 

Their magnetic field sweeps are shown in figure 3.2(a),(b). During these sweeps the background level was 

constant but the amplitude of the mechanical motion increased with the magnitude of magnetic field, as 

expected. The sample stage was subsequently rotated back to 0o degree orientation and two more out-of-
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plane resonances were found at frequencies 78.3 and 110.8 MHz (see figure 3.2 (c),(d)). The nature of 

all of the detected peaks was verified by finite element modal analysis, in which all the geometrical 

parameters including various thickness layers and material properties were taken into account. The mode 

shapes are shown in the insets in figure 3.2. 

 

Figure 3.2 The spectral response of the Lorentz force 
parametric amplifier “H” structure. 

The mode frequencies determined in finite element analysis are quite close to the ones 

measured, as shown in table 3.1. The principal mode we operate with is the fourth in these studies, 

with a resonance frequency of 110.8 MHz. 
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Table 3.1 The physical parameters of measured vibration 
modes of H-structure 

After we confirmed the observation of signal beam fundamental in-plane mode we 

characterized the Lorentz force tuning capability of the signal beam by sending a DC current 

through the pump beams. As shown in figure 3.3(a) the signal beam resonant frequency is tuned 

downward whenever DC bias current is passed through the pump beams, regardless of the bias 

current polarization. However, this downward frequency tuning is not symmetric with respect to 

the applied bias voltage. Careful and repeatable measurements indicate that this is a result of 

superposition of the linear tuning due to Lorentz force tension and symmetric downward tuning 

due to Joule heating of the device caused by DC current bias. As we go to higher frequencies by 

shrinking the device size, Joule heating crucially influences the tunability of parametric resonators 

with this design. 

Examination of the change in quality factor with respect to the applied DC bias, as shown in the 

inset on figure 3.3(a) confirms that the symmetric downward tuning arises from heating. Using 

known experimental parameters for this device the effect was quantitatively modeled and 

subtracted, yielding the linear tuning due to tension introduced by Lorentz force only (equation 

(3.3)). The result is shown in figure 3.3(b); the blue straight line is a theoretical prediction using the 

geometrical parameters of the fabricated device. 

Mode Number 1 2 3 4 
Measured 
Frequency MHz 

28.7 44.7 78.3 110.8 

Calculated 
Frequency MHz 

33.8 60.8 91.4 109.4 

Quality Factor 2900 3300 5000 2200 
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Figure 3.3 (a) Total tuning due to DC bias voltage, the 
parabolic shape is due to heating. (b) The pump beam 
Lorentz force tuning obtained after symmetrization of 
the parabolic curve, the straight line is the theoretical 
prediction for frequency tuning due to Lorentz force 
equation (3.3). Inset in (a) shows the quality factor drops 
as DC bias voltage is increased 

While sending RF power into the pumping beam the signal beam's resonance frequency and 

quality factor shift downward due to the parasitic effect of Joule heating. However, we performed 

regular reflection measurements of the resonance peak of the signal beam after fixing the pump at 

twice the new resonance frequency using the setup shown in figure 3.4. Peak narrowing as well as 

an increase in peak height was observed (see figure 3.5) due to the linear part of the frequency 

tuning.  
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Figure 3.4 The setup for Q enhancement measurements. 
The bottom part is a regular reflection measurement 
scheme, which was always used to characterize 
resonances during the course of an experiment. 

The shapes of the curves closely match those predicted theoretically from equation (2.23). The 

obtained quality factor enhancement is limited because the original quality factor drops as pumping 

voltage goes up (inset in figure 3.3(a)). The threshold voltage increases as well according to 

equation (3.4). With no pump Q of the beam is around 4000, but when enough pump power is 

applied to obtain measurable resonance peak change, Q drops to 2500 at Vrms= 100 mV, and further 

drops to 1700 at Vrms = 280 mV. Thus the maximum quality factor enhancement observed is 3.0 at 

pump voltage of Vrms=240 mV. Quality factor increases from 2200 to approximately 7000 in this 

case. Hence Joule heating model is extremely critical for understanding the frequency scalability 

and practical performance available from the Lorentz force mechanical parametric amplifier. 
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Figure 3.5 The observed direct evidence of quality factor 
enhancement as pump is increased. The frequency and Q 
with no pump both drop down due to heating. The inset 
shows relative quality factor enhancement 

3.3 HEATING MODEL 

In order to quantitatively assess the problem of practical limits of the Lorentz force parametric 

amplifier we devise a heat transfer model where we calculate transfer rates between all the 

important stages of the heat flow. A schematic of the model is shown in figure 3.6; we initially 

assume uniform Joule heating in the metal electrodes of pump beams changes their electron 

temperature. Hot electrons in turn heat phonons in metal layer due to electron-phonon interaction 

with associated thermal conductance Gep. Metallic phonons subsequently transfer heat to a 

dielectric SiO2 layer through the Kapitza thermal boundry conductance GK and further to the layer 

SiC through its much larger conductance GKS [29, 30] which thus can be neglected. Finally the 
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incoming power and lateral dissipation rate into the substrate determine temperature profile of 

the pump beam elastic material. 

 

Figure 3.6 A schematic model of low temperature Joule 
heating for the H-structure mechanical parametric 
amplifier. Thermal resistances are shown as R. In the text 
we mostly characterize these as conductances, 
designated as G with appropriate indices. (In this chapter 
T is absolute temperature (not the slow time). 

In addition, associated with each intermediate thermal pathway there is a parallel pathway 

directly into substrate. All of them are taken into account in the model calculation. We find that the 
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top part of pump beam metal electrode has negligibly small temperature difference from that of 

the substrate due to relatively large values of GK as pointed out in later calculation.  

The electron thermal conductivity for the heat flow from metal electrode directly into the 

substrate can be estimated from Wiedemann-Franz law in Sommerfield model [31]: 
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Therefore in the present case the thermal conductance associated with metal electrons is given 

by: 
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where kB and e are the Boltzman constant and electron charge respectively (T is absolute 

temperature in this chapter). Electrical conductivity σel=Lpump/ApumpRpump is estimated geometrically 

for particular operation conditions, while Apump and Lpump are the crossectional area and length. The 

latter two parameters are evaluated by properly modeling nonuniform distribution of metal layer on 

the legs. The heat flux is calculated using the expression: 
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Thermal conductance associated with heat transfer between electrons and phonons in metal is 

given by: 

effepeep VTTCG )()( Γ= , (3.8) 
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2
)( = is the electron heat capacity per unit volume calculated using the 

Sommerfield model[31], and n and εF are the number density and Fermi energy of the metal 
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electrons respectively. Here Veff is the effective volume and Γep is the relevant electron-phonon 

scattering rate, which is given by [32]: 
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Here vs is the velocity of sound and ζ is a Riemann function, ζ(3)=1.202. 

Special care has to be taking care when evaluating the thermal phonons heat flux that escapes 

the resonator through the ends of the support beams. This calculation is valid for both the metal 

aluminum and structural silicon carbide layers, if appropriate parameters are utilized for each layer. 

We assume that the power is uniformly distributed in the metal layer, and then solve the thermal 

transfer differential equation: 
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We apply the boundary conditions T=T0 at y=0 and y=L2, because GK is relatively large as we 

have mentioned earlier. A similar equation is solved for the phonons in SiC structural layer of the 

resonator. The thermal conductivity is estimated assuming a simple diffusive model 

κ≈csvslmfp/3=αpT3. Here cv is the heat capacity per unit volume, it is calculated using Debye model 
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Tnkc π .We assume a boundary scattering limited value for the effective phonon 

mean free path lmfp≈1.12√A , where A is the smallest crossection of the beam, based on previous 

studies of thermal transport in nanoscale beams [33]. The formulae we deduce here are valid below 

40-50 K, which is suitable for our case since we operate at ambient temperature T0≈10K. If the 

resulting temperature rises beyond this range then the expected heating is expected to be even 

larger than the model’s predictions, because thermal conductances in this regime begin to saturate 
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and stop increasing with temperature. In that case, the estimated temperature is certainly lower 

than experimental.  

From the thermal diffusion equation (3.10) we obtain the steady-state spatial temperature 

profile, 
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where metaleffplt twLQT 22
4

0 /αβ &+= . Equation (3.11) implies that uniformly distributed Joule 

heating in aluminum wire, whose ends are held at constant temperature, results in parabolic-shaped 

temperature distribution of the electrons in the metal. Hot metal electrons subsequently heat metal 

phonons according to our model (Equations (3.8) and (3.9)), therefore in the first approximation 

we assume the power transferred to the phonons is also uniform along the length of the beam, it is 

numerically calculated average temperature from Equation (3.11). Similar procedure is performed 

for subsequent thermal pathways in figure 3.6. Finally when we reach the phonons of the structural 

layer we note similar peak shaped temperature profile with a maximum at the center is developed 

in pump beams, hence the signal beam has maximum temperature value at its ends, and there is no 

additional power distributed in it. As a result the signal beams are thermalized to exactly the 

maximum temperature from Equation (3.11). The expression for structural layer phonon thermal 

conductance is then given by: 
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Let us now consider heat conductance between phonons in the metal and semiconductor layers. 

The thermal transport between two solid materials at low temperatures has been studied in past 
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decades both experimentally and theoretically. Two theoretical models, such as the acoustic 

mismatch model and diffuse mismatch model [29], adequately explain solid-solid thermal 

boundary resistance. The Kapitza conductance is given by: 

34 TAG metalKK σ=  (3.13) 

where σK=900 W/m2K4 (for SiO2–Al boundary) is a constant parameter, which depends only on 

contacting materials, the value we employ here is for SiO2–Al boundary [29]. For all the 

temperatures above 10K this value is at least 10 times larger than )(R
phG  associated with structural 

layer phonon thermal conductance. Previous studies of Kapitza conductance coefficient for SiO2–

Si boundary [30] yield the value σK=9000W/m2K4, which is an order of magnitude higher, and 

therefore silicon oxide and silicon carbide can be treated as a single layer. 

Given the previous discussion we now have five equations of the type (3.7) for thermal paths of 

figure 3.5 with their corresponding relations:  
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Solving these equations numerically yields the temperature of the resonator which depends on 

pump power. We use this to evaluate the degradation of the parametric threshold. In order to 

validate the model, an experiment was performed where the resonance frequency dependence on 

sample stage temperature was measured. When pump power is applied to the pump beams the 

resonance frequency of a signal beam serves as an effective thermometer. The green curve in 

figure 3.7(a) is the frequency shift observed when the sample stage is heated up while temperature 

is measured by an external sensor mounted to the stage. The other two curves in figure 3.7(a) show 
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relative resonance frequency shift for DC and AC voltages applied versus temperature, which is 

evaluated using the model described above. The agreement confirms that the model reliably 

predicts the temperature of the device.  

 

Figure 3.7 Comparison of frequency (a) and Q (b) 
dependence on device temperature, where the latter is 
either measured directly via a temperature sensor on the 
sample stage or calculated from applied DC or AC 
voltage using the model developed. 

We now perform an analysis to evaluate the practical scalability of this design for VHF 

mechanical parametric amplifier implementation. Equation (3.4) indicates that the threshold 

voltage of the parametric amplifier is inversely proportional to its quality factor. Based on previous 

experimental studies of the temperature dependent dissipation in nanoscale mechanical systems 

[34, 35], we assume the Q decreases as T–0.3 for SiC NEMS. Combined with our Joule heating 

model we build a link from a given applied voltage to the quality factor degeneration. Figure 3.7(b) 

shows the predicted quality factor values in comparison with what we measure experimentally 

when the device is heated via DC or AC applied voltages or by direct heating the sample stage. 
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The dashed line shown here is the Q~T–0.3 relation for comparison. Therefore the model 

correctly predicts quality factor values up to 40-50 K (corresponding voltage is around 200 mV) 

and then dissipations grow even faster. 

Taking into account the above heating model and semiempirical law of quality factor 

temperature dependence, we estimate the threshold voltage of parametric amplifier at given Joule 

heating power input. Figure 3.8 shows the experimental and theoretically expected relation of 

threshold and applied voltage. The applied voltage is the straight 45o line (red), the intersection 

point signifies accessible threshold voltage in this plot.  

The threshold voltage for self-oscillation is calculated by fitting measured Q-enhanced 

responses to calculated curve (2.24). The result is shown in figure 3.8. The plot explains the Q 

enhancement data we have obtained. Initially, as we approach the threshold, the closest we get is 

kp/kt ≈ 0.7 for Vrms = 240 mV. Q increases from 2200 to approximately 7000 in this case. At higher 

voltages threshold increases faster due to faster drop in quality factor. The experimental data fairly 

well agree with calculated model for temperatures below 40-50K. 
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Figure 3.8 The threshold voltage dependence on applied 
voltage using the heating model. The applied RF voltage 
is a straight 45º line. The intersection means achievable 
parametric threshold voltage. Theoretical predictions are 
for 17.5, 40, 90, and 130 MHz devices. Voltages are 
given as amplitudes. 

The result we obtain here shows that achieving the threshold voltage for the fabricated 130MHz 

device is accompanied by significant heating of the beam. By varying the geometrical parameters, 

we performed several more studies of theoretically expected threshold voltages for lower 

frequency devices (17.5, 40, and 90 MHz).  

We conclude that in order to achieve significant gain for a 130MHz “H”-geometry Lorentz 

force parametric amplifier the beam will heat up by at least 50K, causing the parametric threshold 

to become unachievable. 
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SUMMARY 

Magnetomotive actuation and detection has a long history of being successfully utilized in 

NEMS research at our group. Therefore it was natural to devise first implementation of very high 

frequency NEMS parametric amplifier, so that it employs magnetic Lorentz force frequency 

tuning. After careful investigation it turned out that the presence of large current for parametric 

pump has undesirable side effect of immense Joule heating that degrade device quality factor and 

hence parametric amplifier performance.  

To overcome this fundamental obstacle with this design we develop an alternative scheme for 

parametric modulation of a tensile stress of a nanomechanical doubly clamped beam. The new 

mode of operation, which is based on piezoelectric electromechanical coupling, does not require a 

presence of electrical current, hence does not suffer from this limitation 
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Chapter 4 

D-NEMS PARAMETRIC AMPLIFIER 

This chapter gives a brief introduction into the properties of multilayered piezoelectric 

nanoelectromechanical devices. The most important characteristics such as efficient actuation and 

frequency tuning are discussed in detail. Parametric amplification achieved by piezoelectric 

mechanical coupling is presented. Large gain, substantial Q enhancement,  and frequency stability 

improvement are demonstrated. Finally the region of parametric instability is explored.  

3.1 D-NEMS PIEZOELECTRIC FREQUENCY TUNING 

One of the most intuitive and straightforward ways to achieve a wide range of frequency tuning 

in nanomechanical resonators is to use piezoelectric electromechanical coupling. Indeed 

piezoelectricity is a well-known phenomenon that directly converts electric field into mechanical 

strain. In order to achieve the highest possible efficiency for actuation and frequency control, we 

design multilayered piezoelectric structures. As the thickness of the active material becomes 

smaller it can get increasingly more difficult to retain piezoelectric properties and to apply 

significant electric field without voltage breakdown. Binary noncentrosymmetric materials, such as 

III-V semiconductors, grown by molecular beam epitaxially, retain single-crystal structure and 

therefore their intrinsic piezoelectricity down to very small thicknesses. 

To demonstrate D-NEMS parametric amplifier we fabricate the devices from 200 nm thick 

GaAs pin diodes. These consist of a stack of three layers: 100nm highly n-doped, 50nm insulating 

and another 50nm layer of highly p-doped gallium arsenide (see figure 4.1). In previous work [36] 

we have shown that these devices possess a unique combination of properties including efficient 

actuation and a wide frequency tuning range. The detailed characterization of D-NEMS actuation 



 

 

36 
is prevented elsewhere [37]; in this section the frequency tuning model and most important 

experimental results are described. 

 

Figure 4.1 (a) Schematic of a multilayered piezoelectric 
doubly clamped beam made of MBE-grown 200 nm 
thick GaAs pin diodes. These consist of a stack of three 
layers: 100nm highly n-doped, 50nm insulating, and a 
50nm layer of highly p-doped gallium arsenide. (b) SEM 
image of a 4μm long device. 

We base our derivations on the canonical constitutive piezoelectric equations that express the 

relation between the stress σ, strain s, electric field E, and electric displacement field D. These are 

written in either a stress-charge or strain-charge form. For these derivations we employ the latter: 

,
,

ED
E

T

T
E

d
dcs
εσ

σ
+=
+=

 (4.1) 

where s and σ are six component while E and D are three component vectors. Here cE is the 6 by 6 

compliance matrix, dT is 6 by 3 inverse piezoelectric matrix, d is 3 by 6 matrix of piezoelectric 

constants, and εT is the dielectric constant matrix.  

The GaAs heterostructures were grown in (001) orientation, thus when voltage is applied across 

the top and bottom electrode an electric field is developed in the z-axis direction (figure 4.1(b)). 
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Therefore equations for the components that describe our system, where the beam is oriented 

along x-axis, are: 

.
,
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31,

zGaAsxxz

zxxxxExxxx

EdD
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εσ
σ
+=

+=
 (4.2) 

Previously in chapter 2 we modeled frequency tuning under longitudinal tensile stress σxx and 

arrived at an expression (2.5). In the present case the stress is developed only in a narrow middle 

layer of a thickness tm. Hence, the expression for the absolute frequency shift assumes the form: 

ρ
σ

δ
Yt
t

f
h

xxm
2

276.0
= . (4.3) 

Tensile stress σxx is the parameter we shall determine from the set of equations (4.2). In order to 

do this, we first solve the equations with doubly clamped beam boundary conditions, which require 

longitudinal strain to vanish everywhere sxx=0. Then the first equation in (4.2) yields:  

m
zxxxxExx t

VdEdc 3131, =−=σ , (4.4) 

where in the simplest approximation V is a voltage across the thickness of the resonator, and cExx,xx 

is the inverse Youngs modulus. Hence the stress is given by:  

m
xx t

VYd13=σ . (4.5) 

Substituting this expression into equation (4.3) yields the formula for the absolute frequency 

tuning: 

VY
t

d
f

h ρ
δ 2

13276.0
= . (4.6) 

One of the first important conclusions we draw from this equation is that the absolute frequency 

shift is independent of length. In order to experimentally test these predictions we fabricate six 
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doubly clamped beams all on the same chip and sharing the same electrodes with lengths 

ranging from 3 to 8 microns.  

Fabrication consists of the following four steps:  

(1) Large wirebond pads are defined photolithographically followed by deposition of Ti/Au/Ti 

layer. The first 5 nm of titanium serve as an adhesion layer between the gold and gallium arsenide. 

The next 50nm of gold is the wirebond metallization, which is not removed by wet HF suspension 

etch. The top 50 nm titanium layer serves as a mask for the subsequent argon ion beam milling 

etch.  

(2)  Electron beam lithography is used to define the nanomechanical resonators structure, 

followed by deposition of 50 nm of titanium and liftoff, to serve as a dry etch mask. 

(3) Argon ion beam milling is used to provide dry anisotropic etch of GaAs. The acceleration 

voltage employed is 200V in order to prevent the damage to the layers. The typical etching rate is 

12nm/min and is very consistent. This critical property allowed electric isolation of the devices, 

while preserving shared mechanical ledge.  

(4) After 200 nm of GaAs is etched away the chip is dipped into 5% hydrofluoric acid for no 

more than 5 seconds to remove sacrificial AlGaAs layer. After this etch the chip usually appears to 

be dirty with residues; these we later remove by a 1 second dip into 1% NaOH solution.  
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Figure 4.2 (a) Our simple interferometric optical 
displacement measurement setup. (b) The mechanism of 
operation is via interfering laser beams reflected from the 
top of the mechanical beam and the substrate. 

After fabrication the chip with resonators is ready to be mounted on a chip holder, wirebonded, 

and placed into the vacuum chamber (P=1-10 mTorr) for experimental measurements. Optical 

interferometry [38] at room temperature is employed to obtain precision displacement detection, 

with a setup as shown in figure 4.2. The vacuum chamber is fitted with a transparent sapphire 

optical window.  In order to minimize the impact of light on device performance (e.g., via spurious 

effects such as heating, photocarrier generation) a 2 mW, 904 nm infrared laser diode is used with 

a neutral density filter with 10-fold attenuation factor.  The beam is focused to a spot of ~10-20 μm 

in diameter.  A low-noise, high-bandwidth photoreceiver is used for detection. This particular 

readout mechanism is chosen because it is very easy to implement and troubleshoot, and it 

provides high mechanical responsivity for out-of-plane displacement, negligible RF background, 

as well as reliable means for characterization of multiple devices. 
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Figure 4.3 (a) SEM image of a set of doubly clamped D-
NEMS beams. The geometrical parameters of the beams 
are 3μm<L<8μm, w ≈ 500nm, th=200nm(b) Piezoelectric 
frequency tuning of the resonators obtained by DC 
biasing the beams.  

Equation (4.6) is experimentally verified by precise measurements of the resonance peak shift 

with application of DC bias voltage between top and bottom layers of the beam. An SEM image of 

the set of six different doubly clamped beams with lengths ranging from 3 μm to 8 μm and width 

500nm is shown in figure 4.3(a). The results from DC tuning measurements are shown in figure 

4.3(b). 
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Note that all the tunability slopes are approximately the same 40 kHz/V, regardless of length 

and initial fundamental resonance frequency. This is exactly the analytically predicted dependence. 

A slight 10% degradation of the slope for shorter beams is visible on the plot, which is attributed to 

the defects during growth or fabrication; the precise nature of the mechanism and its quantitative 

impact are not understood. The tensile stress tuning via piezoelectricity coupling is characterized 

by wide range, exceptional linearity, and the absence of associated Joule heating. 

4.2 PARAMETRIC GAIN AND Q ENHANCEMENT  

Due to remarkable efficiency of D-NEMS stress tuning mechanism parametric resonators 

become scalable up to very high frequency. The fundamental frequencies of the six resonators 

shown in figure 4.3(a) vary from 11 to 53 MHz. Their quality factors change from 3300, for the 

longer, down to 1980, for the shorter beam (a summary is shown in table 4.1). The threshold for 

parametric oscillation is easily achievable for all these devices.  

The parametric amplification gain and effective quality factor enhancement are measured for 

the shortest beam shown in figure 4.4(a) with parametric pump is set at twice the resonance 

frequency. A set of parametrically modified resonance peaks is shown in figure 4.4(b). The drive 

amplitude is kept the same for the four curves displayed. The peak’s height boost as well as its 

width reduction is readily visible as parametric pump is increased. A remarkable quality factor 

increase of up to 120000 is observed at pump values near the threshold. 
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Figure 4.4 (a) SEM image of the shortest, 53.3 MHz 
doubly clamped beam (L=3μm, w=500nm, th=200nm). 
(b) The effective quality factors of the parametrically 
enhanced resonance peaks are 1600 with no pump, 
13900, 45000 with intermediate pump and 120000 close 
to threshold. (c) The dependence of gain on the pumping 
amplitude for the three different initial drives. The small-
signal gain of 200 was obtained in these experiments. 

The results of amplitude gain measurements at maximum phase are shown in figure 4.4(c). The 

three curves are taken at three different initial drive amplitudes. A small-signal gain of 200 is 

observed for the 53.3 MHz nanomechanical parametric amplifier. The influence of Joule heating is 

negligible in this parametric pumping scheme, hence we conclude the scheme to be effortlessly 

scalable to microwave frequencies. Parametric measurements were done at the slightly lower initial 

quality factor 1600, because the data were taken few months later. The quality of nanoresonators 

undergoes slight degradation over long periods of time. The nature of the causes is not understood, 
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although it is known that III-V material slowly oxidizes when exposed to air, in addition to the 

fact that it may absorb contaminants that degrade surface quality. 

Parametric amplification is especially promising for nanoresonators operating in ambient 

environment. This is shown by similar parametric amplification experiments performed at 

atmospheric pressure. The high efficiency of the piezoelectric actuation mechanism allows high 

excitation mechanical response even at 1 atm. The characteristics for the devices in vacuum and in 

atmosphere are shown in Table 4.1. 

Beam 
length μm 

8 7 6 5 4 3 

Frequency 
MHz 

10.9 13.9 18.2 24.8 35.3 53.3 

Q in 
vacuum 

3200 3300 3100 3200 2600 2000 

Q in 
atmosphere 

130 150 200 250 320 390 

 Table 4.1 Resonant frequencies and quality factors in 
vacuum and in air for six beams, of different lengths, 
fabricated on the same chip. 

One interesting observation is that as the beams get smaller the effect of air damping becomes 

weaker. This effect is consistent with our group’s previous measurements of nanomechanical 

resonators in ambient environments [39]. The physics behind this phenomenon is that when the 

dimensions of mechanical device approach characteristic mean free path of air at atmospheric 

pressure the interaction with air is dramatically decreased.  
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Figure 4.5(a) SEM image of the longest 10.9 MHz 
doubly clamped beam (L=8μm, w=500nm, th=200nm). 
(b) The effective quality factors of the parametrically 
enhanced resonance peaks are 130 with no pump,760, 
1460 with intermediate pump and 4900 close to 
threshold. (c) The dependence of gain on pumping 
amplitude for different initial drives. A small-signal gain 
of 1000 was obtained in these experiments.  

Parametric amplification is measured for the 8 micron long beam shown in figure 4.5(a). 

Starting from the damped quality factor 130 the enhanced Q of 4900 is plotted in figure 4.5(b). 

Direct gain measurements in degenerate mode yielded a factor of 1000 amplitude increase due to 

parametric amplification (see figure 4.5(c)). 

Parametric amplification is especially useful when the noise floor is dominated by the readout 

mechanism. The advantages were discussed previously in section 2.4. Our first trial utilization of 

parametric amplification is described in the next section. 
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4.4 PARAMETRIC AMPLIFICATION AND FREQUENCY STABILITY 

This section describes a first attempt to measure the improvement of frequency stability for 

regular sensing applications from parametric amplification. For these measurements we devise a 

measurement setup where the pump is kept at constant level and is always locked to twice the drive 

frequency with constant, controllable phase difference. The schematic of the setup is shown in 

figure 4.6. 

 

Figure 4.6 The setup for tracking resonance frequency 
when the mechanical signal is parametrically amplified 

An HP3577A network analyzer is used as both the source and detector; it is operated in 

continuous wave (CW) regime and controlled by an external computer to provide phase locked 

loop (PLL) operation. The RF output from this network analyzer is split into two paths, the first 

one is sent through an attenuator and band-pass filter to actuate the resonator. The second is 

amplified then frequency doubled to serve as parametric pump. The subsequent signal is filtered 

and its phase carefully adjusted to provide maximum amplification. Filtering is essential because 

the frequency doubler, amplifier, and network analyzer generate spurious, undesirable harmonics 

at various frequencies. The settings of the low noise amplifier in pump path and attenuator in drive 

path are carefully adjusted to provide maximum amplification. 
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Figure 4.7 (a) Comparison of pumped and unpumped 
signal under ambient conditions (atmospheric pressure 
and room temperature) with Q enhancement from 130 
(blue) to 2500 (red). The inset shows x and y of the 
amplified signal, the amplification in one phase is clearly 
visible. (b) Frequency noise improvement, characterized 
by Allan deviation as a result of parametric 
amplification. 

The longest beam from the set mentioned in previous section (figure 4.5(a)) with resonance 

frequency of around 11 MHz is used for this experiment. The resonator is placed into ambient 

environment where its quality factor drops down to 130. After the parametric pump is locked to 

twice the resonance frequency, its phase and magnitude are adjusted so that the frequency sweep 

yields Q enhancement of 2500. Resonance peaks with pump and without pump are shown in figure 

4.7(a). The modified curve shape matches the theoretical prediction given by Equation (2.25) very 

well. Since the gain is high only for one phase direction, the resulting resonance frequency sweep 

curve, when shown in phase space plot, assumes the form of an ellipse, rather than circle, as shown 

in the inset in figure 4.7(a). 

A computer controlled PLL is used to perform long scans for the frequency noise 

measurements. The result is shown in figure 4.7(b) where the frequency stabilities of the 
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parametrically pumped resonance peak and regular Lorentz peak of the same magnitude are 

compared. The Allan deviation [40] is shown in the plots as a measure of frequency stability.  

The result of these first trial measurements shows very promising improvement of the Allan 

deviation, especially for short averaging times where the noise in frequency detection is dominant. 

On the other hand, the parametric pump does not improve long-term drift, nor does parametric 

amplification improve thermal-noise-limited detection sensitivity [41], because parametric 

amplification only improves signal-to-noise ratio for the case where front-end electronics limit the 

noise. 

The ultimate resolution of mass or charge detection based on resonant nanomechanical sensors 

is directly proportional to Allan deviation. Therefore these preliminary results demonstrate that 

there may be significant advantages for employing parametric amplification in such applications. 

4.4 PARAMETRIC ACTUATION 

Earlier in section 2.5, we discussed the interesting dynamics of parametrically actuated 

resonator. When the pump is above threshold, the amount of energy pumped into the system is 

larger than the amount lost due to dissipation; as a result the resonator executes spontaneous 

oscillations. The mechanical vibration of the resonator occurs at half the pump frequency. The 

most important characteristics of this intriguing dynamical system, such as its family of instability 

tongues and the intrinsic bistability of the valid solutions, were discussed in section 2.5.  

All of the devices from the set shown in figure 4.3(a) have thresholds that are easily achievable 

in experimental settings. Most of the preliminary characterizations are performed with 4 μm long 

35 MHz beam, shown in the inset in figure 4.8(a). The measurements are carried out with a very 

simple setup, in which direct drive source is removed while a separate function generator serves as 
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the parametric pump source. The photodetector output is connected to spectrum analyzer for 

signal readout. 

 

Figure 4.8(a) An example of upward and downward 
parametric frequency sweeps. The onset of instability 
and regions of bistability are clearly visible. An electron 
micrograph of the nanoresonator is shown in the inset. 
(b) A set of sweeps at steadily increasing parametric 
pump amplitude.  

The results of these measurements are in agreement with theoretical predictions. The plot in 

figure 4.8(a) shows an example of upward and downward parametric frequency sweeps. A 

nontrivial solution becomes the only stable one at the left edge of the instability region (around 

35.288MHz), as a result the beam starts oscillating. With increasing pump frequency the amplitude 

of mechanical motion increases with a square-root dependence, in agreement with theoretical 

prediction expressed in Equation (2.31). When the pump frequency reaches the right edge of the 

instability tongue, the mechanical motion does not cease since, at these settings, both trivial and 

nontrivial solutions are stable. Hence the amplitude continues to increase until other factors such as 

nonlinear viscous damping [14], causes the motion to stop. On the other hand, during the 
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downward sweep, the mechanical motion jumps to high amplitude at the right edge of the 

instability tongue (35.289MHz). Later it decreases to zero along the same curve as followed on the 

upward sweep. All this behavior is clearly evident in figure 4.8(a). 

Figure 4.8(b) shows the set of upward and downward frequency sweeps with steadily increased 

parametric pump amplitude. According to equation (2.32) the instability region should widen as 

the pump increases. The experimental measurements confirm this prediction. This collection of 

downward sweeps with steadily increased pump provides a mapping of the parametric instability 

region of the resonator. Figure 4.9 shows a color plot of a set of parametric downward sweeps; the 

x-axis is a half pump frequency, the y-axis is pump amplitude in mVpp and the amplitude of 

mechanical motion signal is represented by color scale. The simplest expression for the shape of 

the tongue is given by equation (2.32), although variety of factors can influence the ultimate shape 

in the experiment [12].  

The predicted parametric threshold from the quality factor measurement (Table 4.1) and the 

tunability curve shown in figure 4.3(b) is 678 mVpp, which perfectly matches what is measured in 

experiment. 
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Figure 4.9 Plot of the set of downward sweeps for the 
parametrically actuated resonator. The amplitude of 
mechanical motion is color coded. 

SUMMARY 

Mechanical parametric amplification is a desirable physical phenomenon that can benefit a 

large variety of nanoelectromechanical systems applications. We demonstrated a novel room 

temperature scheme of efficient parametric frequency tuning for high-frequency NEMS. The 

1000-fold amplitude gain as well as 75-fold Q enhancement is experimentally measured in 

mechanical system using Lorentz force technique. If used as a preliminarily amplification 

mechanism in mechanical domain before applying conventional linear amplifier, the 

demonstrated effect is a promising solution for low noise transduction of the motion to an 

electrical signal. Its advantage for improving frequency stability has been experimentally 
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measured. Another interesting physical phenomenon parametric actuation is introduced in last 

section. Chapters 7 and 8 will explore these phenomena in much more complex experiments.  
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Chapter 5 

COUPLING PHENOMENA IN D-NEMS 

This chapter studies the interaction between two or more nanomechanical resonators. The 

nature of the coupling mechanisms is discussed and analyzed. The formalism for characterizing a 

new basis of vibration modes for strongly coupled nanoresonators is developed and experimentally 

investigated for two, three and ten devices. Finally a practical implementation of employing a pair 

of coupled resonators for long-term thermal drift compensation is successfully implemented, 

resulting in significant improvement of frequency stability. 

5.1 VARIETY OF COUPLING MECHANISMS IN D-NEMS 

The remarkable level of control of nanoelectromechanical systems displayed by piezoelectric 

D-NEMS nanoresonators provides a convenient platform for increasing the complexity of the 

mechanical devices’ architecture. The integrated actuation mechanism, wide range frequency 

tunability and efficient detection scheme provide a straightforward opportunity to investigate the 

behavior of several interacting nanomechanical resonators. There are a number of physical 

mechanisms responsible for coupling between the D-NEMS resonators. The most important ones 

are mechanical and electrostatic. These mechanisms are studied in most detail in this chapter.  

Mechanical coupling is the interaction phenomenon that takes place when resonators are 

fabricated on the same chip and are connected to one another via elastic mechanical structure. The 

nature of the coupling and its strength strongly depends on the architecture of the nanomechanical 

resonator. There are several qualitatively varying degrees of mechanical interaction that can be 

engineered between D-NEMS resonators. To begin with the fabrication of the devices was 

discussed in previous chapter include wet suspension etch. The etch selectively removes the 
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sacrificial AlGaAs layer leaving the structural GaAs layers intact. Therefore each beam or 

cantilever has a short undercut or ledge of a GaAs layer before the substrate. The length of the 

ledge varies from 600nm to 1.2μm. Figure 5.1 shows a closer look at the rather long ledges on a 

typical D-NEMS chip. The ledge is noticeable by a clearly defined border. A few dimension 

measurements are shown as well. The ledge is also visible on all the SEM pictures presented 

before. 

 

Figure 5.1 A closer look at the ledge which results from 
the suspension wet etch process. This overhanging 
undercut is responsible for a strong mechanical coupling 
in many cases.  

The fabrication procedure can be controlled to an amazing degree, thus we can study several 

architectures with varying degrees of coupling strength through a ledge. Strong coupling cases are 

studied in the next section. Weaker coupling with isolated top electrodes is discussed in detail later 

in this chapter and chapter 7. Mechanical interaction through the elastic material is almost always 
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present, even in the absence of a ledge connecting the two resonators, although the coupling is 

extremely weak in that case. More detailed investigation of this case is presented in chapter 7.  

 

Figure 5.2 Shematic of the dipole-dipole electrostatic 
interaction between two D-NEMS doubly clamped 
beams. 

The electrostatic coupling is caused by the interaction of electric charges in the layers of D-

NEMS devices. When the adjacent beams are polarized by an externally applied voltage their top 

and bottom layers are charged (see previous chapter). As a result dipole moments are formed in 

each resonator. In the case of a common top electrode as schematically shown in figure 5.2, the 

dipole moments are identical, and thus experience a repulsive electrostatic force, which is given 

by:  
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where d is a distance between beams, Abeam is a beam area Lxw, z1 and z2 are the out of plane 

central point displacements, ψ0≈1.2V is a diode built-in potential, ti=50nm is a thickness of an 

insulating layer and tm≈78nm is the depletion width of the pin diode [36]. 
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The electrostatic interaction plays a crucial role in the phenomenon described in chapter 7. 

The coupling can be described as a simple linear one with a negative coefficient, which can be 

understood as a spring with negative stiffness constant is attached between the beams providing a 

repulsive force directly proportional to the difference in displacements. For the geometry of the 

devices used in the experiment in chapter 7 (d=400 nm, Abeam=Lxw=6 μm*0.5 μm and Voffset ≈ 

1.1V and 1 nm difference in displacements) the force is ~1 pN. 

Another coupling mechanism is piezobackaction due to direct piezoelectric effect. When a 

resonator is in motion, the strain causes a voltage to develop across the depletion region of the 

resonator, and this voltage in turn affects the other resonator. The inverse piezoelectric effect is 

used for actuation, while the electric field causes the strain. Historically it was described after the 

direct effect when the voltage was measured between the electrodes on opposite edges of squeezed 

quartz crystal [42].  

Preliminary calculations show that in most cases the piezobackaction has a negligible effect due 

to either the large capacitance of the wirebond electrode or the intentional isolation of the 

resonator’s top electrodes.  

5.2 STRONG COUPLING MODEL 

If two resonators are strongly coupled by an elastic spring between them then the equations of 

motion include a simple linear term of the form ξ(x1-x2), where ξ is stiffness constant of the spring; 

x1 and x2 are the displacements of the resonator. This term represents the interaction force between 

the beams. The equation of motion for two resonators, whose resonance frequencies are ω1 and ω2, 

assuming their masses are the same, is given by: 
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Here D=ξ/m is a reduced coupling coefficient which has units of radians per seconds squared. We 

assume that the resonators have equal masses. Equation (5.2) is obtained by dividing the regular 

resonators EOM (2.1) by the mass m. The detailed formalism on how to develop and solve coupled 

oscillators models is given in most classical mechanics text books (for example in [43]). 

In the first approximation the equation of motion for two beams is then expressed in matrix 

form: 

FxVxxM =+Γ+
r&r&&r , (5.3) 

where x=(x1,x2) is a displacement vector, F=(F1(t),F2(t)) is a vector of forces exerted on the 

individual resonators and M, Γ, V are the mass, damping and potential matrices respectively. They 

are given by: 
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Duffing nonlinearity and parametric terms are omitted for now. They will be reintroduced later 

when coupled nonlinear and coupled parametric effects are discussed in detail. 

The equation (5.4) is a typical eigenvalue problem. The eigenvectors give the mode shapes and 

the eigenvalues are the modes’ angular frequencies. The solution is conveniently expressed in 

terms of squared average and squared difference frequencies:  
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Then eigenvalues are given by: 
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The orthogonal and normalized eigenvectors are: 
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Expressions (5.6) and (5.7) imply that the two coupled resonators lead to two independent 

modes. If the resonators are identical δ=0 then the first mode is completely symmetric with both 

beams vibrating in phase with the same amplitude at the angular frequency ωI=ωm, and the second 

one is antisymmetric when the resonators motion is out of phase and its frequency is higher 

ωII
2=ωm

2+2D. On the other hand when the beams slightly differ in frequencies the modes are no 

longer fully symmetric or antisymmetric. In this case the first mode the resonators vibrate roughly 

in phase although the first beam (lower frequency) has large amplitude, whereas the second mode 

is mainly an out of phase motion while the second beam has higher amplitude in this case. 

The system of equations for modes as two independent resonators in a form similar to (5.3) is 

obtained via dediagonalization procedure (explained in detail in [43]). The conversion for the 

matrices in equation (5.4) is given by: 

FTFVTTVTTMTTMxTx ~,~,~,~,~ =′=′Γ=Γ′=′=′ , (5.8) 

where T=(eI eII) is a conversion matrix composed of two eigenvectors from (5.7) as a columns, and 

T~ =T-1 is the reciprocal matrix, which in the case of orthonormal eigenvectors is equal to 

transposed matrix. The force F and displacement x are vectors, hence the conversion procedure is 

simpler. Since the eigenvalue problem is supposed to diagonalize potential energy, V′ is diagonal. 
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It turns out that mass matrix M′ is also diagonal due to its proportionality to a unity matrix. The 

damping matrix Γ′ has small off-diagonal terms although they are a factor of 60 smaller than the 

diagonal ones and can thus be ignored. 

5.3 STRONG ELASTIC COUPLING THROUGH SUPPORTS 

The strongest interaction engineered between doubly clamped beams is a configuration where 

the resonators share ledges on both sides. The SEM image of two strongly coupled 6μm x 600nm 

resonators is shown in figure 5.3(a). 

This architecture requires D-NEMS resonators to share both top and bottom electrodes; 

therefore the second asymmetric mode is heavily suppressed by both actuation and detection 

mechanisms. Since the laser beam used for the transduction covers both beams, therefore only one 

resonance peak shown in figure 5.3(b) is observed during the measurements.  

 

Figure 5.3 (a) SEM image of two strongly coupled 
nanoresonators. (b) Only one mode is visible, because 
the second mode turns out to be suppressed by both 
detection and actuation mechanisms. 

In order to better understand the nature of elastic support interaction we performed finite 

element simulations. The realistic experimental geometry with the two 6μm x 600nm x 200 nm 
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beams 0.9μm apart is defined. The resonators are chosen to be identical because this is a strong 

coupling case when D>>δ. The ledge length is chosen to be 1μm. A static analysis is used to 

estimate the strength of the elastic coupling. A large uniform force is applied to the first beam 

causing it to move by x1. As a result the stress propagates through the ledge so that the second 

beam is affected by the interaction force ξ(x2-x1) and displaces by x2. The displacement color map 

is shown in figure 5.4.   

 

Figure 5.4 Finite element simulations of coupling 
through ledge. The force applied to one of the beams 
exerts the interaction force on the other one. Calculated 
displacements are used to estimate the coupling constant. 

The estimated interaction spring constant using this method is ξ=1.40 N/m, (regular beam 

stiffness constant is k=28 N/m). In addition, a modal analysis is performed using the same finite 

element analysis package. Symmetric and antisymmetric modes were found with resonance 

frequencies of 13.8 and 14.5 MHz respectively. Using equation (5.6) we estimate the coupling 

constant using this method ξ=1.38 N/m. The results indicate good agreement, which means finite 
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element analysis is a proper method to investigate elastic coupling phenomena in mechanical 

devices.  

Modal analysis for three strongly coupled resonators reveals three modes; their shapes are 

shown in figure 5.5. The first mode is symmetric, and therefore it is expected to be easily 

detectable in the experiment. On the other hand the second asymmetric mode, with two beams 

vibrating out of phase while the middle beam rests, is heavily suppressed by both actuation and 

detection, similar to the simpler two-resonator case. Therefore it is not likely to be detectable in the 

measurements. The third mode is not fully asymmetric, and therefore we may be able to detect a 

small resonance peak associated with this mode. 

 

Figure 5.5 Mode shapes of a system of three strongly 
coupled resonators, calculated by finite element analysis. 

Three strongly coupled 6-micron-long beams were fabricated and measured. As was predicted, 

only two modes are visible, and the first mode is much more evident than the other. Figure 5.6 

shows the SEM image of the 3-beam system and its spectral response. The first symmetric mode 

has to be driven well above the onset of nonlinearity in order to make the third asymmetric mode 

barely visible. 
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Figure 5.6(a) SEM image of three strongly coupled D-
NEMS resonators (b) the spectral response with two 
modes visible  

Piezoelectric actuation and optical detection turn out to be a remarkably powerful method for 

characterizing the coupled modes of arrays of nanoresonators. A great demonstration of the 

coupled mode phenomena is the observation of a variety of modes in an even larger number of 

resonators. To show this we fabricated and analyzed an array of ten nanomechanical resonators. 

Finite element analysis was employed to calculate the shapes of the ten coupled modes. SEM 

image and calculated mode shapes are shown in figure 5.7. The result of modal analysis shows a 

set of ten modes that represent an analog the standing wave patterns with progressively decreasing 

wavelength. 
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Figure 5.7 An SEM image of ten 5μm long resonators 
and its coupled mode shapes calculated via finite element 
analysis. 

In the measurement setup the laser beam spot size was deliberately increased so that all the 

resonators are in its area of illumination. The first mode with resonance frequency of around 22 

MHz is very easily detectable, but the second mode is suppressed when the first one is optimized. 

Therefore the laser spot was shifted so that the second mode is at its maximum optical detection 

efficiency.  

After all the optical adjustments, the resonance scan over a wide frequency range was 

performed. As a result nine out of ten modes in figure 5.7 were observed, the missing mode 

possibly due to its extreme actuation and detection suppression. The amplitude of the drive was set 

to a high level so that all the modes are visible as small peaks. Hence the first three peaks are 

excited to very high amplitude, above the onset of nonlinearity. A wide spectral response is shown 

in figure 5.8. Each mode’s resonance peak was carefully examined and its frequency and quality 
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factor was measured reducing the drive for over-driven modes in the figure. The result is plotted 

in the inset in figure 5.8. The resonance frequency predictably steadily increases with the mode 

number while the quality factor starts at 1530 for the first two modes, then rises as high as 3040 for 

mode number 7, and then slightly drops for modes eight and nine. This observation is unusual in 

comparison with previous observations [44], in which the quality factor typically decreases as the 

mode number is increased 

 

Figure 5.8 The spectral response of the system of ten 
strongly coupled D-NEMS resonators. Nine out of ten 
peaks were observed. The inset shows the dependence of 
resonance peak’s frequency and quality factor on mode 
number.  

The observed phenomenon is an excellent demonstration of a well-known tuning-fork effect. In 

an asymmetric mode, two adjacent beams vibrate out of phase, and therefore the net motion of the 
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support between them is heavily suppressed, causing only a limited amount of energy to be 

dissipated as elastic waves into the bulk substrate. As a result the quality factors of asymmetric 

modes are larger than those for symmetric ones even though their frequencies are also higher. This 

phenomenon is promising for designing the architecture for arrays of large number of resonators. 

5.4 FREQUENCY BRIDGE 

This section illustrates an example where a system of coupled nanomechanical resonators is a 

promising approach to significantly improve frequency resolution, thus providing a path to more 

reliable sensors with even greater precision. 

The mechanical system includes two adjacent resonators with isolated actuation electrodes. This 

condition allows each beam to be embedded in its own independent phase locked loop for precise 

frequency measurement. A simple setup shown schematically in figure 5.9 includes two 

independent phase locked loops where computer controlled identical network analyzers are used as 

source and phase locked measurement instruments.  

 

Figure 5.9 The measurement setup for the independent 
frequency tracking of the two modes of the system of 
two coupled nanoresonators. 
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The experiment was performed using two different doubly clamped beam architectures. In 

the first case the two beams were strongly coupled, with the modes of vibration given by equations 

(5.6) and (5.7). Nevertheless each mode is more efficiently excited via its corresponding actuation 

electrode. Although the other mode is weakly excited its frequency is off resonance, and so its 

effect is negligible. In the second case, the beams did not share the ledge and therefore were o nly 

weakly coupled via electrostatic interaction and the common elastic support. The effect of these 

two coupling mechanisms is opposite in our system, and hence the conditions were chosen to be 

such that the interaction force between beams vanishes. The physical characteristics of the system 

are described in detail in the chapter 7. 

 

Figure 5.10 (a) Resonance frequency shift traces and 
their difference is plotted for two coupled 
nanoresonators. (b) Allan deviation comparison for the 
frequency traces of the modes and the difference. 

The resonance frequency was monitored for more than two hours. For the strongly coupled case 

the traces from two modes are shown in figure 5.10(a) as red and black curves. Although 

significant long term frequency drift is observed over this period of time, the frequency shift traces 

are highly correlated. When the initial resonance frequency is subtracted, the frequency shift plots 
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tend to follow one another, echoing each other’s drift pattern. As a result a remarkable reduction 

in long term frequency noise is obtained by monitoring the difference between the frequency shifts, 

shown as a green curve on the plot. The difference plot turns out to be very stable and less noisy. 

The Allan deviation plots, which are quantitative indicators of frequency stability, for given traces 

are shown in figure 5.10(b) with the same coloring. A remarkably low value of 5x10-7 is 

demonstrated for long term averaging times of hundreds and thousands of second. This 

phenomenon is utilized in low noise surface acoustic wave (SAW) sensors [45]. 

 

Figure 5.11 (a) Resonance frequency shift traces and 
their difference is plotted for two uncoupled 
nanoresonators.(b) Allan deviation comparison for the 
frequency traces of the modes and the difference 

Similar measurements for weakly coupled system are plotted in figure 5.11. The correlation of 

the long term drift for two independent beams is clearly visible in the plot (a), although the drift of 

the second beam (red) is evidently larger by a constant factor. This effect is a direct consequence of 

different temperature susceptibility of two independent beams. Taking this into account, we 

determine the Allan deviation for the difference signal calculated using different scaling factors for 

the second beam. As a result we conclude that the optimal scaling factor, which is the ratio of 
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temperature susceptibilities, is 1.15. The green difference plot and Allan deviation is calculated 

for these scaled frequency shift values. 

The conclusion is that the main causes for long term frequency drift are external. They affect 

the resonators located on the same chip in similar way. The most important factor, which 

influences a mechanical resonator operated in vacuum, is ambient temperature. The temperature is 

a subject to fluctuations as well as drift over a typical time of hours due to variety of factors. Many 

of the effects are unavoidable in reliable sensor operation, hence employing pairs of devices or 

using one test device will significantly improve the long term resonance frequency stability. The 

demonstrated phenomenon is very promising for a wide variety of nanoelectromechanical system 

applications.  

SUMMARY 

Systems of coupled resonators are extremely abundant both in artificial mechanisms and in 

nature. Nevertheless the detailed formalism for straightforward understanding of the underlying 

physical phenomena does not exist. Partly it is because the system is very complex for simple 

classification and characterization; partly it is due to different languages various communities use 

to describe their systems. This chapter provides a crucial step towards understanding the physics of 

interacting nanomechanical resonators. It starts with a discussion about possible coupling 

mechanisms present in piezoelectric D-NEMS nanoresonators. Then the vibration mode analysis is 

performed for strongly coupled beams. The model is experimentally tested with systems of two, 

three, and ten resonators. Finally a system of frequency bridge is introduced and implemented for 

both strongly and weakly interacting mechanical devices. The results suggest enormous potential 

for applications in frequency shift-based sensing.  
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Chapter 6 

COUPLING OF TWO DUFFING RESONATORS 

This chapter studies the physical phenomena in the system of two strongly coupled nonlinear 

resonators. Simple linear interaction results in complex nonlinear terms in the equations of motion 

of the system. Complicated behavior of the system is studied both theoretically and experimentally. 

An extraordinary agreement between analytical predictions and measured results is observed even 

for such complex phenomena as spontaneous state transitions and chaos. 

6.1 THEORETICAL ANALYSIS 

In section 5.2 in previous chapter the model for two strongly coupled resonators was developed. 

As a result a recipe for dediagonalization of equation (5.3) was outlined. This procedure results in 

an analogous equation for the orthogonal modes of resonators, whose shape is given by 

eigenvectors (5.7), where the potential energy matrix does not have off-diagonal terms. Therefore 

the system of equations for the modes of vibration is treated as a system of two independent 

resonators. The damping matrix Γ gains negligibly small off-diagonal terms because the initial 

terms have very small difference. Duffing nonlinear terms were intentionally omitted from the 

discussion earlier, because they require special consideration.  

The theoretical investigation of a Duffing nonlinear system is typically done using secular 

perturbation theory technique similar to the one used in chapter 2 to study parametric effects [19]. 

Hence in order to understand the behavior of two strongly coupled resonators the same method is 

employed. We start with a system of coupled equations of motion: 
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This is an extended version of the linear equation of motion (2.8), where parametric terms are 

omitted; the simpler version was given in the previous chapter (equation (5.3)). After introducing 

the small dimensionless parameter ε we rewrite some parameters in the equation, adding a slower 

time T 

2,1,,, 2/3 =Γ=== iggtT iiiDi εγεε . (6.2) 

The solution is expressed in the motion of modes given by eigenvectors (5.7). Therefore the 

expression for the displacement of the beams is de-diagonalized and expanded in ε analogous to 

equation (2.10): 
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bold font indicates two-dimensional vectors here, the components of x are the displacements of the 

central point of the beam, eI and eII are the eigenvectors given by (5.7) and x(1) is a vector of next 

order corrections. The amplitudes AI and AII are the scaled equivalent displacements of the modes 

of vibration. The factor of ½ is introduced because only the real component is a physical 

displacement. For future simplicity we define the notations for the components of eigenvectors as 

eI=(eI,1 ; eI,2) and eII=(eII,1 ; eII,2) . 

The time derivatives of the displacements above have a form similar to equation (2.11), while 

the cubic terms are more complicated. In the expansion we only keep the terms resonant with 

either of the modes.  
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The forces gDi in equation (6.1) are exerted upon individual beams; experimentally we can 

apply these forces in a variety of ways. Considering general the case when each beam can be 

actuated with both resonance frequencies simultaneously, the scaled forces are given by: 
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where gi,I(T) indicates that it is a part of the force exerted upon the i’s beam near the resonance 

frequency of mode I (first mode) at frequency ωI+εΩI. It then it has the form gi,I(T)=| gi,I(T)|eiΩIT. 

After substitution of the last three expressions into equation (6.1) O(ε1/2) terms cancel, because 

they are linear resonator terms. Hence keeping only O(ε3/2) terms, the equation of motion assumes 

the form: 

.}{

..
2
1

)(
)(

4
3

)(
)(

8
3

2

}

{

,2

,1
2

2,1,2

2
1,1,12

3
2,2

3
1,12

2,2

1,1

2,

1,)1(

2
22

2

2
12

2

termstnonresonane

cc
g
g

ee
ee

AA
e
e

AA

e
e

A
i

e
e

Aie
D

dt
dD

DD
dt
d

ti

I

I

III

III
III

I

I
II

I

I
I

I

I

I
II

ti

II

I

++

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Γ
Γ

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−

−−−

Lω

ω

α
α

α
α

ω
ω

ω

ω
x

 (6.6) 

The eiωIIt terms are obtained via obvious interchange of indices. 

On the left-hand side of equation (6.6) there is a system of two independent resonators with zero 

internal damping, therefore on the right-hand side terms varying at ωI and ωII have to be 

orthogonal to eigenvectors eI, and eII respectively. This requirement gives equations of motion for 

the amplitudes of the modes AI and AII: 
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And for the second mode, 
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These equations are of the form: 
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where indices enclosed in square brackets {[I]=I, II} indicate that the equation is valid for both the 

first I and the second II mode of vibration. 

When the modes are driven near their corresponding resonances with frequency shifts Ω[I], so 

that G[I](T)=| G[I]|ei Ω[I]T, the solution for the two equations are: 
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This formalism describes a wide variety of physical phenomena observed in strongly coupled 

Duffing resonators. The numerical solutions of the system of equations (6.9) were obtained by a 

computer program written in Mathematica. The predictions of the will be compared to the 

experimental observations. 

6.2 COUPLING PARAMETERS OF THE SYSTEM 

As an example consider two strongly coupled nanomechanical resonators that share a 

mechanical ledge and are accessible individually. In order to achieve these characteristics the 

shared elastic support is partially etched down to the insulating layer. An argon ion milling etching 

recipe provided remarkable control and uniformity, so that it is easy to achieve good insulation and 

strong coupling simultaneously. The system of two nanoresonators is shown in figure 6.1. The 

beams dimensions are L x w=6μm x 700nm, the distance between the beams is 400nm and ledge 

width is 700nm.  

Since the optical interferometric transduction setup has a laser beam spot size that covers both 

doubly clamped beams, the measurements yield two resonance peaks, and there is not enough 

information to distinguish the motion of the resonators separately. Therefore the model described is 

extremely helpful for reliable differentiation of the motion of the two individual beams. 
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Figure 6.1 Two strongly coupled D-NEMS doubly 
clamped beams, that share the ledge etched to an 
insulating layer to provide individual electrical 
connections. 

The excitation voltage, applied between top and bottom electrodes of the D-NEMS 

nanoresonators exerts forces upon the individual beams. However the behavior of the system is 

equivalent to the behavior of two independent resonators, which are the vibration modes calculated 

in the section 5.2 of the previous chapter. Therefore the vector of forces from expression (5.4) has 

to be converted into effective generalized forces for the modes: the transformation is given on the 

right-hand sides of equations (6.7) and (6.8) (with the help of equation (6.5)).  

Consider a simple case when both beams are driven with the same frequency 

F=(F1cos(ωDt),F2cos(ωDt)). Using the expression for the eigenvectors (5.7) we rewrite equations 

(6.5) for the generalized effective forces exerted upon the modes: 
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Here the mode forces are calculated in terms of beam forces. On the other hand the beams 

motion is expressed in terms of modes motion according to equation (6.3). Therefore according to 

Hooke’s law the amplitudes of beams motion are given by: 
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where the first mode is driven near its resonance frequency at ωI and the second one at ωII. and 

Λ(ωD) is the Lorentz-type spectral-response function abbreviated for convenience (it is similar for 

all the peaks). As a result the first terms proportional to FI in each equation contribute to the first 

mode while the terms proportional to FII contribute to the second.  

The voltages can be applied in a variety of ways. The ratios of the amplitudes of the modes 

when the beams are driven in phase F1=F2=F0 (through a 0° power splitter) and out of phase F1=-

F2=F0 (through a 180° power splitter) provide enough information to determine all the coupling 

parameters, because among the among four seemingly independent quantities (eI,1 ; eI,2) and (eII,1 ; 

eII,2) there is only one free parameter e=eI,1 due to vectors’ orthonormality.  
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If the optical efficiencies for the two beams are defined as 1 for the first and η for the second 

beam, then the ratios of the heights of the two resonances when the beams are excited in and out 

phase are given by: 
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The experimental plots for these two configurations are shown in figure 6.2. The real 

component of the amplitude, plotted in orange, indicates that in the first case for in-phase drive the 

amplitudes are of the same sign, while when driven out of phase the signs are different, as 

predicted by equation (6.15), where negative ratio means opposite signs and positive the same 

signs. After measuring the corresponding ratios the system of equations (6.15) is numerically 

solved yielding the values for the coupled eigenvector parameter e and the optical efficiency η.  

 

Figure 6.2 The spectral responses of the two modes of 
the system of two strongly coupled D-NEMS doubly 
clamped beams, when the resonators are driven in phase 
(a) and out of phase (b). 

For the experimentally determined values AI/AII|0°=3.73 and AI/AII|180°=0.218 measured for the 

device shown in figure 6.1 the model parameters are e=0.854 and η=5.3. The mode frequencies 

are ωI/2π =16.79 MHz, ωII/2π =17.25 MHz, and therefore the coupling strength expressed in the 
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units of frequency is D1/2/2π =2.63 MHz. This value corresponds to the stiffness constant of the 

elastic support of ξ=1.22 N/m, which is comparable to the coupling strength of the ledges on both 

ends described in the previous chapter. 

 

Figure 6.3 The spectral responses for the two modes of 
the system of two strongly coupled D-NEMS doubly 
clamped beams, when the excitation voltage is applied 
first (a) and the second (b) beam’s actuation electrode. 

The frequencies of the individual resonators are determined from the equations (5.5) and (5.6); 

their values are ω1/2π = 16.71 MHz and ω2/2π = 16.92 MHz. The resonance frequency separation 

of 200 kHz is a reasonable fabrication uncertainty. The eigenvectors are (0.854; 0.52) and (–0.52; 

0,854). Using these deduced parameters we predict the ratios of the amplitudes when each beam is 

excited while the other one stays open. For the first beam (F1= F0 and F2=0) the predicted ratio is 

AI/AII|1st=1.48 while the measured is AI/AII|1st=1.81, and for the second beam (F1= 0 and F2=F0) 

the ratios are even closer: the predicted AI/AII|2nd=0.55 and the measured AI/AII|2nd=0.61. The 

spectral responses of the last two configurations are shown in figure 6.3.  
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In addition to this sample, two more were fabricated with similar geometry, and their 

coupling parameters were reliably determined using the described method. The parameters of the 

samples are given in table 6.1. 

Device # fI, fII MHz QI, QII e, √1-e2 √D/2π MHz 

1 16.79, 17.25 2100, 2020 0.854, 0.521 2.63 

2 14.69, 15.51 1480, 1530 0.740, 0.672 3.49 

3 17.37, 17.64 1620, 1720 0.972, 0.233 1.46 

Table 6.1 The parameters of the three coupled devices used in the experiments 

 The experimentally determined values are used as input parameters to the computer program 

we developed for the numerical solution of the EOM (6.9). In order to investigate the coupling 

Duffing phenomena, two beams are connected to two different sources, so that both modes are 

actuated simultaneously. As a result the system of equations has four free input parameters: the 

first beam drive amplitude and frequency and the second beam drive amplitude and frequency. The 

monitored output parameters are the first and the second beam’s mechanical motion amplitudes 

and phases. 

6.3 NONDEMOLITION MEASUREMENTS AND LINEARIZATION 

Mapping the response in four-dimensional space is not only challenging but also ambiguous, 

because even though the system of equations (6.9) appears simple, the final vibration state depends 

on the path the input variables were changed. Multiple solutions exist in large regions of input 

parameter space. The program we developed solves the time dependent equations (6.9), although 

some insight on the behavior of the system can be made analyzing equations (6.11). They are the 

spectral responses of the two coupled resonators similar to equation (2.3) with added levels of 
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complexity. After rescaling to regular experimental parameters the system of equation assumes 

the form 
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These expressions represent regular Duffing curves if terms proportional to β[I] are neglected 

(β[I]=0) [19]. The first immediate observation, assuming nontrivial β[I], is obvious after simple 

analysis of this system of equations: when the first mode is driven in the linear regime its 

resonance frequency is tuned proportionally to the square of the amplitude of the second mode. 

Indeed at low excitation levels its own nonlinear term αI|xI|2 is negligible, while βI|xII|2 

considerably alters the frequency. Since the coefficient βI is positive the tuning is in upward 

direction. The frequency tuning due to coupled Duffing resonator excitation is shown in figure 6.4. 

The plot shows the results of the measurements for the first sample in table 6.1, all the strong 

coupled devices exhibit similar behavior.  

The resonance curves in plot (a) are the network analyzer scans of the left peak while the 

frequency of the drive of the second peak is increased along the blue arrow. The amplitude of the 

second peak follows the regular Duffing curve since the driving level of the first mode is small, 

and so at 17.39 MHz the amplitude of second mode vibration drops, as shown by red arrow, and 

the first mode resonance frequency drops, approximately to its initial value. The inset in plot (b) 

shows the dependence of the frequency shift on the displacement amplitude of the second mode. 

The red curve shows the theoretical parabolic curve from equation (6.16). The experimental 

frequency tuning is of the same magnitude as theoretically predicted, although some deviations are 
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visible. They are probably consequence of next-order nonlinearities as well as the deviations 

from the simplest approximation, equations (6.16).  

 

Figure 6.4 Tuning of the first mode by strong nonlinear 
drive of the coupled second mode. (a) The resonance 
frequency of the left peak increases as the amplitude of 
the second peak grows along the blue arrow (b). Then 
the frequency drops with the amplitude of the second 
peak, shown by red arrow. The inset shows the 
dependence of the frequency shift on the amplitude of 
the second peak. 

The important conclusion drawn from this phenomenon is that the presence of two coupled 

Duffing resonators provides an opportunity to measure the squared displacement of one beam by 

monitoring the frequency of the other one. This is very promising for quantum nondemolition 

measurement [46, 47, 48]. A huge effort is being spent on detection of quantum phenomena in 

macroscopic objects such as nanoelectromechanical systems [6, 49]. Direct measurement of the 

amplitude of mechanical motion perturbs the system because the displacement operator does not 

commute with the Hamiltonian of the simple harmonic oscillator. On the other hand the square of 
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the displacement does commute with Hamiltonian, and therefore measurement without altering 

the system’s quantum state is possible. 

If the actuation level of the first mode is further increased, then not only is the resonance 

frequency tuned, but also the effective nonlinear coefficient αI is decreased. We assume the effect 

of the first mode on the second mode is small, when the second beam is driven at much higher 

level than the first one, even if both modes are driven above the onset of nonlinearity. Hence the 

second mode squared amplitude SII (here we define S[I]=|A[I]|2) is a sum of unperturbed motion 

SII
(0) at the absence of first mode, and the correction due to nonzero AI: 

L++≅ IIIIIIII SSS ,
)0( χ  (6.17) 

where the newly defined parameter χII,I=∂SII/∂SI|SI=0 is a susceptibility that corresponds to change 

in AII due to AI. SII
(0) is the solution for the equation of motion in the absence of the first mode: 
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The expression for susceptibility is calculated from the equation (6.11) via partial 

differentiation: 

II

II
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S
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∂

−=
)0(

, βχ . (6.19) 

As a result the susceptibility is -βII multiplied by the slope of the regular Duffing spectral 

response curve. Therefore the modified Duffing response of the first mode assumes the form: 

( ) 22
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)0(
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IIeffIIIII
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Γ+−−Ω
=

αβ
. (6.20) 

Here we introduced effective nonlinear coefficient αI,eff: 
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IIIIIeffI ,, χβαα +=  (6.21) 

Since the sign of susceptibility is negative in most of the parameter space, the effective Duffing 

coefficient is decreased. The typical dependence of χII,I  on the drive frequency of the second mode 

for the coupling parameters device #1 from Table 6.1 and force at 3.9 times the onset of 

nonlinearity FII=3.9FCII is shown in figure 6.5(a). 

 

Figure 6.5 (a) Behavior of the susceptibility χI,II over a 
frequency sweep for the coupling parameters of the first 
device. The red curve is a sweep up and blue a sweep 
down. (b) Minimum value of the effective Duffing 
coefficient obtainable with given coupling parameters. 
The fabricated devices from table 6.1 are shown with 
arrows.  
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On the sweep up (red curve) the slope of the Duffing curve is always positive therefore the 

susceptibility decreases until it saturates at a finite negative value. When the Duffing slope reaches 

saturation the nonlinear coefficient is at its minimum value, which is given by: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

III

III
IeffI αα

ββ
αα 1min, . (6.22) 

The term in the brackets is fixed for given coupling parameters, hence for the fabricated device. 

The dependence of this term on eigenvector parameter e is shown in figure 6.5(b). Since the 

vectors (e, √1-e2) and (√1-e2, e) are equivalent, the maximum coupling is achieved when e=√1-e2 

at e=1/√2=0.707. As a result the plot is symmetric relative to the line e=0.707. On the sweep down 

the slope is initially negative, which causes the Duffing coefficient to increase before the solution 

jumps to its upper state. 

If the coupling is strong enough so that the larger eigenvector parameter e is smaller than 0.89, 

then the minimum value of the Duffing coefficient is negative. In this case the resonance curve tilts 

to the left, as opposed to the usual case when the peak leans to the right. It also means that the 

nonlinear coefficient vanishes for a particular region in the input force and frequency of the second 

mode. The first two samples in Table 6.1 are strongly coupled so that the described behavior can 

be observed experimentally, while the coupling of the third device is not sufficient to observe 

significant nonlinearity tuning. 

Figure 6.6 shows the theoretical calculations as well as corresponding experimental 

measurements for the described behavior. A network analyzer is used to monitor the spectral 

response of the first mode while a separate function generator is driving the second mode. The top 

eight plots show the theoretical calculation of the evolution of the shape of the resonance peak 
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while the frequency of the second mode drive is increased, in similar way as in the previous 

measurements, while bottom eight plots are the corresponding experimental measurements. 

 

Figure 6.6 Top eight plots show the theoretical 
calculation of the evolution of the shape of the first mode 
resonance peak driven above nonlinearity as the 
frequency of the second mode is swept up. Bottom eight 
plots are corresponding experimental measurements. The 
Duffing coefficient flips the sign as the sweep 
progresses. Blue and yellow curves are up and down 
sweeps respectively. 
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At the beginning of the sweep the amplitude of the second mode is low, and therefore the first 

mode spectral response has the regular nonlinear Duffing shape. As AII increases the first mode 

resonance frequency is tuned upward and the peak shape is less nonlinear. Then the peak assumes 

a form very close to a regular Lorentzian with no nonlinearities, and afterward the sign of effective 

Duffing coefficient becomes negative, causing the spectral response peak to lean to the left in 

contrast to usual bending to the right. At even higher second mode amplitudes the peak shape stays 

the same while its position shifts upward until the Duffing resonator switches to a lower state 

causing the peak shape and position to jump back to its initial state. The theoretical predictions and 

experimental measurements agree both qualitatively and quantitatively to a high level of precision. 

6.4 SPECTRAL RESPONSES 

If the drive level of the first mode is increased to an extent comparable to the one of the second 

mode, then all sorts of different effects are predicted and measured. In addition to such simple 

effects as linearization and frequency tuning, spontaneous transitions from the lower to the upper 

state and back occur as the input parameters are swept. As a result the spectral responses acquire 

peculiar nontrivial shapes. Nevertheless the theoretical analysis is able to make predictions about 

most of the phenomena to a great precision. Figure 6.7 shows an example analogous to previous 

plot but when both modes are driven at approximately four times the onset of nonlinearity. The top 

eight plots are the theoretical simulations and bottom ones are the experimental measurements.  
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Figure 6.7 The evolution of the shape of the first mode 
when the frequency of the second mode is swept upward, 
while both peaks are driven at approximately four times 
the onset of nonlinearity 

Initially, the wide Duffing response shrinks and an abrupt upward jump on the left side starts to 

appear. This phenomenon is caused by the fact that when the amplitude of the first mode is small, 

its effective nonlinearity is negative, so that it jumps to the upper state as the frequency is swept 

up. This transition shifts upward due to the frequency tuning discussed earlier. Since the amplitude 
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of the motion in the upper state is comparable to the amplitude of the second mode the transition 

causes the second mode, amplitude to drop to the lower state. As a result, the spectral response 

continues along the unperturbed Duffing curve. For the last three plots the vibration state of the 

second mode is unstable, hence it undergoes upward and downward transitions during the sweeps. 

And the very last plot is similar to unperturbed Duffing because the second mode is always in 

lower state. It is easy to notice that theoretical curves have noisy parts which correspond to sharp 

decreases in amplitude in experimental plots. These features are real physical phenomena of 

considerable importance, which are discussed in detail below. Despite seemingly complex 

behavior of the coupled system, a simple nonlinear model precisely explains the dynamics both 

qualitatively and quantitatively with a precision of lower then 5%. 

In order to further illustrate dynamics of the system, another type of sweep was performed. In 

these measurements the drive level of the first mode was steadily increased while its peak shape 

was monitored by a network analyzer. In the absence of the second coupled mode the response is a 

regular Duffing curve, but when the second mode is excited at high level the spectral responses 

assume more complicated shapes, which are shown in figure 6.8. The top plots are the theoretical 

calculations while the bottom ones are the experimental measurements. The plots on the right are 

the sweeps upward and the ones on the left are the sweeps downward. Multiple transitions between 

upper and lower state of the vibration of both modes cause the complex spectral response behavior. 

During the upward sweeps the initial effective nonlinearity is negative, and therefore the resonance 

peak leans leftward. Above some amplitude the transition to the upper state causes the second 

vibration to drop to lower state and the frequency sweeps continue along the unperturbed Duffing 

curve. 
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Figure 6.8 Frequency sweeps of coupled Duffing 
resonators: The response of the first mode is shown as its 
driving frequency is swept for various drive amplitudes. 
Theoretical simulations are shown in the top row and 
experimental measurements in the bottom row. The drive 
strength and frequency of the second mode is fixed. 

On the other hand during the down sweep for low amplitudes the response is consistent with a 

regular down frequency sweep with negative Duffing coefficient. But when the excitation level 

increases, the preceding up sweep causes the second mode to be in the lower state at the beginning 

of corresponding down sweep, causing it to go along a different unperturbed Duffing curve with 

positive nonlinearity. When there is the expected transition to the upper state, the second mode also 

switches to the upper state, and as a result there are instabilities in the steady state of mechanical 
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vibration causing wiggles to appear in the plots. For even higher driving strengths the curve 

continues along lower state of another Duffing curve without transitioning to upper state. 

 

Figure 6.9 The first mode amplitude sweep of the 
stronger coupled system of Duffing resonators. the first 
mode (black) and the second mode (red) are measured. 
Top plots are the frequency sweeps in upward direction, 
while bottom ones are the sweeps in downward 
direction. 

In order to verify the expected transition for second peak, measurements where the amplitudes 

of both modes are monitored via a spectrum analyzer were performed. The results of the 
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measurements for the second (stronger coupled) device from Table 6.1 are shown in figure 6.9. 

The spectral response of the first mode is shown in black while the corresponding second mode 

amplitude is shown as the red curve. (Its frequency is higher close to its own resonance; the 

response is shown in the same plot for convenience). The top plots are the upward sweeps while 

the bottom ones are the downward sweeps. The second mode is driven at 350 mV, which is about 

twice the onset of nonlinearity. The drive level for the first mode is shown for each plot. 

Complicated dynamics near the transition points are apparent on the plots.  

6.5 MECHANICAL STATE INSTABILITIES AND CHAOS 

In most of the theoretical plots above noisy structures appear between solution branches in 

regions near the up or down transitions. They often correspond to decreases in the experimental 

mechanical amplitudes, although not sharp jumps from state to state. In the theoretical analysis, the 

algorithm numerically solves time-dependent differential equations (6.9). This usually results in 

steady state solutions for AI and AII, which represent the amplitudes of sinusoidal mechanical 

motion at the frequencies of the corresponding driving forces. The procedure has to be computed 

for sufficient number of time steps for amplitudes to stabilize. It turns out that at some initial 

parameter settings it is impossible to get to the steady state, because the mechanical vibrations are 

unstable. The fast ~15MHz oscillating sinusoidal signal becomes amplitude modulated, with its 

mechanical displacement amplitude changing periodically at a rate of about 10 to 20 kHz. 

Consequently wiggling noisy structures appear in theoretical plots.  

On the other hand in the way the experimental measurements are performed, it is not possible to 

see the wiggles, because in the network analyzer only a narrow frequency band around the drive is 

analyzed. The modulation seen in the theoretical analysis would lead to a drop in the measured 
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amplitude, because part of the RF power is transferred into amplitude modulation satellite peaks, 

outside measured band. 

 

Figure 6.10 A simple example of the phase plot of the 
second mode amplitude versus the first mode amplitude. 
The vibration state of the system travels along the arrows 
and completes the cycle at a rate slightly faster than the 
ringdown time. 

The detailed analysis of the system of equations (6.9) reveals that the modulations of the two 

modes are anticorrelated. An example of a simple case of a phase trajectory of AII versus AI is 

shown in figure 6.10. The vibration state travels around the elliptic shape along the arrows shown 

in the figure. The dynamics can be roughly understood as follows, when the first mode is in its 

lower state and the second mode is in its upper state (top-left corner) the first mode switches to the 

upper state causing the second mode to drop to the lower one (bottom-right corner). In this 
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condition the second mode is unstable in its lower solution branch and makes a jump to the 

upper state again, kicking the first mode down to its lower state, starting the cycle again. As a 

result the system reaches a dynamical equilibrium where the two modes periodically transfer 

energy between one another.  

Although the modulations are impossible to observe with a lock-in-type network analyzer 

measurement, it is easy to study them with a spectrum analyzer with a wider frequency range. An 

example of an amplitude modulated spectral response is shown in figure 6.11(a). 

 

Figure 6.11 (a) Typical spectrum of an amplitude 
modulated mechanical motion of the first mode of the 
system, due to a dynamical equilibrium of the two modes 
transfering energy between one another. (b) 
Measurement of the modulation rate over a 20kHz wide 
transition range. The damping rate is shown as a red line 
on the plot.  

According to theoretical predictions, a reasonable time for a solution to settle onto a new state is 

a ring down time. But in the case of two coupled modes during the transition from state to state 

another dissipative channel emerges. The results of the measurements of the modulation frequency 

performed on the first device in Table 6.1 are plotted in figure 6.11(b). When the first and second 
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modes are driven at 2.24 and 2.8 above the onset of nonlinearity respectively, a region of 

modulated vibrations as wide as 20kHz appears during the first mode frequency sweep. The plot 

shows the dependence of the modulation frequency on the first mode drive frequency. The 

expected damping rate given by ωI/Q is shown as a red line on the plot.  

 

Figure 6.12 Measurement setup for AII versus AI phase 
plots measurements. Homodyne downconversion is used 
in order to obtain quasi-dc envelope signal.  

In order to experimentally observe the expected shapes the measurement setup shown in figure 

6.12 is employed. A transduced mechanical signal is subjected to a homodyne downconversion 

using a “sync” output from function generator. Then the quasi-dc signals from the two modes, 

which are the envelopes of the corresponding RF carriers, are read by independent oscilloscope 

channels. As a result only the real component of the amplitudes is measured.  

In addition to relatively simply shaped phase plots similar to the one in figure 6.10, more 

complicated ones occur under specific conditions. Examples of different types of simulated and 

measured phase plots are shown in figure 6.13. The strongly coupled second device from Table 6.1 

is used in these measurements. The top row shows an example where AII versus AI plot forms a 

small loop. The first plot is the theoretical simulations, which are performed using the same 
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algorithm as described earlier. The second plot is a corresponding oscilloscope Lissajous-figures 

type measurement. The third plot is the spectrum of the measured mechanical signal: it includes the 

amplitude modulation satellite peaks. The peaks are not symmetric, which is consistent with the 

anharmonic shape of the modulation. The middle row is another example of a simple phase plot. 

Good agreement between theoretical predictions and experimental measurements is obvious from 

the figure. Under specific conditions the phase plot may experience a period doubling 

phenomenon, where a complex phase trajectory takes two periods in order to complete the cycle. 

An example of period quadrupling is shown in the bottom row of figure 6.13. The phase diagram 

forms a closed loop pattern only after four revolutions. The corresponding complicated loop 

structures are visible in both theoretical and experimental plots. The full spectrum of mechanical 

motion reveals amplitude modulation peaks at frequencies that correspond to double and quadruple 

periods.  

This phenomenon was previously theoretically predicted [50, 51] and observed in coupled 

microwave circuits [52]. One of the interesting effects studied in previous research is the fact that 

period doubling, quadrupling and so on eventually leads to chaotic behavior under particular 

experimental conditions.  



 

 

94 

 

Figure 6.13 Example of the AII versus AI phase plots 
along with corresponding Lissajous and spectrum 
analyzer measurements for three different sets of input 
parameters. 

For the stronger coupled second device the simulation predicts chaotic behavior, which was 

tested using the described measurement procedure. Figure 6.14 shows theoretical and experimental 

plots of the chaos in coupled nanoelectromechanical systems. In the simulations it turns out that the 

closed pattern never forms and the trajectory continues to travel covering limited region in AII vs AI 

phase space. In the experiment though, the measurement is limited to only a finite number of 

periods, and hence the second column plots appear as noisy Lissajous figures. Comparing them to 
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the plots of Figure 6.13 it is apparent that in figure 6.14 the closed pattern does not form and the 

phase plot is chaotic. The spectrum analyzer measurements confirm the hypothesis: the amplitude 

modulation features appear as wide continuous spectrum peaks, contrary to the sharp delta 

functions in the previous plot.  

 

Figure 6.14 The observation of the chaotic behavior in 
coupled nanoelectromechanical systems. The plots in the 
first column are obtained by theoretical simulations. The 
second and the third columns consist of oscilloscope and 
spectrum analyzer measurements respectively. 

To the author’s knowledge this experiment is a first demonstration of chaotic behavior in 

nanoelectromechanical systems.  

SUMMARY 

This chapter presented the detailed study of two strongly coupled nonlinear resonators. The 

understanding of the underlying physical phenomena is crucial for integration of the devices into 
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large arrays and utilizing all the available dynamic range. A formalism for characterization of 

the coupled nonlinear system was developed for the theoretical analysis. Seemingly simple system 

provided remarkably rich dynamical behavior.  

Strongly coupled Duffing resonators allow significant increase in dynamic range by quenching 

the effective nonlinearities. In the first approximation the motion of one of the beams couples 

quadratically to the resonance frequency of the other beam providing a very promising scheme for 

quantum nondemolition measurements in nanoelectromechanical systems. Surprisingly complex 

behavior is observed where the energy of mechanical motion is transferred to and from the modes 

near the solution state transition regions. Under specific experimental conditions this effect gives 

rise to a chaotic behavior in the two modes of the nanoelectromechanical system. All the incredible 

variety of described physical phenomena was measured experimentally, and the results agree well 

with theoretically predictions. 
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Chapter 7 

BIFURCATION-TOPOLOGY AMPLIFIER 

This chapter describes an increased complexity where two coupled resonators are excited 

parametrically. Considering a weak coupling case a novel amplification mechanism is discovered. 

It is based on the dynamical changes that an input signal induces in the topology of a simple 

bifurcation diagram, rather than employing an existing bifurcation [53,54]. Theoretical background 

for such a bifurcation-topology amplifier as well as detailed experimental implementation and 

characterization are described in this chapter.  

7.1 PARAMETRIC ACTUATION OF TWO WEAKLY COUPLED RESONATORS 

Earlier in chapter 2 we described the behavior of a single parametric resonator. We now 

consider two weakly coupled nonlinear resonators with slightly different normal frequencies. 

Their dynamics are governed by a pair of equations of motion (EOM), which is a combination of 

equations (2.8) and (6.1) 

( ) ( ) jijixxDxxthxx jiiippiii ≠==−+++++ ,2,1,0cos2 32 αωωγ &&& , (7.1) 

where x1 denotes the displacement of the lower-frequency resonator with frequency ω1 from its 

equilibrium, and x2 denotes the displacement of the higher-frequency resonator with frequency ω2. 

Duffing parameter α and linear damping rate γ are assumed to be approximately the same for both 

resonators, and the coupling strength between the resonators is denoted by D. The parameters hp 

and ωp are the parametric driving amplitude and driving frequency. The responses of these coupled 

resonators are calculated using similar secular perturbation theory methods. 

A small dimensionless parameter ε is introduced and the parameters in the above equation are 

rescaled in the similar fashion as in equation (2.9) and (6.2). In addition to that the coupling 
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between resonators is weak, therefore we introduced scaled coupling constant Ds = εD. The 

resonance frequencies are assumed to be very closely separated, hence we define another 

parameter εδ=(ω2
2-ω1

2)/2 (which is slightly different definition compared to equation (5.5)), 

[ ]( ) ( ) 02cos2 32 =−++Ω++±+Γ+ jisiimmii xxDxxthxx εαεωεεδωε &&& . (7.2) 

We search for the solution in the form proportional to √ε as in equation (2.10). After making a 

substitution the terms proportional to ε1/2 cancel because they are the part of linear equation for 

simple harmonic oscillator. Therefore keep O(ε3/2) terms we obtain an equation for the first-order 

corrections, where the resonance drive is required to vanish for the solution to exist. Hence the 

equation for slower amplitudes Ai(T) assumes the form: 

( ) 032 2 =+Γ++±−+ Ω∗
iiim

Ti
iijis

i
m AAAiehAAAAD

dT
dA

i αωδω . (7.3) 

We ignore initial transients and search for steady solution vibrating at half the pumping 

frequency: 

( ) Ti

ii eaTA 2
Ω

= . (7.4) 

Substitution of this expression into (7.3) yields a system of two algebraic equations, by solving 

which amplitudes ai are obtained. 
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3
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msms

msms

ωαωδ

ωαωδ
 (7.5) 

Setting D=0 decouples the equations, giving two independent equations that were solved in 

closed from in chapter 2. The solution to a single equation gives the response curve, shown in 

figure 7.1(a), with stable solutions given by red solid curves, and unstable solutions by blue dotted 

curves. The phase of the response, which is not plotted, is determined only to within a π phase 
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shift, due to the fact that the drive completes two periods whenever the resonator completes only 

a single period at half the frequency. Our BTA consists of two such resonators, with slightly 

different resonance frequencies, which are excited simultaneously using the same drive source, but 

are otherwise uncoupled. Because of the π phase freedom in the response of each resonator, when 

both are excited there is a 50% chance that they will respond in phase, and a 50% chance that they 

will respond with opposite phase. Consequently, the summed response of the two resonators 

|a1+a2| – shown in figure 7.1(b) – forms a pitchfork bifurcation. Sweeping up the pump frequency 

ωp, while keeping all other parameters fixed, first excites the lower-frequency resonator while the 

higher-frequency resonator is still dormant, following the curve labeled ↑0. When the second 

resonator begins oscillating, the summed response of the two resonators follows the upper branch 

↑↑ if both resonators are in phase, and follows the lower branch ↑↓ if they respond out of phase. 

This behavior is confirmed experimentally in figure 7.2(a), as described below. 

The situation changes when nonzero coupling is introduced between the resonators, then the 

roots of the coupled equations (7.5) are calculated numerically. The results are shown in Figs. 

7.1(c) and (d) for positive and negative coupling respectively. 
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Figure 7.1(a) Response amplitude of a single nonlinear 
resonator. Stable solutions are in solid red; unstable in 
dotted blue. (b) Summed response of two uncoupled 
resonators to a single drive. Only stable branches are 
shown: Purple: zero-state (00); Green: only the first 
resonator is oscillating (↑0); Red: only the second 
resonator is oscillating (0↑); Blue: both resonators 
oscillating in phase (↑↑); Orange: both resonators 
oscillating in antiphase (↑↓). (c) Summed response with 
attractive coupling. Only stable branches are shown and 
are labeled as in plate (b). (d) Summed response with 
repulsive coupling. Only stable branches are shown and 
are labeled as in plate (b). 

Finite coupling D≠0 changes the topology of the bifurcation diagram, causing a distortion of the 

perfect pitchfork (the bifurcation is said to be imperfect). With attractive coupling (D>0), as shown 

in figure 7.1(c), the incoming ↑0 branch is connected only to the in-phase ↑↑ branch. With 

repulsive coupling (D<0), as shown in figure 7.1(d), the opposite happens, and the incoming ↑0 

branch is connected only to the antiphase ↑↓ branch. A quasi-static upsweep of the pump 
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frequency that starts to the left of the bifurcation easily distinguishes between attractive and 

repulsive coupling. It follows the upper branch if the coupling is attractive – with the second 

resonator oscillating in phase with the first – and follows the lower branch if the coupling is 

repulsive – with the second resonator oscillating in antiphase with the first. This dependence of the 

bifurcation topology on the effective coupling D between the resonators can be used as an 

amplification scheme by setting D to be proportional to the input signal Vin that we wish to 

amplify. 

7.2 VOLTAGE-DEPENDENT BIFURCATION DIAGRAM 

We have implemented such a BTA using a pair of 6μm long, 500nm wide, and 200nm thick D-

NEMS beams, separated from each other by 400nm, as shown in the inset of Figure 7.2(a). Their 

fundamental out of plane resonance frequencies are around 13.1 MHz, differing by about 30 kHz 

as a result of fabrication imperfections. Their quality factors in vacuum at room temperature are 

about 1700. The details on measurement technique and parametric actuation are given earlier in 

chapter 4. Parametric oscillations are effectively excited by modulating the applied Vbias with 

amplitude of 0.2V at twice the resonance frequency – around 27.2 MHz. The summed response of 

the amplitudes of the two beams |a1+a2| is measured because the spot size of the laser beam covers 

the area of both nanomechanical resonators. The interference signal is stronger when the beams 

oscillate in phase and weaker when they oscillate out of phase. 
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Figure 7.2 (a) Experimental confirmation of the pitchfork 
bifurcation, shown in figure 7.1(b). (b) With a constant 
input signal )(DC

inV  larger than the noise floor, the 
response to upward frequency sweeps deterministically 
follows the upper or lower curves depending on the sign 
of )(DC

inV . (c) Repeated upward frequency scans with no 

coupling, 0)( =DC
inV , show that about half follow each 

of the two possible branches. (d) Repeated upward 
frequency scans with a negative input signal, 

3)( −=DC
inV mV, show that more than half of the scans 

follow the upper in-phase response curve, yet because 
the noise amplitude is greater than 3mV some scans still 
follow the lower antiphase response curve. 
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The optical response was calibrated using the intrinsic Duffing nonlinear properties of the 

nanoresonators, by measuring the onset of nonlinearities [19]. Direct frequency response 

measurements made by vector network analyzer (HP3577A) are shown in figure 7.3. The drive 

here is changed from 50mVrms to 1.2Vrms. The onset of nonlinearity occurs at ~600mVrms drive 

level with the optical signal of approximately ~70μVrms. The estimated accuracy of the calibration 

is of the order of ~10%. The parametric sweeps are measured by Agilent 4395A spectrum 

analyzer. 

 

Figure 7.3 Duffing nonlinearities dominate at high 
excitation levels. The onset of nonlinear behavior 
depends only on quality factor and geometry of the 
beam, hence it is a good way of calibrating the optical 
interferometer responsivity. 

The applied Vbias applied between top and bottom electrodes of the resonators also induces 

electric dipoles within the layers of the beams, shown in figure 5.2 causing the beams to repel each 

other, as it is described earlier in section 5.1. Thus the electrostatic coupling reduces the coefficient 

D. Using the geometry of the D-NEMS resonators used in the experiment the electrostatic force is 
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approximately ~–1pN for a displacements difference of the order of 1 nm. Without any applied 

voltage there is residual attraction between the beams due to elastic coupling through their shared 

elastic support, even though no ledge is shared by the beams. Finite element simulations (see 

Figure 7.4) are used for elastic coupling estimation, for experimental devices’ geometry the 

effective interaction force was calculated to be ~1pN at experimental conditions. 

 

Figure 7.4 Finite element simulation is used to estimate 
positive residual coupling between beams, which share 
the elastic support, although the coupling is minimal due 
to the lack common ledge. 

Geometry of the system was designed so that positive offset bias Voffset, within the experimental 

range is required to compensate for this elastic attraction and to null this intrinsic geometric 

coupling between the beams. This voltage is about Voffset=1.1V in our implementation, thus the 

effective coupling between the beams, which we use as our input signal, is given by Vin(t)=Vbias(t)-

Voffset, which is proportional to -D(t). 

Figure 7.2(a) shows the measured summed response of the two beams for zero effective 

coupling, when Vin(t)=0, confirming the existence of the pitchfork bifurcation, as described earlier 
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and shown in figure 7.1(b). Figure 7.2(b) shows a sequence of upward frequency sweeps for a 

constant input signal Vin(t)=Vin
(DC), clearly showing that for negative constant signals (Vin

(DC)<0) 

corresponding to attractive coupling (D>0), the summed response follows the upper curve; for 

positive constant signals (Vin
(DC)>0) yielding repulsive coupling (D<0), the summed response 

follows the lower curve. The device thus operates as a very sensitive discriminator between 

positive and negative signals Vin, whose resolution is limited only by the amplitude of the 

background noise. This background consists of the noise accompanying the input signal itself, as 

well as that of the mechanical motion of the beams. In the presence of such noise there is a delicate 

balance between following the upper or lower branches for Vin=0, as shown in figure 7.2(c). This 

balance is modified in favor of the lower branch for Vin
(DC)>0 and in favor of the upper branch for 

Vin
(DC)<0, as shown in figure 7.2(d) for Vin

(DC)=-3mV. Note, however, that there is still some 

chance of following the wrong branch if the noise amplitude is greater than Vin
(DC). Only when 

Vin
(DC) significantly exceeds the noise do the quasi-static frequency sweeps become deterministic. 

In fact, as explained below, adding noise can be used to increase the operating range of the BTA. 

7.3 BIFURCATION TOPOLOGY AMPLIFIER MEASUREMENTS 

The actual measurement layout realizing the BTA is shown in figure 7.5. The RF source used 

for parametric pumping is frequency modulated (FM) with a triangular waveform, resulting in fast 

linear frequency sweeps that start below the bifurcation point in order to reset the BTA before 

sweeping upward to detect the sign of the input signal Vin(t).  
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Figure 7.5 Full circuit diagram of bifurcation-topology 
amplifier realization. Half frequency reference is 
obtained by synchronizing additional RF source through 
phase locked loop. The amplitude demodulation of 
output signal is performed by mixing it to the reference. 
Oscilloscope is used instead of lock-in amplifier to 
obtain time-domain response. 

There are several fundamental limitations on the sweep rate of the pump frequency that should 

be noted. On the one hand, the sweep rate has to be at least twice as fast as the input signal Vin(t) to 

allow for proper sampling. On the other hand, if the sweep rate is too fast it may introduce timelags 

in the response of the resonators because unwanted transients do not have sufficient time to relax 

toward steady-state oscillations. This may cause the response to skip from one branch to another 

instead of following the topology of the bifurcation diagram, which is essential for the proper 

performance of the BTA. The typical relaxation time for transients is given by the inverse of the 

damping rate γ. For a resonance frequency of 13.1 MHz and a quality factor of 1700, the relaxation 
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time is on the order of 0.1 ms. In the experiment, we observe the output signal deteriorating at 

sweep rates of 2 kHz corresponding to relaxation times around 0.5 ms, in agreement with this 

rough estimate. Thus the bandwidth of our present realization of a BTA is limited to about 1 kHz.  

During normal bifurcation-topology amplifier operation the DC bias is set to bifurcation point 

Vin
(DC)=0 and modulated by small square wave periodic voltage of the form Vin

(AC)sqw(t), where 

sqw(t) is a square wave function that changes from -1 to +1 with a period of Tin. Typical input 

frequency used in measurements is 167Hz, it was increased without significant change in output 

signal as long as it is factor of 2 slower than the FM rate. Agilent 33250A function generator was 

used as a source of constant DC offset and input voltage, which was applied to the device’s 

electrode via DC/RF bias tee. 

The output from photodetector consists of contributions from two beams due to the readout 

mechanism. The first beam’s response is almost constant in amplitude frequency-modulated signal: 
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where V1 is amplitude of the first beam's optical response, which does not change much in this 

approximation, ω0 is frequency of the bifurcation, ω0 - Δωoffset is a left edge of FM sweeps, ΔωFM is 

a frequency modulation depth and RMP(t) is a triangle function that changes from 0 to 1 and back 

at a period of Trmp: 
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The RF parametric pump at ~26MHz is performed by Agilent 33250A function generator 

with internal triangular frequency modulation. In most of the measurements FM rate of 557Hz was 

used. The rate was varied from 70Hz up to 3kHz in amplifier bandwidth study. 3dB decrease in 

gain was observed at 2kHz. 

The second beam’s response significantly changes in amplitude in addition to being frequency 

modulated. 
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The expression for V2(t) here shows the behavior or the second beam’s amplitude when pumping 

frequency is modulated. The nonzero amplitude increases as a square root with frequency only 

when it is above bifurcation ω(t)>ω0 (see theoretical section above). We normalize the amplitude 

to the maximum value V2max when the ω0 corresponds to the left edge of frequency sweeps. Square 

wave function means that the sign of second beam’s contribution changes with input voltage. 

Although the noise in the system distorts sqw(t), canceling some high–low level transitions, we 

omit this effect in this simple explanation of measurement setup operation. 

The total output signal is a sum of Vfirst and Vsecond from equations (7.6) and (7.8). RF reference 

signal at ~13MHz, phase locked to pump signal via frequency doubler and mixer (see Figure 7.5), 

is used for optical readout signal downconversion. After demodulation with the reference of the 

form VLcos(ω(t)t+ϕL), the expression for the downconverted signal assumes the form: 

)()()(21 LLtedDownConver costsqwtVVV ϕξ= , (7.9) 
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where constant and higher-order terms are dropped and preamplifier stage and other 

proportionality factors are summarized into ξi (i changes 1, 2, 3… from stage to stage). 

The relative phase ϕL was set to 0o to maximize the output via phase shifter. The time-domain 

measurement of this signal made by oscilloscope (Agilent 54622D) is shown in the inset of Figure 

7.6. The downconverted signal is then detected by lock-in amplifier (SR830) externally referenced 

to the Vin(t). 

)(22 tVVV LInLock ξ=− , (7.10) 

where V2(t) is a complex and periodic function (7.8), so we can express it in the sum of harmonics, 

∑
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where the V2constant is the only contributing term in the detection scheme employed. It is equal to the 

average of the V2(t) over the frequency sweep period with a proper numerical coefficient.  
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22 )(2 . (7.12) 

Therefore the output signal detected by lock-in amplifier is given by: 

constantoutput VV 23ξ= , (7.13) 

which is proportional to the difference between top (red) and bottom (black) curves in the 

bifurcation diagram shown in figure 7.6. 
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Figure 7.6 The output response as viewed on a spectrum 
analyzer. The frequency modulated RF pump gives rise 
to the red spectral response curve for a negative input 
signal and to the black spectral response curve for a 
positive input signal. The inset shows an oscilloscope 
trace of the demodulated output signal for a square-wave 
input signal Vin(t). A lock-in amplifier is used to detect a 
signal proportional to the difference between the large-
amplitude (red) and the small-amplitude (black) spectral 
response curves. 

The total amplitude of the ouput signal, expressed in nanometres, is the displacement difference 

between the two spectral curves, averaged over the frequency sweep range. 

7.4 BIFURCATION TOPOLOGY AMPLIFIER CHARACTERIZATION 

We have performed measurements to characterize our BTA using a sweep rate of 557Hz and an 

input signal in the form of a sinusoidal or a square wave of frequency 167 Hz, with amplitude 

Vin
(AC), offset from zero by Vin

(DC). Figure 7.7(a) shows the measured response – corresponding to 
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the maximum-to-minimum difference of the output signal – as a function of Vin

(DC) for different 

values of the amplitude Vin
(AC). Until the input signal crosses zero the BTA does not sense any 

variation in it. This gives rise to the widths at half-maximum of the observed peaks in figure 7.7(a), 

while the sharpness of the rise and fall of the curves depends on the noise amplitude. The 

maximum heights of the peaks (at Vin
(DC)=0) depend on the signal amplitude Vin

(AC). For input 

amplitudes that exceed the noise (Vin
(AC)> 20 mV) the maximum peak heights reach saturation and 

no longer increase because the BTA reliably switches between the two branches in every period of 

the input signal. For smaller input amplitudes, due to noise, the average output signal is 

proportional to the probability of the BTA to follow particular solution. Figure 7.7(b) shows the 

peak response at Vin
(DC)=0 a function of Vin

(AC) for different values of artificially-added noise. 

Increasing the noise allows us to delay the saturation of the response beyond the original 20 mV 

and obtain a threefold increase in the operating range of the BTA, while trading in gain due to the 

constant saturation value. Note that for moderate noise levels the response of the BTA is linear. A 

more detailed study of the noise sources in the BTA will be necessary to explain the precise 

dependence of the response on the signal amplitude for strong levels of noise.  
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Figure 7.7 Measurements of the BTA, (a), for different 
values of the signal amplitude Vin

(AC), as a function of its 
offset Vin

(DC) from zero. The inset shows the smallest 
measured signal, with Vin

(AC)=1 mV, corresponding to 
about 70 fundamental charges in each resonator's 
conducting layer. (b) Same as (a), but as a function of the 
amplitude Vin

(AC)with zero offset for different levels of 
added noise demonstrating a threefold increase in 
dynamic range. 

The inset of Figure 7.7(a) shows the smallest input signal we have measured, Vin
(AC)=1 mV, 

corresponding to about 70 fundamental electron charges in each resonator's conducting layer, with 

each point averaged for about 23 s. After performing gaussian fit we determine that the magnitude 
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of a signal is 1.22 nm, thus displacement to charge responsivity of presented bifurcation 

topology amplifier is 17 pm/e. Intrinsic noise measurement with no input signal yield the 

displacement noise of 11.7 pm which corresponds to electronic charge noise of 0.68 electrons. The 

equivalent noise bandwidth in this measurement is 0.056 Hz, therefore the demonstrated charge 

sensitivity is 2.9 e/√Hz. This makes our BTA one of the most sensitive mechanical room-

temperature charge detectors demonstrated to date. In this implementation the noise in the system 

is not limited by thermally induced motion of the mechanical resonators, rather the noise is 

introduced by electronic parametric actuation sources as well as by optical readout system. Further 

optimization of the actuation and detection schemes will result in thermomechanical noise limited 

measurements with corresponding displacement noise floor [22] of 3
0

2/1 4
ωm
TQkS B

x = =0.116 

pm/√Hz. Consequently the corresponding ultimate charge sensitivity possible with bifurcation 

topology amplifier is 0.0069e/√Hz at room temperature.  

The concept of BTA can potentially be realized in a variety of physical systems including low 

temperature superconducting resonators, thus the ultimate sensitivity can further be reduced by 

several more orders of magnitude. Considering already demonstrated microwave frequencies 

mechanical resonators [27] as well as recent progress in efficient cooling of mechanical systems 

[49], we predict the thermomechanical noise floor reduction by four orders of magnitude based on 

modest estimate of 300mK temperature and geometrical parameters of 1GHz resonator. Hence 

mechanical BTA electrometer will reach sensitivities of the order of 1.5*10-6e/√Hz, comparable 

with single electron transistor based charge detectors [5]. 

Although the bandwidth of the demonstrated bifurcation topology amplifier is limited by 

~1kHz, one could increase this bandwidth by using resonators with higher resonance frequencies 
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and smaller quality factors, the latter requiring stronger piezoelectric frequency tuning to excite 

parametric oscillations. This should allow an increase of up to three orders of magnitude by 

optimizing previously demonstrated microwave NEMS resonators [27]. 

SUMMARY 

This chapter describes very interesting phenomenon where extraordinary level of control of 

complex diagram of mechanical vibration state for two weakly coupled parametric resonators leads 

to a novel amplification mechanism. The input voltage perturbs the bifurcation diagram causing 

large changes in output mechanical signal. The scheme holds enormous advantage including low 

noise, high sensitivity and absence of internal dissipation. We believe that BTAs can be 

implemented in a wide variety of physical systems, such as laser cavities, superconducting 

resonators, and coupled Josephson junctions, and possibly also in chemical and biological 

oscillating systems, which may lead to novel devices and applications. 
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Chapter 8 

NONDEGENERATE PARAMETRIC EFFECT 

This chapter considers the case of parametric actuation of two strongly coupled resonators. The 

conversion from individual beams to vibrational modes in this case leads to off-diagonal 

parametric terms, which are responsible for an interesting phenomenon called nondegenerate 

parametric amplifier. This chapter carefully describes the theoretical model as well as the 

experimental system characterization and conclusions.  

8.1 PARAMETRIC ACTUATION OF TWO STRONGLY COUPLED RESONATORS 

In this experiment we consider two strongly coupled individually accessible D-NEMS 

nanoresonators shown in figure 6.1. Two doubly clamped beams shown in the figure share a 

mechanical ledge, which is partially etched down to an insulating layer so that both devices are 

independently accessible while still maintaining strong interaction. A similar system was 

investigated in chapter 6.  

The coupled equation of motion has the form of equation (5.3) with an addition of parametric 

term and assumes the form: 

FxPxVxxM =++Γ+
rr&r&&r . (8.1) 

The mechanism of parametric tuning was discussed earlier in chapter 4. The voltage applied 

between top and bottom electrodes tunes the resonance frequency of the resonator. For periodically 

changing voltages Vp1cos(ωpt) and Vp2cos(ωpt) applied to the first and second beams respectively, 

the parametric matrix P is given by: 
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where new parameters H1 and H2 are introduced: they are the effective tunabilities of the 

stiffness constant measured in units of (N/m)/V. Since these values are referred to the individual 

beams, we have HiVpi/m= hp, where hp is a parametric pump amplitude from equations (2.8) and 

(7.1).  

In the coupled system, dediagonalization procedure similar to equation (5.8) has to be 

performed in order to obtain the correct parametric terms for the modes of vibration. As a result, in 

the mode basis the parametric matrix assumes the form:  
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The diagonal terms here are responsible for the regular DC tuning effect as well as the 

degenerate parametric actuation and amplification of individual modes (at twice the resonance 

frequency). It is easy to observe that a DC voltage applied to the first beam (Vp1=V and Vp2=0 ) 

tunes both modes although at different rates, as does the reverse (Vp1=0 and Vp2=V )  configuration, 

because both diagonal terms include Vp1 and Vp2. The ratio of the slopes is determined by the 

strength of the coupling. Hence the results obtained in section 6.2 predict DC tuning 

measurements. The experimental DC tunability measurements for the first device in Table 6.1 are 

shown in figure 8.1, using Vp1=V and Vp2=0 for (a) and Vp1=0 and Vp2=V for (b).  The ratio of the 

two slopes in each plot should be the squared ratio of the eigenvector components which is 

(0.854/0.52)2=2.7. The slopes in figure 8.1 are 19.5 versus 7.9 kHz/V for (a)(19.4 and 7.5 kHz/V 

for (b)) with the ratio of 2.83(2.59), which is an excellent agreement with the prediction, although 

the overall expected slope is about 20% lower than predicted from the individual beam 

measurements in chapter 4. The possible reasons are that the additional etching steps and the 
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ledges configuration damages the beams as well as alters boundary conditions for the 

piezoelectric tuning problem. Nevertheless the tunability is significant enough to provide 

parametric pumping above the threshold for instability. 

 

Figure 8.1 Dependence of the resonance frequency for 
the modes of strongly coupled resonators on the DC 
voltage applied to the individual beam’s electrodes: (a) 
the first beam is biased, hence the first mode is tuned 
stronger than the second; (b) the second beam is biased, 
and therefore the situation is reversed. 

The modified system of coupled Mathieu equations assumes the form: 
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The Duffing coupling terms in this equation are based on calculation in section 6.1. The effects 

of the regular parametric terms hp11 and hp22 for two independent resonators were discussed in 

detail in earlier chapters. On the other hand new off-diagonal terms hp12 and hp21 lead to a very 

interesting novel physical phenomenon called nondegenerate parametric resonance. The theoretical 

analysis is performed using secular perturbation theory, similar to the method used in previous 
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chapters. We begin with rescaling the values similar to the procedure performed in equations 

(2.9) and (6.2). Interesting solutions caused by the off-diagonal terms occur when the pump 

frequency is near the sum of the resonance frequencies of the modes ωp=ω1+ω2+ εΩp, while the 

motion of the modes is sought near their respective resonance frequencies 
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 After the substitution the terms proportional to O(ε1/2) cancel. Hence keeping O(ε3/2) term we 

obtain the equation for the corrections xI
(1) and xII

(1).  
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Here the abbreviation D.N.T. represents Duffing nonlinear terms similar to the ones in equations 

(6.7)-(6.9). The spontaneous parametric motion is then described by: 
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Here amplitude a[I] and detuning frequency Ω are determined by solving the system of algebraic 

equations analogous to (2.29): 
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These equations are invariant under the transformation aI → aI eiφ, aII → aII e-iφ, so that only the sum 

of the phases φI+ φII is determined. Thus for 4 real unknowns there is a sufficient number of 4 real 

equations.  
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The threshold condition for nondegenerate parametric actuation is given by: 
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The imaginary part of this equation determines the detuning frequency Ω for the amplitudes 

near the onset of vibrations: 
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Ω=Ω . (8.10)  

The real part of the equation then gives the tongue curve for the onset of spontaneous 

parametric oscillation: 
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which is very similar to the condition for individual parametric threshold derived in equation 

(2.32). In our experiment h12=h21, ΓI ≈ΓII and ωI ≈ωII , and therefore at the lowest point of the 

tongue (Ωp=0) the off-diagonal term has to be at least h12≈(ΓIωIΓIIωII)1/2. For larger excitation 

levels the detuning frequency and the amplitudes of mechanical motion are determined by 

numerical solution of equation (8.8). The behavior of the amplitudes resembles the one for single 

parametric resonator in degenerate mode. The amplitude rises as approximately square root 

dependence on the sweep frequency [55]. 

8.2 NONDEGENERATE PARAMETRIC RESONANCE MEASUREMENTS 

The existence of the solution to equations (8.8) and (8.9) implies that when a strongly coupled 

system of mechanical resonators is driven parametrically at frequency close to the sum of the 

resonance frequencies, the modes start vibrating simultaneously at their own resonance 

frequencies. This phenomenon is called nondegenerate parametric resonance. Previously 



 

 

120 
degenerate parametric pumping was performed at exactly twice the fundamental frequency of 

one mode, therefore the excitation phonon sent to the system was split into two identical ones with 

frequencies exactly one half of the initial frequency. In the nondegenerate case the excitation 

phonon is divided into two different unequal parts. This phenomenon is intensively studied and 

utilized in quantum optics for quantum state teleportation [56] and Bell inequality measurements 

[57]. In the mechanical domain this effect was observed for MEMS [58] and smaller NEMS [59] 

devices, although it was not studied in detail, and its origin was not explained to the extent done in 

this chapter.  

Straightforward analysis of equation (8.11) combined with equation (8.3) yields an estimation 

of the threshold for both degenerate and nondegenerate parametric responses. The ratios of 

experimentally measured threshold values match predicted ones very well for all the three devices 

used in the measurements. Considering the original piezoelectric tunability measurements, the 

predicted and measured threshold voltages for the first device are given in table 8.1. The first 

device is chosen because the largest number of parametric resonances is visible. The second one 

has too strong coupling while the third has too weak coupling for many resonances to be visible.  

Connection Theoretical, mVrms Experimental, mVrms 
I II Nondeg I II Nondeg 

Left 193 557 339 219 NA 380 
Right 519 206 339 537 235 345 
180o 306 328 163 345 350 169 
0o 140 151 ∞ 147 156 NA 

Table 8.1 Theoretically predicted and experimentally 
measured threshold voltages for the first device for 
different connection configurations. NA (not available) 
means that the parametric resonance is not visible up to 
700mVrms. 
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Different connection configurations in the table imply that the system is parametrically 

pumped either from left (Vp1=V, Vp2 = 0), right (Vp1=0, Vp2 = V), through 180o splitter (Vp1=V, Vp2 

= -V), or through 0o splitter (Vp1=V, Vp2 = V). Most of the nondegenerate parametric resonator 

characterization measurements are performed with 180o splitter configuration, since the lowest 

threshold is achieved with this arrangement.  

The simultaneous motion of two modes is detected by spectral analysis of the output of the 

photodetector. Figure 8.2 shows the result of the measurement. Two sharp peaks indicate 

sinusoidal mechanical motion of the beams. When a single resonator is actuated parametrically in 

degenerate mode as in chapters 4 or 7, the width of the peak is determined by the frequency 

linewidth of the RF source used for parametric drive, because the frequency of the mechanical 

response is constrained to be exactly one-half of the source frequency. As a result in those cases 

the peaks widths were limited by the spectrum analyzer resolution bandwidth, because the smallest 

RBW available for the instrument (Agilent 4395A) is 1Hz while most of the measurements were 

performed at RBW of 10-100Hz. The RF sources (Agilent 33250A and HP8648B) used in the 

experiments have a linewidth much narrower than that. Hence in all the previous experiments with 

degenerate parametric actuation, the measured spectrum had one sharp peak consisted of only one 

data point.  
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Figure 8.2 Spectrum analyzer measurement of the 
simultaneous motion of the two coupled modes. The 
inset shows the spectrum analyzer measurement of the 
width of the nondegenerate parametric peak.  

This is no longer the case for nondegenerate parametric actuation. Earlier in this chapter it was 

shown that only the sum of frequencies of the mechanical motion of the two modes is constrained 

to equate to pump frequency. Therefore the individual frequencies are determined by mechanical 

properties of the system and are free to wander around, much like oscillators with a positive 

feedback loop. Treating nondegenerate parametric resonator motion as an independent oscillator 

we perform a measurement of its linewidth, which is plotted in the inset of Figure 8.2. The peak 

has a shape close to Lorentzian, the fit is shown as a red line in the plot. This suggests that white 

noise is responsible for widening the spectral response. The measured full width at half maximum 

is 79Hz, which corresponds to a factor of 140 linewidth reduction [60] assuming resonance 

frequency and quality factor of 17.4MHz and 1560 respectively (device #3 from Table 6.1).  
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Figure 8.3 Measurement of the tongue boundary 
performed by repeated downward parametric sweeps. 
Color scale represents the amplitude of mechanical 
vibration of the first (left) peak, and half the pump 
frequency is chosen as the x-axis. The measurement well 
agrees with the theoretical prediction, shown as a black 
line(equation (8.11) for the parameters of device #3). 

Spectrum analyzer measurements are used to characterize the nondegenerate parametric 

resonators. The expression (8.11) is verified by repeated downward frequency sweep 

measurements where only the first peak is monitored at different parametric drives. The result, for 

the second stronger coupled device from Table 6.1, is shown in figure 8.3. Black parabolic line 

represents theoretically calculated tongue boundary, derived from expression (8.11). 
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8.3 HARMONICS IN NONDENEGERATE PARAMETRIC RESONANCE 

Going back to equation (8.6), a few more terms have to be taken into account in order to fully 

explain the experimental measurements. Assuming (8.8) is satisfied, so that the expression inside 

square brackets vanishes, we rewrite equation (8.6) taking (8.7) into account and including higher 

order terms that appear after the ellipses: 
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On the left-hand side there is an expression for dissipationless simple harmonic resonator while 

on the right-hand side there are two terms, which are both representing off-resonance drive. The 

analytical solution to these equations assumes the form:  
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The second terms on the left- hand side of equation (8.13) insignificantly alter the amplitudes of 

the main peaks, because coefficients h11 and h22 are minimized due to the connection configuration 

employed. The first terms, on the other hand, imply that in addition to simultaneous motion of the 

two modes at their respective resonance frequencies, harmonics of these vibrations are generated at 

frequencies near 2ωII-ωI and 2ωI-ωII. The harmonics are smaller in amplitude and are predicted to 

rise as the power of 3/2 with a sweep frequency, measured from threshold. Figure 8.4(a) shows the 

experimental evidence for harmonic generation using spectrum analyzer measurements described 
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earlier. Since the harmonics are slower to grow, the sweep has to be performed over a large 

frequency range for the peaks to rise above noise floor.  

 

Figure 8.4 Experimental measurements of the harmonics 
generated due to the presence of nonlinear coupling 
terms: (a) evidence of the first pair of harmonics; (b) up 
to 3 pairs of harmonics were observed in long sweeps. 

Similar consideration can be continued further with the possibility of second and third order 

harmonics generated when higher order terms are taken into account. In the experiment, for 

sufficiently long sweeps, up to three pairs of harmonics were observed; the plot in figure 8.4(b) 

shows the spectral response of the system on a semilog scale do display the sharp peaks with 

significantly different magnitudes.  

Several long frequency sweeps were performed while the vibration amplitudes of the main and 

harmonic peaks were monitored. Figure 8.5(a) shows an experimental measurement of a long 

nondegenerate parametric sweep where the main peak amplitudes are plotted versus half the 

pumping frequency. The dependence is close to the predicted square-root function observed earlier 

in chapters 4 and 7. Two more pairs of harmonic peaks along with the main vibration modes are 

plotted versus sweep frequency on a log-log scale in figure 8.5(b).  
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Figure 8.5(a) The dependence of the amplitudes of the 
two main peaks on a half pump frequency during long 
nondegenerate parametric sweep. (b) Log-log plot of 
main peaks and 2 more pairs of harmonics.  

 Power law fits to the curves on the second plot yield values close to the ones expected from 

theoretical analysis. The main peaks rise with a power 0.45, while the expected value is ½; the first 

pair of harmonics grow with power of 1.3, while 3/2 is expected; and the blue plot for second the 

second harmonic on the left increases with a power at 2.3, with 5/2 being the expected value.  

A few important observations have to be pointed out after analyzing the data. It is obvious from 

the second plot that that the power-law fit is only valid in a limited range close to the onset of 

vibrations: for the main-mode peaks the range is up to about 15.5 MHz. After this frequency the 

growth of the amplitudes slows down. This phenomenon may be caused by the increasing 

dissipation rate when generated harmonics grow significantly large. Frequency offset 

measurements described in the next section suggest a similar explanation. Another observation is 

that the amplitudes of the two peaks within one harmonic pair do not necessarily behave similarly. 

In the above example it is obvious from the second pair of harmonics. Other parametric sweeps 
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show behaviors that significantly deviate from the predicted ones. This effect may be caused by 

a variety of different mechanisms, such as quasi static asymmetric changes in mode shapes, or 

dissipations rates. Additional work has to be performed in order to fully understand the nature of 

the behavior of the harmonic amplitudes. 

Even though theoretical analysis of the nonlinear mechanical motion predicts the generation of 

harmonics, there are intrinsic nonlinearities in the readout procedure that are also responsible for 

the production of harmonic peaks in the spectral response. In particular the conversion from 

mechanical displacement to optical intensity becomes nonlinear for large displacements [37]. The 

measurements for the uncoupled device used in the previous chapter, when driven both directly 

and parametrically, showed that the satellite harmonic peaks are indeed generated, but their 

magnitude never goes above 4 μV, even for a displacement signal as high as 500 μV. In the 

nondegenerate parametric case, the magnitudes of the harmonic peaks can grow as high as the 

height of one of the modes (Figure 8.4(b)), up to 100 μV. No external nonlinearity can account for 

this. Therefore the observed harmonic peaks are due to the mechanical motion of the beams, 

perhaps slightly altered by external readout nonlinearities.  

8.4 FREQUENCY SHIFTS AND SATELLITES 

Another interesting observation is the small peak shaped structures in the amplitude dependence 

plot around 15.85MHz. This phenomenon has to be considered along with a study of the relative 

frequency shift between the two modes.  
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Figure 8.6 (a) Amplitude dependence during parametric 
frequency sweeps similar to figure 8.5(a); and (b) the 
relative frequency offset. Note that the small deviations 
in the amplitudes correspond to large deviations in the 
frequencies.  

Figure 8.6(b) shows the plot of the change in relative frequency shifts of the modes. The value 

plotted is the frequency detuning Ω for left peak (black) and -Ω for right peak (red) from equations 

(8.7)-(8.11), converted to Hertz. It is a change in the offset of between frequency of the vibration 

and half pumping frequency relative to its initial offset at the onset of vibrations (the value is zero 

at the beginning of the scan near 15.1 MHz). The frequency shifts are equal in absolute magnitude 



 

 

129 
and opposite in sign, which is consistent with the theoretical expectations: Ω for the left peak 

and –Ω for the right peak. The previous amplitude dependence plot is shown in figure 8.6(a) with 

the same x-axis scale for comparison.  

The experimental measurement shows that small peak shaped deviations in amplitude 

dependence plots correspond to large deviations in the frequency shift behavior. Equation (8.10) 

suggests possible explanations of the observed phenomenon. It implies that asymmetry in 

dissipation rate gives rise to offset in frequency shifts. Even though additional terms proportional 

to amplitudes will appear in this equation as the vibration grows, those terms are also proportional 

to asymmetries in the physical characteristics of the modes. Therefore we conclude that around 

15.8 MHz in the long parametric frequency sweep the quality factor of the first mode increases 

relative to that one of the second mode. According to equation (8.10), this deviation causes the 

frequency of the left peak to drop, and the frequency of the right peak to increase. This observation 

is consistent with a sign of change in the growth of the amplitudes of the modes, with the height of 

the first mode peak increasing while the second one decreasing.  

This suggests an explanation for the outcome, but not for the origin of the underlying physical 

phenomenon. Moreover, careful analysis of the plot in figure 8.6(b) reveals a few more peak 

shaped structures occurring during the sweep, although unnoticed in the amplitude dependence 

plot. Similar measurements are performed with the other two samples (#1 and #3) from Table 6.1. 

The results are shown in figure 8.7. The first device shows multiple peaks even with different 

signs. On the other hand the third device which has only minor coupling strength does not have 

peak shaped structures at all, and moreover the behavior of the relative frequency shift is different 

from the other two devices.  



 

 

130 

 

Figure 8.7 Relative frequency shift plots performed for 
other devices (#1(a) and #3(b)) in Table 6.1. Multiple 
peak-shaped structures are consistently observed in 
parametric sweeps of strongly coupled systems. The 
frequencies behavior of weaker-coupled device is 
smooth and changes sign during the sweep.  

Careful measurement of the spectral composition of the mechanical motion around the region of 

the peaks yields a hint on the nature of the physical phenomenon for only the largest peak in figure 

8.7(a) around 17.75 MHz. Figure 8.8(b) shows the corresponding spectrum analyzer plot on a 

semilog scale, while the relative frequency shift dependence for the second device is included in 

figure 8.8(a). The spectral response reveals that besides the higher order harmonics peaks, small, 

closer spaced satellite peaks appear near all the large peaks. Furthermore, a closer look at the 

largest peak shows even smaller satellites, evenly spaced with the first ones. Frequency 

measurement of the separation between the carrier and its satellites yields a value of exactly a 

factor of six smaller than the original mode peak separation. The generation of these satellite peaks 

may perhaps be caused by excitation of another parametric resonance, or by the instability of the 

amplitude of the main mode due to the presence of strong coupling, similar to well understood 

phenomenon described in chapter 6 for interacting Duffing resonators. 
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Figure 8.8 (a) Relative frequency shift behavior with 
multiple deviations, (b) spectrum analyzer plot showing 
satellite peaks. 

The generation of satellite peaks opens another dissipative channel in the dynamics of the 

motion of an individual mode. When the resulting dissipation is asymmetric for the two different 

modes, a difference in damping rates develops. As a result, the steady frequency offset growth 

changes, and if this phenomenon is only present in a narrow frequency range during the sweep, a 

peak-shaped structure will occur. Therefore we suggest that similar satellite peaks generation may 
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take place in other cases, but their magnitudes are not sufficient to observe with the available 

experimental equipment.  

Additional evidence to support the presented hypothesis is that in all the measurements the 

relative frequencies start to deviate at about the sweep frequency where the harmonic peaks start to 

appear. This may imply that the generation of harmonics itself is an asymmetric dissipative 

process, which causes a steady change in the relative frequency offset.  

SUMMARY 

This chapter provides a theoretical analysis and detailed experimental investigation of an 

interesting coupled parametric phenomenon, namely nondegenerate parametric resonance. 

Interesting phenomena such as harmonics and satellites peak generation were experimentally 

observed and partially understood theoretically.  

This phenomenon is very promising for low-noise mechanical resonance sensing because it not 

only provides a fundamentally noiseless amplification mechanism but also it decouples pump and 

signal frequencies which is very important for rf background minimization [9]. 
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Chapter 9 

CONCLUSIONS AND FUTURE DIRECTIONS 

In this chapter I will summarize the work done over the course of four years. And I will give my 

thoughts on future directions  

8.1 FINAL THOUGHTS 

The discussion about a future of the work performed here has to be done along with projections 

about the direction where all NEMS research is headed. The performance of 

nanoelectromechanical systems has already proved their potential for an amazing improvement in 

resonance frequency shift based sensing applications. Indeed extremely low mass, superb power 

efficiency and exceptional quality factor provide an excellent platform for realizing unsurpassed 

mass, charge, energy and force sensors. Albeit there is yet an appreciable gap between research 

games we play in the laboratory and reliable commercial applications, the chasm is closing at an 

incredible speed. This initial application is largely regarded as low-hanging fruit; in addition there 

is a vast field of imaginable appliances that are likely to be possible when the field of 

nanotechnology in general and NEMS in particular matures. Such novel nanoenabled applications 

include mechanical signal processing elements in integrated circuits, power switches for CMOS 

transistors, multifunctional wireless antitheft and RFID devices, fast and portable medical 

diagnostic equipment, efficient vibration power harvesters as well as small-scale mirror focusing 

actuators for solar panels. This list can be continued to embrace application that we cannot yet 

imagine.  

Nonetheless in the meantime NEMS nanoresonators appear to be magnificent tools for 

fundamental research in multidisciplinary subjects ranging from quantum limited measurements [6, 



 

 

134 
49], to spintronics and magnetic domain study [61], to detailed study of nonlinear dynamics 

[23]. The research described here is valuable for both providing extra steps towards realizable real-

world applications and expanding a platform for fundamental research.  

The enormous advantages for employing parametric amplifiers in nanoelectromechanical 

systems, including intrinsically noiseless amplification and efficient compensation for dissipations, 

are extremely useful for promising commercial applications. On the other hand, a new type of 

dynamical system described by class of partial differential equations provides an opportunity to 

observe such interesting physical phenomena as multiple mechanical states and Hopf bifurcation.  

Another important topic thoroughly investigated in this thesis is the behavior of the interacting 

systems of nanomechanical resonators. Detailed understanding of all the underlying physics is of 

paramount importance for reliable, practical NEMS-based gadgets, because it enables large-scale 

integration of the devices. At the same time, fundamental research benefits from this study because 

such interesting phenomena as voltage-dependent bifurcation topology and spontaneous state 

transitions originate during these investigations.  

The most important point about future work is the one I learned from my advisor soon after 

joining the group: “No research project is ever complete.” One interpretation applicable here is that 

the systems we investigated holds an enormous potential for a number of research projects that can 

account for more than just another PhD thesis. What has been studied here is just a tip of the 

iceberg. There is plenty of room for improving the already invented tools to outperform analogs 

and old version, and most excitingly invent new ones.  
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