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Abstract

The study of growing and developing organisms is a fascinating branch of experi-

mental biology. Once created, cells must exchange chemical and physical cues with

neighboring cells in order to grow, divide, and differentiate properly. In this thesis

we study portions of development of the C. elegans hermaphrodite gonad, building

mathematical models of the development process. Using our models, we show that

vulval precursor cells make fate decisions under a flexible program that takes advan-

tage of inherent chemical oscillations. This flexibility allows the cells to react more

sensitively to weak signaling gradients and to the actions of neighboring cells. With

our mathematical models, we also show that the development of the anchor cell can-

not proceed properly using the currently known decision mechanisms. We draw upon

knowledge of homologous proteins in D. melanogaster to propose a modification to

the current theory on anchor cell development. Our models suggest that this modi-

fied mechanism, though not yet identified in C. elegans, is sufficient to specify anchor

cell fates in accordance with experimental observations. In studying our mathemati-

cal models, novel analytical techniques were developed to understand the asymptotic

behavior of systems of delay differential equations.
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Chapter 1

Introduction to C. elegans

The aim of this chapter is to discuss general features of C. elegans and the development

of its vulva. Genes, proteins, receptors, etc. are referred to by their corresponding

human analogs, making this introduction more accessible to a general audience. De-

tails and nomenclature more specific to C. elegans are mainly reserved for Chapter

2.

Caenorhabditis elegans is an invertebrate parasitic worm that, when fully devel-

oped, measures roughly 1 mm from head to tail. There are no females of the species,

only males and hermaphrodites [33]. Along with others such as the human (Homo

sapiens), the mouse (Mus musculus), and the fruitfly (Drosophila melanogaster), it

is one of the most well-understood animals physiologically, genetically, and behav-

iorally. C. elegans has many nice properties that make it a useful object of study

(see Table (1.1)). Its genome is relatively small. It’s composed of a small number

of cells. It has a relatively small collection of neurons. It’s transparency, size, and

low motility also make it ideal for observation of behavior, development, and genetic

expression markers.

Starting from fertilization, the embryonic C. elegans undergoes four larval stages
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Table 1.1: Complexity of C. elegansand H. sapiens

C. elegans H.sapiens
hermaphrodite/male

Base Pairs ∼ 108 ∼ 3× 109

Cells 810/970 ∼ 1014

Neurons 302/381 ∼ 1011

Size (mm) ∼ 1 ∼ 103

of growth and development to reach adulthood. These stages, each followed by a

molt, are denoted as stage L1 through L4.

The mature adult wild-type C. elegans vulva is composed of 22 cells arranged in a

compact dimpled structure located on the ventral portion of the worm slightly poste-

rior to the midpoint between head and tail. See Figure (1.1). Together with the uterus

it forms the egg-bearing reproductive organ in the C. elegans hermaphrodite. The

vulva also functions as the opening through which sperm enter during copulation [35],

but isn’t necessary for hermaphrodites to self-fertilize [33]. Vulval development be-

gins in L1 when the six vulval precursor cells, or VPCs, are born. The development

of the vulva is initiated during L3 stage and completed during late L4. During L3

cell-cell signaling specifies the fates of these cells. The VPCs then undergo a sequence

of divisions, ultimately yielding 22 vulval cells, and six non-vulval cells. The vulval

cells then move, arrange and fuse to form the mature vulva [35].

The apical portion of the vulva is composed of eight cells known as the VulE and

VulF fate. These cells are flanked by 14 cells of VulA,B,C,D fates that form the

periphery of the vulva. Those flanking VulA-D fuse to the hypordermis. These play

no role in the mature vulval function and are thus said to be non-vulval while those
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Figure 1.1: Location of C. elegans vulva. Triangle points to head. Short arrow points
to tail. Long arrow points to vulva. Image courtesy of Wormatlas.org.

of VulA-F fates are said to be of vulval fate or Vul.

Prior to the cell divisions leading to the 22 vulval cells, the pre-vulval structure

consists of six VPCs arranged in a linear fashion between the basement membrane

and the epidermal syncytium, i.e., Hyp7. Hyp7 is a long polynucleate cell (133–139

nuclei) forming much of the structure of the midbody. These VPC are denoted by

P3.p through P8.p.

For proper development of the vulva, the activation of the VPC surface receptor

EGFR by the ligand EGF is required. In the absence of this signaling, these cells

divide once and then their daughters fuse to the syncytium [33]. Those VPCs whose

progeny are of VulE,F fate are said to have adopted primary fate, 1◦. Those whose

progeny are VulA-D fate are said to have adopted the secondary fate, 2◦. The remain-

ing VPCs whose progeny don’t divide and simply fuse to the hypodermis are termed
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the tertiary fate, 3◦. Primary, secondary, and tertiary fated VPCs differ not just in

their roles of forming different parts of the mature vulva, but also in their pattern

of divisions. Tertiary cells produce two non-dividing daughters. Secondary cells pro-

duce six great-grand-daughters and one non-dividing grand-daughter. Primary cells

produce eight great-grand-daughters.

VPCs appear to have similar numbers of EGFR receptors initially and in accor-

dance with this are equally competent to respond to signaling by EGF. The primary

source of EGF is a cell located dorsal to P6.p on the opposite side of the basement

membrane. During L3 stage, this cell, known as the anchor cell or AC begins to

secrete EGF. EGF secreted by the anchor cell then diffuses in the extracellular space

between surrounding cells, crosses the basement membrane, and binds to EGFR re-

ceptors on the VPCs. Once bound, the receptor releases its intracellular domain,

which initiates a series of biochemical reactions inside the cell. At the end of this

signaling cascade the nucleus of the cell is encouraged to begin translating particular

genes from DNA into RNA, which are later used as the templates to build proteins.

One such class of proteins, DELTA, is used by VPCs as ligands to trigger NOTCH

receptors on neighboring VPCs or possibly their own NOTCH receptors. The EGF

signal from the anchor cell is termed the inductive signal, as it induces VPCs to

become primary fated. The DELTA/NOTCH signaling between VPCs is part of

what’s known as the lateral signal. This lateral signal is thought to be responsible

for producing cells of secondary fate. The inductive and lateral signaling events are

illustrated in Figure (1.2).
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Figure 1.2: Signaling Events Coordinating Vulval Induction. Inductive signal from
the anchor cell promotes lateral signaling between the vulval precursor cells.
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As seen in experiments, the dynamics of these interacting signaling cascades pro-

duce patterning in the VPC fates. Through various modes of feedback, small dif-

ferences between the VPCs can be amplified to bring about distinct cell fates and

characteristics. Experiments with genetic mutants and laser ablations of VPCs show

how the dynamics of this intercellular circuit allow compensation when less than ideal

developmental conditions are present. Although much is known about the develop-

ment of the C. elegans vulva, there are many important questions left to be answered.

In Chapter 2, the details of these signaling pathways and their interactions will

be elaborated on. In Chapter 5 mathematical models for this signaling process are

constructed and analyzed. In Chapter 3 a related developmental process, the de-

termination of the anchor cell, is discussed with models and analysis following in

Chapter 6. In Chapter 4 mathematical techniques are developed that aid in later

modeling and analysis. Mathematical proofs and details from all chapters are mainly

left to the Appendix.
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Chapter 2

Biological Background: Vulval
Induction

2.1 Introduction

In this chapter C. elegans vulval development is discussed in more detail and with

specialized nomenclature. A familiarity with C. elegans is presumed.

2.2 Inductive Signaling

During L3 the anchor cell, part of the somatic gonad, produces LIN-3, a homolog

to human Epithelial Growth Factor, EGF [20]. The VPCs have receptors for LIN-3

on their surfaces. This receptor, LET-23, is a receptor tyrosine kinase of the EGFR

family. The binding of LIN-3 to LET-23 is known as the inductive signal .

Signaling by the AC is necessary for VPCs to adopt normal fates because if the

AC is ablated prior to induction all of the VPCs adopt non-vulval fates. Signaling

by the AC is also sufficient for VPCs to develop properly because if all of the other

cells in the somatic gonad, except the AC, are ablated, the VPCs still acquire normal
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fates [28].

Once secreted, LIN-3 diffuses throughout the somatic gonad, crosses the basement

membrane, diffuses around the VPCs and binds to LET-23 receptors. As a result of

this diffusive process, there is evidence of a gradient of LIN-3 in the proximity of the

VPCs [23, 25]. If all but one of the VPCs are ablated, the remaining isolated VPC

adopts either a primary or secondary fate depending on its distance from the AC [25].

See examples in Table (5.1). This observation also supports the direct induction hy-

pothesis, i.e., the gradient of LIN-3 determines VPC cell fates [43]. All evidence for a

gradient of LIN-3 is indirect, as levels of LIN-3 have never been quantified. As men-

tioned in the introduction, other signaling events contribute to cell fate specification

and these signals seem capable of enhancing small physiological differences brought

about by even a weak gradient.

In addition to spatial gradients of LIN-3 being formed, the VPCs themselves may

act to enhance the signaling event in a spatially graded fashion. There is evidence

that around the time of initial LIN-3 signaling the level of LET-23 receptors on

P6.p increases while the level on P5.p and P7.p decreases [39]. Additionally, it is

known that on P6.p the LET-23 receptors aren’t distributed uniformly, but rather

are localized to be closer to the AC. In mutants where localization is impeded while

total receptor level is not, a vulvaless phenotype results [39]. If localization is impeded

while total level of receptor is increased, normal vulval development is rescued. Hence

the localized distribution of LET-23 on P6.p appears to exploit geometry to achieve

a maximal effect from a limited level of receptor and weak gradient. Likewise, up-
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regulation of LET-23 on P6.p with simultaneous down-regulation on P5.p and P7.p

promotes the proper pattern of cell fates.

In a wild-type animal, this and other signaling pathways lead the six VPCs to

adopt the fates 3◦-3◦-2◦-1◦-2◦-3◦.

2.3 The Map Kinase Pathway

LET-23 receptors activated by bound LIN-3 convey the inductive signal into the cell

by activating a cascade of biochemical reactions related to the MAP kinase pathway in

humans. See Table (2.1). Activated LIN-3/LET-23 complex affects SEM-5, which is

believed to be an adaptor between the receptor tyrosine kinase and LET-60, starting

a cascade of interactions, ending with the activation of the MAP kinase, MPK-1. The

sequence of interactions is given schematically by Equation (2.1).

LIN-3/LET-23 → SEM-5 → SOS-1 → LET-60 → LIN-45 → MEK-2 → MPK-1

(2.1)

Although details are still not known, the targets of this pathway appear to be tran-

scription factors. For example, MPK-1 (a MAPK homolog) disrupts a complex formed

by LIN-1 and LIN-31 by phosphorylating it [33]. These are both transcription factors

whose targets are currently unknown.

Transcription promoted and inhibited as a result of MAPK activity leads cells

to proceed through a characteristic pattern of divisions typical of the primary fate.
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Table 2.1: Human and C. elegans Orthologs in the MAPK Pathway

Human C. elegans
EGF LIN-3
EGFR LET-23
GRB-2 SEM-5
SOS SOS-1
RAS LET-60
RAF LIN-45
MEK MEK-2
MAPK MPK-1 (SUR-1)

Aside from inducing primary fated VPCs, activation of the MAPK pathway also leads

to the transcription of three genes believed to produce the lateral signal, lag-2, apx-1,

and dsl-1 [5].

In addition to the core components there are many positive and negative regula-

tors of the MAPK pathway that play small roles in wild-type primary and secondary

VPCs. Examples of these types of regulators include LIN-15 which activates the

MAPK pathway independent of LIN-3, and DPY-22 which inhibits the MAPK path-

way and may be important in preventing signaling in non-vulval cells [33]. Effects

of these regulators are typically not observed in wild-type VPCs. Mutations in these

alleles can lead to dramatically different pattern formation. An example of this was

shown in a LIN-15 mutant [40] where a 2◦-1◦-2◦-1◦-2◦-1◦ phenotype was strongly

penetrant.
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2.4 Lateral Signaling

As mentioned in § (2.3), activation of the MAPK pathway promotes the transcription

of three genes thought to be responsible for production of the lateral signal, apx-1,

lag-2, and dsl-1. See Figures 2.1 and 2.2. It has been shown through use of a

transcriptional reporter [5] that apx-1 and dsl-1 aren’t transcribed in any of the VPCs

prior to inductive signaling, but are subsequently transcribed in P6.p to produce

APX-1 and DSL-1, respectively. In contrast, the reporter for lag-2 is evident in all

six VPCs in early L3 but later becomes more apparent in P6.p while diminishing

in the other VPCs. These results show that activation of the MAPK pathway up-

regulates the transcription of genes responsible for the lateral signal. Also suggested

by these results is that lateral signal produced by P6.p affects neighboring VPCs in

such a way that transcription of lag-2 is down-regulated in them, making them less

able to laterally signal their neighbors.

The lateral signal, be it the transmembrane ligands LAG-2 and APX-1 or the se-

creted ligand DSL-1, is detected by VPCs through binding of these ligands to LIN-12

receptors. Activation of these receptors is thought to induce the secondary fate [40].

As mentioned above, lateral signal production can be up-regulated in some cells while

being down-regulated in others. Additionally it has been shown that the LIN-12 re-

ceptor is down-regulated by the MAPK pathway [38]. This would appear to contra-

dict the observation that lin-12 expression is continuous and uniform [44]. There is

no contradiction, however. LIN-12 is expressed continuously and uniformly [44] but

is post-transcriptionally down-regulated possibly via targeting to lysosomes, impair-
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Figure 2.1: Signaling Events Coordinating Vulval Induction 2
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Figure 2.2: Lateral Signal
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ment of receptor recycling or enhancement of receptor internalization [38].

These results indicate that activation of the MAPK pathway causes VPCs to begin

laterally signaling their neighbors while they themselves become less susceptible to

such signaling. It has been shown that if P6.p is prevented from down-regulating

LIN-12 then it can’t laterally signal P5.p and P7.p effectively; indeed, a 3-3-3-1-3-3

pattern of fates is observed [38].

If LIN-12 persists on P6.p then ligand produced by P5.p, P6.p, or P7.p in either

transmembrane or secreted forms might initiate a lateral signaling event in P6.p. One

explanation is that this lateral signaling can impede the ability of P6.p to laterally

signal its neighbors by down-regulating the amount of lateral signaling ligand. This

is in agreement with the conclusion drawn from the results of [5], discussed above.

Although the exact mechanism of this feedback loop for VPCs is unknown, there

are detailed results from a similar type of post-transcriptional down-regulation in

the AC/VU decision. It has been observed in [24] that LIN-12 lateral signaling

events between the cells Z1.ppp and Z4.aaa lead one of these two initially equipotent

cells to stop producing lateral signal and become the VU while the other cell stops

producing LIN-12 and becomes the AC. The authors provide evidence of positive

and negative feedback loops involving HLH-2, a positive regulator of LAG-2 ligand

transcription, which explains how LIN-12 receptor signaling can cause these cells to

cease transcription of LAG-2, a lateral signal ligand.

Based on these three different sources of evidence, it seems highly probable that,

through some as yet unidentified mechanism, lateral signaling of a VPC reduces its
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ability to laterally signal its neighbor. Activation of LIN-12 receptors by lateral signal

also appears to affect the transcription of genes involved in the MAPK pathway. LAG-

1 is a DNA binding protein that forms a complex with the LIN-12 intracellular binding

domain to activate transcription of target genes. Based on computational screens,

several good targets for the LAG-1/LIN-12(intra) complex have been identified in

VPCs [47]. These targets are ark-1, dpy-23, lst-1, lst-2, lst-3, lst-4, lip-1, vha-7,

T22A3.2, F35D11.3, and Y40H4A.2. Of these, six were found to act as negative

regulators of EGFR-MAPK activity (ark-1, dpy-23, lst-1, lst-2, lst-3, lst-4). See

Table (2.2).

Two genes (dpy-23 and lst-3) are expressed at low levels in the VPCs during mid-

L3 stage but then are expressed more strongly in P5.p and P7.p. Thus it appears

that these negative regulators of the EGFR-MAPK pathway are up-regulated by the

lateral signal. Three other genes (lst-1, lst-2, lst-4) have a more complicated pattern

of expression. A high level of expression is seen in all VPCs but at time of inductive

signaling expression is slightly diminished in P5.p and P7.p and greatly diminished in

P6.p. Later, strong expression returns to P5.p and P7.p but remains low in P6.p. This

pattern suggests that these genes are initially down-regulated by inductive signal and

later up-regulated by lateral signal. Thus the EGFR-MAPK pathway seems capable

of down-regulating the transcription of its own negative regulators while the activation

of LIN-12 by lateral signal up-regulates them. This raises the question of whether

the MAPK pathway has targets in common with the LAG-1/LIN-12 pathway. We do

not pursue this question here.
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Mentioned in [47] are two other targets of LIN-12 that also act as negative reg-

ulators of the EGFR-MAPK pathway, ark-1 and lip-1. ARK-1 is thought to inhibit

EGFR-MAPK signaling upstream of LET-60 [22] while LIP-1 is a MAP kinase phos-

phatase [33]. See Table (2.2) for all target genes discussed by those authors and

Figure (2.3) for a depiction of these inhibitory events.

Table 2.2: Known Lateral Signal Target Genes

Gene or
Gene Product Known or Probable Role
ARK-1 Inhibits upstream of Let-60.
LIP-1 A known MAPK phosphatase.
dpy-23 Play a role in the degradation of EGFR.
lst-4
lst-1 May act directly on MAPK.
lst-2 May influence endocytotic trafficking of LET-23 or

the sub-cellular localization of other components of
the EGFR-MAPK pathway.

lst-3 No obvious direct role.
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Figure 2.3: Signaling Events Coordinating Vulval Induction 3
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Chapter 3

Biological Background: The
AC/VU Decision

3.1 Introduction

As discussed in § (2.2) the anchor cell (AC) plays a critical role in the development

of the mature C. elegans hermaphrodite vulva. During L2, prior to vulval induction

in L3, the AC must emerge from a pair of equipotent gonadal cells known as Z1.ppp

and Z4.aaa. These two cells, though proximal in space, are born of distinct mother

cells and differ in birth time.

In wild-type hermaphrodite C. elegans one of these two cells becomes the AC

while the other becomes a Ventral Uterine Precursor Cell (VU). The specification

of these distinct fates is made decisively but not consistently. Indeed, both Z1.ppp

and Z4.aaa are equally likely to become the AC. This duality was illuminated by the

authors of [24]. They showed that while the AC fate is adopted by Z1.ppp or Z4.aaa

with equal frequency, the decision is strongly correlated with birth order. The main

evidence for this was a set of 13 observations in which the first born of Z1.ppp and

Z4.aaa adopted the VU fate 12 times. See Table (3.1).
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From the fruit of further observations, the authors gained insight allowing them

to propose a signaling mechanism likely to be the lynchpin of the AC/VU Decision.

In § (3.2) we provide a detailed exposition of this proposed mechanism. In Chapter 6,

we construct a mathematical model representing this mechanism. In that chapter we

also present quantitative results showing that the mechanism exhibits some expected

features but has clear shortcomings. We close Chapter 6 with a modified proposed

mechanism, with added features homologous to those observed in Drosophila, and

show how this new proposal provides for a mathematical model with more qualita-

tively accurate features.

3.2 The Karp and Greenwald Model

In [24] Xantha Karp and Iva Greenwald provide convincing evidence of several features

of the AC/VU decision. This section summarizes those results, making references to

other sources when necessary.

A series of experiments has demonstrated that both Z1.ppp and Z4.aaa are equipo-

tent, i.e., they are equally capable of adopting either the AC or VU fate. In a wild-type

worm one of these precursors becomes the AC and the other the VU. As decisive as

this may seem, that cell which becomes the AC and that which becomes the VU are

not consistent across a sample of wild-type worms. Though this outcome may seem

indicative of a noisy or randomly behaving system, in fact it is telling of more subtle

and intricate dynamics.

When Z1.ppp and Z4.aaa were tracked from birth in a population of 13 worms, it
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was seen that, though both are equally likely to become AC, the latter-born of the two

became AC 12 times. In this set of observations birth time separations varied from

two minutes to two hours (see Table (3.1) adapted from [24]). This strong correlation

suggests three possible causal relationships:

(i) A cell becomes VU as a result of being born first.

(ii) A cell is born first as a result of or as part of a predetermination to become VU.

(iii) Birth order and fate specification, though correlated, are not causes or effects

of one another but merely coincident or perhaps the effects of a common cause.

Table 3.1: Birth time separations in the AC/VU decision. Data adapted from [24].

First Born Fate of Birth Separation
First Born (minutes)

Z1.ppp VU 7
Z1.ppp VU 15
Z1.ppp VU 27
Z1.ppp VU 60
Z1.ppp VU 75
Z1.ppp VU 115
Z4.aaa VU 2
Z4.aaa VU 12
Z4.aaa VU 15
Z4.aaa VU 25
Z4.aaa VU 25
Z4.aaa AC 40
Z4.aaa VU 75

Hypotheses (ii) and (iii) each presume that interaction between Z1.ppp and Z4.aaa

is of no consequence in the fate decision. Indeed, if (ii) or (iii) were true, then pre-

venting interaction between cells would lead to a wild-type outcome. The only known
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means of interaction between these cells is via a DELTA/NOTCH-type signaling event

mediated by LAG-2/LIN-12. Experiments described in [16] show that LIN-12 activity

is both necessary and sufficient to specify the VU fate. In the absence of signaling, a

two AC phenotype is observed making relationship (i) the only consistent choice.

Identifying this causal relationship is a large piece of the fate specification puzzle,

but now questions arise as to why the first born should be VU. Firstly, how do birth

order differences as small as two minutes provide for decisive and consistent cell fate

specification? Secondly, what is the full nature of the lateral signaling event leading

to this specification?

In [24] progress is made towards addressing the latter of these inquiries. Specif-

ically, levels of the protein HLH-2 were observed to diminish in response to LIN-12

activity. HLH-2 is a known activator of lag-2 transcription. Further investigations

have shown that the nature of the removal of HLH-2 protein is post-transcriptional,

since reporters of hlh-2 transcription were apparently unchanged while HLH-2 protein

vanished from presumptive AC cells. These features lead those authors to propose

the lateral signaling mechanism depicted in Figure (3.1). In Chapter 6 we build a

mathematical representation of this proposed mechanism and address the question

of how it (or a slight modification of it) might be capable of producing the observed

rapid and definitive fate specifications.
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Figure 3.1: Sequence of Activations/Inhibitions Leading to AC/VU Fate Specification
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Part II

Mathematics
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Chapter 4

Mathematical Modeling:
Continuous Reaction Models

4.1 Philosophy

When applying mathematics, it is important to let the object of study dictate which

mathematical ideas will be employed. Familiar mathematics should not be haphaz-

ardly forced upon unfamiliar systems. Mathematics is the language of nature, so in

studying natural systems we should listen carefully to this language before making

decisions about how to model a system.

All mathematicians are familiar with this idea. We’ve all seen the advantages

of using carefully chosen coordinate systems, eigenvectors, and function spaces as

the foundation of our models and analysis. This idea is succinctly expressed by a

phrase that Professor Donald Cohen relates to his students, “If you want to model

an elephant, use elephant functions.”

Masters of other disciplines are also well-versed in this idea. To paraphrase martial

artist and philosopher Bruce Lee, one should “utilize all ways and be bound by

none” [30]. It is unfortunate that not all applied mathematicians adhere to this
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principle. While the mastery of a specific set of techniques is admirable and valuable,

artificially imposing those skills on ill-suited systems is foolhardy and dishonors the

discipline of applied mathematics.

It is my intention in this thesis to “listen” to the biological systems under study

and to develop models and methods that I think are most appropriate, rather than

insist that phenomena be entirely governed by known equations extracted from the

established dogma. For these reasons, this chapter and the appendix are devoted en-

tirely towards developing mathematical techniques which are well-suited to studying

the biological systems of interest. Essentially I aim to find “C. elegans functions,”

although I make no claim of having achieved this goal.

4.2 Introduction

The canonical EGFR/RAS/MAPK pathway in C. elegans VPCs is an example of

a linear sequence of biochemical interaction/reactions. Such a pathway might be

modeled by a system of ODE; however, for a long chain of reactions analytic extraction

of qualitative information about the behavior of the system would be difficult or

impossible.

In large systems of interacting objects, continuum models are probably more use-

ful for studying large scale qualitative behavior than are object tracking models. For

example, the diffusion equation describes the average motion of a practically infi-

nite sea of particles undergoing independent random walks. The diffusion equation

can be derived from a mass balance and Ficke’s law, a macro-scale constitutive rela-
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tion, or from first principles using Brownian motion as the description of individual

particle behavior ([32],[11]). As another example, the equations of one-dimensional

linear elasticity can be derived from mass/momentum/energy balances and Hooke’s

law, a constitutive relation, or from the approximation of the elastic object by an

infinite ensemble of infinitesimally small linear springs connected in series [6]. In

well-studied examples such as these, mechanistic particle tracking models and large

scale phenomenological models agree, allowing mechanical reasoning to buttress em-

pirical observations.

When one moves from an object tracking model to a continuum model, the number

of governing equations drops dramatically, e.g., from 1023 to 1, while the complexity

of the equations themselves increases, e.g., from ODE to PDE. This trade-off in

complexity does not afford any computational advantage– solving 100 first order ODE

initial value problems is no simpler than solving 1 first order in time parabolic PDE

on a grid of 100 points. The main advantage afforded by a continuum model is in the

mathematical analysis. Asymptotic methods, scaling arguments, model reduction,

and other approximation methods are undoubtedly more simple for 1 PDE than they

would be for 1,000,000 ODE.

Furthermore, we are often not concerned with the motion of individual atoms

and molecules but with the collective behavior of many such entities coupled through

a network of interactions. Continuum models are superior in this regard as well,

because they resolve not to tell us of fine details but of broad global results.

For these reasons, we now pursue continuum approximation models of long chains
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of similar chemical reactions. Our goal will be to formulate continuum models that

preserve the essential qualitative global features of their discrete progenitors.

4.2.1 Example Reactions

A Linear Chain Consider the following type of repeated reaction:

u0 oo // . . . oo // un−1 oo // un oo // un+1 oo // . . . oo // uN . (4.1)

This describes, for example, the spontaneous isomerization of a protein. Each ui

is an isomer of a given protein, and by temperature changes, ph modifications, or

otherwise, the chemical is being induced to change into “neighboring” states, with

the rates of transition described by forward and backward rate constants. Such a

reaction might be thought of as a “chain” with repeated “links” of the form

un oo // un+1 . (4.2)

This chain could also represent a series of enzyme-aided reactions where the enzymes

are plentiful enough to assume that their concentrations are fixed throughout the

process. The rate constants for each state transition would then depend on this

abundant but steady enzyme level.

Catalysts In more complex chains of reactions, the links could be more intricate.

For example, if the isomerization of a protein to different states won’t proceed spon-
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taneously but instead requires an enzyme catalyst, we might write the link as

un + En
oo // Cn

// un+1 + En . (4.3)

Here un is the substrate in state n, En is the n-type enzyme, and Cn is an intermediate

enzyme/substrate complex. When enzyme is so abundant relative to substrate as to

essentially remain fixed throughout their interaction, we recover the previous linear

chain representation.

Polymerization A description of polymerization is given by the following link:

un +Mn
oo // un+1 . (4.4)

Here Mn is a monomer of type n and un is an n-mer.

Ligand Binding By a small modification, the link for polymerization can also be

formed into a description of a cell-surface receptor with N total independent ligand

binding sites for a single ligand type.

un + L oo // un+1 (4.5)

Here, un represents the receptor with n ligands bound and L is the unbound ligand.

u0 is the empty state and uN is the completely saturated receptor.
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4.2.2 Combining Multiple Chains

Separate chains could be interconnected through “cross-links.” For example, consider

the example above of a receptor with N binding sites. If this receptor internalizes,

then the ligands could possibly be released one at a time inside the cell:

vn+1 oo // vn + L . (4.6)

If we suppose that the receptor is able to internalize in any state, then we could

cross-link the linear chains to get a planar arrangement that we might call a “mail.”

L+ un
oo //

ee

%%KKKKKKKKKK
un+1dd

$$IIIIIIIIII

vn + L oo // vn+1

(4.7)

4.3 Finite State ODE Models

We now examine in detail how a linked reaction chain can be described by a system

of ODE and subsequently, through a careful limiting process, leads to a continuum

model approximation.

Consider reaction (4.1). If we label each of the chemical species with an index

n ∈ {0, 1, . . . , N} we can apply the law of mass action [26] to write a system of
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ordinary differential equations describing the concentration of each species:

du0

dt
= −k+

0 u0 + k−1 u1

dun

dt
= k+

n−1un−1 − (k−n + k+
n )un + k−n+1un+1 (4.8)

duN

dt
= k+

N−1uN−1 − k−NuN .

Here k+
n are the forward reaction rate constants and k−n their backward counterparts.

The quantities un(t) are the concentrations of the corresponding chemical species. We

now have a large linear system of ODE to solve and analyze. Computing a numerical

solution is trivial, but qualitative analysis for a general set of rate constants could

be quite taxing. It would be advantageous to find a system capturing the behavior

of (4.8) but that is more analytically tractable. To this end, other investigators

have proposed approximating models to replace System (4.8) by fewer equations.

Examples include ([12],[13]) where restrictive assumptions are made to enable the

reduction of (4.8) to a smaller set of ODE together with a delay differential equation

(DDE). In § (4.6) we’ll compare their approach to the approach we develop here. We

believe our approach to be less restrictive and more generally applicable to systems

other than (4.8).
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4.4 PDE Continuum Models

4.4.1 Introduction

From a numerical analyst’s perspective, System (4.8) bears some similarity to the ap-

plication of the Method of Lines [46] to the numerical solution of a parabolic partial

differential equation. From this vantage we might ask what PDE is being solved and

with what order of accuracy. Should we discover an underlying PDE, no computa-

tional advantage will be afforded, but qualitative analysis may be facilitated.

4.4.2 From ODE to PDE

As the number of chemicals in the chain becomes large (N →∞) a bar chart plot of

the ui(t) at a fixed time would look more like the shaded area under a smooth curve.

This conjures the concepts behind the Fundamental Theorem of Integral Calculus [3]

and its proof based on the convergence of Riemann sums to areas under smooth

curves. For this reason, we choose to supplant the concentration of n discrete states

of chemical at time t, un(t), with a continuous function, u(x, t), where x is a continuous

variable we call the “state.”

It is worth noting that biological phenomena disparate from that considered here

have independently inspired the use of a continuous “state” approach. For example,

Segel and Perelson [37] use shape-state space to describe the broad variety of antibod-

ies in an immune response model. Interestingly, the continuous state models derived

in this thesis were conceived independently and are essentially different in both char-
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acter and utility. The independent conception of this idea in different biological

modeling environments is reminiscent of convergent biological evolution in different

phylogenetic paths, e.g., the evolution of the mammalian and squid eyes ([15],[34]).

In the case of vision, the common solution to the problem of seeing by unrelated

species speaks to the advantages of the eyed over the eyeless. In the present case,

the common solution to the modeling of complex but unrelated biological problems

speaks to the advantages of continuous over discrete models.

As N → ∞ the discrete variable n/N becomes a better approximation to a con-

tinuous one.

n

N
∈
{

1

N
,

2

N
, . . . ,

N

N

}
→ x ∈ [0, 1] , (4.9)

1

N
→ ∆x . (4.10)

This allows us to consider the change from a discrete dependent variable to a contin-

uous one by introducing a density function u(x, t).

un(t) =

∫ (n+ 1
2
) 1

N

(n− 1
2
) 1

N

u(s, t) ds →
∫ x+ 1

2
∆x

x− 1
2
∆x

u(s, t) ds , (4.11)

k±n = k±
( n
N

)
→ k±(x) . (4.12)

Here un(t) is the concentration of the nth chemical at time t, see Equation (4.8). Here

also u(x, t)dx is approximately the concentration of chemical in states [x, x+ dx) at

time t. With this formalism u(x, t) now describes the density of chemicals in each of

infinitely many states at a particular time. What we have developed here is a finite
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volume approach [31] to solving a PDE for u(x, t). We could have also included a

normalized kernel function in our integrand, but in the case of smooth symmetric

kernels, the end result is identical. For this reason, we preserve the lucidity of our

exposition and omit the kernel function.

With the density function defined as above, we rewrite the large ODE System (4.8)

as a single integral balance:

∂

∂t

∫ x+ 1
2
∆x

x− 1
2
∆x

u(s, t) ds =

∫ x− 1
2
∆x

x− 3
2
∆x

k+(s)u(s, t) ds

−
∫ x+ 1

2
∆x

x− 1
2
∆x

(k−(s) + k+(s))u(s, t) ds

+

∫ x+ 3
2
∆x

x+ 1
2
∆x

k−(s)u(s, t) ds . (4.13)

As it is written, this equation is somewhat deceptive, because as ∆x → 0 the rates

of transfer of chemical in state x to states x ± ∆x will also increase. Indeed, as

the “distance” between states, ∆x, approaches 0 the rate of transfer between states

should become infinite. To expand the integral balance in a Taylor series in ∆x

would depend on the relative orders of magnitude of the rate constants as ∆x → 0.

In order for such a Taylor series to lead to an expression whose leading order terms

capture both state and time dependence we must assume that for ∆x = o(1) the rate

constants are given as follows:

k±(x,∆x) =
q±(x)

∆x
+ o(1/∆x) . (4.14)

Additional justification of this assumption on physical chemistry grounds is elusive.
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In problems of asymptotic analysis a priori assumptions about the relative order of

variables are often made with the goal of obtaining a “distinguished limit” [27]. In

the present case, assumption (4.14) is the simplest one which yields a PDE with

both state and time dependance and that allows for state changes up and down

the reaction chain. In this sense our PDE and our assumption are “distinguished.”

Further a posteriori support is given below in this section and in § (4.6) where we

compare the approximate model to exact solutions of the full ODE system.

Consider the limit ∆x → 0. Assume that q±(x), and u(x, t) are continuously

differentiable in (x, t), and expand the integral balance, Equation (4.13), in a Taylor

series in the small parameter ∆x:

∂u

∂t
+

∂

∂x

(
q+ − q−

)
u =

∆x

2

∂2

∂x2

((
q+ + q−

)
u
)

+O(∆x)2 . (4.15)

This equation might be truncated at a certain order so as to produce a PDE that

retains essential properties of the original ODE system. Define the quantities D(x)

and c(x) as follows:

D ≡ q+ + q−

2
, (4.16)

c ≡ q+ − q− −∆x
dD

dx
. (4.17)

Truncating Equation (4.15) at O(∆x) and rearranging terms gives a linear convection

diffusion equation:

∂u

∂t
+

∂

∂x
(cu) = ∆x

∂

∂x

(
D
∂u

∂x

)
. (4.18)
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With the assumption on the limiting behavior of rate constants, ODE System (4.8)

is a finite-volume method of lines approximation to the PDE (4.18) with accuracy

O(∆x)2.

Interpretation In thinking about the progess of a molecular state down the in-

teraction chain it becomes clear that the forward and backward reaction rates can

interoperate in only two distinct ways. Either the rates balance, resulting in a state un

that is equally likely to transition to state un−1 or un+1, or they are dissimilar so that

the state is more likely to transition in one direction than the other. The case where

a state is equally likely to proceed in either direction up or down the chain is reminis-

cent of diffusion processes and Brownian motion, while the situation of directionally

biased movement is reminiscent of convective diffusion. It seems plausible then that

these are the two processes that dominate the transitions of the state so that a linear

chain of reactions like Equation (4.1) is modeled sufficiently by the reaction diffusion

Equation (4.18) with c(x) and D(x) derived from the rate constants, k. In § (4.6)

we provide evidence that this model accurately describes a linear chain of reactions

even when the total number of rections, N, is not large. We will also demonstrate

that removing the diffusion term results in a good model in some circumstances but

a poor model in others.

4.4.2.1 A More Complex Example

To demonstrate the generality of our approach we examine another type of chemical

reaction chain. Consider again the enzyme-aided chain of reactions. The link is given
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by Equation (4.3). The law of mass action allows us to describe these reactions by

an ODE system:

dun

dt
= −k+

n unEn + k−nCn + qn−1Cn−1 ,

dEn

dt
= −k+

n unEn + k−nCn + qnCn , (4.19)

dCn

dt
= k+

n unEn − k−nCn − qnCn .

These equations admit a simple conservation law because enzyme is never lost in the

process; it simply transitions between the free and bound states.

d

dt
(En + Cn) = 0 . (4.20)

This may be rewritten as En +Cn = en +cn. Here lower-case script denotes the initial

amount of the corresponding quantity, i.e., en = En(0). It is typically assumed in

mathematical investigations of catalysis that either Michaelis-Menten kinetics dom-

inate, or that the fast equilibrium hypothesis is valid [26]. These each yield a con-

ceptually similar reduction of the ODE system. The Michaelis-Menten model follows

from the often valid assumption that the amount of enzyme bound in complex is

approximately constant.

∂Cn

∂t
= 0 . (4.21)
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Together with the conservation law, this affords a substantial reduction of Sys-

tem (4.19).

dun

dt
=

q∗n−1un−1

mn−1 + un−1

− q∗nun

mn + un

. (4.22)

The coefficients mn and q∗n and the concentrations of enzyme and complex are as

follows:

En =
(en + cn)mn

mn + un

, (4.23)

Cn =
(en + cn)un

mn + un

, (4.24)

mn =
qn + k−n
k+

n

, (4.25)

q∗n = qn−1 (en−1 + cn−1) . (4.26)

If the dependent variable is scaled, un = mnvn, then the dimensionless variable vn

satisfies a dimensionless system of ODE.

dun

dt
=

kn−1vn−1

1 + vn−1

− knvn

1 + vn

, (4.27)

kn = q∗n/mn . (4.28)

As in the last derivation, as ∆x → 0, qn = O(1/∆x). Note however that k = O(1)

because en = O(∆x) and cn = O(∆x). This leads to a study of systems of the form

dvn

dt
= kn−1f (vn−1)− knf (vn) , (4.29)
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with kn = O(1). Proceeding as in § (4.4) we arrive at the following approximation:

∂v

∂t
+ ∆xf ′(0)

∂

∂x
(kv) = O(∆x)2 . (4.30)

Setting the lower order terms on the right side of Equation (4.30) gives a convection

diffusion equation describing slow moving waves. In the case of the enzyme reactions

currently under treatment, f ′(0) = 1 and the solution to Equation (4.30) is

v(x, t) = v0

(
f−1 (f(x)− t∆x)

) k (f−1 (f(x)− t∆x))

k(x)
. (4.31)

Here f(x) =
∫

1
k(x)

dx is an invertible function because k > 0. The function u0(x)

is the initial data. This example serves only to illustrate the general applicability of

the continuous reaction technique. No claim is made regarding the accuracy of this

approximation and the PDE solution above is not compared to that of the general

ODE system (4.27) in this thesis.

Note that if k(x) is identically constant, then this solution reduces to u = u0(x−

t k∆x), a constant velocity traveling wave.

4.5 Boundary Conditions

4.5.1 Introduction

In § (4.4) we developed a method for distilling certain systems of ordinary differential

equations into a single partial differential equation. Our focus nows turns toward

developing accompanying boundary conditions.
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4.5.2 Derivation

Consider again System (4.8) whose collection of ODE we distilled into the PDE (4.18).

For purposes of our later modeling we modify these equations to include a source flux

term into state x = 0.

du0

dt
= s (t)− k+

0 u0 + k−1 u1 , (4.32)

dun

dt
= k+

n−1un−1 − (k−n + k+
n )un + k−n+1un+1 , (4.33)

duN

dt
= k+

N−1uN−1 − k−NuN . (4.34)

As in § (4.4) we introduce the continuous variable x and dependent variable u(x, t).

We assume that PDE (4.18) is satisfied on x ∈ (0, xe) and repeat the limiting proce-

dure on the equations describing states n = 0, N to find the boundary conditions to

O(∆x).

(
c u−∆xD

∂u

∂x
− ∆x

2

∂

∂x
(c u)

)
x=0

= s , (4.35)(
c u−∆xD

∂u

∂x
+

∆x

2

∂

∂x
(c u)

)
x=0

= 0 . (4.36)

As shown in § (4.6), when the reaction chains are composed of essentially irreversible

reactions, setting D = 0 in Equation (4.18) results in a model with negligible loss

of qualitative accuracy. However, setting D = 0 in the boundary conditions (4.35,

4.36) results in two conditions on u, which obeys a PDE with only a single derivative

in x. We know that the linear advection equation obtained with D = 0 is generally

well-posed only when a single boundary condition is given together with initial data.



41

The presence of two boundary conditions yields an over-specified problem. Setting

D = 0 in the boundary conditions is singular in this sense.

This conundrum may be resolved for the systems of interest to us. In our sysems,

c(x) will be positive so that a signal, s(t), entering into state x = 0 transitions

unidirectionally to state x = xe. State xe is the end of the reaction chain and,

because backward reactions have been neglected by setting D = 0, is also the ultimate

destination of the signal. In contrast, a pulse in u(x, t) traveling down the chain of

states will, according the the PDE alone, continue onward, past state xe. We reconcile

these two observations by defining a new variable v(t), which is a “bin” that collects

all of the signal arriving in state xe:

dv

dt
= (c u)x=xe

. (4.37)

It is v(t) not u(xe, t) that quantifies the signal level at the end of the reaction chain

when backward reactions are negligible, D = 0. In later modeling we’ll allow the end-

state, xe, to participate in other reactions, leading to additional terms being inserted

into Equation (4.37).
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4.6 Validity of the Continuous Reaction Approxi-

mation

4.6.1 Introduction

In this section we discuss the goodness of the approximation method developed in

§ 4.4. In particular we show which sets of assumptions on the reaction coefficients

lead to approximations that compare favorably to exact and numerical solutions. We

also contrast our approach to techniques developed by other authors for treating such

systems.

4.6.2 Exact Solutions

4.6.2.1 Irreversible Reactions

Consider system (4.8) with the addition of a source term. In the special case of

negligible backward reactions and identical forward reactions, this system reduces to

du0

dt
= s− k+u0 ,

dun

dt
= k+un−1 − k+

n un , (4.38)

duN

dt
= k+

N−1uN−1 .

Here s describes a constant source of signal input into the zero state. This system is

sufficiently simple so as to admit an easily derived analytical solution. For 0 ≤ n < N
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the solution is

un(t) =
s

k

(
1− e−kt

n∑
i=0

(k t)i

i!

)
. (4.39)

An alternative representation is

un(t) =
s

k n!

∫ kt

0

sne−s ds . (4.40)

The series representation makes it clear that limn→∞ un(t) = 0 while the integral

representation makes it clear that limt→∞ un(t) = s/k. Thus, for fixed t and N →∞,

the u’s transition from u0 = (s/k)(1 − e−kt) to u∞ = 0 while for fixed n, un(t)

transitions from un(0) = 0 to un(∞) = s/k. This analysis indicates that the sequence

of u’s is behaving much like a traveling wave. When we use the continuous reaction

approximation, neglect the backward reaction, and assume that all of the k’s are

identical, we arrive at vt + cvx = 0, the equation of one-dimensional linear advection

(c.f. Equation 4.18). Its solutions are traveling waves as well. In the present case,

with (cu)x=0 = s for t > 0 and u(x, 0) = 0, its solution is u = 0 for x < ct and u = s/c

for x > ct.

To make this comparison more precise, recall assumption (4.14) and definitions (4.17)

and (4.11). With k = c/∆x and x = n∆x in solution (4.40) the asymptotic expansion

of u(x, t) is computed for ∆x� 1 using the method of Laplace [1]:

u(x, t) ∼


s/c+O(∆x) for x < ct− α

O(∆x) for x > ct+ α

. (4.41)
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This holds for x
∆x

� 1 and for all α with α
∆x

� 1. The expansion shows that the

continuous reaction approach gives the leading order term in the asymptotic expansion

of the exact solution. Alternatively, for N = 1/∆x� 1 and k = O(1/∆x) the exact

solution, Equation (4.40), is equal to the PDE solution, to leading order in ∆x. This

justifies the removal of lower order terms in Equation (4.15) for this special case.

4.6.2.2 Symmetric Reversible Reactions

There are other special cases where exact solutions can be computed. If each reaction

is identical and symmetrically reversible (k+ = k−, independent of n), then the ODE

system (4.8) with the addition of a source term takes the following form:

du0

dt
= s− ku0 + ku1 ,

dun

dt
= kun−1 − 2kun + kun+1 , (4.42)

duN

dt
= kuN−1 − kuN .

The exact solution of this is difficult to calculate. It is composed of linear time

growth terms as well as exponentially vanishing in time terms (henceforth referred to

as EVT). If t is large enough, i.e., kt� 1, then the EVT can be neglected to find an

approximate solution:

un(t) =
s

k

(
k t

N + 1
+
n(n+ 1)

2(N + 1)
− n+ α

)
+ EV T .

Here α is a constant independent of n and t. Setting N = 1/∆x, x = n/N and k =

D/∆x gives a function of x and t that satisfies the diffusion equation ∂u
∂t

= ∆xD ∂2u
∂x2 .
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So, up to terms that vanish exponentially in time, solutions to the full set of ODE are,

after a change of variables, solutions to the diffusion equation developed in § (4.4).

4.6.3 Other Methods

Methods for treating large systems of ODE describing chemical reactions have been

developed by others [12], [13]. Each of those methods relies on the reactions being

irreversible, or on identifying a rate limiting step in the reaction chain. The example

discussed in § (4.6.2.2) shows that the method developed in § (4.4) doesn’t make these

requirements, and the example of § (4.6.2.1) shows that our method is also valid in

the case of irreversible reactions. Whether our method is suitable for reaction chains

with rate limiting steps is not discussed here. Our method can also be applied to more

complicated reaction sequences, as in § (4.4.2.1). In contrast, the main drawback of

our method is that it requires a conceptual abstraction of the reaction chain and the

willingness to view it as a infinite sequence of infinitesimal reactions. The strength

of this approach will be evident in the modeling we do in later chapters.
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Chapter 5

Autocrine Signaling of Vulval
Precursor Cells

5.1 Introduction

In Chapter 2 we described a means by which a solitary Vulval Precursor Cell (VPC)

may, through autocrine signaling, influence its own development. Specifically, the

MAP kinase pathway, stimulated by LIN-3 from the anchor cell (AC), yields products

leading to secreted DELTA ligands that then trigger LIN-12 receptors on the cell

itself. See Figure (2.1). The activation of the lateral signaling pathway can inhibit

the MAPK pathway at several points. As we discussed in § (2.4), there is evidence for

inhibition of MAPK itself, on the trafficking and degradation of LET-23 receptors,

and of the initiation of the MAPK pathway by activated receptors.

There are many motivations for studying an isolated VPC. By removing the influ-

ence of its neighbors we gain a better understanding of the default behavior of a VPC.

Firstly, if a VPC is isolated it is possible that it could signal itself in an autocrine fash-

ion via the secreted DELTA-type ligand DSL-1. This could potentially play a strong

role in the specification of the fate of an isolated VPC and perhaps even in specifying
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VPC fates in a wild-type gonad. Additionally, if autocrine signaling is present, then,

as we have described in § (2.4), the MAPK pathway will be inhibited in several ways.

Multiple inhibitors may play redundant roles, or possibly have varied influences on

fate outcomes. Finally, experiments have shown that a VPC in isolation may adopt

different fates depending on its distance from the AC. See Table (5.1). This may seem

to be an obvious consequence of a graded inductive signal, however it is possible that

this outcome may arise from more subtle influences. We focus, in particular, on cases

when cell fates of isolated VPC are not clearly determined. Experiments in [25] show

that the P3.p cell does not adopt a single fate consistently when in isolation, while

P4.p does. See Table (5.1). In this section we pursue a model of an isolated VPC to

address the following questions:

• Does the fate of an isolated VPC depend strictly on a dose dependent response

to a graded inductive signal?

• What role does an autocrine lateral signal play in fate determination?

• What role does the presence of multiple inhibitors play in cell fate determina-

tion?

• Why aren’t isolated P3.p cell fates specified consistently?

5.2 Models for Autocrine Signaling

In the language of Chapter 4 we think of both the MAPK and lateral signal pathways

as being segments of a linear chain of reactions. This leads to a continuous model,
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Table 5.1: Fates Adopted by Isolated Vulval Precursor Cells. Laser ablations were
performed on 34 worms by [25] to study isolated VPC. Data adapted from Table
1 in [25]. Rows 1–3 show the fates adopted by an isolated P4.p VPC in otherwise
wild-type worms. The primary fate is specified in 10 of 14 worms. Rows 4–6 show
the fates adopted by an isolated P3.p VPC in otherwise wild-type worms. Secondary,
tertiary, and hybrid type fates are specified in apparently uniform multiplicities. The
primary fate is never specified. Row 7 shows the fate adopted by an isolated P3.p
VPC in worms with multiple copies of lin-3, the gene encoding the inductive signal
in the AC. The primary fate is always adopted in this case.

Row Cell Type Fate #

1 P4.p 2◦ 2
2 P4.p 1◦/2◦ hybrid 2
3 P4.p 1◦ 10
4 P3.p 3◦ 4
5 P3.p 2◦/3◦ hybrid 2
6 P3.p 2◦ 3
7 P3.p∗ 1◦ 11

which in the simplest case takes the form of Equation (4.18). If we suspect that the

reaction chain is nearly irreversible, then arguments in § (4.6) allow the reduction to

the form of a simple linear advection equation:

∂u

∂t
+

∂

∂x
(cu) = 0 . (5.1)

Because the species at the end state of the chain, u(xe, t), i.e., the secreted ligand,

leads to the inhibition of the MAPK pathway, we think of it as inhibiting some

intermediate state in the chain u(xi, t). To formulate boundary conditions for this

problem we refer to § (4.5). In terms of the fluxes in our continuous models, the
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boundary and initial conditions are as follows:

c(0)u(0, t) = s(t) , (5.2)

c(x+
i )u(x+

i , t) = c(x−i )u(x−i , t)− qiu(x
+
i , t)v(t) , (5.3)

dv

dt
= c(xe)u(xe, t)− qeu(x

+
i , t)v(t) , (5.4)

v(0) = v0 . (5.5)

Here, superscripts + and – denote right and left hand limits, respectively, xi is the

state in the MAPK pathway being inhibited, xe is the end state of the chain, and

v (t) is the level of inhibitor, which is assumed initially to be v0. In formulating

these conditions, we assume that the inhibition is a destructive process, annihilating

both states according to the constants qi and qe. If we assume that both species are

removed irreversibly in a bimolecular reaction, then qi = qe. If we suspect that the

inhibitor is acting in an enzymatic fashion, then it would not be consumed in the

inhibition process, so qe = 0. The function s(t) is the source flux of inductive signal

from the anchor cell, which we will prescribe. In this model we have accounted for

the presence of a single inhibitor acting on state xi. By adjusting the value of xi

we intend to study the action of each inhibitor individually to determine whether

different inhibitors have different effects.

The non-linear PDE/ODE system (5.1–5.5) could be quite difficult to solve; how-

ever, when there are no rate limiting steps in the reaction chain it is reasonable to

posit that c(x) is a constant, c.f., § (4.6). This leads to a problem that appears only
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slightly less complex:

∂u

∂t
+ c

∂u

∂x
= 0 , (5.6)

c u(0, t) = s(t) , (5.7)

c u(x+
i , t) = c u(x−i , t)− qi u(x

+
i , t) v(t) , (5.8)

dv

dt
= c u(xe, t)− qe u(x

+
i , t) v(t) , (5.9)

v(0) = v0 . (5.10)

Equation (5.6) has a solution in the form u = f(t − x
c
) for all x < xi. Inserting this

into the boundary condition in 5.7 gives f(t) = 1
c
s(t). Equation (5.6) has a solution

in the form u = g(t− x
c
) for all x > xi. Inserting this and the expression for f(t) into

Equation (5.8) then gives g(t) = s(t)

c+qiv(t+
xi
c

)
. Finally, using this expression for g(t)

in 5.9 gives a non-linear initial value delay differential equation problem for v(t).

dv(t)

dt
= c

s(t− xe

c
)

c+ qi v(t− xe−xi

c
)
− qe

s(t− xi

c
) v(t)

c+ qi v(t)
(5.11)

v(0) = v0

See Appendix (A.1) for a discussion of existence and uniqueness of solutions to initial

value problems for delay differential equations.
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5.2.1 Dimensionless Groups and Scaling

Our variables have the following scales:

[v] = concentration (5.12)

[u] = concentration per state (5.13)

[s] = concentration per time (5.14)

[t] = time (5.15)

[x] = states (5.16)

[c] = states per time (5.17)

[q] = states per time per concentration (5.18)

Let v∗, u∗, and s∗ be some characteristic values of v, u, and s, respectively. By

examining Equation (5.6) we find a physically relevant ratio, xe

c
≡ T . This is the time

required for source effects to propagate through the chain. This quantity motivates

a choice of dimensionless variables.

τ =
t

T
(5.19)

y =
x

xe

(5.20)

S(τ) =
1

s∗
s(Tτ) (5.21)

V (τ) =
1

v∗
v(Tτ) (5.22)

G(τ) =
1

v∗
g(Tτ) (5.23)

U(τ − y) =
1

u∗
u(T (τ − y) (5.24)
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Our problem is now dimensionless.

α
dV (τ)

dτ
=

S(τ − 1)

1 + βi V (τ − (1− φ))
− βe

V (τ)S(τ − φ)

1 + βi V (τ)
(5.25)

V (τ) = G(τ) for τ ∈ [−1, 0]

U(τ − y) =
δ

1 + βiV (τ − y + φ)
for y > φ (5.26)

with

α =
v∗

T s∗
(5.27)

βi =
v∗ qi
c

(5.28)

βe =
v∗ qe
c

(5.29)

δ =
s∗

u∗c
(5.30)

φ =
xi

xe

< 1 (5.31)

5.2.2 The Biological Problem

We suppose that initially the levels of inhibitor are constant, v0, and that the external

signal begins at time t = 0 and from then on is the constant s∗. Because the signal

input rate s∗ is fixed, we scale u and v according to this level.

v∗ = s∗ T (5.32)

u∗ =
s∗

c
(5.33)
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One consequence of this is α = 1 and δ = 1. This leads to the following problem:

dV (τ)

dτ
=

H(τ − 1)

1 + βi V (τ − (1− φ))
− βe

V (τ)H(τ − φ)

1 + βi V (τ)
, (5.34)

V (τ) = γ
(
=

v0

s∗T

)
for τ ∈ [−1, 0] ,

U(τ − y) =
1

1 + βiV (τ − y + φ)
for y > φ . (5.35)

Here H(τ) is the Heaviside unit step function [1]. In the remainder of this chapter

we’ll pursue the qualitative behavior of (5.34) over the parameter space {γ, φ, βi, βe}

and discuss the implication to inhibitory autocrine signaling in C. elegans vulval

precursor cells.

5.2.2.1 No Inhibition

If autocrine signaling doesn’t occur, then MAPK activity is directly proportional to

LIN-3 signal level. Under this hypothesis fate specification is decided entirely by the

proximity of the VPC to the AC or the level of LIN-3 signal from the AC. This is

consistent with VPCs adopting either 1◦ or 3◦ fates but is inadequate to explain 2◦

fate outcomes, which are thought to arise as a result of lateral signaling [21, 23, 40, 41].

The necessity of the lateral signal in specifying 2◦ fates requires us to include autocrine

signaling if we hope to explain the experimental results of Table (5.1).

5.2.2.2 Non-Destructive Inhibition

If the inhibitor is not degraded in the process of inhibiting the MAPK pathway then

qe = 0, which gives βe = 0. Putting this into Equation (5.34) and dropping the
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subscript gives (5.36).

dV (τ)

dτ
=

H(τ − 1)

1 + β V (τ − (1− φ))
(5.36)

V (τ) = γ for τ ∈ [−1, 0]

Notice that the right hand side of Equation (5.36) is zero for τ < 1. As a consequence

V (τ) = γ up to time τ = 1. This allows us to restate the problem as an “initial” value

problem starting at τ = 1 by defining δ = 1 − φ, W (z) = V (δz + 1), and z = τ−1
δ

.

Our problem now has only one delay.

dW (z)

dz
=

δ

1 + β W (z − 1)
(5.37)

W (z) = γ for z ∈ [−1, 0]

Result 1 If γ > 0 and β > 0 then the solution of the DDE initial value prob-

lem (5.37) is monotonic increasing, bounded for all finite z > 0 and unbounded as

z →∞.

Proof of Result 1: 1 + β W (z − 1) = 1 + β γ > 0 initally, so W is initially increasing.

Let z0 be the first value of z for which W ′(z) = 0. At this point 1
1+β W (z0−1)

= 0.

This is not possible for finite W. Hence W is monotonically increasing whenever it is

finite. Because W is monotonic increasing, W > γ for all 0 < z < z∗, where z∗ is a

point where W becomes infinite. If no such point exists, then z∗ = ∞. This shows

that W ′ ≤ δ
1+βγ

so that W ≤ δ
1+βγ

z + γ, which is finite for all finite z. Hence, W is

bounded and monotonically increasing for all 0 < z < ∞. To prove unboundedness,
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suppose that, as z →∞, W (z) remains bounded by some value, M. So, W ′ > δ
1+βM

,

which implies that W isn’t bounded as z →∞, a contradiction. �

It is simple to show that, for large z, W (z) behaves asymptotically as W ∼√
2δz
β

. We elaborate on this in Appendix (A.2.3.1). See Figure (5.1) for a plot of the

numerical approximation and Figure (A.1) for asymptotic estimates and bounds.
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Figure 5.1: Non-Destructive Inhibition during Autocrine Signaling. γ = 0 δ =
1 β = 0.1. W (z) is monotonically increasing for all parameter values and grows like√

2δz
β

, as we prove in Appendix (A.2.3.1).
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In terms of dimensional variables this shows that v (t) ∼
√

2 s∗ c t
qi

so that both

MAPK activity and LIN-12 activity vanish monotonically, u ∼
√

s∗

2 c qi t
. The decisive

shutdown of both signaling pathways would seem indicative of the 3◦ fate. This

shutdown is delayed if s∗ is increased, i.e., lin-3 exists in multiple copies or the VPC

is closer to the AC. Observations in Table (5.1) suggest that increasing s∗ should

not simply delay the shutdown of the pathways but rather prevent it altogether. For

this reason we deduce that our non-destructive inhibition model is probably not an

accurate description of the fate specification mechanism.

5.2.2.3 Destructive Inhibition

If inhibitor is removed by its action on the substrate, then qi = qe 6= 0 so that

βi = βe ≡ β 6= 0.

dV (τ)

dτ
=

H(τ − 1)

1 + β V (τ − (1− φ))
− β

V (τ)H(τ − φ)

1 + β V (τ)
(5.38)

V (τ) = γ for τ ∈ [−1, 0]

U =
1

1 + β V (τ − (1− φ))
(5.39)

In Appendix (A.2.3.2) we show that for φ = 1 this system has monotonic solutions

that converge to 1/β. Also, in that appendix, we show that for the other extreme

value, φ = 0, the solutions, to leading order in β for β � 1, are monotonic and

converge to 1/β. For β > 0 and φ 6= 1 the system can exhibit oscillations. These

oscillations become more pronounced for (1− φ) β & 1.113 and approach a period-2

solution as (1− φ) β → ∞. See the analysis in Appendix (A.3.1.1) for the proof of
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this. This transition, in dimensional variables is given by

(
1− xi

xe

)
q s∗ xe

c2
> 1.113 . . . . (5.40)

The equilibrium value of the dimensional concentration of inhibitor is given by c/q

corresponding to dimensional MAPK and LIN-12 activity on the order of s∗/c. See

Figure (5.2). It is remarkable that these equilibrium activity levels don’t depend on

the inhibitor strength q or on the type of inhibitor, described by xi. On these grounds

we might infer that fate specification in isolated VPC is dependent solely on prox-

imity to the AC. However, we observe that increased LIN-3 signal strength, s∗, also

encourages oscillatory MAPK and LIN-12 activity. The same can be said for strong

inhibitors (increased q), inhibitors acting farther upstream of MAPK (xi � xe), and

cells with a slower transduction of the inductive and lateral signals (c smaller).

Many of these parameters should be identical in each cell. The MAPK and LIN-12

pathways are thought to be invariant from cell to cell and so q, xi, xe, and c should be

fixed quantities in any VPC. We expect only the signal strength to vary from cell to

cell. Our analysis has shown that increasing signal strength, s∗, leads to an increase

in MAPK and LIN-12 activity while also encouraging oscillations in these activities.

How can this explain the data in Table (5.1)? This data indicates the established

dogma, i.e., insufficient levels of inductive signal leads VPC to the 3◦ fate. It also

indicates (see rows 4–6) that intermediate levels of inductive signal apparently lead

to stochastic cell fate determination. From this we observe the correlation between

cell fates and inductive signal equilibrium levels. More interestingly, our model shows



58

2 4 6 8 10 12 14 16 18
0

1

2

3

4

5

6

7

8

MAPK Activity vs. τ

τ

s*/c = 0.5
s*/c = 4
s*/c = 7.5
s*/c = 11

Figure 5.2: Destructive Inhibition during Autocrine Signaling. γ = φ = 0. Activity
of MAPK (and hence LIN-12) exhibits damped oscillations in time decaying toward
equilibrium, U∗ = s∗/2c. Lower levels of signal (bottom red dashed curve) cause
consistently low levels of MAPK activity while higher levels (top black solid curve)
exhibit higher yet oscillatory levels of MAPK activity.
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that the same correlation exists between cell fates and oscillations in MAPK/LIN-12

activity. The time resolution needed to experimentally observe such oscillations may

not currently be attainable, and we find no such observations in the literature. Given

the correlation between cell fate outcome, inductive signal strength, and MAPK/LIN-

12 pathway activity, it is possible that our model is the first “observation” of a truly

oscillatory cell fate behavior.

Intermediate inductive signal levels may be sufficient to specify the primary fate.

But if these levels oscillate, as our model suggests, then definitive fate specification

should not be expected. The apparently stochastic cell fate specifications seen in

Table (5.1) are then easily explained. At higher signal levels, 1◦ fates appear to be

specified definitively despite oscillations. This suggests that two types of information

are processed by the VPC– the absolute level of signal and the fluctuations in that

signal.

Oscillatory genetic and protein activity is ubiquitous in cells. From periodic fluc-

tuations in glycolytic processes [2], to cyclin activities throughout the cell cycle [42],

to oscillatory intracellular Ca2+ levels [26], time varying chemical oscillations function

in many capacities in vivo. C. elegans vulval precursor cells perhaps join this list as

a cell type that exhibits what one author calls “flexible control” [29] over its cell fate

decisions. Indeed, a cell fate decision not made in an instant or based on an absolute

level, but integrated over a series of time points allows the cell to make a decision

based on a greater amount of information about itself and its surroundings.

At low signal levels, 3◦ fates are specified by constant low MAPK activity. At
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high levels, 1◦ fates are specified by an oscillating level of high MAPK activity. The

flexibility comes at intermediate levels of signal, where an oscillating level of MAPK

activity gives the cells the flexibility of choosing 1◦, 2◦, or 3◦ fates. If the VPC

were not isolated but instead had one or two neighbors, being in such a transient

state would make a VPC highly sensitive to signal from these neighbors. Oscillating

between high and low levels of MAPK activity would allow influence from a neighbor

to “lockin” a high or low level and precisely specify a fate.

This suggests that while P4.p cells seem destined to become mainly 1◦ when

isolated, P3.p, because of the reduced signal level that they experience, remain flexible

in their decision making, waiting for cues from neighbors before committing to a fate.
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Chapter 6

The AC/VU Decision

6.1 Introduction

As described in § (3.2), an intercellular signaling event involving NOTCH (LIN-12)

and DELTA (LAG-2) is the likely mechanism by which the Ventral Uterine (VU)

fate is specified during an interaction between Z1.ppp and Z4.aaa. See Figure (3.1).

The goal of this section is to develop a mathematical model of this interaction. In

subsequent sections we analyze and interpret the model in a biological context and

propose modifications to the model that bring it into better agreement with labo-

ratory observations. This refinement process points to a novel mechanism, which

has not yet been observed biologically. Upon first inspection, the model depicted in

Figure (6.1) appears not to have the linear structure essential for the application of

the model-reducing technique developed in § (4.4) and successfully employed previ-

ously in the study of autocrine signaling of vulval precursor cells in § (5.2). However,

as Figure (6.2) elucidates, the mechanism can be decomposed into two distinct yet

interactive linear chains.



62

Figure 6.1: The Karp and Greenwald Model. HLH-2 protein activates the transcrip-
tion of the DELTA-type trans-membrane ligand LAG-2 leading to activated NOTCH-
type receptor LIN-12 on the neighboring cell. Activated LIN-12 is thought to activate
Factor-X, a hereto unidentified post-transcriptional down-regulator of HLH-2.
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Figure 6.2: The Karp and Greenwald Model: Decompostion Into Linear Chains.
Abstracting the Karp and Greenwald model reveals the linear chains of interactions
involved in the signaling event. The terminal ends (filled disks) show the point at
which a given chain inhibits its counterpart. The initial ends represent the unknown
activator/promoter of hlh-2 transcription.
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6.1.1 Models of the AC/VU Decision

As in § (4.4), chains of reactions are modeled using 1-D advection equations.

∂ui

∂t
+ ci

∂ui

∂x
= 0 (6.1)

t ∈ [0,∞)

x ∈ [0, x∗]

Here u(x, t) is the level of signal in the chain at time t and phase point x, while

c is the signal transduction speed. Subscripts denote the first born cell (i=1) and

the second born cell (i=2). The rate and activators of HLH-2 production are not

well-classified in the literature, hence the rate of HLH-2 production is taken to be an

unknown function.

ciui (0, t) = si (t) (6.2)

Analogous to the derivation in § (5.2), the accumulated inhibitor is collected in a new

set of variables, vi (x, t).

ciui

(
x0,+, t

)
= ciui

(
x0,−, t

)
− qi,uvjui

(
x0,+, t

)
(6.3)

dvi

dt
= ciui (x

∗, t)− qi,vviuj

(
x0,+, t

)
(6.4)

Here qi,u describes the rate of removal of ui due to interactions with inhibitor vj,

i 6= j. The quantity qi,v is defined conversely. Equation (6.1) is solved by functions

of the form ui (x, t) = fi

(
t− x

ci

)
. Applying conditions given by Equation (6.2) and
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(6.3) gives an expression for ui.

ui (x, t) =


1
ci
si

(
t− x

ci

)
for x ∈ [0, x0)

si

“
t− x

ci

”
ci +qi,uvj

“
t−x−x0

ci

” for x ∈ (x0, x∗]

(6.5)

Formula (6.5) is applied to Equation (6.4), obtaining a delay differential equation for

vi and an expression for the LAG-2 production rate.

dvi

dt
=

ci si

(
t− x∗

ci

)
ci + qi,u vj

(
t− x∗−x0

ci

) − qi,v vi (t) sj

(
t− x0

cj

)
cj + qj,u vi (t)

(6.6)

Ri (t) =
ci si

(
t− x1

ci

)
ci + qi,uvj

(
t− x1−x0

ci

) (6.7)

Here x1 denotes the state representing LAG-2. The goal is now to understand the

behavior of this system in a biological context. The variables are made dimensionless

as follows:

τ =
c1
x∗
t , (6.8)

Si (τ) = ξi si (t) , (6.9)

Vi (τ) =
c1
ξ1 x∗

vi (t) . (6.10)

The system is now dimensionless.

dV1

dτ
=

S1 (τ − 1)

1 + q1,uξ1x∗

c21
V2

(
τ − x∗−x0

x∗

) − q1,vξ2x
∗

c21

V1 (τ) S2

(
τ − x0

x∗
c1
c2

)
c2
c1

+ q2,uξ1x∗

c21
V1 (τ)

(6.11)

dV2

dτ
=

ξ2
ξ1

S2

(
τ − c1

c2

)
1 + q2,uξ1x∗

c21
V1

(
τ − x∗−x0

x∗
c1
c2

) − q2,vξ1x
∗

c21

V2 (τ) S1

(
τ − x0

x∗

)
1 + q1,uξ1x∗

c21
V2 (τ)
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To this point the model’s derivation has been aimed towards mathematical general-

ity. However, biological observations suggest that the two cells are equipotent, i.e.,

equally likely and capable of adopting the VU fate. We henceforth refer to this as

the equipotency hypothesis. We may interpret this hypothesis as the two cells being

identical from a gene expression and signal transduction standpoint. This assumption

implies q1,u = q2,u, q1,v = q2,v, c1 = c2, and ξ1 = ξ2. With these relations, the model

simplifies.

dV1

dτ
=

S1 (τ − 1)

1 + β V2 (τ − φ)
− γ

V1 (τ) S2 (τ − 1 + φ)

1 + β V1 (τ)
(6.12)

dV2

dτ
=

S2 (τ − 1)

1 + β V1 (τ − φ)
− γ

V2 (τ) S1 (τ − 1 + φ)

1 + β V2 (τ)

The dimensionless parameters are

β =
quξx

∗

c2
, (6.13)

γ =
qvξx

∗

c2
,

φ = 1− x0

x∗
.

System (6.12) exhibits a symmetry with respect to interchange of index, reflecting the

equipotency of the two cells. This seems to suggest that the two cells should behave

identically. However, initial data has yet to be discussed. From a mathematical

perspective this data is required in order that the model system be a well-posed

problem. From a biological perspective, this data will describe the birth order, break

the symmetry of the system, and give the model the potential to produce different
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fates in different cells.

As noted above, the subscripts of variables denote the birth order. Also noted

above is that it is likely that both cells behave identically, i.e., the equipotency

hypothesis holds. Fix t = 0 as the time at which the first cell is born and define

t = b as the time at which the second cell is born. The quantity b is the birth time

separation. Equipotency suggests that the HLH-2 production rates should be identical

up to this time shift, s2 (t) = s1 (t− b), or in terms of dimensionless variables,

S2 (τ) = S1 (τ − ψ) , (6.14)

ψ =
b c

x∗
. (6.15)

Note that V1 = 0 in the first born cell for all time up to t = 0 and V2 = 0 in the second

born cell for all time up to t = b. It was observed in [24] that HLH-2 transcription

appears to proceed at a steady level in both cells after being turned on, presumably

prior to cell birth. This suggests that we set S (τ) ≡ 1, making variations among the

model cells dependent only on the birth time separation. The delay φ is now the only

one in the DDE system. Normalize by defining W (s) = βV (φs) = βV (τ).

dW1

ds
= φ

(
β

1 +W2 (s− 1)
+

γ

1 +W1 (s)
− γ

)
(6.16)

dW2

ds
= φ

(
β

1 +W1 (s− 1)
+

γ

1 +W2 (s)
− γ

)
W1 (s) = 0 for all s ∈ [−1, 0]

W2 (s) = 0 for all s ∈ [−1, δ]

δ =
b c

x∗ − x0
> 0
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The flux is given by:

Ri =
ξ

1 +Wj

(
s− x1−x0

x∗−x0

) . (6.17)

6.2 Non-Destructive Inhibition

If we assume that “Factor-X”, the down-regulator of HLH-2 accumulation, is not used

up in this capacity, then qv = 0 and hence γ = 0.

dW1

ds
=

σ

1 +W2 (s− 1)
(6.18)

dW2

ds
=

σ

1 +W1 (s− 1)

W1 (s) = 0 for all s ∈ [−1, 0]

W2 (s) = 0 for all s ∈ [−1, δ]

σ = φβ

Result 2 If σ > 0, then the solutions of DDE initial value problem (6.18) are non-

decreasing for s > 0, bounded for finite s > 0, and unbounded as s →∞. Moreover,

W1 > W2 for all s > 0.

Proof of Result 2: Because σ > 0, the right hand sides of the DDE are non-

negative for s ∈ [0, 1] and so the Wi are non-decreasing on s ∈ [0, 1]. By induction

the Wi are non-decreasing for all s > 0.

Because the Wi are non-decreasing, Wi ≥ 0 and so W ′
i ≤ σ. Hence Wi < σs for

all s > 0, so that the Wi are bounded for finite s.
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To prove unboundedness as s → ∞, suppose that for some i, Wi < Mi for all s.

This implies that, for j 6= i, W ′
j ≥ σ

1+Mi
so that Wj is unbounded as s → ∞. Thus

at least one of the Wi will not have an upper bound. Suppose that Wi is bounded as

s→∞ while Wj is not. The fact that 0 ≤ Wi implies that W ′
j ≤ σ so that Wj ≤ σ s.

This implies that Wi ≥ σ
1+σ s

so that Wi ≥ ln |1 + σ s|, which is unbounded. This

contradiction shows that both W ’s are unbounded.

Note that, on s ∈ [0, δ], W2 = 0 and W1 = σs, so that W1 > W2 on s ∈ [0, δ].

Because 1
1+x

is a monotonic decreasing function for x > 0, we find that (W1−W2)
′ =

σ
1+W2(s−1)

− σ
1+W1(s−1)

> 0 on δ ∈ [δ, 2δ]. This implies that W1 > W2 on s ∈ [0, 2δ].

By induction W1 > W2 for all s > δ. �

This result proves that the LAG-2 production rate in each cell goes to 0 as time

progresses. A depiction of this result is in Figures 6.3 and 6.4 where numerical

solutions of this system are plotted for various values of σ and δ.

The elimination of LAG-2 production in both cells is indicative of the two anchor

cell phenotype. This phenotype is observed experimentally only under the constraint

of no lateral signaling. Our model accounts for lateral signaling. We conclude that this

non-destructive inhibition model is a poor description of the biological phenomena.

6.3 Destructive Inhibition

In the previous section a model neglecting the destruction of inhibitor was in poor

agreement with experimental observations. Instead assume that “Factor-X”, the

down-regulator of HLH-2 accumulation, is consumed in this capacity so that qv =
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Figure 6.3: Non-Destructive Inhibition in the AC/VU Decision: Variations in δ. Plots
show LAG-2 expression over time in the first born cell (dashed curves) and in the
second born cell (solid curves) for values of δ in [0,7]. The diminishing of LAG-2 in
both cells is indicative of the two AC phenotype, which is not observed experimentally
when lateral signaling is permitted.
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Figure 6.4: Non-Destructive Inhibition in the AC/VU Decision: Variations in σ. Plots
show LAG-2 expression over time in the first born cell (dashed curves) and in the
second born cell (solid curves) for values of σ in [0,4]. The diminishing of LAG-2 in
both cells is indicative of the two AC phenotype, which is not observed experimentally
when lateral signaling is permitted.
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qu,i.e., γ = β. The model now takes the form of System (6.19).

dW1

ds
= σ

(
1

1 +W2 (s− 1)
+

1

1 +W1 (s)
− 1

)
(6.19)

dW2

ds
= σ

(
1

1 +W1 (s− 1)
+

1

1 +W2 (s)
− 1

)
W1 (s) = 0 for all s ∈ [−1, 0]

W2 (s) = 0 for all s ∈ [−1, δ]

σ = φβ

The equilibrium points of this system form the line W1W2 = 1. Numerical investiga-

tions show that this set of equilibria appear to be stable. See Figure (6.5).

For small values of σ support can be added to this last claim using the method de-

veloped in § (A.2.1). First transform the problem into the form covered by Method 1.

For s ∈ [0, δ] integrate System (6.19) to extend the initial data for W1 to [−1, δ]. This

is easily accomplished, because on s ∈ [0, δ] the governing equation for W1 is a simple

ODE. The solution is given by W1 (s) =
√

2σ s+ 1 − 1. Now shift the independent

variable and redefine the dependent variable using W1 (s+ δ) = X (s) to get a system

of the form treated by Method 1.

dx1

ds
= σ

(
1

1 + x2 (s− 1)
+

1

1 + x1 (s)
− 1

)
(6.20)

dx2

ds
= σ

(
1

1 + x1 (s− 1)
+

1

1 + x2 (s)
− 1

)

x1 (s) =


0 for s ∈ [−1,−δ]√

2σ (s+ δ) + 1− 1 for s ∈ [−δ, 0]

x2 (s) = 0 for all s ∈ [−1, 0]
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Figure 6.5: Destructive Inhibition in the AC/VU Decision: Variations in σ and δ.
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As shown in Appendix A.2.3.2, the behavior of this system, to leading order in σ � 1,

is independent of the initial data and is given by

x1 (s) ∼ x2 (s) ∼ 1 + 2 ProductLog

(
−1

2
e−(ε(s−1)+1)/2

)
. (6.21)

This suggests that, for σ � 1, as s → ∞ the xi go to steady state xi (s) → 1.

Numerical approximations suggest that this is generally true for all σ.

Numerical computations in Figures (6.6) and (6.7) show that the steady state

production of LAG-2 is lower in the first born than it is in the second born. This

character is especially pronounced for large values of σ and δ. For a fixed value

of δ (σ) the steady state ratio of LAG-2 production rates appears to be linear in

σ (δ). See Figure (6.8). These results suggest that the ratio is approximately a

biaffine form. In Figure (6.9) numerical data is fit to a biaffine surface of the form

f (σ, δ) = aδσ + bσ + cδ + 1. The steady state ratio of LAG-2 production is best fit

by σδ + 1. This implies the following result at steady state.

Second Born LAG-2 Production Rate

First Born LAG-2 Production at Rate
∼ σ δ + 1 =

b q ξ

c
+ 1 (6.22)

Relation (6.22) indicates that the steady state LAG-2 production rate ratio depends

linearly on the birth time separation, b. This observation both supports and detracts

from the validity of our model.

The observation that the model first born cell exhibits diminished LAG-2 produc-

tion is in agreement with experimental observation. In [24] a lag-2 transcriptional

reporter was observed to initially turn on in both cells but subsequently become
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Figure 6.6: Destructive Inhibition in the AC/VU Decision: Variations in σ. LAG-2
production rates are lower in the first born cell (dashed curves) than in the second
born (solid curves) for a range of σ values.
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Figure 6.7: Destructive Inhibition in the AC/VU Decision: Variations in δ. LAG-2
production rates are lower in the first born cell (dashed curves) than in the second
born (solid curves) for a range of δ values.
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Figure 6.8: Destructive Inhibition in the AC/VU Decision: Variations in δ and σ.
For a fixed value of δ (σ) the steady state ratio of LAG-2 production rates appears
to be linear in σ (δ). The ◦ represent numerical computations of steady states with
the solid lines being the least-squares linear fit to this data.
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Figure 6.9: Destructive Inhibition in the AC/VU Decision: Steady State Dependence
on δ and σ. The ratio of steady state LAG-2 production rates has a least-squares fit
given approximately by 1.000σδ − 0.014σ − 0.014δ + 1
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restricted to the presumptive AC, i.e., the second born cell.

The apparent linear dependence of the LAG-2 production ratio on the birth time

separation and the non-vanishing production rate of LAG-2 in the first born are two

features that may detract from our model’s validity.

Birth time separations as short as two minutes (see Table (3.1)) are sufficient to

promote proper cell fate specifications. Intuitively we might expect sensitive behavior

such as this not to be the result of a linear proportional relationship between birth time

and LAG-2 production ratio, but rather a non-linear one. Also, LAG-2 production

rates have been experimentally observed to diminish below detectable levels in the

presumptive VU, suggesting that lag-2 transcription is rapidly shut down by the

feedback loop. The current model exhibits similar behavior, but rather than vanishing

in the VU, the LAG-2 production rate settles to a non-zero steady state.

These two experimental observations, while not contradictory to the model’s re-

sults, point to the potential for a better model, one exhibiting a non-linear relationship

between the LAG-2 production rate ratio and the birth time separation as well as

allowing for the rapid shutdown of LAG-2 production.
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6.4 Destructive Inhibition: An Improved Model

Arising from a Novel Mechanism

6.4.1 Introduction

In § (6.3) we analyzed a model of the AC/VU decision and found that it was consistent

with experiments in that the first born of the gonadal cells Z1.ppp and Z4.aaa is

predicted to adopt the Ventral Uterine fate while the second born adopts the default

anchor cell fate. We also noted that two important experimental observations, while

consistent with our model, might find better agreement with a revised model. For

clarity, we itemize our expectations below.

• Our mathematical model should exhibit a non-linear relationship between the

cell birth time separation and the steady LAG-2 production ratio, if such steady

values exist.

• If steady values do not exist, we ask that our model predict the rapid vanishing

of LAG-2 production in the first born cell, i.e., the presumptive VU.

In this section we reexamine the model we developed in § (6.1) and explore a key as-

sumption leading to the model of § (6.3), namely that of equipotency. We demonstrate

that nullification of the equipotency hypothesis in the model depicted in Figure (6.1)

is capable of producing the features itemized above. We’ve previously discussed the

strong evidence for the equipotency hypothesis, and in keeping with this assumption

we show how a modified version of the Karp and Greenwald model can exhibit these
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desirable traits while not contradicting the equipotency hypothesis.

6.4.2 The Effects of Varied HLH-2 Expression: A “Proof of

Concept” Model

Recall the model before the equipotency hypothesis was employed, i.e., System (6.11).

dV1

dτ
=

S1 (τ − 1)

1 + q1,uξ1x∗

c21
V2

(
τ − x∗−x0

x∗

) − q1,vξ2x
∗

c21

V1 (τ) S2

(
τ − x0

x∗
c1
c2

)
c2
c1

+ q2,uξ1x∗

c21
V1 (τ)

(6.23)

dV2

dτ
=

ξ2
ξ1

S2

(
τ − c1

c2

)
1 + q2,uξ1x∗

c21
V1

(
τ − x∗−x0

x∗
c1
c2

) − q2,vξ1x
∗

c21

V2 (τ) S1

(
τ − x0

x∗

)
1 + q1,uξ1x∗

c21
V2 (τ)

This is the starting point for an improved model. We begin by demonstrating that vi-

olating the equipotency hypothesis in a particular way leads to a model with desirable

qualities.

Some assumptions of the equipotency hypothesis seem more valid than others.

While it seems valid to assume that the genetics of the two cells are identical and

that the gene transcripts are as well, it may not be true that the transcription of

these genes proceeds at exactly the same rates at exactly the same times. To this

end, we suppose that the interaction between two proteins is identical, regardless of

the cell they reside in, but allows for the rate of production of proteins to vary between

cells. Later we describe a mechanism by which these effects can be produced without

violating the equipotency hypothesis. As in § (6.1), take q1,u = q2,u, q1,v = q2,v, and

c1 = c2. Because we suppose that production rates of HLH-2 protein may vary, we

allow for the possibility that ξ1 6= ξ2. Further, we assume that while the absolute



82

levels of production, ξi, may differ, the functional form does not (up to a delay)

and, as in § (6.1), is constant. The assumption of destructive inhibition is again

necessary to get a qualitatively accurate model, qu = qv. We obtain a new model (c.f.

Equations (6.12), (6.13), and (6.19) ).

dW1

ds
= σ

(
1

1 +W2 (s− 1)
+

Ξ

1 +W1 (s)
− Ξ

)
(6.24)

dW2

ds
= σ

(
Ξ

1 +W1 (s− 1)
+

1

1 +W2 (s)
− 1

)
W1 (s) = 0 for all s ∈ [−1, 0]

W2 (s) = 0 for all s ∈ [−1, δ]

The dimensionless variables are given by

Wi (s) = β V (φ s) (6.25)

σ =
quξ1 (x∗ − x0)

c2

Ξ =
ξ2
ξ1
6= 1

δ =
b c

x∗ − x0
,

and the dimensionless LAG-2 production rate ratio is

Ψ (s) =
R2

R1

= Ξ
1 +W1

(
s− x1−x0

x∗−x0

)
1 +W2

(
s− x1−x0

x∗−x0

) . (6.26)

Unlike the previous model for destructive inhibition, System (6.24) admits no fi-

nite steady states for Ξ 6= 1. In fact, the only possible attractors are (W1,W2) ∈

{(0,±∞) , (±∞, 0)}. This shows that Ψ (∞) ∈ {0,±∞}.
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Assuming Ξ > 1, numerical investigations indicate that limt→∞ Ψ (t) = ∞ (plots

not shown). As anticipated, nullifying the equipotency hypothesis leads to a system

for which a small birth order time separation leads to the rapid shutdown of LAG-2

production in the first born cell. Assuming that HLH-2 production rates are lower

in the first born cell leads to a model that predicts cell fate behaviors consistent

with and resemblant of experimental observations. We now ask whether this same

favorable behavior might be exhibited by a mechanism that respects the equipotency

hypothesis but that differs from the Karp and Greenwald proposal.

6.4.3 Discussion

Newly born Z1.ppp and Z4.aaa cells may, as suggested in [24], be influenced by LAG-2

from the parent cells or by other sources of LAG-2 in the gonad, giving the first born

an incremental bit of signaling before the second born enters the signaling scenario.

If this were true, then the model of § (6.3) predicts that this extraneous signal would

encourage the first born to lower its LAG-2 production, biasing it before the two-cell

interaction begins, destining it for the VU fate. The problem with the extraneous

signal explanation is that, as we have seen, birth time separations may be short

and hence give rise to only a small difference in the first born’s LAG-2 expression

unless the extraneous signal is very strong. However, the extraneous signal can’t be

strong because preventing interaction between Z1.ppp and Z4.aaa leads to a two AC

phenotype. The extraneous signal, if there is one, isn’t strong enough to determine

fates, only to introduce a bias into the first born. Our model of § (6.3) predicts that a
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small bias will have a small effect, detracting from the extraneous signal hypothesis as

it pertains to that model. There is another related possibility, which we now describe

together with the extraneous signal hypothesis.

• Extraneous Signal Hypothesis: A source of LAG-2 ligand exists in the surround-

ing gonadal environment. It is sufficient to introduce a slight bias in HLH-2

accumulation in the first born cell while not being sufficient to specify the VU

fate entirely.

• Inherent Receptor Level Bias: LIN-12 receptor accumulates from birth, giving

the first born cell enhanced ability to bind LAG-2.

The receptor bias hypothesis, when applied to the model of § (6.3), suffers from

the same impotency as the extraneous signal hypothesis– that if the receptor bias is

small then during short birth time separation intervals only a small advantage could

be afforded to the first born, resulting in only a small steady state LAG-2 production

level difference. If the receptor bias were significant enough to give the first born

full advantage in becoming VU then it would likely allow for a two VU phenotype

when signaling between Z1.ppp and Z4.aaa is blocked. As mentioned several times

previously, this experimental scenario bears a two AC phenotype instead.

These two hypotheses are capable of slightly enhancing the results obtained from

the model of § (6.3) but are not capable of producing the rapid shutdown of LAG-2

production expected from the first born cell. However, we now make a case that an

analogous DELTA/NOTCH system in Drosophila, when used to modify the mecha-

nism of Figure (6.1), gives rise to a model akin to that of § (6.4), i.e., one that makes
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the expected predictions of LAG-2 shutdown in the first born. The advantage of this

new model is that it obtains the more desirable result without violating the equipo-

tency hypothesis. In addition, the extraneous signal and receptor bias hypothesis

serve only to reinforce this result.

6.4.4 A Novel Mechanism of the ACVU Fate Descision

Lessons From Drosophila The lateral signaling event that coordinates AC/VU

fate specification among the Z1.ppp and Z4.aaa cells parallels a critical event during

the development of two cells found in the fruitfly, Drosophila melanogaster. Dur-

ing the development of proneural clusters in D. melanogaster, cells coordinate fates

in much the same way that Z1.ppp and Z4.aaa do in C. elegans. Specifically, a

DELTA/NOTCH lateral signaling feedback loop coordinates the specification of the

Sensory Mother Cell (SMC) fate via the hlh-2 ortholog Daughterless ([7],[19]). Daugh-

terless, together with the aschaete scute complex (AS-C) operates in a self-stimulatory

mode to promote further transcription of AS-C. A detailed diagram appears in Fig-

ure (6.10) taken directly from [7] (Figure 7).

Figure (6.11) shows an abstraction of this mechanism put into the context of our

AC/VU models. Observe the DELTA/NOTCH feedback loop with the incorporation

of a self-stimulatory loop that augments the DELTA transcription promoter. Based on

this mechanism, we propose in Figure (6.12) an analogous self-stimulatory mechanism

for HLH-2. As of this writing such a component has not been identified biologically,

although the authors of [24] posit its existence.
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t ein) t ranscript ion factors also in teract with NF-!B
DNA-binding sites (Fan and Maniat is 1990). schnurri
(shn ) belongs to th is class (Arora et al. 1995; Grieder et al.
1995), bu t chaetae arise norm ally with in territories of
cells homozygous for a null shn allele (J. Culı́, unpubl.).
X" thus rem ains unident ified.

The SMC enhancer as a target for N signaling

Cell–cell inh ibitory in teract ions m ediated by the N sig-
naling pathway lim it the number of SMCs that arise
from a proneural cluster. According to a curren t m odel
(for review, see Sim pson 1997), in the signal-em it t ing
cell, Ac and Sc proteins act ivate Dl and th is relays the
signal to the receiving cell by m eans of the N receptor
(Kunisch et al. 1994). Act ivat ion of the N pathway pro-
m otes t ranscript ion of the final effectors, the bHLH pro-
teins of the E(spl)-C, which som ehow antagonize the
funct ion of the AS-C genes and prevent the receiving cell
from becom ing an SMC. Thus, m utual inh ibitory in ter-
act ions tending to m agnify differences are established
between neighboring cells of the proneural cluster.
With in a proneural cluster, and probably because of the
heterogeneous topographical dist ribu t ion of act ivators
and repressors—prepat tern factors (Stern 1954; Góm ez-
Skarm eta et al. 1996)—that cont rol ac–sc t ranscript ion
in proneural clusters, a few cells accumulate m ore Ac/ Sc
proteins than their neighbors (Cubas et al. 1991; Skeath
and Carroll 1991). Eventually, a cell of th is group, which
signals the m ost , will be released from the inhibitory
loop, as it s level of E(spl)-C bHLH protein becom es m ini-
m al (Jennings et al. 1995). According to our findings, th is
cell would then turn on ac–sc self-st im ulat ion by m eans
of the SMC enhancers and becom e an SMC (Fig. 7). The
SMC signals m axim ally to it s neighbors and prevents
them from following the sam e fate.
In th is scenario, how do the E(spl)-C proteins antago-

n ize neurogenesis? One possibility is by down-regulat ing
the overall levels of ac–sc t ranscript ion in proneural
clusters, as, under som e condit ions, overaccumulat ion of
E(spl)-C proteins reduces these levels (de Celis et al.
1996a, J. Culı́, unpubl.). However, we have found that
ac–sc t ranscript ion in proneural clusters, which is regu-
lated by cluster-specific enhancers, is m uch less sensi-
t ive to variat ion in levels of E(spl)-C protein than that
governed by the sc SMC enhancer. Thus, ext ra E(spl)–m 7
or E(spl)–m 8 protein , supplied in amounts sufficien t to
block SMC emergence (as determ ined by the act ivity of
the SRV–lacZ t ransgene or the neuralized A101 en-
hancer t rap line) does not m odify sc expression in pro-
neural clusters. Conversely, an insufficency of E(spl)-C
protein , induced by reduced N signaling, allows the SMC
enhancer to drive t ranscript ion in m any proneural clus-
ter cells, bu t it does not m odify that promoted by a pro-
neural cluster enhancer. In terest ingly, in the neuroecto-
derm , the expression of ac, sc, and l’sc in neuroblast s is
also m ore sensit ive to overexpression of E(spl)-C t rans-
genes than that in proneural clusters (N akao and Cam -
pos-Ortega 1996). These resu lt s poin t to SMC- and neu-
roblast -specific enhancers, rather than the proneural

cluster enhancers, as preferen t ial or m ain targets of N
signaling.
The sc (and also the ase) SMC enhancer possesses an

evolu t ionarily conserved N box capable of binding E(spl)-
C proteins. This suggests that these proteins m ay bind to
it and prevent enhancer funct ion in all the proneural
cluster cells except the SMC, which is essen t ially devoid
of them (Jennings et al. 1994, 1995). However, rem oval of
th is box (and another nonconsensus binding site) does
not provoke enhancer-promoted t ranscript ion in proneu-
ral cluster cells. This suggests that the E(spl)-C proteins
block enhancer funct ion by a differen t m echanism . Our
observat ions that a synthet ic m inienhancer composed of
only E boxes drives expression in m ost or all proneural
cluster cells, whereas a m inienhancer composed of both
E and " boxes promotes expression alm ost exclusively in

Figure 7. Model for the regulat ion of sc in SMCs and neigh-
boring epiderm oblast s. In all proneural cluster cells, including
the em erging SMC, sc t ranscript ion is act ivated by prepat tern
genes act ing on proneural cluster-specific enhancers (Góm ez-
Skarm eta et al. 1996). This act ivat ion is largely independent of
the N signaling pathway. Addit ionally in the SMC (left ), the sc
SMC-specific enhancer, by m eans of E boxes that bind Sc pro-
tein (as heterodim ers with Da), promotes sc self-act ivat ion . The
self-st im ulatory loop also requires the unident ified act ivat ing
factor X", which should bind to " boxes (N F-!B-like binding
sites). The resu lt ing increased Sc accumulat ion promotes st rong
act ivat ion of Dl in the SMC, which signals to the neighboring
proneural cluster cells (righ t ) and promotes in them the t ran-
script ion of E(spl)-C genes. The E(spl)-C proteins prevent the sc
self-st im ulatory loop in these cells, which becom e epiderm o-
blast s, by in teract ing with the X" factor and, possibly, by com -
plexing with Sc and Da proteins (Giglian i et al. 1996). (DNA
sites capable of binding E(spl) proteins, although dispensable,
m ay facilit ate or stabilize their in teract ion with the X" factor.)
As a consequence, the Sc concent rat ion rem ains low and the
inhibitory signaling through Dl to the SMC will be weak . The
fact that E(spl)-C proteins in SMCs are undetectable (Jennings et
al. 1995) suggests the presence of a m echanism that reduces
E(spl)-C t ranscript ion in SMCs. As proposed for dorsovent ral
boundary form at ion at the wing m argin (de Celis et al. 1996b),
sequestering of N molecules by the high concent rat ion of act ive
Dl in the SMC may block recept ion of signaling from the sur-
rounding cells. In addit ion , low levels of N act ivat ion in the
SMC may be compat ible with lack of E(spl)-C t ranscript ion , as
sm all am ounts of Su(H) act ivator can be t it rated by the const i-
tu t ive levels of the Hairless an tagonist (Bang et al. 1995).

SMC-specific enhancer

GENES & DEVELOPMENT 2043

Figure 6.10: SMC Development in D. melanogaster 1. The specification of the SMC
fate in the D. melanogaster proneural cluster proceeds in analogy with VU spec-
ification in C. elegans. A DELTA/NOTCH interaction between neighboring cells
activates the enhancer of split complex, E(spl), which plays the role of the proposed
Factor-X in elegans by inhibiting the accumulation of DELTA transcription factors.
These transcription factors, SC, are activated by prepattern factors while simultane-
ously operating in a self-stimulatory loop mediated by a complex of proteins. This is
Figure 7 in reference [7]

The self-stimulatory loop promoting AS-C in Drosophila appears to be an enzyme

coordinated interaction, as such we propose that a Michaelis-Mentin type term be

used to describe the mechanism. That is, we replace Equation (6.3) with the following:

ciui

(
x0,+, t

)
= ciui

(
x0,−, t

)
− qi,uvjui

(
x0,+, t

)
+

ki,1 ui (x
0,+, t)

1 + ki,2 ui (x0,+, t)
. (6.27)
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Figure 6.11: SMC Development in D. melanogaster 2. An abstraction of Figure (6.10)
showing the essential character of the positive and negative feedback loops at work
during SMC fate specification in D. melanogaster proneural cluster cells.
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Figure 6.12: A Novel Mechanism for the AC/VU Decision Suggested by Drosophila
SMC Development, c.f. Figure (6.11)
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As with previous derivations we solve this to find ui (x, t), c.f. Equation (6.5).

ui (x, t) =


1
ci
si

(
t− x

ci

)
for x ∈ [0, x0)

ai,1+ai,2−1+
√

(ai,1+ai,2−1)2+4 ai,1

2 ki,2
for x ∈ (x0, x∗]

(6.28)

ai,1 (t) ≡
ki,2 si

(
t− x

ci

)
ci + qi,uvj

(
t− x−x0

ci

) (6.29)

ai,2 (t) ≡ ki,1

ci + qi,uvj

(
t− x−x0

ci

) (6.30)

With ki,1 = 0, the self-stimulatory loop is removed and this expression reduces to

Equation (6.5). Note that si represents the production of HLH-2 due to prefactors.

The derivation is completed by appealing to Equation (6.4), repeating the process of

non-dimensionalization and enforcing the equipotency hypothesis. This leads to the

following revised model for the AC/VU decision:

dWi

ds
=

σ

µ

(
Ui (s, x

∗)−Wi (s)Uj

(
s, x0

))
, (6.31)

Ui (s, x) ≡ Ai,1 (x) + Ai,2 (x) +

√
(Ai,1 (x) + Ai,2 (x))2 + 2Ai,1 (x) , (6.32)

Ai,1 (x) ≡ 1

2

(
µSi

(
s− x

x∗−x0

)
1 +Wj

(
s− x∗−x

x∗−x0

)) , (6.33)

Ai,2 (x) ≡ 1

2

(
ν

1 +Wj

(
s− x∗−x

x∗−x0

) − 1

)
, (6.34)

ν ≡ k1/c , (6.35)

µ ≡ k2ξ/c . (6.36)

If the positive feedback loop is neglected, then ν = 0 and the previous model

emerges. It is only dependent on σ and δ. With the feedback loop in place, there



90

is additional dependence on φ, µ, and ν, making the dynamics of the model more

challenging to analyze. A thorough analysis of model behavior over parameter space

is not given here. Instead we wish only to demonstrate that, as claimed in § (6.4.3),

the incorporation of the feedback loop produces similar results as System (6.24), only

without neglecting the equipotency hypothesis to achieve this end.

Figures (6.13) and (6.14) show numerical computations for φ = µ = ν = 1 over a

range of δ and σ. Observe that LAG-2 production shuts down in the first born cell,

leading it to the VU fate. This behavior was previously found only by violating the

equipotency hypothesis, but here no such violation occurs. The desirable behavior

demonstrated by this model is due solely to the combination of positive and negative

feedback loops.

Above we discussed the observation of the (∞, 0) steady state being approached.

However, when the birth time separation is small, the positive feedback loop isn’t

sufficient to quickly specify the VU fate and the (1, 1) state is approached. See

Figure (6.15). However, this state appears to be a saddle point, so trajectories may

approach it temporarily, but given long enough time the positive feedback loop causes

them to depart and go to (∞, 0).

Due to the complexity of the model, our treatment here has not been mathe-

matically rigorous, but instead of a more experimental nature. The presence of self-

reinforcing positive feedback in the AC/VU decision has never been observed in an

experimental biological context. Intuition has led some biologists to suspect that such

a mechanism exists [24]. Our modeling serves as a mathematical experiment. An ex-
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Figure 6.13: D. melanogaster Inspired AC/VU: δ. First born (dashed lines) second
born (solid lines) ν = 5, µ = 1. Any non-zero birth order separation, described by
δ, appears to be sufficient to give the first born a “head start” in initiating non-
linear self-stimulation of HLH-2. This advantage allows for the shutdown of LAG-2
production in the first born, committing it to the VU fate.
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Figure 6.14: D. melanogaster Inspired AC/VU: σ. First born (dashed lines) second
born (solid lines) ν = 5, µ = 1. Any value of σ appears to be sufficient to give the
first born an advantage in committing to the VU fate.
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Figure 6.15: D. melanogaster Inspired AC/VU: δ � 1. First born (dashed lines)
second born (solid lines) ν = 5, µ = 1, δ = 0.005.
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periment that confirms biological intuition, suggests that even the shortest birth time

separations are capable of clearly specifying cell fates, and proposes a definite mech-

anism by which this feat may be achieved. This result mechanism begs experimental

confirmation by laboratory biologists.
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Appendix A

Mathematical Appendix

A.1 Theory of Delay Differential Equations

Delay differential equations (DDE) are elements of a general class known as functional

differential equations [9, 18]. The general form of a quasilinear first order DDE with

n delays is y′(t) = f(t, y(t), y(t− d1), y(t− d2), . . . , y(t− dn)) with 0 < d1 < . . . < dn.

In most circumstances, initial data is not sufficient to determine the solutions of DDE

for all t > 0. There are however exceptional cases. See [36] for a theorem of limited

applicability and a counter example. Generally, we specify the dependent variable

over the interval t ∈ [−dn, 0], and consider the following initial value problem:

dy(t)

dt
= f (t, y (t) , y (t− d1) , y (t− d2) , . . . , y (t− dn)) (A.1)

y(0) = y0

y(t) = g(t) for t ∈ [−dn, 0) .

The proofs of local and global existence of solutions to these DDE initial value prob-

lems are similar to those for ODE [18]. Because the functions y(t − dj) are known
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for t ∈ [0, d1] the existence of a solution for t ∈ [0, d1] is found exactly as in the ODE

case. If the solution exists up to time t = d1, then the functions y(t− dj) are known

for t ∈ [0, 2d1] and the same ODE existence proofs are applicable in the interval

t ∈ [d1, 2d1]. The process is bootstrapped in this way until the local existence proofs

for ODE fail for some t = t∗. We then have the existence of a solution to IVP (A.1)

for t ∈ [0, t∗).

Convergent numerical methods of Euler and Runge-Kutta type have been formu-

lated for DDE IVPs [36]. Once again the proofs of convergence of such methods follow

similarly to their ODE counterparts.

A.2 Asymptotics for Delay Differential Equations

A.2.1 Derivation

Suppose that x(t) is a vector-valued function of the scalar variable t. Consider the

delay differential equation initial value problem described by equations (A.2), (A.3),

and (A.4).

dx

dt
= εF (x (t) , x (t− 1)) (A.2)

x (0) = A (ε) (A.3)

x (t) = B (t, ε) for t ∈ [−1, 0) (A.4)

Here ε is an o (1) parameter while A (ε) B (t, ε), and F (·, ·) are vector-valued functions.

In what follows, we assume that A and B are differentiable in ε near ε = 0, i.e., that
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equations (A.5) and (A.6) hold.

A (ε) = A0 + εA1 +O
(
ε2
)

(A.5)

B (t, ε) = B0 (t) + εB1 (t) +O
(
ε2
)

(A.6)

Look for a regular perturbation expansion about ε = 0 in the form of equation (A.7).

X (t) = X0 (t) + εX1 (t) +O
(
ε2
)

(A.7)

Inserting the expression (A.7) into Equations (A.2), (A.3), and (A.4) gives a se-

quence of ordinary differential equation initial value problems that are easily solved

by quadrature. To order ε the solution is given by (A.8).


B0 (t) + εB1 (t) t ∈ [−1, 0)

A0 + ε
(
A1 +

∫ t

0
F (A0, B0 (s− 1)) ds

)
t ∈ [0, 1)

A0 + ε
(
A1 +

∫ 1

0
F (A0, B0 (s− 1)) ds+ (t− 1)F (A0, A0)

)
t ∈ [1,∞)

(A.8)

Note that, depending on the form of F , the solution may exhibit secular terms for

t � 1. We attempt to find an asymptotic approximation to order ε for all t ≥ 1.

Introduce a new time scale, τ .

τ = ε(t− 1) (A.9)

Using this new scale, define a new dependent variable, Y.

x (t) ≡ Y (t, τ) (A.10)
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In the coordinate system described by these new variables, Y is the solution to a

partial differential delay equation.

∂Y

∂t
+ ε

∂Y

∂τ
= εF (Y (t, τ) , Y (t− 1, τ − ε)) (A.11)

Look for a singular perturbation expansion in the form of Equation (A.12).

Y (t, τ) = Y0 (t, τ) + εY1 (t, τ) + ε2Y1 (t, τ) + . . . (A.12)

Inserting (A.12) into (A.11) and collecting common powers of ε gives a sequence of

problems.

∂Y0

∂t
= 0 (A.13)

This shows that Y0 is independent of t.

∂Y1

∂t
= F (Y0 (τ) , Y0 (τ))− dY0

dτ
(A.14)

The general solution is easily found by quadrature.

Y1 (t, τ) = (t− 1)

(
F (Y0, Y0)−

dY0

dτ

)
+ C(τ) (A.15)

The removal of secular terms from the expansion requires

dY0

dτ
= F (Y0, Y0) . (A.16)
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The next problem gives the first order correction term.

∂Y2

∂t
= ∇1F (Y0, Y0) · Y1 +∇2F (Y0, Y0) ·

(
Y1 −

dY0

dτ

)
− dY1

dτ
(A.17)

Here, and throughout this thesis, ∇i denotes the gradient with respect to the ith

argument. This is solved by quadrature and with the condition that secular terms be

removed from our expansion.

Y1 (τ) = Φ (τ)

(
α−

∫ t

1

Φ−1 (s) β (s) ds

)
(A.18)

β (τ) = ∇2F (Y0, Y0) · F (Y0, Y0) (A.19)

Here Φ is the fundamental matrix solution to a linear ODE.

dΦ

dτ
= (∇1F (Y0, Y0) +∇2F (Y0, Y0)) · Φ (A.20)

Φ (0) = I (A.21)

The constant vector α is yet to be determined. I is the identity matrix.

The singular perturbation expansion, Y , is now matched to the regular perturba-

tion expansion, X, in a region about t = 1. Introduce an intermediate scale, ξ , such

that ε � ξ � 1. Introduce a new scaled variable, η = ξ (t− 1) = ξ
ε
τ . Solutions X

and Y near t = 1 may now be expanded in terms of these intermediate variables.

X = A0 + ε

(
A1 +

∫ 1

0

F (A0, B0 (s− 1)) ds

)
+
ε

ξ
η F (A0, A0) + . . . (A.22)

Y = Y0 (0) + εα +
ε

ξ
η F (Y0 (0) , Y0 (0)) + . . . (A.23)
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In order for these expressions to agree, (A.24) and (A.25) must hold.

Y0 (0) = A0 (A.24)

α = A1 +

∫ 1

0

F (A0, B0 (s− 1)) ds (A.25)

For t > 1 the asymptotic approximation is given by Equations (A.12), (A.16), (A.18),

(A.19), (A.20), (A.21), (A.24), and (A.25). For clarity, these results are now summa-

rized.

Method 1 Let F (x, y) be a vector-valued function. Then, for t > 1, the solution to

the DDE system

dx

dt
= εF (x (t) , x (t− 1)) (A.26)

x (0) = A (ε) (A.27)

x (t) = B (t, ε) for t ∈ [−1, 0) (A.28)

with

A (ε) = A0 + εA1 +O
(
ε2
)

(A.29)

B (t, ε) = B0 (t) + εB1 (t) +O
(
ε2
)

(A.30)

is asymptotically approximated to leading order by

x (t) ∼ Y0 (τ) + ε Y1 (t, τ) (A.31)

τ = ε (t− 1) (A.32)
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where

dY0

dτ
= F (Y0, Y0) (A.33)

Y0 (0) = A0 (A.34)

and

Y1 (t, τ) = Φ (τ)

(
α−

∫ τ

0

Φ−1 (s) β (s) ds

)
(A.35)

α = A1 +

∫ 1

0

F (A0, B0 (s− 1)) ds (A.36)

β (τ) = ∇2F (Y0, Y0) · F (Y0, Y0) (A.37)

where Φ is the fundamental matrix solution to

dΦ

dτ
= (∇1F (Y0, Y0) +∇2F (Y0, Y0)) · Φ (A.38)

Φ (0) = I . (A.39)

The approximation will contain no secular terms of the form ετ provided that the

following requirement is satisfied for fixed ετ :

ε Φ (τ)

(
α−

∫ τ

0

Φ−1 (s) β (s) ds

)
� Y0 (τ) . (A.40)
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A.2.2 Examples

Secular Terms Consider the DDE initial value problem:

du

dt
= ε u(t− 1)

u(0) = A (A.41)

u(t) = B(t) for− 1 ≤ t < 0 .

By the method derived in § (A.2.1) we find an asymptotic approximation.

u ∼ Aeτ + ε

(∫ 1

0

B(s− 1)ds− Aτ

)
eτ (A.42)

τ = ε(t− 1) (A.43)

This will contain no secular terms if

ε

(∫ 1

0

B(s− 1)ds− Aτ

)
eτ = o(Aeτ ). (A.44)

This requirement is equivalent to requiring ετ = o(1), i.e., t � ε−2. Hence approxi-

mation (A.42) is valid for 1 ≤ t� ε−2. This result can be improved upon by instead

defining τ = (ε + aε2)(t− 1) and repeating our derivation choosing the value of a so

as to eliminate O(ετ) terms. We find

u ∼
(
A+ ε

∫ 1

0

B(s− 1)ds

)
eτ (A.45)

τ = (ε− ε2)(t− 1). (A.46)
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Higher Order Approximations The asymptotic method currently under study

has one peculiar requirement. Its specific implementation requires an a priori decision

as to the desired order of accuracy. Unlike other asymptotic methods for ODE, PDE,

and integrals, one cannot simply iterate a generic process to produce more terms

in the expansion should one desire a higher order approximation. Indeed, in the

example and derivation above, we required a first order asymptotic approximation

and so integrated the DDE to extend the initial data to [−1, 1] before matching in

an intermediate region about t = 1. If we desire a second order approximation, the

integration procedure must be carried out twice to extend the data to [−1, 2] before

matching in a region about t = 2. To make this explicit, consider again the example

system (A.41). By the method of § (A.2.1) we integrate to find a short time first

order approximation for t > 2.

X (t) = A+ ε

(
A (t− 1) +

∫ 0

−1

B (s) ds

)
+ (A.47)

ε2
(

1

2
A (t− 2)2 + (t− 2)

∫ 0

−1

B (s) ds+

∫ 2

1

∫ z−2

−1

B (s) dsdz

)

Using Equation (A.47) we repeat the procedure of § (A.2.1) with the slow scale

τ = (ε+ a ε2 + bε3 + . . .) (t− 2), where a and b will be chosen to remove secular

terms. We now have an approximation.

Y (τ) = (α+ εδ + γε2)eτ (A.48)

τ =

(
ε− ε2 +

3

2
ε3 + . . .

)
(t− 2) (A.49)
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The matching procedure requires that the following conditions hold.

α = A (A.50)

δ = A+

∫ 0

−1

B (s) ds (A.51)

γ =

∫ 2

1

∫ z−1

−1

β(s) ds dz (A.52)

Hence the long time higher order approximation is given by (A.53) and (A.54).

x ∼
(
A+ ε

(
A+

∫ 0

−1

β(s) ds

)
+ ε2

∫ 2

1

∫ z−1

−1

β(s) ds dz

)
eτ (A.53)

τ =

(
ε− ε2 +

3

2
ε3 + . . .

)
(t− 2) (A.54)

A.2.3 Autocrine Signals from Isolated Vulval Precursor Cells

A.2.3.1 Non-Destructive Inhibition

Consider the problem posed by System (5.37).

dW (z)

dz
=

δ

1 + β W (z − 1)
(A.55)

W (z) = γ for z ∈ [−1, 0]

Previously we had intuited that the asymptotic behavior of this system for large z is√
2δz
β

. This also appears to be the small β approximation. We now formally derive

this result using the asymptotic method of § (A.2.1). First set W = x/β. This puts
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our DDE into the form of the system treated by method (1).

dx(z)

dz
= β

δ

1 + x(z − 1)
(A.56)

x(z) = β γ for z ∈ [−1, 0]

Following the method we find

x(z) ∼
√

2δτ + 1− 1 + β

(
δ +

γ − δ√
2δτ + 1

)
(A.57)

Hence, for z > 1 we have

W (z) ∼
√

2δτ + 1− 1

β
+ δ +

γ − δ√
2δτ + 1

(A.58)

τ = β (t− 1)

Alternatively, for z � 1, the method of dominant balances can be used to find an

asymptotic solution.

x(z) ∼
√

2βδz − 1 +

√
2βδz

4

(
ln z

z

+
1

z2

(
−1

8
(ln z)2 +

1

2
ln z − 3

4

)
+

1

z3

(
1

32
(ln z)3 − 1

4
(ln z)2 +

13

16
ln z − 1

)
)

(A.59)

We support these approximations by giving an upper and lower bound on the solution

to System A.56.
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Result 3 The solution to initial value problem A.56, x(z) satisfies the following in-

equality for all z > 1.

√
2βδz + (1 + βγ)2 − 1 < x (z) <

√
2βδ (z − 1) + (1 + βγ)2 +

β δ

1 + β γ
− 1

(A.60)

Proof of Result (3). By Result 1, x(z) is monotonically increasing. From this we

deduce that x (z) > x(z − 1) so that dx
dz
< β δ

1+x(z)
for z > 0. Integrate this expression

to find the lower bound x (z) >
√

2βδz + (1 + βγ)2− 1 for z > 0. Adapting this into

a lower bound for x (z − 1), applying this bound to System A.56, and integrating once

more gives an upper bound x (z) <
√

2βδ (z − 1) + (1 + βγ)2 + β δ
1+β γ

− 1 for z > 1.

�

The bounds given by Result (3), valid for all parameter values, are in agreement

with our asymptotic estimate and confirm the intuited growth rate of x(z). See

Figure (A.1).

A.2.3.2 Destructive Inhibition

Consider now the problem posed by System (5.38). Setting V = x/β we have

dx

dt
= β

(
H(t− 1)

1 + x(t− (1− φ))
− x(t)H(t− φ)

1 + x(t)

)
, (A.61)

x(t) = βγ for τ ∈ [−1, 0] .
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Figure A.1: Asymptotic Estimate and Bounds for Non-Destructive Inhibition during
Autocrine Signaling. γ = 0 δ = 1 β = 0.1. Figure shows the numerically calcu-
lated solution (blue solid curve), the asymptotic estimate of Equation (A.58)(black
dashed curve), and the upper and lower bounds of Result (3) (red and green dots,
respectively).
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We study this system for the two extreme values φ = 0 and φ = 1. First consider the

case φ = 0.

dx

dt
= β

(
H (t− 1)

1 + x (t− 1)
− x (t)

1 + x (t)

)
(A.62)

x(t) = βγ for τ ∈ [−1, 0]

Despite the fact that the Heaviside unit step function [1] appearing on the right hand

side of Equation (A.62) depends explicitly on t, method 1 is still applicable because,

F is still essentially autonomous but defined piecewise.

F (x (t) , x (t− 1)) =


− x(t)

1+x(t)
if 0 ≤ t < 1

1
1+x(t−1)

− x(t)
1+x(t)

if 1 ≤ t

(A.63)

The leading order term in our asymptotic approximation is given by

dY0

dτ
=

1− Y0

1 + Y0

(A.64)

Y0 (0) = 0 .

Implicitly the solution is

Y0 + 2 log (1− Y0) = −τ (A.65)

This can be made explicit in terms of the ProductLog function, also known as the

Lambert W-function [45]. The ProductLog is the functional inverse of f (x) = x ex,

valid for x > −e−1. See Figure (A.2).
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Figure A.2: The ProductLog Function. ProductLog(x) = f−1(x) where f(x) = x ex.
Its domain is [−e−1,∞). Its range is [−1,∞).
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Y0 (τ) = 1 + 2 ProductLog

(
−1

2
e−(τ+1)/2

)
(A.66)

For φ = 1 our DDE reduces to an ODE

dx

dt
= β H (t− 1)

1− x (t)

1 + x (t)
(A.67)

x(t) = β γ for t ∈ [−1, 0]

The exact solution of this is again given in terms of the ProductLog function.

x (t) = 1 + 2 ProductLog

(
−1

2
(1− β γ) e−(βt−βγ+1)/2

)
(A.68)

Lateral Signals between Z1.ppp and Z4.aaa in the AC/VU Decision Con-

sider the problem posed by System (6.20). Using Method 1 the behavior of the system

is described asymptotically by the following system:

dY 1
0

dτ
=

1

1 + Y 2
0 (τ)

+
1

1 + Y 1
0 (τ)

− 1 , (A.69)

dY 2
0

dτ
=

1

1 + Y 2
0 (τ)

+
1

1 + Y 1
0 (τ)

− 1 , (A.70)

Y 1
0 (0) = 0 , (A.71)

Y 2
0 (0) = 0 . (A.72)
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By the uniqueness of solutions to ODE initial value problems, Y 2
0 = Y 1

0 , so that the

system reduces to a single ODE.

dY 1
0

dτ
=

1− Y 1
0

1 + Y 1
0

(A.73)

Y 1
0 (0) = 0 (A.74)

This is identical to System (A.64) hence the solution is given by formula (A.66).

A.3 Phase Plane Analysis of Delay Differential Equa-

tions

In studying the stability of equilibria of a system of ODE, linear stability analysis is

often used to determine local behavior. Specifically, suppose that the vector-valued

function F (x) has the root x = x∗, then this equilibrium of the autonomous ODE sys-

tem x′ = F (x) can be studied by considering the eigenvalues of the matrix ∇F (x∗).

If the equation under consideration contains a delay, this approach must be modified.

Suppose that the vector-valued function F (x, y) has the property that F (x∗, x∗) =

0 for some vector x∗. Then the linear stability of the system x′ = F (x (t) , x (t− 1))

about the point x∗ can be ascertained by perturbing about this steady state and

solving the resulting system via Laplace transform [4]. To make this explicit, consider
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perturbing the initial data by some small amount described by ε.

x (0) = x∗ + εX1 (A.75)

x (t) = x∗ + εX2 (t) for t ∈ [−1, 0) (A.76)

Seek a solution as a regular perturbation about x = x∗.

x (t) = x∗ + εX (t) +O
(
ε2
)

(A.77)

Collecting terms of common order gives a linear DDE system for X (t).

dX

dt
= ∇1F (x∗, x∗) ·X (t) +∇2F (x∗, x∗) ·X (t− 1) (A.78)

X (0) = X1 (A.79)

X (t) = X2 (t) for t ∈ [−1, 0) (A.80)

Laplace transforming this system gives an algebraic equation.

s Y −X1 = ∇1F (x∗, x∗) · Y + e−s∇2F (x∗, x∗) ·
(∫ 0

−1

X2 (t) dt+ Y

)
(A.81)

Here s is the Laplace transform variable and Y (s) is the Laplace transform of X (t).

This system is easily solved.

Y = M−1 ·
(
X0 + e−s∇2F (x∗, x∗) ·

∫ 0

−1

X2 (t) dt

)
(A.82)

M = sI −∇1F (x∗, x∗)− e−s∇2F (x∗, x∗) (A.83)
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Here I is the identity matrix. Inversion of the Laplace transform involves a study of

the invertibility of the matrix M . Indeed, setting the determinant of M equal to zero

gives a transcendental expression known as the characteristic equation. Moreover, let

Σ = {s ∈ C : det (M(s)) = 0}. If Σ is a subset of the complement of the right half-

plane, Σ ⊆ {s : Re (s) ≤ 0}, then the equilibrium point x∗ is linearly stable. If Σ lies

strictly in the left half of the complex s-plane, Σ ⊆ {s : Re (s) < 0}, the equilibrium

point x∗ is linearly asymptotically stable.

Consider an autonomous nonlinear system of ODE with an equilibrium point, x∗.

If this system is linearized about x∗ and the resulting system only has eigenvalues

with negative real parts, then the stable manifold theorem (see for example Theorem

1.3.2 in [17]) guarantees that the nonlinear system is also locally asymptotically stable

at x∗. This result has been generalized to DDE. See for example Theorem 6.8 in [8].

This theorem states that if the roots of the characteristic equation of a linearized

autonomous system of DDE all have negative real parts, then the corresponding

nonlinear system of DDE is also locally asymptotically stable. Thus, analysis of local

asymptotic stability of a nonlinear DDE system is reduced to the analysis of the

characteristic equation when this equation has all of its roots in the left half of the

complex plane.
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A.3.1 Autocrine Signals from Isolated Vulval Precursor Cells

A.3.1.1 Destructive Inhibition

Consider System (5.38). Its equilibrium is the point V = 1/β. Linearizing about

this point gives a linear DDE, X ′ (t) = −β
4

(X (t− (1− φ)) +X (t)), and, by remarks

above, leads to the study of the complex roots of Equation (A.84).

s = −β
4

(
e−s(1−φ) + 1

)
(A.84)

Result 4 For 0 ≤ φ ≤ 1 and β > 0, solutions of A.84 lie in the left half of the

complex plane, i.e., System (5.38) has the locally asymptotically stable equilibrium

1/β.

Proof of Result 4. The proof is simple and follows by drawing a contradiction.

Let the complex variable s be given by s = x+ ıy where x and y are real. This gives

the following system:

x = −β
4

(
1 + e−x(1−φ) cos y (1− φ)

)
, (A.85)

y =
β

4
e−x(1−φ) sin y (1− φ) . (A.86)

Suppose that x > 0 so that 0 < e−x(1−φ) ≤ 1. Because 0 ≤ | cos y (1− φ) | ≤ 1

we necessarily have 0 ≤ 1 + e−x(1−φ) cos y (1− φ) ≤ 2. This shows that the right-

hand side of Equation (A.85) is non-positive while the left-hand side is positive, a

contradiction. Hence x is non-positive. To complete the proof, suppose that x = 0.

Equation (A.85) implies that y = (2n+1)π
1−φ

for some integer n. This, together with
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Equation (A.86), implies that 2n + 1 = 0, a contradiction. We conclude that x < 0.

�

Equations (A.85) and (A.86) can actually be solved to find x and y in terms of

β and φ. First set X = (1− φ)x, Y = (1− φ) y, and α = (1− φ) β
4
. Our system

becomes the following:

X + α = −α e−X cosY , (A.87)

Y = α e−X sinY . (A.88)

If Y = 0 then Equation (A.88) is satisfied and Equation (A.87) gives X (α) implicitly.

See the red dashed curve in Figure (A.3).

Result 5 If Y = 0, then dα
dx

= 0 at the point

(α, x) = (ProductLog(e−1),−ProductLog(e−1)− 1) ≈ (0.28,−1.28) . (A.89)

Proof of Result 5. If Y = 0, then Equation (A.87) gives α as a function of x.

α = − x

1 + e−x
(A.90)

dα

dx
= −ex 1 + x+ ex

(1 + ex)2
(A.91)

Setting the numerator of (A.91) to zero and rearranging gives −(1 + x)e−(1+x) = e−1.

Applying the ProductLog function to this equation gives x = −ProductLog(−1)− 1.

Inserting this critical value of x into (A.90) and simplifying gives α = ProductLog(−1).

�
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The value of α determined by this result, which we call α∗, is important because,

at this point, there is a bifurcation from non-oscillatory solutions to slowly decaying

oscillatory solutions. See Figure (A.3).

When Y 6= 0, forming the ratio of these equations allows X to be solved for,

X = −α− Y cotY . Inserting this into Equation (A.88) gives an expression involving

Y and α, which can be solved for α using the ProductLog function. The expressions

for X and α as functions of the parameter Y may now be written:

α = ProductLog
(
Y e−Y cot Y cscY

)
, (A.92)

X = −ProductLog
(
Y e−Y cot Y cscY

)
− Y cotY .

X is plotted versus α in Figure (A.3) for −50π < Y < 50π.

For α > α∗ there exist slowly decaying low frequency oscillations but below this

threshold oscillations are more rapid and decay more quickly. Moreover, Corollary

1 in [10] applies to this problem and ensures that the linearized DDE will exhibit

oscillations for α < α∗ only for initial data from a nowhere dense subset of C0 [−1, 0].

We thus expect to see a more oscillatory approach to equilibrium when (1− φ) β >

4∗α∗ ≈ 1.113. Figure (A.4) shows numerical approximations for the non-linear DDE

with φ = 0. Note the onset of oscillations for β > 1.

For α� 1 the most slowly decaying solutions have a period of approximately two

(P = 2π/Y ). Asymptotically the decay rate and period are given by the following
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Figure A.3: The Decay Rate of Oscillatory Solutions in Destructive Autocrine Sig-
naling. A parametric plot of System (A.92) for −50π < Y < 50π. Observe that for
α > α∗ ≈ 0.278 there is a branch of oscillatory solutions that decays at a slower rate
(blue dotted curve). Values of X on this upper branch correspond to slowly oscil-
lating slowly decaying solutions (Y ∈ [0, π] , X > −α∗ − 1 ≈ −1.278). For α below
this threshold, oscillations are of higher frequency and rapidly decaying (|Y | & 7.46,
X . −3.38, black solid curves), or have no oscillatory component at all (red dashed
curve). For α < α∗ we expect the equilibration of our non-linear system to exhibit
negligible oscillatory character.
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Figure A.4: Oscillatory Decay to Equilibrium in Destructive Autocrine Signaling.
φ = 0 γ = 0. As β increases beyond the critical value 1.113 . . . solutions approach
the equilibrium 1/β in a more oscillatory fashion.
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relations:

X ∼ − π2

2α2
+

3π2

2α3
, (A.93)

P ∼ 2

(
1 +

1

α
− π2

3α3

)
. (A.94)

These limiting period-two solutions may be extracted directly from the non-linear

System (5.38) by using a method developed in [14]. First set V = x/β to obtain

System (A.61). For β � 1 the “outer” solution is given by equating the right hand

side of this to zero.

1

1 + x(t− (1− φ))
− x(t)

1 + x(t)
= 0 (A.95)

This can be thought of as a difference equation by equating x(t) on the interval

(1− φ)n ≤ t < (1− φ) (n+ 1) with the discrete sequence of functions yn (t). In this

way we obtain the following recursive relation:

1

1 + yn−1

− yn

1 + yn

= 0 . (A.96)

This is easily solved to find yn (t) = 1/yn−1 (t), a piecewise continuous period-two

function of t.
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