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Abstract

Signal processing is the art of representing, transforming, analyzing, and manipulating signals. It

deals with a wide range of signals, from speech and audio signals to images and video signals,

and many others. Signal processing techniques have been found very useful in diverse applica-

tions. Traditional applications include signal enhancement, denoising, speech recognition, audio

and image compression, radar signal processing, and digital communications, just to name a few.

In recent years, signal processing techniques have been also applied to the analysis of biological

data with considerable success. For example, they have been used for predicting protein-coding

genes, analyzing ECG signals and MRI data, enhancing and normalizing DNA microarray images,

modeling gene regulatory networks, and so forth.

In this thesis, we consider the application of signal processing methods to the analysis of bio-

logical sequences, especially, DNA and RNA molecules. We demonstrate how conventional signal

processing techniques–such as digital filters and filter banks–can contribute to this end, and also

show how we can extend the traditional models–such as the hidden Markov models (HMMs)–to

better serve this purpose.

The first part of the thesis focuses on signal processing methods that can be utilized for ana-

lyzing RNA sequences. The primary purposes of this part are to develop a statistical model that

is suitable for representing RNA sequence profiles and to propose an effective framework that can

be used for finding new homologues (i.e., similar RNAs that are biologically related) of known

RNAs. Many functional RNAs have secondary structures that are well conserved among differ-

ent species. The RNA secondary structure gives rise to long-range correlations between distant

bases, which cannot be represented using traditional HMMs. In order to overcome this problem,

we propose a new statistical model called the context-sensitive HMM (csHMM). The csHMM is

an extension of the traditional HMM, where certain states have variable emission and transition

probabilities that depend on the context. The context-sensitive property increases the descriptive
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power of the model significantly, making csHMMs capable of representing long-range correlations

between distant symbols. Based on the proposed model, we present efficient algorithms that can be

used for finding the optimal state sequence and computing the probability of an observed symbol

string. We also present a training algorithm that can be used for optimizing the parameters of a

csHMM. We give several examples that illustrate how csHMMs can be used for modeling various

RNA secondary structures and recognizing them.

Based on the concept of csHMM, we introduce profile-csHMMs, which are specifically con-

structed csHMMs that have linear repetitive structures (i.e., state-transition diagrams). Profile-

csHMMs are especially useful for building probabilistic representations of RNA sequence families,

including pseudoknots. We also propose a dynamic programming algorithm called the sequential

component adjoining (SCA) algorithm that can systematically find the optimal state sequence of

an observed symbol string based on a profile-csHMM. In order to demonstrate the effectiveness

of profile-csHMMs, we build a structural alignment tool for RNA sequences and show that the

profile-csHMM approach can yield highly accurate predictions at a relatively low computational

cost. At the end, we describe how the profile-csHMM can be used for finding homologous RNAs,

and we propose a practical scheme for making the search significantly faster without affecting the

prediction accuracy.

In the second part of the thesis, we focus on the application of digital filters and filter banks

in DNA sequence analysis. Firstly, we demonstrate how we can use digital filters for predicting

protein-coding genes. Many coding regions in DNA molecules are known to display a period-3

behavior, which can be effectively detected using digital filters. Efficient schemes are proposed

that can be used for designing such filters. Experimental results will show that the digital filtering

approach can clearly identify the coding regions at a very low computational cost. Secondly, we

propose a method based on a bank of IIR lowpass filters that can be used for predicting CpG islands,

which are specific regions in DNA molecules that are abundant in the dinucleotide CpG. This filter

bank is used to process the sequence of log-likelihood ratios obtained from two Markov chains,

where the respective Markov chains model the base transition probabilities inside and outside the

CpG islands. The locations of the CpG islands are predicted by analyzing the output signals of

the filter bank. It will be shown that the filter bank approach can yield reliable prediction results

without sacrificing the resolution of the predicted start/end positions of the CpG islands.
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Chapter 1

Introduction

Signal processing is the art of representing, transforming, analyzing, and manipulating signals. It

deals with a large variety of signals, including speech and audio signals, images and video signals,

and even biological signals such as DNA sequences, ECG signals, MRI signals, and so forth. Signal

processing techniques have been found useful in truly diverse applications, such as signal enhance-

ment [33], denoising [14, 101], speech recognition [82], audio [73] and image compression [100, 118],

radar signal processing [84], and digital communications [42, 43], just to name a few.

More recently, signal processing techniques have been also applied to the analysis of biological

data with considerable success. For example, they have been utilized for the prediction of protein-

coding genes [3, 106], characterization of ECG signals [63, 94], representation of gene regulatory

networks [99], analysis of DNA microarray images [13, 115], and many others. The reader who is

interested in the recent advances of signal processing methods in biology is referred to the following

tutorial reviews [3, 22, 23, 112, 113, 130].

The primary focus of the thesis lies in the application of signal processing concepts to the anal-

ysis of genomic sequence data. Among other things, this thesis presents various signal processing

methods–such as digital filters, filter banks, and variants of HMMs (hidden Markov models)–that

have been found especially useful in analyzing DNA and RNA sequence data and identifying re-

gions of specific interest–e.g., protein-coding genes, CpG islands, and noncoding RNA (ncRNA)

genes–inside these sequences. A more detailed outline of the thesis is presented in Section 1.6 of

this Chapter.

The main purpose of this introductory Chapter is to equip the readers with some fundamentals

in signal processing and genomics that are needed to understand the technical details of the discus-

sions that will follow. We make every attempt to make this Chapter as self-contained as possible, in



2

order to serve this purpose. In Section 1.1 we briefly describe the discrete Fourier transform (DFT)

that can be used for isolating the signal component with certain periodicity. The basic concepts of

Markov chains and hidden Markov models (HMMs) are reviewed in Section 1.2 and Section 1.3, re-

spectively. In Section 1.4, we review some fundamentals in genomics, and in Section 1.5, we briefly

describe the concept of RNA secondary structures.

The material presented in this Chapter is only meant to be a quick introduction to signal pro-

cessing and genomics, and it is by no means a complete and comprehensive coverage of these

topics. For a more extensive treatment of these topics, the reader is referred to the references given

at the end of each section.

1.1 Discrete Fourier transform (DFT)

Let us consider a finite length signal x(n) whose length is N . We assume that x(n) = 0 outside the

range 0 ≤ n ≤ N − 1. The discrete Fourier transform (DFT) of x(n) is defined as

X[k] =
N−1∑
n=0

x(n)W kn, (1.1)

where W = e−j2π/N . Sometimes, we may assume that the signal x(n) has length N even when its

actual length is smaller. For example, it is possible that x(n) = 0 outside the range 0 ≤ n ≤ L =

M − 1, where M ≤ N . For this reason, the transform in (1.1) is sometimes called the N -point DFT,

in order to prevent any ambiguity. As the Fourier transform of x(n) is defined as

X(ejω) =
∑

n

x(n)e−jwn, (1.2)

we can view the DFT X[k] of a signal x(n) as a uniformly sampled version of X(ejω) at frequencies

ωk = 2πk
N for k = 0, 1, . . . , N − 1. Given the DFT coefficients X[k], we can reconstruct the original

signal x(n) as follows

x(n) =
1
N

N−1∑
k=0

X[k]W−kn. (1.3)

This transform is called the inverse-DFT of X[k]. There exist efficient algorithms for computing

the DFT and its inverse (IDFT), which are collectively called the fast Fourier transform (FFT) algo-

rithms [24]. While the direct computation of the (N -point) DFT coefficients requires O(N2) opera-
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Figure 1.1: DFTs of periodic signals. (Top) Magnitude plot of the DFT of a signal with a period
T = 3. (Bottom) Magnitude plot of the DFT of a signal with a period T = 351/117.5.

tions, the FFT algorithm can compute the DFT in only O(N log N) operations.1

The DFT X[k] of a signal x(n) can effectively analyze the frequency components contained in

x(n). For example, the DFT coefficient X[k] shows the strength of the signal component whose

frequency is located at (or near) ω = 2πk/N . This corresponds to the period T = N/k in the time

domain. Let us consider a finite-length periodic signal x1(n) defined as follows

x1(n) = ej2πn/3, 0 ≤ n ≤ N − 1, (1.4)

where the length of the signal is N = 351. As the period of x1(n) if 3, its DFT X1[k] = DFT[x1(n)]

should have a peak at ω = 2π/3. This is demonstrated in Figure 1.1 (Top), where the magnitude of

the DFT X1[k] has only a single peak at k = N/3 = 117. When the frequency of the input signal is

not located at one of the frequencies ωk = 2πk
N (k = 0, 1, . . . , N − 1), its energy will be distributed

1The notation O(·) means “on the order of”.
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Figure 1.2: The DFT of a periodic signal with a period T = 3 buried in Gaussian noise. We can
observe a clear peak at k = N/3.

over several frequency bins. For example, let us consider another periodic signal x2(n) defined as

x2(n) = ej2π
(N/3)+0.5

N n, 0 ≤ n ≤ N − 1,

where N = 351 is the same as before. The magnitude plot of the DFT X2[k] = DFT[x2(n)] is shown

in Figure 1.1 (Bottom). We can see that the there are many non-zero DFT coefficients in this case,

although the peak is located near k = N/3+0.5
N .

Finally, let us consider a periodic signal that is buried in noise. We define

x3(n) = x1(n) + z(n), 0 ≤ n ≤ N − 1

where x1(n) is a periodic signal with period T = 3 as defined in (1.4) and z(n) is white Gaussian

noise with unit variance. The magnitude plot of X3[k] = DFT[x3(n)] is shown in Figure 1.2. In

Figure 1.2, we can clearly observe the peak at k = N/3 that corresponds to the period T = 3 of the

signal x1(n).

In Chapter 5, we will show how this property can be used for identifying protein-coding regions

in DNA sequences. Further details of the DFT and its basic properties can be found in [74].
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1.2 Markov chain

Let us consider a system that can be described by one of a finite number of states S = {S1, . . . , SM}.

At each discrete time index n, the state yn of the system takes one of the values yn ∈ S. The system

makes a state-transition at each unit time, which gives rise to a sequence of states

y0 → y1 → y2 → . . .→ yn. (1.5)

We say that this discrete-time stochastic process satisfies the Markov property, if the probability

distribution of the future state yn+1 depends only on the present state yn and not on the past states

yn−k (k ≥ 1). This can be written as

P (yn+1 = Sj |yn = Si, yn−1 = Sk, yn−2 = S`, . . .) = P (yn+1 = Sj |yn = Si). (1.6)

In this case, the state sequence in (1.5) is called a first-order Markov chain (Markov model). If the

transition probability shown in (1.6) is time independent such that

P (yn+1 = Sj |yn = Si) = t(Si, Sj),

for all n, it is called a stationary Markov chain. The transition probabilities t(Si, Sj) satisfy

t(Si, Sj) ≥ 0 (1 ≤ i, j ≤M),
M∑

j=1

t(Si, Sj) = 1 (1 ≤ i ≤M).

As we can see from above, a stationary Markov chain is completely governed by its state transition

probabilities t(Si, Sj), and it can be conveniently represented by a state transition diagram. An

example of such a diagram is shown in Figure 1.3. Unless mentioned otherwise, we assume that

the Markov chain that is being used is stationary.

In many applications, Markov chains are used to model the correlations between observable

physical events. Every state represents a distinct event, and the state transition probabilities de-

scribe the correlations between these events. Once we have constructed a model that properly

describes the system that gives rise to the observable events, this model can be used to evaluate

the probability of observing a series of events. For example, let us consider the following problem.



6

S1 S2
t(S1,S1)

t(S1,S2)

t(S2,S2)

t(S2,S1)

Figure 1.3: Example of a state transition diagram that represents a Markov chain with two distinct
states S1 and S2.

Given that the current state is y0 ∈ S , how can we compute the probability that the next L states

will be exactly y1y2 . . . yL? Using the Markov property, this probability can be simply computed as

P (y1y2 . . . yL|y0) =
L∏

n=1

P (yn|yn−1)

=
L∏

n=1

t(yn−1, yn). (1.7)

Consider the case when we have multiple Markov chains, where each model describes the behavior

of a system under different conditions. In this case, we can use the observation probability in (1.7)

to determine which model describes the observed events best.

The Markov chains are utilized in Chapter 6, where they are used to represent the base se-

quences inside CpG islands and those outside CpG islands. It is demonstrated that they can be

effectively used for discriminating CpG islands from the non-CpG island regions. For further de-

tails on Markov chains, the reader is referred to [89].

1.3 Hidden Markov model (HMM)

For many real world problems, the assumption that each state in the Markov chain corresponds

to an “observable” event may be too restrictive. In such cases, we can use the hidden Markov

model (HMM) that is an extension of the simpler Markov model. The HMM is a doubly embed-

ded stochastic process that consists of an invisible process of hidden states and a visible process of

observable symbols (or events). The hidden state sequence satisfies the Markov property, which is

governed by the state transition probabilities associated with the model. The probability distribu-

tion of the observed symbols depend on the underlying states. More formally, this can be written
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as follows. Let xn ∈ A be the observed symbol at time n, where A = {a1, . . . , aN} is the set of all

observable symbols. We denote the underlying state at time n as yn ∈ S, where S = {S1, . . . , SM}

is the set of distinct states in the hidden Markov model. As the state sequence satisfies the Markov

property, we have

P (yn+1 = Sj |yn = Si, yn−1 = Sk, . . .) = P (yn+1 = Sj |yn = Si)

= t(Si, Sj).

At time n, the emission probability of the observed symbol xn depends on the hidden state yn

P (xn = ak|yn = S`) = e(ak|S`).

Note that t(Si, Sj) is the stationary state transition probability from state Si to state Sj , and e(ak|S`)

is the stationary symbol emission probability of symbol ak at state S`. The stochastic process of

hidden states and the process of observable symbols are illustrated in Figure 1.4. In general, the

hidden state sequence (typically called a “path”) cannot be directly inferred from the observed

symbol sequence, although some information about the state sequence can be obtained from the

observation. An HMM is completely defined by the set of parameters Θ = {T,E, π}, where the

matrices T = {tij} and E = {e`k} and the vector π = {πi} are defined as follows.

tij = t(Si, Sj),

e`k = e(ak|S`),

πi = P (y1 = Si),

for 1 ≤ i, j, ` ≤ M and 1 ≤ k ≤ N . T is the transition probability matrix, E is the emission

probability matrix, and π is the initial state distribution of the model.

Like Markov chains, HMMs can also be conveniently represented by state transition diagrams.

Figure 1.5 shows an example of such a diagram. The HMM shown in Figure 1.5 has the following
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y1

t(y4,y5)

y2 y3 y4 y5

x1 x2 x3 x4 x5

t(y3,y4)t(y2,y3)t(y1,y2)

…

e(x1|y1) e(x2|y2) e(x3|y3) e(x4|y4) e(x5|y5)

observed symbols

hidden states

Figure 1.4: Illustration of the doubly embedded stochastic process in HMMs. The stochastic process
consists of an observable symbol sequence and a hidden state sequence.
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b: 0.2

a: 0.8
b: 0.2

a: 0.3
b: 0.7

a: 0.3
b: 0.7

a: 0.5
b: 0.5

a: 0.5
b: 0.5

S1 S2

S3

START

0.4
0.6

Figure 1.5: Example of a state transition diagram that represents a hidden Markov model with three
states S = {S1, S2, S3} and two distinct observation symbols A = {a, b}. The initial state distribu-
tion and the state transition probabilities are shown along the edges and the emission probabilities
are shown in the boxes.
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set of parameters Θ = {T,E, π}

T =


0.3 0.7 0.0

0.2 0.3 0.5

0.9 0.0 0.1

 ,

E =


0.8 0.2

0.3 0.7

0.5 0.5

 ,

π =
[

0.6 0.4 0.0
]
.

As an example, let us consider the following observation sequence x with the underlying state

sequence y as shown below

x = a a b b a,

y = S1 S1 S2 S3 S1.

The probability P (x,y) can be computed as

P (x,y) = P (y1 = S1)× e(a|S1)× t(S1, S1)× e(a|S1)× t(S1, S2)

×e(b|S2)× t(S2, S3)× e(b|S3)× t(S3, S1)× e(a|S1)

= 0.6× 0.8× 0.3× 0.8× 0.7× 0.7× 0.5× 0.5× 0.9× 0.8

= 1.016064× 10−2.

There are three important problems that have to be solved in order to apply the HMMs to real

world applications. These problems are typically called the alignment problem, the scoring problem,

and the training problem. These problems are described in the following.

Alignment problem

Given an observed symbol sequence x = x1x2 . . . xL and an HMM defined by the set of pa-

rameters Θ, how can we find the optimal state sequence y = y1y2 . . . yL that maximizes the

observation probability P (y|x,Θ)? This is called the “alignment problem” because it tries to

find the best alignment between the symbol sequence x and the given HMM. As the num-

ber of paths increases exponentially with the length L of the symbol string x, comparing all

paths is practically infeasible. However, there exists an efficient dynamic programming algo-

rithm called the Viterbi algorithm, which can find the optimal state sequence in a systematic
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way [116]. The complexity of the Viterbi algorithm is only O(LM2), which increases linearly

with respect to the sequence length L, where M is the number of states.

Scoring problem

Given an observed symbol sequence x = x1x2 . . . xL, how can we compute its observation

probability based on a given model Θ? As this probability can be used to score different

models to choose the one that best describes the observation sequence, it is usually called the

“scoring problem.” This problem can be efficiently solved using the forward algorithm [56, 81],

which is closely related to the Viterbi algorithm. The complexity of the forward algorithm is

also O(LM2).

Training problem

Finally, we have to address the problem of how to choose the model parameters in an optimal

manner, based on a number of training sequences. One popular solution to this problem

is an EM (expectation-maximization) algorithm called the Baum-Welch algorithm [6]. This

algorithm can iteratively find the parameters that achieve a local maximum of the observation

probability of the training sequences.

The algorithms that can be used for solving these problems for HMMs are described in consid-

erable detail in [56, 81].

HMMs are well known for their effectiveness in modeling short-term dependencies between

adjacent symbols. For this reason, they have been extensively used in various fields, including

speech recognition [56, 81] and bioinformatics [28, 59]. In Chapter 2, we extend the traditional

HMM so that we can also describe long-range correlations between distant symbols. The extended

model, called the context-sensitive HMM (csHMM) has important applications in RNA sequence

analysis, as will be demonstrated in Chapter 3 and Chapter 4.

1.4 Review of some fundamentals in genomics

In this section, we briefly review some basics in genomics that are needed to understand the details

of the thesis.
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1.4.1 DNA and RNA

DNA (deoxyribonucleic acid) is a nucleic acid that contains the genetic information for cellular life

forms and viruses. They are responsible for propagating the hereditary information in all living

organisms. A single strand of DNA consists of many nucleotides that are linked to each other

forming a long chain. A nucleotide consists of a base, a sugar, and a phosphate (or a phosphate

group). The structure of a nucleotide is illustrated in Figure 1.6. The nucleotides that form a DNA

strand can have four different kinds of bases, namely, adenine, cytosine, guanine, and thymine. For

convenience, these nucleotides (or the bases) are typically represented by the four letters A, C, G,

and T.

In general, a single strand of DNA forms a double helix with another single strand of DNA via

hydrogen bonding between the bases. An illustration of a DNA double helix is shown in Figure 1.7.

The nucleotide A in one strand is linked to T in the other strand (and vice versa), and the nucleotide

C in one strand is connected to G in the other strand (and vice versa). As a result, one strand in a

DNA double helix completely determines the nucleotide sequence in other strand, hence they are

called complementary strands.

Figure 1.8 shows an example of a short DNA double helix that has been straightened out for

simplicity. As indicated in the figure, the sugar-phosphate forms the backbone of each DNA strand,

and the two strands that run towards opposite directions are linked to each other by the chemical

bonds formed between the complementary bases. As the nucleotide sequence in one strand deter-

mines the nucleotide sequence in the other strand, a double-stranded DNA can be unambiguously

represented by either strand. For this reason, a DNA molecule is represented by the nucleotide

sequence of the forward strand, which is read from the so-called 5’-end to the 3’-end. For example,

let us consider the DNA shown in Figure 1.8:

5′ −A−A− T − C −G−G− C − T −A− C − 3′ (forward strand)

3′ − T − T −A−G− C − C −G−A− T −G− 5′ (backward strand) .

This can be simply represented by the forward strand

5′ −A−A− T − C −G−G− C − T −A− C − 3′.

Therefore, from a signal processing perspective, we can view a DNA molecule as a symbol se-
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Figure 1.6: Illustration of a nucleotide and a DNA strand.
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Figure 1.7: Illustration of a DNA double helix.
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sugar-phosphate backbone

bases
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Figure 1.8: Example of a DNA double helix that has been straightened out for simplicity.

quence, where the symbols are taken from a finite alphabet.

The RNA (ribonucleic acid) is another type of nucleic acid that is closely related to the DNA. It

also consists of four kinds of bases like the DNA, except that uracil (U) is used instead of thymine

(T). Unlike DNA molecules, the RNA is typically a single-stranded molecule.

1.4.2 Protein synthesis

A protein is a complex biomolecule that consists of a long chain of amino acids. The amino acids

are linked to each other by strong covalent bonding called peptide bonds, and the amino acid chain

is also known as a polypeptide. There are 20 different kinds of amino acids in proteins, where each

amino acid has a different side-chain. Therefore, a protein can be conveniently represented as a

sequence of amino acids, where each of the 20 distinct amino acids is denoted by a 3-letter code

or an 1-letter code. For example, the amino acid alanine is denoted by ‘Ala’ or ‘A,’ and cysteine is

denoted by ‘Cys’ or ‘C.’

Proteins are involved in every single biological process in all cells, hence playing a crucial role

in all living organisms. The information that is needed for encoding proteins is stored in the DNA.

Portions in the DNA that contain the information for producing proteins are called protein-coding

genes, or often simply genes.2 Each gene in the DNA is first copied into an RNA molecule (transcrip-

tion), which is then used to produce proteins (translation). Therefore, it can be said that the genetic

information flows from DNA to RNA to protein. This basic principle is typically called the central

dogma of molecular biology [1], and it explains how the genetic instructions contained in the DNA

are used to synthesize RNAs and proteins. Figure 1.9 illustrates this principle in a simple diagram.

The main steps in a typical protein synthesis process are shown in Figure 1.10. Each step in the

process is discussed in the following subsections.

2Note that there exist also ncRNA (noncoding RNA) genes, which are portions of DNA that give rise to functional RNAs
that are not translated into proteins.
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DNA

RNA

Protein

RNA synthesis
(transcription)

Protein synthesis
(translation)

Figure 1.9: The central dogma of molecular biology states that the genetic information flows from
DNA to RNA to protein.

1.4.2.1 Transcription

The process of copying the content of a gene into an RNA is called transcription. The transcription

process is carried out by an enzyme called RNA polymerase, where an enzyme is a protein that cat-

alyzes a specific chemical reaction. Initially, the RNA polymerase binds to a special region in the

DNA called the promoter, which is located upstream of a gene and is used to designate the starting

point of the transcription process. During transcription, the RNA polymerase uses one strand of

the DNA (called the template strand) to copy the content into an RNA molecule. While copying the

content from DNA to RNA, a thymine (T) in the original DNA sequence is replaced by a uracil (U)

in the RNA that is being synthesized. The resulting transcript of a protein-coding gene is called a

pre-mRNA (pre-messenger RNA).

Living organisms can be categorized into two types, namely, prokaryotes and eukaryotes. Prokary-

otes are simple organisms (mostly unicellular) that do not have a cell nucleus. Bacteria are com-

mon examples of prokaryotes. On the other hand, eukaryotes are organisms that have complex

cells with membrane-bound nuclei. Most of them are multicellular, and higher organisms such as

worms, plants, insects and mammals belong to eukaryotes. Most protein-coding genes in eukary-

otes consist of two types of regions called exons and introns (see Figure 1.10).3 The introns are

removed from the pre-mRNA and the remaining exons are concatenated to form a mRNA (messen-

ger RNA). This process is called splicing. Sometimes, one pre-mRNA gives rise to multiple mRNAs

3The protein-coding genes of prokaryotes do not have introns.
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Figure 1.10: Illustration of a typical protein synthesis process.
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UUU : Phenylalanine
UUC : Phenylalanine
UUA : Leucine
UUG : Leucine

CUU : Leucine
CUC : Leucine
CUA : Leucine
CUG : Leucine

AUU : Isoleucine
AUC : Isoleucine
AUA : Isoleucine
AUG : Methionine, Start

GUU : Valine
GUC : Valine
GUA : Valine
GUG : Valine

UCU : Serine
UCC : Serine
UCA : Serine
UCG : Serine

CCU : Proline
CCC : Proline
CCA : Proline
CCG : Proline

ACU : Threonine
ACC : Threonine
ACA : Threonine
ACG : Threonine

GCU : Alanine
GCC : Alanine
GCA : Alanine
GCG : Alanine

UAU : Tyrosine
UAC : Tyrosine
UAA : Stop
UAG : Stop

CAU : Histidine
CAC : Histidine
CAA : Glutamine
CAG : Glutamine

AAU : Asparagine
AAC : Asparagine
AAA : Lysine
AAG : Lysine

GAU : Aspartic acid
GAC : Aspartic acid
GAA : Glutamic acid
GAG : Glutamic acid

UGU : Cysteine
UGC : Cysteine
UGA : Stop
UGG : Tryptophan

CGU : Arginine
CGC : Arginine
CGA : Arginine
CGG : Arginine

AGU : Serine
AGC : Serine
AGA : Arginine
AGG : Arginine

GGU : Glycine
GGC : Glycine
GGA : Glycine
GGG : Glycine

Figure 1.11: The genetic code.

by combining different exons. This phenomenon is called alternative splicing, and it is widely ob-

served in eukaryotes.

1.4.2.2 Translation

During the translation process, the mRNA that was transcribed from DNA is decoded by the ribo-

some and tRNAs (transfer RNA) to generate a polypeptide (or a protein). A polypeptide is a long

sequence of amino acids that are interconnected via peptide bonds. The translation of mRNAs into

proteins is governed by the genetic code that maps each of the 64 codons (triplets of nucleotides) into

one of the 20 different amino acids. Figure 1.11 shows the genetic code that holds true for most

genes in the vast majority of organisms. However, deviations from the standard code shown in

Figure 1.11 are also widespread. For example, in several human mitochondrial mRNAs, the triplet

‘UGA’ was observed to code a tryptophan instead of serving as a stop codon [11].

For a comprehensive introduction to genomics and cell biology, see [1, 11].
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Figure 1.12: Two examples of RNAs with secondary structures. The primary sequence of each
RNA is shown along with its structure after folding. The dashed lines indicate interactions between
bases. (a) RNA with two stem-loops. (b) RNA with a pseudoknot.

1.5 RNA secondary structure

As mentioned earlier, the RNA is a nucleic acid that consists of a chain of nucleotides. There are

four distinct types of nucleotides, A, C, G, and U, where U is chemically similar to T. Just like in the

DNA, A and U can form a hydrogen-bonded base pair, and similarly, C and G can also form a pair.4

In general, the RNA is a single-stranded molecule. If there exist complementary parts in a given

RNA, these parts can form contiguous base pairs, making the RNA fold onto itself intramolecu-

larly. This complementary base pairing determines the three-dimensional structure of the RNA to

a considerable extent, and the two-dimensional structure resulting from the base pairing is referred

as the RNA secondary structure. In contrast, the one-dimensional string of nucleotides is sometimes

called the primary sequence of the RNA.

Figure 1.12 shows two examples of RNA secondary structures. We can see that both RNAs

4Sometimes, the bases G and U can also form pairs.
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display characteristic secondary structures after folding. As indicated in Figure 1.12 (a), the con-

tiguous base pairs that are stacked onto each other after folding is called a stem, and the sequence of

unpaired bases bounded by base pairs is called a loop. The secondary structure of the RNA in Fig-

ure 1.12 (a) consists of two stem-loops (or hairpins). In many cases, the base pairings occur in a nested

manner, where no interactions between bases cross each other. To be more precise, consider a base

pair between locations i and j (i < j), and another base pair between locations k and ` (k < `). We

say that these two base pairs are nested if they satisfy i < k < ` < j or k < i < j < `. The RNA

shown in Figure 1.12 (a) has only nested interactions. Secondary structures with crossing interac-

tions, where there exist base pairs at (i, j) and (k, `) that satisfy i < k < j < ` or k < i < ` < j,

are called pseudoknots. One such example is shown in Figure 1.12 (b). Although RNA pseudoknots

are observed less frequently than secondary structures with only nested base pairs, there are still

many RNAs that are known to contain functionally important pseudoknots [104].

Many interesting RNAs are known to conserve their secondary structures among different

species [25]. The conserved secondary structure gives rise to complicated long-range correlations

between distant bases in the primary sequence of an RNA. More detailed discussion on this topic

will be presented in Chapter 3.

For additional details on RNA secondary structures and RNA sequence analysis, the reader is

referred to [25, 30].

1.6 Outline of the thesis

This thesis is organized as follows.

1.6.1 Context-sensitive hidden Markov models (Chapter 2)

In many applications, biological sequences are often treated as unstructured one-dimensional sym-

bol sequences. However, they usually have higher dimensional structures that play important roles

in carrying out their biological functions within cells. For example, an RNA molecule often folds

onto itself to form a specific RNA secondary structure as shown in Section 1.5. This structure gives

rise to complicated long-range correlations between distant bases in the RNA, which cannot be

handled by simple models such as the Markov chains and the hidden Markov models (HMMs).

In Chapter 2, we introduce the concept of context-sensitive HMMs (csHMMs), which can be
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used for representing symbol sequences with long-range correlations. The csHMM is an exten-

sion of the traditional HMM, where the emission probabilities and the transition probabilities at

certain states depend on the previous emission, called the “context.” This context-sensitive prop-

erty increases the descriptive power of the model tremendously, making the csHMMs capable of

handling complicated correlations between nonadjacent symbols. Due to the increased descrip-

tive power of the model, we cannot use the algorithms that have been utilized for analyzing the

traditional HMMs (e.g., the Viterbi algorithm, the forward algorithm, and the Baum-Welch algo-

rithm). In Chapter 2, we propose dynamic programming algorithms that can be used with csHMMs

for finding the optimal state sequence (the “alignment problem”) and computing the observation

probability (the “scoring problem”) of a symbol sequence. In addition to this, we also propose a

parameter reestimation algorithm that can be used for finding the optimal parameters of a csHMM

based on a set of training sequences.

1.6.2 RNA sequence analysis using context-sensitive HMMs (Chapter 3)

The context-sensitive HMMs proposed in Chapter 2 have important applications in RNA sequence

analysis. In Chapter 3, we focus on the role of csHMMs in the computational identification and

analysis of the so-called noncoding RNAs (ncRNAs). For a long time, it has been believed that pro-

teins are responsible for most of the important biological functions within cells. In the meanwhile,

the RNA was mainly viewed as a passive intermediary that interconnects DNA and proteins. How-

ever, recent results indicate that ncRNAs, which are RNA molecules that function without being

translated into proteins, play pivotal roles in various biological processes, especially in controlling

the regulatory mechanisms in the cells [30, 44].

In Chapter 3, we show how the csHMMs can be utilized for building probabilistic representa-

tions of ncRNA families and finding new ncRNA genes. We give examples of csHMMs that repre-

sent the correlations in symbol sequences that arise from various RNA secondary structures. Then,

we propose a dynamic programming algorithm that can be used for searching a large database to

find similar sequences that closely match the original RNA that is represented by the csHMM at

hand.

Unlike most RNA sequences that adopt a single “biologically correct” structure, there exist

many regulatory RNAs that can choose from alternative secondary structures [53, 108]. These

RNAs can differentially fold depending on the environmental cues, thereby controlling the ex-
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pression level of certain genes. Alternative folding in RNAs introduces some complications, as

the resulting correlation structure is significantly more complex than those of typical RNAs that

take only one structure. At the end of Chapter 3, we propose a method based on csHMMs, which

can be used for modeling and identifying RNAs with alternative secondary structures. The pro-

posed method provides a good prediction performance at a reasonably low complexity, making it

practically usable in real applications.

The main emphasis of Chapter 3 lies on building tools that can be used to find new members

(or homologues) of known ncRNA families.

1.6.3 Profile context-sensitive hidden Markov models (Chapter 4)

In Chapter 4, we present a subclass of context-sensitive HMMs, called profile-csHMMs, which

are especially useful in representing RNA profiles. The Profile-csHMM is a csHMM with a linear

structure that repetitively uses three kinds of states, namely, match states, delete states, and insert

states. Unlike traditional profile-HMMs, some of the match states are made context sensitive such

that we can represent pairwise correlations between the bases that form a complementary base pair

in the RNA secondary structure. Profile-csHMMs can be easily constructed from an RNA multiple

sequence alignment, in a simple and intuitive manner.

One of the most important advantages of profile-csHMMs is that they are capable of model-

ing any kind of RNA pseudoknots. For example, models such as CMs (covariance models) [26]

that have been extensively used for modeling RNAs, can only describe nested correlations, hence

not capable of handling pseudoknots. More recent models such as PSTAGs (pair stochastic tree

adjoining grammars) [66] can also deal with many pseudoknots, but not all of them. Based on

profile-csHMMs, we propose a dynamic programming algorithm, which is called the sequential

component adjoining (SCA) algorithm, that can be used for finding the optimal state sequence of

profile-csHMMs.

To demonstrate the effectiveness of the propose model, we build a structural alignment tool that

can be used for aligning RNA pseudoknots and predicting their secondary structures. Experimen-

tal results indicate that the profile-csHMM based approach can achieve a high prediction accuracy

that is comparable to the state-of-the-art method, while it can also deal with a much larger class of

pseudoknots. Furthermore, the proposed structural alignment method runs much faster than the

previous method (based on PSTAGs) without degrading the accuracy.
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Finally, we consider the problem of performing an RNA homology search using profile-csHMMs.

Although the profile-csHMM alignment algorithm runs reasonably fast, it is still slow if we want

to use it for scanning a large database. At the end of Chapter 4, we propose an efficient pre-filtering

scheme for making a profile-csHMM search significantly faster, without affecting its prediction

accuracy.

1.6.4 Predicting protein-coding genes using digital filters (Chapter 5)

In Chapter 5, we present digital filtering methods for identifying protein-coding genes. It is well

known that protein-coding regions in DNA sequences frequently display period-3 behaviors that

are not observed in noncoding regions. Therefore, we can exploit this property for identifying

protein-coding regions in a given DNA sequence. Traditionally, these regions have been identified

with the help of windowed DFT (discrete Fourier transform) [3, 106]. From a digital filtering per-

spective, we can view the DFT approach as digital filtering using a bandpass filter whose passband

is centered at 2π/3. In this way, we can extract the period-3 component to measure the strength

of the periodic behavior in a specific region. However, the DFT-based filter does not have a high

stopband attenuation, which leaves a considerable amount of undesirable noise after filtering.

We can overcome this problem by designing a better digital filter with a higher stopband attenu-

ation. In Chapter 5, we propose two different methods for designing digital filters that can be used

for identifying protein-coding genes. The first method is based on allpass-based antinotch filters

and the second method is based on multistage digital filtering. Experimental results indicate that

both methods can isolate the period-3 components from the noisy background considerably better

than the traditional DFT approach. Furthermore, the digital filters that are used in the proposed

methods can be very efficiently designed, providing a significant advantage in terms of computa-

tional cost.

The gene identification problem is quite complex in nature, and we need more powerful sta-

tistical models to achieve a high prediction accuracy. However, such models are computationally

more expensive than the proposed digital filtering methods, which makes the speed of the gene

finder quite slow. Therefore, we can use the prediction methods proposed in Chapter 5 for a fast

prescreening of the genome and use a more descriptive model (such as an HMM) in the second

stage in order to expedite the overall gene identification process.
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1.6.5 Identification of CpG islands using filter banks (Chapter 6)

The CpG islands are specific regions in DNA molecules that are abundant in the dinucleotide CpG.

They are usually located upstream of the transcription start regions of many genes, hence can be

used as good gene markers. Furthermore, the methylation of CpG islands is known to play an

important role in gene silencing, genomic imprinting, carcinogenesis, and so forth. For this reason,

the computational identification of CpG islands has been of interest to many researchers.

In Chapter 6, we propose a method for finding CpG islands based on a filter bank that consists of

IIR (infinite impulse response) lowpass filters. The proposed method models the CpG island region

and the non-CpG island region respectively, using two different Markov chains. Based on the two

Markov chains, it computes the log-likelihood ratio for every transition between the adjacent bases

in a given DNA sequence. This log-likelihood ratio is filtered using a bank of lowpass filters, whose

output signals are then analyzed to find the transition points between the CpG island regions and

the non-CpG island regions. The filter bank based prediction approach provides a convenient way

for obtaining reliable prediction results without degrading the resolution of the start/end positions

of the predicted CpG islands.
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Chapter 2

Context-Sensitive Hidden Markov
Models

Although biological sequences are often treated as unstructured one-dimensional symbol sequences

for simplicity, they usually have three-dimensional structures that play important roles in carrying

out their biological functions in cells. For example, a polypeptide (a long chain of amino acids) is

biologically inactive until it folds into a correct three-dimensional protein structure. This is typi-

cally called protein folding [11]. RNAs, which usually exist as single-stranded molecules, often fold

onto themselves intramolecularly to form consecutive base-pairs. The three-dimensional structure

of an RNA is determined by this complementary base-pairing to a considerable extent, and the

two dimensional structure that results from this base-pairing is referred as the RNA secondary struc-

ture [25].1 Due to these structures, many biological sequences–such as proteins and noncoding

RNAs (ncRNAs)– exhibit complicated correlations between nonadjacent symbols [25]. Such corre-

lations cannot be effectively handled by simple models such as Markov chains and hidden Markov

models (HMMs). In fact, these models belong to stochastic regular grammars (SRGs) according to the

so-called Chomksy hierarchy of transformational grammars, which cannot model symmetric sequences

(or palindromes). As RNAs with conserved secondary structures can be viewed as “biological palin-

dromes,” these models are incapable of handling RNA sequences. This will be described in more

detail in Section 2.2.

In order to overcome this limitation, we propose a new statistical model in this chapter, which

is called the context-sensitive hidden Markov model (csHMM). The csHMM is an extension of the

conventional HMM, where the probabilities at some states are made context sensitive. This in-

creases the descriptive capability of the model tremendously, making csHMMs capable of describ-

1Examples of RNA secondary structures can be found in Chapter 1 and Chapter 3.
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ing long-range correlations between nonadjacent symbols.2 The proposed model has several ad-

vantages over other existing models, including the stochastic context-free grammars (SCFG), as will

be demonstrated later. The csHMMs are especially useful for modeling ncRNAs with conserved

secondary structures and for building RNA sequence analysis tools.

The content of this chapter is mainly drawn from [131], and portions of it have been presented

in [123, 127, 128].

2.1 Outline

The organization of this chapter is as follows. In Section 2.2, we briefly review the Chomsky hierar-

chy of transformational grammars, and explain where the conventional HMMs are located in this

hierarchy. We show that the descriptive capability of HMMs is limited to sequences with sequential

dependencies and give examples that cannot be effectively modeled by the HMMs.

In Section 2.3, we introduce the concept of context-sensitive HMM (csHMM), which is an ex-

tension of the HMM that can be used for representing long-range correlations between distant

symbols. We first elaborate on the basic elements of a csHMM in Section 2.3.1, and explain in

Section 2.3.2 how these elements can be used to build an actual csHMM.

In Section 2.4, we consider the “alignment problem” of csHMMs. It is shown that the Viterbi

algorithm cannot be used for finding the optimal state sequence of a csHMM due to the context-

sensitive property of the model. In Section 2.4.1, we briefly describe how we can implement a

dynamic programming algorithm that can be used for finding the optimal state sequence that max-

imizes the probability of an observation sequence, based on a given csHMM. The algorithmic de-

tails are described in Section 2.4.2 and Section 2.4.3, and the overall complexity of the algorithm is

analyzed in Section 2.4.4.

The “scoring problem” of csHMMs is considered in Section 2.5. In this section, we show how

we can compute the observation probability of a symbol sequence in a systematic way. The details

of the scoring algorithm is described in Section 2.5.1. In addition to this, we describe the outside

algorithm for csHMMs in Section 2.5.2, which can be used along with the scoring algorithm for

estimating the model parameters of csHMMs.

In Section 2.6, we describe a parameter re-estimation algorithm for csHMMs. We can iteratively

2It has to be noted that the context-sensitive HMMs proposed in this chapter are not related to the so-called context-
dependent HMMs that have been widely used in speech recognition [62, 64, 97]. They are regular HMMs, whose basic
building blocks are built by considering the phonetic context, hence called context-dependent HMMs.
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apply the proposed algorithm to train a csHMM based on a set of training sequences. Experimental

results are given in Section 2.7, which demonstrate the effectiveness of the algorithms proposed in

Section 2.4, Section 2.5, and Section 2.6.

In Section 2.8, we discuss several interesting issues related to csHMMs. For example, we con-

sider extending the proposed model for representing non-pairwise correlations in Section 2.8.1

and explain how csHMMs can be used for modeling crossing correlations in Section 2.8.2. In Sec-

tion 2.8.3, we compare the proposed model with other variants of HMMs. The csHMM is also com-

pared to other transformational grammars (e.g., context-free grammars, context-sensitive gram-

mars) in Section 2.8.4, and we show that csHMMs have several advantages over these grammars.

Concluding remarks are given in Section 2.9.

Finally, in Appendix A, we give an example of a context-free grammar (CFG) that cannot be

represented by a csHMM. As there also csHMMs that cannot be represented by CFGs (shown in

Section 2.8.2), this demonstrates that neither the csHMMs nor the CFGs fully contain the other

(see Figure 2.19). In Appendix B, we describe simplified versions of the alignment algorithm and

the scoring algorithm that are proposed in Section 2.4 and Section 2.5, respectively. The simpli-

fied algorithms can be used for analyzing sequences with single nested correlations, and they are

computationally more efficient compared to the original algorithms.

2.2 HMMs and transformational grammars

Hidden Markov models (HMMs) have been widely used in many fields. They are well known

for their efficiency in modeling short-term dependencies between adjacent symbols, which made

them popular in diverse areas. Traditionally, HMMs have been successfully applied to speech

recognition, and many speech recognition systems are built upon HMMs and their variants [56,

81]. They have been also widely used in digital communications, and more recently, HMMs have

become very popular in computational biology as well. They have been proved to be useful in

various problems such as gene identification [25, 58, 96], multiple sequence alignment [25, 27], and

so forth. Due to its effectiveness in modeling symbol sequences, the HMM gave rise to a number

of useful variants that extend and generalize the basic model [35, 49, 50, 70, 79, 80, 136].

Although HMMs have a number of advantages, the basic HMM and its variants have also

inherent limitations. For example, they are capable of modeling sequences with strong correlations

between adjacent symbols, but they cannot describe long-range interactions between symbols that
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Type Allowed production rules
Regular Grammar A −→ aB | a | ε
Context-Free Grammar A −→ α
Context-Sensitive Grammar αAγ −→ αβγ or S −→ ε
Unrestricted Grammar αAγ −→ δ

Table 2.1: The Chomsky hierarchy of transformational grammars.

are distant from each other. Therefore, the resulting model always displays local dependencies,3

and more complex sequences with non-sequential dependencies cannot be effectively represented

using the conventional HMMs.

2.2.1 Transformational grammars

In computational linguistics, a transformational grammar is defined as a set of rules that can be used

to describe (or generate) a set of symbol sequences over a given alphabet. It was first formally

proposed by the computational linguist Noam Chomsky [16]. A transformational grammar can be

characterized by the following components: terminal symbols, nonterminal symbols, and production

rules. Terminal symbols are the observable symbols that actually appear in the final symbol se-

quence, and nonterminal symbols are abstract symbols that are used to define the production rules.

A production rule is defined as α → β, where α and β are strings of terminal and/or nonterminal

symbols. It describes how a given string can be transformed into another string. We can generate

various symbol sequences by applying these production rules repetitively, where the generation

process starts from the start nonterminal S and terminates when there are no more nonterminals.

As an example, let us consider the following grammar which has a single nonterminal {S} and

two terminals {a, b}:

S −→ aS, S −→ b.

This simple grammar can generate any sequence of the form a . . . ab. For example, we can generate

the sequence aaab by applying the above rules as follows

S −→ aS −→ aaS −→ aaaS −→ aaab.

In his work on transformational grammars, Chomsky categorized transformational grammars

3By local dependencies, we imply that the probability that a symbol appears at a certain location depends only on its
immediate preceding neighbors.
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regular

unrestricted

context-free

context-sensitive

• more complex
• more powerful
• less restricted

Figure 2.1: The Chomsky hierarchy of transformational grammars nested according to the restric-
tions on the allowed production rules.

into four classes. These are the regular grammars, context-free grammars, context-sensitive grammars

and unrestricted grammars, in the order of decreasing restrictions on the production rules. The pro-

duction rules allowed in each class are summarized in the Table 2.1. A and B are single nontermi-

nals, a is a single terminal, and ε is the empty sequence. α, γ, δ are any string of terminals and/or

non-terminals, and β is any nonempty string of terminals and/or non-terminals. (The notation ’|’

means ’or.’) These four classes comprise the so-called Chomsky hierarchy of transformational gram-

mars, which is illustrated in Figure 2.1. As can be seen from the diagram, regular grammars are the

simplest among the four, and they have the most restricted production rules.

HMMs can be viewed as stochastic regular grammars (SRG), according to this hierarchy. Due

to the restrictions on their production rules, regular grammars have efficient algorithms such as the

Viterbi algorithm [116] for finding the optimal state sequence (popularly used in digital communica-

tion receivers), the forward algorithm [56, 81] for computing the probability of an observed symbol

string, and the Baum-Welch algorithm [6] for re-estimation of the model parameters. Other trans-

formational grammars that belong to a higher-order class in the hierarchy have less restrictions on

the allowed production rules, and therefore they have greater descriptive power to represent more

complicated dependencies between symbols. However, the computational complexity for analyz-

ing an observation sequence (e.g., computing the observation probability, finding the optimal state

sequence) increases very quickly, which makes the use of higher-order grammars sometimes im-

practical.
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aabaabaa

babbaabbab

Figure 2.2: Examples of sequences that are included in the palindrome language. The lines indicate
the pairwise correlations between distant symbols.

2.2.2 Palindrome language

One interesting language that cannot be represented using regular grammars (or equivalently, us-

ing HMMs) is the palindrome language [16]. The palindrome language is a language that contains

all strings that read the same forwards and backwards. For example, if we consider a palindrome

language that uses an alphabet of two letters {a, b} for terminal symbols, it contains all symbol se-

quences of the form aa, bb, abba, aabbaa, abaaba, and so on. Figure 2.2 shows examples of symbol

strings that are included in this language. The lines in Figure 2.2 that connect two symbols indicate

the pairwise correlations between symbols that are distant from each other. Similarly, RNAs with

conserved secondary structures display long-range correlations between nonadjacent bases, due

to the existence of symmetric (or reverse complementary, to be more precise) portions in their pri-

mary sequences. This kind of long-range interactions between symbols cannot be described using

regular grammars.

It is of course possible that a regular grammar generates such palindromes as part of its lan-

guage. However, we cannot force the model to generate only such palindromes. Therefore regular

grammars are not able to effectively discriminate palindromic sequences from non-palindromic

ones. In fact, in order to describe a palindrome language, we have to use higher-order grammars

such as the context-free grammars. Context-free grammars are capable of modeling nested depen-

dencies between symbols that are shown in Figure 2.2.

In the following section, we describe how the conventional HMMs can be extended such that

they can represent long-range symbol correlations, including those observed in palindromes.
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2.3 Context-sensitive hidden Markov models

The context-sensitive HMM can be viewed as an extension of the traditional HMM, where some

of the states are equipped with auxiliary memory [123, 131]. Symbols that are emitted at certain

states are stored in the memory, and the stored data serves as the context that affects the emission

probabilities and the transition probabilities at certain future states. This context-sensitive property

increases the descriptive power of the model significantly, compared to the traditional HMM. Let

us first formally define the basic elements of a context-sensitive HMM.

2.3.1 Basic elements of a csHMM

Similar to the traditional HMMs, the csHMM is also a doubly-stochastic process, which consists of a

non-observable process of hidden states and a process of observable symbols. The process of the

hidden states is governed by state-transition probabilities that are associated with the model, and

the observation process is linked to the hidden process via emission probabilities of the observed

symbol that is conditioned on the hidden state. A csHMM can be characterized by the following

elements.

2.3.1.1 Hidden states

We assume that the csHMM has M distinct states. The set of hidden states V is defined as

V = S ∪ P ∪ C ∪ {start, end}, (2.1)

where {start, end} is the set of special states that are used to denote the start state and the end state of

the model. As can be seen in (2.1), there are three different classes of states, namely, single-emission

states Sn, pairwise-emission states Pn, and context-sensitive states Cn. S is the set of single-emission

states

S = {S1, S2, . . . , SM2}, (2.2)

where M2 is the number of single-emission states in the model. Similarly, P and C denote the set of

pairwise-emission states and the set of context-sensitive states

P = {P1, P2, . . . , PM1}, C = {C1, C2, . . . , CM1}. (2.3)
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Pn Cn

Stack n

X1

X2

X3

X4

Figure 2.3: The states Pn and Cn associated with a stack Zn.

As shown in (2.3), the number of pairwise-emission states is the same as the number of context-

sensitive states. Therefore, we have M = 2M1 + M2 + 2 hidden states in total. The states Pn and

Cn always exist in pairs. For example, if there are two pairwise-emission states P1 and P2 in the

model, then the HMM is required to have also two context-sensitive states C1 and C2. The two

states Pn and Cn are associated with a separate memory element Zn, such as a stack or a queue. We

may also use other memory types depending on the type of correlations that we want to model.

Figure 2.3 shows an example where Pn and Cn are associated with a stack Zn.

Differences between the three classes of states. The differences between the three classes of

states are as follows.

(1) Single-emission state Sn. The single-emission state Sn is similar to a regular hidden state in

traditional HMMs. As we enter the state, Sn emits an observable symbol according to the

associated emission probabilities. After the emission, Sn makes a transition to the next state

according to the specified transition probabilities.

(2) Pairwise-emission state Pn. The pairwise-emission state Pn is almost identical to the single-

emission state Sn, except that the symbols emitted at Pn are stored in the auxiliary memory

Zn dedicated to Pn and Cn. The data stored in the memory affects the emission probabilities

and the transition probabilities of Cn in the future. After storing the emitted symbol in the

memory, a transition is made to the next state according to the transition probabilities of Pn.

(3) Context-sensitive state Cn. The context-sensitive state Cn is considerably different from the

other states, in the sense that its emission probabilities and the transition probabilities are not

fixed. In fact, these probabilities depend on the context, or the data stored in the associated



31

memory Zn, which is the reason why Cn is called a context-sensitive state. When entering

Cn, it first accesses the memory Zn and retrieves a symbol x. Once the symbol is retrieved,

the emission probabilities of Cn are adjusted according to the value of x. For example, we

may adjust the emission probabilities of Cn such that it emits the same symbol x with high

probability (possibly, with probability one). Transition probabilities at Cn also depend on the

context, as will be explained later.

We denote the hidden state process as s = s1s2 . . . sL, where si is the state at time i and L is the

length of the entire sequence. Each state takes a value from si ∈ V − {start, end}. The virtual start

state s0 and the end state sL+1 are assumed to be s0 = start and sL+1 = end.

2.3.1.2 Observation symbols

We denote the observation process as x = x1x2 . . . xL, where xi is the observed symbol at time i.

Each symbol xi takes a value from an alphabet xi ∈ A. Note that the virtual start state s0 and the

end state sL+1 do not make any emission.

2.3.1.3 Transition probabilities

Let us define the probability that the model will make a transition from a state si = v to the next

state si+1 = w. For v ∈ S ∪ P , we define the probability as

P (si+1 = w|si = v) = t(v, w).

Note that the transition probabilities are stationary and do not depend on the time index i. As

mentioned earlier, the transition probabilities at a context-sensitive state Cn depend on the context

Zn. Cn uses two different sets of transition probabilities, depending on whether the associated

memory Zn is empty or not. For each context-sensitive state Cn, we define the following sets

En = { Subset of V that contains the states to which Cn can make transitions

when the associated memory element Zn is empty }, (2.4)

Fn = { Subset of V that contains the states to which Cn can make transitions

when the associated memory element Zn is not empty }, (2.5)
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where En ∩ Fn = ∅. At a context-sensitive state Cn, the memory is examined after making the

emission. If the memory is empty, v = Cn can make a transition only to w ∈ En. Similarly, if the

memory is not empty, v = Cn makes a transition to w ∈ Fn. Based on this setting, we define the

two sets of transition probabilities when v ∈ C as follows

P (si+1 = w|si = v, Zn) =

 te(v, w) if Zn is empty,

tf (v, w) if Zn is not empty.

Since En ∩ Fn = ∅, the probabilities te(v, w) and tf (v, w) cannot have non-zero values at the same

time. Therefore, we can let t(v, w) = te(v, w) + tf (v, w) without any ambiguity. Now, the transition

probability from si = v ∈ C to si+1 = w can be simplified as

P (si+1 = w|si = v, Zn) = t(v, w).

Note that we have
∑

w∈En
t(v, w) = 1 and

∑
w∈Fn

t(v, w) = 1 in this case. The probability t(start, v)

is used to define the initial state distribution P (s1 = v), and t(w, end) denotes the probability that

the HMM will terminate after the state w.

Preventing degeneracies. The restrictions on the types of states to which a context-sensitive state

v ∈ C is allowed to make transitions depending on the context, can be conveniently used to main-

tain the number of Pn and that of Cn identical in a state sequence. In this way, we can prevent

degenerate situations due to a mismatch between the two states. Let s = s1s2 . . . sL be a feasible

state sequence of an observed symbol string x = x1x2 . . . xL. The csHMM should be constructed

such that the number of occurrences of Pn in the sequence s is kept the same as the number of

occurrences of Cn in s. This restriction is reasonable for the following reasons. In the first place, if

there are more Cn states than there are Pn states, the emission probabilities of the context-sensitive

state Cn cannot be properly determined. On the other hand, if there are more Pn states than Cn

states, the symbols that were emitted at the “surplus” Pn states do not affect the probabilities in the

model at all, hence they may be simply replaced by single-emission states.
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Figure 2.4: An example of a context-sensitive HMM that generates only palindromes.

2.3.1.4 Emission probabilities

The probability of observing a symbol xi = x depends on the underlying hidden state si = v. For

v ∈ S ∪ P , this emission probability can be defined as

P (xi = x|si = v) = e(x|v).

For v ∈ C, the emission probability depends on both si = v and the context Zn, hence it is defined

as

P (xi = x|si = v, Zn) = e(x|v, Zn). (2.6)

In case the emission probability depends only on a single symbol xp in the memory Zn (e.g., if Zn

uses a stack, xp may be the symbol on the top of the stack), the emission probability in (2.6) can be

simply written as e(x|v, xp).

2.3.2 Constructing a csHMM

By using the proposed context-sensitive HMM, we can easily construct a simple model that gener-

ates only palindromes. For example, we may use the structure shown in Figure 2.4 for this purpose.

As can bee seen in Figure 2.4, there are three hidden states S1, P1, and C1 in the model, where the

state-pair (P1, C1) is associated with a stack. Initially, the model begins at the pairwise-emission

state P1. It makes several self-transitions to generate a number of symbols, which are pushed onto

the stack. At some point, it makes a transition to the context-sensitive state C1. Once we enter the
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context-sensitive state C1, the emission probabilities and the transition probabilities of C1 are ad-

justed, such that the state always emits the symbol on the top of the stack and makes self-transitions

until the stack becomes empty. In this way, C1 emits the same symbols as were emitted by P1, but

in the reverse order, since the stack is a last-in-first-out (LIFO) system. If we denote the number

of symbols that were emitted by P1 as N , the generated string will always be a palindrome of the

form x1 . . . xNxN . . . x1 (even length sequence) or x1 . . . xNxN+1xN . . . x1 (odd length sequence).

In the following discussions, we mainly focus on those context-sensitive HMMs that generate

sequences with nested interactions. These models include the ones that generate palindromic se-

quences as illustrated in Figure 2.4. As in Figure 2.4, we assume that every state-pair (Pn, Cn) is

associated with a stack. Based on these settings, we describe efficient dynamic programming algo-

rithms that can be used for analyzing symbol sequences, and we also introduce a training algorithm

that can be used for estimating the model parameters of a given csHMM.

2.4 Finding the most probable path

Let us consider an observation sequence x = x1x2 . . . xL. As described in Section 2.3, we denote the

underlying state of xi as si. Assuming that there are M distinct states in the model, we have ML

different paths. Given the observation sequence x, how can we find the path that is most probable

among the ML distinct paths? This problem is tradictionally called the optimal alignment problem,

since we are trying to find the best alignment between the observed symbol string and the given

HMM.

One way to find the most probable path would be to compute the probabilities of all paths, and

pick the one with the highest probability. However, this approach is impractical, since the number

of paths increases exponentially with the length L of the sequence. When using traditional HMMs,

this problem can be solved very efficiently by the Viterbi algorithm [116], which is widely used in

digital communication receivers. The Viterbi algorithm exploits the fact that if s1 . . . si−1si is the

optimal path for x1 . . . xi−1xi among all paths that end with the state si, then s1 . . . si−1 must be

the optimal path for x1 . . . xi−1 among all paths that end with the state si−1. Therefore, in order

to find the optimal path for x1 . . . xi with si = v, we only have to consider the M optimal paths

for x1 . . . xi−1 that end with si−1 = 1, . . . ,M , the transition probability from each of these states

to the state si = v, and the probability of emitting the symbol xi at the state si. This makes the

computational complexity of the Viterbi algorithm only O(LM2), which is considerably better than
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Figure 2.5: An example of a simple context-sensitive HMM.

O(LML) of the exhaustive search.

Unfortunately, the same intuition does not hold for context-sensitive HMMs. Since the emission

probabilities and the transition probabilities of context-sensitive states Cn depend on the previously

emitted symbols at the pairwise-emission states Pn, we have to keep track of the previous states in

order to compute the probability of a certain path. Therefore, the optimal path for x1 . . . xi cannot

be found simply by considering the optimal paths for x1 . . . xi−1 and extending it.

In order to see this, let us consider the example in Figure 2.5. This context-sensitive HMM

has three hidden states P1, C1, and S1, where each of these states emits a symbol in the alphabet

A = {a, b}. The emission probabilities and the transition probabilities of P1 and S1 are shown in the

figure. The symbols emitted at P1 are pushed onto the stack, and this data affects the probabilities

at the state C1. Once we enter the context-sensitive state C1, a symbol is popped out from the

stack and is emitted. After the emission, the stack is examined to check whether it is empty. If it

is empty, the model terminates. Otherwise, the model makes a transition back to C1 and continues

emitting the symbols that are stored in the stack. Now, let us consider the symbol sequence abbba.

Assuming that this string comes from the model in Figure 2.5, what is the most probable path s∗? It

is not difficult to see that there are only two feasible paths: s1 = P1S1S1S1C1 and s2 = P1P1S1C1C1.

Since both paths pass the state S1 in the middle, let us first consider the optimal path for the first

three symbols abb. We denote the subpaths of s1 and s2 up to the third symbol as ŝ1 = P1S1S1 and

ŝ2 = P1P1S1, respectively. If we compute the probabilities of ŝ1 and ŝ2, we get

P (ŝ1) =
1
2
× 1

2
× 3

4
× 1

2
× 3

4
=

9
128

,
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and

P (ŝ2) =
1
2
× 1

2
× 1

2
× 1

2
× 3

4
=

6
128

,

hence the optimal path for the first three symbols abb is ŝ1. However, if we compute the probabilities

of the two paths s1 and s2, we obtain

P (s1) =
1
2
× 1

2
× 3

4
× 1

2
× 3

4
× 1

2
× 3

4
× 1

2
× 1× 1 =

27
2048

,

and

P (s2) =
1
2
× 1

2
× 1

2
× 1

2
× 3

4
× 1

2
× 1× 1× 1× 1 =

48
2048

,

which shows that the optimal path for abbba is s2. Apparently, the globally optimal path s∗ = s2 is

not an extension of ŝ1, and this example clearly demonstrates that the Viterbi algorithm cannot be

used for finding the most probable path in context-sensitive HMMs.

2.4.1 Alignment of csHMM

Although the Viterbi algorithm cannot be used for finding the optimal path in a context-sensitive

HMM, we can develop a polynomial-time algorithm that solves the alignment problem in a recur-

sive manner, similar to the Viterbi algorithm. The proposed algorithm is conceptually similar to the

Cocke-Younger-Kasami (CYK) algorithm [51, 60] that can be used for parsing SCFGs. The main reason

why the Viterbi algorithm cannot be used in context-sensitive HMMs is because the interactions

between symbols are not sequential. Since the Viterbi algorithm basically considers only sequential

depdendencies, it cannot take care of nested interactions between distant symbols. However, if

we implement an algorithm that starts from the inside of the given sequence and proceeds to the

outward direction by taking the nested interactions into account, it is possible to find the optimal

state sequence in a recursive manner.

When searching for the most probable state sequence, we assume that all pairwise interactions

between Pn and Cn are nested and they do not cross each other, as mentioned earlier. Figure 2.6

illustrates several examples of interactions that are allowed as well as those that are prohibited. The

nodes in the figure denote the observed symbols in the sequence, and the dotted lines that connect

two symbols indicate the pairwise interactions between them. Figures 2.6 (a)–(c) show sequences

with nested dependencies. On the other hand, the example in Figure 2.6 (d) shows a sequence with

a crossing interaction, which is not considered in this chapter.
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(a)

(b)

(c)

(d)

Figure 2.6: Examples of interactions in a symbol string. The dotted lines indicate the pairwise
dependencies between symbols. (a), (b), (c) Nested interactions. (d) Crossing interactions.

Before describing the algorithm, let us first define the variables that are needed in the proposed

algorithm. x = x1 . . . xL is the observation sequence and s = s1 . . . sL is the underlying state

sequence. We assume that the csHMM has M distinct states, which we simply denote by V =

{1, 2, . . . ,M}. The state v = 1 denotes the start state of the HMM and v = M denotes the end state.

For v ∈ P ∪ C, we define v̄ as the complementary state of v as follows,

v = Pn → v̄ = Cn, v = Cn → v̄ = Pn.

The emission probability of a symbol x at a state v is defined as e(x|v) for v ∈ S ∪ P , and e(x|v, xp)

for v ∈ C, where xp is the symbol that was previously emitted at the corresponding pairwise-

emission state v̄. The transition probability from v to w is defined as t(v, w). Finally, let us define

γ(i, j, v, w) to be the log-probability of the optimal path among all subpaths si . . . sj with si = v and

sj = w. In computing γ(i, j, v, w), we consider only those paths where all the pairwise-emission

states Pn in the si . . . sj are paired with the corresponding context-sensitive states Cn. Examples

of subpaths that are considered in computing γ(i, j, v, w) are shown in Figure 2.7 (a). The paths

shown in Figure 2.7 (b) are not considered due to unpaired Pn or Cn states, or due to crossing

interactions. The variable γ(i, j, v, w) will ultimately lead to the probability log P (x, s∗|Θ), where
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(a)
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(b)
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P

S

S

S

Figure 2.7: Examples of state sequences (a) that are considered in computing γ(i, j, v, w) and (b)
those that are not considered.

s∗ is the optimal path that satisfies

s∗ = arg max
ŝ

P (x, s = ŝ|Θ),

where Θ is the set of model parameters. Additionally, we define the variables λ`(i, j, v, w) and

λr(i, j, v, w) that will be used for tracing back the optimal state sequence s∗.

2.4.2 Computing the log-probability of the optimal path

Now, the alignment algorithm can be described as follows.

(1) Initialization

For i = 1, . . . , L, v = 2, . . . ,M − 1.

γ(i, i, v, v) =

 log e(xi|v) v ∈ S

−∞ otherwise

λ`(i, i, v, v) = (0, 0, 0, 0)

λr(i, i, v, v) = (0, 0, 0, 0)
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(2) Iteration

For i = 1, . . . , L− 1, j = i + 1, . . . , L and v = 2, . . . ,M − 1, w = 2, . . . ,M − 1.

(i) v ∈ C or w ∈ P

γ(i, j, v, w) = −∞

λ`(i, j, v, w) = (0, 0, 0, 0)

λr(i, j, v, w) = (0, 0, 0, 0)

(ii) v ∈ P, w ∈ S

γ(i, j, v, w) = max
u

[
γ(i, j − 1, v, u) + log t(u, w) + log e(xj |w)

]
u∗ = arg max

u

[
γ(i, j − 1, v, u) + log t(u, w) + log e(xj |w)

]
λ`(i, j, v, w) = (i, j − 1, v, u∗)

λr(i, j, v, w) = (j, j, w,w)

(iii) v ∈ S, w ∈ C

γ(i, j, v, w) = max
u

[
log e(xi|v) + log t(v, u) + γ(i + 1, j, u, w)

]
u∗ = arg max

u

[
log e(xi|v) + log t(v, u) + γ(i + 1, j, u, w)

]
λ`(i, j, v, w) = (i, i, v, v)

λr(i, j, v, w) = (i + 1, j, u∗, w)

(iv) v = Pn, w = Cm (n 6= m), j < i + 3

γ(i, j, v, w) = −∞

λ`(i, j, v, w) = (0, 0, 0, 0)

λr(i, j, v, w) = (0, 0, 0, 0)
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(v) v = Pn, w = Cm (n 6= m), j ≥ i + 3

γ(i, j, v, w) = max
u

(
max

k=i+1,...,j−2

[
γ(i, k, v, v̄) + log t(v̄, u) + γ(k + 1, j, u, w)

])
(k∗, u∗) = arg max

(u,k),k=i+1,...,j−1

[
γ(i, k, v, v̄) + log t(v̄, u) + γ(k + 1, j, u, w)

]
λ`(i, j, v, w) = (i, k∗, v, v̄)

λr(i, j, v, w) = (k∗ + 1, j, u∗, w)

(vi) v = Pn, w = Cn, j = i + 1

γ(i, j, v, w) = log e(xi|v) + log t(v, w) + log e(xj |w, xi)

λ`(i, j, v, w) = (0, 0, 0, 0)

λr(i, j, v, w) = (0, 0, 0, 0)

(vii) v = Pn, w = Cn, j > i + 1

γ1 = max
u

(
max

k=i+1,...,j−2

[
γ(i, k, v, v̄) + log t(v̄, u) + γ(k + 1, j, u, w)

])
(k∗, u∗) = arg max

(u,k),k=i+1,...,j−1

[
γ(i, k, v, v̄) + log t(v̄, u) + γ(k + 1, j, u, w)

]
γ2 = max

u1,u2

[
log e(xi|v) + log t(v, u1)

+γ(i + 1, j − 1, u1, u2) + log t(u2, w) + log e(xj |w, xi)
]

(u∗1, u
∗
2) = arg max

(u1,u2)

[
log e(xi|v) + log t(v, u1)

+γ(i + 1, j − 1, u1, u2) + log t(u2, w) + log e(xj |w, xi)
]

γ(i, j, v, w) = max(γ1, γ2)

If γ1 ≥ γ2,

λ`(i, j, v, w) = (i, k∗, v, w)

λr(i, j, v, w) = (k∗ + 1, j, u∗, w).
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Otherwise,

λ`(i, j, v, w) = (i + 1, j − 1, u∗1, u
∗
2)

λr(i, j, v, w) = (0, 0, 0, 0).

(viii) v ∈ S, w ∈ S

In this case, the variable γ(i, j, v, w) can be updated using any of the update formulae in (ii) or (iii).

(3) Termination

log P (x, s∗|Θ) = max
v,w

[
log t(1, v) + γ(1, L, v, w) + log t(w,M)

]
(v∗, w∗) = arg max

(v,w)

[
log t(1, v) + γ(1, L, v, w) + log t(w,M)

]
λ∗ = (1, L, v∗, w∗) �

As shown in the initialization step of the algorithm, we start by initializing the values of

γ(i, i, v, v) for i = 1, 2, . . . , L and v = 2, 3, . . . ,M − 1. Since we consider only state sequences where

all the pairwise-emission states and the context-sensitive states are paired, the value of γ(i, i, v, v)

is set to −∞ for v ∈ P or v ∈ C. For single-emission states v ∈ S, γ(i, i, v, v) is simply the logarithm

of the emission probability of the symbol xi at state v. Therefore, we set γ(i, i, v, v) = log e(xi|v) for

v ∈ S.

Now, let us consider the iteration step. As we can see in (i) and (iv), the variable γ(i, j, v, w)

is set to −∞, whenever the states Pn and Cn do not form pairs. For example, in case (i), if the

leftmost state si of the subpath si . . . sj is a context-sensitive state, it cannot be paired with the

corresponding pairwise-emission state, since there are no more states to the left of si. This is also

true when the rightmost state sj is a pairwise-emission state. In case (iv), the state sequence is

either sisi+1 or sisi+1si+2. As si = Pn and sj = Cm where n 6= m, the states si and sj cannot

form a pair. Moreover, since there are not enough states between si and sj such that both si and

sj can form pairs respectively, the probability of such a state sequence is zero. Case (ii) in the

iteration step deals with the case when si = v is a pairwise-emission state while sj = w is a single-

emission state. Since there can be no interaction between sj and any other state sk (i ≤ k ≤ j − 1),

all the pairwise-emission states and the corresponding context-sensitive states should form pairs

inside the subpath si . . . sj−1. As γ(i, j − 1, v, u) is the log-probability of the optimal path among
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Figure 2.8: Illustration of the iteration step of the algorithm.

all feasible paths si . . . sj−1, we can compute γ(i, j, v, w) by extending γ(i, j − 1, v, u) to the right

by one symbol. We first take the summation of γ(i, j − 1, v, u) and log t(u, w) and log e(xi|w), and

then compute the maximum value of this sum over all u, as described in (ii) of the iteration step.

Figure 2.8 (a) illustrates this case, where the shaded area indicates that all Pn and Cn states are

paired inside the subpath si . . . sj−1. Similar reasoning holds also for the case when si = v is a

single-emission state and sj = w is a context-sensitive state. In this case, γ(i, j, v, w) can be obtained

by extending γ(i + 1, j, u, w) as in (iii) of the iteration step. This is illustrated in Figure 2.8 (b).

Figure 2.8 (c) depicts the case when si = Pn and sj = Cm, where n 6= m. In this case, the

pairwise-emission state si and the context-sensitive state sj cannot form a pair. Therefore si = Pn

should pair with sk = v̄ = Cn for some k (i + 1 ≤ k ≤ j − 2). Similarly, sj = Cm should form a

pair with s` = w̄ = Pm for some ` (k + 1 ≤ ` ≤ j − 1). Consequently, all pairwise-emission states

and context-sensitive states inside si . . . sk and sk+1 . . . sj have to exist in pairs. Therefore, we can

obtain γ(i, j, v, w) by adding γ(i, k, v, v̄), the transition probability log t(v̄, u), and γ(k + 1, j, u, w),

and maximizing this sum over all u and k, as shown in (v).

Finally, let us focus on the case when si = Pn and sj = Cn. If j = i + 1, we can simply compute

γ(i, j, v, w) as in (vi) of the iteration step. As si pairs with sj , we consider the emission of the

symbols xi and xj at the same time. In this way, we know the emitted symbol xi, and therefore the

emission probabilities at the context-sensitive state sj = Cn can be decided correspondingly. When

j 6= i + 1, the situation is a little bit more complicated. In this case, we have the following two
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Figure 2.9: Illustration of the iteration step of the algorithm for the case when si = Pn and sj = Cn.

possibilities. One possibility is that si forms a pair with sj as shown in Figure 2.9 (a). The dotted

line that connects si and sj indicates the pairwise interaction between the two symbols. Since si and

sj form a pair, the pairwise-emission states and the context-sensitive states in si+1 . . . sj−1 should

necessarily exist in pairs. Therefore, the log-probability of the most probable path, where si = Pn

and sj = Cn form a pair can be computed as follows

max
u1,u2

[
log e(xi|v) + log t(v, u1) + γ(i + 1, j − 1, u1, u2)

+ log t(u2, w) + log e(xj |w, xi)
]
. (2.7)

Another possibility is that si = Pn pairs with sk = Cn for some k between i + 1 and j − 2. In this

case, sj = Cn has to pair with s` = Pn for some ` between k + 1 and j − 1. Therefore, all Pn and

Cn states inside si . . . sk and sk+1 . . . sj have to exists in pairs as illustrated in Figure 2.9 (b). The

log-probability of all feasible paths, where si = Pn does not pair with sj = Cn can be computed by

max
u

(
max

k=i+1,...,j−2

[
γ(i, k, v, v̄) + log t(v̄, u) + γ(k + 1, j, u, w)

])
. (2.8)

By comparing (2.7) and (2.8) as in (vii) of the iteration step, we can compute the log-probability of

the most probable path among all subpaths si . . . sj with si = Pn and sj = Cn.

Once we have completed the iteration step, the log-probability log P (x, s∗|Θ) of the most prob-

able path s∗ can be computed by comparing γ(1, L, v, w) for all v, w = 2, 3, . . . ,M−1. This is shown

in the termination step.
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2.4.3 Trace-back

Now that we have obtained the log-probability of the optimal path, we can trace back the path

s∗ that gave rise to this probability. The variables λ`(i, j, v, w) and λr(i, j, v, w) are used in the

trace-back procedure, and we also need a stack T . For notational convenience, let us define λt =

(i, j, v, w). The procedure can be described as the following.

(1) Initialization

si = 0 (i = 1, 2, . . . , L).

Push λ∗ onto T .

(2) Iteration

Pop λt = (i, j, v, w) from stack T .

If λt 6= (0, 0, 0, 0)

If si = 0 then si = v.

If sj = 0 then sj = w.

λ`(λt) onto T .

λr(λt) onto T .

If T is empty then go to termination step.

Otherwise, repeat the iteration step.

(3) Termination

The optimal path is s∗ = s1s2 . . . sL. �

2.4.4 Computational complexity

Let us examine the computational complexity of the alignment algorithm. The algorithm iterates

for all i = 1, . . . , L−1, j = i+1, . . . , L and v = 2, . . . ,M−1, w = 2, . . . ,M−1. The complexity of each

iteration step depends on the type of the states v and w. Table 2.2 summarizes the computational

complexity of each case of the iteration step of the alignment algorithm in Sec. 2.4.2. From this
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Case Complexity Number Overall
for one iteration of iterations complexity

i O(1) O(L2M1M) O(L2M1M)
ii O(M) O(L2M1M2) O(L2M1M2M)
iii O(M) O(L2M1M2) O(L2M1M2M)
iv O(1) O(LM2

1 ) O(LM2
1 )

v O(ML) O(L2M2
1 ) O(L3M2

1 M)
vi O(1) O(LM1) O(LM1)
vii O(ML) + O(M2) O(L2M1) O(L3M1M) + O(L2M1M

2)
viii O(M) O(L2M2

2 ) O(L2M2
2 M)

Table 2.2: Computational complexity of the csHMM alignment algorithm.

table, we can compute the total complexity of the alignment algorithm as follows

O(L3M2
1 M) + O(L2M1M

2) + O(L2M2
2 M). (2.9)

Although the complexity in (2.9) is higher than O(LM2) of the Viterbi algorithm, it is still a poly-

nomial in L and M , which is much more efficient than O(LML) of the exhaustive search approach.

The computational complexity of the alignment algorithm for general SCFGs in Chomsky normal

form is O(L3M3) [25, 60]. As we can see, the computational cost of both algorithms increases with

O(L3M3), in general.

2.5 Computing the probability of an observed sequence

Another important problem that arises in using HMMs for real-world applications is the follow-

ing. Given an observation sequence x = x1 . . . xL, how can we efficiently compute the probability

P (x|Θ) that this sequence was generated by the HMM with the set of parameters Θ? This is typi-

cally called the scoring problem for the following reason. Assume that we have K different models,

each with different set of parameters Θk(k = 1, 2, . . . ,K). Among these K HMMs, which one

should we choose such that the probability of observing x is maximized? In order to choose the

best model, we have to score each model based on the observation sequence x, where the probabil-

ity P (x|Θ) is the natural choice for the score. Since P (x|Θ) can be used for scoring different HMMs,

the problem of computing this probability is called the scoring problem.4

For regular HMMs, we can use the forward algorithm for solving this problem, whose complexity

4Given a number of symbol sequences, we can find the best match to the given model by computing the observation
probability of each sequence and comparing these probabilities. In this case, the probability is used for scoring the observed
sequences. This is another reason why the given problem is called a scoring problem.
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is the same as that of the Viterbi algorithm. However, due to the context-sensitive property of

csHMMs, this algorithm cannot be directly used for scoring csHMMs. Even though the forward

algorithm cannot be used for computing the probability P (x|Θ) in context-sensitive HMMs, we

can adopt a similar approach that was previously used in the optimal alignment algorithm. In

Section 2.5.1, we propose a dynamic programming algorithm for scoring csHMMs. In addition to

this, we also propose the outside algorithm for csHMM in Section 2.5.2. This algorithm can be used

together with the scoring algorithm for training context-sensitive HMMs, as will be elaborated in

Section 2.6.

2.5.1 Scoring of csHMM

The csHMM scoring algorithm can be viewed as a variant of the alignment algorithm, where the

max operators are replaced by sums. Conceptually, this algorithm is somewhat similar to the inside

algorithm [60] that is used for scoring SCFGs. As in the alignment algorithm, we start from the

inside of the observed symbol sequence and iteratively proceed to the outward direction. During

this process, the pairwise-emission state Pn and the context-sensitive state Cn that interact with

each other are considered at the same time.

In order to describe the algorithm, we use the same notations as in Sec. 2.4.2. In addition to

this, we define the inside variable α(i, j, v, w) as the probability of all subpaths si . . . sj with si = v

and sj = w. It is assumed that all pairwise-emission states Pn inside the path are paired with the

corresponding context-sensitive states Cn. Now, the scoring algorithm can be described as follows.

(1) Initialization

For i = 1, . . . , L, v = 2, . . . ,M − 1.

α(i, i, v, v) =

 e(xi|v) v ∈ S

0 otherwise

(2) Iteration

For i = 1, . . . , L− 1, j = i + 1, . . . , L and v = 2, . . . ,M − 1, w = 2, . . . ,M − 1.

(i) v ∈ C or w ∈ P

α(i, j, v, w) = 0
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(ii) v ∈ P, w ∈ S

α(i, j, v, w) =
∑

u

[
α(i, j − 1, v, u)t(u, w)e(xj |w)

]
(iii) v ∈ S, w ∈ C

α(i, j, v, w) =
∑

u

[
e(xi|v)t(v, u)α(i + 1, j, u, w)

]
(iv) v = Pn, w = Cm (n 6= m), j < i + 3

α(i, j, v, w) = 0

(v) v = Pn, w = Cm (n 6= m), j ≥ i + 3

α(i, j, v, w) =
∑

u

j−2∑
k=i+1

α(i, k, v, v̄)t(v̄, u)α(k + 1, j, u, w)

(vi) v = Pn, w = Cn, j = i + 1

α(i, j, v, w) = e(xi|v)t(v, w)e(xj |w, xi)

(vii) v = Pn, w = Cn, j > i + 1

α(i, j, v, w) =
∑

u

j−2∑
k=i+1

α(i, k, v, w)t(w, u)α(k + 1, j, u, w)

+
∑
u1

∑
u2

[
e(xi|v)t(v, u1)α(i + 1, j − 1, u1, u2)t(u2, w)e(xj |w, xi)

]

(viii) v ∈ S, w ∈ S

In this case, the variable α(i, j, v, w) can be updated using any of the update formulae in (ii) or (iii).

(3) Termination

P (x|Θ) =
∑

v

∑
w

t(1, v)α(1, L, v, w)t(w,M) �

At the end of the algorithm, we can obtain the probability P (x|Θ) that the given csHMM will

generate the observation sequence x. The computational complexity of this algorithm is the same

as the complexity of the alignment algorithm, which is shown in (2.9).
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Figure 2.10: Examples of state sequences (a) that are considered in computing β(i, j, v, w) and (b)
those that are not considered.

2.5.2 The outside algorithm

In a similar fashion, we can define the outside variable β(i, j, v, w) to be the probability of all subpaths

s1 . . . sisj . . . sL, where si = v and sj = w. In other words, β(i, j, v, w) contains the probability of

the entire sequence excluding xi+1 . . . xj−1. This variable is needed for parameter re-estimation of

csHMM, which will be elaborated in Section 2.6. As in Section 2.5.1, we assume that all pairwise-

emission states Pn in s1 . . . sisj . . . sL are paired with the corresponding context-sensitive states Cn

in a nested manner. Figure 2.10 illustrates the state sequences that are considered in computing the

variable β(i, j, v, w), and the ones that are not taken into account.

In the outside algorithm, we start computing β(i, j, v, w) from the outside of the sequence and

proceed to the inward direction. As in the scoring algorithm, whenever there is an interaction be-

tween two symbols, the emission of these symbols are considered together. The inside variable

α(i, j, v, w), which has been computed previously, is needed for computing the outside variable

β(i, j, v, w). Now, we can solve for β(i, j, v, w) as follows.
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(1) Initialization

For i = 1, . . . , L, v = 1, . . . ,M .

β(0, L + 1, v, w) =

 1 v = 1, w = M

0 otherwise

β(i, L + 1, v, w) =


∑

u t(1, u)α(1, i, u, v) w = M

0 otherwise

β(0, i, v, w) =


∑

u α(i, L, w, u)t(u, M) v = 1

0 otherwise

(2) Iteration

For i = 1, . . . , L− 1, j = i + 1, . . . , L and v = 1, . . . ,M,w = 1, . . . ,M .

(i) v = 1 or w = M

β(i, j, v, w) = 0

(ii) v ∈ P , w ∈ P

β(i, j, v, w) =
∑

u

L+1∑
k=j+2

β(i, k, v, u)α(j, k − 1, w, w̄)t(w̄, u)

(iii) v ∈ C, w ∈ C

β(i, j, v, w) =
∑

u

i−2∑
k=0

β(k, j, u, w)α(k + 1, i, v̄, v)t(u, v̄)

(iv) v ∈ C, w ∈ P

β(i, j, v, w) =
∑

u1,u2

i−2∑
k1=0

L+1∑
k2=j+2

β(k1, k2, u1, u2)α(k1 + 1, i, v̄, v)

×α(j, k2 − 1, w, w̄)t(u1, v̄)t(w̄, u2)

(v) v /∈ S , w ∈ S

β(i, j, v, w) =
∑

u

β(i, j + 1, v, u)t(w, u)e(xj |w)
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(vi) v ∈ S , w /∈ S

β(i, j, v, w) =
∑

u

β(i− 1, j, u, w)t(u, v)e(xi|v)

(vii) v = Pn, w = Cm(n 6= m)

β(i, j, v, w) = 0

(viii) v = Pn, w = Cn

β(i, j, v, w) =
∑

u1,u2

β(i− 1, j + 1, u1, u2)t(u1, v)e(xi|v)e(xj |w, xi)t(w, u2)

(ix) v ∈ S, w ∈ S

In this case, the variable α(i, j, v, w) can be updated using either (v) or (vi).

(3) Termination

P (x|Θ) =
∑
v,w

β(i, i + 1, v, w)t(v, w) for any i �

Let us first look at the initialization step. For the case of an empty string, i.e., when i = 0 and

j = L + 1, we set β(0, L + 1, 1,M) to unity. When i ≥ 1 and j = L + 1, all the pairwise interactions

have to occur inside the subpath s1 . . . si. Since α(1, i, u, v) is the probability of all subpaths for

x1x2 . . . xi with s1 = u and si = v, we can compute β(i, L + 1, v,M) by taking the product of the

transition probability from state 1 to state u and the inside variable α(1, i, u, v), and then adding

this product over all u. The case when i = 0 and j ≤ L can be treated similarly. These are shown in

the initialization step.

After the initialization of the outside variable β(i, j, v, w), we proceed into the iteration step.

Firstly, consider the case when v ∈ P and w ∈ P . Since all pairwise-emission states have to be

paired with the corresponding context-sensitive states in a nested manner, sj = w has to pair with

w̄ between j + 1 and k − 1 as shown in Figure 2.11 (a). As in Figure 2.8 and Figure 2.9, the shaded

regions indicate that all Pn and Cn states are paired inside each region. Similarly, si = v has to form

a pair with v̄ between k and L, and all the interactions in the subpath x1 . . . xixk . . . xL should be

paired in a nested manner. Since the probability of each subpath sj . . . sk−1 and s1 . . . sisk . . . sL is

contained in α(j, k − 1, w, w̄) and β(i, k, v, u) respectively, we can compute β(i, j, v, w) as described

in (ii) of the iteration step. Figure 2.11 (b) illustrates the case when v ∈ C and w ∈ C. In this case,
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Figure 2.11: Illustration of the iteration step of the outside algorithm. (a) Case (ii). (b) Case (iii). (c)
Case (iv).

β(i, j, v, w) can be updated in a similar manner as shown in (iii). Figure 2.11 (c) shows the case

when v ∈ C and w ∈ P . As shown in the figure, si = v has to pair with v̄ between k1 + 1 and i− 1

and sj = w also has to pair with w̄ between j + 1 and k2 − 1. All the other interactions have to be

confined within the state sequence s1 . . . sk1sk2sL. Therefore, β(i, j, v, w) can be computed as in (iv)

of the iteration step.

When w is a single-emission state, β(i, j, v, w) can be obtained simply by extending β(i, j +

1, v, u) by one sample, as depicted in Figure 2.12 (a). As shown in (v) of the iteration step, we

first compute the product of β(i, j + 1, v, u) and the transition probability t(w, u) and the emission

probability of the symbol xj at the state sj = w, and add the product over u. β(i, j, v, w) can be

computed likewise when v ∈ S, as described in (vi). If both v and w are single-emission states, we

may use either (v) or (vi) for updating the outside variable β(i, j, v, w). Finally, let us consider the

case when v = Pn and w = Cm. Since there can be no crossing interactions, si = Pn and sj = Cm

have to interact with each other, as illustrated in Figure 2.12 (c). The dotted line indicates the

pairwise interaction between xi and xj . For this reason, n has to be the same as m, and β(i, j, v, w)

is set to zero if n 6= m. For n = m, we can compute β(i, j, v, w) by extending β(i− 1, j + 1, u1, u2) as



52

(a)

(b)

v

(c)

i j j+1

w u

1 L

v

i-1 i j

u w

1 L

v

j j+1

w u2

Li-1 i1

u1

Figure 2.12: Illustration of the iteration step of the outside algorithm. (a) Case (v). (b) Case (vi). (c)
Case (viii).

shown in (viii) of the iteration step.

Once the iteration step is complete, the termination step of the outside algorithm also yields

the probability P (x|Θ) like the scoring algorithm in Section 2.5.1. The computational complexity of

the outside algorithm is usually not an issue, since it is mainly used for training the model offline.

2.6 Estimating the model parameters

In order to apply context-sensitive HMMs to real-world problems, it is crucial to adjust the model

parameters in an optimal way. Therefore, it is important to find a method for optimizing the set

of model parameters Θ, such that the probability P (x|Θ) of the given observation sequence x is

maximized. The process of finding these optimal parameters is typically called “training.” Al-

though it is infeasible to find an analytical solution for the optimal parameters, we can use the

EM (expectation-maximization) approach for finding parameters that achieve a local maximum of

P (x|Θ). In traditional HMMs, Baum-Welch algorithm [6] has been widely used for iterative update

of the parameters. Similarly, there exists an EM algorithm, called the inside-outside algorithm [60],

which can be used for optimizing the model parameters of a SCFG. Both algorithms compute an

estimate Θ̂ of the model parameters based on the given observation sequence and the current set of
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parameters Θ. The current set of model parameters Θ is then updated by this estimate Θ̂, and this

re-estimation procedure is repeated until a certain stopping criterion is satisfied.

A similar approach can also be used for iterative re-estimation of the model parameters in a

context-sensitive HMM. In order to describe the re-estimation algorithm, let us first define the

following variables.

τi(v, w) = The probability that si = v and si+1 = w given the model Θ

and the observed symbol string x

σi(v) = The probability that si = v given Θ and x

δv(i, j) = The probability that si = v and sj = v̄ have an interaction with

each other

Firstly, τi(v, w) can be computed as follows

τi(v, w) =
β(i, i + 1, v, w)t(v, w)

P (x|Θ)
. (2.10)

The probability σi(v) can be obtained simply by adding τi(v, w) over all w

σi(v) =
∑
w

τi(v, w). (2.11)

Finally, the probability δv(i, j) can be written as

δv(i, j) =

∑
u1,u2

α(i, j, v, v̄)β(i− 1, j + 1, u1, u2)t(u1, v)t(v̄, u2)
P (x|Θ)

. (2.12)

Based on these probabilities, we can compute the expected number of occurrences of a state v in

the path as well as the number of transitions from a state v to another state w. For example, if we

add τi(v, w) over all locations i, we get

L∑
i=0

τi(v, w) = Expected number of transitions from v to w. (2.13)

Similarly, if we add σi(v) over all i, we obtain the following

L∑
i=0

σi(v) = Expected number of transitions from v. (2.14)
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Now, we can re-estimate the model parameters of the csHMM using the following method. To

begin with, let us first compute an estimate of the transition probability from v to w, where v ∈ P

or v ∈ S. In this case, the estimate is given by

t̂(v, w) =
Expected number of transitions from v to w

Expected number of transitions from v

=
∑L

i=0 τi(v, w)∑L
i=0 σi(v)

. (2.15)

For v = Cn, the set of states to which v can make a transition differs depending on whether the

corresponding stack is empty or not. If w ∈ En, i.e., if w is a state to which v = Cn can make a

transition when the stack is empty,

t̂(v, w) =
Expected number of transitions from v = Cn to w ∈ En

Expected number of transitions from v = Cn to any state in En

=
∑L

i=0 τi(v, w)∑L
i=0

∑
u∈En

τi(v, u)
. (2.16)

If w ∈ Fn, then we can obtain the estimate by

t̂(v, w) =
Expected number of transitions from v = Cn to w ∈ Fn

Expected number of transitions from v = Cn to any state in Fn

=
∑L

i=0 τi(v, w)∑L
i=0

∑
u∈Fn

τi(v, u)
. (2.17)

Now, let us estimate the emission probability e(x|v) and e(x|v, xp). For v ∈ P or v ∈ S, the emission

probability does not depend on the context. Therefore, we can compute the estimate ê(x|v) of the

emission probability as follows

ê(x|v) =
Expected number of times that the symbol x was emitted at state v

Expected number of occurrences of state v

=

∑L
i=1|xi=x σi(v)∑L

i=1 σi(v)
. (2.18)

In contrast, if v is a context-sensitive state, the emission probability is dependent on the symbol

xp that was emitted at the corresponding pairwise-emission state v̄. Bearing this in mind, we can
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estimate ê(x|v, xp) as follows

ê(x|v, xp) =
Expected number of emissions of x at state v ∈ C given xp

Expected number of emissions at state v ∈ C given xp

=

∑L
j=2|xj=x

∑j−1
i=1|xi=xp

δv(i, j)∑L
j=2

∑j−1
i=1|xi=xp

δv(i, j)
. (2.19)

Although we derived these update formulae based on a single observation sequence x, they

can be easily extended for multiple training sequences. When we have more than one observation

sequence for training, we simply add all the expected counts over all sequences, and use these

numbers for estimating the model parameters.

Now that we have the estimates t̂(v, w), ê(x|v) and ê(x|v, xc), we can update the model param-

eters by these estimates

t(v, w) ←− t̂(v, w)

e(x|v) ←− ê(x|v)

e(x|v, xp) ←− ê(x|v, xp).

We repeat this re-estimation procedure until a certain stopping criterion is satisfied. As mentioned

earlier, the training of the model is performed offline, and therefore the computational cost of the

re-estimation algorithm is usually not a critical issue.

2.7 Experimental results

In order to test the proposed algorithms, let us consider the example in Figure 2.13. This csHMM

P1 P2Start EndS1 S2 C2 C1

S3

0.35

0.65

0.15 0.40 0.20
if stack 2 is
not empty

if stack 1 is
not empty

if stack 1
is empty

0.3
(stack 2 empty)

0.7
(stack 2 empty)

0.10

0.90

0.85 0.60 0.80

Figure 2.13: An example of a context-sensitive HMM.
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A C G U
P1 0.55 0.05 0.05 0.35
S1 0.15 0.35 0.35 0.15
P2 0.40 0.05 0.05 0.50
S2 0.05 0.60 0.30 0.05
S3 0.05 0.10 0.75 0.10

Table 2.3: Emission probabilities e(x|v).

generates sequences with long-range correlations between distant symbols. Such pairwise depen-

dencies are commonly found in the so-called iron response elements (IREs) in RNA sequences [54].

The model in Figure 2.13 has three single-emission states S1, S2 and S3, and two pairs of pairwise-

emission states and context-sensitive states. Each pair (P1, C2) and (P2, C2) is associated with a

separate stack. The transition probabilities are shown in Figure 2.13 along the edges. Each state

emits one of the four symbols A = {A,C, G,U}, where the emission probabilities are as shown

in Table 2.3. Every row in Table 2.3 contains the emission probabilities that each output symbol

will be emitted at the given state. For example, the first row in Table 2.3 shows the probabilities

that the symbols A, C, G, and U will be emitted at P1. Therefore, each row adds up to unity. The

emission probabilities at Cn are dependent on the symbol x that was emitted at the corresponding

state Pn. In this example, we set the emission probabilities of C1 and C2 such that they always emit

the “complementary” symbol of x (A↔ U and C ↔ G are complementary to each other).

Now, let us assume that the observed symbol string is x = AUCUACUAAU. What is the optimal

state sequence s∗ = s1s2 . . . s10 that maximizes the probability of observing x based on the specified

model? Using the alignment algorithm elaborated in Section 2.4, we obtained

s∗ = P1P1S1P2P2S2C2C2C1C1, (2.20)

where the log-probability of s∗ was log2 P (x, s∗|Θ) = −12.2165. In order to check the validity of this

result, we performed an exhaustive search over all possible paths. Since the length of the sequence

is L = 10, and as there are M − 2 = 7 emitting states, we have (M − 2)L = 710 = 282, 475, 249

possibilities. By comparing the log-probabilities of all paths, we obtained the same optimal path as

(2.20) with the same log-probability, which shows that the optimal alignment algorithm works as

expected.

Similarly, we computed the probability of the sequence x, given the model in Figure 2.13. Using
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A C G U
P1 0.5503 0.0617 0.0348 0.3533
S1 0.1258 0.4094 0.3481 0.1167
P2 0.4067 0.0628 0.0400 0.4905
S2 0.0477 0.5543 0.3528 0.0452
S3 0.0870 0.1364 0.7073 0.0693

Table 2.4: Estimated emission probabilities e(x|v) after 10 iterations.

the scoring algorithm in Section 2.5, we obtained

P (x|Θ) = 2.1146× 10−4. (2.21)

Again, we computed the probability using the brute-force approach by considering all possible

paths and adding the probability of each path. As a result, we obtained

P (x|Θ) =
∑
s

P (x, s|Θ) = 2.1146× 10−4,

which is the same as (2.21). As we can see from these results, the proposed scoring and alignment

algorithms are capable of finding the same solutions as the brute-force methods in a much more

efficient manner.

Now, let us consider the training of the csHMM. In order to test the parameter re-estimation

algorithm, we first generated 200 symbol sequences based on the model in Figure 2.13. Then, we

randomly initialized the transition and emission probabilities of the model, and ran the algorithm

in Section 2.6 to optimize the model parameters. Figure 2.14 shows the arithmetic mean and the

geometric mean of the sequence probabilities after each iteration. As we can see, the mean values

are nearly zero in the beginning, since the parameters have been randomly initialized. The model

parameters quickly converged to the final values after only a few iterations, and the converged

values were very close to the original values. Table 2.4 shows the estimated emission probabilities

after 10 iterations. By comparing it with Table 2.3, we can see that the estimated values are close to

the original ones.
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Figure 2.14: The arithmetic mean (top) and the geometric mean (bottom) after each iteration.

2.8 Discussions

As we have seen, context-sensitive HMMs can be effectively used for modeling pairwise interac-

tions between distant symbols in a symbol string. In this section, we consider possible extensions

of the basic model and discuss several interesting issues regarding the csHMM.

2.8.1 Emission of multiple symbols

In this chapter, we assumed that every state in the csHMM emits only one symbol at a time. Based

on this assumption, we considered only sequences with pairwise dependencies between distant

symbols that are arranged in a nested manner. However, we can easily extend the basic model

such that it can also describe non-pairwise dependencies, by allowing the states to emit two or more

symbols at a time. For example, we may modify the model in Figure 2.4 such that the context-

sensitive state C1 emits two symbols at a time. When we enter C1, the symbol x that is on the top

of the stack is popped out, and the emission probabilities of C1 are adjusted so that it emits xx. In
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abcccbbaa

Figure 2.15: An example sequence that can be generated by the modified model of Figure 2.4.

this way, the modified model will generate sequences of the form x1x2 . . . xNxNxN . . . x2x2x1x1.

An example of such a symbol sequence is shown in Figure 2.15. As shown in this figure, the

correlations still occur in a nested manner, but they are not limited to pairwise correlations any

more. Such modifications can be easily incorporated into the algorithms described in the previous

sections. For example, we may change the second term in the update formula (vii) in Section 2.5.1

to

∑
u1

∑
u2

[
e(xi . . . xi+δp

n−1|v)t(v, u1)α(i + δp
n, j − δc

n, u1, u2)

× t(u2, w)e(xj−δc
n+1 . . . xj |w, xi . . . xi+δp

n−1)
]
,

when the csHMM is modified such that the pairwise-emission state Pn emits δp
n symbols at a time

and the corresponding context-sensitive state Cn emits δc
n symbols at a time.

2.8.2 Modeling crossing correlations

Although we have mainly focused on context-sensitive HMMs that generate sequences with nested

correlations, the descriptive power of the proposed model is not restricted to such a correlation

structure. In fact, csHMM can be used to represent sequences with various correlations between

symbols, including crossing dependencies. Figure 2.16 shows an example of such a csHMM. Note

that the csHMM in Figure 2.16 still uses stacks, but the Pn and Cn states are arranged such that

the model gives rise to crossing interactions between symbols. Furthermore, we may also replace

the stack by a queue to represent other types of interactions. For example, we can describe the copy

language by using a csHMM with a queue. The copy language includes all sequences that consist of

the concatenation of two identical sequences. The model illustrated in Figure 2.17 can effectively

represent such a language.

When the given csHMM generates sequences with crossing interactions, the algorithms in Sec-

tion 2.4, Section 2.5, and Section 2.6 cannot be directly used. However, it is possible to extend the
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P1 C1

Stack 1

Start End

push pop

P2 C2

Stack 2

X4

X5

X6

push pop

X1

X2

X3

abcuvwcbawvu

(a)

(b)

Figure 2.16: (a) A csHMM that results in crossing interactions. (b) An example of a generated
symbol sequence. The lines indicate the correlations between symbols.

P1 C1

Queue 1

Start End

write readX1X2X3

abcdeabcde(b)

(a)

Figure 2.17: (a) A csHMM that represents a copy language. (b) An example of a generated symbol
sequence.
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Figure 2.18: An illustration of the basic concept of the algorithm that can be used when there
exist crossing interactions. The dotted lines show examples of correlations that can be taken into
consideration based on this setting.

proposed algorithms such that they can be used for csHMMs with crossing interactions as those

shown in Figure 2.16 and Figure 2.17. For example, for scoring such csHMMs, we may define the

variable α(i, j, k, `, u, v, w, x) as the probability of the subsequence xi . . . xjxk . . . x` (i ≤ j < k ≤ `),

where si = u, sj = v, sk = w, s` = x and all Pn states are paired with the corresponding Cn states

inside the subpath si . . . sjsk . . . s`. We can compute α(. . .) in a recursive manner by considering

crossing correlations between si and sk, sj and s`, and so forth.5 This is illustrated in Figure 2.18. In

this case, the computational complexity of the algorithm will be considerably higher than O(L3M3).

2.8.3 Comparison with other variants of HMM

As mentioned earlier, there exist many interesting variants of the traditional HMM, which extend

the basic model in various ways [35, 49, 50, 70, 79, 80, 136]. For example, the hidden semi-Markov

model (HSMM) allows us to associate an explicit state occupancy distribution with each state [35,

49, 50, 70, 136], instead of using the implicit geometric state occupancy distribution in the basic

HMM. However, the hidden states in the HSMM are not context sensitive, and the emission and

transition probabilities of the future states do not explicitly depend on the symbols that have been

emitted previously. Therefore, these models cannot explicitly model pairwise correlations between

distant symbols as the csHMM does.

There exists another interesting generalization of the HMM called the pairwise Markov chain

(PMC) [80]. The PMC assumes that the pair of the random variables (xi, si) is a Markov chain. This

model is mathematically more general than the HMM, which is a special case of the PMC, where

the hidden state si satisfies the Markov property. Since the pair (xi, si) is a Markov chain, the

probabilities associated with xi, si, and (xi, si) do not depend on the previous emissions, and the

5For example, we can implement a dynamic programming algorithm that can be used for aligning csHMMs with crossing
interactions, in a similar manner as the algorithm proposed in [85].
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PMC cannot be used for describing complex correlations such as the ones observed in palindromes.

This is also the case with the triplet Markov chain (TMC) [79], which is a further generalization of the

PMC, and there exists a fundamental difference between the csHMM and the PMC/TMC.

2.8.4 Comparison with other stochastic grammars

As HMMs are equivalent to stochastic regular grammars (SRG), the csHMM can be viewed as an ex-

tension of the SRG with specific context-sensitive production rules. Therefore, the SRG is a proper

subset of the proposed csHMM. The context-sensitive property of the csHMM enables the model to

describe explicit dependencies between distant symbols, which are beyond the descriptive power

of SRGs. As a result, the csHMM is capable of modeling sequences with nested correlations, which

are characteristic of languages that are described by SCFGs. This implies that the csHMM can be

used as a good alternative to SCFGs, in many practical situations. Moreover, the csHMM is also

capable of modeling crossing correlations as illustrated in the examples shown in Figure 2.16 and

Figure 2.17. This cannot be done using a SCFG, and we have to resort to higher-order grammars

such as the stochastic context-sensitive grammars (SCSG). However, there exist also languages that

can be described by a context-free grammar but not by a csHMM. One such example can be found

in Appendix A. This shows that even though there is a considerable overlap between csHMMs and

SCFGs, neither of them fully includes the other. Finally, the csHMM can be viewed as a stochastic

formal grammar that uses only non-contracting production rules.6 It is known that for any non-

contracting grammar there exists an equivalent context-sensitive grammar [51]. This implies that

the csHMM is a subset of the stochastic context-sensitive grammars (SCSG). The full relationship

between the csHMM and other stochastic grammars is illustrated in the Venn diagram shown in

Figure 2.19.

The capability of modeling various correlations (including nested and/or crossing interactions)

based on a single framework is a significant advantage of csHMMs over SRGs and SCFGs. Another

advantage of the proposed model is that it can explicitly describe the dependencies between distant

symbols. This allows us to model the symbol sequences of our interest in a simple and a direct way,

which can be an advantage (although arguable) compared to the SCFGs, unless a tree-structured

design is preferred for some reason. When modeling sequences with crossing interactions, this ca-

pability stands out more prominently. Although the SCSGs can represent sequences with crossing

6This means that none of the production rules decrease the length of the symbol string [51].
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Figure 2.19: The csHMM in the Chomsky hierarchy.

interactions, they cannot directly generate the crossing interactions in the symbol sequence. For

example, when modeling the copy language, the crossing dependencies between symbol pairs can-

not be directly generated [25]. Instead, the grammar generates the two related non-terminals in a

non-crossing manner, and applies the context-sensitive re-ordering rules later on, in order to obtain

the final sequence that has crossing correlations. For this reason, context-sensitive grammars can

be quite complex even for simple languages.

2.9 Conclusion

In this chapter, we have introduced the idea of context-sensitive HMMs. They can be viewed as an

extension of the traditional HMM, where some of the states are equipped with auxiliary memory.

Symbols that are emitted at certain states are stored in this memory, and the stored data serves

as the context of the system, which affects the emission probabilities and the transition probabili-

ties of the model. In this way, we can represent long-range interactions between distant symbols,

which cannot be done using traditional HMMs. The csHMM is a very efficient tool for model-

ing sequences with complex dependencies, and it can be used as a good alternative to stochastic

grammars such as the SCFG and the SCSG. We also proposed efficient polynomial-time algorithms

for finding the optimal state sequence and for computing the probability of an observed symbol

string. These algorithms can be used for solving the alignment problem and the scoring problem

of context-sensitive HMMs with nested interactions. Furthermore, a parameter re-estimation algo-

rithm has been introduced, which can be used for training a csHMM based on a number of training

sequences. The proposed model has an interesting application in Bioinformatics, especially in RNA

sequence analysis [123, 125, 126, 129, 130, 132]. This will be discussed in Chapter 3.
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Chapter 3

RNA Sequence Analysis Using
Context-Sensitive HMMs

The central dogma of molecular biology states that the genetic information flows from DNA to RNA

to protein. This dogma has exerted a substantial influence on our understanding of the genetic

activities in the cells. Under this influence, the prevailing assumption until the recent past was that

genes are basically repositories for protein coding information, and proteins are responsible for

most of the important biological functions in all cells. In the meanwhile, the importance of RNAs

has remained rather obscure, and the RNA was mainly viewed as a passive intermediary that

bridges the gap between DNA and protein. Except for classic examples such as tRNAs (transfer

RNAs) and rRNAs (ribosomal RNAs), functional noncoding RNAs were considered to be rare.

However, this view has experienced a dramatic change during the last decade, as systematic

screening of various genomes identified myriads of noncoding RNAs (ncRNAs), which are RNA

molecules that function without being translated into proteins [30, 44]. It has been realized that

many ncRNAs play important roles in various biological processes. As RNAs can interact with

other RNAs and DNAs in a sequence-specific manner, they are especially useful in tasks that re-

quire highly specific nucleotide recognition [30]. Good examples are the miRNAs (microRNAs)

that regulate gene expression by targeting mRNAs (messenger RNAs) [5, 52] , and the siRNAs

(small interfering RNAs) that take part in the RNAi (RNA interference) pathways for gene silenc-

ing [39, 68, 69]. Recent developments show that ncRNAs are extensively involved in many gene

regulatory mechanisms [34, 46].

The roles of ncRNAs known to this day are truly diverse. These include transcription and

translation control, chromosome replication, RNA processing and modification, and protein degra-

dation and translocation [44], just to name a few. These days, it is even claimed that ncRNAs dom-
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inate the genomic output of the higher organisms such as mammals, and it is being suggested that

the greater portion of their genome (which does not encode proteins) is dedicated to the control

and regulation of cell development [67].

As more and more evidence piles up, greater attention is paid to ncRNAs, which have been

neglected for a long time.1 Researchers began to realize that the vast majority of the genome that

was regarded as “junk,” mainly because it was not well understood, may indeed hold the key for

the best kept secrets in life, such as the mechanism of alternative splicing, the control of epigenetic

variations [67]. The complete range and extent of the role of ncRNAs are not so obvious at this

point, but it is certain that a comprehensive understanding of cellular processes is not possible

without understanding the functions of ncRNAs [119].

Although several systematic searches for ncRNAs in recent years have unveiled a large number

of novel ncRNAs, it is believed that there are still numerous ncRNAs that are waiting to be discov-

ered [30, 44, 67]. Typical estimates of the number of ncRNAs in the human genome are in the order

of tens of thousands [67, 120], but the present genome annotation on ncRNAs is too incomplete

to derive a more accurate estimate. As a result of several genome sequencing projects, including

the human genome project that has been completed very recently [105], a huge amount of genomic

data is publicly available these days. Given the vast amount of genomic data, it is practically im-

possible to identify all ncRNAs solely by experimental means. In order to expedite the annotation

process, we desperately need the help of computational methods that can be used for identifying

novel ncRNAs.

In this chapter, we describe how the context-sensitive HMMs, which were proposed in Chap-

ter 2, can be used for the computational identification and analysis of ncRNAs. We focus on how to

build probabilistic representations of RNA families based on csHMMs, and show how they can be

used to identify new ncRNA genes, which are portions of DNA that give rise to ncRNA transcripts.

The main emphasis of the discussion lies on the method that can be used for finding new members

(or homologues) of known ncRNA families.

The content of this chapter is mainly drawn from [130, 126, 132] and portions of it have been

presented in [123, 125].

1In 2006, the Nobel prize in physiology or medicine was awarded to A. Z. Fire and C. C. Mello for their discovery of
“RNA interference (RNAi)–the gene silencing mechanism by double-stranded RNA (dsRNA)” [39].
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3.1 Outline

This chapter is organized as follows. In Section 3.2, we show that RNA secondary structures play

important roles in carrying-out the functions of ncRNAs, hence many ncRNAs have well conserved

secondary structures.

In Section 3.3, we consider the problem of searching for homologous RNAs. We give an overview

of sequence-based homology search methods in Section 3.3.1. In Section 3.3.2, we show that in order

to build an RNA homology search tool with a good prediction accuracy, we need more powerful

statistical models that can reasonably combine the contributions from the structural similarity as

well as the sequence similarity.

In Section 3.4, we show how the context-sensitive HMMs (csHMMs) introduced in Chapter 2

can be utilized in an RNA homology search. In Section 3.4.1, we first give several examples of

csHMMs that represent various RNA secondary structures. A database search algorithm that can

be used with csHMMs is introduced in Section 3.4.2. Experimental results are given in Section 3.4.3,

which demonstrate the effectiveness of the csHMM-based search method.

RNAs with alternative secondary structures are considered in Section 3.5. We show in Sec-

tion 3.5.1, how we can use csHMMs to represent the base correlations in RNAs with alternative

folding. In Section 3.5.2, we show experimental results which indicate that the proposed approach

can effectively discriminate between the RNAs that can alternatively fold and the RNAs that can-

not, at a low computational cost.

In Section 3.6, we briefly mention the problem of identifying novel ncRNAs, and we conclude

the chapter in Section 3.7.

3.2 RNA secondary structure

As we have shown in Section 1.5, functional RNAs typically fold intramolecularly to form char-

acteristic RNA secondary structures. RNA secondary structures are known to play crucial roles in

carrying out the functions of many ncRNAs. An intriguing example can be observed in riboswitches,

which are regulatory RNA elements that have been recently found [65, 108]. Riboswitches are

highly structured RNA domains that are found in the noncoding regions of various mRNAs. They

make structural changes upon binding specific metabolites, thereby regulating the expression of the

corresponding genes. Two common mechanisms of riboswitches in bacteria are illustrated in Fig-
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Figure 3.1: Two common mechanisms of riboswitches in bacteria. (a) Translation control. In the pres-
ence of the effector metabolite, the riboswitch changes its structure and sequesters the ribosome-
binding site (RBS). This inhibits the translation initiation, thereby down-regulating the gene. (b)
Transcription control. Upon binding the metabolite, the riboswitch forms a terminator stem, which
prevents the generation of the full-size mRNA.
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ure 3.1. The first mechanism works by translation control as shown in Figure 3.1 (a). In the presence

of the effector metabolite, the riboswitch changes its conformation by binding it. This structural

change sequesters the ribosome-binding site (RBS), which prevents the ribosome from binding to the

mRNA. The second mechanism is based on transcription control. In this case, the riboswitch forms

a terminator stem upon binding the metabolite. This causes a premature termination of transcrip-

tion, preventing the synthesis of the full-size mRNA. Riboswitches play pivotal roles in regulating

several metabolic pathways, and they are prevalent in bacteria [65, 108]. Recent results show that

similar metabolite-binding RNA domains are also present in eukaryotes (organisms with a cell nu-

cleus) such as plants and fungi, although their gene-control mechanisms may be different from

those in bacteria [102].

As we can see in this example, the structure of an RNA molecule is closely related to its bio-

logical function. As a result, many ncRNAs conserve their secondary structures as well as their

primary sequences. This property can be utilized when searching for ncRNA genes to improve the

prediction performance. In the following section, we consider the problem of performing an RNA

homology search in more detail.

3.3 Searching for homologous RNAs

Similar to protein-coding genes, ncRNA sequences can also be grouped into families of related

sequences [47]. Sequences that belong to the same family perform similar functions (or functions

that are related in certain ways) in the cellular mechanism. Typically, individual sequences in the

family share one or more common statistical features with other sequences that belong to the same

family. Such sequences are said to be homologous to each other, hence called homologues. Given a

new sequence, we can take advantage of these family-specific characteristics to determine whether

it belongs to a specific sequence family. Its membership in a certain family can often be used to

infer the function of the sequence.

In fact, many computational methods for biological sequence analysis make use of the above

idea in one way or another [25], especially those used for gene identification. Suppose we have a

set of related sequences that belong to the same family (e.g., tRNAs). Based on these sequences,

we can extract the common features of the sequence family, and use them to search the database

in order to find new sequences (e.g., novel tRNAs) that share these features. Such computational

screening may identify new members of a known sequence family, in a fast and efficient manner.
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Figure 3.2: An example of a profile-HMM. It repetitively uses a set of match, insert, and delete
states to model each position in a multiple sequence alignment.

This approach is typically called homology search (or similarity search).

3.3.1 Sequence-based homology search

Most of the search methods that have been used for finding homologous protein-coding genes have

been based on sequence similarity. Popular search algorithms such as BLAST (Basic Local Alignment

Search Tool) [2] and FASTA [75] use known members in a sequence family to look for high-scoring

local alignments in the target database. Another approach picks up common “patterns” or “mo-

tifs” in a set of related sequences and searches the database for regions that match these patterns.

One example of such an approach is the PROSITE database [4], which has compiled biologically

significant patterns of protein families. A more general approach would be to build a probabilistic

representation of an entire sequence family and employ it in the search.

One of the most popular models for constructing such a representation is the profile-HMM (pro-

file hidden Markov model) [25, 29], which is an HMM with a linear structure that repetitively uses a

set of three states (match, insert, delete). They can effectively describe distinct symbol probabilities at

different locations and easily deal with additional insertions and deletions at any location. An ex-

ample of a profile-HMM is shown in Figure 3.2. As profile-HMMs can effectively describe distinct

symbol probabilities at different locations and easily deal with additional insertions and deletions

at any location, they have been widely used in several applications such as protein-coding gene

identification [58] and sequence alignment [25].
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Figure 3.3: Ungapped alignment between two RNA sequences. (a) An RNA with a stem-loop
structure is used as the query sequence. (b) A structurally homologous RNA that has also a stem-
loop structure. (c) A structurally nonhomologous RNA that does not fold to a stem-loop structure.

3.3.2 Statistical model for RNA sequences

The sequence-based methods described in the previous section (BLAST, FASTA, PROSITE, profile-

HMM) are very useful for identifying homologous DNAs and proteins, but they often behave

poorly when applied to RNA homology search. The main reason is the following. As mentioned

earlier, many functional ncRNAs preserve their secondary structures as well as their primary se-

quences [25]. Sometimes, these base paired structures are still preserved among related RNAs, even

when their similarity in the primary sequence level can be hardly recognized. Therefore, when

evaluating the similarity between two RNA molecules, it is important to take both their primary

sequences and their secondary structures into consideration.

As observed by Eddy in [31], this combined scoring scheme is much more effective in comparing

(and also aligning) RNA sequences, and it can greatly enhance the discriminative power of an

RNA homology search. This can be clearly seen from the example illustrated in Figure 3.3. In

this example, we have a query sequence that has a stem-loop structure. Let us perform ungapped

pairwise alignments between the query sequence and each of the RNAs shown in Figure 3.3 (b)

and Figure 3.3 (c). Both RNA-1 and RNA-2 differ from the query sequence RNA-0 at four locations.
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As the four mismatches (or “base substitutions”) in both alignments are identical, the primary

sequence alignment score for RNA-1 and RNA-0 will be exactly the same as the alignment score for

RNA-2 and RNA-0. However, we can see in Figure 3.3 (b) and Figure 3.3 (c) that RNA-1 preserves

the secondary structure of the original query sequence, while RNA-2 does not. Apparently, RNA-1

is a better match to the query RNA-0, and therefore we should give it a higher score than RNA-2.

As this example shows, when computing a similarity measure between RNAs, it is important to

consider their resemblance in the (secondary) structural level as well as in the (primary) sequence

level. Now, the question is how to combine the contributions from the sequence similarity and

the structural similarity in a reasonable way. To answer this question, let us examine the effect

of a conserved RNA secondary structure on its primary sequence. RNA sequences often undergo

compensatory mutations in order to preserve their secondary structures. For a given base pair in

an RNA molecule, if the base in one side is changed to another base, the base in the other side

is also changed such that the base pair is still maintained. As a result, we can observe strong

correlation between the two base positions in homologous RNAs as illustrated in Figure 3.4. From

this point of view, we can understand base pairing in an RNA secondary structure in terms of

pairwise correlations between distant bases in the primary sequence of the RNA. This shows that

in order to model RNAs with conserved secondary structures, we need a statistical model which

can describe such pairwise correlations. However, most statistical models that have been used for

analyzing DNAs and proteins (including profile-HMMs) do not have the descriptive power to deal

with such complex base correlations.
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RNA sequences with secondary structures can be viewed as a kind of biological palindromes.

Palindromes are symmetric sequences that read the same forwards and backwards, such as “I pre-

fer pi,” “step on no pets,” and so on. Similarly, the base pairing in an RNA secondary structure

gives rise to symmetric (or reverse complementary, to be more precise) regions in its primary se-

quence that are analogous to palindromes. As we have seen in Chapter 2, HMMs can be viewed

as stochastic regular grammars according to the Chomsky hierarchy of transformational grammars [16].

Regular grammars are the simplest among the four classes in the hierarchy, and it is known that

they are inherently incapable of describing a palindromic language.2 As a result, regular grammars

are not suitable for constructing RNA profiles.

In order to represent complex correlations that are frequently observed in ncRNA sequences, we

need more complex models with larger descriptive power than the regular grammars. One model

that has been especially popular for representing RNA families is the covariance model (CM) [25, 26].

CMs can be viewed as profile-SCFGs (profile stochastic context-free grammars), which are capable of

handling nested correlations.

Another possibility is to use the context-sensitive HMMs. In fact, csHMMs can effectively de-

scribe the long-range correlations between distant bases, hence they provide a simple and intuitive

way for modeling RNAs with conserved secondary structures.

In the following section, we show how the csHMMs can be used for representing RNA sec-

ondary structures and finding homologous RNAs.

3.4 Database search using csHMMs

In order to perform an RNA homology search, we first have to construct a context-sensitive HMM

that closely reflects the characteristics of the RNA of interest. The constructed model can then be

used for finding similar regions in a sequence database.

3.4.1 Modeling RNA secondary structures

Given a consensus secondary structure, designing a csHMM that generates sequences with the

specified structure is relatively easy. In order to demonstrate this, let us consider several examples

2As we have mentioned in Chapter 2, it is of course possible that a regular grammar generates a palindrome as part of
its language, but the point is that it is not capable of generating only such palindromes. Therefore, regular grammars cannot
effectively discriminate palindromic sequences from nonpalindromic ones.
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of RNA secondary structures. Note that the csHMM that represents a given structure is not unique.

The final implementation of the model depends on the specific application.

Figure 3.5 (a) illustrates a typical stem-loop (hairpin) structure, which is the simplest of all RNA

secondary structures. RNA sequences with a conserved stem-loop structure can be represented

by a simple context-senstive HMM that is shown in Figure 3.5 (b). In this model, the pairwise-

emission state P1 and the context-sensitive state C1 are associated with a stack, and they together

generate the stem part of the structure. When we enter C1, it retrieves a symbol x from the stack,

which was previously emitted by P1. Note that x represents a base in the RNA sequence, which

takes one of the four values A, C, G, and U. After retrieving x, the context-sensitive state C1 emits

the complimentary base of x. In this way, the state-pair (P1, C1) can generate the stem. The single-

emission state S1 is used for generating the loop, since the bases in the loop are not correlated to

other bases. If we need to model a bulge, which is a nonpaired base inside a stem, it can be done by

adding more states to the HMM as shown in Figure 3.5 (c).

As demonstrated in this example, whenever there exist a pairwise interaction between two

bases, we can represent it using a pair of a pairwise-emission state and a context-sensitive state.

For unpaired bases that form a loop, a bulge, and so forth, we can use single-emission states for

representing them.

Based on this principle, it is not difficult to construct context-sensitive HMMs that can repre-

sent RNA sequences with more complex secondary structures. For example, Figure 3.6 (a) depicts

the consensus secondary structure of the so-called iron response element (IRE). The iron response ele-

ments are found in the 5’ or 3’ UTRs (untranslated regions) of various messenger RNAs. It is known

that the iron regulatory proteins (IRPs) bind to the IREs in order to control the iron metabolism inside

the cell [54]. The IRE has a well conserved stem-loop with an interior loop as shown in Figure 3.6 (a).

These RNAs can be modeled using the csHMM in Figure 3.6 (b).

Another example of an RNA secondary structure is illustrated in Figure 3.7 (a), which shows

the typical structure of a tRNA (transfer RNA). The tRNA is a short RNA molecule that usually

consists of 74–93 nucleotides. It attaches a specific amino acid to the protein chain that is being

synthesized, during the translation procedure of mRNA into protein [11]. The tRNAs have a highly

conserved secondary structure with three stem-loops, which is called the cloverleaf structure due to

its shape. As shown in Figure 3.7 (b), the cloverleaf structure can be modeled using four pairs of

(Pn, Cn), where a separate stack is dedicated to each state-pair. Note the similarity between the
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Figure 3.5: (a) A typical stem-loop. The nodes represent the bases in the RNA, and the dotted
lines indicate the interactions between bases that form complementary base pairs. (b) An example
of a csHMM that generates a sequence with a stem-loop structure. (c) A csHMM that models a
stem-loop with bulges.
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Figure 3.6: (a) A typical structure of an iron response element. (b) An example of a csHMM that
generates sequences with the given secondary structure.
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Figure 3.7: (a) A typical tRNA cloverleaf structure. (b) An example of a csHMM that can generate
sequences with the cloverleaf structure.

original consensus RNA structure and the constructed context-sensitive HMM. As every state in

the HMM corresponds to one or more base locations in the RNA sequence, the design procedure

of context-sensitive HMMs is very simple and intuitive.

3.4.2 Database search algorithm

Once we have constructed a good model that closely represents the consensus sequence of a ncRNA

family, we can use it to search the database to find similar regions that match the given csHMM

reasonably well. In this section, we propose an efficient database search algorithm that can be used

with csHMMs. For simplicity, we consider the case when we are looking for RNAs with a single

stem-loop. The algorithm presented in this section is a variant of the simplified optimal alignment

algorithm described in Appendix B. For finding RNAs with multiple stem-loops (e.g., tRNAs), we

can implement a search algorithm based on the alignment algorithm described in Section 2.4, in a

similar manner.

Let us first define the variables that are needed to describe the algorithm. We use similar nota-

tions as in Chapter 2. Let x = x1x2...xL be the observed symbol sequence, where L is the length



76

of the observation. The underlying state sequence (path) is denoted as y = y1y2 . . . yL. We assume

that there are M states in the context-sensitive HMM. M1 is the number of state-pairs (Pn, Cn) and

M2 is defined as the number of single-emission states, hence we have M = 2M1 + M2 + 2 includ-

ing the “start” and “end” states. It is assumed that all pairwise interactions between Pn and Cn

occur in a nested manner (with a single nested structure) and do not cross each other. For nota-

tional convenience, we also define the following sets P = {P1, . . . , PM1}, C = {C1, . . . , CM1}, and

S = {S1, . . . , SM2}. We denote the transition probability from state v to w as t(v, w). The emission

probability of a symbol x at a single-emission state v ∈ S or a pairwise-emission state v ∈ P is

defined as e(x|v). Since the emission probabilities at a context-sensitive state v ∈ C depends on the

symbol xp that was previously emitted at the corresponding pairwise-emission state, we denote

the emission probability at v ∈ C as e(x|v, xp).

In the simplified alignment algorithm [127], the variable γ(i, j, v, w) is defined as the log-probability

of the optimal path among all sub-paths yi · · · yj with yi = v and yj = w, where it is assumed that

all pairwise-emission states Pn are paired with the corresponding context-sensitive states Cn inside

the sub-path. In many cases, we can limit the maximum length of the ncRNA gene, which reduces

the overall computational complexity and makes the search algorithm practically executable. Let

us define d = j − i + 1 to be the length of the sub-sequence, where we restrict it to be d ≤ D for

some D. Based on this setting, we may define either γ(i, d, v, w) or γ(j, d, v, w), in a similar man-

ner. Using one of these variables instead of γ(i, j, v, w) can minimize the memory requirement as

well. Depending on which variable we use, there exist two different schemes for computing these

variables iteratively. This is illustrated in Figure 3.8.

In the following algorithm, we use the variable γ(j, d, v, w), hence adopting the update scheme

in Figure 3.8 (b), which is similar to the scheme elaborated in [25]. Now, the database search algo-

rithm can be defined as follows.

Database search algorithm

For j = 1, . . . , L, d = 1, . . . ,min(D, j) and v = 1, . . . ,M,w = 1, . . . ,M .

(i) d = 1 (v = w)

γ(j, d, v, v) =

 log e(xi|v) v /∈ P, C

−∞ otherwise
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Figure 3.8: Two different update schemes. (a) When using the variable γ(i, d, v, w). (b) When using
the variable γ(j, d, v, w).

(ii) d = 1 (v 6= w)

γ(j, d, v, w) = −∞

(iii) v = Pn, w = Cm(n 6= m), or v ∈ C, or w ∈ P

γ(j, d, v, w) = −∞

(iv) v = Pn, w = Cn, d = 2

γ(j, d, v, w) = log e(xj−1|v) + log t(v, w) + log e(xj |w, xj−1)

(v) v = Pn, w = Cn, d > 2

γ(j, d, v, w) = max
u1,u2

[
log e(xj−d+1|v) + log t(v, u1) + γ(j − 1, d− 2, u1, u2)

+ log t(u2, w) + log e(xj |w, xj−d+1)
]
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Figure 3.9: Illustration of step (v).

(vi) v ∈ P, w /∈ C

γ(j, d, v, w) = max
u

[
γ(j − 1, d− 1, v, u) + log t(u, w) + log e(xj |w)

]
(vii) v /∈ P, w ∈ C

γ(j, d, v, w) = max
u

[
log e(xj−d+1|v) + log t(v, u) + γ(j, d− 1, u, w)

]
(viii) v /∈ P, w /∈ C

In this case, γ(j, d, v, w) can be updated using either the update formula (vi) or (vii). �

As we can see from above, the log-probability γ(j, d, v, w) is computed in an iterative manner,

starting from a shorter sequence and extending it progressively. Whenever there exist pairwise

correlations between symbols, the emission of these symbols are considered at the same time. As

mentioned earlier, when computing γ(j, d, v, w), we consider only those paths, where all the Pn

states are paired with the corresponding Cn states inside the path. Therefore, the log-probability

γ(j, d, v, w) is set to −∞, whenever Pn and Cn do not form pairs. For example, in case (iii), when

the leftmost state is a context-sensitive state yi (= yj−d+1) ∈ C, it cannot be paired with the corre-

sponding pairwise-emission state, since there are no more states to the left of yi. This is also true
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Figure 3.10: Illustration of step (vi).

when the rightmost state is a pairwise-emission state yj ∈ P .

Now, let us consider the case when v = Pn and w = Cn. When d = 2, we can simply compute

γ(j, d, v, w) as in (iv), by considering the emission of xi(= xj−d+1) and xj together. When d > 2, we

can compute γ(j, d, v, w) as follows. Since yi has to form a pair with yj as shown in Figure 3.9 (a) by

the dotted line, the pairwise-emission states and the corresponding context-sensitive states inside

yi+1 . . . yj−1 have to exist in pairs. This is indicated by the shaded region in Figure 3.9 (a). As the

log-probability of the optimal path for yi+1 . . . yj−1 is already stored in γ(j−1, d−2, u1, u2), we can

compute γ(j, d, v, w) by extending γ(j − 1, d− 2, u1, u2) as shown in (v).

Figure 3.10 illustrates the case when v ∈ P and w /∈ C. Since there can be no interaction between

yj and any other state yk (i ≤ k ≤ j − 1), all the pairwise-emission states and the context-sensitive

states inside yi . . . yj−1 should exist in pairs. Therefore γ(j, d, v, w) can be computed by extending

γ(j − 1, d− 1, v, u) to the right by one symbol, as described in step (vi) of the algorithm. Similarly,

when v /∈ P and w ∈ C as in Figure 3.11, we can compute γ(j, d, v, w) based on γ(j, d − 1, u, w) as

described in (vii).

Careful examination of the search algorithm shows that its computational complexity is

O(LDM1M
2) + O(LDM2

2 M), (3.1)

which grows linearly with the length L of the entire sequence, or the size of the database. If we do

not limit the maximum length to be D, the complexity will be O(L2M1M
2) + O(L2M2

2 M), which

is not a linear function of L any more.
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Figure 3.11: Illustration of step (vii).

3.4.3 Predicting iron response elements

In order to demonstrate the effectiveness of the proposed search algorithm, we constructed a

csHMM that can be used for finding the regions in a given DNA sequence, which are transcribed

into iron response elements (IREs). IREs are found in the 5’ or 3’ UTRs of various messenger RNAs.

It is known that the iron regulatory proteins (IRPs) bind to the IREs in order to control the iron

metabolism within cells [54]. The IRE has a well conserved hairpin structure that has either an

interior loop or a bulge. The consensus secondary structures of the IREs are shown in Figure 3.12.

As shown in this figure, bases at certain positions are especially well conserved in the IREs. For

example, the IREs have a loop that consists of six bases, which has the pattern “CAGWGH.” In this

pattern, W can be either A or U (T), and H can be either A, C or U (T). There can be noncanonical

base pairs in the stem such as the GU/UG pairs, and the lower stem can be of variable length.

We used the context-sensitive HMM in Figure 3.13 to represent the IREs with conserved sec-

ondary structures. The lower stem is modeled using the pairwise-emission state P1 and the context-

sensitive state C1. This state-pair is associated with a stack as shown in Figure 3.13. Similarly, the

upper stem is modeled by the state-pair (P2, C2), which uses a separate stack. Note that (P1, C1)

and (P2, C2) are capable of representing stems of variable lengths. The loop and the bulge are mod-

eled using single-emission states, since the bases in these parts are not correlated to other bases.

Each single-emission state Sn uses a different set of emission probabilities, in order to specify which

base is conserved at each location.
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Figure 3.12: The consensus secondary structures of the iron response elements (IREs).

Based on this context-sensitive HMM, we used the database search algorithm elaborated in Sec-

tion 3.4.2 to find IREs in several DNA sequences. We chose four DNA sequences in the human

genome that are known to contain functional IREs. These sequences have been previously used for

testing the performance of PatSearch, a pattern matching program that can find functional elements

with various patterns in DNA or protein sequences [77]. We ran the search algorithm for finding

high-scoring regions in the database. When there were overlaps between several high-scoring re-

gions, only the one with the highest score was stored as a match. The search results are summarized

in Table 3.1. The first column in in Table 3.1 shows the EMBL accession number and the second col-

umn shows the UTRdb ID of each DNA sequence [78]. The search results of the csHMM-based

IRE finder are shown in the third column. The fourth column contains the prediction results of the

PatSearch program. As summarized in Table 3.1, the csHMM-based IRE finder was able to find all

the IREs in the given DNA sequences, and there were no false predictions. Interestingly enough,

the csHMM-based approach was able to identify the start position and the end position of the IREs

more precisely than the PatSearch. For example, in the second DNA sequence (accession number:

Y09188), the proposed method predicted that there exists an IRE between 6 and 31, which matches

the data in [78] and the Rfam database [47] exactly. Similarly, in the third sequence (accession num-
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Figure 3.13: A csHMM that represents the IREs.

EMBL AC UTRdb ID csHMM PatSearch
X60364 5HSA001988 13–35 13–35
Y09188 5HSA003829 6–31 8–30
D28463 5HSA003858 32–59 35–57
J04755 5HSA013930 951–978 34–56

Table 3.1: The database search result for finding IREs.

ber: D28463), the csHMM-based method predicted the location of the IRE to be between 32 and 59,

which matches the data in the Rfam database. In the fourth sequence (accession number: J04755),

the predicted location of the csHMM-based method was identical to the location stored in the Rfam

database. In [77], it is reported that the PatSearch software has predicted the location of the IRE to

be between 34 and 56, which is completely different from the true location. Since the sequence

between 34 and 56 does not match the typical pattern of the IREs, the wrong position reported in

[77] is probably a simple typo.
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3.5 Identification of RNAs with alternative folding

Recent research on gene regulation has revealed that many ncRNAs are actively involved in con-

trolling various genetic networks [46]. These regulatory RNAs include microRNAs (miRNAs) [5],

riboregulators [34], and riboswitches [108].

As we have seen in the previous sections, many functional ncRNAs have well conserved sec-

ondary structures, as these structures are crucial in carrying out their biological functions. Typically,

an RNA sequence adopts a single “biologically correct” secondary structure. However, there exist

also examples of RNAs that can choose from alternative structures, thereby changing their charac-

teristics. In fact, many regulatory RNAs can make conformational changes depending on one or

more environmental cues to regulate the expression level of certain genes [53, 108]. Riboswitches,

which were considered in Section 3.2 (see Figure 3.1), are good examples of such RNAs [108]. They

are highly structured RNAs that are usually found in the 5’ untranslated regions (UTRs) of cer-

tain mRNAs. Riboswitches change their secondary structures upon binding to specific metabolites,

thereby controlling the expression of the corresponding metabolic genes.

In addition to natural RNAs with differential folding, there are also engineered RNAs that can

be used for controlling gene expression based on a similar mechanism. For example, the antiswitch

designed by Bayer and Smolke is an RNA-based regulator that can directly control the expression

of a target transcript in a ligand-dependent manner [7]. Figure 3.14 illustrates the general mech-

anism of an antiswitch regulator. When the effector ligand is absent, the antisense domain in the

antiswitch (which is complementary to the target mRNA transcript) is sequestered. As the anti-

switch cannot bind to the target, the gene expression of the target is turned on. In the presence of

a specific ligand, the antiswitch binds to the ligand, resulting in a change in its secondary structure

as shown in Figure 3.14 (b). This conformational change releases the antisense domain, thereby

allowing the antiswitch to bind to the target mRNA, which is illustrated in Figure 3.14 (c). As a

result, the antiswitch regulator will suppress the expression of the target gene.

3.5.1 Modeling alternative structures

The existence of alternative secondary structures introduce complex correlations in the primary

sequence of the RNA. As an example, let us consider the primary sequence of the antiswitch shown

in Fig 3.15. In the absence of the target ligand, region 1 (the antisense domain) forms base pairs

with region 2. Therefore, there exist correlations between bases in region 1 and those in region 2.
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Figure 3.14: An antiswitch regulator. (a) Secondary structure of the antiswitch in the absence of lig-
and. (b) The structure changes upon binding the ligand. (c) In the presence of ligand, the antiswitch
can bind to the target mRNA, suppressing its expression.

When the target ligand is present, region 3 can fold onto region 2, hence there exist also correlations

between these two regions. As a result, the bases in region 2 are correlated to the bases in region 1

and also to the bases in region 3. The overall base correlations are depicted in Figure 3.15 (a),

where the arcs indicate the correlations between bases. Such correlations cannot be modeled using

a SCFG [25] or a csHMM [131], and we have to resort to more general grammars such as context-

sensitive grammars (CSGs). However, CSGs that can represent sequences with correlations shown in

Figure 3.15 (a) tend to get very complex. Moreover, parsing CSGs is an NP-complete problem, and

there is no polynomial-time algorithm that can be used in general [25, 41].

However, we can circumvent these difficulties by adopting the following strategy. Instead of

modeling the overall correlations in the RNA sequence by a single model, we can use multiple csH-

MMs to represent the respective correlations that arise from each of the alternative RNA secondary

structures. For example, we can use a csHMM to describe the correlations that arise from “struc-

ture 1” (shown in Figure 3.15 (b)) and use another csHMM to describe the correlations that arise



85

(a)

(b)

(c)

overall correlations

correlations due to “structure 1”

correlations due to “structure 2”

region 1 region 2 region 3
5’ 3’

5’

5’

3’

3’

Figure 3.15: Base correlations in the primary sequence of an antiswitch. (a) Overall correlations. (b)
Correlations due to structure 1 (in the absence of ligand). (c) Correlations due to structure 2 (in the
presence of ligand).

from “structure 2” (shown in Figure 3.15 (c)). Given a novel RNA sequence, we can score it based

on the two csHMMs using an efficient polynomial-time algorithm (introduced in Appendix B [128].

We can combine the two scores to determine how close the given RNA sequence is to the original

RNA sequence modeled by the csHMMs.

3.5.2 Experimental results

To demonstrate the efficacy of the proposed method, we constructed two csHMMs as shown in Fig-

ure 3.16. The csHMM in Figure 3.16 (a) models the correlations that arise from “structure 1,” which

are shown in Figure 3.15 (b). Note that Sn is a single-emission state, Pn is a pairwise-emission state,

and Cn is the context-sensitive state that corresponds to Pn. The states P1 and C1 work together

to generate the antisense stem that sequesters the antisense domain in the absence of ligand. Sim-

ilarly, the state-pairs (P2, C2) and (P3, C3) generate the other stems in “structure 1.” Likewise, the

csHMM illustrated in Figure 3.16 (b) represents the correlations shown in Figure 3.15 (c), which
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Figure 3.16: (a) The csHMM that represents structure 1. (b) The csHMM that represents structure 2.
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arise from “structure 2.” Based on these csHMMs, we can compute

S1(x) =
1
L

log2

P (x|csHMM1)
P (x|H0)

,

and

S2(x) =
1
L

log2

P (x|csHMM2)
P (x|H0)

,

for a given RNA sequence x, where L is the length of x and H0 is the random model with i.i.d.

assumption. Figure 3.17 shows a plot of (S1(x), S2(x)) for 100 test sequences x. As we can see in

Figure 3.17, sequences with alternative structures (depicted by black diamonds) are well separated

from sequences with either “structure 1” or “structure 2,” or unstructured sequences. Therefore,

given an RNA sequence x, we can first compute the two similarity scores S1(x) and S2(x) and

then use a classification algorithm (e.g., a support vector machine [12]) to decide whether x is a true

homologue with alternative folding or not.
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3.6 Beyond homology search: Identifying novel ncRNAs

The main focus of this chapter was to propose methods that can be used for identifying new mem-

bers (homologues) of known ncRNA families. Finding novel ncRNAs that have not been identified

yet is a much more challenging task, and we briefly discuss this problem in this section.

Until now, various signal processing techniques have been applied to the prediction of protein-

coding genes, which include DFT [3, 106], digital filters [112, 113], hidden Markov models (HMMs)

[28, 29, 59], and many others. Among them, HMM-based methods have been especially successful.

State-of-the-art gene finders (primarily based on HMMs) boast high prediction ratios that are far

above 90%, achieving nearly perfect prediction results in simple organisms such as bacteria and

yeast.

However, these methods are not suitable for predicting ncRNA genes due to the following rea-

sons. First of all, many ncRNAs lack the various statistical cues that have been used for identifying

protein-coding genes. Unlike coding genes, their primary sequences do not display strong compo-

sition bias with strength comparable to the codon bias in protein-coding genes [31]. They do not

have open reading frames (ORFs)3 that were effectively used in coding-gene finders [71]. Moreover,

many ncRNAs are considerably shorter than coding genes, where a typical ncRNA has less than

a few hundred nucleotides [47]. (An extreme example is the miRNA which has only about 21-25

nucleotides, in general [93].) This makes it difficult to judge whether the statistical property inside

the ncRNA genes is different from that of the rest in a statistically meaningful manner.

Although traditional protein-coding gene finders cannot be directly used for identifying novel

ncRNA genes, we can utilize the native characteristics of RNAs for building ncRNA gene find-

ers. For example, as many ncRNAs have well conserved secondary structures, we can exploit this

property for finding ncRNA genes. However, an RNA sequence can have a large number of ther-

modynamically plausible secondary structures that have no biological significance [32]. In fact, it

has been realized that the existence of a plausible secondary structure is not a sufficient evidence

for detecting ncRNAs [87]. What is more important is whether the given secondary structure is

preserved across different species, which can serve as a compelling evidence of its biological sig-

nificance. For this reason, most ncRNA gene-prediction algorithms take advantage of multiple

sequence data for finding novel ncRNAs [18, 21, 88, 119].

3An ORF is any sequence of DNA that can potentially encode a protein. It starts with a start codon and ends with a stop
codon [11]. Usually, the existence of a long ORF is a reasonable indication of the presence of a protein-coding gene.
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A common strategy of many general purpose ncRNA gene finders–such as QRNA [88], ddbRNA

[21], MSARI [18], and RNAz [119]–can be summarized as follows [71]. They first look for regions

in genome sequences that are conserved across different species, and form a multiple sequence

alignment between these regions. Based on the alignment, they investigate whether there exists a

common secondary structure that is preserved in all sequences. This information is used to decide

whether these regions correspond to a functional ncRNA or not. Some of these algorithms have

been used for screening the genomes of several organisms, and the detection results indicate that

the aforementioned strategy is indeed quite effective. For example, RNAz - which is the current

state-of-the-art algorithm for predicting novel ncRNAs - achieves an average sensitivity of 84.17%

at 96.42% specificity, and 75.27% sensitivity at 98.93% specificity [119]. Recently, RNAz has been

used to perform a comparative screening of several vertebrate genomes, and it predicted more

than 30,000 putative ncRNA genes in the human genome [120]. Among them, almost a thousand

ncRNA genes were conserved in all four vertebrate genomes included in the screening, which

strongly suggests that these ncRNAs are biologically functional.

Despite the initial success of these ncRNA gene finders, there is yet much room for improve-

ment. In fact, the average prediction ratios of the existing algorithms are not as high as one might

hope, and they still do not work well for certain classes of RNAs.4 However, the performance of

ncRNA gene finders has been improving at a fast pace, and it is clear that computational gene

finders will play important roles in unveiling more and more novel ncRNAs in the future.

3.7 Conclusion

Unlike protein-coding genes, ncRNA genes have remained unnoticed until relatively recently. Com-

pared to the annotation of protein-coding genes, which is nearly complete in many genomes that

have been sequenced so far, the annotation of ncRNA genes has just begun. At present, it is even

difficult to give a reliable estimate of the total number of ncRNAs in a genome. Given the enormous

amount of genomic data, which is still increasing, we cannot stress strongly enough the importance

of computational methods in finding ncRNA genes and analyzing them. As we have shown in this

chapter, context-sensitive HMMs can provide a convenient framework for building ncRNA gene

finders and RNA sequence analysis tools.

4For example, the sensitivity of RNAz for U70 snoRNAs (small nucleolar RNAs) is below 62%, and for tmRNAs (transfer-
messenger RNA) it is below 25% [120].



90

Chapter 4

Profile Context-Sensitive Hidden
Markov Models

Systematic screening of many genomes has identified a large number of novel ncRNAs, whose roles

in the cell machinery are truly diverse [30, 44]. However, unlike protein-coding genes, the annota-

tion of ncRNA genes (which are portions in the genome that give rise to biochemically functional

ncRNAs) is still far from complete. In order to expedite the annotation process, we need efficient

methods that can be used for automatic identification of ncRNA genes.

A practical way of finding new ncRNA genes is to perform a similarity search (or a homology

search) of the database to look for homologues of known ncRNA sequences. As many ncRNAs

have secondary structures that are well conserved among different species, it is important to incor-

porate this structural information in the search. In fact, scoring schemes that effectively combine

contributions from the sequence similarity and the structural similarity are known to be much more

discriminative than schemes that are based on sequence similarity alone [31].

Until now, a number of methods have been proposed that can be used for representing RNA

secondary structures and performing structural alignment of RNA sequences [26, 66, 95]. How-

ever, many models including the covariance models (CMs) [26] that have been widely used in RNA

sequence analysis and the pair hidden Markov models on tree structures (PHMMTSs) [95], which are a

more recent development, cannot handle RNAs with pseudoknot structures. As there exist many

RNAs with functionally important pseudoknots [47, 114], this can be potentially a serious limita-

tion. Recently, Matsui et al. proposed an interesting method based on pair stochastic tree adjoining

grammars (PSTAGs) that can be used for structural alignment of pseudoknots [66]. The PSTAG is

capable of aligning and predicting simple pseudoknots with 2-crossing property, which includes

many known pseudoknots but not all of them.
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In this chapter, we propose a new approach for representing and aligning RNA pseudoknots.

The proposed method is based on profile context-sensitive hidden Markov models (profile-csHMMs) [129],

which can in principle handle any kind of pseudoknots. To demonstrate the effectiveness of the new

approach, we build a structural alignment tool for RNAs, which uses a single RNA sequence with

structural annotation to align unfolded RNAs and predict their structures. Experimental results

will show that the profile-csHMM based approach can achieve high prediction ratios, providing

an effective framework for analyzing RNA secondary structures and building tools for identifying

new ncRNAs. In addition to this, we also propose an efficient scheme that can make a profile-

csHMM based homology search significantly faster. The proposed scheme utilizes a prescreening

filter that is built using a profile-HMM, and it will be shown that it can make the search speed

around eighty times faster, without affecting the overall prediction accuracy.

The content of this chapter is mainly drawn from [129], [133], and [134].

4.1 Outline

In Section 4.2, we introduce the basic concept of profile-csHMMs. In Section 4.2.1, we explain how

a profile-csHMM can be constructed from a multiple sequence alignment, and elaborate how the

constructed model can represent long-range correlations between distant bases. Then the descrip-

tive power of profile-csHMMs is considered in Section 4.2.2.

The optimal alignment problem of profile-csHMMs is considered in Section 4.3. We propose

a dynamic programming algorithm, called the sequential component adjoining (SCA) algorithm,

that can be used for solving this problem. The initialization step of the SCA algorithm is described

in Section 4.3.1, and the adjoining rules that can be iteratively applied to find the optimal alignment

are described in Section 4.3.2. In Section 4.3.3, we explain about the adjoining order that defines

how the adjoining rules should be applied to obtain the final alignment. The termination step and

the trace-back procedure of the SCA algorithm are elaborated in Section 4.3.4 and Section 4.3.5,

respectively. The computational complexity of the algorithm is considered in Section 4.3.6.

In Section 4.4, we propose a new method for finding the structural alignment of RNAs based on

profile-csHMMs. Section 4.4.1 describes the basic idea of the proposed method, and Section 4.4.2

shows how we can reduce its complexity by restricting the search region for finding the matching

bases. Several examples of structural alignments are given in Section 4.4.3, which demonstrates the

generality of the proposed method. In Section 4.4.4, experimental results for aligning pseudoknots
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Figure 4.1: Relation between profile-csHMMs and other statistical models.

and predicting their secondary structures are given, which will clearly indicate the advantages of

the profile-csHMM based approach.

In Section 4.5, we propose a practical method that can make a profile-csHMM based database

search significantly faster. The basic idea of the proposed method is described in Section 4.5.1, and

its technical details are given in Section 4.5.2. In Section 4.5.3, we prove that the proposed method

does not affect the prediction accuracy. Finally, we show experimental results in Section 4.5.4, and

we conclude the chapter in Section 4.6.

4.2 Profile context-sensitve HMM

Profile hidden Markov models (profile-HMMs) are specifically constructed HMMs that are well

suited for modeling the key motives and common features in a set of related sequences [25]. They

have been briefly described in Section 3.3.1. Due to their effectiveness in representing probabilistic

profiles of sequence families, profile-HMMs have been widely used in biological sequence analysis,

especially for building protein-coding gene finders. However, profile-HMMs are inherently inca-

pable of modeling correlations between distant bases, hence they cannot be used for representing

RNA secondary structures.

We can overcome this limitation by using the profile-csHMMs [129] instead of the profile-

HMMs for representing RNA sequence profiles. Profile-csHMMs are a subclass of context-sensitive

HMMs (csHMMs) that have been introduced in Chapter 2. The relation between profile-csHMMs

and other models are illustrated in Figure 4.1.
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4.2.1 Model construction

The structure of a profile-csHMM is similar to that of traditional profile-HMMs.1 A profile-csHMM

has a linear structure that repetitively uses three kinds of states, namely, match states Mk, delete

states Dk, and insert states Ik, to describe base substitutions, deletions and additional insertions at

different locations.

4.2.1.1 Constructing an ungapped model

The match state Mk represents the case when a base in the observed RNA sequence matches the kth

base in the consensus RNA sequence. For example, if the observed RNA sequence x = x1x2 . . . xL

exactly matches the consensus sequence without any gap, the corresponding state sequence of the

profile-csHMM will be simply y = y1y2 . . . yL = M1M2 . . .ML, where y` is the underlying hidden

state of x`. Consequently, the number of match states is identical to the number of bases in the

consensus RNA sequence, and we can obtain an ungapped model for the consensus sequence by

interconnecting the match states.

The main difference beween profile-csHMMs and traditional profile-HMMs is as follows. Un-

like profile-HMMs, profile-csHMMs have three different types of match states: single-emission match

states, pairwise-emission match states, and context-sensitive match states. Single-emission match

states are identical to regular states in ordinary HMMs, and they are used to represent base po-

sitions in the consensus sequence that are not involved in base pairing. On the other hand, for two

bases that form a base pair, we use a pairwise-emission match state and the corresponding context-

sensitive match state to model the correlation between them. Each pair of pairwise-emission match

state and context-sensitive match state has a distinct memory dedicated to it. The auxiliary mem-

ory can be either a stack or a queue, whichever is more convenient for modeling the correlations

that are under consideration. A pairwise-emission match state stores the emitted symbol in this

memory before making a transition to the next state. When we enter a context-sensitive match

state, it first accesses the memory and reads the symbol that was previously emitted at the corre-

sponding pairwise-emission match state. The emission probabilities are adjusted according to this

observation. For example, when a C was emitted at the pairwise-emission match state, the emis-

sion probabilities at the context-sensitive match state may be adjusted such that it emits a G with

high probability (or simply, with probability one).

1For an introduction to conventional profile-HMMs, see [25] or [29].
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Figure 4.2: Constructing a profile-csHMM from an RNA multiple sequence alignment. (a) An
alignment of five RNA sequences. The consensus RNA secondary structure has two base pairs.
(b) Ungapped profile-csHMM that represents the consensus RNA sequence. (c) The final profile-
csHMM that allows additional insertions and deletions at any location.

4.2.1.2 Representing insertions and deletions

Once we have constructed the ungapped model that forms the backbone of the profile-csHMM, we

add delete states Dk and insert states Ik to obtain the final model. Sometimes, an observed RNA

sequence can be shorter than the consensus RNA sequence at hand. In such cases, if we align the

two sequences, there will be one or more bases in the consensus sequence that are not present in the

observed sequence. Such gaps are represented by the delete states, where Dk models the deletion

of the kth symbol in the consensus sequence. Note that the delete states are non-emitting states,

and they are simply used as placeholders that interconnect other states. On the contrary, when the

observed RNA sequence has additional bases that are not present in the consensus sequence, these

bases are modeled by insert states. The state Ik is used for representing insertions between the

positions k and k + 1 in the original consensus sequence.
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4.2.1.3 Constructing a profile-csHMM from an RNA sequence alignment

Following the previous idea, it is quite straightforward to construct a profile-csHMM based on

an RNA multiple sequence alignment with structural annotation. As an example, let us consider

constructing a profile-csHMM from the alignment shown in Figure 4.2 (a). In this alignment, five

RNA sequences are aligned to each other. Since the length of the consensus RNA sequence is five,

the corresponding profile-csHMM should have five match states M1,M2, . . . ,M5. Note that the first

and the fourth bases in the consensus sequence form a base pair. In order to model the correlation

between these bases, we use a pairwise-emission state for M1 and a context-sensitive state for M4.

These two states share a common auxiliary memory, where M1 stores its emission in the memory

and M4 reads the stored symbol from the memory to adjust its emission probabilities. Similarly,

we use a pairwise-emission state for M2 and a context-sensitive state for M5 to model the base pair

that is formed between the second and the fifth bases. Lastly, we use a single-emission state for M3,

since the third base in the consensus sequence does not form a base pair. Now that the type of every

match state is determined, we can interconnect the match states to obtain an ungapped model for

the consensus RNA as illustrated in Figure 4.2 (b). Finally, we add delete states Dk and insert states

Ik to the ungapped model to obtain the final profile-csHMM, which is shown in Figure 4.2 (c).

4.2.2 Descriptive power

As we can see in the previous example, profile-csHMMs provide a simple and intuitive way of

representing RNA sequence profiles. One important advantage of profile-csHMMs is their large

descriptive power. In fact, profile-csHMMs can represent any kind of base pair correlations by ar-

ranging the pairwise-emission match states and the context-sensitive match states in an appropriate

manner, hence capable of representing any kind of pseudoknots unlike other existing models. As

mentioned earlier, CMs [26] and PHMMTSs [95] can only represent RNA secondary structures with

nested correlations, hence incapable of dealing with pseudoknots. PSTAGs [66] are capable of rep-

resenting pseudoknots with exactly 2-crossing property. A secondary structure is said to have a m-

crossing property, if there exist m (≥ 2) base pairs in the given secondary structure such that any two

pairs in these m base pairs cross each other. Figure 4.3 (a) shows an example of an RNA secondary

structure with 2-crossing property. PSTAGs can handle many known pseudoknots, as a large por-

tion of known pseudoknots has 2-crossing property. But there also exist more complex pseudoknots

that are beyond the descriptive power of PSTAGs. One such example is the Flavivirus 3’ UTR pseu-
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Figure 4.3: Various types of RNA secondary structures. (a) RNA with 2-crossing property. (b) RNA
with 3-crossing property. (c) RNA with 4-crossing property.

doknot family [98], which will be considered in our experiments presented in Section 4.4.4. It will

be shown that profile-csHMMs can be used for modeling and predicting the secondary structure of

these pseudoknots. Profile-csHMM can also represent RNAs with even more complex secondary

structures as those shown in Figure 4.3 (b) (RNA with 3-crossing property) and Figure 4.3 (c) (RNA

with 4-crossing property), in a similar manner as described in Section 4.2.1.

4.3 Optimal alignment of profile-csHMM

Let us assume that we have constructed a profile-csHMM that represents the consensus sequence

of an RNA family. Given an unfolded RNA sequence with no structural annotation, how can we

find the best structural alignment between the new sequence and the consensus RNA sequence

at hand? In fact, this alignment can be obtained by finding the optimal state sequence, or the

“optimal path,” of the profile-csHMM that maximizes the observation probability of the unfolded

RNA sequence. For example, let us consider aligning the RNA sequence in Figure 4.4 (a) to the

consensus RNA sequence shown in Figure 4.2 (a). In order to do this, we first find the optimal state

sequence of the profile-csHMM in Figure 4.2 (c) that maximizes the probability of the given RNA.

Assume that the optimal path is M1M2D3M4M5I5 as depicted in Figure 4.4 (b). The presence of

the delete state “D3” implies that the third base in the consensus RNA sequence is omitted in the
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observed RNA sequence. Furthermore, the insert state “I5” indicates that the observed sequence

has an additional base right after the fifth position of the original consensus sequence. Based on

these observations, we can obtain the best structural alignment between the new sequence and the

given profile as illustrated in Figure 4.4 (c), and the secondary structure of the new RNA sequence

can be immediately inferred from this alignment.

The optimal state sequence of a profile-csHMM can be systematically found by using the sequen-

tial component adjoining (SCA) algorithm [129]. The SCA algorithm can be viewed as a generalization

of the Viterbi algorithm (used for conventional HMMs) [116] and the Cocke-Younger-Kasami (CYK) al-

gorithm (used for context-free grammars) [60]. Like these two algorithms, the SCA algorithm finds

the optimal path in an iterative manner, first finding the optimal state sequence of short subse-

quences and then using this information to find the optimal state sequence of longer sequences.

The major difference between the SCA algorithm and the other algorithms is as follows. Firstly,

the SCA algorithm can define and use subsequences that consist of multiple non-overlapping re-

gions in the original sequence. Instead of using a fixed number of indices to designate a subse-

quence, the SCA algorithm uses a set of variable number of closed intervals to describe a subse-
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quence. For example, given a sequence x = x1x2 . . . xL, we can define its subsequences as follows.

N1 = {[1, 3]} → x(N1) = x1x2x3

N2 = {[1, 1], [5, 7]} → x(N2) = x1 x5x6x7

N3 = {[1, 2], [5, 7], [9, 9]} → x(N3) = x1x2 x5x6x7 x9

In general, if we have a set of I non-overlapping intervalsN = {n1,n2, . . . ,nI}, where the intervals

ni = [n`
i , n

r
i ] satisfy

nr
i < n`

j for i < j, (4.1)

the corresponding subsequence x(N ) is defined as

x(N ) = xn`
1
. . . xnr

1︸ ︷︷ ︸
n1

xn`
2
. . . xnr

2︸ ︷︷ ︸
n2

. . . xn`
I
. . . xnr

I︸ ︷︷ ︸
nI

.

This generalization significantly increases the number of ways in which the intermediate subse-

quences can be defined and extended during the iterative process of finding the optimal path.

Secondly, the SCA algorithm explicitly specifies how the optimal paths of shorter subsequences

should be extended and adjoined together to obtain the optimal path of a longer subsequence. As

there are innumerable ways of defining the intermediate subsequences, the SCA algorithm cannot

simply find the optimal path either left-to-right (as the Viterbi algorithm) or inside-to-outside (as the

CYK algorithm). In practice, we have to define a model-dependent “adjoining order” in such a

way that takes all the correlations in the given profile-csHMM into consideration. Following the

specified order, we iteratively apply a set of sequence adjoining and extension rules until we obtain

the optimal probability of the entire sequence x.

Before describing the algorithm, let us first define the notations. Let K be the length of the

profile-csHMM, i.e., the number of match states, and L be the length of the observation sequence x.

We denote the emission probability of a symbol x at a single-emission state or a pairwise-emission

state v as e(x|v). The emission probability of a symbol xc at a context-sensitive state w is denoted

as e(xc|w, xp), where xp is the symbol that was previously emitted at the corresponding pairwise-

emission state. We denote the transition probability from state v to state w as t(v, w). As before,

we let N = {n1, . . . ,nI} be an ordered set of I intervals, and we define S = {s1, . . . , sI} to be an

ordered set of state-pairs si = (s`
i , s

r
i ), where s`

i and sr
i denote the hidden states yn`

i
and ynr

i
at each
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end of the ith interval ni = [n`
i , n

r
i ]. Finally, we define α(N ,S) to be the maximum log-probability

of the subsequence x(N )

α(N ,S) = max
y(N )

[
log P (x(N ),y(N ))

]
,

where its underlying state-sequence

y(N ) = yn`
1
. . . ynr

1︸ ︷︷ ︸
n1

yn`
2
. . . ynr

2︸ ︷︷ ︸
n2

. . . yn`
I
. . . ynr

I︸ ︷︷ ︸
nI

.

satisfies yn`
i

= s`
i and ynr

i
= sr

i for all i = 1, . . . , I . We also define the variables λa(N ,S) and

λb(N ,S) that will be used later for tracing back the optimal state sequence y∗.

4.3.1 Initialization

Initially, we compute α(N ,S) for single bases and single base pairs.

(i) For a position k (1 ≤ k ≤ K) in the profile-csHMM where Mk is a single-emission match state,

we let

α
(
{[n, n]}, {(Mk,Mk)}

)
= log e(xn|Mk),

λa

(
{[n, n]}, {(Mk,Mk)}

)
= (∅, ∅),

λb

(
{[n, n]}, {(Mk,Mk)}

)
= (∅, ∅),

for all positions 1 ≤ n ≤ L. Similarly, we let

α
(
{[n, n− 1]}, {(Dk, Dk)}

)
= 0,

λa

(
{[n, n− 1]}, {(Dk, Dk)}

)
= (∅, ∅),

λb

(
{[n, n− 1]}, {(Dk, Dk)}

)
= (∅, ∅),

for all 1 ≤ n ≤ L + 1.

(ii) For positions j and k (1 ≤ j < k ≤ K) where Mj is a pairwise-emission state and Mk is the

corresponding context-sensitive state, we let N1 = {[n, n], [m,m]}, S1 = {(Mj ,Mj), (Mk,Mk)} and
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compute

α(N1,S1) = log e(xn|Mj) + log e(xm|Mk, xn),

λa(N1,S1) = (∅, ∅),

λb(N1,S1) = (∅, ∅),

for all positions 1 ≤ n < m ≤ L. Furthermore, we initialize the log-probability α(N2,S2) for N2 =

{[n, n− 1], [m,m− 1]} and S2 = {(Dj , Dj), (Dk, Dk)} as follows

α(N2,S2) = 0,

λa(N2,S2) = (∅, ∅),

λb(N2,S2) = (∅, ∅),

for all n and m (1 ≤ n ≤ m ≤ L + 1).

(iii) For single bases emitted at insert states, we initialize the log-probabilities as follows

α
(
{[n, n]}, {(Ik, Ik)}

)
= log e(xn|Ik),

λa

(
{[n, n]}, {(Ik, Ik)}

)
= (∅, ∅),

λb

(
{[n, n]}, {(Ik, Ik)}

)
= (∅, ∅),

for 0 ≤ k ≤ K and 1 ≤ n ≤ L.

4.3.2 Adjoining subsequences

During the initialization process, we computed the log-probability for all subsequences that consist

of a single base or a single base pair. Now, these subsequences can be recursively adjoined to obtain

the probability of longer subsequences by applying the following adjoining rules.
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Rule 1 Consider the log-probabilities α(N a,Sa) and α(N b,Sb) of the two subsequences x(N a) and

x(N b), where

N a = {na
1 , . . . ,na

Ia
}, Sa = {sa

1 , . . . , sa
Ia
},

N b = {nb
1, . . . ,n

b
Ib
}, Sb = {sb

1, . . . , s
b
Ib
}.

We assume that there is no overlap between the symbol sequences x(N a) and x(N b) nor between

the underlying state sequences y(N a) and y(N b). In this case, we can apply the following adjoining

rule to compute the optimal log-probability of a longer sequence x(N )

α(N ,S) = α(N a,Sa) + α(N b,Sb),

λa(N ,S) = (N a,Sa),

λb(N ,S) = (N b,Sb),

where N and S are unions of the smaller sets

N = N a ∪N b = {n1, . . . ,nI}, S = Sa ∪ Sb = {s1, . . . , sI},

where I = Ia + Ib and the intervals ni are relabeled such that they satisfy (4.1) and si ∈ S corre-

sponds ni ∈ N . �

Rule 2 Assume that there exist two intervals ni,ni+1 ∈ N that satisfy nr
i +1 = n`

i+1, which implies

that the two intervals [n`
i , nr

i ] and [n`
i+1, nr

i+1] are adjacent to each other. For simplicity, let us

assume that i = I − 1. In this case, we can combine the two intervals nI−1 and nI to obtain a larger

interval

n′I−1 = [n`
I−1, nr

I ] = {n| n`
I−1 ≤ n ≤ nr

I},

where the corresponding state-pair is s′I−1 = (s`
I−1, sr

I). Now, the log-probability α(N ′,S ′) for

N ′ = {n1, . . . ,nI−2,n′I−1}, S ′ = {s1, . . . , sI−2, s′I−1}
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can be computed as follows

α(N ′,S ′) = max
nr

I−1

(
max

sr
I−1,s`

I

[
α(N ,S) + log t(sr

I−1, s
`
I)
])

,

(n∗, s∗r , s
∗
` ) = arg max

(nr
I−1,sr

I−1,s`
I)

[
α(N ,S) + log t(sr

I−1, s
`
I)
]
,

N ∗ =
{
n1, . . . ,nI−2, [n`

I−1, n
∗], [n∗ + 1, nr

I ]
}

,

S∗ =
{
s1, . . . , sI−2, (s`

I−1, s
∗
r), (s

∗
` , s

r
I)
}

,

λa(N ′,S ′) = (N ∗,S∗),

λb(N ′,S ′) = (∅, ∅).

For i < I−1, we can similarly combine the two adjacent intervals ni and ni+1 to obtain the optimal

log-probability α(N ′,S ′) of the updated setsN ′ and S ′. �

For simplicity, we have described the adjoining process in two distinct steps; (i) adjoining non-

overlapping subsequences and (ii) combining adjacent intervals in a single subsequence. However,

in many cases, it is possible (and usually more convenient) to apply the two rules at the same

time. For example, if we know the optimal probability of two adjacent subsequences, where each

subsequence consists of a single interval, we can adjoin the two sequences and combine the two

intervals to compute the optimal probability of a longer subsequence that has also a single interval.

4.3.3 Adjoining order

As mentioned earlier, when using the SCA algorithm, we have to specify the order according to

which the adjoining rules should be applied. This adjoining order can be obtained from the con-

sensus RNA sequence that was used to construct the profile-csHMM. Based on the consensus se-

quence, we first find out how the bases and the base pairs in the given sequence can be adjoined

one by one to obtain the entire sequence. During this procedure, we try to minimize the number

of intervals that is needed to describe the intermediate subsequences, as a larger number of inter-

vals leads to a higher computational cost for adjoining the subsequences. An example is shown

in Figure 4.5, which illustrates how we can obtain the consensus sequence in Figure 4.2 (a) by se-

quentially adjoining its base and base pairs. Note that the numbers inside the squares in Figure 4.5

indicate the original base-positions. We follow this order to compute the optimal log-probability
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1 3 4

2 5

3

1 4

STEP 1

STEP 2

STEP 3

STEP 4

STEP 5

N1 N2 A N1’ N2’ 3’5’

consensus RNA sequence

adjoining
order

Figure 4.5: The adjoining order of the profile-csHMM shown in Figure 4.2. This illustrates how we
can adjoin the base and the base pairs in the consensus RNA sequence to obtain the entire sequence.

of the subsequences (of the observed RNA sequence) that correspond to the subsequence (of the

consensus sequence) at each step.

At each step, we first compute the log-probability α(N ,S) of those subsequences, whose termi-

nal states (i.e., s`
i , s

r
i ) do not contain insert states. For example, at STEP 1, we compute α(N1,S1)

for N1 = {[n, n]}, S1 = {(M3,M3)} and N1 = {[n, n − 1]}, S1 = {(D3, D3)} using the initialization

rules described in Section 4.3.1. Note that the states in S1 correspond to the third base position

in the original consensus sequence. Similarly, we compute the log-probability α(N2,S2) at STEP 2

(and also α(N4,S4) at STEP 4) based on the base pair initialization rules in Section 4.3.1. At certain

steps, the optimal log-probability is obtained by combining the log-probabilities computed in the

previous steps. For example, at STEP 3, we can compute α(N3,S3) for N3 = {[n1, n1], [n`
2, n

r
2]} and

S3 = {(M1,M1), (M3,M4)}, by combining α(N1,S1) and α(N2,S2) as follows

α(N3,S3) = max
v

[
α(N1,S1) + log t(v,M4) + α(N2,S2)

]
,
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whereN1 = {[n`
2, n

r
2−1]}, S1 = {(M3, v)} andN2 = {[n1, n1], [nr

2, n
r
2]}, S2 = {(M1,M1), (M4,M4)}.

In the example in Figure 4.5, the log-probability α(N1,S1) is computed at STEP 1 and α(N2,S2) is

computed at STEP 2.

After computing these log-probabilities, we move on to compute the log-probabilities of those

subsequences that have one or more insertions at the beginning and/or end of some intervals. For

example, at STEP 1, we can compute α(N1,S1) for N1 = {[n, n + 1]} and S1 = {(M3, I3)} from

α(N1,S1) = α(N a
1 ,Sa

1 ) + log t(M3, I3) + α(N b
1 ,Sb

1),

where N a
1 = {[n, n]}, Sa

1 = {(M3,M3)}, N b
1 = {[n + 1, n + 1]}, Sb

1 = {(I3, I3)}. In a similar manner,

we can also deal with a left insertion as well as multiple insertions.

4.3.4 Termination

By iteratively applying the adjoining rules as described in Section 4.3.2, we can ultimately ob-

tain the log-probability α(N ,S) for N = {[1, L]} and S = {(s`, sr)}, for all s` ∈ {I0,M1, D1} and

sr ∈ {IK ,MK , DK}. Based on this result, the log-probability of the optimal state sequence y∗ can

be computed from

log P (x,y∗) = max
y

[
log P (x,y)

]
= max

s`,sr

[
log t(START, s`) + α(N ,S) + log t(sr, END)

]
,

(s∗` , s
∗
r) = arg max

(s`
1,sr

1)

[
log t(START, s`) + α(N ,S) + log t(sr, END)

]
,

λ∗ =
(
[1, L], (s∗` , s

∗
r)
)
.

Note that t(START, s`) is the probability that the profile-csHMM begins at the state s`, and t(sr, END)

is the probability that the model terminates after sr.

4.3.5 Trace-back

Now that we have obtained the maximum probability of the sequence x, we can easily trace back

the algorithm to find the optimal path that gave rise to this probability. For notational convenience,

let us define λt = (N ,S). We also need a stack T during the process. The trace-back procedure can

be described as follows.



105

STEP 1 Let yi = 0 (i = 1, 2, . . . , L).

STEP 2 Push λ∗ onto the stack T .

STEP 3 Pop λt = (N ,S) from T . If λt = (∅, ∅), go to STEP 6. Otherwise, proceed to STEP 4.

STEP 4 If λa(λt) 6= (∅, ∅) push λa(λt) onto T . Otherwise, yn`
i

= s`
i , for all ni = [n`

i , nr
i ] ∈ N

and the corresponding si = [s`
i , sr

i ] ∈ S. (Note that when λa(λt) = (∅, ∅), we have n`
i = nr

i

and s`
i = sr

i .)

STEP 5 If λb(λt) 6= (∅, ∅) push λb(λt) onto T .

STEP 6 If T is empty, proceed to STEP 7. Otherwise, go to STEP 3.

STEP 7 Let y∗ = y1y2 . . . yL and terminate.

At the end of the trace-back procedure, we can obtain the optimal state sequence y∗ that maximizes

the probability of observing x based on the profile-csHMM at hand.

4.3.6 Computational complexity

The computational complexity of the SCA algorithm is not fixed, and it depends on the structure

of the RNA that is represented by the given profile-csHMM. For example, for a simple RNA with

only one stem-loop, the computational complexity will be O(L2K), where L is the length of the un-

folded RNA sequence (the “target” sequence) and K is the length of the consensus RNA sequence

(the “reference” sequence) with a known structure. Note that K is proportional to the number of

states in the profile-csHMM. The complexity for aligning RNAs with multiple stem-loops will be

O(L3K), and the complexity for aligning most known pseudoknots will be O(L4K).2 In general,

the complexity of the SCA algorithm for analyzing a given RNA secondary structure is identical

to or less than that of an existing algorithm (such as the Viterbi, CYK, and PSTAG algorithms) that

can be used to analyze the same structure.

4.4 Structural alignment of RNA pseudoknots

To demonstrate the effectiveness of the proposed method, we have built a program that can be

used for structural alignment of RNA sequences including pseudoknots. Similar to the PSTAG-
2The complexity for aligning pseudoknots in the Rivas and Eddy class [86] will be at most O(L6K). For RNAs outside

the R&E class, the computational complexity can be higher.
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based alignment tool developed by Matsui et al. [66], it uses a single structured RNA sequence

as a reference and aligns unfolded RNA sequences to it. However, unlike PSTAGs that can only

handle pseudoknots with 2-crossing property, the given program can deal with a much larger class

of RNAs (i.e., the so-called Rivas and Eddy class [17, 86]).

4.4.1 Building an alignment tool using the profile-csHMM

The program proceeds as follows. It first constructs a profile-csHMM based on the reference RNA

and its structural annotation. Instead of using a fully stochastic model with position-dependent

emission probabilities, in this implementation, we have used the non-stochastic scoring matrix

suggested by Gorodkin et al. [45], as it has been used by several RNA analysis tools with good

performance.

Secondly, the program automatically finds the adjoining order that can be used for predicting

the optimal state sequence of the profile-csHMM. The adjoining order is obtained in the following

way. Let us consider a subsequence x̂ of the reference RNA that consists of I (≤ Imax) intervals.

We define Γ(x̂) as the number of base pairs that are fully contained in the subsequence x̂. For a

given x̂, we try to split it into two subsequences x̂` and x̂r, where each of them may have up to

Imax intervals, such that Γ(x̂) = Γ(x̂`) + Γ(x̂r) is maximized. We begin this process by finding the

best “division” for the entire sequence, and proceed in a recursive manner until we reach the point

where every subsequence consists of a single base or a single base pair. The adjoining order of the

profile-csHMM can be simply obtained by reversing this division process.

Currently, the program can deal with RNA secondary structures which can be handled by the

SCA algorithm using subsequences with up to two intervals (Imax = 2). This corresponds to the

entire class of RNA secondary structures that can be represented by the grammar proposed by

Rivas and Eddy [86]. The so-called Rivas and Eddy class is regarded as the most general RNA class

that is known today, and it covers almost all RNA secondary structures that have been identified

until now [17]. Note that although the current implementation of the structural alignment program

covers only the R&E class, it has to be noted that the capability of the profile-csHMMs and the SCA

algorithm goes beyond the R&E class. For RNAs that are outside the R&E class, we can easily

extend the current program to handle them.

One advantage of the given program is that it does not reject RNAs even if they are outside

the descriptive capability of the current implementation. For example, if the reference RNA has a
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complex structure that is outside the R&E class, the program chooses the subset with maximum

number of base pairs such that the resulting secondary structure is contained in the R&E class.

Now, the constructed profile-csHMM can be used for carrying out a structural alignment be-

tween the reference RNA and a target RNA with unknown structure. We can follow the adjoining

order that has been obtained in the previous step to find the optimal state sequence of the target

RNA, which in turn yields the prediction of its secondary structure.

4.4.2 Restricting the search region

In implementing the SCA algorithm, we have introduced a parameter D, which is the length of

the search region for finding the matching bases in the sequence alignment. This is motivated by

the following observation. When we align two RNA sequences that are biologically relevant, the

matching bases in the reference RNA and the target RNA are usually located very close to each

other. Figure 4.6 (a) shows an example of a typical sequence alignment, where the maximum dis-

tance between a base in the reference sequence and the matching base in the target sequence is two.

Alignments with a large distance between the matching bases, as the one shown in Figure 4.6 (b),

are generally less probable. Based on this observation, we limit the search region as illustrated in

Figure 4.7. When looking for the base x` in the target RNA x = x1 . . . xL that matches the kth base

in the reference RNA, we only consider the bases between max(k− d1, 1) and min(k + d2, L), hence

the maximum length of the search region is D = d1 + d2 + 1.

Restricting the search region has several advantages. First of all, it significantly reduces the

overall complexity of the alignment algorithm, making the program practically usable in real ap-

plications. The computational complexity of aligning pseudoknots will be reduced from O(L4K) to

O(D4K) (or from O(L6K) to O(D6K) in the worst case). For example, assume that we want to align

two pseudoknots in the TOMBUS 3 IV RNA family (seed alignment) in the Rfam database [47].

The average length of these RNAs is around L = 91, and D = 7 is enough for finding the optimal

alignment between any two members in the given family. In this case, limiting the search region

reduces the overall complexity to around (D/L)4 ≈ 0.35% of the original. Secondly, when the

structural alignment score obtained from the SCA algorithm is used for finding homologues of an

RNA family, restricting the search region can yield better discrimination between homologues and

non-homologues, as long as D is large enough to obtain the optimal alignment. As the optimal

alignment of homologues is contained within the search space, the imposed restriction does not
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Figure 4.6: Matching bases in an RNA sequence alignment. (a) The maximum distance between
the matching bases is two. (b) The maximum distance between the matching bases is seven.
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Figure 4.7: Limiting the search region for finding the matching bases can significantly reduce the
overall complexity of the structural alignment.
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Figure 4.8: Structural alignments of RNAs with various secondary structures.

affect the alignment score of homologous sequences. However, limiting the search region will lead

to an overall decrease in the alignment score of non-homologues, hence providing better discrimi-

nation between homologues and non-homologues.

A good way of choosing D is to compute the range between the matching bases in the original

sequence alignment, and make it slightly larger than this range. Another method for estimating

D is to construct a simple profile-HMM from the sequence alignment and find a (sequence-based)

alignment between the target sequence and the profile-HMM. This alignment can be found very

quickly, since the computational complexity for aligning a profile-HMM is only O(LK). Then we

compute the maximum distance between the matching bases in the given alignment, and use it to

estimate D. This is indeed a very efficient strategy that results in a tremendous reduction in the CPU

time needed for finding the structural alignments, while providing a good prediction performance,

as will be demonstrated in Section 4.4.4.
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4.4.3 Examples of structural alignments

Figure 4.8 shows a few examples of structural alignments obtained from the program that has been

just described. RNAs illustrated in Figure 4.8 (a) and Figure 4.8 (b) have 2-crossing property and

Figure 4.8 (c) has a 3-crossing property. In each example, a target RNA with unknown structure is

aligned to the reference RNA whose structure is known. As we can see in this example, the pro-

posed approach can find good structural alignments for RNAs with various secondary structures.

4.4.4 Experimental results

We tested the performance of our program using several pseudoknots included in the Rfam database

[47]. The Rfam database provides a large collection of various RNA families, where the member

sequences in each family are aligned to each other. In our experiments, we have used the sequences

in the “seed alignment” of each RNA family, as they are hand curated and have reasonably reliable

structural annotation. For each sequence family, we chose one of its members as the reference

RNA, and used it along with its structural annotation to predict the secondary structure of all

the other sequences in the same family. The predicted secondary structure has been compared to

the annotated structure in the database, and we counted the number of correctly predicted base

pairs (true-positives; TP), the number of incorrectly predicted base pairs (false positives; FP), and

the number of base pairs in the annotated structure that were not predicted by the program (false

negatives; FN). These numbers have been used to compute the sensitivity (SN) and the specificity (SP)

of the program that are defined as follows

SN =
TP

TP + FN
, SP =

TP
TP + FP

. (4.2)

To obtain reliable estimates of these quantities, we performed a cross-validation experiment by re-

peating the previous process for every member in the given RNA family and computed the overall

prediction ratios.

In order to compare the prediction performance of the proposed method with the performance

of PSTAGs, we first tested the program for three RNA families, CORONA PK3, HDV RIBOZYME,

and TOMBUS 3 IV, which have all pseudoknot structures. Table 4.1 shows the prediction result

of the proposed method along with the prediction result of PSTAGs. In each case, the higher

prediction ratio is shown in bold. As we can see in Table 4.1, profile-csHMMs yielded accurate
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Profile-csHMM PSTAG
SN (%) SP (%) SN (%) SP (%)

CORONA PK3 95.7 96.5 94.6 95.5
HDV RIBOZYME 94.5 95.3 94.1 95.6
TOMBUS 3 IV 96.9 96.9 97.4 97.4
FLAVI PK3 94.5 96.4 - -

Table 4.1: Prediction results of the proposed method for several RNA families with pseudoknot
structures. The prediction results of PSTAGs are also shown for comparison. The prediction results
of PSTAGs are obtained from [66].

Average CPU Time
Profile-csHMM PSTAG

CORONA PK3 1.24 sec 37.18 sec
HDV RIBOZYME 1.72 sec 207.46 sec
TOMBUS 3 IV 0.95 sec 270.93 sec
FLAVI PK3 6.77 sec -

Table 4.2: CPU time for aligning two sequences in each RNA family. The experiments have been
performed on a PowerMac G5 Quad 2.5 GHz with 4 GB memory.

prediction results that are comparable to PSTAGs for all three RNAs that have been tested. For

CORONA PK3, the proposed approach yielded higher sensitivity and specificity than the PSTAG

algorithm, whereas the PSTAG algorithm worked slightly better for TOMBUS 3 IV. For the RNA

family HDV RIBOZYME, the profile-csHMM had higher sensitivity while the PSTAG had higher

specificity. But profile-csHMMs are more general than the PSTAGs as we demonstrate in the next

example.

Second, we tested the performance of the proposed method for the FLAVI PK3 family that has

a more complex secondary structure than the previous RNA families, which cannot be handled

by the PSTAGs. The secondary structure of FLAVI PK3 is similar to the example shown in Fig-

ure 4.8 (b), and it has two stems and additional base pairs that cross the base pairs in both stems.

As we have already seen in Figure 4.8 (b), profile-csHMMs are capable of dealing with such struc-

tures. Figure 4.9 shows a structural alignment of two RNAs in the FLAVI PK3 family obtained

using the proposed approach. Note that most base pairs have been correctly predicted. There were

two false positives and a false negative in the predicted structure when compared to the annotated

structure in Rfam.

Despite the generality of the proposed method, its computational cost was much smaller than

that of the PSTAGs. Table 4.2 shows the average CPU time that was needed for finding the struc-
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((((....[[[..))))(((((((]]].(((.(((((.(((((
CCUGGGAAUAGAGUGGGAGAUCUUCUGCUCUAUCUCAACAUCA
|||||||||||||||||||||||||||||||||||||||||||
CCUGGGAAUAGACUGGGAGAUCUUCUGCUCUAUCUCAACAUCA
((((....[[[..))))(((((((]]].(((.(((((.(((((

Reference RNA
AF306514.1/472-572

Target RNA
AF315119.1/10876-10976

false negative

( (((...(((.......)))........)))) ))))).))))).)))....)))))))
G-UUAAUAGGCACAGAGCGCCGAAGUAUGUAGC-UGGUGGUGAGGAAGAACACAGGAUCU
| ||| |||||||||||||||||||||| |||| ||||||||||||||||||||||||||
GCUAC-UAGGCACAGAGCGCCGAAGUAU-GUACGUGGUGGUGAGGAAGAACACAGGAUCU
(.((( ..(((.......)))....... )))).))))).))))).)))....)))))))

Reference RNA
AF306514.1/472-572

Target RNA
AF315119.1/10876-10976

false positives

continued below

Figure 4.9: Structural alignment of two RNAs in the FLAVI PK3 family. The secondary structure
of the target RNA has been predicted from the given alignment. Incorrect predictions (one false
negative and two false positives) have been underlined.

tural alignment between two sequences in each RNA family. In our experiments, the parameter

D was automatically estimated by performing a simple sequence-based alignment. We first con-

structed a conventional profile-HMM based on the reference RNA, and aligned the target RNA to

the given profile-HMM. Then we computed the maximum distance between the matching bases

and used it to estimate D. It has to be noted that the initial alignment obtained by the profile-

HMM is only used for estimating D, hence it does not affect the final structural alignment of the

profile-csHMM.

The prediction performance of the proposed method does not strongly rely on the sequence

similarity. In order to show this, we randomly mutated the RNA sequences that were used in

the previous experiments, such that the sequence similarity between the homologous RNAs got

completely removed. During this process, bases that form complimentary base pairs were covaried

to preserve the original secondary structure. The experimental results are summarized in Table 4.3.

As we can see in Table 4.3, the prediction ratios have decreased only slightly, indicating that the

proposed approach does not depend too much on sequence similarity.

Profile-csHMM
SN (%) SP (%)

CORONA PK3 90.4 90.7
HDV RIBOZYME 91.3 91.5
TOMBUS 3 IV 93.3 93.4
FLAVI PK3 87.8 88.5

Table 4.3: Prediction results of the proposed method using randomly mutated RNA sequences.
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4.5 Fast search using prescreening filters

Although the structural alignment algorithm proposed in Section 4.4 runs relatively fast, it is still

too slow for scanning a large database. Recently, Weinberg and Ruzzo suggested the use of heuristic

profile-HMM filters to expedite CM-based searches [122]. They showed that using such filters can

make the scanning speed significantly faster with virtually no loss of performance. They also pro-

posed rigorous filters that are slower than the heuristic filters but guarantee no loss in the prediction

accuracy [121]. In a similar manner, it is possible to incorporate profile-HMM based prescreening

filters to speed up the database search based on profile-csHMMs. In this section, we elaborate how

we can construct such a prescreening filter based on a given profile-csHMM. The content of this

section is mainly drawn from [134].

4.5.1 Searching for similar sequences

Assume that we have constructed a profile-csHMM that reflects the common characteristics of an

RNA sequence family. Now, this model can be used to look for ‘similar’ sequences in a database.

An essential problem in performing a similarity search is how we can quantitatively measure the

similarity between a new observed sequence and the statistical model at hand. A widely used

approach is to compute the optimal probability of the observation based on the given model, and

use it as a similarity measure.

Let x = x1 . . . xL be an observed symbol sequence and let us denote its underlying state se-

quence as y = y1 . . . yLs . Note that the length of the state sequence Ls can be larger than the length

L of the observed sequence, when there exist deleted symbols. We also define Θ, which is the

set of model parameters of the profile-csHMM at hand. The similarity score S(x,Θ) between the

observation x and the profile-csHMM can be computed as follows

S(x,Θ) = max
y

S(x,y|Θ) = S(x,y∗|Θ), (4.3)

where S(x,y|Θ) is the score for x whose underlying state sequence is y. Note that y∗ is the optimal

state sequence that maximizes the similarity score S(x,y|Θ). If this similarity score is larger than a

predefined threshold λ such that S(x,Θ) ≥ λ, we can view the observed sequence as a good candi-

date that is likely to be a new member of the same sequence family. On the contrary, if S(x,Θ) < λ,

we can conclude that x is unlikely to be a member of the given family. Therefore, when we search
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a database to find new members, only those sequences that satisfy S(x,Θ) ≥ λ will be reported as

a “match.”

When using profile-csHMMs to represent sequence families, we can utilize the sequential compo-

nent adjoining (SCA) algorithm [129], which was proposed in Section 4.3 for finding y∗ and comput-

ing S(x,Θ). As mentioned earlier, the computational complexity of the SCA algorithm is variable,

and it depends on the correlation structure of the profile-csHMM [129]. For example, the complex-

ity for computing S(x,Θ) for typical RNA pseudoknots ranges between O(L4) and O(L6), which

can be very large for long RNA sequences.

One advantage of using profile-csHMMs in a similarity search is the increased specificity. When

computing the similarity score, profile-csHMMs combine contributions from sequence similarity as

well as structural similarity (in terms of symbol correlations). This makes it possible to reject false

candidates that look similar to the reference sequences in the sequence level, but do not preserve

the original correlation structure.

However, when performing a similarity search, there will be typically many sequences that

look very different from the reference sequences in the sequence level, such that their similarity

scores cannot exceed the threshold λ even after combining the contributions from their structural

similarity. As the measure of sequence level similarity can be quickly computed using a simpler

model, such as the profile-HMM, we do not have to use a profile-csHMM in such cases.

Based on this observation, we propose a practical strategy that can make the database search

much faster, compared to the search based on profile-csHMM alone. The proposed approach is

as follows. In the first place, we construct a prescreening filter using a profile-HMM. The profile-

HMM will have the same size as the original profile-csHMM, and its model parameters Θp will be

derived from the parameters Θ of the profile-csHMM. When given a new observation sequence, we

first compute the sequence level similarity score Sp(x,Θp) using the prescreening filter. This score

is compared with a new threshold λp to decide whether the overall similarity score S(x,Θ) can

exceed the original threshold λ after combining the contributions from the structural similarity. If

this is possible, the sequence is handed over to the full-blown profile-csHMM to compute S(x,Θ).

Otherwise, the observation will be rejected. The overall algorithm is illustrated in the flow chart

shown in Figure 4.10.
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Pre-screening Filter
Compute Sp(x,Qp)

Profile-csHMM
Compute S(x,Q)

Report as a Match
(New Member)

yes

no

yes

no

Reject
(False Candidate)

New Observation x

Sp(x,Qp) ≥ lp

S(x,Q) ≥ l

Figure 4.10: Illustration of the proposed algorithm.

4.5.2 Constructing the prescreening filter

Now the question is how to choose the model parameters of the profile-HMM and how we should

choose the threshold λp so that there will be no degradation in the prediction accuracy. In or-

der to answer this question, let us first define several notations. Firstly, we define the set K =

{k|Mk is a context-sensitive state}. At single-emission states and pairwise-emission states, we de-

note the emission score of a symbol x at state v as se(x|v). At context-sensitive states, the emission

score of a symbol xc at state v is denoted as se(xc|v, xp), where xp is the symbol that was previ-

ously emitted at the corresponding pairwise-emission state. A typical choice of the emission scores

would be the logarithm of the emission probabilities, but we can also use other scoring schemes.

The transition score from state v to state w is defined as st(v, w|m) for w = Dk,Mk, Ik−1, where

k ∈ K. The variable m ∈ {0, 1} indicates whether the memory associated with the context-sensitive
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state Mk is empty (m = 0) or not (m = 1). For all other w, the transition score is simply de-

fined as st(v, w). A typical choice for the transition scores would be the logarithm of the transition

probabilities, but we can also use other scores.

Based on the parameters of the original profile-csHMM defined above, we choose the parame-

ters of the prescreening filter as follows. In the first place, the emission scores are chosen as

sp
e(x|v) =

 minxp [se(x|v, xp)] for v = Mk (k ∈ K),

sp
e(x|v) = se(x|v) for other emitting states v.

We also define ∆e(k) for k ∈ K as follows

∆e(k) = max
x

(
max

xp

[se(x|v, xp)]−min
xp

[se(x|v, xp)]
)

. (4.4)

In the second place, the transition score of the profile-HMM for a transition from state v to state w

is chosen as follows

sp
t (v, w) =



st(v,Dk|m = 0) w = Dk (k ∈ K),

st(v,Mk|m = 1) w = Mk (k ∈ K),

minm st(v, Ik−1|m) w = Ik−1 (k ∈ K),

st(v, w) otherwise.

In addition to this, we define ∆t(k) for k ∈ K

∆t(k) =
(
max

m
[st(v, Ik−1|m)]−min

m
[st(v, Ik−1|m)]

)
. (4.5)

Finally, we choose the threshold of the prescreening filter to be λp = λ−∆, where ∆ =
∑

k∈K [∆e(k) + ∆t(k)].

4.5.3 No degradation in the prediction accuracy

Based on the prescreening filter constructed as described in Section 4.5.2, we can compute the se-

quence level similarity score as follows

Sp(x,Θp) = max
y

Sp(x,y|Θp) = Sp(x,y∗|Θp), (4.6)
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where y∗ is the optimal state sequence. Using the score in (4.6) with the threshold λp guarantees

that there will be no loss in the prediction accuracy. This can be shown as follows.

Theorem For an observed sequence x, if the score Sp(x,Θp) computed from the prescreening filter

is smaller than λp, its score S(x,Θ) from the original profile-csHMM cannot exceed λ.

Proof If Sp(x,Θp) < λp, we have

max
y∈Y

Sp(x,y|Θp) ≤ max
y

Sp(x,y|Θp) < λp,

where Y is the set of all feasible state sequences in the original profile-csHMM. Then we have

S(x,Θ) = max
y

S(x,y|Θ)

= max
y∈Y

S(x,y|Θ)

≤ max
y∈Y

Sp(x,y|Θp)︸ ︷︷ ︸
<λp

+max
y∈Y

[
S(x,y|Θ)− Sp(x,y|Θp)

]
︸ ︷︷ ︸

≤∆

< (λ−∆) + ∆ = λ. �

This shows that the prescreening filter will reject only those sequences that are guaranteed to be

rejected by the original profile-csHMM, hence there will be no degradation in the prediction accu-

racy.

4.5.4 Experimental results

To demonstrate the proposed idea, we carried out an experiment using real RNA sequences. We

first constructed a profile-csHMM for the CORONA-PK3 RNA family in the Rfam database [47]. We

used the “seed alignment” for constructing the model, as it provides a reasonably reliable struc-

tural annotation of the RNA family. Note that the secondary structure of CORONA-PK3 contains

pseudoknots, hence they cannot be modeled using CMs (or SCFGs). Based on the constructed

profile-csHMM, we have built a profile-HMM prescreening filter by following the procedure elab-

orated in Section 4.5.2.

After constructing the models, we evaluated the performance of the profile-csHMM search and
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that of the proposed prescreening approach. For evaluation, we used a database that consists of real

CORONA-PK3 RNA sequences and 10,000 random RNA sequences. As expected, the prescreening

filter did not miss any RNA that was reported as a “match” by the original profile-csHMM. Con-

sequently, the prediction accuracies of both methods were identical. The average CPU time used

by the prescreening filter to compute the similarity score Sp(x,Θp) was 0.0093 sec, which is much

smaller than 28.1 sec of the profile-csHMM.3 The rejection rate of the prescreening filter was around

98.8%, hence only 1.2% of the inspected RNAs was passed to the profile-csHMM in the second

stage. As a result, the average CPU time used by the proposed method was around 0.34 sec, which

is around eighty times faster than the search method based on a profile-csHMM alone.

It is important to note that the rejection rate of the prescreening filter has a crucial impact on the

overall reduction in the search time. Ideally, the prescreening filter should reject most sequences

that will be rejected by the profile-csHMM, and pass only a small fraction to the second stage for

further inspection. However, there can be also occasions when the rejection rate is quite small, in

which case the reduction in the search time will not be significant. For many applications, the cri-

terion used in Section 4.5.2 for deriving the parameters of the prescreening filter and the threshold

λp will be too stringent, and it may be beneficial to relax it a little bit to make the search faster, at a

slight loss of the prediction accuracy.

4.6 Conclusion

In this chapter, we proposed the concept of profile-csHMMs that can provide an effective frame-

work for representing RNAs with various secondary structures including pseudoknots. Based on

profile-csHMMs, we proposed a structural alignment algorithm that can be used for aligning pseu-

doknots and predicting their secondary structures. Experimental results indicate that the prediction

accuracy of the profile-csHMM approach is comparable to the state-of-the-art method. In addition

to this, profile-csHMMs can handle a considerably larger class of secondary structures than the

existing models at a low computational cost.

The good prediction performance of the proposed scheme, as well as its generality and the rel-

atively low computational cost makes profile-csHMMs an attractive choice for building homology

search tools for noncoding RNAs. For example, we can build a family-specific prediction program

similar to the tRNA CM [26], which finds new candidates that may belong to the given RNA fam-

3We used a fixed search region size of D = 7.
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ily. Although we have used a non-stochastic scoring matrix in our structural alignment algorithm

described in Section 4.4, we can also use a fully stochastic model with position-dependent proba-

bilities to improve the specificity of the prediction. These probabilities can be easily obtained from

the multiple sequence alignment of the RNA family that is under consideration.

Another interesting application would be to build a BLAST-like tool that uses a single RNA

with a known structure for finding structural homologues. Klein and Eddy developed a database

search program called RSEARCH [57] that finds homologues of single structured RNAs, and they

showed that it outperforms primary sequence-based programs (including BLAST) in many cases.

As RSEARCH is based on covariance models, they cannot be used for finding pseudoknots. We

can develop a more general search program based on profile-csHMMs that can practically deal

with any kind of RNA secondary structures.

When implementing a homology search algorithm based on profile-csHMMs, we can incorpo-

rate prescreening filters as proposed in Section 4.5, in order to make the search faster. As shown

in Section 4.5.2, this prescreening filter can be constructed using a simple profile-HMM whose pa-

rameters are chosen based on the parameters of the original profile-csHMM. This prescreening

filter rejects only those sequences that are guaranteed to be rejected by the original profile-csHMM.

This leads to a considerable reduction in the overall search time without any degradation in the

prediction accuracy of the search. We may improve the search speed even further by optimizing

the parameters of the prescreening filter or by applying heuristic methods for choosing the filter

parameters that will make the search even faster with a small trade-off in the prediction accuracy.
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Chapter 5

Predicting Protein-Coding Genes
Using Digital Filters

Analysis of various genomes has revealed that there exist strong period-3 patterns in the protein-

coding regions of DNA sequences [15, 37, 106, 107]. Such periodic patterns have been observed

in the coding region of various organisms, including both simple organisms such as S. cerevisiae

(budding yeast) and C. elegans (nematode), and also complex organisms such as humans. Re-

search shows that this periodicity is frequently observed in coding regions, while non-coding re-

gions rarely contain such periodic components [106]. One explanation for the period-3 behavior

in protein-coding sequences is the codon, which is a triplet of nucleotides. The protein synthesis

process is governed by the so-called “genetic code,” which is a set of rules that is used to trans-

late the information encoded in DNA sequences into proteins, where a protein is a sequence of

amino acids. During the synthesis process, a codon is mapped into an amino acid. Codon compo-

sition bias in coding-regions is viewed as an important source of the 3-periodicity, while the bias in

amino acid composition among naturally occurring proteins may also have a significant effect on

this phenomenon [106, 137].

Although there are exceptions [106], the period-3 property is generally viewed as a reasonable

indicator of protein-coding genes. As the discrete Fourier transform (DFT) can effectively separate

a signal into components with different frequencies (or periods), there have been several techniques

based on DFT that exploited this property to identify coding regions [3, 20, 106].

In a similar manner, we can use digital filters for predicting protein-coding genes [48, 92, 110,

111, 112]. Digital signal filtering techniques provide more efficient ways to identify coding regions

than the conventional DFT-based approaches. In this chapter, we propose simple and efficient gene

prediction schemes based on digital filters. The content of this chapter has been mainly drawn
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from [110, 111, 112].

5.1 Outline

In Section 5.2 we elaborate on the period-3 property that is commonly observed in many protein-

coding regions, and show that this property can be used for identifying these regions in DNA

molecules. The putative source of this behavior is also briefly discussed.

In Section 5.3, we review the conventional DFT-based prediction methods that have been pro-

posed by several researchers [3, 106]. In order to use the DFT approach, we need to convert the

DNA sequence into a numerical sequence. The indicator sequence for each of the four bases (A, C,

G, T), which is defined in Section 5.3.1, can be used for this purpose. In Section 5.3.2, we review

the concept of DNA spectrogram that can be used for isolating the period-3 components. Relation

between the DFT approach and digital filtering is given in Section 5.3.3.

Based on the observation in Section 5.3.3, we propose a new gene prediction method in Sec-

tion 5.4, which uses antinotch filters. As will be shown in Section 5.4, the antinotch filter approach

is computationally very efficient and also provides a good prediction performance. In Section 5.4.1,

we first consider how such filters can be obtained. Then the efficient implementation of such

antinotch filters using the lattice structure is considered in Section 5.4.2. Experimental results based

on a real DNA sequence is shown in Section 5.4.3, which demonstrates the effectiveness of the pro-

posed method.

The prediction results can be further improved by using digital filters that are designed using

the multistage filtering approach, which is introduced in Section 5.5. We first show in Section 5.5.1

how we can design a good bandpass filter using this approach. An example of a low complexity

implementation of a multistage filter that can be used for identifying the coding regions is given

in Section 5.5.2. Finally, we compare the performance of the DFT approach, the antinotch filter

approach, and the multistage filtering approach in Section 5.5.3.

Concluding remarks are given in Section 5.6, where we briefly mention other gene identification

schemes and also suggest how the prediction methods proposed in Section 5.4 and Section 5.5 can

be incorporated into them.
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5.2 Period-3 patterns in protein-coding regions

As mentioned earlier, the protein-coding regions of many DNA sequences exhibit a period-3 pat-

tern [15, 37, 106, 107]. Since this periodicity is rarely observed in non-coding regions, such as introns

and intergenic regions, the period-3 property can be used for discriminating between coding and

non-coding regions. Although it is obvious that this periodicity comes from the fact that the codon

consists of three nucleotides, it is not so clear why this periodicity is mainly observed in coding

regions.

There have been several explanations for the source of this periodicity. For example, some

researchers have attributed this behavior to the nonuniform usage of codons. As 64 codons are

mapped into 20 different amino acids, there exist amino acids that can be coded by two or more

distinct codons. This is commonly referred as the degeneracy of the genetic code. Although multiple

codons can encode the same amino acid, not all of them are used with equal frequency. In fact,

the codon usage is generally not uniform, resulting in a codon composition bias in coding-regions.

However, the work by Tiwari et al. [106] indicate that the codon bias may not be the primary source

of the period-3 behavior. In fact, experimental results in [106] suggest that a more important source

of this periodicity may be the biased usage of amino acids in naturally occurring proteins [137].

Although the period-3 patterns are frequently observed in the coding regions of DNA sequences,

there are also exceptions. For example, it has been reported in [106] that the genes of the mating-

type locus of S. cerevisiae and the genes of the amoebapores of E. histolytica lack this property.

5.3 Finding genes from the DNA spectrum

As the period-3 property provides a reasonable preliminary indicator of protein-coding regions,

there have been several methods based on DFT (discrete Fourier transform) that exploit this prop-

erty to identify coding regions in a DNA sequence [3, 106]. In this section, we briefly review the

basic concept of the DFT-based gene prediction algorithms.

5.3.1 Indicator Sequence

In order to use the DFT approach, we first have to convert the DNA sequence into a numerical

sequence so that we can compute the DFT coefficients of its segments. For this purpose, we define

the indicator sequences for the four bases A, C, G, and T as follows. As an example, let us consider
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the following DNA sequence

d(n) = A C A G G T T A C G C C T A G G . . .

For a base “B,” we define its indicator sequence xB(n) of the symbol sequence d(n) as follows

xB(n) =

 1 if d(n) = B,

0 otherwise.

Following this definition, the indicator sequences xB(n) for the fours bases B∈{A, C, G, T} can be

defined as follows
xA(n) = 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0

xC(n) = 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0

xG(n) = 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 1

xT (n) = 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 .

Note that

xA(n) + xC(n) + xG(n) + xT (n) = 1, ∀ n

from the definition of xA(n), xC(n), xG(n), and xT (n).

5.3.2 Using DFT for detecting the period-3 patterns

Let us consider a length-N block of an indicator sequence xB(n). For simplicity, we assume that

this block is located in 0 ≤ n ≤ N − 1. The DFT of xB(n) is defined as

XB [k] =
N−1∑
n=0

xB(n)e−j2πkn/N ,

for 0 ≤ k ≤ N − 1. The DFT coefficient XB [k] gives us a measure of the strength of the signal com-

ponents in the frequency band around ω = 2πk/N . After computing the DFTs XA[k], XC [k], XG[k],

and XT [k] of the four indicator sequences, we combine them to compute the DNA spectrogram

S[k]

S[k]
4
= |XA[k]|2 + |XC [k]|2 + |XG[k]|2 + |XT [k]|2.

In order to compute the strength of the period-3 component (whose frequency is f = 1/3), we can

simply look at the value of the spectrogram at the point k = N/3. In order to have an integer value

for k = N/3, the length N is chosen to be a multiple of 3. If the original DNA sequence has a strong
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period-3 component, S[N/3] will be large, and if this periodic component is absent, S[N/3] will

have a relatively small value. Therefore, if the DNA belongs to a coding region, S[k] is likely to

have peak at k = N/3, while such a peak is not observed in non-coding regions. Such behaviors

have been demonstrated in many papers [3, 106], although the strength of the peak highly depends

on the respective gene. The peak at k = N/3 can be sometimes very pronounced, and sometimes

quite weak.

If we slide the length-N window by one or more bases and plot the value of S[N/3] for each

location, we can obtain an evolving picture of how S[N/3] changes over different locations in the

DNA sequence. This picture allows us to infer the locations of the protein-coding regions. It is

important to make the window size N sufficiently large so that the peak due to the periodicity

dominates the noisy background. For example, the methods proposed in [3, 106] both use N = 351.

However, we cannot make the window size too large, since using a longer window requires more

computations and also degrades the resolution for identifying the start and end positions of the

exons.

5.3.3 Relation to digital filtering

The DFT-based sliding window method in the previous section can be viewed as digital filtering

followed by a decimator, where the decimation ratio depends on the separation between the adja-

cent locations of the window [110, 112]. The corresponding digital filter has a very simple impulse

response w(n) as follows

w(n) =

 ejω0n 0 ≤ n ≤ N − 1,

0 otherwise,

where ω0 = 2π/3. This is a bandpass filter with a passband centered at ω0 = 2π/3. The magnitude

response of w(n) is shown in Figure 5.1. As we can see in Figure 5.1, the minimum stopband

attenuation of this filter is around 13 dB, which is not very high. If we design a better bandpass

filter h(n) that has a higher stopband attenuation than the simple DFT window w(n), we will be

able to isolate the period-3 component from the rest of the signal more effectively. Furthermore,

we can also use efficient methods for designing and implementing such filters that can reduce the

overall computational complexity.

Let us assume that we have designed a bandpass filter H(z), whose passband is centered at
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w

|W(ejw)|

2p/3

13 dB attenuation

Figure 5.1: The magnitude response of the sliding window w(n).

ω0 = 2π/3. We can pass the indicator sequence xB(n) (B ∈ {A,C,G, T}) through H(z) to obtain

yB(n) = h(n) ∗ xB(n).

In the coding regions, we expect xB(n) to contain a period-3 pattern, hence most of its energy is

concentrated in the passband of H(z). Consequently, yB(n) is expected to have a large magnitude

in the coding regions. On the contrary, in non-coding regions, where xB(n) does not have a period-

3 pattern, most of the energy of the indicator signal xB(n) will be suppressed by H(z). So, the

magnitude of yB(n) will be small in these regions. This idea is illustrated in Figure 5.2. Based on

the output signals for the four indicator sequences, we define

Y (n) = |yA(n)|2 + |yC(n)|2 + |yG(n)|2 + |yT (n)|2.

As the DFT coefficient S[N/3] could be used for predicting the coding regions, we can use Y (n) as

a preliminary indicator of these regions.1

Now, the question is how we can design a bandpass filter H(z) that has a narrow passband

centered at ω0 = 2π/3 and also has a low complexity. In the following sections, we introduce some

efficient methods for designing such filters.

1Interestingly enough, in a number of coding regions, using only |yG(n)|2 yields better prediction results than using all
four output signals.
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Anti-notch filter
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w
2p/3p/3 p

|H(ejw)|

Figure 5.2: The indicator sequence xB(n) is passed through the bandpass filter H(z). The output
yB(n) will be large in the coding regions due to the period-3 component.

5.4 IIR antinotch filters

In [110], we proposed a gene prediction method based on IIR (infinite impulse response) antinotch

filters (i.e., complements of notch filters). In this section, we describe how such antinotch filters

can be designed, and present some experimental results that demonstrate the effectiveness of this

approach.

5.4.1 Designing antinotch filters

Anti-notch filters can be effectively designed from a second-order allpass filter

A(z) =
R2 − 2R cos θz−1 + z−2

1− 2R cos θz−1 + R2z−2
.

This allpass filter A(z) has poles at Re±jθ and zeros at 1/Re±jθ. Let us consider a filter bank with

two filters G(z) and H(z) that are obtained from the allpass filter

 G(z)

H(z)

 =
1
2

 1 1

1 −1

 1

A(z)

 . (5.1)
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This shows that GðzÞ is a notch filter [12] with a zero at the frequency o0: When the
pole radius R is close to the unit circle we see that o0 gets close to y: That is, the pole
and zero of the filter GðzÞ are very close to each other (Fig. 5). Thus, at frequencies
sufficiently away from o0; the response is close to unity. This is demonstrated in
Fig. 6, which shows the magnitude response of GðzÞ for two values of R:
From Eq. (2) we see that

GðejoÞ

HðejoÞ

" #
¼

Uffiffiffi
2

p 1

AðejoÞ

" #
;

where U is unitary, that is, UtU ¼ I: This shows that

jGðejoÞj2 þ jHðejoÞj2 ¼
1þ jAðejoÞj2

2
¼ 1;

where we have used the allpass property jAðejoÞj ¼ 1: It therefore follows that GðzÞ
and HðzÞ are power complementary. This shows, in particular, that the filter HðzÞ
is a good antinotch filter as demonstrated in Fig. 7, for the same pole radii chosen
in Fig. 6.
By choosing o0 ¼ 2p=3 the filter HðzÞ can be used to extract the period-3 regions

of the DNA effectively. The allpass filter AðzÞ can be implemented with either the
direct form structure or the cascaded lattice structure [11,13]. The lattice structure
with one-multiplier sections is especially attractive [11,12], and Fig. 8 shows
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Fig. 5. Poles and zeros of the notch filter GðzÞ and the allpass filter AðzÞ:

P.P. Vaidyanathan, B.-J. Yoon / Journal of the Franklin Institute 341 (2004) 111–135 117

Figure 5.3: Poles and zeros of the notch filter G(z) and the allpass filter A(z).

From (5.1), the filter G(z) can be written as

G(z) = K

(
1− 2 cos ω0z

−1 + z−2

1− 2R cos θz−1 + R2z−2

)
,

where

cos ω0 =
2R cos θ

1 + R2
, (5.2)

and

K =
R2 + 1

2
.

This shows that the filter G(z) is a notch filter [83], whose zeros are located at the frequency ω0. We

can see from (5.2), that the frequency ω0 gets close to θ when R is close to unity. In this case, the

pole and the zero of the filter G(z) are very close to each other as illustrated in Figure 5.3. Therefore,

at frequencies that are sufficiently away from ω0, the magnitude response of G(z) will be close to

unity. This is demonstrated in Figure 5.4, which shows the magnitude response of the filter G(z)

for two different values of R.
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the implementation of HðzÞ using this lattice. The multipliers in this structure are the
lattice coefficients

k1 ¼ R2; k2 ¼ �coso0:

Since the antinotch frequency is o0 ¼ 2p=3 we have

k2 ¼ �coso0 ¼ 1=2
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Fig. 7. Antinotch filter responses for two values of R:
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Figure 5.4: Magnitude response of the notch filter G(z) for two values of R.

the implementation of HðzÞ using this lattice. The multipliers in this structure are the
lattice coefficients

k1 ¼ R2; k2 ¼ �coso0:

Since the antinotch frequency is o0 ¼ 2p=3 we have

k2 ¼ �coso0 ¼ 1=2
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Figure 5.5: Magnitude response of the antinotch filter H(z) for two values of R.
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which can be implemented with a binary shift. So the only significant multiplier is R2;
and controls the antinotch quality without affecting the frequency o0 (Fig. 7). Thus
we can adjust R2 depending on the base-domain resolution desired.

3.4. Multistage filters

Even though the IIR antinotch method has been found to work well, with a slight
increase in the number of multipliers we can design filters with much better stopband
attenuation. Such filters are essential in order to suppress the background 1=f noise
which is always there in the DNAs of many organisms, due to long-range correlation
between base pairs.
The method to be presented is based on the idea of multistage filtering [10,11]. To

explain this consider a narrowband lowpass filter H1ðzÞ as shown in Fig. 9(a). If we
replace each delay element z�1 in the filter with z�3; we get the filter H1ðz3Þ whose
response is as shown in Fig. 9(b). Thus, there is a passband centered at 2p=3 and a
passband at o ¼ 0: If we now cascade this with a filter H2ðzÞ which attenuates the
zero-frequency passband severely, the resulting filter

HðzÞ ¼ H1ðz3ÞH2ðzÞ
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unwanted passband at o ¼ 0:
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Figure 5.6: Implementation of the antinotch filter H(z) = V (z)/X(z) using a lattice structure.

From (5.1), we can see that the frequency response of G(z) and H(z) can be written as

 G(ejω)

H(ejω)

 =
U√
2

 1

A(ejω)

 , (5.3)

where U is a unitary matrix that satisfies

UHU = I.

From (5.3), we can see that

∣∣G(ejω)
∣∣2 +

∣∣H(ejω)
∣∣2 =

1 +
∣∣A(ejω)

∣∣2
2

= 1,

since |A(ejω)| = 1 as A(z) is an allpass filter. This shows that the two filters G(z) and H(z) are power

complementary [109]. As G(z) is a good notch filter as shown in Figure 5.4, the power complemen-

tary filter H(z) becomes a good antinotch filter, as we can see in Figure 5.5. By choosing ω0 = 2π/3,

the filter H(z) can be used to identify the regions in a DNA sequence that display strong period-3

property.

5.4.2 Implementation of the antinotch filter using a lattice structure

The allpass filter A(z) that is used to obtain the antinotch filter H(z) can be implemented either

in a direct form structure [74] or in a cascaded lattice structure [83, 109]. The lattice structure is

especially attractive as it is computationally efficient. Figure 5.6 shows the implementation of the

filter H(z) using a lattice structure. The structure shown in Figure 5.6 has two multipliers which

are used as the lattice cofficients

k1 = R2, k2 = − cos ω0.
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Since ω0 = 2π/3 in our application, we have

k2 = − cos ω0 = 1/2,

which can be implemented using a binary shift. Therefore, the only significant multiplier is R2,

which controls the quality of the antinotch filter without affecting the frequency ω0 = 2π/3. We can

adjust the value of R2 to control the base-domain resolution as desired.

5.4.3 Experimental results

In order to demonstrate the proposed idea, we performed the following experiment. We first took

a segment of DNA sequence in C. elegans chromosome III (GenBank accession number AF099922;

base locations 7,021–15,080) and computed the four indicator sequences xA(n), xC(n), xG(n), and

xT (n). This DNA segment contains the protein-coding gene F56F11.4 that consists of five exons.

Firstly, we used the DFT-based method to compute S[N/3]. Figure 5.7 (Top) shows the plot of

S[N/3] as function of relative base location (n = 0 corresponds to the base location 7,021 in the

original DNA sequence). As we can see in Figure 5.7 (Top), the last four exons have clearly visible

peaks. However, the peak that arises from the first exon is somewhat buried in the noisy back-

ground and it is not easily distinguishable from the spurious peaks. The plot in Figure 5.7 (Bottom)

shows the output Y (n) obtained by the allpass-based antinotch filter with a pole radius R = 0.992.

In this plot, the first peak is also larger than the spurious peaks in the background, showing the

location of the first exon more clearly. This result shows that the antinotch filter approach works

very well, while providing additional advantages in implementation.

5.5 Multistage filters

Although it has been demonstrated that the IIR antinotch approach works quite well, we can im-

prove the performance further by designing a filter with a better stopband attenuation at a slight

increase in the number of multipliers.. Such filters are essential for suppressing the background

noise (for example, the so-called 1/f noise that arises from the long-range correlations in DNA

sequences [76, 117, 135]). In this section, we introduce a method based on the idea of multistage

filtering [109]. This method was proposed in [111, 112].
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Fig. 11. Top plot: the DFT based spectrum S½N=3� for gene F56F11.4 in the C-elegans chromosome III.

Middle plot: the antinotch filter output (Section 3.3) for the same gene. Bottom plot: the multistage

narrowband bandpass filter output (Section 3.4) for the same gene.
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Figure 5.7: Exon prediction results for the gene F56F11.4 in the C. elegans chromosome III. (Top)
Plot of S[N/3] computed using the DFT. (Bottom) Plot of Y (n) that is computed using the antinotch
filter.



132

which can be implemented with a binary shift. So the only significant multiplier is R2;
and controls the antinotch quality without affecting the frequency o0 (Fig. 7). Thus
we can adjust R2 depending on the base-domain resolution desired.

3.4. Multistage filters

Even though the IIR antinotch method has been found to work well, with a slight
increase in the number of multipliers we can design filters with much better stopband
attenuation. Such filters are essential in order to suppress the background 1=f noise
which is always there in the DNAs of many organisms, due to long-range correlation
between base pairs.
The method to be presented is based on the idea of multistage filtering [10,11]. To

explain this consider a narrowband lowpass filter H1ðzÞ as shown in Fig. 9(a). If we
replace each delay element z�1 in the filter with z�3; we get the filter H1ðz3Þ whose
response is as shown in Fig. 9(b). Thus, there is a passband centered at 2p=3 and a
passband at o ¼ 0: If we now cascade this with a filter H2ðzÞ which attenuates the
zero-frequency passband severely, the resulting filter

HðzÞ ¼ H1ðz3ÞH2ðzÞ
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Figure 5.8: Designing a bandpass filter based on multistage filtering. (a) Magnitude response of
the prototype narrowband lowpass filter H1(z). (b) Magnitude response of H1(z3). (c) Magnitude
response of H2(z) that can be used to eliminate the undesirable passband of H1(z3) at ω = 0.

5.5.1 Designing a multistage filter

The multistage approach provides an efficient way to design a bandpass filter. In order to see

how it works, let us consider a narrowband lowpass filter H1(z) as shown in Figure 5.8 (a). If we

replace every delay z−1 in the prototype filter H1(z) with z−3, we get a new filter H1(z3) whose

magnitude response is as shown in Figure 5.8 (b). We can see that H1(z3) has two passbands which

are centered at ω = 0 and ω = 2π/3. Note that the width of each passband is narrower than that of

the original filter H1(z). In order to eliminate the undesirable passband at ω = 0, we cascade H1(z3)

with a highpass filter H2(z) that is shown in Figure 5.8 (c). This idea is illustrated in Figure 5.9. The

overall response of the cascaded filter is

H(z) = H1(z3)H2(z).

This multistage filter H(z) is a narrowband filter with a passband centered at 2π/3, which can be

used for isolating the period-3 component in a given signal. The basic concept of the multistage

filter design is similar to the so-called IFIR (interpolated FIR) method proposed by Neuvo et al. [72].
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H1(z
3)x(n) y (n)H2(z)

H(z) = H1(z
3) H2(z) 

Figure 5.9: Multistage filtering.

5.5.2 Low complexity implementation

We can obtain a good bandpass filter H(z) with a high stopband attenuation from H1(z) and H2(z)

with very low complexity. Figure 5.10 illustrates such an example. In this example, the prototype

filter H1(z) is a third-order elliptic filter. The magnitude response of H1(z) and H1(z3) is shown in

Figure 5.10 (a) and Figure 5.10 (b), respectively. The highpass filter H2(z) is chosen to be a simple

FIR filter with two zeros at ω = 0

H2(z) = (1− z−1)2,

whose response is shown in Figure 5.10 (c). The overall response of the cascaded filter H(z) =

H1(z3)H2(z) is shown in Figure 5.10 (d). We can see that H(z) has a narrow passband centered at

ω = 2π/3 and excellent stopband attenuation at most frequencies.

When implemented in direct form [74], H1(z) requires 5 multipliers, and H2(z) is multiplier-

less. However, we can also implement the elliptic filter H1(z) using the allpass decomposition

method [109], which requires even fewer multipliers. Based on the allpass decomposition method,

the third-order elliptic filter H1(z) can be written as

H1(z) =
A0(z) + A1(z)

2
,

where A0(z) is a first order allpass filter and A1(z) is a second-order allpass filter, both with real

coefficients. Using the lattice structure as in Section 5.4.2, we can implement the filter A0(z) with

a single multiplier, and the filter A1(z) with two multipliers, so that H1(z) requires only three

multipliers in total. To summarize, the filter designed by the multistage approach has a significantly

better characteristic than the allpass-based antinotch filter, at a slightly higher complexity.
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is a narrowband filter with passband centered at 2p=3: We will demonstrate that
H1ðzÞ and H2ðzÞ can be designed with very low complexity, and that the filter predicts
the exons with good accuracy. The multistage idea is similar in principle to the
so-called IFIR method introduced by Neuvo et al. [11,14].
Fig. 10 shows an example. Here H1ðzÞ is a third order elliptic filter and H2ðzÞ is

chosen to have two zeros at o ¼ 0; that is,

H2ðzÞ ¼ ð1� z�1Þ2:

The various filter responses involved in the multistage design are shown in the figure.
Part (d) shows the multistage filter HðzÞ which has a narrow passband at o ¼ 2p=3;
and excellent attenuation at most frequencies. Implemented in direct form [13], H1ðzÞ
requires 5 multipliers, and H2ðzÞ is multiplierless.
It should be noticed here that H1ðzÞ can be implemented using the allpass

decomposition method [11], which allows the third order elliptic filter to be written in
the form

H1ðzÞ ¼
A0ðzÞ þ A1ðzÞ

2
;
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Fig. 10. Magnitude responses of filters in the multistage design method. From (a) to (d): the IIR lowpass

filter H1ðzÞ; the expanded version H1ðz3Þ; the FIR filter H2ðzÞ; and the multistage filter H1ðz3ÞH2ðzÞ:
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Figure 5.10: Magnitude response of the filters used in the multistage design method. (a) Lowpass
elliptic filter H1(z). (b) The response of the filter H1(z3). (c) FIR lowpass filter H2(z). (d) The
magnitude response of the cascaded filter H(z) = H1(z3)H2(z).
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5.5.3 Experimental results

In order to evaluate the performance of the multistage filtering approach, we used the same DNA

sequence (C. elegans chromosome III; GenBank accession number AF099922; base locations 7,021–

15,080) that was used to demonstrate the performance of the antinotch filter method. Figure 5.11 (c)

shows the output of the multistage filter, along with the output of the DFT approach (shown in

Figure 5.11 (a)) and the output of the antinotch filter (shown in Figure 5.11 (b)). As we can see in

this example, the proposed multistage filtering approach shows all peaks that correspond to the

five exons in the gene F56F11.4 very clearly. Unlike the output signals of the DFT method and

the antinotch filter method, the background noise is almost completely removed in Figure 5.11 (c)

owing to the high stopband attenuation of the multistage filter.

5.6 Conclusion

As explained in detail in [38], gene identification is a complicated problem, and the identification of

the period-3 patterns is only a first step towards gene and exon prediction. Due to the complex na-

ture of the gene identification problem, we usually need a more powerful model that can effectively

represent the characteristics of protein-coding genes. In fact, many state-of-the-art protein-coding

gene finders are built on hidden Markov models (HMMs) and their variants [25, 28, 58, 59, 96], as

HMMs are very effective in representing the conserved patterns in DNA sequences as well as the

short-term correlations between adjacent bases. However, HMMs are computationally much more

expensive than the prediction methods based on digital filters. Therefore, we can use the prediction

methods proposed in Section 5.4 and Section 5.5 for a fast prescreening of the genome and use a

more powerful model (such as an HMM) in the second stage in order to expedite the overall gene

identification process.
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Fig. 11. Top plot: the DFT based spectrum S½N=3� for gene F56F11.4 in the C-elegans chromosome III.

Middle plot: the antinotch filter output (Section 3.3) for the same gene. Bottom plot: the multistage

narrowband bandpass filter output (Section 3.4) for the same gene.
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Figure 5.11: Exon prediction results for the gene F56F11.4 in the C. elegans chromosome III. (Top)
Plot of the output S[N/3] of the DFT-based approach. (Middle) Plot of the output of the antinotch
filter method. (Bottom) Plot of the output of the multistage filter approach.
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Chapter 6

Identification of CpG Islands Using
Filter Banks

CpG islands are specific regions in DNA molecules that are abundant in the dinucleotide CpG. This

dinucleotide is usually denoted as CpG in order to distinguish it from the C-G base pair across

the two strands in a DNA double helix. The CpG islands are of our interest for many biological

reasons. For example, it has been shown that CpG islands can be used as gene markers, since

they are located upstream of the transcription start regions of many genes [61]. Analysis of the

human genome shows that all housekeeping genes (which are genes that are expressed in all cells

throughout the body, and produce proteins that are necessary for basic maintenance and cellular

functions) and 40% of the tissue-specific genes are associated with CpG islands [61]. This makes

them useful landmarks for identifying protein-coding regions in the human genome. Moreover,

experiments have shown that the methylation1 of CpG islands plays an important role in gene

silencing [10], genomic imprinting [36], carcinogenesis [55], and so forth.

As the CpG islands have unique characteristics, such as the frequent occurrence of CpG din-

ucleotides and the high G+C content, we can use computational techniques for identifying CpG

islands in DNA sequences. Until now, several CpG island prediction methods have been proposed,

each with its own strength and weakness [25, 40, 90, 103].

In this chapter, we propose a novel scheme for detecting the CpG islands. The proposed method

is based on a digital signal processing technique that uses a bank of IIR lowpass filters. Despite the

simplicity of the proposed method, it is capable of identifying CpG islands efficiently at a very low

computational cost. The content of this chapter is mainly drawn from [124].

1Methylation refers to the replacement of a hydrogen atom with the methyl group. For example, in DNA methylation,
the cytosine is replaced by a 5-methylcytosine [8].
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6.1 Outline

This chapter is organized as follows.

In Section 6.2, we review some of the conventional CpG island prediction methods that have

been proposed in the literature [25, 40, 103]. We especially focus on the method based on Markov

chains, and describe its technical details in Section 6.2.1. Experimental results obtained from the

conventional Markov chain approach is presented in Section 6.2.1.

In Section 6.3, we propose a new method for identifying CpG islands based on a bank of IIR low-

pass filters. Firstly, we give a digital filtering interpretation of the conventional approach described

in Section 6.2.1, and propose the filter-bank approach in Section 6.3.1. We show the experimental

results of the proposed method in Section 6.3.2, and then explain in Section 6.3.3 how this result

can be used for predicting the exact location of the CpG island.

We conclude the chapter in Section 6.4.

6.2 Identification of CpG islands

The first large-scale computational analysis of CpG islands traces back to the work of Gardiner-

Garden and Frommer in 1987 [40]. They defined CpG islands as regions of at least 200 bp (base

pairs) length, with a G+C content higher than 50% and the observed CpG to expected CpG ratio

equal to or above 0.6. The exact definition of CpG islands is somewhat arbitrary, since the choice of

the cut-off parameters can have a critical impact on which regions are included in the definition of

the CpG islands. For example, Takai and Jones redefined the CpG island as a region of DNA whose

length is at least 500 bp with a G+C content equal to or above 55% and observed CpG to expected

CpG ratio above 0.65 [103]. By using the new definition, they could find regions that are more likely

to be associated with the 5’ regions of genes while excluding most of the so-called Alu-repeats [103].

In addition to these simple schemes, there are other interesting approaches that make use of

more sophiscated–hence, more powerful–techniques [19, 25, 90]. One such example is the tech-

nique based on Markov chains, which we present next.

6.2.1 Markov chains

Markov chains can effectively model the short-term dependencies between the adjacent symbols in

a symbol sequence. For example, in [25], Markov chains are used to describe the different sequence
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characteristics inside a CpG island and outside CpG islands. In this scheme, one Markov chain is

used to model CpG islands and another chain is used to model the rest of the genome, where the

two Markov chains have different statistics (i.e., different transition probabilities). Based on the

two Markov chains, the prediction scheme works as follows. Given a short DNA sequence, we

first compute the log-score of this sequence based on each Markov chain. Then the two scores are

compared to each other to choose the more likely one. This allows us to decide whether the given

DNA segment belongs to a CpG island or not.

Let us consider a sequence of nucleotides x(n) ∈ {A,C, T, G}. We assume that x(n) forms

a first-order Markov chain, where the probability of each symbol x(n + 1) depends only on the

current symbol x(n). Now, let us denote the transition probability from a base β to a base γ in a

CpG island and that in a non-CpG island region as p+
βγ and p−βγ , respectively. For example, p+

AC is

the probability that the next symbol will be a C, given that the current symbol is an A inside a CpG

island. Using these notations, the probability of observing the sequence x(n)x(n+1) · · ·x(n+L−1),

assuming that it belongs to a CpG island and that the previous symbol was x(n− 1) can be written

as

P (n|CpG) = P (x(n) · · ·x(n + L− 1)|x(n− 1), CpG model),

=
L−1∏
i=0

p+
x(n−1+i)x(n+i)

Similarly, the probability of observing this sequence, assuming that it belongs to a non-CpG island

region is

P (n|non-CpG) = P (x(n) · · ·x(n + L− 1)|x(n− 1), non-CpG model),

=
L−1∏
i=0

p−x(n−1+i)x(n+i)

If P (n|CpG) is greater than P (n|non-CpG), we can conclude that the DNA sequence x(n)x(n +

1) · · ·x(n + L− 1) belongs to a CpG island. Otherwise, it is more likely that the sequence does not

belong to a CpG island. Therefore, if we define

S(n) = log
P (n|CpG)

P (n|non-CpG)
, (6.1)

which is the log-likelihood ratio. S(n) > 0 implies that the given DNA sequence is more likely to
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p+
βγ A C G T
A 0.1598 0.2914 0.4247 0.1241
C 0.1299 0.3862 0.3093 0.1746
G 0.1425 0.3675 0.3675 0.1225
T 0.0758 0.3742 0.3687 0.1813

Table 6.1: Transition probabilities inside the CpG island region.

p−βγ A C G T
A 0.2499 0.2209 0.3526 0.1766
C 0.2810 0.3352 0.0941 0.2897
G 0.2159 0.2586 0.3397 0.1858
T 0.1283 0.2624 0.3594 0.2499

Table 6.2: Transition probabilities in the non-CpG island region.

belong to a CpG island, whereas S(n) < 0 implies that the sequence is likely to belong to a non-CpG

island region.

6.2.2 Experimental results

Despite the simplicity of this idea, it has been shown that this method works quite well [25]. In

order to see this, let us consider the following experiment. First, we took a DNA sequence of length

219,447 from the human chromosome X (GenBank accession number L44140) that has been already

annotated, and computed the transition probabilities for the two regions. These are shown in Table

6.1 and Table 6.2. Each row in the table contains the transition probabilities from a specific base to

each of the four bases. For example, the first row of Table 6.1 contains the probabilities that each

of the four bases will follow the base A inside CpG islands. Therefore, every row in the tables

adds up to unity. By comparing Table 6.1 and Table 6.2, we can find an interesting fact about the

transition probabilities. In Table 6.1, we can see that the probability that a C will be followed by

a G is very high inside the CpG islands, resulting in many CpG dinucleotides. However, this is

not the case outside the CpG islands. Table 6.2 shows that it is rather unlikely that a C will be

followed by a G. This is known to be a result of the methylation process which mutates a C into a

T with a relatively high probability, whenever it finds a CpG dinucleotide [9]. As a consequence,

CpG dinucleotides appear much less frequently than they are expected. However, this methylation

process is suppressed in the CpG islands, hence we can observe more CpG dinucleotides than

usual [9].
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Figure 6.1: (Top) CpG island prediction result obtained by the conventional Markov chain method.
(Bottom) Magnified plot. We can see that there are many undesirable zero crossings due to the
fluctuations of S(n).

Figure 6.1 shows the prediction result of CpG islands based on this approach. Between the

base locations 1 and 5,000, there is only one CpG island of length 332 between 3,095 and 3,426. At

this location, S(n) > 0 which implies that it is very likely that this region overlaps with a CpG

island. Outside this region, S(n) is mostly negative although there are some fluctuations. This plot

shows that the CpG/non-CpG regions can be reasonably discriminated by looking at the sign of

the log-likelihood ratio S(n).

However, if we take a closer look at the plot, we can see that there are a lot of fluctuations

around zero, resulting in many unwanted zero crossings. The bottom plot in Figure 6.1 shows the

magnified plot around the CpG island. We can see that the region around the base location 3,000

has positive values although it does not belong to a CpG island. Moreover, there are several zero

crossings inside the CpG island. Apparently, this is not what we expect. In the next section, we

propose a new method that can eliminate these problems and improve the prediction results.
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6.3 Identifying CpG islands using a bank of IIR lowpass filters

When using the method elaborated in Section 6.2, it is not very obvious how to choose the window

size L for computing S(n). This is an important issue, since the choice of the window size can have

a significant effect on the detection results. Larger windows usually enhance the reliability of the

result but degrade the resolution of the output. On the contrary, smaller windows are able to catch

up with the changes of the statistical properties very quickly, but S(n) may fluctuate around zero

more often, thereby making the identification results less reliable.

In [124], we proposed a CpG island prediction method that can effectively solve this problem.

The details of the proposed method is elaborated in the following.

6.3.1 Filtering the log-likelihood ratios using a filter bank

Let us consider again the log-likelihood ratio S(n) in (6.1). If we define y(n) as the log-likelihood

ratio of a single transition

y(n) = log

(
p+

x(n−1)x(n)

p−x(n−1)x(n)

)
, (6.2)

then S(n) can be rewritten as

S(n) =
1
L

L−1∑
i=0

y(n + i)

= y(n) ∗ have(n), (6.3)

where the symbol “∗” denotes convolution. Here, have(n) is a simple averaging filter that is defined

as

have(n) =

 1
L −L + 1 ≤ n ≤ 0,

0 otherwise.

Note that have(n) can be viewed as a simple lowpass filter. Instead of using a single filter that is

rectangular in shape, we may use a bank of M filters, where each filter is a lowpass filter with a

different bandwidth. By looking at the outputs altogether, we can predict the location of the CpG

islands more precisely. This idea is illustrated in Figure 6.2.

One way to construct such a filter bank is to use the following one-pole filter

Hk(z) =
1− αk

1− αkz−1
(6.4)
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Figure 6.2: A bank of M lowpass filters with different bandwidths.

in the kth channel, where the poles are chosen such that

0 < α0 < α1 < · · · < αM−1 < 1.

This corresponds to hk(n) = (1 − αk)αn
ku(n) in the time domain. Choosing the filter hk(n) in this

way results in weighted averaging of y(n), where the newer inputs are given larger weights than

the older ones. Also note that every hk(n) satisfies

∑
n

hk(n) = 1,

serving as a proper weighting function.

6.3.2 Experimental results

In order to demonstrate the idea, we performed the following experiment. We chose αk (k =

0, 1, . . . , 40) from 0.95 to 0.99 by increasing its value by 0.001, and Hk(z) was chosen as (6.4). We

computed y(n) defined as (6.2) from the same input sequence (the human chromosome X) that was

used to test the averaging method in Section 6.2.2. Then we filtered y(n) using the filters hk(n) to

obtain

Sk(n) = y(n) ∗ hk(n),

for all k. We combined these outputs altogether to obtain the contour plot shown in Fig. 6.3. The

contour plot in Figure 6.3 clearly shows the band which corresponds to the CpG island located

between 3,095 and 3,426 (colored in orange and red). This is more prominent in Figure 6.4, which
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Figure 6.3: Contour plot of the outputs Sk(n). The red band in the middle clearly indicates the
existence of a CpG island.
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Figure 6.4: Two level contour plot of the outputs Sk(n). The level curve is located at zero, separating
the positive and the negative regions.
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is a two-level contour plot of the same output Sk(n). The level curves are located at Sk(n) = 0, and

the shaded area indicates where Sk(n) is positive. From Figure 6.4, we can see that as αk increases,

there are less fluctuations around zero. For example, for αk = 0.99 there is only one small region

inside the shaded band where Sk(n) goes below zero. On the contrary, for αk = 0.95 there are

more than 10 regions inside the band where Sk(n) is negative. Another interesting point that we

can notice in Figure 6.4 is the fact that the shaded region slightly bends to the right as αk increases.

This shows that the response time of the filter hk(n) is longer for larger αk. If αk is large, the

past samples are given more weights than when we use a smaller αk. Conceptually, this implies

that more samples of y(n) are taken into account in computing Sk(n). This allows us to obtain

a smoother output with less fluctuation, but at the same time, the filter is slower in catching up

with the changes in the input statistics. So, there is a trade-off between the responsiveness of the

filter and the stability of the output. This is indeed a very similar problem to that of choosing the

window size L when using the averaging method in section 6.2, and this is the reason why we have

to look at all the output signals at the same time, instead of depending on a single output.

6.3.3 Predicting the transition points between different regions

Now that we are given a number of outputs corresponding to different αk, how can we predict the

start and end points of the CpG islands more accurately? In order to answer this question, let us

first consider the following problem.

6.3.3.1 Rectangular window

Assume that we have two distinct regions–a CpG island and a non-CpG island region–each of

which can be modeled using a first-order Markov chain with different statistics. Now, using a

rectangular window of length L, let us compute the weighted sum of the log-likelihood ratio y(n)

inside the window. Since we are using a rectangular window in this case, all y(n) are weighted

equally as in (6.3). Initially, let us assume that this window is inside the first region and does not

overlap with the second region at all. Then the expectation of S(n) can be simply written as

E[S(n)] =
1
L

L−1∑
i=0

E[y(n + i)]

=
1
L

(L · E[y(n)])

= E[y(n)].
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Figure 6.5: A rectangular window of length L located around the transition point.

Therefore, the expectation of S(n) inside the CpG islands will be E[S(n)|CpG] = E[y(n)|CpG] > 0,

and E[S(n)|non-CpG] = E[y(n)|non-CpG] < 0 outside the CpG islands. Now, consider gradually

shifting the window to the right one by one. At some point, it will cross the transition points

between those two regions, and the window will have an overlap with both regions as shown in

Figure 6.5. If we let k be the length of the part of the window that overlaps with the second region,

the expectation of S(n) can be written as

E[S(n)] =
1
L

L−1∑
i=0

E[y(n + i)]

=
1
L

(
(L− k) · E[y(n)|region 1]

+k · E[y(n)|region 2]
)

=
L− k

L
E[y(n)|region 1] +

k

L
E[y(n)|region 2], (6.5)

where the sign of E[S(n)] depends on L, k, E[y(n)|region 1] and E[y(n)|region 2]. As we shift the

window further, the overlap with the first region will decrease, and finally the whole window will

be located inside the second region. Since the sign of E[S(n)] in each region is different, at some

point we can observe the change of sign of E[S(n)]. Let us denote the k (0 < k < L) that satisfies

E[S(n)] = 0 as k∗. If we solve for k∗, we get

k∗ =
E2L

E2 − E1
, (6.6)
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where Ei = E[y(n)|region i]. In fact, this is the point where we can first recognize the change

between regions in the given sequence. Therefore, k∗ can be viewed as the delay of the detection

algorithm, and it can be computed if we know E1 and E2. Since we know the statistics of the

respective Markov chains used for modeling the CpG/non-CpG island regions, we can compute

E+ = E[S(n)|CpG] and E− = E[S(n)|non-CpG] that are needed to compute the delay. We have

E+ =
∑

β,γ∈{A,C,G,T}

p+
βγ log

(
p+

βγ

p−βγ

)
, (6.7)

and

E− =
∑

β,γ∈{A,C,G,T}

p−βγ log

(
p+

βγ

p−βγ

)
. (6.8)

Using the transition probabilities in Table 6.1 and Table 6.2, we get E+ = 0.0427 and E− = −0.0412.

Therefore, when entering a CpG island from a non-CpG island region, we expect a delay of

k∗ =
E+L

E+ − E− = 25.04,

for L = 51. Similarly, when we leave a CpG island and enter a non-CpG island region, the expected

delay is

k∗ =
E−L

E− − E+
= 25.96.

As we are using a rectangular window, we expect the delay to be around L/2, which is indeed the

case.

6.3.3.2 Exponentially decaying window

Now let us consider using an exponentially decaying window defined as (6.4). This window is

shown in Figure 6.6. Again, we want to find the k that satisfies E[S(n)] = 0. In this case, E[S(n)]

can be written as

E[S(n)] =
L−1∑

i=−∞
(1− α)αL−1−iE[y(n + i)]

= αkE1 + (1− αk)E2. (6.9)
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Figure 6.6: An exponentially decaying window located around the transition point.

If we solve for the k∗ that makes E[S(n)] = 0, we get

k∗ = logα

(
E2

E2 − E1

)
. (6.10)

Based on the transition probabilities in Table 6.1 and Table 6.2, we get the plot of the delay k∗ as a

function of α as shown in Figure 6.7.

Now that we have computed the expected delays corresponding to different values of α, let

us compare these with the actual zero crossing points. We generated a random sequence of A, C,

G, and T based on the transition probabilities in Table 6.1 and Table 6.2. We computed Sk(n) for

0.95 < αk < 0.99 and computed the zero crossing points. Figure 6.8 shows the level curves for

S(n) = 0 with the theoretical curve obtained from (6.10). It can be seen that the theoretical curves

are very close to the actual curves. Therefore, in order to predict the changing point of the two

regions more accurately, we may first find the level curves for S(n) = 0 and find the theoretical

curve of the zero crossing points that matches the actual curve best. From this, we can make up for

the delay and predict the actual transition point more precisely.

6.4 Conclusion

In this chapter, we proposed a novel scheme for predicting CpG islands, which is based on a bank

of IIR filters. Preliminary experimental results indicate that the proposed method can effectively

locate the CpG islands in a given DNA sequence at a relatively low computational cost. When
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computed from the transition probabilities. (Top) Region changes from a non-CpG island region to
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building an actual CpG island prediction tool based on the proposed approach, we may also incor-

porate additional properties of typical CpG islands (such as their length distribution) to improve

the overall performance. We may also use lowpass filters with better passband/stopband details

to improve the prediction results.
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Chapter 7

Conclusion

In this thesis, we have presented various signal processing techniques that can be applied to the

computational analysis of biological sequences. The main focus of the thesis was on introduc-

ing signal processing methods that can be utilized for identifying regions of specific biological

significance (e.g., noncoding RNA genes, protein-coding genes, CpG islands) in a large sequence

database. Depending on the type of the region of interest, we proposed different techniques that

can be utilized for recognizing the unique characteristics within those regions.

The first part of the thesis focused on signal processing methods that can be utilized in RNA

sequence analysis. Many functional RNAs have well-conserved secondary structures that give

rise to complicated long-range correlations between distant bases. We first proposed the concept

of context-sensitive HMM (csHMM) that extends the conventional HMM so that it can represent

these long-range correlations. Based on the proposed model, we introduced efficient dynamic pro-

gramming algorithms for finding the optimal state sequence and computing the probability of an

observed symbol string. Furthermore, we proposed a parameter re-estimation algorithm that can

be used for finding the optimal parameters of a csHMM in an iterative manner. We demonstrated

that the csHMMs can be effectively used for modeling and recognizing RNAs with various sec-

ondary structures.

Based on csHMMs, we proposed the concept of profile-csHMMs, which are specifically con-

structed csHMMs that are especially useful in building probabilistic representations of RNA se-

quence families. Profile-csHMMs are the first model that can represent any kind of RNA pseudo-

knots, which is a significant advantage over the existing models that have been utilized for RNA

sequence analysis. In addition to this, we proposed the sequential component adjoining (SCA) al-

gorithm that can solve the optimal alignment problem of profile-csHMMs. To demonstrate the ef-
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fectiveness of the proposed model, we used them to build a tool for finding the structural alignment

of RNAs including pseudoknots. It was shown that the profile-csHMM approach could achieve a

high prediction accuracy at a relatively low computational cost. Finally, we proposed a practical

scheme based on pre-screening filters, which can expedite a profile-csHMM based search. Exper-

imental results indicate that the proposed scheme can make the search speed significantly faster,

without affecting the prediction accuracy.

In the second part of the thesis, we focused on the application of digital filters and filter banks

in DNA sequence analysis. Firstly, we demonstrated that digital filters can be effectively used for

identifying the periodic components that are frequently observed in protein-coding regions. We

showed that this can be utilized for predicting the coding genes that are buried in the DNA. We

also proposed efficient schemes for implementing the digital filters, which can identify the coding

regions at a very low computational complexity. Secondly, we showed how we can predict the

location of CpG islands using a filter bank. In the proposed approach, two Markov chains have

been used to model the base transition probabilities inside the CpG islands and the probabilities

outside the CpG islands. The sequence of log-likelihood ratios obtained from these models have

been processed using a bank of IIR lowpass filters, where the output signals were used to predict

the exact locations of the CpG islands. We demonstrated that the filter bank approach can yield

reliable prediction results without sacrificing the resolution of the predicted start/end positions of

the CpG islands.

The discussions on the application of signal processing techniques in biological sequence anal-

ysis presented in this thesis opens up many other interesting problems. First of all, as the profile-

csHMM is a recent development, there are still many related issues that need to be addressed.

For example, we do not yet have a training algorithm that can be used for finding the optimal

parameters of a profile-csHMM. As the choice of the model parameters can have a significant im-

pact on the performance of a profile-csHMM based application (e.g., ncRNA gene finder, RNA

structural alignment tool), it is important to have an effective parameter re-estimation algorithm

for profile-csHMMs. We also need an algorithm for finding the optimal adjoining order of gen-

eral profile-csHMMs. Currently, our algorithm can find the adjoining order of only those profile-

csHMMs whose correlation structure belongs to the Rivas&Eddy class [86], without guaranteeing

optimality. As the adjoining order has a direct impact on the overall computational cost of the SCA

algorithm, it is important to have an algorithm that can automatically find the best adjoining order
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that minimizes the computational cost.

On the practical side, it would be interesting to build a BLAST-like homology search tool for

RNAs. There has been an attempt to build such a tool based on CMs (covariance models) [57],

but this tool was limited to RNAs without pseudoknots and it was also too slow to scan a large

database. Based on profile-csHMMs, we can build a search tool that can find homologues of single

structured RNAs including pseudoknots. We may use the pre-screening approach and also incor-

porate other heuristic methods to improve the search speed so that it becomes fast enough to be of

practical use.

There exist also other interesting problems that are relevant to the current topic, although they

have not been considered in this thesis. One such problem is the identification of novel ncRNAs in

the genome. In this thesis, we mainly focused on finding new homologues of known ncRNA fam-

ilies. The computational identification of novel ncRNAs is a much more difficult problem, and the

research on this topic is still at an early stage. It would be interesting to see how signal processing

techniques could contribute to the prediction of novel ncRNAs. Another interesting problem is to

build and analyze gene regulatory networks that include both ncRNA genes and protein-coding

genes. As many ncRNAs play important regulatory roles within cells, such a network would be

more realistic than the traditional gene regulatory networks solely based on protein-coding genes

that have been considered till now. This may lead to a better understanding of the diverse control

mechanisms in the cell machinery.



154

Appendix A

Example of a CFG That Is Not
Representable by a csHMM

In this appendix, we give an example of a language that can be described by a context-free grammar

but not by a csHMM. Let us consider a context-free grammar that has two non-terminal symbols

S, T and three terminal symbols a, b, c. We begin with the start non-terminal S and apply the the

following production rules

S −→ aTSa | TaSa | TSaa | aTa | Taa,

T −→ bT | bc.

The grammar shown above can generate any symbol sequence of the form x = x1 . . . xL−NxL−N+1 . . . xL

for any given positive number N , where xL−N+1 . . . xL = a . . . a and x1 . . . xL−N contains N num-

ber of “a’s” and the same number of subsequences in the form of “b . . . bc.” For example, we can

generate the following sequences using this grammar

(N = 3) a bbbc a bc a bbc︸ ︷︷ ︸
x1...xL−N

aaa︸︷︷︸
xL−N+1...xL

(A.1)

bbc bc a a a bbbbc︸ ︷︷ ︸
x1...xL−N

aaa︸︷︷︸
xL−N+1...xL

(A.2)

(N = 4) bc a bbbbc a bbc a bc a︸ ︷︷ ︸
x1...xL−N

aaaa︸ ︷︷ ︸
xL−N+1...xL

(A.3)

bbc bc bbbc bbc a a a a︸ ︷︷ ︸
x1...xL−N

aaaa︸ ︷︷ ︸
xL−N+1...xL

(A.4)

It is not possible to construct a csHMM that generates only sequences in the above form. This
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can be seen from the following. As shown in the above examples, the number of “a’s” in the

tail xL−N+1 . . . xL is always identical to the number of “a’s” and the number of subsequences

“b . . . bc” in the head part x1 . . . xL−N . As the transition probabilities at single-emission states Sn

and pairwise-emission states Pn do not depend on past emissions, the only way to ensure the

generation of specific number of “a’s” in the tail is to use context-sensitive states Cn, which have

variable transition probabilities that depend on the context. As the last N symbols are emitted

at context-sensitive states, identical number of symbols in x1 . . . xL−N have to be emitted at the

corresponding pairwise-emission states. Since the number of “a’s” and the number of “b . . . bc’s”

in the head part are both N , we may consider the following two cases. Firstly, we may consider

using the corresponding pairwise-emission states to generate the “a’s” in the head part. As the

emitted symbols at these states are used as the context for generating identical number symbols

in the tail, the subsequences “b . . . bc” cannot make use of this context. Therefore, the only way to

guarantee that the number of “b . . . bc’s” are also N is to construct the csHMM such that the states

that generate “b . . . bc” always follow (or precede) the pairwise-emission states that generate “a’s”.

This is illustrated in Figure A.1. Although this construction guarantees that the number of “a’s”

and the number of “b . . . bc’s” in x1 . . . xL−N are both N , it cannot give rise to all possible orders

of “a” and “b . . . bc.” For example, such a csHMM cannot generate sequences in (A.2) and (A.4).

Similar reasoning also holds when the pairwise-emission states, which correspond to the context-

sensitive states used for generating the tail part, are used to generate (part of) the subsequence

“b . . . bc.” This leads to the conclusion that a construction which guarantees the emission of N “a’s”

and “b . . . bc” cannot generate sequences such as (A.2) and (A.4). Therefore, the given context-free

language cannot be represented by a csHMM.

P …

… P

“a” “b…bc”

“a”“b…bc”

(a)

(b)

Figure A.1: Constructions which guarantee that the number of “a’s” and the number of “b . . . bc’s”
in x1 . . . xL−N are identical.
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Appendix B

Algorithms for Sequences with Single
Nested Correlations

In this appendix, we present the csHMM alignment and scoring algorithms that can be used for an-

alyzing sequences with a single-nested correlation structure. Figure B.1 shows examples of various

correlation structures. For example, Figure B.1 (a) and Figure B.1 (b) show symbol sequences with

single-nested correlations. Figure B.1 (c) and Figure B.1 (d) show symbol sequences with multiple-

nested correlations. In biology, an RNA with a single hairpin (or a stem-loop) is an example of a

sequence that has a single-nested correlation structure. An RNA with multiple stem-loops (e.g., a

tRNA) is an example that has a multiple-nested correlation structure.

For symbol sequences with single-nested correlations, we can use simplified versions of the

alignment and scoring algorithm that were presented in Chapter 2. In the following sections, we

describe the simplified algorithms that can be used with these sequences. We use similar notations

as in Section 2.4 and Section 2.5 unless specified otherwise.

The content of Section B.1 is mainly drawn from [127], and the content of Section B.2 is mainly

drawn from [128].

B.1 Simplified alignment algorithm

In this section, we describe the simplified alignment algorithm. In addition to the variables defined

in Section 2.4, we define the variable λ(i, j, v, w) that will be used for tracing back the optimal path.
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(a)

(b)

(c)

(d)

Figure B.1: Examples of symbol sequences with different correlation structures. Sequences with
single-nested correlations are shown in (a) and (b), and sequences with multiple-nested correlations
are shown in (c) and (d).

B.1.1 Computing the log-probability of the optimal path

We first compute the log-probability of the optimal path using the following algorithm.

(1) Initialization

For i = 1, . . . , L, v = 2, . . . ,M − 1.

γ(i, i, v, v) =

 log e(xi|v) v ∈ S

−∞ otherwise

λ(i, i, v, v) = (0, 0, 0, 0)
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(2) Iteration

For i = 1, . . . , L− 1, j = i + 1, . . . , L and v = 2, . . . ,M − 1, w = 2, . . . ,M − 1.

(i) v = Pn, w = Cm(n 6= m), or v ∈ C or w ∈ P

γ(i, j, v, w) = −∞

λ(i, j, v, w) = (0, 0, 0, 0)

(ii) v = Pn, w = Cn, j = i + 1

γ(i, j, v, w) = log e(xi|v) + log t(v, w) + log e(xj |w, xi)

λ(i, j, v, w) = (0, 0, 0, 0)

(iii) v = Pn, w = Cn, j 6= i + 1

γ(i, j, v, w) = max
u1,u2

[
log e(xi|v) + log t(v, u1)

+γ(i + 1, j − 1, u1, u2) + log t(u2, w) + log e(xj |w, xi)
]

(u∗1, u
∗
2) = arg max

(u1,u2)

[
log e(xi|v) + log t(v, u1)

+γ(i + 1, j − 1, u1, u2) + log t(u2, w) + log e(xj |w, xi)
]

λ(i, j, v, w) = (i + 1, j − 1, u∗1, u
∗
2)

(iv) v ∈ P, w /∈ C

γ(i, j, v, w) = max
u

[
γ(i, j − 1, v, u) + log t(u, w) + log e(xj |w)

]
u∗ = arg max

u

[
γ(i, j − 1, v, u) + log t(u, w) + log e(xj |w)

]
λ(i, j, v, w) = (i, j − 1, v, u∗)
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(v) v /∈ P, w ∈ C

γ(i, j, v, w) = max
u

[
log e(xi|v) + log t(v, u) + γ(i + 1, j, u, w)

]
u∗ = arg max

u

[
log e(xi|v) + log t(v, u) + γ(i + 1, j, u, w)

]
λ(i, j, v, w) = (i + 1, j, u∗, w)

(vi) v /∈ P, w /∈ C

In this case, the variables γ(i, j, v, w) and λ(i, j, v, w) can be updated using any of the update for-

mulae in (iii)–(v).

(3) Termination

log P (x, π∗|Θ) = max
v,w

[
log t(1, v) + γ(1, L, v, w) + log t(w,M)

]
(v∗, w∗) = arg max

(v,w)

[
log t(0, v) + γ(1, L, v, w) + log t(w, 0)

]
λ∗ = (1, L, v∗, w∗) �

The proposed algorithm starts from the inside of the observation sequence, and proceeds to the

outward direction, to find the optimal path iteratively. It should be noted that every time there is

an interaction between si and sj , they are considered at the same time as shown in (ii) and (iii) of

the iteration step. This informs us of the symbol xi that was emitted by Pn, hence we can adjust

the probabilities of the corresponding state Cn according to this value.

B.1.2 Trace-back

Let us define λt = (i, j, v, w). We also need a stack T for trace-back. The optimal path is traced back

as follows.

(1) Initialization

si = 0 (i = 1, 2, . . . , L).

Push λ∗ onto T .
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(2) Iteration

Pop λt = (i, j, v, w) from stack T .

If λt 6= (0, 0, 0, 0)

If si = 0 then si = v.

If sj = 0 then sj = w.

λ(λt) onto T .

If T is empty then go to termination step.

Otherwise, repeat the iteration step.

(3) Termination

The optimal path is s∗ = s1s2 . . . sL. �

At the end of this procedure, we get the most probable path s∗. It is not difficult to see that

the computational complexity of the alignment algorithm is O(L2M3), which is much better than

O(ML) of the exhaustive search, and also smaller than the complexity O(L3M3) of the more general

alignment algorithm described in Section 2.4.

B.2 Simplified scoring algorithm

In this section, we describe the simplified scoring algorithm.

(1) Initialization

For i = 1, . . . , L, v = 2, . . . ,M − 1.

α(i, i, v, v) =

 e(xi|v) v ∈ S

0 otherwise
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(2) Iteration

For i = 1, . . . , L− 1, j = i + 1, . . . , L and v = 2, . . . ,M − 1, w = 2, . . . ,M − 1.

(i) v = Pn, w = Cm(n 6= m), or v ∈ C, or w ∈ P

α(i, j, v, w) = 0

(ii) v = Pn, w = Cn, j = i + 1

α(i, j, v, w) = e(xi|v)t(v, w)e(xj |w, xi)

(iii) v = Pn, w = Cn, j 6= i + 1

α(i, j, v, w) =
∑

u1,u2

[
e(xi|v)t(v, u1)α(i + 1, j − 1, u1, u2)t(u2, w)e(xj |w, xi)

]

(iv) v ∈ P, w /∈ C

α(i, j, v, w) =
∑

u

[
α(i, j − 1, v, u)t(u, w)e(xj |w)

]
(v) v /∈ P, w ∈ C

α(i, j, v, w) =
∑

u

[
e(xi|v)t(v, u)α(i + 1, j, u, w)

]
(vi) v /∈ P, w /∈ C

We can use either (iv) or (v).

(3) Termination

P (x|Θ) =
∑
v,w

t(1, v)α(1, L, v, w)t(w,M) �

Note that t(1, v) is the probability that the model will start at state v, and t(w,M) is the prob-

ability that the model will terminate after state w. We can see that the probability α(i, j, v, w) is

computed iteratively, starting from the inside to the outside. Every time there is a correlation be-

tween si and sj , they are considered together as shown in (ii) and (iii) of the iteration step. In this

way, we can know which symbol was emitted at the pairwise-emission state, and therefore we can
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(b)

(c)

i jj-1

v wu

i ji+1

v wu

(a)

i i+1 jj-1

v wu1 u2

Figure B.2: Illustration of the iteration step of the simplified scoring algorithm.

decide the probabilities of the corresponding context-sensitive state. This is illustrated in Fig. B.2

(a). The dashed line denotes the interaction between si = v and sj = w. Since Pn and Cn exist

in pairs inside si · · · sj , and as si is paired with sj , all Pn and Cn states inside si+1 · · · sj−1 must

also exist in pairs. This is indicated by the shaded area in Figure B.2 (a). Therefore, the probabil-

ity of α(i, j, v, w) can be computed as in (ii) of the iteration step. Similarly, Figs. B.2 (b) and (c)

respectively illustrate (iv) and (v) of the iteration step. As the simplified alignment algorithm in

Section B.1, the overall computational complexity of the simplified scoring algorithm is O(L2M3).
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Appendix C

Acronyms

In this appendix, we describe the acronyms that are used throughout the thesis.

A adenine

C cytosine

CFG context-free grammar

CM covariance model

CSG context-sensitive grammar

csHMM context-sensitive hidden Markov models

DFT discrete Fourier transform

DNA deoxyribonucleic acid

dsRNA double-stranded RNA

ECG electrocardiogram

EM algorithm expectation-maximization algorithm

FIR finite impulse response

FFT fast Fourier transform

G guanine

HMM hidden Markov model

IDFT inverse discrete Fourier transform

IIR infinite impulse response

IRE iron response element

IRP iron regulatory protein

MRI magnetic resonance imaging

mRNA messenger RNA
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ncRNA noncoding RNA

ORF open reading frame

PHMMTSs pair hidden Markov models on tree structures

pre-mRNA pre-messenger RNA

profile-csHMM profile context-sensitive hidden Markov model

profile-HMM profile hidden Markov model

profile-SCFG profile stochastic context-free grammar

PSTAG pair stochastic tree adjoining grammar

SCA algorithm sequential component adjoining algorithm

SCFG stochastic context-free grammar

SCSG stochastic context-sensitive grammar

siRNA small interfering RNA

snoRNA small nucleolar RNA

SRG stochastic regular grammar

T thymine

tmRNA transfer-messenger RNA

tRNA transfer RNA

RNA ribonucleic acid

RNAi RNA interference

rRNA ribosomal RNA

U uracil
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