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Abstract

Signal processing is the art of representing, transforming, analyzing, and manipulating signals. It
deals with a wide range of signals, from speech and audio signals to images and video signals,
and many others. Signal processing techniques have been found very useful in diverse applica-
tions. Traditional applications include signal enhancement, denoising, speech recognition, audio
and image compression, radar signal processing, and digital communications, just to name a few.
In recent years, signal processing techniques have been also applied to the analysis of biological
data with considerable success. For example, they have been used for predicting protein-coding
genes, analyzing ECG signals and MRI data, enhancing and normalizing DNA microarray images,
modeling gene regulatory networks, and so forth.

In this thesis, we consider the application of signal processing methods to the analysis of bio-
logical sequences, especially, DNA and RNA molecules. We demonstrate how conventional signal
processing techniques-such as digital filters and filter banks—can contribute to this end, and also
show how we can extend the traditional models—such as the hidden Markov models (HMMs)-to
better serve this purpose.

The first part of the thesis focuses on signal processing methods that can be utilized for ana-
lyzing RNA sequences. The primary purposes of this part are to develop a statistical model that
is suitable for representing RNA sequence profiles and to propose an effective framework that can
be used for finding new homologues (i.e., similar RNAs that are biologically related) of known
RNAs. Many functional RNAs have secondary structures that are well conserved among differ-
ent species. The RNA secondary structure gives rise to long-range correlations between distant
bases, which cannot be represented using traditional HMMs. In order to overcome this problem,
we propose a new statistical model called the context-sensitive HMM (csHMM). The csHMM is
an extension of the traditional HMM, where certain states have variable emission and transition

probabilities that depend on the context. The context-sensitive property increases the descriptive



vii

power of the model significantly, making csHMMs capable of representing long-range correlations
between distant symbols. Based on the proposed model, we present efficient algorithms that can be
used for finding the optimal state sequence and computing the probability of an observed symbol
string. We also present a training algorithm that can be used for optimizing the parameters of a
csHMM. We give several examples that illustrate how csHMMs can be used for modeling various
RNA secondary structures and recognizing them.

Based on the concept of csHMM, we introduce profile-csHMMSs, which are specifically con-
structed csHMMs that have linear repetitive structures (i.e., state-transition diagrams). Profile-
csHMMs are especially useful for building probabilistic representations of RNA sequence families,
including pseudoknots. We also propose a dynamic programming algorithm called the sequential
component adjoining (SCA) algorithm that can systematically find the optimal state sequence of
an observed symbol string based on a profile-csHMM. In order to demonstrate the effectiveness
of profile-csHMMSs, we build a structural alignment tool for RNA sequences and show that the
profile-csHMM approach can yield highly accurate predictions at a relatively low computational
cost. At the end, we describe how the profile-csHMM can be used for finding homologous RNAs,
and we propose a practical scheme for making the search significantly faster without affecting the
prediction accuracy.

In the second part of the thesis, we focus on the application of digital filters and filter banks
in DNA sequence analysis. Firstly, we demonstrate how we can use digital filters for predicting
protein-coding genes. Many coding regions in DNA molecules are known to display a period-3
behavior, which can be effectively detected using digital filters. Efficient schemes are proposed
that can be used for designing such filters. Experimental results will show that the digital filtering
approach can clearly identify the coding regions at a very low computational cost. Secondly, we
propose a method based on a bank of IIR lowpass filters that can be used for predicting CpG islands,
which are specific regions in DNA molecules that are abundant in the dinucleotide CpG. This filter
bank is used to process the sequence of log-likelihood ratios obtained from two Markov chains,
where the respective Markov chains model the base transition probabilities inside and outside the
CpG islands. The locations of the CpG islands are predicted by analyzing the output signals of
the filter bank. It will be shown that the filter bank approach can yield reliable prediction results

without sacrificing the resolution of the predicted start/end positions of the CpG islands.
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Chapter 1

Introduction

Signal processing is the art of representing, transforming, analyzing, and manipulating signals. It
deals with a large variety of signals, including speech and audio signals, images and video signals,
and even biological signals such as DNA sequences, ECG signals, MRI signals, and so forth. Signal
processing techniques have been found useful in truly diverse applications, such as signal enhance-
ment [33], denoising [14, 101], speech recognition [82], audio [73] and image compression [100, 118],
radar signal processing [84], and digital communications [42, 43], just to name a few.

More recently, signal processing techniques have been also applied to the analysis of biological
data with considerable success. For example, they have been utilized for the prediction of protein-
coding genes [3, 106], characterization of ECG signals [63, 94], representation of gene regulatory
networks [99], analysis of DNA microarray images [13, 115], and many others. The reader who is
interested in the recent advances of signal processing methods in biology is referred to the following
tutorial reviews [3, 22, 23, 112, 113, 130].

The primary focus of the thesis lies in the application of signal processing concepts to the anal-
ysis of genomic sequence data. Among other things, this thesis presents various signal processing
methods—such as digital filters, filter banks, and variants of HMMs (hidden Markov models)-that
have been found especially useful in analyzing DNA and RNA sequence data and identifying re-
gions of specific interest—e.g., protein-coding genes, CpG islands, and noncoding RNA (ncRNA)
genes—inside these sequences. A more detailed outline of the thesis is presented in Section 1.6 of
this Chapter.

The main purpose of this introductory Chapter is to equip the readers with some fundamentals
in signal processing and genomics that are needed to understand the technical details of the discus-

sions that will follow. We make every attempt to make this Chapter as self-contained as possible, in



order to serve this purpose. In Section 1.1 we briefly describe the discrete Fourier transform (DFT)
that can be used for isolating the signal component with certain periodicity. The basic concepts of
Markov chains and hidden Markov models (HMMs) are reviewed in Section 1.2 and Section 1.3, re-
spectively. In Section 1.4, we review some fundamentals in genomics, and in Section 1.5, we briefly
describe the concept of RNA secondary structures.

The material presented in this Chapter is only meant to be a quick introduction to signal pro-
cessing and genomics, and it is by no means a complete and comprehensive coverage of these
topics. For a more extensive treatment of these topics, the reader is referred to the references given

at the end of each section.

1.1 Discrete Fourier transform (DFT)

Let us consider a finite length signal z(n) whose length is N. We assume that z(n) = 0 outside the
range 0 < n < N — 1. The discrete Fourier transform (DFT) of z(n) is defined as

N-1

X[k =Y x(n)Wwkn, (1.1)

n=0

where W = e¢7727/N_ Sometimes, we may assume that the signal z(n) has length N even when its
actual length is smaller. For example, it is possible that z(n) = 0 outside the range 0 < n < L =
M — 1, where M < N. For this reason, the transform in (1.1) is sometimes called the N-point DFT,

in order to prevent any ambiguity. As the Fourier transform of z(n) is defined as

X(e?¥) = Zx(n)e*jw”, (1.2)

n

we can view the DFT X [k] of a signal z(n) as a uniformly sampled version of X (e/*) at frequencies
Wy = % for k =0,1,...,N — 1. Given the DFT coefficients X [k]|, we can reconstruct the original

signal z(n) as follows

1 N-1
3(n) = & > XKWk, (1.3)
k=0

This transform is called the inverse-DFT of X[k]. There exist efficient algorithms for computing
the DFT and its inverse (IDFT), which are collectively called the fast Fourier transform (FFT) algo-

rithms [24]. While the direct computation of the (N-point) DFT coefficients requires O(N?) opera-
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Figure 1.1: DFTs of periodic signals. (Top) Magnitude plot of the DFT of a signal with a period
T = 3. (Bottom) Magnitude plot of the DFT of a signal with a period T = 351/117.5.

tions, the FFT algorithm can compute the DFT in only O(N log N) operations.!

The DFT X k| of a signal 2(n) can effectively analyze the frequency components contained in
z(n). For example, the DFT coefficient X [k] shows the strength of the signal component whose
frequency is located at (or near) w = 2wk /N. This corresponds to the period 7' = N/k in the time

domain. Let us consider a finite-length periodic signal 1 (n) defined as follows
z1(n) =e?¥™/3 0<n< N -1, (1.4)

where the length of the signal is N = 351. As the period of z1(n) if 3, its DFT X, [k] = DFT[z1(n)]
should have a peak at w = 27/3. This is demonstrated in Figure 1.1 (Top), where the magnitude of
the DFT X/ [k] has only a single peak at £ = N/3 = 117. When the frequency of the input signal is

not located at one of the frequencies wy, = 2% (k = 0,1,..., N — 1), its energy will be distributed

1The notation O(-) means “on the order of”.
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Figure 1.2: The DFT of a periodic signal with a period T' = 3 buried in Gaussian noise. We can
observe a clear peak at k = N/3.

over several frequency bins. For example, let us consider another periodic signal z2(n) defined as

5. (N/3)40.5
2

xa(n) =€’ "0<n<N -1,

where N = 351 is the same as before. The magnitude plot of the DFT X, [k] = DFT[z2(n)] is shown
in Figure 1.1 (Bottom). We can see that the there are many non-zero DFT coefficients in this case,

. _ N/3405
although the peak is located near k = —~5—.

Finally, let us consider a periodic signal that is buried in noise. We define
z3(n) =z1(n) +2(n), 0<n< N -1

where z1(n) is a periodic signal with period T' = 3 as defined in (1.4) and z(n) is white Gaussian
noise with unit variance. The magnitude plot of X3[k] = DFT[z3(n)] is shown in Figure 1.2. In
Figure 1.2, we can clearly observe the peak at kK = N/3 that corresponds to the period T' = 3 of the
signal z1(n).

In Chapter 5, we will show how this property can be used for identifying protein-coding regions

in DNA sequences. Further details of the DFT and its basic properties can be found in [74].



1.2 Markov chain

Let us consider a system that can be described by one of a finite number of states S = {51, ..., Sm}.
At each discrete time index n, the state y,, of the system takes one of the values y,, € S. The system

makes a state-transition at each unit time, which gives rise to a sequence of states

Yo — Y1 — Y2 — ... — Yn. (1.5)

We say that this discrete-time stochastic process satisfies the Markov property, if the probability
distribution of the future state y,,; depends only on the present state y,, and not on the past states

Yn—rk (k > 1). This can be written as

P(Ynt1 = 5;|Un = Si, Un—1 = Sk, Yn—2 = Se,...) = P(Ynt1 = Sjlyn = Si). (1.6)

In this case, the state sequence in (1.5) is called a first-order Markov chain (Markov model). If the

transition probability shown in (1.6) is time independent such that

P(yns1 = Sjlyn = Si) = t(S:, 5;),

for all n, it is called a stationary Markov chain. The transition probabilities ¢(S;, S;) satisfy

t(Si, S;)

V
(an)
—
A
o
A
=

M
doHS,S) = 1 (1<i<M).
j=1
As we can see from above, a stationary Markov chain is completely governed by its state transition
probabilities ¢(S;,.S;), and it can be conveniently represented by a state transition diagram. An
example of such a diagram is shown in Figure 1.3. Unless mentioned otherwise, we assume that
the Markov chain that is being used is stationary.

In many applications, Markov chains are used to model the correlations between observable
physical events. Every state represents a distinct event, and the state transition probabilities de-
scribe the correlations between these events. Once we have constructed a model that properly
describes the system that gives rise to the observable events, this model can be used to evaluate

the probability of observing a series of events. For example, let us consider the following problem.
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Figure 1.3: Example of a state transition diagram that represents a Markov chain with two distinct
states S; and Ss.

Given that the current state is yy € S, how can we compute the probability that the next L states

will be exactly 4192 . .. y1.? Using the Markov property, this probability can be simply computed as

L
P(yyz--yclyo) = ] P(ynlyn-1)

n=1
L

= [T twa-1.0) (1.7)

n=1

Consider the case when we have multiple Markov chains, where each model describes the behavior
of a system under different conditions. In this case, we can use the observation probability in (1.7)
to determine which model describes the observed events best.

The Markov chains are utilized in Chapter 6, where they are used to represent the base se-
quences inside CpG islands and those outside CpG islands. It is demonstrated that they can be
effectively used for discriminating CpG islands from the non-CpG island regions. For further de-

tails on Markov chains, the reader is referred to [89].

1.3 Hidden Markov model (HMM)

For many real world problems, the assumption that each state in the Markov chain corresponds
to an “observable” event may be too restrictive. In such cases, we can use the hidden Markov
model (HMM) that is an extension of the simpler Markov model. The HMM is a doubly embed-
ded stochastic process that consists of an invisible process of hidden states and a visible process of
observable symbols (or events). The hidden state sequence satisfies the Markov property, which is
governed by the state transition probabilities associated with the model. The probability distribu-

tion of the observed symbols depend on the underlying states. More formally, this can be written



as follows. Let x,, € A be the observed symbol at time n, where A = {aq,...,an} is the set of all
observable symbols. We denote the underlying state at time n as y,, € S, where S = {S1,...,Su}
is the set of distinct states in the hidden Markov model. As the state sequence satisfies the Markov

property, we have

P(yn+1 = Sj|yn = Sivynfl = Sk, .. ) = P(yn+1 = S]|yn = Sz)

At time n, the emission probability of the observed symbol x,, depends on the hidden state y,,

P(zn, = ak|yn = St) = e(ax|S).

Note that ¢(.S;, S;) is the stationary state transition probability from state S; to state S;, and e(ay|S¢)
is the stationary symbol emission probability of symbol a;, at state Sy. The stochastic process of
hidden states and the process of observable symbols are illustrated in Figure 1.4. In general, the
hidden state sequence (typically called a “path”) cannot be directly inferred from the observed
symbol sequence, although some information about the state sequence can be obtained from the
observation. An HMM is completely defined by the set of parameters © = {T, E, 7}, where the

matrices T' = {t;;} and E = {ey } and the vector 7 = {m;} are defined as follows.

tij = (5, 5)),
e = elag]Se),
i = Py =25),

forl < 4,5, < Mand 1 < k < N. T is the transition probability matrix, F is the emission
probability matrix, and 7 is the initial state distribution of the model.
Like Markov chains, HMMs can also be conveniently represented by state transition diagrams.

Figure 1.5 shows an example of such a diagram. The HMM shown in Figure 1.5 has the following
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Figure 1.4: Illustration of the doubly embedded stochastic process in HMMs. The stochastic process
consists of an observable symbol sequence and a hidden state sequence.

0.3

0.1

Figure 1.5: Example of a state transition diagram that represents a hidden Markov model with three
states S = {51, S2, 53} and two distinct observation symbols A = {a, b}. The initial state distribu-
tion and the state transition probabilities are shown along the edges and the emission probabilities
are shown in the boxes.



set of parameters © = {T, E, 7}

0.3 0.7 0.0

T = 0.2 03 05 |,
0.9 0.0 0.1
0.8 0.2

E = 0.3 0.7 |,
0.5 0.5

™= 0.6 0.4 0.0

As an example, let us consider the following observation sequence x with the underlying state

sequence y as shown below

X = a a b b oa,

y = Sl Sl S2 53 Sl.

The probability P(x,y) can be computed as

1D(X7 y) = P(yl = Sl) X e(a|5’1) X t(Sl,Sl) X e(a|51) X t(sl,Sg)
we(b]Sa) x t(Sa, S5) x e(b|Ss) x t(S3,51) x e(alS)

0.6 x0.8x0.3x08x0.7x0.7x05x0.5x0.9x0.8

1.016064 x 1072.

There are three important problems that have to be solved in order to apply the HMMs to real
world applications. These problems are typically called the alignment problem, the scoring problem,

and the training problem. These problems are described in the following.

Alignment problem

Given an observed symbol sequence x = z1x2 ...z, and an HMM defined by the set of pa-
rameters ©, how can we find the optimal state sequence y = y1y» ... yr that maximizes the
observation probability P(y|x,©)? This is called the “alignment problem” because it tries to
find the best alignment between the symbol sequence x and the given HMM. As the num-
ber of paths increases exponentially with the length L of the symbol string x, comparing all
paths is practically infeasible. However, there exists an efficient dynamic programming algo-

rithm called the Viterbi algorithm, which can find the optimal state sequence in a systematic
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way [116]. The complexity of the Viterbi algorithm is only O(LM?), which increases linearly

with respect to the sequence length L, where M is the number of states.

Scoring problem

Given an observed symbol sequence x = x;z5 ... 2, how can we compute its observation
probability based on a given model ©? As this probability can be used to score different
models to choose the one that best describes the observation sequence, it is usually called the
“scoring problem.” This problem can be efficiently solved using the forward algorithm [56, 81],
which is closely related to the Viterbi algorithm. The complexity of the forward algorithm is
also O(LM?).

Training problem

Finally, we have to address the problem of how to choose the model parameters in an optimal
manner, based on a number of training sequences. One popular solution to this problem
is an EM (expectation-maximization) algorithm called the Baum-Welch algorithm [6]. This
algorithm can iteratively find the parameters that achieve a local maximum of the observation

probability of the training sequences.

The algorithms that can be used for solving these problems for HMMs are described in consid-
erable detail in [56, 81].

HMMs are well known for their effectiveness in modeling short-term dependencies between
adjacent symbols. For this reason, they have been extensively used in various fields, including
speech recognition [56, 81] and bioinformatics [28, 59]. In Chapter 2, we extend the traditional
HMM so that we can also describe long-range correlations between distant symbols. The extended
model, called the context-sensitive HMM (csHMM) has important applications in RNA sequence

analysis, as will be demonstrated in Chapter 3 and Chapter 4.

1.4 Review of some fundamentals in genomics

In this section, we briefly review some basics in genomics that are needed to understand the details

of the thesis.
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1.41 DNA and RNA

DNA (deoxyribonucleic acid) is a nucleic acid that contains the genetic information for cellular life
forms and viruses. They are responsible for propagating the hereditary information in all living
organisms. A single strand of DNA consists of many nucleotides that are linked to each other
forming a long chain. A nucleotide consists of a base, a sugar, and a phosphate (or a phosphate
group). The structure of a nucleotide is illustrated in Figure 1.6. The nucleotides that form a DNA
strand can have four different kinds of bases, namely, adenine, cytosine, guanine, and thymine. For
convenience, these nucleotides (or the bases) are typically represented by the four letters A, C, G,
and T.

In general, a single strand of DNA forms a double helix with another single strand of DNA via
hydrogen bonding between the bases. An illustration of a DNA double helix is shown in Figure 1.7.
The nucleotide A in one strand is linked to T in the other strand (and vice versa), and the nucleotide
C in one strand is connected to G in the other strand (and vice versa). As a result, one strand in a
DNA double helix completely determines the nucleotide sequence in other strand, hence they are
called complementary strands.

Figure 1.8 shows an example of a short DNA double helix that has been straightened out for
simplicity. As indicated in the figure, the sugar-phosphate forms the backbone of each DNA strand,
and the two strands that run towards opposite directions are linked to each other by the chemical
bonds formed between the complementary bases. As the nucleotide sequence in one strand deter-
mines the nucleotide sequence in the other strand, a double-stranded DNA can be unambiguously
represented by either strand. For this reason, a DNA molecule is represented by the nucleotide
sequence of the forward strand, which is read from the so-called 5’-end to the 3’-end. For example,

let us consider the DNA shown in Figure 1.8:

5 —-A-A-T-C-G-G-C-T—-A-C-3 (forward strand)

y3-T-T-A-G-C-C-G—-A-T—-G-5  (backward strand) .

This can be simply represented by the forward strand

5 —A-A-T-C-G-G-C-T—-A-C-3.

Therefore, from a signal processing perspective, we can view a DNA molecule as a symbol se-
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sugar-phosphate backbone

=) 3’ forward strand
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Figure 1.8: Example of a DNA double helix that has been straightened out for simplicity.

quence, where the symbols are taken from a finite alphabet.
The RNA (ribonucleic acid) is another type of nucleic acid that is closely related to the DNA. It
also consists of four kinds of bases like the DNA, except that uracil (U) is used instead of thymine

(T). Unlike DNA molecules, the RNA is typically a single-stranded molecule.

1.4.2 Protein synthesis

A protein is a complex biomolecule that consists of a long chain of amino acids. The amino acids
are linked to each other by strong covalent bonding called peptide bonds, and the amino acid chain
is also known as a polypeptide. There are 20 different kinds of amino acids in proteins, where each
amino acid has a different side-chain. Therefore, a protein can be conveniently represented as a
sequence of amino acids, where each of the 20 distinct amino acids is denoted by a 3-letter code
or an 1-letter code. For example, the amino acid alanine is denoted by ‘Ala” or ‘A,” and cysteine is
denoted by ‘Cys’ or ‘C.’

Proteins are involved in every single biological process in all cells, hence playing a crucial role
in all living organisms. The information that is needed for encoding proteins is stored in the DNA.
Portions in the DNA that contain the information for producing proteins are called protein-coding
genes, or often simply genes.? Each gene in the DNA is first copied into an RNA molecule (transcrip-
tion), which is then used to produce proteins (translation). Therefore, it can be said that the genetic
information flows from DNA to RNA to protein. This basic principle is typically called the central
dogma of molecular biology [1], and it explains how the genetic instructions contained in the DNA
are used to synthesize RNAs and proteins. Figure 1.9 illustrates this principle in a simple diagram.
The main steps in a typical protein synthesis process are shown in Figure 1.10. Each step in the

process is discussed in the following subsections.

ZNote that there exist also ncRNA (noncoding RNA) genes, which are portions of DNA that give rise to functional RNAs
that are not translated into proteins.
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DNA
RNA synthesis
(transcription)
RNA
Protein synthesis
(translation)
Protein

Figure 1.9: The central dogma of molecular biology states that the genetic information flows from
DNA to RNA to protein.

1.4.2.1 Transcription

The process of copying the content of a gene into an RNA is called transcription. The transcription
process is carried out by an enzyme called RNA polymerase, where an enzyme is a protein that cat-
alyzes a specific chemical reaction. Initially, the RNA polymerase binds to a special region in the
DNA called the promoter, which is located upstream of a gene and is used to designate the starting
point of the transcription process. During transcription, the RNA polymerase uses one strand of
the DNA (called the template strand) to copy the content into an RNA molecule. While copying the
content from DNA to RNA, a thymine (T) in the original DNA sequence is replaced by a uracil (U)
in the RNA that is being synthesized. The resulting transcript of a protein-coding gene is called a
pre-mRNA (pre-messenger RNA).

Living organisms can be categorized into two types, namely, prokaryotes and eukaryotes. Prokary-
otes are simple organisms (mostly unicellular) that do not have a cell nucleus. Bacteria are com-
mon examples of prokaryotes. On the other hand, eukaryotes are organisms that have complex
cells with membrane-bound nuclei. Most of them are multicellular, and higher organisms such as
worms, plants, insects and mammals belong to eukaryotes. Most protein-coding genes in eukary-
otes consist of two types of regions called exons and introns (see Figure 1.10).> The introns are
removed from the pre-mRNA and the remaining exons are concatenated to form a mRNA (messen-

ger RNA). This process is called splicing. Sometimes, one pre-mRNA gives rise to multiple mRNAs

3The protein-coding genes of prokaryotes do not have introns.
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Figure 1.10: Illustration of a typical protein synthesis process.
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UUU : Phenylalanine UCU : Serine UAU : Tyrosine UGU : Cysteine
UUC : Phenylalanine UCC : Serine UAC : Tyrosine UGC : Cysteine
UUA : Leucine UCA : Serine UAA : Stop UGA : Stop
UUG : Leucine UCG : Serine UAG : Stop UGG : Tryptophan
CUU : Leucine CCU : Proline CAU : Histidine CGU : Arginine
CUC : Leucine CCC : Proline CAC : Histidine CGC : Arginine
CUA : Leucine CCA : Proline CAA : Glutamine CGA : Arginine
CUG : Leucine CCG : Proline CAG : Glutamine CGG : Arginine
AUU : Isoleucine ACU : Threonine AAU : Asparagine AGU : Serine
AUC : Isoleucine ACC : Threonine AAC : Asparagine AGC : Serine
AUA : Isoleucine ACA : Threonine AAA : Lysine AGA : Arginine
AUG : Methionine, Start ACG : Threonine AAG : Lysine AGG : Arginine
GUU : Valine GCU : Alanine GAU : Aspartic acid GGU : Glycine
GUC : Valine GCC : Alanine GAC : Aspartic acid GGC : Glycine
GUA : Valine GCA : Alanine GAA : Glutamic acid GGA : Glycine
GUG : Valine GCG : Alanine GAG : Glutamic acid GGG : Glycine

Figure 1.11: The genetic code.

by combining different exons. This phenomenon is called alternative splicing, and it is widely ob-

served in eukaryotes.

1.4.2.2 Translation

During the translation process, the mRNA that was transcribed from DNA is decoded by the ribo-
some and tRNAs (transfer RNA) to generate a polypeptide (or a protein). A polypeptide is a long
sequence of amino acids that are interconnected via peptide bonds. The translation of mRNAs into
proteins is governed by the genetic code that maps each of the 64 codons (triplets of nucleotides) into
one of the 20 different amino acids. Figure 1.11 shows the genetic code that holds true for most
genes in the vast majority of organisms. However, deviations from the standard code shown in
Figure 1.11 are also widespread. For example, in several human mitochondrial mRNAs, the triplet
“UGA’ was observed to code a tryptophan instead of serving as a stop codon [11].

For a comprehensive introduction to genomics and cell biology, see [1, 11].
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Figure 1.12: Two examples of RNAs with secondary structures. The primary sequence of each
RNA is shown along with its structure after folding. The dashed lines indicate interactions between
bases. (a) RNA with two stem-loops. (b) RNA with a pseudoknot.

1.5 RNA secondary structure

As mentioned earlier, the RNA is a nucleic acid that consists of a chain of nucleotides. There are
four distinct types of nucleotides, A, C, G, and U, where U is chemically similar to T. Just like in the
DNA, A and U can form a hydrogen-bonded base pair, and similarly, C and G can also form a pair.*
In general, the RNA is a single-stranded molecule. If there exist complementary parts in a given
RNA, these parts can form contiguous base pairs, making the RNA fold onto itself intramolecu-
larly. This complementary base pairing determines the three-dimensional structure of the RNA to
a considerable extent, and the two-dimensional structure resulting from the base pairing is referred
as the RNA secondary structure. In contrast, the one-dimensional string of nucleotides is sometimes
called the primary sequence of the RNA.

Figure 1.12 shows two examples of RNA secondary structures. We can see that both RNAs

4Sometimes, the bases G and U can also form pairs.
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display characteristic secondary structures after folding. As indicated in Figure 1.12 (a), the con-
tiguous base pairs that are stacked onto each other after folding is called a stemn, and the sequence of
unpaired bases bounded by base pairs is called a loop. The secondary structure of the RNA in Fig-
ure 1.12 (a) consists of two stem-loops (or hairpins). In many cases, the base pairings occur in a nested
manner, where no interactions between bases cross each other. To be more precise, consider a base
pair between locations i and j (i < j), and another base pair between locations k and ¢ (k < ¢). We
say that these two base pairs are nested if they satisfy i < k < £ < jork < i < j < £. The RNA
shown in Figure 1.12 (a) has only nested interactions. Secondary structures with crossing interac-
tions, where there exist base pairs at (i,5) and (k,¢) that satisfy i < k < j < lork <i < {<j,
are called pseudoknots. One such example is shown in Figure 1.12 (b). Although RNA pseudoknots
are observed less frequently than secondary structures with only nested base pairs, there are still
many RNAs that are known to contain functionally important pseudoknots [104].

Many interesting RNAs are known to conserve their secondary structures among different
species [25]. The conserved secondary structure gives rise to complicated long-range correlations
between distant bases in the primary sequence of an RNA. More detailed discussion on this topic
will be presented in Chapter 3.

For additional details on RNA secondary structures and RNA sequence analysis, the reader is

referred to [25, 30].

1.6 Outline of the thesis

This thesis is organized as follows.

1.6.1 Context-sensitive hidden Markov models (Chapter 2)

In many applications, biological sequences are often treated as unstructured one-dimensional sym-
bol sequences. However, they usually have higher dimensional structures that play important roles
in carrying out their biological functions within cells. For example, an RNA molecule often folds
onto itself to form a specific RNA secondary structure as shown in Section 1.5. This structure gives
rise to complicated long-range correlations between distant bases in the RNA, which cannot be
handled by simple models such as the Markov chains and the hidden Markov models (HMMs).

In Chapter 2, we introduce the concept of context-sensitive HMMs (csHMMs), which can be
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used for representing symbol sequences with long-range correlations. The csHMM is an exten-
sion of the traditional HMM, where the emission probabilities and the transition probabilities at
certain states depend on the previous emission, called the “context.” This context-sensitive prop-
erty increases the descriptive power of the model tremendously, making the csHMMs capable of
handling complicated correlations between nonadjacent symbols. Due to the increased descrip-
tive power of the model, we cannot use the algorithms that have been utilized for analyzing the
traditional HMMs (e.g., the Viterbi algorithm, the forward algorithm, and the Baum-Welch algo-
rithm). In Chapter 2, we propose dynamic programming algorithms that can be used with csHMMs
for finding the optimal state sequence (the “alignment problem”) and computing the observation
probability (the “scoring problem”) of a symbol sequence. In addition to this, we also propose a
parameter reestimation algorithm that can be used for finding the optimal parameters of a csHMM

based on a set of training sequences.

1.6.2 RNA sequence analysis using context-sensitive HMMs (Chapter 3)

The context-sensitive HMMSs proposed in Chapter 2 have important applications in RNA sequence
analysis. In Chapter 3, we focus on the role of csHMMs in the computational identification and
analysis of the so-called noncoding RNAs (ncRNAs). For a long time, it has been believed that pro-
teins are responsible for most of the important biological functions within cells. In the meanwhile,
the RNA was mainly viewed as a passive intermediary that interconnects DNA and proteins. How-
ever, recent results indicate that ncRNAs, which are RNA molecules that function without being
translated into proteins, play pivotal roles in various biological processes, especially in controlling
the regulatory mechanisms in the cells [30, 44].

In Chapter 3, we show how the csHMMs can be utilized for building probabilistic representa-
tions of ncRNA families and finding new ncRNA genes. We give examples of csHMMs that repre-
sent the correlations in symbol sequences that arise from various RNA secondary structures. Then,
we propose a dynamic programming algorithm that can be used for searching a large database to
find similar sequences that closely match the original RNA that is represented by the csHMM at
hand.

Unlike most RNA sequences that adopt a single “biologically correct” structure, there exist
many regulatory RNAs that can choose from alternative secondary structures [53, 108]. These

RNAs can differentially fold depending on the environmental cues, thereby controlling the ex-
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pression level of certain genes. Alternative folding in RNAs introduces some complications, as
the resulting correlation structure is significantly more complex than those of typical RNAs that
take only one structure. At the end of Chapter 3, we propose a method based on csHMMSs, which
can be used for modeling and identifying RNAs with alternative secondary structures. The pro-
posed method provides a good prediction performance at a reasonably low complexity, making it
practically usable in real applications.

The main emphasis of Chapter 3 lies on building tools that can be used to find new members

(or homologues) of known ncRNA families.

1.6.3 Profile context-sensitive hidden Markov models (Chapter 4)

In Chapter 4, we present a subclass of context-sensitive HMMs, called profile-csHMMSs, which
are especially useful in representing RNA profiles. The Profile-csHMM is a csHMM with a linear
structure that repetitively uses three kinds of states, namely, match states, delete states, and insert
states. Unlike traditional profile-HMMs, some of the match states are made context sensitive such
that we can represent pairwise correlations between the bases that form a complementary base pair
in the RNA secondary structure. Profile-csHMMs can be easily constructed from an RNA multiple
sequence alignment, in a simple and intuitive manner.

One of the most important advantages of profile-csHMMs is that they are capable of model-
ing any kind of RNA pseudoknots. For example, models such as CMs (covariance models) [26]
that have been extensively used for modeling RNAs, can only describe nested correlations, hence
not capable of handling pseudoknots. More recent models such as PSTAGs (pair stochastic tree
adjoining grammars) [66] can also deal with many pseudoknots, but not all of them. Based on
profile-csHMMs, we propose a dynamic programming algorithm, which is called the sequential
component adjoining (SCA) algorithm, that can be used for finding the optimal state sequence of
profile-csHMMs.

To demonstrate the effectiveness of the propose model, we build a structural alignment tool that
can be used for aligning RNA pseudoknots and predicting their secondary structures. Experimen-
tal results indicate that the profile-csHMM based approach can achieve a high prediction accuracy
that is comparable to the state-of-the-art method, while it can also deal with a much larger class of
pseudoknots. Furthermore, the proposed structural alignment method runs much faster than the

previous method (based on PSTAGs) without degrading the accuracy.
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Finally, we consider the problem of performing an RNA homology search using profile-csHMM:s.
Although the profile-csHMM alignment algorithm runs reasonably fast, it is still slow if we want
to use it for scanning a large database. At the end of Chapter 4, we propose an efficient pre-filtering
scheme for making a profile-csHMM search significantly faster, without affecting its prediction

accuracy.

1.6.4 Predicting protein-coding genes using digital filters (Chapter 5)

In Chapter 5, we present digital filtering methods for identifying protein-coding genes. It is well
known that protein-coding regions in DNA sequences frequently display period-3 behaviors that
are not observed in noncoding regions. Therefore, we can exploit this property for identifying
protein-coding regions in a given DNA sequence. Traditionally, these regions have been identified
with the help of windowed DFT (discrete Fourier transform) [3, 106]. From a digital filtering per-
spective, we can view the DFT approach as digital filtering using a bandpass filter whose passband
is centered at 27/3. In this way, we can extract the period-3 component to measure the strength
of the periodic behavior in a specific region. However, the DFT-based filter does not have a high
stopband attenuation, which leaves a considerable amount of undesirable noise after filtering.

We can overcome this problem by designing a better digital filter with a higher stopband attenu-
ation. In Chapter 5, we propose two different methods for designing digital filters that can be used
for identifying protein-coding genes. The first method is based on allpass-based antinotch filters
and the second method is based on multistage digital filtering. Experimental results indicate that
both methods can isolate the period-3 components from the noisy background considerably better
than the traditional DFT approach. Furthermore, the digital filters that are used in the proposed
methods can be very efficiently designed, providing a significant advantage in terms of computa-
tional cost.

The gene identification problem is quite complex in nature, and we need more powerful sta-
tistical models to achieve a high prediction accuracy. However, such models are computationally
more expensive than the proposed digital filtering methods, which makes the speed of the gene
finder quite slow. Therefore, we can use the prediction methods proposed in Chapter 5 for a fast
prescreening of the genome and use a more descriptive model (such as an HMM) in the second

stage in order to expedite the overall gene identification process.
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1.6.5 Identification of CpG islands using filter banks (Chapter 6)

The CpG islands are specific regions in DNA molecules that are abundant in the dinucleotide CpG.
They are usually located upstream of the transcription start regions of many genes, hence can be
used as good gene markers. Furthermore, the methylation of CpG islands is known to play an
important role in gene silencing, genomic imprinting, carcinogenesis, and so forth. For this reason,
the computational identification of CpG islands has been of interest to many researchers.

In Chapter 6, we propose a method for finding CpG islands based on a filter bank that consists of
IIR (infinite impulse response) lowpass filters. The proposed method models the CpG island region
and the non-CpG island region respectively, using two different Markov chains. Based on the two
Markov chains, it computes the log-likelihood ratio for every transition between the adjacent bases
in a given DNA sequence. This log-likelihood ratio is filtered using a bank of lowpass filters, whose
output signals are then analyzed to find the transition points between the CpG island regions and
the non-CpG island regions. The filter bank based prediction approach provides a convenient way
for obtaining reliable prediction results without degrading the resolution of the start/end positions

of the predicted CpG islands.
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Chapter 2

Context-Sensitive Hidden Markov
Models

Although biological sequences are often treated as unstructured one-dimensional symbol sequences
for simplicity, they usually have three-dimensional structures that play important roles in carrying
out their biological functions in cells. For example, a polypeptide (a long chain of amino acids) is
biologically inactive until it folds into a correct three-dimensional protein structure. This is typi-
cally called protein folding [11]. RNAs, which usually exist as single-stranded molecules, often fold
onto themselves intramolecularly to form consecutive base-pairs. The three-dimensional structure
of an RNA is determined by this complementary base-pairing to a considerable extent, and the
two dimensional structure that results from this base-pairing is referred as the RNA secondary struc-
ture [25].1 Due to these structures, many biological sequences-such as proteins and noncoding
RNAs (ncRNAs)- exhibit complicated correlations between nonadjacent symbols [25]. Such corre-
lations cannot be effectively handled by simple models such as Markov chains and hidden Markov
models (HMMs). In fact, these models belong to stochastic reqular grammars (SRGs) according to the
so-called Chombksy hierarchy of transformational grammars, which cannot model symmetric sequences
(or palindromes). As RNAs with conserved secondary structures can be viewed as “biological palin-
dromes,” these models are incapable of handling RNA sequences. This will be described in more
detail in Section 2.2.

In order to overcome this limitation, we propose a new statistical model in this chapter, which
is called the context-sensitive hidden Markov model (csHMM). The csHMM is an extension of the
conventional HMM, where the probabilities at some states are made context sensitive. This in-

creases the descriptive capability of the model tremendously, making csHMMs capable of describ-

IExamples of RNA secondary structures can be found in Chapter 1 and Chapter 3.
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ing long-range correlations between nonadjacent symbols.? The proposed model has several ad-
vantages over other existing models, including the stochastic context-free grammars (SCFG), as will
be demonstrated later. The csHMMs are especially useful for modeling ncRNAs with conserved
secondary structures and for building RNA sequence analysis tools.

The content of this chapter is mainly drawn from [131], and portions of it have been presented

in [123, 127, 128].

2.1 Outline

The organization of this chapter is as follows. In Section 2.2, we briefly review the Chomsky hierar-
chy of transformational grammars, and explain where the conventional HMMs are located in this
hierarchy. We show that the descriptive capability of HMMs is limited to sequences with sequential
dependencies and give examples that cannot be effectively modeled by the HMMs.

In Section 2.3, we introduce the concept of context-sensitive HMM (csHMM), which is an ex-
tension of the HMM that can be used for representing long-range correlations between distant
symbols. We first elaborate on the basic elements of a csHMM in Section 2.3.1, and explain in
Section 2.3.2 how these elements can be used to build an actual csHMM.

In Section 2.4, we consider the “alignment problem” of csHMMs. It is shown that the Viterbi
algorithm cannot be used for finding the optimal state sequence of a csHMM due to the context-
sensitive property of the model. In Section 2.4.1, we briefly describe how we can implement a
dynamic programming algorithm that can be used for finding the optimal state sequence that max-
imizes the probability of an observation sequence, based on a given csHMM. The algorithmic de-
tails are described in Section 2.4.2 and Section 2.4.3, and the overall complexity of the algorithm is
analyzed in Section 2.4.4.

The “scoring problem” of csHMM s is considered in Section 2.5. In this section, we show how
we can compute the observation probability of a symbol sequence in a systematic way. The details
of the scoring algorithm is described in Section 2.5.1. In addition to this, we describe the outside
algorithm for csHMMs in Section 2.5.2, which can be used along with the scoring algorithm for
estimating the model parameters of csHMMs.

In Section 2.6, we describe a parameter re-estimation algorithm for csHMMSs. We can iteratively

%It has to be noted that the context-sensitive HMMSs proposed in this chapter are not related to the so-called context-
dependent HMMs that have been widely used in speech recognition [62, 64, 97]. They are regular HMMSs, whose basic
building blocks are built by considering the phonetic context, hence called context-dependent HMMs.
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apply the proposed algorithm to train a csHMM based on a set of training sequences. Experimental
results are given in Section 2.7, which demonstrate the effectiveness of the algorithms proposed in
Section 2.4, Section 2.5, and Section 2.6.

In Section 2.8, we discuss several interesting issues related to csHMMs. For example, we con-
sider extending the proposed model for representing non-pairwise correlations in Section 2.8.1
and explain how csHMMs can be used for modeling crossing correlations in Section 2.8.2. In Sec-
tion 2.8.3, we compare the proposed model with other variants of HMMSs. The csHMM is also com-
pared to other transformational grammars (e.g., context-free grammars, context-sensitive gram-
mars) in Section 2.8.4, and we show that csHMMs have several advantages over these grammars.
Concluding remarks are given in Section 2.9.

Finally, in Appendix A, we give an example of a context-free grammar (CFG) that cannot be
represented by a csHMM. As there also csHMMs that cannot be represented by CFGs (shown in
Section 2.8.2), this demonstrates that neither the csHMMs nor the CFGs fully contain the other
(see Figure 2.19). In Appendix B, we describe simplified versions of the alignment algorithm and
the scoring algorithm that are proposed in Section 2.4 and Section 2.5, respectively. The simpli-
fied algorithms can be used for analyzing sequences with single nested correlations, and they are

computationally more efficient compared to the original algorithms.

2.2 HMMs and transformational grammars

Hidden Markov models (HMMs) have been widely used in many fields. They are well known
for their efficiency in modeling short-term dependencies between adjacent symbols, which made
them popular in diverse areas. Traditionally, HMMs have been successfully applied to speech
recognition, and many speech recognition systems are built upon HMMs and their variants [56,
81]. They have been also widely used in digital communications, and more recently, HMMs have
become very popular in computational biology as well. They have been proved to be useful in
various problems such as gene identification [25, 58, 96], multiple sequence alignment [25, 27], and
so forth. Due to its effectiveness in modeling symbol sequences, the HMM gave rise to a number
of useful variants that extend and generalize the basic model [35, 49, 50, 70, 79, 80, 136].

Although HMMs have a number of advantages, the basic HMM and its variants have also
inherent limitations. For example, they are capable of modeling sequences with strong correlations

between adjacent symbols, but they cannot describe long-range interactions between symbols that
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Type Allowed production rules
Regular Grammar A—aBlale
Context-Free Grammar A— «

Context-Sensitive Grammar | aAy — afy or S — ¢
Unrestricted Grammar aAy —§

Table 2.1: The Chomsky hierarchy of transformational grammars.

are distant from each other. Therefore, the resulting model always displays local dependencies,’

and more complex sequences with non-sequential dependencies cannot be effectively represented

using the conventional HMMs.

2.2.1 Transformational grammars

In computational linguistics, a transformational grammar is defined as a set of rules that can be used
to describe (or generate) a set of symbol sequences over a given alphabet. It was first formally
proposed by the computational linguist Noam Chomsky [16]. A transformational grammar can be
characterized by the following components: terminal symbols, nonterminal symbols, and production
rules. Terminal symbols are the observable symbols that actually appear in the final symbol se-
quence, and nonterminal symbols are abstract symbols that are used to define the production rules.
A production rule is defined as @ — 3, where o and 3 are strings of terminal and/or nonterminal
symbols. It describes how a given string can be transformed into another string. We can generate
various symbol sequences by applying these production rules repetitively, where the generation
process starts from the start nonterminal S and terminates when there are no more nonterminals.

As an example, let us consider the following grammar which has a single nonterminal {S} and
two terminals {a, b}:

S—aS, S—b.

This simple grammar can generate any sequence of the form «a .. . ab. For example, we can generate

the sequence aaab by applying the above rules as follows
S — aS — aaS — aaaS — aaab.

In his work on transformational grammars, Chomsky categorized transformational grammars

3By local dependencies, we imply that the probability that a symbol appears at a certain location depends only on its
immediate preceding neighbors.
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unrestricted

context-sensitive

context-free

* more complex
* more powerful
* less restricted

Figure 2.1: The Chomsky hierarchy of transformational grammars nested according to the restric-
tions on the allowed production rules.

into four classes. These are the regular grammars, context-free grammars, context-sensitive grammars
and unrestricted grammars, in the order of decreasing restrictions on the production rules. The pro-
duction rules allowed in each class are summarized in the Table 2.1. A and B are single nontermi-
nals, a is a single terminal, and e is the empty sequence. «, ~, ¢ are any string of terminals and/or
non-terminals, and ( is any nonempty string of terminals and/or non-terminals. (The notation ’|’
means ‘or.”) These four classes comprise the so-called Chomsky hierarchy of transformational gram-
mars, which is illustrated in Figure 2.1. As can be seen from the diagram, regular grammars are the
simplest among the four, and they have the most restricted production rules.

HMMs can be viewed as stochastic regular grammars (SRG), according to this hierarchy. Due
to the restrictions on their production rules, regular grammars have efficient algorithms such as the
Viterbi algorithm [116] for finding the optimal state sequence (popularly used in digital communica-
tion receivers), the forward algorithm [56, 81] for computing the probability of an observed symbol
string, and the Baum-Welch algorithm [6] for re-estimation of the model parameters. Other trans-
formational grammars that belong to a higher-order class in the hierarchy have less restrictions on
the allowed production rules, and therefore they have greater descriptive power to represent more
complicated dependencies between symbols. However, the computational complexity for analyz-
ing an observation sequence (e.g., computing the observation probability, finding the optimal state
sequence) increases very quickly, which makes the use of higher-order grammars sometimes im-

practical.
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aaba
| L= |

babba
‘ | = | ‘

Figure 2.2: Examples of sequences that are included in the palindrome language. The lines indicate
the pairwise correlations between distant symbols.

2.2.2 Palindrome language

One interesting language that cannot be represented using regular grammars (or equivalently, us-
ing HMMs) is the palindrome language [16]. The palindrome language is a language that contains
all strings that read the same forwards and backwards. For example, if we consider a palindrome
language that uses an alphabet of two letters {a, b} for terminal symbols, it contains all symbol se-
quences of the form aa, bb, abba, aabbaa, abaaba, and so on. Figure 2.2 shows examples of symbol
strings that are included in this language. The lines in Figure 2.2 that connect two symbols indicate
the pairwise correlations between symbols that are distant from each other. Similarly, RNAs with
conserved secondary structures display long-range correlations between nonadjacent bases, due
to the existence of symmetric (or reverse complementary, to be more precise) portions in their pri-
mary sequences. This kind of long-range interactions between symbols cannot be described using
regular grammars.

It is of course possible that a regular grammar generates such palindromes as part of its lan-
guage. However, we cannot force the model to generate only such palindromes. Therefore regular
grammars are not able to effectively discriminate palindromic sequences from non-palindromic
ones. In fact, in order to describe a palindrome language, we have to use higher-order grammars
such as the context-free grammars. Context-free grammars are capable of modeling nested depen-
dencies between symbols that are shown in Figure 2.2.

In the following section, we describe how the conventional HMMs can be extended such that

they can represent long-range symbol correlations, including those observed in palindromes.
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2.3 Context-sensitive hidden Markov models

The context-sensitive HMM can be viewed as an extension of the traditional HMM, where some
of the states are equipped with auxiliary memory [123, 131]. Symbols that are emitted at certain
states are stored in the memory, and the stored data serves as the context that affects the emission
probabilities and the transition probabilities at certain future states. This context-sensitive property
increases the descriptive power of the model significantly, compared to the traditional HMM. Let

us first formally define the basic elements of a context-sensitive HMM.

2.3.1 Basic elements of a csHMM

Similar to the traditional HMMs, the csHMM is also a doubly-stochastic process, which consists of a
non-observable process of hidden states and a process of observable symbols. The process of the
hidden states is governed by state-transition probabilities that are associated with the model, and
the observation process is linked to the hidden process via emission probabilities of the observed
symbol that is conditioned on the hidden state. A csHMM can be characterized by the following

elements.

2.3.1.1 Hidden states

We assume that the csHMM has M distinct states. The set of hidden states V is defined as

Y =8SUPUCU {start, end}, (2.1)

where {start, end} is the set of special states that are used to denote the start state and the end state of
the model. As can be seen in (2.1), there are three different classes of states, namely, single-emission
states Sy, pairwise-emission states P,,, and context-sensitive states C,,. S is the set of single-emission
states

S ={S1,5,...,5m}, 2.2)

where M, is the number of single-emission states in the model. Similarly, P and C denote the set of

pairwise-emission states and the set of context-sensitive states

P={P,Ps....,Py,}, C={C1,Ca,...,Cu}. (2.3)
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o= @)

Stack n

Figure 2.3: The states P,, and C,, associated with a stack Z,,.

As shown in (2.3), the number of pairwise-emission states is the same as the number of context-
sensitive states. Therefore, we have M = 2M; + M5 + 2 hidden states in total. The states P, and
C,, always exist in pairs. For example, if there are two pairwise-emission states P; and P» in the
model, then the HMM is required to have also two context-sensitive states C; and C5. The two
states P,, and C,, are associated with a separate memory element Z,,, such as a stack or a queue. We
may also use other memory types depending on the type of correlations that we want to model.

Figure 2.3 shows an example where P,, and C,, are associated with a stack Z,,.

Differences between the three classes of states. The differences between the three classes of

states are as follows.

(1) Single-emission state S,,. The single-emission state S, is similar to a regular hidden state in
traditional HMMs. As we enter the state, S,, emits an observable symbol according to the
associated emission probabilities. After the emission, S, makes a transition to the next state

according to the specified transition probabilities.

(2) Pairwise-emission state P,,. The pairwise-emission state P, is almost identical to the single-
emission state S5, except that the symbols emitted at P, are stored in the auxiliary memory
Z,, dedicated to P, and C,,. The data stored in the memory affects the emission probabilities
and the transition probabilities of C,, in the future. After storing the emitted symbol in the

memory, a transition is made to the next state according to the transition probabilities of P,,.

(3) Context-sensitive state C,,. The context-sensitive state C,, is considerably different from the
other states, in the sense that its emission probabilities and the transition probabilities are not

fixed. In fact, these probabilities depend on the context, or the data stored in the associated
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memory Z,, which is the reason why C), is called a context-sensitive state. When entering
C,, it first accesses the memory Z,, and retrieves a symbol z. Once the symbol is retrieved,
the emission probabilities of C,, are adjusted according to the value of z. For example, we
may adjust the emission probabilities of C,, such that it emits the same symbol x with high
probability (possibly, with probability one). Transition probabilities at C,, also depend on the

context, as will be explained later.

We denote the hidden state process as s = s1s2... 51, where s; is the state at time ¢ and L is the
length of the entire sequence. Each state takes a value from s; € V — {start,end}. The virtual start

state sg and the end state sy 11 are assumed to be sy = start and sy 1 = end.

2.3.1.2 Observation symbols

We denote the observation process as x = 123 ...z, where z; is the observed symbol at time 3.
Each symbol z; takes a value from an alphabet z; € A. Note that the virtual start state so and the

end state sy41 do not make any emission.

2.3.1.3 Transition probabilities

Let us define the probability that the model will make a transition from a state s; = v to the next

state s;41 = w. For v € § U P, we define the probability as

P(si41 = wls; =v) = t(v,w).

Note that the transition probabilities are stationary and do not depend on the time index i. As
mentioned earlier, the transition probabilities at a context-sensitive state C,, depend on the context
Z,. C, uses two different sets of transition probabilities, depending on whether the associated

memory Z,, is empty or not. For each context-sensitive state C,,, we define the following sets

&, = {Subsetof V that contains the states to which C,, can make transitions
when the associated memory element Z,, is empty }, (2.4)
Fn = {Subsetof V that contains the states to which C,, can make transitions

when the associated memory element Z,, is not empty }, (2.5)
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where &, N F, = @. At a context-sensitive state C,,, the memory is examined after making the
emission. If the memory is empty, v = C,, can make a transition only to w € &,. Similarly, if the
memory is not empty, v = C,, makes a transition to w € F,,. Based on this setting, we define the
two sets of transition probabilities when v € C as follows
te(v,w) if Z, is empty

P(sip1 =wl|s; =v,2y,) = . ' ’

ty(v,w) if Z, is not empty.

Since &, N F,, = &, the probabilities t.(v, w) and ¢ (v, w) cannot have non-zero values at the same
time. Therefore, we can let t(v, w) = t.(v, w) + t¢ (v, w) without any ambiguity. Now, the transition

probability from s; = v € C to s;41 = w can be simplified as

P(siy1 = wls; =v,Z,) = t(v,w).

Note that we have > o t(v,w)=1and }_ .- t(v,w) = 1in this case. The probability ¢(start, v)
is used to define the initial state distribution P(s; = v), and ¢(w, end) denotes the probability that

the HMM will terminate after the state w.

Preventing degeneracies. The restrictions on the types of states to which a context-sensitive state
v € C is allowed to make transitions depending on the context, can be conveniently used to main-
tain the number of P, and that of C,, identical in a state sequence. In this way, we can prevent
degenerate situations due to a mismatch between the two states. Let s = sys2...s be a feasible
state sequence of an observed symbol string x = 2123 ... 2. The csHMM should be constructed
such that the number of occurrences of P, in the sequence s is kept the same as the number of
occurrences of C,, in s. This restriction is reasonable for the following reasons. In the first place, if
there are more C,, states than there are P, states, the emission probabilities of the context-sensitive
state C,, cannot be properly determined. On the other hand, if there are more P, states than C,
states, the symbols that were emitted at the “surplus” P, states do not affect the probabilities in the

model at all, hence they may be simply replaced by single-emission states.
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Stack 1

Figure 2.4: An example of a context-sensitive HMM that generates only palindromes.

2.3.1.4 Emission probabilities

The probability of observing a symbol z; = = depends on the underlying hidden state s; = v. For

v € S U P, this emission probability can be defined as
P(z; = x|s; = v) = e(z|v).

For v € C, the emission probability depends on both s; = v and the context Z,,, hence it is defined
as

P(xz = x|5l =, Zn) = e(m|v, Zn) (26)

In case the emission probability depends only on a single symbol z,, in the memory Z, (e.g., if Z,
uses a stack, x,, may be the symbol on the top of the stack), the emission probability in (2.6) can be

simply written as e(x|v, p).

2.3.2 Constructing a csHMM

By using the proposed context-sensitive HMM, we can easily construct a simple model that gener-
ates only palindromes. For example, we may use the structure shown in Figure 2.4 for this purpose.
As can bee seen in Figure 2.4, there are three hidden states 51, P, and C in the model, where the
state-pair (P;,C1) is associated with a stack. Initially, the model begins at the pairwise-emission
state P;. It makes several self-transitions to generate a number of symbols, which are pushed onto

the stack. At some point, it makes a transition to the context-sensitive state C';. Once we enter the
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context-sensitive state C, the emission probabilities and the transition probabilities of C; are ad-
justed, such that the state always emits the symbol on the top of the stack and makes self-transitions
until the stack becomes empty. In this way, C; emits the same symbols as were emitted by P;, but
in the reverse order, since the stack is a last-in-first-out (LIFO) system. If we denote the number
of symbols that were emitted by P; as N, the generated string will always be a palindrome of the
form z; ... xnyzN ... 21 (even length sequence) or z1 ... xyzN412N - .. 21 (0dd length sequence).
In the following discussions, we mainly focus on those context-sensitive HMMs that generate
sequences with nested interactions. These models include the ones that generate palindromic se-
quences as illustrated in Figure 2.4. As in Figure 2.4, we assume that every state-pair (P,, C,,) is
associated with a stack. Based on these settings, we describe efficient dynamic programming algo-
rithms that can be used for analyzing symbol sequences, and we also introduce a training algorithm

that can be used for estimating the model parameters of a given csHMM.

2.4 Finding the most probable path

Let us consider an observation sequence x = z122 ... z1. As described in Section 2.3, we denote the
underlying state of z; as s;. Assuming that there are M distinct states in the model, we have MT
different paths. Given the observation sequence x, how can we find the path that is most probable
among the M’ distinct paths? This problem is tradictionally called the optimal alignment problem,
since we are trying to find the best alignment between the observed symbol string and the given
HMM.

One way to find the most probable path would be to compute the probabilities of all paths, and
pick the one with the highest probability. However, this approach is impractical, since the number
of paths increases exponentially with the length L of the sequence. When using traditional HMMs,
this problem can be solved very efficiently by the Viterbi algorithm [116], which is widely used in
digital communication receivers. The Viterbi algorithm exploits the fact that if s;...s;_15; is the
optimal path for z; ...x;_12; among all paths that end with the state s;, then s; ...s;_; must be
the optimal path for x; ...x;_; among all paths that end with the state s;_;. Therefore, in order
to find the optimal path for z; ...x; with s; = v, we only have to consider the M optimal paths
for z1...2;—1 that end with s;_; = 1,..., M, the transition probability from each of these states
to the state s; = v, and the probability of emitting the symbol z; at the state s;. This makes the

computational complexity of the Viterbi algorithm only O(LM?), which is considerably better than
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is not empty
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\ / is empty
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Figure 2.5: An example of a simple context-sensitive HMM.

O(LM¥) of the exhaustive search.

Unfortunately, the same intuition does not hold for context-sensitive HMMs. Since the emission
probabilities and the transition probabilities of context-sensitive states C,, depend on the previously
emitted symbols at the pairwise-emission states P,,, we have to keep track of the previous states in
order to compute the probability of a certain path. Therefore, the optimal path for z; ... z; cannot
be found simply by considering the optimal paths for x; ... x;_; and extending it.

In order to see this, let us consider the example in Figure 2.5. This context-sensitive HMM
has three hidden states P;, C;, and S;, where each of these states emits a symbol in the alphabet
A = {a, b}. The emission probabilities and the transition probabilities of P, and S; are shown in the
figure. The symbols emitted at P, are pushed onto the stack, and this data affects the probabilities
at the state C;. Once we enter the context-sensitive state C, a symbol is popped out from the
stack and is emitted. After the emission, the stack is examined to check whether it is empty. If it
is empty, the model terminates. Otherwise, the model makes a transition back to C; and continues
emitting the symbols that are stored in the stack. Now, let us consider the symbol sequence abbba.
Assuming that this string comes from the model in Figure 2.5, what is the most probable path s*? It
is not difficult to see that there are only two feasible paths: s; = P;.51515:C1 and s, = P, P1S1C1Ch.
Since both paths pass the state S; in the middle, let us first consider the optimal path for the first
three symbols abb. We denote the subpaths of s; and s, up to the third symbol as §; = P;.515; and

S = Py P15y, respectively. If we compute the probabilities of §; and §,, we get
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and
6

1 3
X =X — = ——,
2 4 128

hence the optimal path for the first three symbols abb is §;. However, if we compute the probabilities

of the two paths s; and sg, we obtain

1 1 3 1 3 1 3 1 27
P(S1)= =X - X oXx =X ox =X oOx=x1Ix]l=
() =gxgxgxgxgxgxgxgxxl=5g
and
1 1 1 1 1 4
P(s2):f><f><f><f><§><f><1><1><1><1:—87
2 2 2 2 4 2 2048

which shows that the optimal path for abbba is so. Apparently, the globally optimal path s* = s, is
not an extension of §;, and this example clearly demonstrates that the Viterbi algorithm cannot be

used for finding the most probable path in context-sensitive HMMs.

24.1 Alignment of csHMM

Although the Viterbi algorithm cannot be used for finding the optimal path in a context-sensitive
HMM, we can develop a polynomial-time algorithm that solves the alignment problem in a recur-
sive manner, similar to the Viterbi algorithm. The proposed algorithm is conceptually similar to the
Cocke-Younger-Kasami (CYK) algorithm [51, 60] that can be used for parsing SCFGs. The main reason
why the Viterbi algorithm cannot be used in context-sensitive HMMs is because the interactions
between symbols are not sequential. Since the Viterbi algorithm basically considers only sequential
depdendencies, it cannot take care of nested interactions between distant symbols. However, if
we implement an algorithm that starts from the inside of the given sequence and proceeds to the
outward direction by taking the nested interactions into account, it is possible to find the optimal
state sequence in a recursive manner.

When searching for the most probable state sequence, we assume that all pairwise interactions
between P, and C,, are nested and they do not cross each other, as mentioned earlier. Figure 2.6
illustrates several examples of interactions that are allowed as well as those that are prohibited. The
nodes in the figure denote the observed symbols in the sequence, and the dotted lines that connect
two symbols indicate the pairwise interactions between them. Figures 2.6 (a)—(c) show sequences
with nested dependencies. On the other hand, the example in Figure 2.6 (d) shows a sequence with

a crossing interaction, which is not considered in this chapter.
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@ e
O0—O—O0—O0—0—0—0—0—0—0
O—0—0—0—0—0—0—0—0—0

Figure 2.6: Examples of interactions in a symbol string. The dotted lines indicate the pairwise
dependencies between symbols. (a), (b), (c) Nested interactions. (d) Crossing interactions.

Before describing the algorithm, let us first define the variables that are needed in the proposed
algorithm. x = ...z is the observation sequence and s = s;...sy is the underlying state
sequence. We assume that the csHMM has M distinct states, which we simply denote by V =
{1,2,..., M}. The state v = 1 denotes the start state of the HMM and v = M denotes the end state.

For v € P UC, we define v as the complementary state of v as follows,

v="P, - v=0C,, v=C, —>1=DP,.

The emission probability of a symbol z at a state v is defined as e(x|v) for v € SU P, and e(x|v, zp)
for v € C, where z, is the symbol that was previously emitted at the corresponding pairwise-
emission state ©. The transition probability from v to w is defined as (v, w). Finally, let us define
v(3, 4, v, w) to be the log-probability of the optimal path among all subpaths s; ... s; with s; = v and
s; = w. In computing (3, j, v, w), we consider only those paths where all the pairwise-emission
states P, in the s;...s; are paired with the corresponding context-sensitive states C,,. Examples
of subpaths that are considered in computing ~(, j, v, w) are shown in Figure 2.7 (a). The paths
shown in Figure 2.7 (b) are not considered due to unpaired P, or C, states, or due to crossing

interactions. The variable (4, j, v, w) will ultimately lead to the probability log P(x,s*|©), where
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Figure 2.7: Examples of state sequences (a) that are considered in computing (¢, j, v, w) and (b)
those that are not considered.

s* is the optimal path that satisfies

s* = argmax P(x,s = §|0),
5

where © is the set of model parameters. Additionally, we define the variables A¢(z, j, v, w) and

Ar (3, j, v, w) that will be used for tracing back the optimal state sequence s*.

2.4.2 Computing the log-probability of the optimal path

Now, the alignment algorithm can be described as follows.

(1) Initialization

—00 otherwise

. { loge(xz;lv) veS
’Y(Z,L’U,’U) =

Ae(i,i,0,0) = (0,0,0,0)

A-(i,4,0,0) = (0,0,0,0)
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(2) Iteration

Fori=1,...,.L—-1,j=4i+1,...,Landv=2,.... M —1l,w=2,..., M — 1.

)veCorweP

’Y(i,j,v,’LU) = T
A[(i,j,U,UJ) = (0,0,0,0)
)\r(iaj7v7w) = (0707070)
(i)veP,weS
~v(i,j,v,w) = max ['y(i,j —1,v,u) + logt(u,w) + log e(acj\w)}
u* = argmax [’y(i,j —1,v,u) + logt(u,w) + log e(xﬂw)}
)\@(i,j,U,U)) = (7"] - 17U7U*)
)\r(i’j7v7w) = (j7j7w7w)
(ii)ve S,weC
Y jov,w) = max [loge(aifv) +logt(v,u) + (i + 1, j,u,w)]
u* = argmax [log e(zi|v) + logt(v,u) + (i + 1, 4, u, w)}
Ag(i,j,’U,W) = (i,?:,’U,U)
Ar(iyjyv,w) = (141, j,u",w)

(V) v = Py,w=Cp (n#m),j <i+3

V(iajavaw) = -
)\l(iajvvvw) = (0707070)

)\T(ia.javaw) = (07070’ 0)
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(V)v=Pow=Cp (n#m),j>i+3

v(i, j,v,w) =
(k*’u*) =
)\g(i,j,’l),w) =

)\T(i,j,’U,UJ) =

max ( max {7(2’, k,v,0) + logt(v,u) +v(k+ 1, j,u, w)})
u \k=itl,..j—2

argmax (3, k,v,8) + log (5, u) +A(k + 1, j,u,w)]
(u,k),k=i+1,...,j—1

(i7 k*? ,U’ Il_})

(K" +1,4,u",w)

Vi)v=P,,w=0Cp,j=1i+1

V(i j,v,w) = loge(wi|v) +logt(v, w) + loge(z;|w, x;)
)\Z(iajavaw) = (0707()’0)
Ar(iajavaw) = (0707070)

(vii)v = Pp,w=Cyp,j>i+1

(k*’u*) =

Y2 =

(ur,u3) =

’Y(i7j7 v? w) =

If 1 > v,

max ( max [V(i, k,v,0) +logt(v,u) + v(k+ 1,7, u, w)})
w \k=itl,..j-2

arg max [W(i, k,v,0) +logt(v,u) +v(k + 1, j, u, w)}
(u,k),k=i+1,....5—1

max [log e(zi|v) + logt(v,uq)
U1, u2

+7(’L + 17] -1 Ul,UQ) + 10gt(u2,w) + loge(lewvxl)}

arg max [log e(zi|v) + logt(v,uq)

(u1,u2)

+7(’L + 17] -1 ula“?) + logt(ug,w) + loge(lewvxl)}

max(71 ’ 72)

)\g(i,j,’l},w) = (ivk*7vaw)

>\’I"(i7j’v’w) = (k*+17],u*7w)'
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Otherwise,

)\[(i,j,U,TU) = (Z+17]—1,UT7U§)

)\7‘(i7ja v, w) = (07 0,0, O)'

(vii) v € S,w € S

In this case, the variable (i, j, v, w) can be updated using any of the update formulae in (ii) or (iii).

(3) Termination

log P(x,8"|©) = max {logt(l,v) + (1, L,v,w) + log t(w, M)}
(v*,w*) = argmax {logt(l,v)—kfy(l,L,v,w) —l—logt(w,M)}
(v,w)
A= (1, L0, wY) [

As shown in the initialization step of the algorithm, we start by initializing the values of
~v(i,i,v,v)fori=1,2,...,Land v = 2,3,..., M — 1. Since we consider only state sequences where
all the pairwise-emission states and the context-sensitive states are paired, the value of v(i,%, v, v)
is set to —oo for v € P or v € C. For single-emission states v € S, (i, ¢, v, v) is simply the logarithm
of the emission probability of the symbol z; at state v. Therefore, we set v(i, 7, v,v) = log e(z;|v) for
veS.

Now, let us consider the iteration step. As we can see in (i) and (iv), the variable (3, j, v, w)
is set to —oo, whenever the states P, and C,, do not form pairs. For example, in case (i), if the
leftmost state s; of the subpath s;...s; is a context-sensitive state, it cannot be paired with the
corresponding pairwise-emission state, since there are no more states to the left of s;. This is also
true when the rightmost state s; is a pairwise-emission state. In case (iv), the state sequence is
either s;s,41 Or §;5;418i+2. As s; = P, and s; = Cy,, where n # m, the states s; and s; cannot
form a pair. Moreover, since there are not enough states between s; and s; such that both s; and
s; can form pairs respectively, the probability of such a state sequence is zero. Case (ii) in the
iteration step deals with the case when s; = v is a pairwise-emission state while s; = w is a single-
emission state. Since there can be no interaction between s; and any other state s;, (1 < k < j — 1),
all the pairwise-emission states and the corresponding context-sensitive states should form pairs

inside the subpath s;...s;_1. As y(i,j — 1,v,u) is the log-probability of the optimal path among
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(c)

Figure 2.8: Illustration of the iteration step of the algorithm.

all feasible paths s;...s;_1, we can compute (i, j,v,w) by extending (4,7 — 1,v,u) to the right
by one symbol. We first take the summation of (¢, — 1, v, u) and log t(u, w) and log e(z;|w), and
then compute the maximum value of this sum over all u, as described in (ii) of the iteration step.
Figure 2.8 (a) illustrates this case, where the shaded area indicates that all P, and C,, states are
paired inside the subpath s;...s;_;. Similar reasoning holds also for the case when s; = v is a
single-emission state and s; = w is a context-sensitive state. In this case, v(4, j, v, w) can be obtained
by extending v(i + 1, j, u, w) as in (iii) of the iteration step. This is illustrated in Figure 2.8 (b).

Figure 2.8 (c) depicts the case when s; = P, and s; = C,,,, where n # m. In this case, the
pairwise-emission state s; and the context-sensitive state s; cannot form a pair. Therefore s; = P,
should pair with s, = o = C,, forsome k (i + 1 < k < j — 2). Similarly, s; = C,, should form a
pair with sy = @ = P, for some ¢ (k + 1 < ¢ < j — 1). Consequently, all pairwise-emission states
and context-sensitive states inside s; ... s, and si41 ... s; have to exist in pairs. Therefore, we can
obtain (4, j, v, w) by adding (i, k, v, ¥), the transition probability log¢(v, ), and y(k + 1, j,u, w),
and maximizing this sum over all u and %, as shown in (v).

Finally, let us focus on the case when s, = P, and s; = C,,. If j = i + 1, we can simply compute
~(%,7,v,w) as in (vi) of the iteration step. As s, pairs with s;, we consider the emission of the
symbols z; and z; at the same time. In this way, we know the emitted symbol z;, and therefore the
emission probabilities at the context-sensitive state s; = (), can be decided correspondingly. When

j # i+ 1, the situation is a little bit more complicated. In this case, we have the following two
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Figure 2.9: Illustration of the iteration step of the algorithm for the case when s; = P,, and s; = C),.

possibilities. One possibility is that s; forms a pair with s; as shown in Figure 2.9 (a). The dotted
line that connects s; and s; indicates the pairwise interaction between the two symbols. Since s; and
s; form a pair, the pairwise-emission states and the context-sensitive states in s;41 ...s;-1 should
necessarily exist in pairs. Therefore, the log-probability of the most probable path, where s; = P,
and s; = C,, form a pair can be computed as follows

max [loge(a:i\v) +logt(v,ur) +v(i+ 1,5 — 1, uy,uz)

Uy, u2

+ log t(uz, w) + log e(xj|w,xi)] 2.7)

Another possibility is that s; = P,, pairs with s, = C,, for some k between i + 1 and j — 2. In this
case, s; = (), has to pair with s, = P, for some ¢ between k + 1 and j — 1. Therefore, all P, and
C,, states inside s; ... sy and si11...s; have to exists in pairs as illustrated in Figure 2.9 (b). The
log-probability of all feasible paths, where s; = P, does not pair with s; = C,, can be computed by

max ( max [v(i, k,v,0) +logt(v,u) + v(k + 1,j,u,w)}) ) (2.8)
uw \k=itl,.j—2

By comparing (2.7) and (2.8) as in (vii) of the iteration step, we can compute the log-probability of
the most probable path among all subpaths s; ... s; with s; = P, and s; = C,,.

Once we have completed the iteration step, the log-probability log P(x,s*|O) of the most prob-
able path s* can be computed by comparing v(1, L, v, w) forall v, w = 2,3, ..., M — 1. This is shown

in the termination step.
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2.4.3 Trace-back

Now that we have obtained the log-probability of the optimal path, we can trace back the path
s* that gave rise to this probability. The variables A;(i,j,v,w) and A.(i,j,v,w) are used in the
trace-back procedure, and we also need a stack 7'. For notational convenience, let us define \; =

(4,7,v,w). The procedure can be described as the following.

(1) Initialization
si=0(i=12,...,L).
Push \* onto T'.
(2) Iteration
Pop A\: = (4, j, v, w) from stack T
If A #(0,0,0,0)
If s; = 0 then s; = v.
If s; = 0 then s; = w.
Ae(A¢) onto T'.
Ar(A¢) onto T
If T' is empty then go to termination step.
Otherwise, repeat the iteration step.
(3) Termination

The optimal path is s* = s152...51. [ |

24.4 Computational complexity

Let us examine the computational complexity of the alignment algorithm. The algorithm iterates
foralli=1,...,L—1,j=4+1,...,Landv=2,... ,M—1,w=2,..., M—1. The complexity of each
iteration step depends on the type of the states v and w. Table 2.2 summarizes the computational

complexity of each case of the iteration step of the alignment algorithm in Sec. 2.4.2. From this
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Case Complexity Number Overall
for one iteration | of iterations complexity
i o(1) O(L*M. M) O(L>M. M)
ii O(M) O(L*M; M>) O(L*> My MyM)
iii O(M) O(L*M; M>) O(L*> M MM)
iv o(1) O(LM?) O(LM?)
v O(ML) O(L2M?) O(L3M2M)
vi O(1) O(LM) O(LMy)
vii | OML)+O0(M?) | O(L*M;) | O(L*M1 M) + O(L2M; M?)
viii O(M) O(L*M3) O(L*M3M)

Table 2.2: Computational complexity of the csHMM alignment algorithm.

table, we can compute the total complexity of the alignment algorithm as follows
O(L*MEM) + O(L*MyM?) + O(L* M3 M). (2.9)

Although the complexity in (2.9) is higher than O(LM?) of the Viterbi algorithm, it is still a poly-
nomial in L and M, which is much more efficient than O(LM ') of the exhaustive search approach.
The computational complexity of the alignment algorithm for general SCFGs in Chomsky normal
form is O(L3M?3) [25, 60]. As we can see, the computational cost of both algorithms increases with

O(L3M?3), in general.

2.5 Computing the probability of an observed sequence

Another important problem that arises in using HMM s for real-world applications is the follow-
ing. Given an observation sequence x = ...z, how can we efficiently compute the probability
P(x|©) that this sequence was generated by the HMM with the set of parameters ©? This is typi-
cally called the scoring problem for the following reason. Assume that we have K different models,
each with different set of parameters O,(k = 1,2,...,K). Among these K HMMs, which one
should we choose such that the probability of observing x is maximized? In order to choose the
best model, we have to score each model based on the observation sequence x, where the probabil-
ity P(x|©) is the natural choice for the score. Since P(x|0) can be used for scoring different HMMs,
the problem of computing this probability is called the scoring problem.*

For regular HMMs, we can use the forward algorithm for solving this problem, whose complexity

“Given a number of symbol sequences, we can find the best match to the given model by computing the observation
probability of each sequence and comparing these probabilities. In this case, the probability is used for scoring the observed
sequences. This is another reason why the given problem is called a scoring problem.



46

is the same as that of the Viterbi algorithm. However, due to the context-sensitive property of
csHMMs, this algorithm cannot be directly used for scoring csHMMs. Even though the forward
algorithm cannot be used for computing the probability P(x|©) in context-sensitive HMMs, we
can adopt a similar approach that was previously used in the optimal alignment algorithm. In
Section 2.5.1, we propose a dynamic programming algorithm for scoring csHMMs. In addition to
this, we also propose the outside algorithm for csHMM in Section 2.5.2. This algorithm can be used
together with the scoring algorithm for training context-sensitive HMMs, as will be elaborated in

Section 2.6.

2.5.1 Scoring of csHMM

The csHMM scoring algorithm can be viewed as a variant of the alignment algorithm, where the
max operators are replaced by sums. Conceptually, this algorithm is somewhat similar to the inside
algorithm [60] that is used for scoring SCFGs. As in the alignment algorithm, we start from the
inside of the observed symbol sequence and iteratively proceed to the outward direction. During
this process, the pairwise-emission state P, and the context-sensitive state C,, that interact with
each other are considered at the same time.

In order to describe the algorithm, we use the same notations as in Sec. 2.4.2. In addition to
this, we define the inside variable a(i, j, v, w) as the probability of all subpaths s;...s; with s; = v
and s; = w. It is assumed that all pairwise-emission states P, inside the path are paired with the

corresponding context-sensitive states C,,. Now, the scoring algorithm can be described as follows.

(1) Initialization

Fori=1,....Lybv=2,..., M — 1.

o e(zilv) ves
a(i,i,v,v) =
0 otherwise

(2) Iteration

Fori=1,...,.L—-1,j=i+1,...,Landv=2,... M —-1,w=2,..., M — 1.

(i)veCorweP

a(l’]7v7w) = 0
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(i)veP,weS
ali, j,v,w) = Z [a(i,j - 1,U,u)t(u,w)e(xj|w)}

u

(il)veS,wecC

a(i, j,v,w) = Z [e(mﬂv)t(v,u)a(i + 1,j,u,w)]

u

(iv)v=P,,wu=Cpn (n#m),j<i+3
a(i, j,v,w) =0

Mv=P,,w=C, n#m),j>i+3
(i, 4, v, w) Z Z i, k,v,0)t(0,w)alk + 1, j,u,w)
u k=i+1

vi)v=P,w=Cph,j=1+1
a(i, j,v,w) = e(z;|v)t(v,w)e(x;|w, ;)

(vi)v=P,w=0Cp,j >i+1

a(i, j, v, w) Z Z a(i, kv, w)t(w,w)a(k + 1, j,u, w)

u k=i+1

—|—ZZ [ (zi|v)t(v,u)a(i+ 1,5 — 1,ul,uQ)t(uQ,w)e(a:j\w,a:i)]

Uy u2

(viii)v e S,we S

In this case, the variable (%, j, v, w) can be updated using any of the update formulae in (ii) or (iii).

(3) Termination
P(x]©) ZZ t(1,v)a(l, L,v,w)t(w, M) |

At the end of the algorithm, we can obtain the probability P(x|0©) that the given csHMM will
generate the observation sequence x. The computational complexity of this algorithm is the same

as the complexity of the alignment algorithm, which is shown in (2.9).
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Figure 2.10: Examples of state sequences (a) that are considered in computing ((3, j, v, w) and (b)
those that are not considered.

2.5.2 The outside algorithm

In a similar fashion, we can define the outside variable (i, j, v, w) to be the probability of all subpaths
$1...88;...51, Where s; = v and s; = w. In other words, 3(i, j, v, w) contains the probability of
the entire sequence excluding z;41 ...x;_1. This variable is needed for parameter re-estimation of
csHMM, which will be elaborated in Section 2.6. As in Section 2.5.1, we assume that all pairwise-
emission states P, in s ...s;s; ... sy are paired with the corresponding context-sensitive states C,,
in a nested manner. Figure 2.10 illustrates the state sequences that are considered in computing the
variable (3(, j, v, w), and the ones that are not taken into account.

In the outside algorithm, we start computing 5(i, j, v, w) from the outside of the sequence and
proceed to the inward direction. As in the scoring algorithm, whenever there is an interaction be-
tween two symbols, the emission of these symbols are considered together. The inside variable
a(i, j, v, w), which has been computed previously, is needed for computing the outside variable

B(1, j, v, w). Now, we can solve for 3(, j, v, w) as follows.
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(1) Initialization

Fori=1,...,Libv=1,..., M.

1 v=1Lw=M

BO,L+1,0,w) =
0 otherwise
t(l,u)a(l,i,u,v) w=M
Lt tow — | Sutwaiu)
0 otherwise
a(t, L,w,u)t(u, M) v=1
S0ty { Tuel Lwwinan

0 otherwise

(2) Iteration

Fori=1,...,L—-1,j=4i+1,...,Landv=1,.... Mw=1,..., M.

v=1lorw=M

ﬁ(i7]7v7w) = O
(ii)veP,weP
L+1
ﬂ(@j,uw) = Z Z 5(i,k7v7u)a(j,k - l,w,w)t(ﬂ)7u)
w k—jt2

(ii)v e C,weC

Bl jv,w) = > > Bk, ju,w)alk + 1,4,0,0)t(u, v)
u k=0

N

(iviveC,weP

i—2 L+1

ﬁ(i,j,’U,UI) = Z Z Z /B(kthuulauQ)a(kl+17i7’[}7v)

u1,u2 k1=0 ko=5+2
XO{(j’ k2 - la w, w)t(ula T})t(’lZJ, UQ)

VveSweS
B, j,v,w) = Zﬁ(i,j + 1,0, u)t(w, u)e(x;|w)
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viy)veS,w¢S
B(i,j,v,w) = Zﬁ(z — 1, j,u, w)t(u, v)e(x;|v)

(vil) v = P, w = Cp,(n # m)

/8(7:7].71)7“)) :0

(viii) v = Pp,w = C,,

Bi,j,v,w) = Z B(i— 1,74 1,u1,u2)t(ur,v)e(z;|v)e(x;|w, z;)t(w, us)

Uy,u2

ix)veS,wes

In this case, the variable a(i, j, v, w) can be updated using either (v) or (vi).

(3) Termination
P(x[®) = Y B(i,i+1,v,w)t(v,w) foranyi [

Let us first look at the initialization step. For the case of an empty string, i.e., when i = 0 and
j=L+1,weset3(0,L+1,1, M) tounity. Wheni > 1 and j = L + 1, all the pairwise interactions
have to occur inside the subpath s;...s;. Since a(1,4,u,v) is the probability of all subpaths for
x1%2 ... x; with s; = w and s; = v, we can compute 3(i, L + 1,v, M) by taking the product of the
transition probability from state 1 to state u and the inside variable a(1, ¢, u,v), and then adding
this product over all u. The case when i = 0 and j < L can be treated similarly. These are shown in
the initialization step.

After the initialization of the outside variable 5(3, j, v, w), we proceed into the iteration step.
Firstly, consider the case when v € P and w € P. Since all pairwise-emission states have to be
paired with the corresponding context-sensitive states in a nested manner, s; = w has to pair with
w between j + 1 and k — 1 as shown in Figure 2.11 (a). As in Figure 2.8 and Figure 2.9, the shaded
regions indicate that all P, and C,, states are paired inside each region. Similarly, s; = v has to form
a pair with v between k and L, and all the interactions in the subpath z; ... ;x4 ...z should be
paired in a nested manner. Since the probability of each subpath s;...s,_1 and s1...s;55...5z is
contained in a(j, k — 1, w, w) and 5(i, k, v, u) respectively, we can compute ((¢, j, v, w) as described

in (ii) of the iteration step. Figure 2.11 (b) illustrates the case when v € C and w € C. In this case,
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(a) Vv w w \u
o—O o—O0O0—0-0
1 i k1 k L

(b) u/ v v W
o—0O0—0—20 o—O
1 k k+1 i j L

© U, Vv.—V W—W U,
o—0O0—0C—ND O0—0O0—0C—-0
1k k1 0 ] kel ky L

Figure 2.11: Illustration of the iteration step of the outside algorithm. (a) Case (ii). (b) Case (iii). (c)
Case (iv).

B(i,j,v, w) can be updated in a similar manner as shown in (iii). Figure 2.11 (c) shows the case
when v € C and w € P. As shown in the figure, s; = v has to pair with © between k; + 1and i — 1
and s; = w also has to pair with @ between j + 1 and k» — 1. All the other interactions have to be
confined within the state sequence s1 . .. sy, S, 1. Therefore, 5(i, j, v, w) can be computed as in (iv)
of the iteration step.

When w is a single-emission state, 3(i,j,v,w) can be obtained simply by extending 5(i,j +
1,v,u) by one sample, as depicted in Figure 2.12 (a). As shown in (v) of the iteration step, we
first compute the product of 5(i, j + 1, v, u) and the transition probability ¢(w, «) and the emission
probability of the symbol z; at the state s; = w, and add the product over u. (3(i, j,v,w) can be
computed likewise when v € S, as described in (vi). If both v and w are single-emission states, we
may use either (v) or (vi) for updating the outside variable 5(i, j, v, w). Finally, let us consider the
case when v = P, and w = C,,. Since there can be no crossing interactions, s; = P, and s; = C,,
have to interact with each other, as illustrated in Figure 2.12 (c). The dotted line indicates the
pairwise interaction between z; and z;. For this reason, n has to be the same as m, and (i, j, v, w)

is set to zero if n # m. For n = m, we can compute 3(, j, v, w) by extending 8(i — 1, j + 1, u1, uz) as
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Figure 2.12: Illustration of the iteration step of the outside algorithm. (a) Case (v). (b) Case (vi). (c)
Case (viii).

shown in (viii) of the iteration step.
Once the iteration step is complete, the termination step of the outside algorithm also yields
the probability P(x|©) like the scoring algorithm in Section 2.5.1. The computational complexity of

the outside algorithm is usually not an issue, since it is mainly used for training the model offline.

2.6 Estimating the model parameters

In order to apply context-sensitive HMMs to real-world problems, it is crucial to adjust the model
parameters in an optimal way. Therefore, it is important to find a method for optimizing the set
of model parameters ©, such that the probability P(x|©) of the given observation sequence x is
maximized. The process of finding these optimal parameters is typically called “training.” Al-
though it is infeasible to find an analytical solution for the optimal parameters, we can use the
EM (expectation-maximization) approach for finding parameters that achieve a local maximum of
P(x|0). In traditional HMMSs, Baum-Welch algorithm [6] has been widely used for iterative update
of the parameters. Similarly, there exists an EM algorithm, called the inside-outside algorithm [60],
which can be used for optimizing the model parameters of a SCFG. Both algorithms compute an

estimate © of the model parameters based on the given observation sequence and the current set of
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parameters ©. The current set of model parameters © is then updated by this estimate O, and this
re-estimation procedure is repeated until a certain stopping criterion is satisfied.

A similar approach can also be used for iterative re-estimation of the model parameters in a
context-sensitive HMM. In order to describe the re-estimation algorithm, let us first define the

following variables.

7i(v,w) = The probability that s, = v and s;11 = w given the model ©

and the observed symbol string x

0;(v) = The probability that s; = v given © and x
0y(i,j) = The probability that s; = v and s; = ¥ have an interaction with
each other

Firstly, 7 (v, w) can be computed as follows

Blisi+ 1, v, w)t(v, w)

7i(v, w) = Px[0) (2.10)
The probability o;(v) can be obtained simply by adding 7;(v, w) over all w
oi(v) =Y 7i(v, w). (2.11)
Finally, the probability J, (¢, j) can be written as
5.6 J) = Dy @0, 5,0,0)B( — 1, + 1, ul,ug)t(ul,v)t(ﬁ,uQ). 2.12)

P(x|©)

Based on these probabilities, we can compute the expected number of occurrences of a state v in
the path as well as the number of transitions from a state v to another state w. For example, if we

add 7;(v, w) over all locations i, we get
L
Z 7;(v, w) = Expected number of transitions from v to w. (2.13)
i=0
Similarly, if we add o;(v) over all i, we obtain the following
L

Z 0;(v) = Expected number of transitions from v. (2.14)
i=0
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Now, we can re-estimate the model parameters of the csHMM using the following method. To
begin with, let us first compute an estimate of the transition probability from v to w, where v € P

or v € S. In this case, the estimate is given by

i ( ) Expected number of transitions from v to w
v,w) =

Expected number of transitions from v
72%0 (v, W) (2.15)
> ico0i(v)
For v = (), the set of states to which v can make a transition differs depending on whether the
corresponding stack is empty or not. If w € &,, i.e., if w is a state to which v = C,, can make a
transition when the stack is empty,

i ( ) Expected number of transitions from v = C, tow € &,
v,w) = — :
Expected number of transitions from v = C,, to any state in &,

L
_ LZi:O Ti (Uv w) ) (216)
2 im0 2uce, Ti(U; )

If w € F,,, then we can obtain the estimate by

i ) Expected number of transitions from v = C), tow € F,
v,w) =
’ Expected number of transitions from v = C,, to any state in 7,
L
— LZz:O T3 (U7 w) . (2.17)
Zi:o Zue}‘n 7i(v, u)

Now, let us estimate the emission probability e(z|v) and e(z|v, 2;,). Forv € P or v € S, the emission
probability does not depend on the context. Therefore, we can compute the estimate é(x|v) of the

emission probability as follows

Expected number of times that the symbol 2 was emitted at state v

é(zlv
(zlo) Expected number of occurrences of state v

L
Zi:l\zi:x 0 (U)

(2.18)
Y oi(v)

In contrast, if v is a context-sensitive state, the emission probability is dependent on the symbol

z, that was emitted at the corresponding pairwise-emission state v. Bearing this in mind, we can
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estimate é(x|v, z,) as follows

. Expected number of emissions of z at state v € C given z,,
é(zlv, zp) =

Expected number of emissions at state v € C given x,,
L j—1 .
ZjZQ\IjZI Zi:l\zi:wp Oy (7” ])
L 1 P
Zj:2 Zgzuxiz% v (17])

(2.19)

Although we derived these update formulae based on a single observation sequence x, they
can be easily extended for multiple training sequences. When we have more than one observation
sequence for training, we simply add all the expected counts over all sequences, and use these
numbers for estimating the model parameters.

Now that we have the estimates (v, w), é(x|v) and é(x|v, x.), we can update the model param-

eters by these estimates

tlv,w) «—— t(v,w)
e(zlv) —  é(z|v)

e(z|v,xp) «—  é(zlv,zp).

We repeat this re-estimation procedure until a certain stopping criterion is satisfied. As mentioned
earlier, the training of the model is performed offline, and therefore the computational cost of the

re-estimation algorithm is usually not a critical issue.

2.7 Experimental results

In order to test the proposed algorithms, let us consider the example in Figure 2.13. This csHMM

if stack 2 is if stack 1 is
0.35 0.15 0.40 0.20 not empty not empty

o

if stack 1
is empty

Figure 2.13: An example of a context-sensitive HMM.
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A C G U

P | 055 005 005 035
S1 1015 035 035 0.15
P | 040 0.05 0.05 0.50
Sy | 0.05 060 030 0.05
Ss | 0.05 010 0.75 0.10

Table 2.3: Emission probabilities e(z|v).

generates sequences with long-range correlations between distant symbols. Such pairwise depen-
dencies are commonly found in the so-called iron response elements (IREs) in RNA sequences [54].
The model in Figure 2.13 has three single-emission states 51, S2 and S3, and two pairs of pairwise-
emission states and context-sensitive states. Each pair (Pi,Cs) and (P, C>) is associated with a
separate stack. The transition probabilities are shown in Figure 2.13 along the edges. Each state
emits one of the four symbols A = {A,C,G, U}, where the emission probabilities are as shown
in Table 2.3. Every row in Table 2.3 contains the emission probabilities that each output symbol
will be emitted at the given state. For example, the first row in Table 2.3 shows the probabilities
that the symbols A, C, G, and U will be emitted at P;. Therefore, each row adds up to unity. The
emission probabilities at C), are dependent on the symbol « that was emitted at the corresponding
state P,. In this example, we set the emission probabilities of C; and Cs such that they always emit
the “complementary” symbol of z (A <~ U and C' < G are complementary to each other).

Now, let us assume that the observed symbol string is x = AUCUACUAAU. What is the optimal
state sequence s* = 5153 ... 519 that maximizes the probability of observing x based on the specified

model? Using the alignment algorithm elaborated in Section 2.4, we obtained

s = P1P151P2P25202020101, (220)

where the log-probability of s* was log, P(x,s*|0©) = —12.2165. In order to check the validity of this
result, we performed an exhaustive search over all possible paths. Since the length of the sequence
is L = 10, and as there are M — 2 = 7 emitting states, we have (M — 2)F = 719 = 282,475,249
possibilities. By comparing the log-probabilities of all paths, we obtained the same optimal path as
(2.20) with the same log-probability, which shows that the optimal alignment algorithm works as
expected.

Similarly, we computed the probability of the sequence x, given the model in Figure 2.13. Using
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A C G U

P; | 05503 0.0617 0.0348 0.3533
S1 ] 01258 0.4094 0.3481 0.1167
P, | 04067 0.0628 0.0400 0.4905
Sy | 0.0477 0.5543 0.3528 0.0452
Ss | 0.0870 0.1364 0.7073 0.0693

Table 2.4: Estimated emission probabilities e(z|v) after 10 iterations.

the scoring algorithm in Section 2.5, we obtained
P(x]|©) = 2.1146 x 10~ % (2.21)

Again, we computed the probability using the brute-force approach by considering all possible

paths and adding the probability of each path. As a result, we obtained
P(x|0) =) P(x,s]0) = 2.1146 x 10~*,

which is the same as (2.21). As we can see from these results, the proposed scoring and alignment
algorithms are capable of finding the same solutions as the brute-force methods in a much more
efficient manner.

Now, let us consider the training of the csHMM. In order to test the parameter re-estimation
algorithm, we first generated 200 symbol sequences based on the model in Figure 2.13. Then, we
randomly initialized the transition and emission probabilities of the model, and ran the algorithm
in Section 2.6 to optimize the model parameters. Figure 2.14 shows the arithmetic mean and the
geometric mean of the sequence probabilities after each iteration. As we can see, the mean values
are nearly zero in the beginning, since the parameters have been randomly initialized. The model
parameters quickly converged to the final values after only a few iterations, and the converged
values were very close to the original values. Table 2.4 shows the estimated emission probabilities
after 10 iterations. By comparing it with Table 2.3, we can see that the estimated values are close to

the original ones.
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Figure 2.14: The arithmetic mean (top) and the geometric mean (bottom) after each iteration.

2.8 Discussions

As we have seen, context-sensitive HMMSs can be effectively used for modeling pairwise interac-
tions between distant symbols in a symbol string. In this section, we consider possible extensions

of the basic model and discuss several interesting issues regarding the csHMM.

2.8.1 Emission of multiple symbols

In this chapter, we assumed that every state in the csHMM emits only one symbol at a time. Based
on this assumption, we considered only sequences with pairwise dependencies between distant
symbols that are arranged in a nested manner. However, we can easily extend the basic model
such that it can also describe non-pairwise dependencies, by allowing the states to emit two or more
symbols at a time. For example, we may modify the model in Figure 2.4 such that the context-
sensitive state C'; emits two symbols at a time. When we enter (', the symbol z that is on the top

of the stack is popped out, and the emission probabilities of C; are adjusted so that it emits zz. In
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abc
N—

Figure 2.15: An example sequence that can be generated by the modified model of Figure 2.4.

this way, the modified model will generate sequences of the form z;z2 ... TNTNZN ... T2X2T121.
An example of such a symbol sequence is shown in Figure 2.15. As shown in this figure, the
correlations still occur in a nested manner, but they are not limited to pairwise correlations any
more. Such modifications can be easily incorporated into the algorithms described in the previous
sections. For example, we may change the second term in the update formula (vii) in Section 2.5.1

to

SN e wisg a0} )i + 05,5 — 6, u, o)

up U2

X t(uQ,w)e(xj_gfLH v xj|w,xi ven xiJr(;ﬁ,l) y

when the csHMM is modified such that the pairwise-emission state P, emits 62 symbols at a time

and the corresponding context-sensitive state C,, emits J¢ symbols at a time.

2.8.2 Modeling crossing correlations

Although we have mainly focused on context-sensitive HMMs that generate sequences with nested
correlations, the descriptive power of the proposed model is not restricted to such a correlation
structure. In fact, csHMM can be used to represent sequences with various correlations between
symbols, including crossing dependencies. Figure 2.16 shows an example of such a csHMM. Note
that the csHMM in Figure 2.16 still uses stacks, but the P,, and C), states are arranged such that
the model gives rise to crossing interactions between symbols. Furthermore, we may also replace
the stack by a queue to represent other types of interactions. For example, we can describe the copy
language by using a csHMM with a queue. The copy language includes all sequences that consist of
the concatenation of two identical sequences. The model illustrated in Figure 2.17 can effectively
represent such a language.

When the given csHMM generates sequences with crossing interactions, the algorithms in Sec-

tion 2.4, Section 2.5, and Section 2.6 cannot be directly used. However, it is possible to extend the
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Stack 2

(a) push } i } pop
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6B B (0 e
push% } : %op
S‘ta);k‘1

(b) abc cba
[T T]

Figure 2.16: (a) A csHMM that results in crossing interactions. (b) An example of a generated
symbol sequence. The lines indicate the correlations between symbols.

o @y C) e
write % ﬁ read

Queue 1

w  abede

Figure 2.17: (a) A csHMM that represents a copy language. (b) An example of a generated symbol
sequence.
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Figure 2.18: An illustration of the basic concept of the algorithm that can be used when there
exist crossing interactions. The dotted lines show examples of correlations that can be taken into
consideration based on this setting.

proposed algorithms such that they can be used for csHMMSs with crossing interactions as those
shown in Figure 2.16 and Figure 2.17. For example, for scoring such csHMMs, we may define the
variable a(i, j, k, ¢, u, v, w, ) as the probability of the subsequence z; ...z ... 2, (i < j < k < ¥4),
where s; = u,s; = v, s, = w,s; = x and all P, states are paired with the corresponding C,, states
inside the subpath s; ...s;sk...s,. We can compute «f...) in a recursive manner by considering
crossing correlations between s; and s, s; and s¢, and so forth.> This is illustrated in Figure 2.18. In

this case, the computational complexity of the algorithm will be considerably higher than O(L3M?3).

2.8.3 Comparison with other variants of HMM

As mentioned earlier, there exist many interesting variants of the traditional HMM, which extend
the basic model in various ways [35, 49, 50, 70, 79, 80, 136]. For example, the hidden semi-Markov
model (HSMM) allows us to associate an explicit state occupancy distribution with each state [35,
49, 50, 70, 136], instead of using the implicit geometric state occupancy distribution in the basic
HMM. However, the hidden states in the HSMM are not context sensitive, and the emission and
transition probabilities of the future states do not explicitly depend on the symbols that have been
emitted previously. Therefore, these models cannot explicitly model pairwise correlations between
distant symbols as the csHMM does.

There exists another interesting generalization of the HMM called the pairwise Markov chain
(PMC) [80]. The PMC assumes that the pair of the random variables (x;, s;) is a Markov chain. This
model is mathematically more general than the HMM, which is a special case of the PMC, where
the hidden state s; satisfies the Markov property. Since the pair (z;,s;) is a Markov chain, the

probabilities associated with z;, s;, and (z;, s;) do not depend on the previous emissions, and the

5For example, we can implement a dynamic programming algorithm that can be used for aligning csHMM s with crossing
interactions, in a similar manner as the algorithm proposed in [85].
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PMC cannot be used for describing complex correlations such as the ones observed in palindromes.
This is also the case with the triplet Markov chain (TMC) [79], which is a further generalization of the
PMC, and there exists a fundamental difference between the csHMM and the PMC/TMC.

2.8.4 Comparison with other stochastic grammars

As HMMs are equivalent to stochastic regular grammars (SRG), the csHMM can be viewed as an ex-
tension of the SRG with specific context-sensitive production rules. Therefore, the SRG is a proper
subset of the proposed csHMM. The context-sensitive property of the csHMM enables the model to
describe explicit dependencies between distant symbols, which are beyond the descriptive power
of SRGs. As a result, the csHMM is capable of modeling sequences with nested correlations, which
are characteristic of languages that are described by SCFGs. This implies that the csHMM can be
used as a good alternative to SCFGs, in many practical situations. Moreover, the csHMM is also
capable of modeling crossing correlations as illustrated in the examples shown in Figure 2.16 and
Figure 2.17. This cannot be done using a SCFG, and we have to resort to higher-order grammars
such as the stochastic context-sensitive grammars (SCSG). However, there exist also languages that
can be described by a context-free grammar but not by a csHMM. One such example can be found
in Appendix A. This shows that even though there is a considerable overlap between csHMMSs and
SCEFGs, neither of them fully includes the other. Finally, the csHMM can be viewed as a stochastic
formal grammar that uses only non-contracting production rules.® It is known that for any non-
contracting grammar there exists an equivalent context-sensitive grammar [51]. This implies that
the csHMM is a subset of the stochastic context-sensitive grammars (SCSG). The full relationship
between the csHMM and other stochastic grammars is illustrated in the Venn diagram shown in
Figure 2.19.

The capability of modeling various correlations (including nested and/or crossing interactions)
based on a single framework is a significant advantage of csHMMs over SRGs and SCFGs. Another
advantage of the proposed model is that it can explicitly describe the dependencies between distant
symbols. This allows us to model the symbol sequences of our interest in a simple and a direct way,
which can be an advantage (although arguable) compared to the SCFGs, unless a tree-structured
design is preferred for some reason. When modeling sequences with crossing interactions, this ca-

pability stands out more prominently. Although the SCSGs can represent sequences with crossing

6Th