
Towards Automatic Discovery of Human Movemes

Thesis by

Claudio Fanti

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2008

(Defended January 30, 2008)

ii

c© 2008

Claudio Fanti

All Rights Reserved

iii

To my parents.

iv

Acknowledgements

It is with great pleasure that I thank Prof. Pietro Perona for his help, support, and guidance

throughout my research and studies. He has gone far beyond his role of advisor during

these years. I feel very fortunate for all I have learned from him, both on a personal and a

professional level.

I would like to thank Dr. Marzia Polito and Prof. Lihi Zelnik-Manor, with whom I

had the pleasure to work on most of what I present in this thesis. They have been very

understanding and have managed to get the best out of our efforts.

Thanks to Prof. Max Welling, Prof. Christof Koch, and Prof. Yaser Abu-Mostafa for

their encouraging words and for agreeing to be part of my defense committee. I am par-

ticularly grateful to Max for the fruitful discussions and many useful suggestions: credit

goes to him for first proposing the idea of using Loopy Belief Propagation for the labeling

problem, and for some of the work and most of the ideas mentioned in Section 5.5.

A special thanks goes to my fellow members of the Computational Vision Lab and those

of the Learning Group. They have made life in the lab a lot better during countless nights

and many deadlines. Among them, I want to mention Marco for being a great roommate

and friend, and for keeping me company at almost every meal I had in the last five years.

I really want to thank Ting for being next to me during the ups and downs of life. She

has been such a relief in stressful moments by providing lot of affection, loads of patience,

v

and way more food than I should have eaten. I am looking forward to a life with her.

Finally, I want to thank my family for their endless love and support: without mom’s

discipline, dad’s foresightedness, and a brother to live up to, I would have gotten nowhere

near where I am.

vi

Abstract

Consider a number of moving points, each attached to a joint of the human body and pro-

jected onto an image. Johannson showed that humans can effortlessly detect and recognize

the presence of other humans from such displays. This is true even when some of the body

parts are missing (e.g., because of occlusion) and unrelated clutter points are added to

the display. Furthermore, subtle aspects like age range and gender, as well as the ongoing

activity, can be inferred with a surprising degree of accuracy from such a seemingly scarce

amount of information. We are interested in replicating some of these abilities in a machine.

We start by introducing a labeling and detection scheme in a Johannson-like display.

Our method is based on a probabilistic representation of the positions and motion of body

parts, which we use to calculate a likely interpretation of the scene by means of belief

propagation techniques. We show how learning and inference can be done efficiently, and

we provide an experimental validation of the method.

In the second part of our work, we present our position on the analysis of human

behaviors. We hypothesize a hierarchical description of motion, which provides a natu-

ral interpretation of actions and activities as stochastic sequences of “atomic motions” or

movemes. We take an initial step in that direction by illustrating how to learn a dictionary

of movemes from the trajectories of body parts, which can be used to concisely represent

the video for further analysis.

vii

Contents

Acknowledgements iv

Abstract vi

List of Figures xi

1 Introduction 1

1.1 Features and Data . 3

1.2 Brief Survey of the Literature . 4

1.2.1 Detection of Humans in Videos and Static Images 4

1.2.1.1 Template-Based Methods 4

1.2.1.2 Parts-Based Methods . 5

1.2.2 Human Motion Analysis . 6

1.3 Thesis Overview . 7

2 Features Extraction and Front-End 8

2.1 Point-Feature Detectors . 9

2.2 Boxes Detectors . 10

2.3 Discriminatively Learned Features . 12

2.4 Top-Down Effects on Features Detection . 14

viii

3 Detecting and Labeling People 16

3.1 Introduction . 16

3.1.1 Graphical Models . 17

3.1.2 Notation . 17

3.2 The Labeling Problem . 18

3.2.1 Problem Definition . 18

3.2.2 Conditional Independence and Computational Complexity 20

3.2.3 Triangulated Model . 22

3.2.4 More General Connectivity Models 24

3.3 Inference . 25

3.3.1 Dynamic Programming . 26

3.3.2 Belief Propagation . 31

3.3.3 Loopy Belief Propagation . 33

3.3.4 Global Variables . 35

3.3.4.1 Expectation Maximization 41

3.3.4.2 Sample Propagation . 45

3.4 Learning . 51

3.4.1 Structure Learning . 52

3.4.2 Unsupervised Learning: Expectation Maximization 55

4 Experiments 68

4.1 Detection and Labeling with EM . 68

4.1.1 Loopy Graphical Model and Global Variables 68

4.1.2 Dealing with Occlusions . 69

ix

4.1.3 Labeling Accuracy . 71

4.1.4 Computational Issues . 71

4.2 Detection and Labeling with Sample Propagation 72

4.2.1 Speeding-Up the Learning with Appearance 73

4.2.2 Recognition Accuracy . 75

4.2.3 Robustness to Occlusions . 76

5 Movemes, Actions, and Activities 78

5.1 Introduction . 78

5.2 A Hierarchical View . 79

5.3 A Simple Approach to Discovering Movemes 81

5.3.1 Learning Movemes with Expectation Maximization 82

5.3.2 Datasets and Features . 83

5.3.3 Experiments . 85

5.4 Modeling the Dynamics . 92

5.4.1 Switching Linear Dynamical Systems 93

5.4.1.1 Belief Approximation . 95

5.4.1.2 Inference in SLDS . 96

5.4.1.3 Learning with Expectation Maximization 102

5.4.2 The Limb Model . 106

5.4.3 Motion Codewords . 109

5.4.3.1 Motif Discovery . 110

5.4.3.2 Energy-Based Segmentation 111

5.4.4 Clustering Variable-Length Codewords into Movemes 112

x

5.4.4.1 Pairwise Distance Measure 112

5.4.4.2 Agglomerative Clustering 116

5.4.5 Experiments . 118

5.5 Discussion . 120

6 Conclusions and Future Work 124

Bibliography 126

xi

List of Figures

1.1 People and Action. We show an image of people running and have superim-

posed some features with an arrow depicting their velocity. 2

2.1 Box Detector. Starting with the original image, we compute a probability of

boundary. We then perform a hysteretic thresholding which yields a binary

map, to which we then apply the distance transform. Finally, the fitness to

the distance transform image of each box’s location and shape is evaluated,

and the locally best-scoring boxes are retained. 11

3.1 Conditional Independence. We show a graphical model representing a proba-

bility density over five variables (a) and the five families into which the density

can be factorized (b). 21

xii

3.2 Body Decomposition. We show two examples of graphical models for the body

parts variables x1 . . . xM . (a) shows a hand-crafted decomposition made by an

expert, and (b) shows another decomposition automatically computed. Both

are obtained from [SGP00] by fixing an elimination order of the nodes, and

setting the directions of the arrows according to the procedure detailed at

the end of Section 3.2.3. In (c) we show the full plate-model representing the

interaction between the M body parts x1 . . .xM , the N observations y1 . . . yN ,

and the M labeling variables (s1, δ1) . . . (sM , δM). 26

3.3 Global Variables. We complete the graphical model with the addition of two

global variables which influence every body part. The centroid θ, is a contin-

uous quantity indicating the “center of gravity” of the body as a whole. The

phase φ is a discrete variable used to index among a small set of “poses” or

configurations. 38

4.1 ROC Curves. [Left] Performance of the hand-made decomposable triangulated

graphical model with local translation invariance of [SGP00]. [Right] Perfor-

mance of our loopy graphical model with global translation invariance. All the

curves are obtained by changing (over the range [0, 1]) the threshold on the

probability returned by the algorithm. For each value of the threshold we plot

the fraction of times the algorithm correctly claims to have detected a person

when the display shows one (Pdetection), versus that of mistakenly stating that

a person is there when only 30 points of clutter are presented to the algorithm

(Pfalse−alarm). Varying the number of visible points between 4, 7, and 11 gives

the dotted, dashed, and solid lines respectively. 70

xiii

4.2 Detection and Labeling Performance. [Left] Labeling: On each display from

the sequence W2, we randomly occlude between 3 and 10 parts and superim-

pose 30 randomly positioned clutter points. For any given number of visible

parts, the four curves represent the percentage of correctly labeled parts out

of the total labels in all 700 displays of W2. Each curve reflects a combina-

tion of either local or global translation invariance and decomposable or loopy

graph. [Right] Detection: For the same four combinations we plot Pdetection

(probability of detecting a person when the display shows one) for a fixed

Pfalse−alarm = 10% (probability of stating that a person is present when only

30 points of clutter are presented). Again, we vary the number of visible points

between 4, 7, and 11. 72

4.3 Data. (a) An example video frame from the training video sequence. (b)–

(f) Example frames from the testing data, including various types of motions

performed by different objects/people with various appearances (clothing). . 73

4.4 Learning Speed. A comparison of the log-likelihoods while learning a model

with and without appearance. Using appearance information the model con-

verges significantly faster. The log-likelihood is not monotonic since, due to

efficiency, we use an approximated algorithm to compute it. 74

4.5 Recognition Results. A comparison of ROC curves corresponding to the three

modes of experiments with reference to appearance. In blue is learning and

recognition without appearance. In red, we show learning with appearance,

and recognition without appearance. Finally, in black, we use appearance in

both learning and recognition. This last one yields the best recognition results. 76

xiv

4.6 Comparison of Recognition Rates. We provide the input data to the algorithm

with and without occlusions. In (a) we show an example frame from the test

dataset. In (b) the same frame is shown after introducing an occlusion over

the thighs. The table (c) summarizes the recognition rates. 77

5.1 A Hierarchical View. We interpret human motion in a hierarchical way. At the

highest layer, a single word is sufficient to provide a compact description of an

“activity”. We use the term “action” for shorter events that, joined together

probabilistically, yield an activity. At the bottom layer are the “movemes”:

atomic motions which are learned without supervision from data, and do not

necessarily posses a verbal description. We arbitrarily name them for the sake

of example. 80

5.2 Graphical Model. We model a collection of parts x which are put in corre-

spondence with a subset of the detections y by the labeling variable s and δ.

The global variables θ and φ represent the centroid of the body and the index

of the moveme. 82

5.3 Manually Labeled Data. We show three sample frames from our input data.

The marked boxes were automatically identified by the box detector of Sec-

tion 2.2, and manually selected, out of all the available ones. The frames are

cropped for better visualization. 84

xv

5.4 (E1) Automatically Learned Models. A 3-movemes model, learned from 2

video sequences totaling 469 frames, whose components correspond to the

three principal motions that the sequence displays. The ellipses mark the

position and covariance of each body part relative to the centroid. The boxes

correspond to the mean width, height, and angle of the body parts, i.e., the

mean pose of the body parts during these motions. 85

5.5 (E2) Testing the Movemes. Sample frames from the 968-frame testing se-

quences. Provided as input were all the detected boxes in each frame, which

are marked by thin blue lines. The top figure shows a full frame. At the bot-

tom we show five sample frames. A thick red line marks the boxes that were

chosen by the algorithm as representing the best human-like configuration.

The frames have been cropped to show only the labeling results. 87

5.6 (E2) Likelihood of Movemes. On the horizontal axis we report the time, or

frame index. For each frame, on the vertical axis we represent the probability

of that frame to be assigned to each of the three phases. The thicker the

bar corresponding to one of the three phases, the more likely the frame is to

belong to that phase. The color segmentation along the bottom axis represent

“a ground truth”, which is provided by a human who was unaware of the

result of the experiment. The same colors have been assigned (a posteriori) to

the three movemes/phases identified by the algorithm, by observing the best

match between the movemes and the human-generated segmentation. 88

xvi

5.7 (E3) Choosing the Number of Components. Motion analysis results for the

second dataset with 4 and 7 components. Colored bars on the bottom row indi-

cate human-made segmentation at the turning points between aerobic moves.

The colors used for each moveme have been chosen (a posteriori) so as to en-

hance the matching between the ground truth and the algorithm’s choice of

movemes. Major changes in the type of exercise can be qualitatively detected

in either plot by simply looking at the change in temporal patterns. A more

careful analysis of the above diagrams, in conjunction with the video, shows

(as expected) how different complex actions share some of the same phases.

These correspond to shared movemes such as crossing of the arms. When us-

ing fewer phases (top) not all the movemes in the sequence are captured and

different actions appear as similar ones. Conversely, when using a higher num-

ber of phases the segmentation exhibits multiple phases trying to “explain”

what a human perceives as the same motion. 89

5.8 (E4) Automatically Learned Models. The 9-moveme model learned from a few

sequences totaling 1629 frames depicting different actions. The ellipses mark

the position and covariance of each body part relative to the centroid. The

boxes correspond to the mean width, height, and angle of the body parts, i.e.,

the mean pose of the body parts during the motion. The arc at the top of

each box represents the angle covariance. To avoid cluttering the figure, no

uncertainty on width and height is reported. 90

xvii

5.9 (E5) Testing Movemes. An actor performs a number of exercises which are

being analyzed by a 4-component model. The training was done on a sequence

of similar exercises performed by a different actor. Some of the phases follow

a repetitive pattern, showing that the action performed is based on movemes

that were present in the training set. More uncertainty in other phases is due

to the ambiguities in the way the action is performed (e.g., arms are neither

straight down nor wide open, so two or more movemes are trying to explain

that configuration). 91

5.10 Switching Linear Dynamical System. The switch variable st evolves in time

according to a first-order Markov chain. For a given choice of the switch, a

corresponding dynamic is imposed on the evolution of xt−1 → xt. Alternatives

to the switching dynamic configurations, such as switching observations, are

also possible. 94

5.11 Switching Probabilities. [Top 4 Rows] For each of the four coordinates in the

right arm we show the posterior f(st|y1:T) of the switch variable st. [Bottom

Row] The most probable switches are pooled together. The intensity/number

indicates which of the 5 switches was chosen. 108

5.12 Energy-Based Segmentation. [Top] We show sample trajectories of the four

coordinates for the right arm. [Bottom] The energy is computed by averaging

the standard deviation of the coordinates in a small temporal neighborhood.

The dashed vertical lines demarcate the segments’ boundaries. 112

xviii

5.13 Letter-Based Representation of Codewords. [Top and Bottom] We show two

codewords representing identical (to a human) movements appearing in dif-

ferent parts of a video sequence. The numbers within each descriptor were

obtained according to the (5.6) and indicate the dynamics followed by each

coordinate in the limb. [Center Rows] We uniquely map a descriptor vector

to a letter of the alphabet. The resulting letter-based representation is shown. 113

5.14 Smith-Waterman Alignment. Each symbol in the first codeword is in corre-

spondence with one column. Similarly, symbols in the second codeword are

assigned to rows in the table. The scores in each cell are computed recursively

by a dynamic programming algorithm, which accounts for the cost of dele-

tions/insertions (−1), substitutions (−2), and matches (+5) of symbols. A

path, tracing back from the largest value in the matrix, identifies the optimal

alignment of the two sequences. 115

5.15 Agglomerative Clustering. Initially, each one of the six elements is a cluster.

A dendrogram is constructed by recursively grouping together the two most

similar clusters. Similarity is determined by the average distances of elements

in one cluster to elements in the other. Finally, a threshold on maximum

intra-cluster distance breaks the links at higher levels, yielding a set of clusters. 117

5.16 Estimating the Switches. We show experimental results on sequence 8 of 17.

Each plot represents the probability mass of the switch (which takes values

1 . . . 5) for one of the coordinates within the right arm. All observations (in-

cluding future ones) are used to compute the smooth estimate of the switching

variable. 119

xix

5.17 Decomposition into Movemes. We show a moveme-based representation of the

motions in sequence 8. At the top we report the trajectories of the right arm’s

four coordinates. The bottom plot shows the movemes over time. Height

indicates the identity of the moveme, as perceived by a human. Names for

the movemes are provided on the vertical axis. The 10th bar, which represent

an “arm crossing”, is (to a human) visually similar to the 2nd, 6th, and 14th

(they have the same height). However, its color is different since the model

returned a different moveme/cluster for its representation. 120

1

Chapter 1

Introduction

Human motion analysis is a very important and difficult problem in computer vision. When

observing social interactions that take place in the surrounding environment, humans are,

in general, the most important component.

The interest is further justified by the number of applications for which understanding

people’s actions and intentions is a central step. Among them, for instance, is monitoring

people in airports or museums for security reasons. Detection of pedestrians is another

example of application which is very attractive to the automotive industry for safety and

autonomous navigation systems. Even the daily interaction with computers and appliances

could be greatly improved by a more user-friendly interface (in a sense, a more passive one,

where it is the machine that autonomously infers what we expect it to do).

Motion provides a large amount of information about humans and is very useful for

social interactions. The goal of a human motion analysis system is to extract information

about human motion from video sequences, in an attempt to produce a concise description

of what is happening. Naturally, the first question to be addressed is whether or not there

are humans in the scene. In case of positive answer, we are interested in knowing both their

location and what action they are performing.

Our visual system perceives and analyzes human motion very rapidly; replicating this

2

Figure 1.1: People and Action. We show an image of people running and have superimposed some
features with an arrow depicting their velocity.

ability in machines is one of the most challenging and ambitious goals of machine vision.

Johannson’s experiments [Joh73] show that humans find the instantaneous information on

the position and velocity of a few features (such as the joints of the body, for instance) a

sufficient cue to detect human presence and understand the gist of their activity. This still

holds true even when clutter features are present in the scene, or some body-part features

are occluded.

In this thesis, we present an approach to the task of detecting the presence of a hu-

man being, and labeling its body parts. We also develop a concise representation of its

motion according to a dictionary of “atomic motions” (or movemes), which we learn from

data without supervision. This is a basic step in trying to solve the broader problem of

automatically recognizing people’s actions and behaviors.

3

1.1 Features and Data

An important task that we will briefly discuss in Chapter 2 is that of identifying features

in video sequences, describing their shape and appearance, and computing their velocity

across frames by tracking their position in time. Although some instances of the problem

are fairly well understood, and reasonably good solutions are available from the literature

(see [TK91], for instance), a large number of factors influence the success of this component

of the system, which we call the “front-end”.

The resolution, or number of pixels, of the human body is probably the most influential

aspect in determining the type of feature to be used; while a body height of 100 or more

pixels is sufficient for a human to single out even portions of individual limbs, such as a fore-

arm or an upper-leg, a 30-pixel-high man will not be suitable for a part-based decomposition,

hence requiring a template-matching type of approache for its detection. Similarly, the

resolution in time or frame-rate, as well as the amount of blur in the image due to the

velocity of motion, pose a constraint on what features can be computed and which models

are viable. Additional aspects to be considered, just to name a few, include the complexity

of the video (due to textured background, for example), the variability in clothing colors

and styles, or changes in viewpoint and scale, which are caused by the motion of the camera

or the subject itself.

Although we have experimented with a few different approaches to feature detections,

in most of our work we will assume that a number of features that are associated to the

body have been detected and a description of their appearance has been computed. As

no detector is perfect in practice, we will allow some of such features to be missing and

admit that some are not at all associated with the body, but rather, originated from the

4

background.

1.2 Brief Survey of the Literature

The problems of detecting people and analyzing their behavior have received a great deal of

attention in the last two decades. This effort is well motivated by the incredible variety of

applications that a good solution would enable. Given the fair amount of material published

in the field, providing a thorough survey is quite an endeavor of its own. In an attempt to

set the context for our work, which we are going to present next, we settle for providing a

few pointers to relevant approaches in the literature. In doing so we rely on the fantastic

work of Forsyth and colleagues [FAI+05, IF07].

1.2.1 Detection of Humans in Videos and Static Images

The problem of detection answers the question of whether there is a human being in the

scene or not. The output of a detection algorithm might also include a location (in various

form, such as a (x, y) pair or a probability) where the person is believed to be, and possibly

some sort of scale information, such as a bounding box around the detection. Although

there are a number of axes along which one could categorize the different approaches, we

will try to separate them into template-based and part-based methods.

1.2.1.1 Template-Based Methods

In the template-based methods an image is processed and several candidate locations are

identified. In some instances, the locations could be all pixels in the image. A window

around each location is (possibly encoded in some way and) further analyzed, as a whole,

and a determination is made about whether it contains a person or not. Among others,

5

are the SVM-based work of Dalal and Triggs [DT05] and Papageorgiou and Poggio [PP00],

the neural network approach of Zhao and Thorpe [ZT00], and the contour-based method

of Gavrilla [Gav00]. A number of attempts have been made to represent not only 2D

information but rather a set of frames simultaneously, giving rise to a space-time volume

representation of motion. This approach is first found in Baker [Bak89], followed by Niyogi

and Adelson [NA94], and applied to periodic motion in Cutler and Davis [CD00]. More

recently, Viola et al. [VJS05] used motion features computed explicitly (and extremely

efficiently), together with a cascade of boosted classifiers from their earlier face-detection

scheme [VJ01].

1.2.1.2 Parts-Based Methods

The idea behind parts-based methods is to decompose the body into parts, solve the simpler

task of localizing the parts, and finally work with the layout of the parts to establish human

presence. The earliest application of this idea to vision problems is found in the work

of Fischler and Elschlager [FE73]. More recently we have the discriminative methods of

Ioffe and Forsyth [IF01] and of Ramanan et al. [RFZ05], where appearance of the parts

is strongly relied on for detection, once a classifier for the part has been learned on the

fly during an initialization pose. In the work of Felzenswalb and Huttenlocher [FH00] the

emphasis is put on how to efficiently match the collection of parts to the model representing

their layout. Song et al. [SGP01a, SGP01b] show how to learn the relationship among a

number of point-features which are obtained by sparse optical flow [TK91]. Mikolajczyk et

al. [MSZ04] build a parts detector for detection of faces, upper bodies, and legs. Liebe et

al. [LSS05] extend the concept of part to patches and build a pedestrian detector. Mori

et al. [MM02] [MREM04] represent the body as its set of joints and match the recovered

6

configuration against a set of stored poses. Agarwal and Triggs [AT04] use shape descriptors

computed from the silhouette of the body.

1.2.2 Human Motion Analysis

Even assuming the existence of a method that can reliably detect people in each frame

of a video sequence, we still need to figure out what humans are doing. The community

has been extremely active in recent years. Besides a few methods that use motion in

the form of spatio-temporal patterns—such as [EBMM03, BW97, BGS+05], and a few

others we mentioned in the previous section—the majority of approaches use some form

of explicit dynamical modeling, with the most popular choice being some flavor of hidden

Markov model (HMM). Earlier attempts have modeled simpler motions, like tennis strokes

[YOI92], pushes [WB95], and handwriting gestures [YXC97]. Feng and Perona [FP02]

learn a vocabulary of quantized image shapes or “movelets”, which they use as states for

the HMM representing an activity. Brand et al. [BOP97] classify “Tai Chi” moves, Mori et

al. [MSSS04] build a hierarchical representation of everyday gestures. A few alternatives

based on linear dynamical systems (LDS) have also appeared in the literature. Bregler

[Bre97] uses HMM and LDS to model activities at different levels of abstraction. Rohr

[Roh97] represents walking with LDS. Black et al. [BYJ97] rely on paramerization of optical

flow for the recognition of human activities. Del Vecchio et al. apply multiple LDSs for

discrimination of drawing and reaching movements [DMP02, DMP03a, DMP03b]. Bissacco

et al. [BCMS01, BCS07] recognize activities such as walking or jogging directly in the space

of LDS. Pavlovic and Rehg [PR00] contrast the use of switching LDS and HMM in modeling

of simple sequences of human motion.

7

1.3 Thesis Overview

In the next chapter we briefly review the process of extracting features from video sequences.

Chapter 3 presents the problem of detection and labeling in moving light displays. We

first review the work of Song et al. on triangulated models. Next, we present a few

modeling extensions, such as the idea of global variables, and the introduction of more

general structures to represent the connectivity among parts. We then describe how to

do learning and inference in these models. We conclude the first part by providing some

comparison and experimental validation in Chapter 4.

In Chapter 5 we introduce our hierarchical view of human motion. We start by describing

a simple-minded approach to the discovery of movemes in video sequences, and show its

performance on aerobic videos. We then motivate and present our work on modeling the

dynamics of motion, and show how to do inference and learning with switching linear

dynamical systems. We further show how the encoding of the dynamics, in conjunction

with a clustering procedure, can be used to produce a small dictionary of movemes. The

chapter is concluded by some more experimental results and a discussion. Our final remarks

and some ideas for future work are in Chapter 6.

8

Chapter 2

Features Extraction and Front-End

There are a number of steps in designing a system that analyzes images or video sequences,

and automatically detects objects and understands people’s behavior. One crucial aspect

involves the encoding, or representation, of the visual input in a tractable form, while

preserving the relevant information needed for the task.

A number of techniques have been developed over the years which rely on finding “in-

teresting” locations in the image by means of a detector, followed by an encoding of a small

neighborhood of the image around the point into a vector or descriptor. In some situations,

when the shape of the feature of interest is known, a more advanced detection scheme can

be employed. For example, the detection of body parts has often been accomplished by

looking for rectangular or box-like structures in the image, since the cylindrical shape of

limbs (and, to some extent, of the torso) produces a pair of nearly parallel lines on the

image plane.

Determining what type of detector-descriptor combination works best is not an easy

task, since performance is greatly influenced by a number of factors. Among them are the

quality and resolution of the image, the type of texture present, and, most importantly, the

specific application. Although the literature is quite dense with techniques and recipes on

how to identify and represent portions of an image, we will not review them here. Instead,

9

we briefly introduce a couple of approaches which have served as a front-end for our motion

analysis work, which we present later on.

2.1 Point-Feature Detectors

A large number of the traditional point-feature detectors follow the same general scheme.

The first step is to compute a saliency map that measures the local contrast in the image.

Local maxima of the saliency map (typically corners or textured patches) are retained,

since their location is more reliably determined in another image (or in the next frame).

This is often the case, even if the image is taken from a slightly different viewpoint, or the

human in the frame has moved to a nearby location. In order to provide some invariance to

noise, only local maxima that exceed a given threshold are normally selected. If capturing

structure at different scales is of interest, the process can be reapplied on an image which

is obtained from the original one by smoothing and resampling.

An example of the saliency measure used in a few of the most popular detectors is the

following

µ =




I2
x IxIy

IxIy I2
y


 (2.1)

where Ix = ∂I
∂x

and Iy = ∂I
∂y

are the (spatial) partial derivatives of the image in the x and y

direction.

The well known Harris detector [HS88] computes the local maxima of the map det(µ)−

0.04 ·tr2(µ). The Forstner detector [For86] selects features that are maxima of det(µ)/tr(µ).

The Lucas-Tomasi-Kanade (LTK) detector [TK91] averages µ over a small window around

each pixel, and selects as features the points that maximize the smallest eigenvalue of the

10

resulting matrix. The common idea behind these three detectors is to select points where

the image intensity has a high variability in both the x and the y directions.

The LTK detector is particularly useful when dealing with video sequences. In fact, a

simple extension allows one to track features by matching the feature’s local neighborhood

in one image to the area surrounding the closest feature in the next image. This has the

advantage that a velocity can be assigned to each feature point by computing the ratio

of the spatial separation of the same feature in two consecutive frames, over the sampling

period of the video sequence. The detection and labeling work of Song et al. [SGP00], as

well as our own, is based on this type of feature.

2.2 Boxes Detectors

As we mentioned before, if the feature detection is aimed at identifying candidate body

parts, better performance can be achieved by using an ad-hoc detector, which is geared

toward the specific type of structure we are trying to find.

As part of our moveme discovery system we have developed a simple procedure to

pre-process each frame of a video sequence, and identify candidate location with an approx-

imately rectangular shape. This greatly reduces the number of features detected in each

frame, and allows the matching of the models to be computed more efficiently.

Figure 2.1 illustrates the various phases involved in detecting boxes on a frame. We start

on the left-hand side by feeding an image to a contour detector known as Pb or probability

of boundary1.

Boundaries represent the contour that separates two objects. Such contours have tradi-

1The Pb detector was originally developed by Martin et al. in [MFM04], to which we refer for implemen-
tation details and a thorough investigation of its performance.

11

I P b E D T B

Figure 2.1: Box Detector. Starting with the original image, we compute a probability of boundary.
We then perform a hysteretic thresholding which yields a binary map, to which we then
apply the distance transform. Finally, the fitness to the distance transform image of
each box’s location and shape is evaluated, and the locally best-scoring boxes are
retained.

tionally been discovered in a bottom-up fashion, by means of an edge detector which marks

the abrupt change of some low-level property, such as brightness, from one pixel to the

next. Alternatively, objects’ boundaries can be identified by first recognizing all the objects

that are present, thus computing a high-level interpretation of the scene. This is known as

top-down processing.

The work of Martin et al. shows how multiple cues, such as brightness, color, and

texture, can be combined into a single detector which computes the probability of each

pixel being part of the boundary. The Pb detector is trained on a large set of natural

images for which boundaries have been manually identified by several human subjects.

After we apply the Pb operator, the resulting image is the second from the left in

Figure 2.1. The intensity represents the probability of the pixel belonging to a boundary.

The next step consists of a hysteretic thresholding which yields a binary map. We compute

the distance transform of the binary contour map by assigning to each pixel a brightness

12

level that is proportional to the distance from the closest boundary. The resulting image is

the fourth of Figure 2.1. Finally, we compute a scoring function s(x, y, w, h, α) which, for

a given box centered at (x, y), with height h, width w and orientation α, assigns a score

that measures the “boxiness” (i.e., the support) of the underlying image area, to a box

of that shape, at that location. In determining the score of a box, the brightness of the

pixel along the two “vertical” edges of the box, are considered. To actually obtain a set of

box candidates, the function s(· · ·) is locally maximized over small circular neighborhoods

(a.k.a center-surround suppression), and the best-scoring box within is retained. To avoid

detecting too many boxes, only a small set of (w, h, α)-triplets is considered. The side-effect

of this choice is that the detector ceases to be scale and orientation invariant.

In our work on moveme discovery we use the procedure described to compute candidate

locations for body parts.

2.3 Discriminatively Learned Features

One major issue which afflicts the features-detection schemes presented so far, and many

others, is the rather poor discriminative power of the features. Unfortunately, computational

constraints are such that most probabilistic models and algorithms of the type we will discuss

in later chapters, can only handle a limited number of detections, and the performance is

greatly affected by lots of clutter. Schemes like the Harris detector tend to generate features

which are distributed all over the image, regardless of where the object of interest is.

A second source of nuisance in the fully bottom-up approaches to feature extraction has

to do with the stability and good localization of the features. The criteria for their detection

is rather simple, and relies entirely on low-level image information, such as the gradient.

This implies that the features are most often originated by the combination of foreground

13

and background (that is, they are not due to the object of interest alone), and may not be

found at all if the object is seen against a different background. Similarly, the location of

the features themselves is most likely going to be determined by corners and lines, which in

the case of highly deformable objects, such as the human body, tend to move around with

respect to the object of interest, or even disappear.

For these reasons, it is important to have more part-specific detectors, which are trained

to identify locations that are likely to belong to the object’s part of interest. The training

of a feature detector might require a labeled dataset, where the part of interest has been

selected by an expert. As an alternative, a slightly less-specific level of supervision (such

as a bounding box) combined with the hypothesis of consistency in appearance over the

dataset, is sometime exploited in learning good features. It is generally a good idea to

construct a dataset that is as diverse as possible, showing the different variants of the

object’s appearance (e.g., for humans it is desirable to train with different clothing, as well

as different backgrounds). This enhances the detector’s capability to generalize to new,

unseen datasets.

The progress in the learning community, and the recent increase in computational power,

have made the task more tractable by providing the machinery for automatically discovering

which low-level image information is useful (or not) to the detection process. Example

of successful systems are numerous in the literature. Among the earliest applications in

vision, we mention the work of Viola and Jones [VJ01] for its relevance in the area of face

detection, and that of Weber et al. [WWP00] for the innovative constellation model for

object detection; among the most recent results is the empirical study on the performance

of trained classifiers by Dollar et al. [DTTB07], which also includes a good review of various

discriminative approaches to features detection.

14

2.4 Top-Down Effects on Features Detection

The features detection schemes we have talked about so far, follow a primarily bottom-up

approach, that is, the low-level image information drives the detection and localization of

the features. Since the exhaustive search over the entire image produces a large number of

features, this poses a couple of problems. In fact, the substantial amount of features forces

the inference machinery to deal with a much larger hypothesis space, therefore greatly

increasing the running time. Additionally, the increased level of clutter makes it more

likely to mistakenly match a part to the wrong detection.

On the other hand, if a high-level interpretation of the scene was available, either in

the form of a guess for the overall location of the object, or as a probability distribution

of where the parts of interest are located, then one could focus the search for features in a

much more confined area of the image.

This is particularly true if we are looking for people in video sequences, since physical

constraints exist on the motion a body part can undergo from one frame to the next. A

model which incorporates dynamical information, can be used to predict what is the most

likely location of the parts in the next frame, given the current state and position. This is

especially helpful in the presence of prolonged occlusions, which would make the bottom-up

task particularly difficult. One caveat of this idea is that even a small imprecision in the

estimate of the current state would produce an erroneous prediction, which in turn causes

the next estimate to fall even further from the unknown “true” value. This phenomenon

is called drifting since the estimate tends to drift away from the underlying quantity it is

trying to predict.

A possible way to alleviate the problem of drifting is to take the certainty over the

15

estimate of the state into account. When the model has a high confidence that the current

estimate is correct and can be trusted, the feature detection relies on the prediction derived

from that estimate and performs the search for features locally. If, instead, the estimate has

a great deal of uncertainty, the feature search is performed in a nearly bottom-up fashion

by exploring a larger area of the image. This combination of top-down and bottom-up

can be made more precise by considering the prediction as a prior to the true location of

the part, while the image measurements can be interpreted as a likelihood term. Standard

inference algorithms can then be applied that estimate the most likely location of the feature.

Although a few attempts have been made to implement a similar idea in tracking (see, e.g.,

[BI96]), we have seen relatively few attempts to combine this type of top-down/bottom-up

approach to feature detection, with higher-level action understanding and interpretation.

This is probably due to the already complex task of doing inference in the two components

separately. Nevertheless, it is our belief that this is an interesting and important open

question for which, even just a reasonable solution, would be very desirable.

16

Chapter 3

Detecting and Labeling People

3.1 Introduction

In this chapter we propose a solution to two very important problems in human-machine

interaction: detection of a person and localization of its body parts. Our visual system seems

to be able to solve these problems effortlessly, even from what is considered a very sparse

and weak signal, as is the case for a Johannson’s display [Joh73]. In Johansson’s human

perception experiments, the input to the human visual system is a set of dots; as soon

as the dots start moving, we can get a vivid perception of the human, and immediately

map each body part (such as hand, elbow, shoulder, knee and foot) to the correct dot.

Furthermore, subtle aspects like age range and gender, as well as the ongoing activity, can

be inferred with a surprising degree of accuracy even from such a seemingly scarce amount

of information [MM94, CK77, DTLM96]. During this process, our visual system solves a

hard combinatorial problem—the labeling problem: which dot should be assigned to which

body part?

Our approach takes as input the instantaneous position and velocity of a few point-

features, which are in correspondence with parts of the body, as well as a large number of

distracting points arising from the background. We learn a probabilistic model from the

17

data, which describes the motion of the parts and their mutual relationships. The classifier,

obtained by thresholding the likelihood of the data, makes the determination as to whether

the optimal alignment of body parts to features supports the presence of a human at that

location.

3.1.1 Graphical Models

Graphical models are a natural way of describing interaction among random quantities and

an excellent conceptual representation to guide the implementation of inference schemas.

In their most general form, graphical models can be thought of as a machine that can

answer queries regarding the values of a set of random variables, given the evidence that is

known about some other set of variables. The beauty stands in the fact that this machinery

is built combining information locally, and propagating it in agreement with the theory of

probabilities in order to reach global consistency.

Due to the extensive literature available, we refer to [Lau96, Jor99, AM00, Mur02,

YFW00, WF01, YFW05] for a thorough review of the subject of graphical models, and a

number of algorithms based on the idea of propagating information and beliefs in those

models.

3.1.2 Notation

In what follows we will use bold-face letters (x) for random vectors and italic letters (x) for

their sample values. The probability density (or mass) function for a variable x is denoted

by fx(x), while its expectation is written as Efx [x]. An ordered set of indices I = [i1 . . . iK]

(sometime written more concisely as a range J = [j1 : j2] = [j1, j1 + 1 . . . j2]) used as a

vector’s subscript has the intuitive meaning of yI = [yi1 . . .yiK]. When enclosed in squared

18

brackets [I]s with a subscript s, and applied to a dimension of a matrix V = [vij], it selects

the s-dimensional members of the matrix along that dimension (e.g., V[1:2]4[1:2]4 is the 8× 8

matrix obtained by selecting the first two “stacks” of 4 rows and 4 columns).

3.2 The Labeling Problem

In the following sections we introduce the labeling problem in more formal terms, and

discuss our modeling strategy and algorithm for its solution.

3.2.1 Problem Definition

We identify M relevant parts on the body, which intuitively correspond to the main joints.

Given a display, each marked point (referred to as a detection or observation) is denoted by

yi ∈ R
4 and is endowed with four values, i.e., yi = [yi,a, yi,b, yi,va , yi,vb

]T , corresponding to

its horizontal and vertical positions and velocities. Given N observations, we would like to

find the most probable assignment of a subset of the N detections to the M body parts.

For each display, we call y = [yT
1 . . . yT

N]T the 4N×1 vector of all observations on a frame,

and we model each single observation as a 4 × 1 random vector yi. In general N ≥ M ;

however, some or all of the M parts might not be present in a given display, that is, there

might be no detection mapped to a part. To account for missing parts, we use a binary

random variable δi, i ∈ {1 . . . M} which indicates whether the ith part has been detected

or not.

For each part i, a discrete random variable si, taking values on {1 . . . N}, is used to

specify the correspondence of the part to a particular detection whose index is si. Since

this makes sense only if the body part is detected, we assume by convention that si = 0 if

δi = 0.

19

A pair h = [s, δ] is called a labelling hypothesis1. Any particular labelling hypothesis

determines a partition of the set of indices corresponding to detections into foreground and

background: [1 . . . N]T = F∪B, where F = [si : δi = 1, i = 1 . . . M]T and B = [1 . . . N]T \F .

We say that m = |F| parts have been detected and M − m are missing. Based on the

partition induced on s by δ, we can define two vectors sf = sF and sb = sB, each identifying

the detections that were assigned to the foreground, and those assigned to the background,

respectively. Finally, the set of detections y remains partitioned into the vectors ysf and

ysb of the foreground and background detections, respectively.

The foreground and background detections are assumed to be conditionally independent

given h, meaning that their joint distribution factorizes as follows:

fy|sδ(y|sδ) = fy
sf |sδ(ysf |sδ) · fy

sb |sδ(ysb |sδ).

Our goal is to find a hypothesis ĥ = [ŝ, δ̂] such that

[ŝ, δ̂] = arg max
sδ

{fys|sδ(ys|s, δ)}. (3.1)

Now that we have expressed the problem in a general form, we go on in the following

sections introducing different variants of it, and the techniques to solve it. We start by

reviewing some prior work by Song et al. [SGP00] on triangulated graphs and their dynamic

programming approach, and then continue with our contribution, both on the modeling and

the algorithmic side.

1In the remainder of this thesis we will refer to either the pair (s, δ) or the h interchangeably.

20

3.2.2 Conditional Independence and Computational Complexity

Let us start by focusing our attention on a subset of the variables in our problem and their

density, namely the variables x1 . . .xM , which represent the M body parts. To further

simplify the problem, let us assume for now that all parts have been observed in the display

and we are to figure out which part matches which detection. An immediate solution is to

evaluate the density of the parts on all possible assignment of the M parts to (a subset of) the

detections, and retain the most promising assignment, according to the probability measure.

Although correct in principle, the proposed brute-force approach is clearly infeasible for any

problem of interest as it would require the evaluation of O(N M) hypothesis. If, however, a

subset of the parts were moving independently of the others, one could reduce the number

of hypothesis to score to O(NM ′
), M ′ < M , by noticing that the most probable assignment

could be determined independently for the two sets. In the degenerate case where each part

is moving independently of every other part, we have M ′ = 1 and the complexity is linear

in the number of detections.

The idea of using independence among parts was introduced by Song et al. in [SGP00,

SGP01a, SGP01b], and is further explored by us in this work. We will now briefly review

it in the context of graphical models.

Following the graphical models notation, we assign to each variable in the problem a

node in a directed acyclic graph. Links between nodes indicate a relationship of dependence

between the variables. This dependence can be visualized, locally, as a child -parents rela-

tionship; ignoring the rest of the graph, we can define a family as a node (the child) and all

the nodes linking towards that child (its parents). Examples of families within a graph are

shown in Figure 3.1.

For a given structure of the graph a number of conditional independences are imposed

21

B

A C E

D

(a)

B

C

D

A

B

C C

D

E

D

E E

(b)

Figure 3.1: Conditional Independence. We show a graphical model representing a probability
density over five variables (a) and the five families into which the density can be
factorized (b).

on the probability density that the graph represents. These can be “read out” by inspection

of the graph, allowing us to rewrite the density in its factorized form. This is done by going

through each node in the graph and listing one factor per family.

In the example of Figure 3.1, the factorization into families becomes

f(ABCDE) = f(A|BC)f(B|CD)f(C|DE)f(D|E)f(E). (3.2)

More generally, if i is the index of a node in the graph and πi is the set of indices of xis

parents, we have the following factorization:

f(x1 . . . xn) =
n∏

i=1

f(xi|xπi
). (3.3)

The benefits of having a factorized form are enormous. Let us suppose, for example,

that we want to maximize the density f(A,B,C) with respect to its three variables. Let us

22

further assume that the density factorizes as follows:

f(ABC) = f(A|B)f(B|C)f(C). (3.4)

We can then write

max
ABC

f(ABC) = max
ABC

[f(A|B)f(B|C)f(C)]

= max
AB

[
f(A|B)max

C
[f(B|C)f(C)]

]
(3.5)

= max
AB

[f(A|B)g(B)]

and notice that, while the original maximization involved optimazing with respect to three

variables, we only had to maximize functions of two variables and then correctly combine the

results together (i.e., multiply them) to obtain the same answer. In [AM00] it is observed

how this process can be applied not only when the two operations involved are max and

product, but also with sum and product (used to efficiently compute marginals of a density),

as well as with a number of other operations and sets which have the appropriate algebraic

structure.

Going back to the problem of matching parts with observations, it is now clear how the

degree of independence among the parts determines the computational cost of maximizing

(or marginalizing) the density. It has been shown (see, e.g., [Pea88]) that the complexity of

such operations is exponential in the size of the largest clique in the graph.

3.2.3 Triangulated Model

Although it is hardly ever the case that any two parts of the body are moving independently,

computational reasons force us to approximate the description of the data with models that

23

are tractable. As we have seen, one such way is to assume some degree of independency

among the parts, so that efficient inference is possible. In [SGP00] Song et al. have explored

the use of conditional independence assumptions in the context of detecting and labeling

humans. In their work, they represent conditional independence by means of triangulated

decomposable undirected graphs, which they define as

1. either a clique of size three or

2. a collection of cliques of size three, for which there exist an elimination order of the

vertices, such that when a vertex (and the two edges connecting it to its clique) is

deleted,

• it does not belong to any other clique, and

• the remaining graph is still a triangulated decomposable graph.

Although multiple elimination orders might be possible, for a given graph, in Song’s

work, the order is fixed to a specific one.

Once the elimination order has been fixed, it is possible to build an “equivalent” di-

rected acyclic graph from the undirected triangulated decomposable graph. This is done

by visiting each vertex, according to the elimination order, and directing toward it the two

edges of the only clique such vertex belongs to. The directed graph thus obtained rep-

resents the same set of conditional independences as the original undirected graph. The

computational complexity associated with a triangulated model is O(N 3), since each factor

in the decomposition is of size three. Alternative independence assumptions, such as tree-

like graphs with pair-relationships, rather than triplets, have been explored by Song et al;

however, the triangulated graphs are presented as the best trade off between accuracy of

the representation and computational complexity.

24

3.2.4 More General Connectivity Models

Encouraged by the promising experiments of [SGP00], we have explored the trade off be-

tween computational cost and likelihood of the data when using graphical models with more

complex structure.

The first aspect we investigate is the level of independence imposed among the body

parts. As we have already mentioned, given a finite dataset, no two parts are in gen-

eral independent of each other, given all the other parts. However, due to computational

consideration, we are forced to introduce some conditional independences.

The problem of selecting which (in)dependence relationships to impose amounts to se-

lecting a particular structure for the graphical model representing the probability density

of body parts. It has been shown [Chi96] that automatically identifying the optimal struc-

ture (the one maximizing the likelihood of the data) is a NP-hard problem. Nevertheless,

heuristics can be employed to find a locally optimal solution.

One way of quantifying the level of independence among parts is to limit the “fan-in”

of each child by allowing at most K parents. This has the advantage of capping the size

of the largest clique (i.e., family) to K + 1, hence setting the computational complexity of

inference in the graph to O(NK+1). In [SGP00] K is fixed to two and the computation

is cubic in the number of observations. In our work we have observed that having higher

values for K (thus representing more dependencies among the body parts, at the price of

more computation) does not significantly increase the performance of the system.

We have mentioned in Section 3.2.3 how, in addition to having a fan-in of two, a trian-

gulated decomposable graph must also admit the existence of an appropriate elimination

order. It turns out that this definition is equivalent to the more widely known junction tree

property. Namely, if a graph is triangulated decomposable, then the graph of its cliques is

25

a tree and the cliques have cardinality three. Furthermore, for any two cliques U and V in

the clique-graph the (only) path connecting U and V is comprised of cliques, all of which

contain the nodes belonging to U ∩ V .

Although Song et al. define and use the terms “decomposable” and “triangulated” in a

different way than most authors, we are ultimately interested in the fact that the type of

graphs they use are exactly those that admit a junction tree with maximal cliques of size

three. As a consequence, their setup allows efficient exact inference in cubic time. A natural

question to ask is whether the tree shape of the clique graph is a necessary compromise.

After all, there is a potential for a more accurate description of the data if we relax the

requirement for the clique graph to be a tree and allow for a more general connectivity.

Clearly this would come at a price, since only approximate inference could be performed,

and techniques such as exact belief propagation, or dynamic programming, would not apply

any longer. Nevertheless, encouraged by enough empirical evidence [MWJ99] justifying the

application of Pearl’s belief propagation to loopy graphs, we explored this extension, which

we describe in Section 3.3.3.

3.3 Inference

In Section 3.2.1 we have introduced an instance of the labeling problem which was presented

in [SGP00]. In order to provide a complete definition of the problem we will now specify

in more detail the graphical model and probability densities used by Song et al., as well as

their dynamic programming algorithm for the most likely labeling assignment.

26

3.3.1 Dynamic Programming

We recall that x represents the set of body parts we wish to model, while s and δ are

the labeling and detection variables, which match parts to a subset of the observations y.

Figure 3.2 (c) shows a plate graphical model depicting the interaction among the variables.

x 13 x 14

x 5 x 6

x 1

x 3 x 4

x 8x 10x 9x 7

x 11 x 12

x 2 x 2
x 3

x 9 x 10

x 4

x 11 x 12

x 1

x 13 x 14

x 5 x 6

x 7 x 8

(a) (b)

N

s i

y j

M

x

iδ

(c)

Figure 3.2: Body Decomposition. We show two examples of graphical models for the body parts
variables x1 . . .xM . (a) shows a hand-crafted decomposition made by an expert, and
(b) shows another decomposition automatically computed. Both are obtained from
[SGP00] by fixing an elimination order of the nodes, and setting the directions of the
arrows according to the procedure detailed at the end of Section 3.2.3. In (c) we show
the full plate-model representing the interaction between the M body parts x1 . . .xM ,
the N observations y1 . . .yN , and the M labeling variables (s1, δ1) . . . (sM , δM).

27

The outgoing arrow that connects the node labeled x to the detections yj indicates that

each part xi, in principle, could have been “generated” by any one of the yj observations.

The labeling nodes si and δi, once known, determine which of these matches is the correct

one.

The factorization of the joint probability density can be immediately derived from the

graphical model:

fxysδ(x, y, s, δ) = fx(x)
N∏

j=1

fyj |xsδ(yj |x, s, δ)
M∏

i=1

[
fsi|δi

(si|δi)fδi
(δi)
]
. (3.6)

We start by examining the second factor on the right. Either one of two possibilities

can occur; if yj has been mapped to a part xi, i.e., δi = 1 and si = j, then

fyj |xsδ(yj |x, s, δ) = 1{ysi
= xi}; (3.7)

otherwise, the observation yj must have come from the background distribution, which is

uniform over the volume V

fyj |xsδ(yj|x, s, δ) =
1

V
. (3.8)

By combining all of the observations we obtain their joint density, which simplifies as follows:

fy|xsδ(y|x, s, δ) =
N∏

j=1

fyj |xsδ(yj|x, s, δ)

=
∏

i∈F

1{ysi
= xi}

∏

k∈B

1

V

= 1{ysf = xF}

(
1

V

)M−|F|(1

V

)N−M

.

28

If we then marginalize (3.6) over the hidden variables xi, we obtain

fysδ(y, s, δ) =

∫
fxysδ(x, y, s, δ)dx

=

M∏

i=1

[
fsi|δi

(si|δi)fδi
(δi)
] ∫

fx(x)

N∏

j=1

fyj |xsδ(yj|x, s, δ)dx

=
M∏

i=1

[
fsi|δi

(si|δi)fδi
(δi)
](1

V

)N−|F| ∫
fxF

(xF)1{ysf = xF}dxF

=

(
1

V

)N−M M∏

i=1

[
fsi|δi

(si|δi)fδi
(δi)
]
fxF

(ysf)

(
1

V

)M−|F|

(3.9)

where fxF
is the marginalized version of fx over the missing parts.

In [SGP00], it is assumed that fδi
(δi = 1) = fδi

(δi = 0) = 0.5. Additionally, fsi|δi
(si|δi) =

1
N

, since before observing any detection, each of them has an equal chance of being gener-

ated by the i-th body part. If we fix the number N of detections in a given frame, then we

can rewrite (3.9) as such:

fysδ(y, s, δ) ∝ fxF
(ysf)

(
1

V

)M−|F|

. (3.10)

An interesting interpretation of (3.10) is the following: for a given frame, we can produce

any labeling hypothesis we wish; we can vary the number of detected parts, by acting on

δ1 . . . δM , and we can change the mapping s1 . . . sM between parts and detections. Whenever

a part i is declared missing, a uniform factor 1
V

“compensates” for it in the density.

Since ours is a probabilistic model, we can compare any two hypothesis by computing

their likelihood with respect to the distribution. However, we have already noted in Sec-

tion 3.2.2 that the exhaustive search over all hypotheses is infeasible, and that we need a

more efficient way to compute the optimal solution. As our first step in that direction, we

briefly review an algorithm from [SGP00], which takes advantage of the factorized form of

29

fx to compute the most likely labeling hypothesis in polynomial time.

Assuming a decomposition similar to that of Figure 3.2 (a) or (b), we can list the M

families in the graph as follows

fx(ys) =

M∏

i=1

fxi|x[πi]
(ysi

|ys[πi]
)

=

M−2∏

i=1

Ψi(Li)

where the sets Li = [si, sπi
] identify the indices of detections matched to the parts in

each clique, Ψi(Li) = fxi|x[πi]
(ysi

|ys[πi]
), and ΨM−2(LM−2) is a joint density (rather than a

conditional density) over the last three parts. This is the case, since the last two families,

which derive from the last triangle, have either one or no parents. We can multiply them

into the M − 2 family, thus obtaining the joint fxM−2xM−1xM
(ysM−2

, ysM−1
, ysM

).

So far we have ignored the possibility that some of the parts may be undetected in a

frame. This is taken into account in [SGP00] by setting the appropriate Ψi(·) = 1
V

(with

the obvious special handling of ΨM−2(·), since it represents not one, but three parts).

Having decomposed the density in a product of smaller functions, we can apply the trick

illustrated in (3.5). Let us rewrite Li = [Ai, Bi, Ci] where, with the exception of the last

function in the elimination order, Bi and Ci are the indices of the conditioning variables.

We start by defining and maximizing the first cost function Q1 with respect to Ai, i.e.,

Q1(A1, B1, C1) , Ψ1([A1, B1, C1])

T1(B1, C1) = max
A1

[Q1(A1, B1, C1)]

I1(B1, C1) = arg max
A1

[Q1(A1, B1, C1)].

30

Next, we build the second function Q2. If Ψ2 and Ψ1 are “neighbors”, that is, if |L2 ∩

[B1, C1]| = 2, then we set

Q2(A2, B2, C2) , Ψ2([A2, B2, C2])T1(X,Y),

where X and Y are equal to A2, B2, or C2, depending on which two of these three parts

coincide with B1 and C1. If instead Ψ2 and Ψ1 are not neighbors, Q2 , Ψ2.

We maximize Q2 with respect to A2 and store the result as follows:

T2(B2, C2) = max
A2

[Q2(A2, B2, C2)]

I2(B2, C2) = arg max
A2

[Q2(A2, B2, C2)].

At step t, we multiply together the function Ψt and all the partial results Tj of its neighbors,

up to j < t. Finally, when t = M − 2 we maximize QM−2(AM−2, BM−2, CM−2) to obtain

A∗
M−2, B∗

M−2, and C∗
M−2. These are guaranteed to be the maximizing choices for the three

parts they represent. We then propagate backward, piecing together the solution: at step

t we set A∗
t = It(B

∗
t , C∗

t), that is, we determine the maximizing choice for At by using the

optimal choice for the two parts Bt and Ct which are in the same clique; this can be done

thanks to the fact that those two parts are shared by other cliques (where they are As) and

their value was set in the previous steps of the back-tracking.

The reassurance that the algorithm is correct comes from noticing how the definition

of triangulated graph requires that a node belong to only one clique (at the time of its

elimination). Thus when we maximize with respect to Ai and store the optimal choices in

Ti(Bi, Ci), we are guaranteed that Ai won’t appear in any other function that needs to be

maximized; therefore, any choice made regarding Ai up to that point, will remain optimal

31

for the remainder of the algorithm.

To achieve translation invariace, Song et al. model the relative positions of parts within a

clique, rather than their absolute values. This does not change the essence of the algorithm,

since the additional coupling between parts is local to a family and preserves the structure

of the graph.

3.3.2 Belief Propagation

Now that we have reviewed the work in [SGP00], we go on to show how their dynamic

programming algorithm is in fact a particular case of a more general class of inference

algorithms known as belief propagation.

The problem of probabilistic inference is that of computing the expectation of a function

g(hL) defined over a subset L of the variables h1 . . .hM , with respect to the density fh1...hM
,

i.e.,

Efh1...hM
[g(hL)] . (3.11)

This requires us to compute the marginal fhL
(·) of fh(·). Furthermore, if we had to

compute the expectations for multiple functions, the process would quickly become com-

putationally expensive, as we would have to marginalize the density over a different set of

variables each time. Luckily, the belief propagation algorithm comes to our rescue. As we

will see in a moment, its message-passing procedure simultaneously and efficiently computes

marginals on each clique of variables in the factorization; the computational saving is made

possible by reusing the intermediate result of one computation in the following ones2.

2We should mention that although we have been focusing on marginalization, in general we can replace
the “sum” operation involved in marginalizing with the “max”. This would maximize the density for each
clique, with respect to all but the variables in that clique. Other operators, beside max and sum, can also
be used. See [AM00] for a more thorough introduction to the topic.

32

Let us assume we have a graphical model G, which characterizes the probability density

function over the variables h1 . . .hM . Let us also assume that the connectivity in G is

sparse, so that the density factorizes, and can be written as

fh1...hM
(h1 . . . hM) =

M∏

i=1

fhi|hπi
(hi|hπi

), (3.12)

where πi is the parent set of i. This is the typical situation when dealing with a direct

graph. In the most general form the density can be a normalized product of positive (and

integrable) functions called potentials

fh1...hM
(h1 . . . hM) =

1

Z

∏

C∈C

ΨC(hC), (3.13)

where C is the set of indices of the variables contained in a family or clique (the domain of

the potential), and C is the set of all cliques.

We build a graph J with the cliques of G as vertices, and an edge between any two

cliques B and C when B ∩ C 6= ∅. J is called the lique graph of G. Although, in general,

the graph J has arbitrary structure, under certain conditions on the connectivity of G, J

has a tree structure and it is called the clique tree.

A clique tree J is said to have the junction property if, for any two cliques B and C,

every clique A, on the unique path connecting B to C, is such that (B ∩ C) ⊂ A. Such a

clique tree J is called the junction tree of G.

For each edge B → C of the junction tree J , we define a message over the variables

hB∩C

mBC(hB∩C) =
∑

hB\C

ΨB(hB)
∏

A→B∈J , A6=C

mAB(hA∩B). (3.14)

33

The definition is clearly recursive, the base case being the message departing from leaf

clusters of the junction tree.

To compute the desired marginals, both a forward pass (from the leaves to the root

of the tree) and a backward pass (towards the leaves) must be completed. Once all the

messages have been computed, for each cluster we define its potential

bC(hC) = ΨC(hC)
∏

B→C∈J

mBC(hB∩C) (3.15)

which we call the cluster belief. Given the belief on a cluster, we can easily obtain the

marginal density fhC
(hC) by normalization.

At this point, the similarity between Song’s dynamic programming algorithm and the

message passing procedure starts to emerge. By using the “max” operation, rather than

marginalizing, and noticing how clique potentials and messages play the role of the Q and

T quantities of Song, we can see how the two algorithms are essentially the same.

Although the complexity is of the same order of magnitude for both algorithms, a history

of maximizing choices is being kept in It by the dynamic programming procedure, which, in

practice, improves on the computational cost by avoiding the backward pass of messages.

3.3.3 Loopy Belief Propagation

The message-passing procedure described in the previous section achieves its efficiency and

guarantee of convergency by imposing certain structural constraints on the underlying prob-

ability density. We have already mentioned that, depending on the specific application, such

constraints might be well justified, or they might even be intrinsically part of the problem.

Other times, instead, they are simply a modeling approximation dictated by the demand for

34

fast computation, such as in the case of the triangulated decomposable graph of [SGP00].

In this section we relax the requirements for the graphical model to be decomposable, thus

expanding the class of admissible graphs.

We now briefly review the issues involved in doing (approximate) inference on these

more general graphs. In Section 3.4.1 we describe a procedure for learning their structure

from labeled data.

Let us start by recalling the recursive definition (3.14). A message from a node B to a

neighbor node C is computed by combining B’s potential with all messages coming into B

from its neighbors (excluding C). The recursion starts at the leaves of the tree, which by

definition, have no incoming edges. Once all the messages have been computed according to

the schedule induced by this recursion, the tree is said to be calibrated and we can compute

the beliefs on each node as in (3.15).

When applying the message passing procedure to a loopy graph, the first issue we

encounter is with the definition of the messages themselves. Since the resulting junction

graph might not have leaves at all, the recursion’s base step doesn’t apply and we are left

with an ill-posed procedure. A solution to the problem is to initialize all the messages to

1 and proceed with the update rule in (3.14) as before. This has the advantage that if the

graph was indeed a tree, after we exchange twice as many messages as there are edges in the

tree, the messages are guaranteed to converge to those produced by the original recursive

schedule. The procedure thus described is called loopy belief propagation (LBP).

A second and more depressing issue arising from the use of loopy graph has to do with

the convergence of the message-passing algorithm. Although we are able to propagate the

messages, and we can compute the belief at each node, we have no theoretical reassurance

that this procedure comes to a point of equilibrium. Messages might alternate over different

35

states and never settle into a final configuration. This is the case even when partial or soft

updates are implemented, where the new value of the message is a combination of its prior

value and new value proposed by the (3.14). Nevertheless, empirical evidence shows that

numerous problems of practical interest can be solved with this method, most notably the

so called “turbo codes”.

Several fundamental results have been reported in recent years which make LBP an

appealing procedure (see, e.g., [MWJ99, YFW00, YFW05]). Among them, the work in

[WF01] on the max-prod version of the algorithm (when the max operation is used in

place of sum) is possibly the most encouraging. There, Weiss et al. showed that, although

LBP might not always converge, when it does, the solution found is often very close to the

global optimum. Additionally, the solution obtained is a “neighborhood maximum”, that

is, changing the solution on nodes of an arbitrary set of disconnected trees and single loops

worsens the solution.

3.3.4 Global Variables

In our discussion we have so far sidestepped the problem that the body can undergo hor-

izontal and vertical translations from one frame to the next. Approaches that model the

absolute position of the parts with respect to the frame are clearly infeasible: since we can-

not predict where the human will appear within the field of view of the camera, we need to

build into the system some form of invariance with respect to translation. In [SGP00] this

issue is dealt with in a “local” manner, by replacing the absolute positions with the relative

location of two parts with respect to the third. This is a simple mechanism which allows the

triangular clique to float over the frame, while still characterizing the mutual relationship

among the parts it represents. The main advantage of dealing with translations locally is

36

that the structure of the graphical model remains unchanged, the conditional independences

are maintained and the same efficient inference algorithms can be applied.

Although effective, local invariance presents some drawbacks. In particular, when the

reference part is missing, we are unable to compute relative positions and have to resort to

some heuristic to be able to compute a probability for the remaining stray parts; this is a

necessary step since we want to score this hypothesis against others.

More importantly, when several parts are not detected, there is a risk for the model to

break into multiple disjoint components. In fact, given two sets of parts, nothing prevents

the matching of the first set of parts to observations that are far apart in the frame from

the observations matched to the second set of parts: there could be a situation in which,

e.g., the lower and upper portions of the body end up capturing two separate regions of the

image as their most likely set of detections.

The missing ingredient here is the notion that although deformable, the human body as

a whole is a well-localized entity: even though, at the level of its parts, the choice of which

observation matches which part is a somewhat local decision, the collection of all parts must

“make sense” as a body, and needs to be located within a bounded region.

We think of the “location of the whole body” as a global property, that is, a property

which belongs to (and affects) all the parts at once. This is in contrast to the geometry (or

the appearance) of a small group of parts within a limb which has, in principle, little to do

with that of parts in another limb, and is thus a local property.

Much like the location of the body, which we call its centroid, the scale is also a global

aspect which should be modeled in a centralized manner. As we will see in Chapter 5,

the idea of global variables will be a key aspect of our approach to modeling action and

activities.

37

Since we would like to simultaneously capture “global” and “local” properties, our ap-

proach to describing the motion of a human being results in a hybrid model. This presents

additional computational challenges; among them is the difficulty of doing inference in a

graphical model where the global variables influence every node, making any form of inde-

pendence among the parts vanish due to the global coupling.

We now reformulate the model, with the inclusion of the global variables, and follow

with our approach to learning its parameters and doing inference.

For the sake of simplicity, we limit ourselves to two global variables:

• centroid: a real-valued quantity θ ∈ R2 indicating the location of the body with

respect to the frame’s reference system, and

• phase: a discrete value φ ∈ [1, . . . nφ] acting as an index over a set of possible poses

or “phases” of the motion.

Since we are focusing on translation invariance, we focus on doing inference in the presence

of the centroid; however, we present an extended version of our hybrid model that includes

the phase, in anticipation of our work on movemes which we will present later.

Let us start by introducing the new graphical model in Figure 3.3, which we have

enhanced from the previous, with the addition of the global variables. We model the prior

for the centroid location as a Gaussian, i.e., fθ(θ) = N (θ;µθ,Σθ). The phase variable φ is

assumed to take on a finite set of values [1 . . . nφ] with probability mass function

fφ(i) = πφ,i i ∈ [1, . . . , nφ],

38

y j

x

s iiδ

N

θ

φ

Figure 3.3: Global Variables. We complete the graphical model with the addition of two global
variables which influence every body part. The centroid θ, is a continuous quantity
indicating the “center of gravity” of the body as a whole. The phase φ is a discrete
variable used to index among a small set of “poses” or configurations.

where

πφ,i ≥ 0

nφ∑

i=1

πφ,i = 1.

(3.16)

Since the centroid θ and phase φ are the parents-set of the body parts x, we can write

fθφx(θ, φ, x) = fθ(θ)fφ(φ)fx|θφ(x|θ, φ).

Now, let’s define

J = [Jd Jd · · · Jd

︸ ︷︷ ︸
M

]T (3.17)

39

and

Jd =




1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0




.

In order to achieve translation invariance we model the collection of M body-parts as

x = Jθ + x, i.e., we hypothesize that a given pose x can be interpreted as a common

displacement in position θ, superimposed to a translation-invariant or centered pose x. We

assume x to be conditionally independent of θ given φ, i.e., fx|θφ(x|θ, φ) = fx|φ(x|φ), and

we model its density as a linear Gaussian, that is,

fx|φ(x|φ) = N (x;µx|φ,Σx|φ). (3.18)

Since the folllowing linear relationship holds




x

θ


 =




I J

0 I







x

θ


 (3.19)

we conclude that

fxθ|φ(x, θ|φ) = (3.20)

N







x

θ


 ;




µx|φ + Jµθ

µθ


 ,




Σx|φ + JΣθJ
T JΣθ

ΣθJT Σθ





 .

Recall from the previous sections that the level of independence among body parts x

determines the size of the cliques in the graph. Furthermore, as noted in Section 3.2.2, the

40

computational complexity of our inference algorithms is dominated by the size of the largest

clique in the graph. Now, since θ belongs to the parent-set of every part xi, inference in

the graphical model of Figure 3.3 is clearly intractable. This is the case even if we were

to remove the discrete phase variable φ from the set of global variables. Nevertheless, we

notice that if we were given the true location of the centroid θ and the phase φ, the density

of the body parts becomes

fx|θφ(x|θ, φ) = N (x;µx|θφ,Σx|θφ) (3.21)

where

µx|θφ = µx|φ + Jθ

Σx|θφ = Σx|φ.

Also, notice that since the structure of Σx|θφ is sparse by construction, observing the

value of the global variables renders inference over the parts tractable again. Alternatively,

if the labeling of the parts was known, we could easily determine the value of the global

variables by maximizing their density, which reduces to a conditional linear Gaussian, or

fθφ|xF
(θ, φ|ysf) = α(φ, ysf)N (θ;µθφ|xF

(φ, ysf),Σθφ|xF
(φ, ysf)) (3.22)

where the normalization factor α(φ, ysf), the mean µθφ|xF
(φ, ysf), and the convariance

Σθφ|xF
(φ, ysf), are functions of both the unknown φ and the observed labeled data ysf .

Being able to answer either one of the two problems, given a solution for the other one,

is encouraging since it suggests that expectation maximization (EM), could be applicable.

41

In the following section we will present a derivation of EM for our problem, and then follow

with an alternative optimization schema, based on Paskin’s sample propagation work from

[Pas03].

3.3.4.1 Expectation Maximization

Expectation maximization [DLR77] is a versatile algorithm which is often invoked when

some of the variables in a model are not observable. In the problem of detection and

labeling, we have already mentioned how it is convenient to assume the geometry of the body

as a superimposition of a locally deformable model with an appropriate global translation

within the frame. It is important to observe how this choice goes beyond making the

interpretation of the model easy and intuitive. In fact, the introduction of hidden variables

(and that of top-down modeling in general) is very often driven by our knowledge of the

structure inherent to the problem; since we assume that a sparse level of dependency holds

among the parts, we would like to preserve such structure in our model as much as it is

possible, hence avoiding the devastating global coupling. The price to be paid to enjoy the

benefit of isolating this global phenomenon amounts to a more involved inference process:

should we choose otherwise, we would have to make all the parts interact, since any pair

of parts would exhibit a strong correlation of their absolute location. This can be readily

seen by observing that, at a macroscopic scale, the body moves as a whole and defines a

bounded region which contains all its parts; knowing the position of one part tells us a lot

about where all the others must lie.

The EM algorithm allows us to approach the problem by taking advantage of its inherent

structure, while circumventing the issues due to the presence of hidden variables. The

iterative process involves alternating between two steps which are called the expectation, or

42

E-Step, and the maximization, or M-Step.

In the E-Step, the best estimate for the hidden variables is computed, given the observed

data. In the M-Step, maximum likelihood estimates for the parameters are computed, based

on the data and the hidden variables. The process iterates until no more appreciable changes

are shown by the model’s likelihood.

One should notice that the choice of treating unknown quantities as hidden variables, or

as parameters, is sometimes arbitrary and often driven by the convenience of computation.

In our setting, we opt for treating the labeling variables h as hidden variables, while the

global quantity θ is considered a parameter.

We now proceed with the description of the E-Step and M-Step in more detail. To

lighten the notation, and since we are only interested in translation invariance at this stage,

we will ignore the phase variable φ.

E-Step

We start by marginalizing over x, obtaining

fysδθ(y, s, δ, θ) =

∫
fxysδθ(x, y, s, δ, θ)dx

= fsδ(s, δ)

∫
fx|θ(x|θ)fθ(θ)

N∏

j=1

fyj |xsδ(yj |x, s, δ)dx

= fsδ(s, δ)

(
1

V

)N−|F|

fθ(θ)

∫
fxF |θ(xF |θ)1{ysf = xF}dxF

=

(
1

V

)N−M

fsδ(s, δ)fxF |θ(ysf |θ)fθ(θ)

(
1

V

)M−|F|

∝ fxFθ(ysf , θ)

(
1

V

)M−|F|

(3.23)

where the last equation holds, since the prior over the labeling variables h = [s, δ] is uniform.

43

The complete-data log-likelihood becomes

Lc(y, h; θ) = log [fyhθ(y, h, θ)] (3.24)

∝ log

[
fxFθ(ysf , θ)

(
1

V

)M−|F|
]

. (3.25)

As the hypothesis h is hidden, we are unable to maximize Lc(y, h; θ) directly and we have

to replace it with the so called expected-complete log-likelihood, that is,

L̂c(f̃ , θ) = E
f̃h

[Lc(y, h; θ)] (3.26)

where the expectation is taken with respect to a generic distribution f̃h(h).

Our goal is to find a density fh, and a value for θ, that maximizes (3.26) given the

observed data y. Since this is an iterative process, we start with some initial estimate for

the centroid, which we call θ(0).

At iteration k, given θ(k−1) as the current estimate for the value of the centroid, we

would like to maximize L̂c(f̃ , θ) with respect to f̃ . It can be shown (see, e.g., [DLR77]) that

the optimal choice is

f̃
(k)
h (h) = fh|yθ(h|y, θ(k−1)). (3.27)

This is not surprising since the conditional density (3.27) happens to be our “best guess”

for the hypothesis h given all the information we have available from the observations y.

Unfortunately, we are unable to even represent (let alone compute) such density, since

the number of possible assignments to h is exponential in the number of body parts. Once

again we are forced to approximate. Instead of computing the full density, we make a

44

so-called hard assignment, i.e., we approximate f̃h(h) with 1(h − h(k)), where

h(k) = arg max
h

[
fh|yθ(h|yθ(k−1))

]
(3.28)

and 1(z) is a Kronecker’s delta centered in 0.

Now, we notice that

fh|yθ(h|y, θ(k−1)) ∝ fxF |θ(ysf |θ(k−1))

(
1

V

)M−|F|

(3.29)

and since it factorizes, we can apply the max-prod algorithm on the loopy graph induced

by the factorization, and solve the (3.28).

If the message-passing algorithm converges, and the determined f̃ (k) maximizes the

expected-complete log-likelihood L̂c(·, θ
(k−1)), we are guaranteed (otherwise there is just

reasonable3 hope.) that EM will converge to the sought-after ML estimate of θ.

M-Step

In the M-Step we compute the expectation of (3.26) using the current estimate f
(k)
h

, and

we maximize it with respect to θ; that is, we compute

θ(k+1) = arg max
θ

L̂c(f̃ , θ)

= arg max
θ

[
log fxF |θ(ysf |θ)

]

3As we have already noted, experimentally it is observed that when LBP converges, the determined
maximum is either global or, although local, the potential’s value is very close to its global optimum. If the
potential is increased (not necessarily maximized) by LBP, that suffices for EM to converge

45

where sf and F have been set by the hypothesis h(k). The maximizing θ can be easily

obtained from

0 = ∇θ[fxF |θ(ysf |θ)]. (3.30)

Since the density is an un-normalized Gaussian potential in θ, whose moments are functions

of h and y, the solution is a linear combination of the observations y.

3.3.4.2 Sample Propagation

As an alternative to the EM algorithm of the previous section, we propose to approach the

maximization of the complete-data likelihood function more directly. The method consists of

applying an efficient Markov chain Monte Carlo (MCMC) Gibbs sampler, based on Paskin’s

sample propagation work of [Pas03]. We now review their work and show how it can be

applied to our optimization problem.

The Hybrid Model

Since this particular inference scheme will form the basis for our later work on movemes, we

present it on the extended model that includes both the centroid θ and the phase φ among

the global variables.

Let us consider the following conditional density, where we have already marginalized

over the body parts x:

fhθφ|y(h, θ, φ|y) ∝ fxF |θφ(ysf |θφ)

(
1

V

)M−|F|

fθ(θ)fφ(φ)fh(h). (3.31)

Given the observations y, we are interested in determining the most likely value for the

centroid θ and phase φ, as well as the labeling h.

46

Another assumption we make is that a sparse level of dependency4 holds among the

parts x, so that (3.31) factorizes as follows

fhθφ|y(h, θ, φ|y) =
1

Z(y)

∏

Ci

ΨCi
(hCi

, θ, φ, y), (3.32)

where Z(y) is the normalizing factor. (3.32) is the density we will work with for the reminder

of this section.

In Section 3.3.2 we have mentioned how the problem of doing inference on a graphical

model is in general that of computing the expectation of a function U(θ, φ) defined over a

subset of the variables, given the observations. That is,

Efhθφ|y
[U(θ, φ)|y] , (3.33)

where U(θ, φ) is a generic function of θ and φ. In particular, since we are interested in the

centroid and phase themselves, we have that U is the identity function, i.e., U(θ, φ) = [θ, φ]T .

Notwithstanding the factorized form of (3.32), and the fact that the function of interest U

only depends on a subset of the variables in the problem, we have already seen that the

coupling induced by the global variables precludes the use of algorithms such as belief

propagation.

Rao-Blackwellised Approximation

In an attempt to simplify the problem in (3.33), we notice that if we condition on the

discrete variables h, we are left with a conditional linear Gaussian (CLG) density in θ and

4We assume that the graphical model among the body parts x has a decomposable triangulated structure.
This is essentially the triangulated model of [SGP00].

47

φ, i.e.,

fθφ|hy(θ, φ|h, y) = ᾱ(φ)N
(
θ; µ̄θ(φ), Σ̄θ(φ)

)

where we have omitted the dependence from h and y on the right-hand side. This makes it

easy to compute the conditional expectation

Efθφ|hy

[
[θ, φ]T |h, y

]
. (3.34)

In fact, we can write

Efθφ|hy







θ

φ


 |h, y


 =

∑

φ

∫



θ

φ


 fθφ|hy(θ, φ|h, y)dθ

=
∑

φ

∫



θ

φ


 ᾱ(φ)N

(
θ; µ̄θ(φ), Σ̄θ(φ)

)
dθ

=
∑

φ




µ̄θ(φ)ᾱ(φ)

φ ᾱ(φ)


 .

We then rewrite the (3.33) as

Efθφ|y

[
[θ, φ]T |y

]
= Efh|y

[
Efθφ|hy

[
[θ, φ]T |h, y

]
|y
]

(3.35)

where the outer expectation is, however, again intractable since the summation is over all

possible hypothesis.

At this point we introduce a numerical approximation technique, called Rao-Blackwellisation

(R-B). An R-B approximation is achieved by extracting a reasonably large number of sam-

ples h
k
, k = 1 . . . K from the density of interest fh|y(·|y). The outer summation in (3.35) is

48

then replaced with a tractable one, which yields the following estimator

Ê ,
1

K

K∑

k=1

Efθφ|hy

[
[θ, φ]T |h

k
, y
]
. (3.36)

We then have

Efθφ|y

[
[θ, φ]T |y

]
≈ Ê (3.37)

with equality holding when we sample indefinitely.

Thanks to the R-B approximation, we have simplified the problem of computing the

expectation in (3.34) to a tractable summation: we now show how to efficiently sample

from the density fh|y(·|y) by using a Blocking Gibbs sampler based on the junction tree

algorithm.

Markov Chain Monte Carlo and Blocking Gibbs Sampling

Markov chain Monte Carlo (MCMC) methods generate samples from a complex distribution

f by designing a Markov chain whose stationary distribution is f . The blocking Gibbs

sampler is an example of MCMC where the next state of the Markov chain is chosen by

resampling a subset of the variables, conditioned on the current values of the remaining

variables.

Recall how the density (3.32) exhibits a factorization in families or clusters. This leads

to an interesting way of applying blocking Gibbs sampling in our setting. Assume the

current state of the Markov chain over h is h
k
. To generate the next state of the chain

h
k+1

we choose a clique (or cluster) C, and we resample hC given h
k

I\C from the following

conditional distribution:

fhC |hI\Cy(·|h
k

I\C , y). (3.38)

49

The cluster C can be chosen randomly, or according to a schedule.

An Optimized Gibbs Sampler: Sample Propagation

The blocking Gibbs sampling and the Rao-Blackwellised estimation can be combined ef-

ficiently into a single algorithm. By passing conditional messages on a junction tree, the

conditional densities (3.38) needed by the sampler can be computed efficiently. This is

even more impressive if we think that the evidence is continuously being updated from one

iteration to the next.

We start by defining, for each edge B −→ C, the following function over the variables θ,

φ, hB∩C , and the evidence on all the remaining labeling variables (which we indicate with

h)

mBC(θ, φ, hB∩C , h) =

ΨB(θ, φ, hB∩C , hB\C)
∏

A→B∈J
A6=C

mAB(θ, φ, hA∩B∩C , h). (3.39)

This is the conditional message from B to C given the evidence h. Intuitively, when we

send a message from B to C, we instantiate all evidence variables that are in B but not

those that are in C. This gives us the freedom to later instantiate hC as we wish.

We define the conditional belief on the cluster C as

bC(θ, φ, hC , h) = ΨC(θ, φ, hC)
∏

B→C∈J

mBC(θ, φ, hB∩C , h). (3.40)

For a given initial value of the evidence h
0
, we compute the conditional messages as

in (3.39). We then compute the conditional cluster belief bC(θ, φ, hC , h
0
). Since we are

50

interested in the conditional distribution of hC , we integrate out θ and φ from the belief.

We then normalize it, obtaining

fhC |hI\Cy(hC |h
0
I\C , y). (3.41)

Next, we sample the conditional to obtain h
1
C , which we use to update the evidence by

setting h
1

= [h
1
C , h

0
I\C].

With the new evidence we can go back to instantiate the belief bC , obtaining bC(θ, φ, h
1
).

Normalizing with respect to θ and φ finally yields

fθφ|hy(θ, φ|h
1
, y) (3.42)

which is the density needed by the Rao-Blackwellised estimator. Every time we sample a

new cluster C we are able to update the estimator, as θ and φ belong to every cluster in

the junction tree.

The process continues by

• jumping to the next cluster according to some schedule,

• computing the conditional on the junction tree, which we use in the Gibbs sampler,

and

• using the newly produced sample to generate the conditional over θ and φ; this is

accumulated by the estimator.

We notice that when we resample a cluster Cp, we have h
k

[I\Cp] = [h
k−1
[I\Cp]]; that is,

the evidence variables that are not in Cp are unchanged. In [Pas03] it is shown how this

condition, and the junction property, imply that when we resample the variables in Cp the

51

messages directed towards Cp do not change and need not be recomputed. On the other

hand, if Cq is the next cluster we sample, only the messages directed towards Cq are needed

by the definitions (3.39) and (3.40).

Combining the two arguments, [Pas03] shows that only the messages on the directed

path from Cp to Cq must be recomputed in iteration k+1. Since we have the freedom to

select a specific schedule for visiting the clusters, we can achieve a noticeable computational

saving. In fact, if we choose the order such that Cq is always a neighbor of Cp, we only have

to recompute a single message (from Cp to Cq) at each iteration.

Having seen how to use sample propagation to compute estimates of both θ and φ, we

observe that a large number of high-probability samples for the labeling variables h are

obtained as a by-product. By retaining the most likely one in the model we complete our

task of labeling the human being.

3.4 Learning

In the learning process we want to estimate the structure and parameters of fx(x) from the

data.

In the most common scenario, we are given a training dataset of observations y, where

the identity or labeling s of the data in each frame is known. Additionally, its convenient

to craft the dataset so that N = M ; that is no clutter is present. Furthermore, we assume

that all parts are visible in every frame.

For the sake of simplicity, let us initially assume that the moving human is centrally

positioned in the frame, so that we do not have to account for horizontal and vertical

translations in the data. Since the data we use is labeled, we can easily center it.

We assume each body part xi to be a d dimensional vector and their joint distribution

52

fx(x) to be Gaussian N (µ,Σ). Here µ and Σ are the sample mean and covariance obtained

from the labeled data ysf .

3.4.1 Structure Learning

Learning the structure of the model is a challenging task. As in [SGP00], we adopt the

approximation of limiting the number of dependencies among parts (i.e., the fan-in of each

node in the graph) to a fixed value K = 2. In contrast to Song, however, we dispose of the

decomposability requirement and allow for a more general structure of dependencies.

We begin by introducing a scoring method, for a model, which is known as the mini-

mum description length (MDL), the Bayesian information criteria (BIC) or the Schwartz

information criteria. The MDL/BIC principle is widely used in statistics as a model se-

lection tool and offers interesting asymptotic properties (see [Sch78], [LB94], [BJ02]). The

idea behind MDL is to take into consideration both the “goodness of fit” of a model to the

data, as well as the complexity of the model itself. As we have already observed, a fully

connected graphical model would be the most accurate description of the training set, yet

the least useful, since a search for the optimal labelling would be computationally infeasible.

Additionally, by Occam’s razor, if the goodness of fit was the same, a more complex model

might not generalize as well as a simpler one.

To quantify this trade off, the MDL/BIC principle suggests scoring a model from an

information theory point of view. An arc in the graph indicates a dependence among two

vertices. If we need to estimate the value of the dependent variable, then knowing the

value of its parents provides us (on average) information; that is, we have less uncertainty

about the child and thus need less bits to convey its value. The stronger the child-parents

dependence, the fewer bits are needed.

53

The average amount of additional information on the child, provided by observing the

parents, is exactly what the mutual information I(i, πi) of a family represents. An alter-

native interpretation is that the mutual information reflects the likelihood that the data

satisfies the dependency relationship.

On the other hand, representing this relationship incurs a cost. Imagine if we had to

transmit the model over a channel: the higher the number of connections, the larger the

number of bits required for its transmission.

The MDL/BIC principle combines these two quantities into a single score. In the case

of Gaussian models, it is easy to see that the mutual information is given by a ratio of

determinants, while the cost of representing the model is proportional to the number of

non-zero entries in the inverse of the covariance matrix. For N i.i.d. data, and a family

(i, πi), we have

BIC(i, πi) =
N

2
log2

|Σi∪πi,i∪πi
|

|Σπi,πi
||Σi,i|

+
dπi

d

2
log2 N , dπi

, |πi|d

while the total score of the graph G is

BIC(G) =

M∑

i=1

BIC(i, πi). (3.43)

Ideally, we would like to examine every possible graphical model that can be constructed over

the M variables in our problem, and score each one using the metric (3.43). For each of the

graphs we could evaluate the encoding length of the data and that of the model description,

searching for the one that minimizes their sum. However, this method is clearly impractical

since there is an exponential number of graphs over the M variables. Unfortunately, the

problem of finding the optimal graph has been shown to be NP-hard [Chi96].

54

A number of heuristics could be applied to the problem. We choose the solution of

Giudici et al. [GC03], which is based on the Markov chain Monte Carlo (MCMC) method.

Sampling methods provide an excellent tool for hard optimization problems and their em-

pirical performance is well documented.

The algorithm is initialized by arbitrarily choosing a feasible graph. At every iteration

a move is proposed at random by choosing among three possibilities:

• Addition: a new arc is added between randomly chosen variables, as long as struc-

tural constrains such as maximum fan-in and the absence of cycles are maintained.

• Deletion: an existing arc is removed from the graph.

• Reversal: the direction of an existing arc is switched, subject to the same constraints

imposed on additions.

The graph obtained after the proposed move is evaluated according to equation (3.43)

and its score compared to that of the existing graph. Acceptance of the move is guaranteed

only if the score is increased. If, on the other hand, the newly obtained graph fares less

than the current one, a probability of acceptance is computed that is lower as the decrease

in score contributed by the move grows. A key aspect in avoiding local minima is that

MCMC methods accept (with appropriate reluctance) moves that decrease the score of the

functional being optimized. Although this seems counter-intuitive, it is important to notice

how this creates an escape from local attraction basins, allowing the exploration of larger

portions of the solution space. An additional step we take, trying to mitigate the curse

of local minima, is to randomly restart the algorithm several times, and retain the best

performing graph of all runs.

55

3.4.2 Unsupervised Learning: Expectation Maximization

In the previous section we have assumed that the input to our learning algorithm was made

of labeled and complete data. That is, on any given frame, all M parts were assumed to

have been detected and their identity known. To obtain such a complete input, one can

proceed in either one of two ways:

Motion Capture: An actor performs a few activities of interest within an arena, while

wearing a special suit or tight clothing. A number of reflective markers, attached to

the joints of the body, are tracked by several cameras located around the arena. The

identity and position of each marker in each frame is established by combining the

different video feeds.

Hand Labeling: A less intrusive way of producing the training set is to take a (possibly

already existing) video and go through it frame by frame, while manually selecting

the locations of the joints (or other relevant part).

Although, both methods have been extensively used, they both suffer from a number of

drawbacks. In one case, the major issue is with the constraints imposed by the motion-

capture system. The recording area is generally limited and the equipment cannot be easily

transported. Also, the special clothing is often problematic if an unmodified video stream

of the same actions is also needed (e.g., if the system being developed could in principle

use both motion and appearance as inputs). The hand-labeling process, on the other hand,

involves a great amount of human labor and patience, which is normally beyond what we

are willing to invest in order to produce a sufficiently large dataset.

For the reasons just mentioned, it is strongly appealing to be able to learn from unlabeled

and possibly incomplete data. It turns out that, although challenging, it is not an impossible

56

task.

In Section 3.3.4.1 we have seen an application of the EM algorithm to the labeling

problem. There, the solution involved alternatively optimizing with respect to the labeling

variables and the global quantities. A similar situation can be observed here. If we knew

the parameters and structure of the model, we could use one of the inference techniques

presented to label the data. Then, since the data would now be labeled, we could improve

the model by re-estimating its parameters and structure. Once again, the EM algorithm

seems to have solved our dilemma. It is important to note, however, that we have no

guarantee on the completeness of the data after we label it, since parts could be missing, or

the inference procedure could fail from time to time. Luckily, this can be taken into account

when computing expectations in the E-step of the algorithm, as we will see shortly.

We start by defining the complete-data likelihood function

Lc(θ, φ, x, y, h|G) = log

T∏

t=1

fθφxyh|G(θt, φt, xt, yt, ht|G)

=
T∑

t=1

log fθφxyh|G(θt, φt, xt, yt, ht|G).

Here, y is the set of observations; the labeling variables h, the centroid θ, the phase φ,

and the geometry of the parts x are considered hidden variables, while the structure and

parameters G of the graphical model G are the quantities we wish to estimate. We use

the superscript t ∈ [1 . . . T] as a time index; for example, yt indicates the collection of

observations in the t-th frame (and, similarly, for the other variables).

As introductions of the general framework for the EM algorithm are widely available in

the literature (see [Bis95], [Bis07], or [Jor], among others), we will only briefly mention the

iterative nature of the scheme, and focus instead on the derivation of the equations for the

57

k-th iteration of E-step and M-step, as they apply to the specific of our problem.

Expected-Complete Log-Likelihood

Since the variables θ, φ, x, and h can not be observed, we compute the expected-

complete log-likelihood with respect to the generic distribution q(θ, φ, x, h), obtaining

Le(y|G, q) = Eq [Lc(θ, φ, x, y, h|G)]

=
∑

φ,h

∫
q(θ, φ, x, h)

T∑

t=1

log fθφxyh|G(θt, φt, xt, yt, ht|G)dxdθ. (3.44)

E step

In the E-Step we maximize the (3.44) with respect to the averaging density q(θ, φ, x, h),

while holding the model parameters G fixed. It has been proved that the maximizing choice

is given by the conditional a posteriori density of the hidden variables, given the data

q(k+1)(θ, φ, x, h) = fθφxh|yG(θ, φ, x, h|y,G(k)).

M step

In the M-Step we take the expected complete log-likelihood (where the expectation is

computed with respect to the distribution determined in the E-Step) and maximize it with

respect to the model parameters G, yielding the improved model

G(k+1) = arg max
G

[
Le(y|G, q(k+1))

]
.

Now that we have described the general structure of the algorithm, let us proceed with

the derivation of both steps.

58

We start by noticing that the summation over t and the (linear) expectation operator

can be swapped, yielding

Le(y|G, q) = Eq [Lc(θ, φ, x, y, h|G)]

= Eq

[
T∑

t=1

log fθφxyh|G(θt, φt, xt, yt, ht|G)

]

=
T∑

t=1

Eq

[
log fθφxyh|G(θt, φt, xt, yt, ht|G)

]
.

Now, the logarithm transforms the factorization into a summation, and allows us to

decouple the maximization into individual terms. As noted in [Wel00], the fact that

fy|xhG(·|·, ·, G) is not a conventional function but rather a Dirac’s delta can be disturb-

ing when computing its logarithm. However, since none of the parameters with respect to

which we are optimizing is contained in such a term, we simply omit that term from each

expectation, and write the following

Eq

[
log fθφxyh|G(θt, φt, xt, yt, ht|G)

]
∝ . . .

Eq

[
log fθ|G(θt|G)

]
+ Eq

[
log fφ|G(φt|G)

]
+ . . .

Eq

[
log fx|θφG(xt|θt, φt, G)

]
+ . . .

Eq

[
log fs|δG(st|δt, G)

]
+ Eq

[
log fδ|G(δt|G)

]

where the “∝” means that maximizing either side with respect to the distribution’s pa-

rameters yields the same result. We now rewrite each term, replacing the logarithm of

conditional factors with their actual expressions, i.e.,

Prior on the Centroid :

59

Eq

[
log fθ|G(θt|G)

]
=

= Eq

[
−

1

2
log |2πΣθ| −

1

2

[
θt − µθ

]T
Σ−1

θ

[
θt − µθ

]]

Prior on the Phase :

Eq

[
log fφ|G(φt|G)

]
= Eq

[
log(πφ,φt)

]

Prior on the Labeling Variables :

Eq

[
log fs|δG(st|δt, G)

]
= Eq

[
−M log N

]

Eq

[
log fδ|G(δt|G)

]
= Eq

[
M∑

i=1

[
δt
i log pi + (1 − δt

i) log(1 − pi)
]
]

Density on the Body Parts :

Eq

[
log fx|θφG(xt|θt, φt, G)

]
=

= Eq

[
−

1

2
log |2πΣx|θφ(θt, φt)|

−
1

2

[
xt − µx|θφ(θt, φt)

]T
Σ−1

x|θφ
(θt, φt)

[
xt − µx|θφ(θt, φt)

]
]

= Eq

[
−

1

2
log |2πΣx|φ(φt)|

−
1

2

[
xt − µx|φ(φt) − Jθt

]T
Σ−1

x|φ(, φt)
[
xt − µx|φ(φt) − Jθt

]
]
.

We now proceed to compute the maximum likelihood parameters by setting to zero the

partial derivatives of the likelihood with respect to the parameters of G.

Prior on the Centroid :

60

Let us first take the derivative with respect to µθ:

0 =
∂Le(y, b|G, q(k+1))

∂µθ

=
T∑

t=1

Eq(k+1)

[
Σ−1

θ

(
θt − µθ

)]

=⇒ µ
(k+1)
θ =

1

T

T∑

t=1

Eq(k+1)

[
θt
]
.

We then take the derivative with respect to Σ−1
θ obtaining:

0 =
∂Le(y, b|G, q(k+1))

∂Σ−1
θ

=
1

2

T∑

t=1

Eq(k+1)

[
Σθ −

(
θt − µθ

) (
θt − µθ

)T]

=⇒ Σ
(k+1)
θ =

1

T

T∑

t=1

Eq(k+1)

[
θtθtT

]
− µ

(k+1)
θ µ

(k+1)
θ

T
.

Prior on the Phase :

For i ∈ [1, . . . , nφ] we maximize Le with respect to πφ,i. Since we have a normalization

constraint to accommodate, we introduce a Lagrange multiplier λ, obtaining:

0 =
∂

∂πφ,i

[
Le(y, b|G, q(k+1)) + λ

(
nφ∑

i=1

πφ,i − 1

)]

=
∂

∂πφ,i

[
T∑

t=1

Eq(k+1)

[
log πφ,φt

]
+ λ

(
nφ∑

i=1

πφ,i − 1

)]

=
T φ

i

πφ,i

+ λ2

61

or

πφ,i =
T φ

i

λ

where T φ

i =
∑T

t=1 fφt|ybG(i|y,G(k)). Summing over i on both sides of the equation,

and enforcing the normalization constraint, we get

λ =

nφ−1∑

i=0

T φ

i , T

=⇒ πφ,i =
T φ

i

T
.

Prior over the Labeling Variables :

Since the prior over the labeling variables s is set to a constant value, we are done

with it and proceed to maximize with respect to the probability of detections. We set

the derivative with respect to pi to zero, obtaining:

0 =
∂Le(y|G, q(k+1))

∂pi

=
∂

∂pi

[
T∑

t=1

Eq(k+1)

[
M∑

i=1

[
δt
i log pi + (1 − δt

i) log(1 − pi)
]
]]

=
T∑

t=1

Eq(k+1)

[
δt
i

pi

−
1 − δt

i

1 − pi

]

=

T∑

t=1

Eq(k+1)

[
δt
i − pi

(1 − pi)pi

]
.

Therefore,

=⇒ p
(k+1)
i =

1

T

T∑

t=1

Eq(k+1)

[
δt
i

]
.

62

Density of the Body Parts :

We compute the derivative with respect to µx|φ(j) for j ∈ [1, . . . , nφ], obtaining:

0 =
∂Le(y, b|G, q(k+1))

∂µx|φ(j)

=
∂

∂µx|φ(j)

[
T∑

t=1

Eq(k+1)

[
log fx|θφG(xt|θt, φt, G)

]
]

=
∂

∂µx|φ(j)

[
T∑

t=1

Ef
θtφtxtht|yG(θt,φt,xt,ht|y,G(k)) [· · ·]

]

=
∂

∂µx|φ(j)

[
T∑

t=1

Ef
φt|yG(φt|y,G(k))

[
Ef

θtxtht|φtyG(θt,xt,ht|φt,y,G(k)) [· · ·]
]]

=
∂

∂µx|φ(j)

[
T∑

t=1

[
fφt|ybG(j|y,G(k))E

[
log fx|θφG(xt|θt, j, G)

]]
]

=
T∑

t=1

[
fφt|yG(j|y,G(k))Ef...

[
Σ−1

x|φ
(j)
[
xt − µx|φ(j) − Jθt

]]]

= Σ−1
x|φ(j)

T∑

t=1

[
fφt|yG(j|y,G(k))Ef...

[[
xt − µx|φ(j) − Jθt

]]]

= Σ−1
x|φ(j)

[
−T φ

j µx|φ(j) +
T∑

t=1

fφt|yG(j|y,G(k))Ef...

[
(xt − Jθt)

]
]

where we defined T φ

j =
∑T

t=1 f φt|yG(j|y,G(k)). We finally have:

µ
(k+1)
x|φ (j) =

=
1

T φ

j

T∑

t=1

fφt|yG(j|y,G(k))Ef
θtxtht|φtyG(θt,xt,ht|j,y,G(k))

[
(xt − Jθt)

]
.

Proceeding in a similar way we compute the derivatives with respect to Σ−1
x|φ(j). For

63

j ∈ [1, . . . , nφ] we get:

0 =
∂Le(y|G, q(k+1))

∂Σ−1
x|φ(j)

...

=
∂

∂Σ−1
x|φ(j)

[
−

1

2

T∑

t=1

[
fφt|yG(j|y,G(k)) · · ·

· · ·Ef...|φt...(...|j,...)

[
log fx|θφG(xt|θt, j, G)

]]
]

=
1

2

T∑

t=1

fφt|yG(j|y,G(k))Ef
θtxt...

[
Σ−1

x|φ(j) · · ·

· · · −
[
xt − µx|φ(j) − Jθt

] [
xt − µx|φ(j) − Jθt

]T]

=
1

2
T φ

j

[
Σ−1

x|φ(j) − µx|φ(j)µx|φ(j)T
]
· · ·

· · · −
T∑

t=1

fφt|yG(j|y,G(k))Ef
θtxt...

[[
xt − Jθt

] [
xt − Jθt

]T]

where, again, we defined T φ

j =
∑T

t=1 fφt|yG(j|y,G(k)). We then have:

=⇒ Σ
(k+1)
x|φ (j) = −µ

(k+1)
x|φ (j)µ

(k+1)
x|φ (j)

T
+ · · ·

· · ·
1

T φ

j

T∑

t=1

fφt|yG(j|y,G(k))Ef
θtxt...

[[
xt − Jθt

] [
xt − Jθt

]T]
.

So far we have reduced the problem of maximizing the expected-complete likelihood

to that of computing a few (conditional) expectations of one or two variables. However,

the densities involved in the integrals/summations are still intractable and we are forced

to approximate them. More precisely, we will replace the densities of θ, φ, s, and δ with

Dirac’s (or Kronecker’s) deltas centered on their maximum a posteriori (MAP) values.

64

We start from the expectation of θ. We have

Eq(k+1)

[
θt
]

=

∫
θtfθt|yG(θt|y,G(k))dθt

=

∫
θt1{θt = θ̂t}dθt

= θ̂t

where the hat denotes the MAP estimate for the variable. Similarly we have,

Eq(k+1)

[
θtθtT

]
=

∫
θtθtT fθt|yG(θt|y,G(k))dθt

=

∫
θtθtT1{θt = θ̂t}dθt

= θ̂tθ̂t
T
.

For the labeling variables we have

Eq(k+1)

[
δt
i

]
=

1∑

δt=0

δtfδt|yG(δt|y,G(k))

=

1∑

δt=0

δt1{δt = δ̂t}

= δ̂t.

The expectations for the sufficient statistics of x are slightly more challenging. First,

we derive a convenient expression for q(k+1):

65

q(k+1)(θt, φt, xt, ht) =

= fθtφtxtht|ytG(θt, φt, xt, ht|yt, G(k))

= fxt|ytθtφthtG(xt|yt, θt, φt, ht, G(k))fθtφtht|ytG(θt, φt, ht|yt, G(k)).

The first factor on the right-hand side can be rewritten as

fxt|ytθtφthtG(xt|yt, θt, φt, ht, G(k)) =

=
fyt|xthtG(yt|xt, ht, G(k))fxt|θtφtG(xt|θt, φt, G(k))

fyt|θtφthtG(yt|θt, φt, ht, G(k))

=
fyt|xthtG(yt|xt, ht, G(k))fxt|θtφtG(xt|θt, φt, G(k))∫
fyt|xthtG(yt|xt, ht, G(k))fxt|θtφtG(xt|θt, φt, G(k))dx

=
fyt|xthtG(yt|xt, ht, G(k))fxt|θtφtG(xt|θt, φt, G(k))

fxt
F |θtφthtG(yt

sF
|θt, φt, ht, G(k))

(
1
V

)N−|F|

where the subscript sF in ysF is the MAP estimate, but we omitted the “hat”.

The expectation becomes

Eq(k+1)

[
xt
]

=

∫
xtfθtφtxtht|ytG(θt, φt, xt, ht|yt, G(k))dθtdφtdxtdht

=

∫
xt

fyt|xthtG(yt|xt, ht, G(k))fxt|θtφtG(xt|θt, φt, G(k))

fxt
F |θtφthtG(yt

sF
|θt, φt, ht, G(k))

(
1
V

)N−|F|
dxt.

We now split the vector xt into its foreground and missing components (xt
F and xt

M),

and compute the expectation separately.

66

Eq(k+1)

[
xt
F

]
=

∫
xt
F

fyt|xthtG(yt|xt, ht, G(k))fxt|θtφtG(xt|θt, φt, G(k))

fxt
F |θtφthtG(yt

sF
|θt, φt, ht, G(k))

(
1
V

)N−|F|
dxt

= yt
sF

fxt
F |θtφthtG(yt

sF
|θt, φt, ht, G(k))

(
1
V

)N−|F|

fxt
F |θtφthtG(yt

sF
|θt, φt, ht, G(k))

(
1
V

)N−|F|

= yt
sF

Eq(k+1)

[
xt
M

]
=

=

∫
xt
M

f···(y
t|xt, ht, G(k))f···(x

t
M|xt

F , θt, φt, G(k))f···(x
t
F |, θ

t, φt, G(k))

fxt
F |θtφthtG(yt

sF
|θt, φt, ht, G(k))

(
1
V

)N−|F|
dxt

=

∫
xt

Mfxt
M|xt

FθtφtG(xt
M|yt

sF
, θt, φt, G(k))dxt

M

= µ
(k)
xM|θtφt + Σ

(k)
xMxF |θtφt

[
Σ

(k)
xFxF |θtφt

]−1 (
µ

(k)
xF |θtφt − yt

sF

)
.

Similarly, we have

Eq(k+1)

[
xt
Mxt

M
T
]

= Σ
(k)
xMxM|θtφt − Σ

(k)
xMxF |θtφt

[
Σ

(k)
xFxF |θtφt

]−1
Σ

(k)
xFxM|θtφt

. . . + Eq(k+1)

[
xt
M

]
Eq(k+1)

[
xt
M

T
]
.

Now, without loss of generality, we can write

x =




xt
F

xt
M




67

and obtain

Eq(k+1)

[
xt
]

=




yt
sF

Eq(k+1)

[
xt
M

]




Eq(k+1)

[
xtxtT

]
=




yt
sF

yt
sF

T
yt

sF
Eq(k+1)

[
xt
M

T
]

Eq(k+1)

[
xt
M

]
yt

sF

T
Eq(k+1)

[
xt
Mxt

M
T
]




which completes our derivation.

68

Chapter 4

Experiments

4.1 Detection and Labeling with EM

4.1.1 Loopy Graphical Model and Global Variables

In Sections 3.2.4 and 3.3.4 we have presented our extensions to the triangulated decompos-

able model of [SGP00]. These can be divided into two main areas: the structure of the

graphical model, and the invariance with respect to translations. In the following experi-

ments we want to understand the benefit (if any) of our modeling efforts.

The system we analyze takes as input a set of features (and their instantaneous velocities)

that have been detected on a video frame. Since we wish to have a quantitative measure for

the labeling performance, we use a dataset for which a ground truth labeling is available.

This is obtained by means of a motion-capture system, which records a collection of point-

features attached to the joints of an actor. This setup allows us to cause the disappearance

of some of the body parts in a frame. We use this to simulate occlusions for which we

test the robustness of the system. Another available manipulation is the introduction of

spurious detections, that is, features that do not belong to the body. This allows us to

simulate real-world conditions for a feature detector (such as the of [TK91], for example),

where a large number of features detected are of no interest to the system.

69

The system is meant to perform two tasks, which are interconnected. The first one is

the detection task: given a set of N features, is there a human present? The second one,

which is only of interest when the first task has an affirmative answer, involves finding the

subset of the N detections which most likely matches the structure of the human body.

In our experiment we use two sequences W1 and W2 of 7,000 frames each1. Both

sequences depict a person, seen from the side, walking back and forth on a line. For each

pair of frames in the sequence, we use the labels obtained with the motion capture system,

and compute the instantaneous velocity of each body part. This results in a simulated

Johannson’s display with positions and velocities of a set of features.

4.1.2 Dealing with Occlusions

We use the sequence W1 to learn the model’s parameter and structure, according to the

procedure described in Section 3.4.1. Since our model is probabilistic, the task of detec-

tion is accomplished by returning a probability of the human being present. To test the

robustness of the system with respect to occlusions, we vary the number of visible points to

the algorithm. This is done for both the hand-made triangulated decomposable graph with

local translation invariance, presented in [SGP00], and our EM-based inference scheme on

a loopy graph, with the centroid providing global translation invariance. The ROC plots

in Figure 4.1 were obtained by first presenting 30 points of clutter, together with 4, 7, or

11 body parts (out of 14 available), chosen at random in each frame. We then run the

algorithm with only 30 points of clutter. In each frame the algorithm performs a labeling

and detection task, returning a number Po in [0, 1] which represents the confidence that a

human being is present. By setting a threshold T ∈ [0, 1] on Po we can interpret the answer

1We thank the authors of [SGP00] for making the data available to us.

70

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
P

ro
b.

 o
f D

et
ec

tio
n

Prob. of False Alarm

ROC − Decomposable Graph − Local Inv.

of visible pts : 11
of visible pts : 7
of visible pts : 4

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

P
ro

b.
 o

f D
et

ec
tio

n

Prob. of False Alarm

ROC − Loopy Graph − Global Inv.

of visible pts : 11
of visible pts : 7
of visible pts : 4

Figure 4.1: ROC Curves. [Left] Performance of the hand-made decomposable triangulated graph-
ical model with local translation invariance of [SGP00]. [Right] Performance of our
loopy graphical model with global translation invariance. All the curves are obtained
by changing (over the range [0, 1]) the threshold on the probability returned by the
algorithm. For each value of the threshold we plot the fraction of times the algorithm
correctly claims to have detected a person when the display shows one (Pdetection),
versus that of mistakenly stating that a person is there when only 30 points of clutter
are presented to the algorithm (Pfalse−alarm). Varying the number of visible points
between 4, 7, and 11 gives the dotted, dashed, and solid lines respectively.

of the algorithm as a binary choice (either presence or absence of the human is claimed) in

each frame. Over all the frame, a certain fraction will be correctly identified as containing a

human (since one was there), while some will be tagged as containing one even though only

clutter was shown. These two numbers are called the probability of detection (Pdetection)

and probability of false alarm (Pfalse−alarm). Varying the threshold from 0 to 1 changes

both Pdetection and Pfalse−alarm, producing one of the curves of Figure 4.1. By observing

the ROC plots, we notice that our model achieves a significant improvement in robustness

with respect to occlusions. This is obtained by representing more general connectivity, and

relying on the global centroid for translation invariance.

71

4.1.3 Labeling Accuracy

Next, we investigate the accuracy of the labeling procedure. As in the previous experiment,

we use the sequence W1 to learn the model’s parameter and structure. A 700-frame random

sample from the sequence W2 is then used for testing of the algorithm.

We evaluate the performance of the EM-based inference on loopy graph with the global

centroid, and compare it with the hand-made, decomposable graphical model of [SGP00].

For each one of the testing frames, we let the algorithm label the body parts. Over all

the frames, we compute the percentage of labels that were incorrectly assigned. A curve in

Figure 4.2 is obtained by varying the number of parts that are presented to the algorithm.

An additional 30 points of clutter is part of the input in every frame.

We first explore the benefits of just relaxing the decomposability constraint, still imple-

menting the translation locally. The lower two, dashed curves of Figure 4.2 already show a

noticeable improvement, especially when fewer body parts are visible. However, the biggest

achievement is brought by global translation invariance, as is evident from the upper two

curves of Figure 4.2.

4.1.4 Computational Issues

Although the theoretical computational complexity of our loopy belief propagation (LBP)

inference is of the same order of magnitude as that of the dynamic programming (DP)

algorithm of [SGP00], a few observations should be made. Firstly, the DP procedure is

exact and guaranteed to complete inference in one iteration of message passing. This is not

the case for LBP, which takes 4 to 5 iterations to converge.

Secondly, to avoid local maxima during the EM procedure, we restart the inference

algorithm at most 10 times, using a randomly generated schedule to pass the messages.

72

3 4 5 6 7 8 9 10 11 12
60

65

70

75

80

85

90

95

100

%
 C

or
re

ct
 L

ab
el

s

Number of Visible Points

Labeling Performance

Loopy + Global Inv.
Decomp. + Global Inv.
Loopy + Local Inv.
Decomp. + Local Inv.

3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

70

80

90

100

Pr
ob

. o
f D

et
ec

tio
n

Number of Visible parts

Detection Performance

Loopy + Global Inv.
Decomp. + Global Inv.
Loopy + Local Inv.
Decomp. + Local Inv.

Figure 4.2: Detection and Labeling Performance. [Left] Labeling: On each display from the se-
quence W2, we randomly occlude between 3 and 10 parts and superimpose 30 randomly
positioned clutter points. For any given number of visible parts, the four curves repre-
sent the percentage of correctly labeled parts out of the total labels in all 700 displays
of W2. Each curve reflects a combination of either local or global translation invariance
and decomposable or loopy graph. [Right] Detection: For the same four combinations
we plot Pdetection (probability of detecting a person when the display shows one) for a
fixed Pfalse−alarm = 10% (probability of stating that a person is present when only 30
points of clutter are presented). Again, we vary the number of visible points between
4, 7, and 11.

Finally, when global invariance is used, we reinitialize the value of the centroid θ up to

10 times. Each time we randomly pick a value within a different region of the display.

On average, about 5 restarts for θ, 5 different schedulings, and 3 iterations of EM suffice

to achieve a labeling with a likelihood comparable to the one produced by ground truth

labeling.

4.2 Detection and Labeling with Sample Propagation

In this set of experiments we analyze the performance of our system in a more challenging

setting. The dataset we use is comprised of several real-world-conditions video sequences

recorded with a standard camcorder (see Figure 4.3 to see an example of our dataset). We

also replace the EM-based inference algorithm of Section 3.3.4.1 with the more efficient

73

(a) (b) (c)

(d) (e) (f)

Figure 4.3: Data. (a) An example video frame from the training video sequence. (b)–(f) Example
frames from the testing data, including various types of motions performed by different
objects/people with various appearances (clothing).

and faster sample propagation, which we presented in Section 3.3.4.2. Finally, we test our

algorithm recognition capability by using more challenging and confusing clutter inputs.

In order to provide our algorithm with a Johannson-like input display, we process our

video sequences with a Lucas-Tomasi-Kanade (LTK) feature detector and tracker [TK91].

The set of feature points (locations and velocities) thus obtained is the input to our algo-

rithm.

4.2.1 Speeding-Up the Learning with Appearance

Since the clothing and the environment remain the same throughout a sequence, we incor-

porate appearance information in the description of each part, and model it as an isotropic

Gaussian, which we multiply into the geometry portion of the density for that part.

The model structure and parameters are learned from data without supervision. We

use a training set made up of 378 frames, taken from a single video sequence, showing a

74

1 2 3 4 5 6 7 8 9

Without Appearance

Lo
g−

Li
ke

lih
oo

d

Iteration Number
1 2 3 4 5 6 7 8 9

With Appearance

Lo
g−

Li
ke

lih
oo

d

Iteration Number

Figure 4.4: Learning Speed. A comparison of the log-likelihoods while learning a model with and
without appearance. Using appearance information the model converges significantly
faster. The log-likelihood is not monotonic since, due to efficiency, we use an approxi-
mated algorithm to compute it.

single person walking from right to left, parallel to the camera image plane. All the frames

were taken with the camera at the same view point and with the person wearing the same

set of clothes.

In training we ignore all points on the background (using background subtraction). We

extract an 11× 11 patch around each detection point and use a 3D histogram with 64 bins

to represent the distribution of colors (in HSV space) of the patch’s pixels. The vectorized

histogram is used as the appearance representation of the detected point.

In this first experiment, we learn the hybrid probabilistic model with M = 12 parts

using the approach presented in Section 3.4.1. Figure 4.4 compares the log-likelihood of

the learned model while using (or not) appearance information. To learn a model using

geometric information alone, we simply drop the appearance factor from the probability

density function of each part.

It can be seen that using appearance results in significantly higher convergence rate,

that is, the appearance of the detections reduces the probability of wrongly assigning body

75

parts to detections. Note that the actual values of the log-likelihood in the two cases are

not comparable (as one likelihood is estimated while including appearance and the other

one without it). We thus placed them on two separate plots and removed the log-likelihood

values to avoid confusion.

4.2.2 Recognition Accuracy

Next, we examine the ability of our model to detect a specific action among others. Given

a video sequence, the task is to recognize the presence of a human performing a right-to-left

walk.

As before, the model structure and parameters are learned from data without supervi-

sion. The training set made of 378 frames is taken from a single video sequence, and shows

a single person walking from right to left, parallel to the camera’s image plane.

The testing set included 2688 frames taken from 14 sequences of various lengths. A total

of 1101 frames were representative of right-to-left walking, while 1587 frames depicted other

types of motion, including running, cycling, a car driving by, water moving, and walking

left to right. Since our system is not scale invariant, during our preprocessing step we scaled

the sequences, so that the height of a person would be similar in all of them.

We compare three modes of learning and recognition:

• Learning and recognition without appearance [blue]

• Learning with appearance, and recognition without appearance [red]

• Learning and recognition with appearance [black].

In Figure 4.5 we report the three ROC curves obtained by varying the decision threshold

from 0 to 1. It can be seen that using appearance in both learning and testing resulted

76

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of False Alarm

P
ro

ba
bi

lit
y

of
 D

et
ec

tio
n

Figure 4.5: Recognition Results. A comparison of ROC curves corresponding to the three modes
of experiments with reference to appearance. In blue is learning and recognition with-
out appearance. In red, we show learning with appearance, and recognition without
appearance. Finally, in black, we use appearance in both learning and recognition.
This last one yields the best recognition results.

in significantly higher performance. Interestingly, the poorest results were obtained when

learning with appearance and testing without appearance. We believe the reason for this is

that the model was optimized for the use of both geometry and appearance, hence having

to (in part) trade off fitting the geometry information alone, in favor of the appearance.

Yet, during testing the geometry part of the model was the only one available.

4.2.3 Robustness to Occlusions

To conclude we show how, with the use of the global centroid and appearance, the model

achieves robustness to occlusions. To test this aspect we selected three video sequences,

with a total of 919 frames, and added to all their frames a virtual occlusion which hides

the thighs, as shown in Figure 4.6 (b). We then compare the recognition rates obtained for

the same sequences with and without the occlusion, using appearance in both learning and

recognition. To compute recognition rates we need to select a threshold on the likelihood

output by the system, and build a binary classifier to tag all frames. We set the threshold

77

(a) (b)

Recognition Rate

Without Occlusion 94.02%

With Occlusion 91.3%

(c)

Figure 4.6: Comparison of Recognition Rates. We provide the input data to the algorithm with
and without occlusions. In (a) we show an example frame from the test dataset. In
(b) the same frame is shown after introducing an occlusion over the thighs. The table
(c) summarizes the recognition rates.

according to the ROC curve of the model which uses appearance in both learning and

recognition. The threshold is taken as the “equal error” detection rate, that is, the value of

the threshold for which Pdetection = 1−Pfalse−alarm. The results, summarized in Figure 4.6

(c), show that only a slight decrease in performance occurred in recognition on the partially

occluded frames.

78

Chapter 5

Movemes, Actions, and Activities

5.1 Introduction

One of the goals of the computer vision community is to endow computers with the ability

to observe and understand the motion of humans. If we could build new machines that

autonomously interact with us in our environment, without the need for us to actively

declare our intentions and behaviors, a large number of applications would immediately be

possible.

Understanding what a human is doing, even in a confined setting, is a challenging task

for a number of reasons. Motion happens (and its semantic is encoded) at different scales,

both in space and time. The body is a highly deformable object, and can present itself in an

extreme variety of poses and appearances. Even more challenges arise when we deal with a

moving camera, a non-stationary background or occlusions of the body by other objects or

the body itself. If that was not enough, the underlying intentions might be ambiguous, and

their interpretation could require abstract knowledge not readily available from the video

signal [ZT01].

Notwithstanding these issues, the problem of understanding human behavior has re-

ceived a lot of attention in the last thirty years. In the following sections we present our

79

view on the problem, and we introduce two approaches to the construction of a simple dic-

tionary of elementary motions, which we see as the initial step toward the comprehension

of human behavior. For a broad review of the existing literature in human motion, we refer

to a few survey papers such as [AC99, BD01, Bob97, Gav99].

5.2 A Hierarchical View

One major obstacle that even we, as humans, encounter when observing people’s behavior,

is given by the difficulty of verbalizing and communicating in detail what we see. If we

limit ourselves to everyday activities, we are generally able to provide a coarse description

of what happened in a given period of time. This is usually achieved by listing verbs which

represent the actions of interest. The problem becomes slightly more complex when we are

asked to describe how specific actions are done. For example, if we had to convey what

is involved in cooking a particular dish, we could present “mixing the ingredients” as a

repetitive task where the arm makes a circular motion, while holding a wooden spoon, etc.

Yet, other actions—such as jumping to hit the ball during a volleyball game—might be

more challenging, since a precise combination of precisely executed atomic motions is the

only way to achieve the desired goal.

If we move to an even finer scale, describing the actual motion of our limbs and body

parts to others with the purpose of having them repeat the same or similar trajectory, we

are left with little choice but to show an actual example of what we mean. Aside for a few

motions for which we have words like “step”, “reach”, “grab”, “swing”, etc., we suffer from

the lack of a taxonomy that appropriately represents what we understand and interpret

effortlessly.

Although some attempts have been made (see, e.g., Rudolf von Laban’s 1928 work) to

80

develop a notation that describes human motion, the direct mapping to visually observable

aspects is still missing. The general consensus of the community seems to be that a fixed

vocabulary for human motion is both non-existent and inappropriate. This is also our

opinion, and we essentially agree with [Bob97] that the right approach must be hierarchical,

with different taxonomies at different levels of abstraction. We base our decomposition of

human motion primarily on the time-scale at which it happens, and in part on the semantic

we commonly attach to it.

hold a
m e e t i n g

di n e
w or k ou t

w alk
g e t s e at e d

t alk op e n / c los e
t he door

t ak e n ot e sr u n
dr i n k e at

k i c k

r e ac h
p u ll g r ab s i t dow n c ar r yg e t u p

s t e p le f t
s t e p r i g ht

t hr owc he w
M ov e m e s

A c t i on s

A c t i v i t i e s

Figure 5.1: A Hierarchical View. We interpret human motion in a hierarchical way. At the highest
layer, a single word is sufficient to provide a compact description of an “activity”. We
use the term “action” for shorter events that, joined together probabilistically, yield an
activity. At the bottom layer are the “movemes”: atomic motions which are learned
without supervision from data, and do not necessarily posses a verbal description. We
arbitrarily name them for the sake of example.

At the highest level, we think of activities as happening over an extended period of

time. The top portion of Figure 5.1 shows a few examples of what could be regarded as an

activity. Humans generally have no trouble choosing words that identify an activity, and

the choice is generally agreed upon by the majority, leaving no ambiguity.

The middle layer represents brief events, which we call actions, that usually last up to

81

a few seconds. Repetitive events such as walking are also classified as actions, since the

elementary cycle that is repeated fits the definition of action. Another defining aspect of

actions is that their combination, meant in a stochastic manner, yields an activity. For

example, the activity of “holding a meeting” could be considered a probabilistic concate-

nation of actions such as “sitting down”, “opening a door”, “taking notes”, etc. In general,

the duration, the order (to some extent), and even the presence or absence of some of the

actions do not compromise the existence of the activity.

Elementary pieces of motion, limited in time to a few frames, which could even involve

only part of the body (such as a limb, or the lower/upper body), belong to the bottom level.

Inspired by the early work of Bregler [Bre97], we refer to them as movemes. Although we

are able to associate names for some of these elementary motions, we do not feel this

needs to be the case. In fact, unlike actions and activities, we believe that their definition

should be inferred from data as the “best” set of short-term motions describing the actions

observed. Unfortunately the definition of “best” here is vague, since it is difficult to develop

a meaningful metric that makes sense for every problem. Nevertheless, guided by a few

requirements that we deem important, we propose a procedure for the identification of a

dictionary of movemes in video sequences.

5.3 A Simple Approach to Discovering Movemes

In Chapter 3 we have seen how the expectation-maximization (EM) algorithm is a versa-

tile procedure that can be applied to a number of problems. By taking advantage of the

decoupling induced by latent variables, it is possible to alternate between two simpler opti-

mizations, leading to a solution for the original problem. In the following section we present

our first attempt at building a dictionary of movemes, which is based on the EM algorithm.

82

y j

x

s iiδ

N

θ

φ

Figure 5.2: Graphical Model. We model a collection of parts x which are put in correspondence
with a subset of the detections y by the labeling variable s and δ. The global variables
θ and φ represent the centroid of the body and the index of the moveme.

5.3.1 Learning Movemes with Expectation Maximization

The setup we use is similar to that of Section 3.2.1. A collection of features has been

automatically detected on each frame, and their description represented by a small vector

of parameters (e.g., position, velocity, average color of surrounding patch, etc.).

For convenience, we report in Figure 5.2 the graphical model which we have abundantly

discussed. Recall that x models the body parts, which are put in correspondence with a

subset of the detections y by the labeling variable s and δ. The global variable θ represents

the centroid of the body, while φ is the index of the moveme.

After marginalizing with respect to the parts x we can write the following factorization

fyhθφ(y, h, θ, φ) = fxF |θφ(ysf |θφ)

(
1

V

)M−|F|

fθ(θ)fφ(φ)fh(h) (5.1)

where, once again, we use h in place of the labeling variables s and δ.

In the detection and labeling problem of Chapter 3 we wanted to recognize a specific

action (e.g., walking from right to left) among other distractors. Here instead, we focus on

83

the problem of learning movemes, without supervision, from a corpus of videos. To achieve

this, we use the procedure of Section 3.4.2, where the input to the algorithm is a dataset

with multiple actions being performed. The role of the global variable φ is now easier to

understand: we specify the number of movemes to be learned, and the model tries to fit the

data by segmenting it in time and probabilistically assigning frames to each of the “classes”

indexed by φ. The unsupervised learning and inference procedures of Chapter 3 are readily

applicable, since they have already been derived in their most general form, which takes

into account the global variable φ.

We observe that the estimate of φ is performed on a frame-by-frame basis. As conse-

quence, there is in principle no guarantee of continuity for the value of φ over time. On the

other hand, we would like to enforce the fact that movemes (as we defined them) have a

typical duration which ranges from a few frames to about a second. To achieve a segmenta-

tion which is consistent with this definition, we smooth the resulting estimate of f
(k)
φ|y(φ|y),

after each iteration of EM, using a triangular kernel with a limited support (typically eight

or ten frames) around its center.

5.3.2 Datasets and Features

In our first attempt to build a dictionary of movemes, we use several video sequences of

aerobic exercises. The idea of discovering movemes without supervision relies on the fact

that data is available which depicts a sufficiently large variety of actions. Since fitness

programs are designed with the goal of moving as much of the body as is possible, we feel

they are a good choice for applying our procedure. Additionally, the exercises are often

repeated several times, allowing for multiple instances of the same moveme/action to be

presented to the learning algorithm.

84

1
2

3

4 5

6

7 8

9

1
3

4

6

8

9

1
3

4 5

6

9

Figure 5.3: Manually Labeled Data. We show three sample frames from our input data. The
marked boxes were automatically identified by the box detector of Section 2.2, and
manually selected, out of all the available ones. The frames are cropped for better
visualization.

Since in this part of our work, we have shifted our focus on the temporal segmentation

of the sequences, rather than their labeling, we choose to avoid the task of unsupervised

labeling of the data, and rely on the matching of body parts and detections provided by an

operator.

To make this process easier, and minimize the amount of human labor, we pre-process

the videos with a feature detector which identifies approximately rectangular regions on the

image. This is done according to the procedure described in section 2.2.

Since the background is stationary in our video sequences, we can establish an approxi-

mate bounding box around the moving person. We then limit the amount of detections per

frame by retaining only those which appear in the neighborhood of the person. Finally, the

operator identifies and labels the detection that best matches the underlying body parts.

This results in incomplete data, from time to time, since the body part may be occluded,

or the detector can fail to produce a suitable candidate. The EM procedure, however, can

cope with this and we are able to learn a model from a dataset thus obtained. Figure 5.3

85

1
2

3

4
5

6

7 8

9

1
2

3

4 5

6

7

8

9

1
2

3

4
5

6

7

8

9

Figure 5.4: (E1) Automatically Learned Models. A 3-movemes model, learned from 2 video se-
quences totaling 469 frames, whose components correspond to the three principal mo-
tions that the sequence displays. The ellipses mark the position and covariance of each
body part relative to the centroid. The boxes correspond to the mean width, height,
and angle of the body parts, i.e., the mean pose of the body parts during these motions.

gives an example of typical frames, after they have been processed for learning.

It is important to note how, in the detection and labeling problem, the motion infor-

mation (in the form of location and instantaneous velocity) was encoded in the descriptor

for each feature detected, while the identity of the features was unknown. Here instead, we

are looking at a different problem: the identity of the features is known, while we wish to

discover the classes of motion the body undergoes.

5.3.3 Experiments

In the following experiments we present the results of our algorithm on a few datasets.

(E1) Learning Movemes—Dataset 1 :

In this experiment we selected 2 video sequences, totaling 469 frames, showing three

different motions. Since the motions do not have a “conventional” name, we call them

lift-left-leg, lift-right-leg, and rotate-upper-body.

86

As noted before, we used the box detector to find candidate body parts in all the

frames. An operator hand labeled the body parts in each frame. We then ran our

learning algorithm allowing it to fit 3 phases to the data. Although we have experi-

mented with nφ = 5 and 7 phases, we found that the aforementioned three movemes

gave the most stable and interesting representation. Figure 5.4 shows the resulting

model. The ellipses mark the position and the one standard deviation uncertainty of

each body part relative to the centroid. The boxes correspond to the mean width,

height and angle of the body parts during the motion. The red arc at the top of each

box represents the angle uncertainty. To avoid cluttering the figure, no uncertainty

on width and height is reported.

(E2) Testing Movemes—Dataset 1 :

Following the first experiment, we took the model obtained and we evaluated the

analysis power of this approach on a total of three sequence, including the 469 training

frames plus an additional 500 unseen frames.

This time we allowed all the boxes detected in every frame (not just the few which

we hand labeled) to be presented as input to the algorithm. The task is to find, for

each frame, the configuration of boxes that is most probable in the model, as well

as the temporal segmentation into movemes. Figure 5.5 displays a few representative

frames with all the detected box overlaid (marked in blue). The boxes marked in red

are those selected by the algorithm as the best assignment to body parts. Having

used real-world conditions data, we do not have a complete ground truth to perform

a qualitative evaluation of the labeling performance. For the segmentation results,

at least at the level of movemes, quantitative analyses are of little value, since the

87

2

3
4

5

6

7

8

9

1 2

3

4

67 8

2

3

4 5

6

7
8

9

1
2

3

4 5

6

7 8

9

1

3

4

6 8

Figure 5.5: (E2) Testing the Movemes. Sample frames from the 968-frame testing sequences. Pro-
vided as input were all the detected boxes in each frame, which are marked by thin blue
lines. The top figure shows a full frame. At the bottom we show five sample frames.
A thick red line marks the boxes that were chosen by the algorithm as representing
the best human-like configuration. The frames have been cropped to show only the
labeling results.

decision as to when one motion ends and another starts is itself a matter of debate

among humans.

Figure 5.6 displays temporal segmentation into movemes. On the horizontal axis we

report the time, or frame index. For each frame t, on the vertical axis we represent

the probability of each of the three phases. The thicker the bar corresponding to one

of the three phases, the more likely the frame is to belong to that phase, with the total

thickness being fixed (and corresponding to probability 1). The color segmentation

along the bottom axis represent a ground truth, which is provided by a human. The

same colors have been assigned (a posteriori) to the three movemes/phases identified

88

Φ = 1

Φ = 2

Φ = 3

Figure 5.6: (E2) Likelihood of Movemes. On the horizontal axis we report the time, or frame index.
For each frame, on the vertical axis we represent the probability of that frame to be
assigned to each of the three phases. The thicker the bar corresponding to one of the
three phases, the more likely the frame is to belong to that phase. The color segmenta-
tion along the bottom axis represent “a ground truth”, which is provided by a human
who was unaware of the result of the experiment. The same colors have been assigned
(a posteriori) to the three movemes/phases identified by the algorithm, by observing
the best match between the movemes and the human-generated segmentation.

by the algorithm, by observing the best match between the movemes and the human-

generated segmentation.

(E3) Learning Movemes—Dataset 2 :

A second learning experiment was performed on a different set of sequences with a

total length of 1129 frames. These videos show a more complex set of aerobic exercises.

Each exercise is different, yet some of the movements are similar among exercises. For

example one exercise is composed of raising the arms up, crossing the arms in front

of the chest, and letting them down. Another one involves stretching the arms out,

crossing them in front of the chest again, and finally pulling the hand towards the

shoulder. Clearly, the parts where the arms are crossing in front of the chest is shared

between the two exercises. This is nicely captured by the 7-component model that

the algorithm learns.

89

Φ = 1

Φ = 2

Φ = 3

Φ = 4

Φ = 1

Φ = 2

Φ = 3

Φ = 4

Φ = 5

Φ = 6

Φ = 7

Figure 5.7: (E3) Choosing the Number of Components. Motion analysis results for the second
dataset with 4 and 7 components. Colored bars on the bottom row indicate human-
made segmentation at the turning points between aerobic moves. The colors used for
each moveme have been chosen (a posteriori) so as to enhance the matching between
the ground truth and the algorithm’s choice of movemes. Major changes in the type
of exercise can be qualitatively detected in either plot by simply looking at the change
in temporal patterns. A more careful analysis of the above diagrams, in conjunction
with the video, shows (as expected) how different complex actions share some of the
same phases. These correspond to shared movemes such as crossing of the arms. When
using fewer phases (top) not all the movemes in the sequence are captured and different
actions appear as similar ones. Conversely, when using a higher number of phases the
segmentation exhibits multiple phases trying to “explain” what a human perceives as
the same motion.

One of the unsolved issues of our approach is the choice of the number of components.

To explore the influence of this parameter we have learned, for these sequences, models

90

1
2

3

4

5

6

7 8

9

1

2

3

4
5

6

7 8

9

1

2

3

4

5

6

7

8

9

1

2

3

4
5

6

7 8

9

1

2

3

4 5

6

7

8

9

1

2

3

4

5

6

7 8

9

1
2

3

4
5

6

7 8

9

1

2

3

4

5

6

7 8

9

1
2

3

4 5

6

7 8

9

Figure 5.8: (E4) Automatically Learned Models. The 9-moveme model learned from a few se-
quences totaling 1629 frames depicting different actions. The ellipses mark the position
and covariance of each body part relative to the centroid. The boxes correspond to the
mean width, height, and angle of the body parts, i.e., the mean pose of the body parts
during the motion. The arc at the top of each box represents the angle covariance. To
avoid cluttering the figure, no uncertainty on width and height is reported.

with nφ between 3 and 9. Figure 5.7 displays the probability density of the phase over

time for two choices of nφ (namely, nφ = 4 and nφ = 7). Understandably, the larger

the number of components, the finer the decomposition into movemes that we obtain.

On the other extreme, when the number of components is too small (like in the case

nφ = 4), movemes that a human tend to classify as different, are merged together and

represented by a single component.

(E4) Learning Movemes—Dataset 1 and 2 :

In our largest learning experiment we trained a 9-component model on all of the

91

Φ = 1

Φ = 2

Φ = 3

Φ = 4

Figure 5.9: (E5) Testing Movemes. An actor performs a number of exercises which are being
analyzed by a 4-component model. The training was done on a sequence of similar
exercises performed by a different actor. Some of the phases follow a repetitive pattern,
showing that the action performed is based on movemes that were present in the
training set. More uncertainty in other phases is due to the ambiguities in the way
the action is performed (e.g., arms are neither straight down nor wide open, so two or
more movemes are trying to explain that configuration).

1598 labeled frames. The schematic graphical representations of the components

(shown in Figure 5.8) exhibit a good qualitative correspondence with the actions in

the sequences.

(E5) Testing Movemes—Dataset 3 :

In our final experiment, we evaluated the capability of this approach to describe

actions performed by a different actor in an unlabeled sequence of 1057 frames. The

exercises presented are similar (but not identical) to the ones used for training, which

was done as in (E3). Figure 5.9 shows the resulting probability for each moveme on the

testing sequence. Some of the phases show a high probability, and follow a repetitive

pattern, indicating that the action performed is based on movemes which are being

recognized as similar to those present in the training set. The higher uncertainty over

the phases, which we find in the central part of the sequence, is due to the ambiguities

92

in the way the action is performed (e.g., after crossing the arms in front of the chest,

the actor returns to an intermediate position where the arms are neither straight

down, nor wide open, so that two movemes are needed to explain that configuration).

5.4 Modeling the Dynamics

Although the approach we have presented in the previous section shows interesting segmen-

tation results, the idea of independently assigning individual frames to movemes fails to

represent subtle aspects such as the dynamic of the motion. Since our goal is to eventually

be able to recognize and understand the complex and rich behaviors that a human body

is capable of, we must be careful not to discard essential information when choosing our

model.

If we observe people involved in everyday activities, we can summarize their motion

as the trajectories of their body parts in time. It is true that there are times in which it

may seem superfluous to know the exact temporal evolution of a body part. Other times,

however, when an arm reaches to a nearby location to grab an object, for example, it tra-

verses the same set of poses as an arm punching an obstacle. The different semantic of

these two movements is encoded by their dynamics. Accurately representing such informa-

tion is important, yet challenging, since the dynamics are complex, non-linear and possibly

time-varying.

Modeling the dynamics has additional and important benefits. For example, when

doing visual tracking the prediction capabilities of a dynamical model can help in coping

with occlusions and errors in the observations. Applications in the computer graphics

community, such as animation and rendering, are also greatly improved by more realistic

synthetic motion.

93

Although several attempts have been made in recent years to represent some form of

dynamical information, the field is still relatively new and evolving. In the reminder of this

chapter we present our approach to learning models to represent the dynamics of human

motion. Our work is based on an existing modeling technique known as the switching linear

dynamical system (SLDS). A comprehesive overview of the different algorithms for learning

and inference in switching dynamical systems can be found in [GH96, GH98, Gha98, Mur98,

BK98, GH00, Mur02, ORBD05]. We refer to [Bar78, SS82, SS91, BL93, Kim94] for earlier

attempts in tracking and, more in generally, for modeling signals based on SLDS. Several

applications of dynamical models in biology and vision can be seen in [PR00, Roh97, Bre97,

NBIR00, DMP02, DMP03a, DMP03b].

5.4.1 Switching Linear Dynamical Systems

One of the most successful approach to dynamics modeling is given by the switching linear

dynamical system (SLDS), also known as the jump Markov system (JMS), or switching

Kalman filter (SKF). Murphy [Mur98] provides an excellent introduction to both the in-

ference and learning tasks with SLDS, to which we refer. Here, we summarize1 Murphy’s

derivation following his terminology and notation, while making the due adaptations to our

specific problem.

In their simplest form, SLDS can be described as a pool of linear dynamical systems

(LDS), whose parameters have been set. At any given time a selector or switch variable

determines which one of the linear dynamics is to be used. The switch variable itself evolves

in time according to a first-order Markov dynamic.

1The work in [Mur98] is c©1998 Kevin P. Murphy and Compaq Computer Corporation, Cambridge
Research Laboratory, Cambridge, MA 02139 USA. The partial reproduction and adaptation in this thesis
is done with permission, for nonprofit educational purposes; all other uses require a license and payment of
fee to the copyright owners.

94

S SS 1 2 T

X X X1 2 T

Y Y T2Y 1

Figure 5.10: Switching Linear Dynamical System. The switch variable st evolves in time according
to a first-order Markov chain. For a given choice of the switch, a corresponding
dynamic is imposed on the evolution of xt−1 → xt. Alternatives to the switching
dynamic configurations, such as switching observations, are also possible.

Figure 5.10 shows a graphical model describing a time-unrolled SLDS, going from t = 1

to t = T . This is called the switching-dynamics form and is the focus of our attention.

Alternative switching mechanisms are possible. For example, in the switching-observations

form, the switch variable controls the production of the observation yt from the state xt,

allowing for a multi-modal observation process.

Unfortunately, most physical processes exhibit complex non-linear dynamics which can

at best be approximated locally by a linear system. Since an SLDS possesses a number of

interchangeable dynamics, it can be seen as a piecewise linear approximation of a non-linear

process. At the core of the SLDS are the linear dynamics and the common hypothesis of

Gaussian noise. This can be represented as follows:

xt = Axt−1 + B + vt (5.2)

yt = Cxt + wt (5.3)

95

where xt is the hidden state of the system, while yt represents the observation at time t.

vt ∼ N (0, Q) and wt ∼ N (0, R) are the (independent) state noise and observation noise,

respectively, and model the uncertainty in the state evolution and measurement process.

Inference in this model is efficient and simple. Both the Kalman filter and the Rauch-

Tung-Strieber smoother are well known on-line procedures which allow us to compute the

posterior on the state P (xt|y1:t) given past observations, or given all the available data

P (xt|y1:T).

The switching variable st has a Markovian dynamic, that is, s1 has an initial distribution

π, while the evolution is governed by the transition matrix Z.

The full SLDS model can be written as follows:

st ∼ Z(st−1, ·)

xt = A(st)xt−1 + B(st) + vt vt ∼ N (0, Q(st))

yt = C(st)xt + wt wt ∼ N (0, R(st))

(5.4)

which is the most general form of SLDS, since the evolution of both state and observation

depend on the switch.

5.4.1.1 Belief Approximation

If a LDS admits efficient inference, the introduction of the switching state brings an ad-

ditional layer of complexity. To see this, let us start with the initial distribution f(x1),

which is a mixture of Gaussians with one component for each value of the switch s1. Each

component in the mixture has to run through the dynamics equations. Since there is one

dynamic/observation equation pair for each value of s2, we obtain a resulting mixture with

M2 components. After t iteration, the mixture p(xt|y1:t) has grown exponentially to M t

96

components.

Unfortunately, we are left with little choice but to approximate. [Mur98] offers a rather

complete review and characterization of the various approximations appeared in the liter-

ature. In our work, we focus on the idea of [BL93], which is known as the second-order

generalized pseudo-Bayesian (GBP2) algorithm2.

In general, the GBP(r) approximation of order r consists of collapsing (at time t) a

larger mixture into one with M r−1 components. When r = 2, we take f(xt−1|y1:t−1),

which is an M -dimensional mixture, and we run it through our multi-modal filtering. We

then approximate the resulting M 2 components by moment matching3, returning to an

M -components mixture for f(xt|y1:t).

5.4.1.2 Inference in SLDS

In this section we show how to do inference (both filtering and smoothing) in SLDS. Since

this is now a standard process, we report the derivation directly from [Mur98], with the

appropriate modifications to take into account the additional input matrix B(st). We start

by introducing their notation:

x
i(j)
t|τ = E [xt|y1:τ , st−1 = i, st = j]

x
(j)k
t|τ = E [xt|y1:τ , st = j, st+1 = k]

xj

t|τ = E [xt|y1:τ , st = j] .

2GBP is a particular instance of a more general approximating technique known as assumed density
filtering (ADF). In ADF, a belief is represented with a density which is member of a particular family. Any
time an update is performed that results in a belief outside of the desired family, the belief is approximated
with a density from the family.

3[Lau96] has shown that moment matching results in the optimal approximation with respect to the K-L
divergency.

97

If τ = t, the above represent the filtered statistics; when τ > t, they are called smoothed

statistics; finally, if τ < t, we talk about predicted statistics. The superscript inside the

brackets is the value of the switch node at the time specified by the subscript t. The

superscript to the left and to the right are instead the values of st−1 and st+1, respectively.

We also define

V j

t|τ = Cov [xt|y1:τ , st = j]

V j

t,t−1|τ = Cov [xt, xt−1|y1:τ , st = j]

V
(i)j
t,t−1|τ = Cov [xt, xt−1|y1:τ , st−1 = i, st = j]

Mt−1,t|τ (i, j) = f(st−1 = i, st = j|y1:τ)

Mt|τ (j) = f(st = j|y1:τ)

Lj
t = f(yt|y1:t−1, st = j)

where Lj
t is the likelihood of the innovation at time t, given that the current model is j.

Filtered Estimates

In order to produce the filtered estimates of the hiddent state xt and switches st, given the

observations y1:t up to time t, we perform the following steps in sequence:

98

(x
i(j)
t|t , V

i(j)
t|t , V

(i)j
t,t−1|t, L

i(j)
t) = Filter(xi

t−1|t−1, V
i
t−1|t−1, yt;Aj , Bj , Cj , Qj , Rj)

Mt−1,t|t(i, j) =
Lt(i, j)Z(i, j)Mt−1|t−1(i)∑

i

∑
j Lt(i, j)Z(i, j)Mt−1|t−1(i)

Mt|t(j) =
∑

i

Mt−1,t|t(i, j)

W
i|j
t = f(st−1 = i|st = j, y1:t) = Mt−1,t|t(i, j)/Mt|t(j)

(xj

t|t, V
j

t|t) = Collapse(x
i(j)
t|t , V

i(j)
t|t ,W

i|j
t).

At the first iteration we use the following initial conditions:

xj

1|0 , E[x1|s1 = j] = µj

V j

1|0 , Cov[x1|s1 = j] = Σj

M0|0 , π.

The filter and collapse operators are defined as follows:

Filter :

(xt|t, Vt|t, Vt,t−1|t, Lt) = Filter(xt−1|t−1, Vt−1|t−1, yt;A,B,C,Q,R)

First, we compute the predicted mean and variance.

xt|t−1 = Axt−1|t−1 + B

Vt|t−1 = AVt−1|t−1A
′ + Q

Then we compute the prediction error (called “innovation”), the variance of the error,

99

the Kalman gain matrix, and the likelihood of the current observation.

et = yt − Cxt|t−1

St = CVt|t−1C
′ + R

Kt = Vt|t−1C
′S−1

t

Lt = N (et; 0, St)

Finally, we update the estimates of mean, variance, and cross variance.

xt|t = xt|t−1 + Ket

Vt|t = (I − KtC)Vt|t−1 = Vt|t−1 − KtStK
′
t

Vt,t−1|t = (I − KtC)AVt−1|t−1

CollapseCross :

Given two random variables x, y with conditional means µj
x = E[x|s = j], µj

y =

E[y|s = j], cross variance V j
x,y = Cov[x, y|s = j], and mixing coefficient P j = fs(j),

the CollapseCross operator is defined as follows:

(µx, µy, Vx,y) = CollapseCross(µj
x, µj

y, V
j
x,y, P

j)

100

where

µx ,
∑

j

P jµj
x

µy ,
∑

j

P jµj
y

Vx,y ,
∑

j

P jV j
x,y +

∑

j

P j(µj
x − µx)(µj

y − µy)
′.

Collapse :

Collapse(µj
x, V j

x , P j) , CollapseCross(µj
x, µj

y, V
j
x,y, P

j).

Smoothed Estimates

In order to produce the smoothed estimates of the hidden state xt and switches st, given

all the observations available y1:T , we perform the following steps in sequence:

(x
(j)k
t|T , V

(j)k
t|T , V

j(k)
t+1,t|T) = Smooth(xk

t+1|T , V k
t+1|T , xj

t|t, V
j

t|t, V
k
t+1|t+1, V

j(k)
t+1,t|t+1;Ak, Bk, Qk)

U
j|k
t = f(St = j|st+1 = k, y1:T) ≈

Mt|t(j)Z(j, k)∑
b Mt|t(b)Z(b, k)

∗

Mt,t+1|T (j, k) = U
j|k
t Mt+1|T (k)

Mt|T (j) =
∑

k

Mt,t+1|T (j, k)

W
k|j
t = f(st+1 = k|st = j, y1:T) = Mt,t+1|T (j, k)/Mt|T (j)

101

(xj

t|T , V j

t|T) = Collapse(x
(j)k
t|T , V

(j)k
t|T ,W

k|j
t)

(xt|T , Vt|T) = Collapse(xj

t|T , V j

t|T ,Mt|T (j))

x
j(k)
t+1|T = E[xt+1|y1:T , st+1 = k, St = j] ≈ xk

t+1|T

V k
t+1,t|T = CollapseCross(x

j(k)
t+1|T , x

(j)k
t|T , V

j(k)
t+1,t|T , U

j|k
t)

x
()k
t|T = E[xt|y1:T , st+1 = k] =

∑

j

x
(j)k
t|T U

j|k
t

Vt+1,t|T = CollapseCross(xk
t+1|T , x

()k
t|T , V k

t+t,t|T ,Mt+1|T (k)).

The line marked ∗ is a standard approximation [Kim94], which is due to the fact that St is

not independent of the future evidence yt+1 . . . yT , even if St+1 is given.

The smooth operator is defined as follows:

Smooth :

(xt|T , Vt|T , Vt+1,t|T) = Smooth(xt+1|T , Vt+1|T , xt|t, Vt|t, Vt+1|t+1, Vt+1,t|t+1;A,Q)‘

First, we compute the predicted mean and variance.

xt+1|t = Axt|t + B

Vt+1|t = AVt|tA
′ + Q

Then we compute the smoother gain matrix.

Jt = Vt|tA
′V −1

t+1|t

102

Finally, we update the estimates of mean, variance, and cross variance.

xt|T = xt|t + Jt(xt+1|T − xt+1|t)

Vt|T = Vt|t + Jt(Vt+1|T − Vt+1|t)J
′
t

Vt+1,t|T = Vt+1|T V −1
t+1|t+1Vt+1,t|t+1.

5.4.1.3 Learning with Expectation Maximization

In this section we show how to learn the parameters of an SLDS from data. We assume that

a number N of i.i.d. observation sequences y l
1:Tl

is available and we wish to optimize their

likelihood with respect to the model parameters. Once again, we borrow Murphy’s notation

and derivations from [Mur98], with the appropriate modifications to take into account the

additional input matrix B(st).

The complete-data log-likelihood for a single sequence is given by

L = log f(x, s, y) = log f(x1:T , s1:T , y1:T)

= −
1

2

T∑

t=1

([yt − Ctxt]
′R−1

t [yt − Ctxt]) −
1

2

T∑

t=1

log |Rt|

−
1

2

T∑

t=1

([xt − Atxt−1 − Bt]
′Q−1

t [xt − Atxt−1 − Bt]) −
1

2

T∑

t=2

log |Qt|

−
1

2
[x1 − µ1]

′Σ−1
1 [x1 − µ1] −

1

2
log |Σ1| −

T (n + m)

2
log 2π

+ log π1 +
T∑

t=2

log Z(st−1, st).

The expected-complete log-likelihood which we wish to maximize is

103

L̂ = Efsx|y
[L]

= Efs|y

[
Efx|sy

[L]
]

≈ Efs|y

[
Efx|y

[L]
]

∗

=
∑

s1

. . .
∑

sT

f(s|y)
[
Ê[L]

]

=

T∑

t=2

∑

st


 ∑

{sr ,r 6=t}

f(s|y)



[
Ê[log f(xt|xt−1, st)] + . . .

]

=
T∑

t=2

∑

st

f(st|y1:T)Ê[log f(xt|xt−1, st)] + . . .

=
T∑

t=2

∑

st

W st
t Ê[log f(xt|xt−1, st)] + . . .

where Ê[·] , E[·|yt:T]. The approximation in ∗ arises because we compute the expectation

with respect to f(xt|y1:T), rather than f(xt|s1:T , y1:T), since the latter is an exponentially

large mixture of components (one for each segmentation induced by s1:T).

To simplify the notation in the maximizations we are about to derive, we define the

following quantities, which are all computed during the inference step:

W j
t , fst|y(j|y1:T)

x̂t , Ê[xt]

Pt , Ê[xtx
′
t] = Vt|T + xt|T x′

t|T

Pt,t−1 , Ê[xtx
′
t−1] = Vt,t−1|T + xt|T x′

t−1|T

104

System Matrices :

In order for us to optimize with respect to Aj and Bj simultaneously, we introduce the

vector zt = [x′
t, 1]

′ and the matrix F = [Aj , Bj]. The above definitions then become

ẑt , Ê[zt]

Ut , Ê[ztz
′
t] =




Pt ẑt

ẑ′t 1




Ut,t−1 , Ê[ztz
′
t−1] =




Pt,t−1 ẑt

ẑ′t−1 1


 .

We can now maximize L̂ with respect to F obtaining

0 =
∂

∂Fj

L̂ = −
1

2

T∑

t=2

W j
t Ê[2Q−1

j (xt − Fjzt−1)]

= −
T∑

t=1

W j
t Q−1

j Pt,t−1 +

T∑

t=2

W j
t Q−1

j FjUt−1.

Hence

Fj =

(
T∑

t=2

W j
t Ut,t−1

)(
T∑

t=2

W j
t Ut−1

)−1

.

105

System Noise Covariance :

0 =
∂

∂Q−1
j

L̂ = −
1

2

T∑

t=2

W j
t Ê[(xt − Fjzt−1)(xt − Fjzt−1)] +

1

2

T∑

t=2

W j
t Qj

= −
T∑

t=1

W j
t [Ut − FjU

′
t,t−1 − Ut,t−1F

′
j + FjUt−1F

′
j] +

1

2

T∑

t=2

W j
t Qj.

Using the new value of Fj and the fact that Ut is symmetric, we have

Fj

(
T∑

t=2

W j
t Ut−1

)
F ′

j =

(
T∑

t=2

W j
t Ut,t−1

)(
T∑

t=2

W j
t Ut−1

)−1(T∑

t=2

W j
t U ′

t,t−1

)

= Fj

T∑

t=2

W j
t U ′

t,t−1 =

(
T∑

t=2

W j
t Ut,t−1

)
F ′

j .

Hence

Qj =

(
1

∑T
t=2 W j

t

)(
T∑

t=2

W j
t Ut − Fj

T∑

t=2

W j
t U ′

t,t−1

)
.

Observation Matrices :

0 =
∂

∂Cj
L̂ = −

1

2

T∑

t=1

W j
t Ê[2R−1

j (−Cjxt + yt)].

Hence

Cj =

(
T∑

t=1

W j
t ytx̂

′
t

)(
T∑

t=1

W j
t Pt

)−1

.

Observation Noise Covariance :

0 =
∂

∂R−1
j

L̂ =
T∑

t=1

Ê[W j
t

1

2
(yty

′
t − 2Cjxty

′
t + Cjxtx

′
tX

′
j)] +

1

2
Rj

T∑

t=1

W j
t .

106

Using the newly computed estimate for Cj, we have

(
T∑

t=1

W j
t Pt

)
C ′

j =
T∑

t=1

W j
t x̂ty

′
t , Z

so

∂

∂R−1
j

L̂ =
1

2

T∑

t=1

W j
t yty

′
t − 2CjZ + CjZ +

1

2
Rj

T∑

t=1

W j
t

and hence

Rj =

(
1

∑T
t=1 W j

t

)
T∑

t=1

W j
t (yty

′
t − Cj (̂x)ty

′
t).

Initial Mean and Covariance, Switch Probability and Transition Matrix :

These are the standard derivations for a mixture of Gaussians and for an HMM,

respectively. They can be found in most probability/learning books, such as [Bis07].

5.4.2 The Limb Model

Now that we have reviewed how learning and inference is done in switching linear dynamical

system models, we discuss their application to the problem of moveme discovery.

Due to the GPB2 approximation, inference and learning in SLDS has a complexity

which is quadratic in the number of discrete switches. This restricts the number of linear

components we are willing to handle in our model. On the other hand, the physical process

we are trying to model is capable of complex dynamics, which might require the use of a

large number of components. Furthermore, as the number of parts modeled increases, the

complexity of the systems might, in principle, grow exponentially.

In our earlier work, we have already noted the benefits of modeling human movements

by decomposing the body into a number of smaller parts, rather than modelling it as a

107

whole. Here, we propose to model individual trajectories of a few points on the body, which

results in a simpler and more tractable problem. Since we are primarily interested in the

motion of the body, and not its appearence, we exclude head and torso and focus on the

four limbs instead.

For each limb, we select three parts which coincide with the joints (For an arm: shoulder,

elbow, and wrist. For a leg: hip, knee, and ankle). The trajectory of each part is described

by a pair of SLDS, one for the horizontal and one for the vertical motion. The equations

describing the evolution of a part are as follows:

st ∼ Z(st−1, ·)

xt = A(st)xt−1 + B(st) + vt vt ∼ N (0, Q(st))

yt = C(st)xt + wt wt ∼ N (0, R(st)).

(5.5)

After experimenting with models of the first and second order, with constant velocity and

constant acceleration, and with different types of coupling and constrains, we have settled

for a simple first-order SLDS with scalar state and constant velocity. This implies that the

system matrix A(st) = 1 is fixed. The observations matrix C(st) = 1 is also fixed, since

we are able to observe a noisy version of the state directly, and our data is hand labeled

and complete. The parameter B(st) represents the constant velocity. The EM procedure

of the previous section is used to learn estimates for B(st), R(st), and Q(st), as well as the

parameters π and Z of the switch’s dynamic. To reduce the number of models needed, and

to simplify the dynamics that we represent, we compute the relative position of a part with

respect to its immediate predecessor in the body. For example, we model the wrist relative

to the elbow, and the elbow relative to the shoulder, and so on.

We allow five components to be learned for each coordinate, which seems to be suffi-

108

Switching Probabilities for Right Arm (Seq 8 − Frames 44 ... 69)

Pr[St(Xha)]
12
34
5

Pr[St(Xel)]
12
34
5

Pr[St(Yha)]
12
34
5

Pr[St(Yel)]
12
34
5

argmax Pr[]
1
5
3
3

1
5
5
3

5
5
5
4

5
5
5
4

5
5
1
2

5
5
1
2

5
3
1
2

5
3
1
5

5
3
4
5

5
3
4
5

5
3
4
5

3
2
2
3

3
2
2
3

3
2
3
3

2
2
3
3

4
2
3
3

4
4
5
4

4
4
5
2

4
4
5
2

4
4
5
2

4
4
1
5

4
4
1
5

4
4
4
5

4
4
4
5

4
4
4
5

1
4
2
5

0 5 10 15 20 25 30

Figure 5.11: Switching Probabilities. [Top 4 Rows] For each of the four coordinates in the right
arm we show the posterior f(st|y1:T) of the switch variable st. [Bottom Row] The
most probable switches are pooled together. The intensity/number indicates which
of the 5 switches was chosen.

cient for the trajectories we observe. Had we modeled multiple parts within the same SLDS

instead of single coordinates, we would have probably needed tens or even hundreds of dif-

ferent components to represent the same variety of movements. Clearly, the computational

saving comes at the price: we loose the coupling between variables, which may provide some

information about the motion.

Once the parameters of each SLDS have been estimated, we combine the individual

representations into a single model, which we call the limb model. More specifically, for

each one of the four coordinates within a limb, we compute the most likely configuration

of the switch variable st, and then join them together into a four-dimensional descriptor

representing the instantaneous motion of the limb. For example, the right arm encoding

would be computed as follows:

ct ,




arg max
st

f(st(Xha)|y1:T)

arg max
st

f(st(Yha)|y1:T)

arg max
st

f(st(Xel)|y1:T)

arg max
st

f(st(Yel)|y1:T)




(5.6)

109

where (Xha, Yha) and (Xel, Yel) are the X and Y coordinates of the hand and elbow (relative

to the elbow and shoulder), respectively. Figure 5.11 shows the posterior of the switch

variables in a few sample frames, and the vectors obtained by aggregating the most probable

value for each coordinate.

5.4.3 Motion Codewords

The descriptor we have just computed carries limited information on its own, since the

temporal extent of the movement it represents, is very limited. As we mentioned at the

beginning of the chapter, we believe that the atomic components of motion range in duration

from a few frames to a second or so. We thus need to consider short sequences of descriptors,

which we call motion codewords.

Codewords can be thought of as exemplars, or signatures of a characteristic motion.

Given two repetitions of the same action, we expect their codewords to be similar in length

and descriptors, while different motions and/or dynamics would produce different code-

words.

Unfortunately, we are given a continuous video sequence (or its encoding with the de-

scriptors of (5.6)). Since we desire a codeword-based representation of the sequence, we have

to determine a suitable segmentation. The first step is clearly to enforce constraints on the

length of each segment. Next, we make sure that two portions of the video (or, rather,

two sequences of descriptors) which represent the same motion are segmented into similar

codewords. Notice how the concept of distance between two codewords is not meant as a

descriptor-wise matching: some of the descriptor within the codeword may be mismatched,

and some shifting should be allowed due to the (possibly) different length of the codewords.

Finally, we wish for our decomposition to represent the totality of the sequence, since no

110

movements should go unexplained. These competing requirements make the problem of

segmenting descriptor sequences into codewords quite challenging.

5.4.3.1 Motif Discovery

A simpler problem than the one we are facing, is the search for approximate copies of a

prototype sub-sequence, which is embedded at unknown locations in a longer sequence.

This is a rather common problem which arises in several other disciplines, such as medicine,

meteorology, finance, and robotics.

The biology community has been investigating the problem of discovering relevant sub-

sequences of DNA sequences for quite some time. Since a gene (or group of genes) in the

DNA encodes for various functionality in the organism, the hope is to determine which por-

tions of the chain are responsible for diseases or malfunctions. The implications are clearly

of great importance since this knowledge could, for example, allow the early detection or

even prevention of life-threatening conditions, at a time when such events would normally

go undetected. The search for known subsequences within a corpus of longer sequences is

generally called motif detection. When the subsequence responsible for a feature of interest

is instead unknown, the term motif discovery is more appropriate, since one can only rely

on the fact that copies of the subsequence are embedded somewhere in each sequence of the

corpus. Clearly, it is known that the set of sequences in the corpus comes from a population

of organisms that exhibit the feature of interest.

A significant amount of work on pattern discovery and detection has been applied to

problems in finance, and more generally in economics. There the goal is to identify patterns

of prices, or some set of derived indicators or indexes, which reliably predict phenomenons

of interest, such as sudden spikes in pricing or significant changes in the equilibrium of a

111

market or economy.

Although both the field of application and the underlying interpretation are quite dif-

ferent, the fact that these sets of problems all share several common features at their core

has guided the different communities towards the development of similar techniques and

solutions. Among the most influential results are probabilistic approaches based on profile-

hidden Markov models (PHMM), as well as some heuristic-based methods with interesting

computational properties.

5.4.3.2 Energy-Based Segmentation

Notwithstanding the large amount of interest and effort from different fields of research, the

task of simultaneously segmenting a sequence into codewords and grouping them based on

their mutual similarity, remains an open problem. In this work we present a suboptimal

solution which, however, produces appealing results when applied to our particular problem.

The empirical observation we make is that, when the motion of a limb reaches a sta-

tionary point, this is usually a good candidate for a segmental point. More specifically, we

compute an energy value for each instant in time. The energy is based on the standard

deviation (in a small temporal neighborhood) of the position of each coordinate in the limb.

Local minima of the energy seem to correlate well with approximate stationarity or visually

meaningful (to a human) changes in the motion of the limb.

The segmental points are determined based on the energy and subject to a minimum

and maximum length of the segment, with the duration-constraint taking priority over the

energy-proposed segmental points.

Figure 5.12 shows an example of the limb’s trajectories and the corresponding energy.

The vertical lines define the segmentation points.

112

Time−Segmentation of Right Arm Evolution

Xhand

Xelbow

Yhand

Yelbow

−20

−10

0

10

20

“Energy”

1

80 100 120 140 160 180 200 220

Figure 5.12: Energy-Based Segmentation. [Top] We show sample trajectories of the four coordi-
nates for the right arm. [Bottom] The energy is computed by averaging the standard
deviation of the coordinates in a small temporal neighborhood. The dashed vertical
lines demarcate the segments’ boundaries.

5.4.4 Clustering Variable-Length Codewords into Movemes

Now that we have represented the motion of a limb as a sequence of codewords, we seek

to group codewords into clusters. As mentioned in the previous section, we would like the

portions of a video containing the same motion to be represented in the same way. Since

in practice similar (but not identical) codewords will be associated with repetitions of the

same action, grouping will provide a single identifier for each set of self-similar motions: we

call such identifier a moveme4

5.4.4.1 Pairwise Distance Measure

The first step to clustering the codewords is to compute their affinity matrix [A(a, b)]. For

each pair of codewords wa and wb the entry A(a, b) = d(wa, wb) measures the similarity

4In human motion recognition, the term “moveme” is meant as an atomic movement and is dervied by
analogy from the term “phoneme”. It was first proposed by Bregler [Bre97]

113

Encoding Switching Sequences for Right Arm

1

1

2

5

1

1

2

3

1

5

3

3

1

5

5

3

5

5

5

4

5

5

5

4

5

5

1

2

5

5

1

2

5

3

1

2

5

3

1

5

5

3

4

5

5

3

4

5

5

3

4

5

3

2

2

3

3

2

2

3

3

2

3

3

2

2

3

3

4

2

3

3

4

4

5

4

4

4

5

2

4

4

5

2

4

4

5

2

4

4

1

5

4

4

1

5

4

4

4

5

4

4

4

5

T F O P S S E E A W X X X I I K J L Q D D D Y Y Z Z

G P R S S S B A W X V U I H J M M N Q C C Z Z Z

1

1

3

3

1

5

5

3

1

5

5

4

5

5

5

4

5

5

5

4

5

5

5

4

5

3

5

2

5

3

1

2

5

3

1

5

5

3

4

5

5

2

4

5

3

2

4

5

3

2

2

3

2

2

2

3

2

2

3

3

2

2

5

3

2

2

5

3

2

4

5

3

4

4

5

4

4

4

1

2

4

4

1

2

4

4

4

5

4

4

4

5

4

4

4

5

Figure 5.13: Letter-Based Representation of Codewords. [Top and Bottom] We show two code-
words representing identical (to a human) movements appearing in different parts of
a video sequence. The numbers within each descriptor were obtained according to
the (5.6) and indicate the dynamics followed by each coordinate in the limb. [Center
Rows] We uniquely map a descriptor vector to a letter of the alphabet. The resulting
letter-based representation is shown.

(or affinity) of the pair. This is not a trivial problem, since the codewords have different

lengths. Additionally, we are not interested in a one-to-one matching of the descriptors

within the codewords, since a small shifting within one codeword could erroneously result

in the codewords being very dissimilar. To illustrate the problem, Figure 5.13 shows two

codewords representing identical (to a human) movements appearing in different parts of

a video sequence. The numbers within each descriptor were obtained according to the

(5.6) and indicate the dynamics followed by each coordinate in the limb. To simplify the

visualization, we can pretend that the descriptors appearing in either of the codewords

are the only ones which are possible. Since this is a rather small set (compared to the

54 = 625 possible descriptors) we can uniquely map a descriptor vector to a letter of the

alphabet. The central rows of the figure show the new letter-based representation for the

two codewords. Although a quick glance at the codewords reveals a high degree of similarity,

the highlighted one-to-one correspondence of letters does not convey a great level of affinity.

114

A similar problem is encountered in biology, when performing Motif discovery and de-

tection. There segments of DNA or proteins that have undergone random mutations result

in pertinent nucleotides being missing or changed, or spurious ones wrongly inserted.

Similarly, spell-checking software, in an attempt to propose useful substitutions, com-

pares a misspelled word against entries in a dictionary. The similarity with an entry is given

by the amount of editing, measured as the number of insertions, deletions, or replacements

of a character, that are necessary to render the two strings identical. This similarity is

known in the field as the edit distance5.

Luckily, determining the optimal alignment of symbols within two sequences can be

accomplished by an efficient algorithm based on dynamic programming. The iterative pro-

cedure, known as the Smith-Waterman algorithm [SW81] computes the alignments between

all possible sub-sequences of the strings. To score a specific solution, a set of costs are pro-

vided to the algorithm as parameters. Typically, insertions and deletions reduce the score

by an amount that grows linearly with the size of the gap. A table, containing the penalty

incurred when replacing a symbol with another one, is also provided to the algorithm.

The cost of substitution, which is problem-dependent, allows for a lesser penalty when, for

example, the interchanged symbols are representative of different but sufficiently similar

underlying structure.

The algorithm iteratively fills a len(wa) × len(wb) matrix [Sab(i, j)] of scores, with the

symbols in the two strings placed as headers of columns and rows (that is, there is one

column for each symbol in the first codeword wa, and one row for each symbol in the

second codeword wb). The process selects one entry at a time, scanning the table from left

to right, top to bottom. Figure 5.14 shows the table setup for the sample codewords of

5The specific way of measuring the similarity as “the number of editing operations” was first proposed
in [Lev66] and named Levenshtein distance. This is just one of many possible way to measure edit distance.

115

Smith−Waterman Algorithm

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
05
04
03
02
01
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
04
03
09
08
07
06
05
04
03
02
01
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
03
02
08
14
13
12
11
10
09
08
07
06
05
04
03
02
01
00
00
00
00
00
00
00
00
00

00
02
01
07
13
12
11
10
09
08
07
06
05
04
03
02
01
00
00
00
00
00
00
00
00
00
00

00
01
00
06
12
11
10
09
08
07
06
05
04
03
02
01
00
00
00
00
00
00
00
00
00
00
00

00
00
00
05
11
10
09
15
14
13
12
11
10
09
08
07
06
05
04
03
02
01
00
00
00
00
00

00
00
00
04
10
09
08
14
20
19
18
17
16
15
14
13
12
11
10
09
08
07
06
05
04
03
02

00
00
00
03
09
08
07
13
19
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
09
08

00
00
00
02
08
07
06
12
18
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
09
08
07

00
00
00
01
07
06
05
11
17
23
22
21
20
19
18
17
16
15
14
13
12
11
10
09
08
07
06

00
00
00
00
06
05
04
10
16
22
21
20
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12

00
00
00
00
05
04
03
09
15
21
20
19
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11

00
00
00
00
04
03
02
08
14
20
19
18
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10

00
00
00
00
03
02
01
07
13
19
18
17
23
22
28
27
26
25
24
23
22
21
20
19
18
17
16

00
00
00
00
02
01
00
06
12
18
17
16
22
21
27
26
25
24
23
22
21
20
19
18
17
16
15

00
00
00
00
01
00
00
05
11
17
16
15
21
20
26
25
24
23
29
28
27
26
25
24
23
22
21

00
00
00
00
00
00
00
04
10
16
15
14
20
19
25
24
23
22
28
27
26
25
24
23
22
21
20

00
00
00
00
00
00
00
03
09
15
14
13
19
18
24
23
22
21
27
26
25
24
23
22
21
20
19

00
00
00
00
00
00
00
02
08
14
13
12
18
17
23
22
21
20
26
25
24
23
22
21
20
19
18

00
00
00
00
00
00
00
01
07
13
12
11
17
16
22
21
20
19
25
24
23
22
21
20
19
18
17

00
00
00
00
00
00
00
00
06
12
11
10
16
15
21
20
19
18
24
23
22
21
20
19
18
17
16

00
00
00
00
00
00
00
00
05
11
10
09
15
14
20
19
18
17
23
22
21
27
26
25
24
23
22

00
00
00
00
00
00
00
00
04
10
09
08
14
13
19
18
17
16
22
21
20
26
32
31
30
29
28

00
00
00
00
00
00
00
00
03
09
08
07
13
12
18
17
16
15
21
20
19
25
31
37
36
35
34

00
00
00
00
00
00
00
00
02
08
07
06
12
11
17
16
15
14
20
19
18
24
30
36
35
34
33

 O P S S E E A V W W W G G I H J Q D D D X X Z Z Z Y

P
R
S
S
S
B
A
V

W
U
T
G
F
H
K
K
N
Q
C
C
Z
Z
Z
Z
M
L

Figure 5.14: Smith-Waterman Alignment. Each symbol in the first codeword is in correspondence
with one column. Similarly, symbols in the second codeword are assigned to rows in
the table. The scores in each cell are computed recursively by a dynamic programming
algorithm, which accounts for the cost of deletions/insertions (−1), substitutions
(−2), and matches (+5) of symbols. A path, tracing back from the largest value in
the matrix, identifies the optimal alignment of the two sequences.

Figure 5.13.

The score for an alignment ending with the symbols wa(i), i ≥ 1 and wb(j), j ≥ 1, is

computed by the following simple recursion:

Sab(i, j) = max





Sab(i − 1, j − 1) + Csub(wa(i), wb(j)) replace wa(i) with wb(j)

Sab(i, j − 1) + Cdel delete wb(j) from wb

Sab(i − 1, j) + Cdel delete wa(i) from wa

(5.7)

where Cdel is the decrease in score imposed by deleting one symbol from a codeword (also

interpretable as an insertion of a blank in the other codeword), while C sub(wa(i), wb(j)) is

116

the (possibly negative6) increase in score of matching the i-th symbols of wa with the j-th

symbol of wb.

The algorithm is initialized by assuming a border of zero score to the left of the first

column and top of the first row. Once the scoring matrix Sab is computed, we start from its

largest value and trace back through the matrix until we reach a value of zero. This process

can be greatly facilitated by recording the “moves” performed in (5.7) by the algorithm at

every iteration.

5.4.4.2 Agglomerative Clustering

The Smith-Waterman distance metric just introduced is an excellent tool to determine the

similarity of codewords. It can handle pairs which are different in length, and allows for

some shifting of descriptors during the match. One drawback, however, is the fact that

it does not scale well to the alignment of multiple codewords: although its extension is

trivial, the computational complexity grows exponentially in the number of sequences. The

problem itself remains an open question and, once again, is of great interest in biology.

Since some clustering techniques, such as k-means or mixture of Gaussians, go through

the computation of some form of average element, the alignment of multiple sequences be-

comes necessary. We bypass the problem by settling for an alternative clustering algorithm,

known as agglomerative clustering, which requires nothing more than the affinity matrix.

Agglomerative clustering groups the data in a hierarchical structure called a dendrogram.

Initially, each one of the N data points is assumed to be a cluster of its own. Then, the

two most similar clusters (really, single data points, up to now) are replaced by a cluster

containing them, which has the two clusters as children. This leaves N − 1 items to be

6Generally, Cdel < 0 since we want to penalize deletions/insertions. Substitutions have score Csub ≥

2Cdel, since a deletion on each side effectively amounts to a substitution. The better the match between
two symbols being exchanged, the larger the score that is assigned to it.

117

1 5 6 26 27 28

5 6 27 28

282726

1 65 26 27 28

1 5 6

d = 0

d = 1

d = 2

d = 3

d = ...

Figure 5.15: Agglomerative Clustering. Initially, each one of the six elements is a cluster. A
dendrogram is constructed by recursively grouping together the two most similar
clusters. Similarity is determined by the average distances of elements in one cluster
to elements in the other. Finally, a threshold on maximum intra-cluster distance
breaks the links at higher levels, yielding a set of clusters.

clustered. Next, the two most similar clusters are merged and replaced by their union,

leaving N − 2 clusters. This continues until all elements are in one single cluster. When

deciding which pair to merge, several criteria can be used. The average linkage chooses

the two sets where the elements in one set have smallest average distance to the elements

of the other set. When the average is replaced by the maximum or minimum, we have

the complete linkage or single linkage, respectively. Figure 5.15 shows a sample hierarchy

obtained by single-linkage clustering of six data points. Pairwise affinity is based on the

Euclidean distance.

Once the dendrogram is constructed, clusters can be defined by choosing a threshold

on the maximum intra-cluster distance, or other such criteria that eliminates links, starting

from the top and descending to some level in the dendrogram. The resulting connectivity

118

defines what each cluster contains.

5.4.5 Experiments

In this section we show a few results obtained with the algorithm we have presented.

Although quantitative results are generally desirable, we provide only a limited, and

mostly qualitative, evaluation. This is in part due to the difficulty of representing on paper

what is most naturally understood through a video signal.

More importantly, we feel that the process of establishing a ground-truth decomposition

into movemes is at best subjective, hence making a quantitative measure of the performance

of little interest.

Finally, we observe that our focus has been directed at the discovery of movemes, which

is the very first step of the activity/action hierarchy which we have hypothesized. We believe

that a quantitative evaluation would be beneficial when performed on an end-to-end system,

that can produce descriptions of behaviors which are at the same level of abstraction as

those of a typical human being.

Representing the Dynamics :

In this experiment we apply the learning procedure of Section 5.4.1 to 17 video se-

quences with a total of 4, 610 frames. The input to the algorithm is a set of locations

in each frame which identify the joints of the body. For each limb we learn a model

of its four coordinates. Each coordinate is trained independently by means of a SLDS

with five switches. The training is stopped when the likelihood increase is below a

small threshold.

Figure 5.16 shows results on sequence 8. Each one of the four plots represents the

probability mass of the switch for one of the coordinates within the right arm. These

119

SLDS Switching Probability Distribution

Pr[St(Xha)]
12
34
5

Pr[St(Xel)]
12
34
5

Pr[St(Yha)]
12
34
5

Pr[St(Yel)]

0 50 100 150 200
12
34
5

Figure 5.16: Estimating the Switches. We show experimental results on sequence 8 of 17. Each
plot represents the probability mass of the switch (which takes values 1 . . . 5) for one
of the coordinates within the right arm. All observations (including future ones) are
used to compute the smooth estimate of the switching variable.

are smoothed estimates since all the observations (including future ones) are used. A

glance at the plots (qualitatively) shows that the repetitive nature of the motion is

captured by the switches alternating over time.

Moveme Representation of Video Sequence :

In this experiment we show a decomposition in movemes of a video sequence. As

before, we train our model for the right arm on a total of 4, 610 frames, obtaining a

codeword-based representation of the data. The codewords are clustered according

to the procedure detailed in Section 5.4.4. We set the number of clusters to 15. This

results in 10 visually distinct (to a human) motions. The reason for the lower number

is that some of the motions are represented by multiple clusters. By observing the

fragment of video contributing to each cluster, we manually assign a textual label to

each cluster with the purpose of describing its content.

The vertical axis of Figure 5.17 lists in colors the subset of movemes that appeared in

sequence 8. The top half reports the raw trajectories of the four coordinates in time.

At the bottom, the height of each bar corresponds to a different (to a human) moveme.

120

Clustering of Right Arm Evolution into Movemes

Xhand

Xelbow

Yhand

Yelbow

−20

0

20

Movemes

Spread
Cross
Reach

Pull
Cross
Rotate
Raise

50 100 150 200 250

Figure 5.17: Decomposition into Movemes. We show a moveme-based representation of the mo-
tions in sequence 8. At the top we report the trajectories of the right arm’s four
coordinates. The bottom plot shows the movemes over time. Height indicates the
identity of the moveme, as perceived by a human. Names for the movemes are pro-
vided on the vertical axis. The 10th bar, which represent an “arm crossing”, is (to
a human) visually similar to the 2nd, 6th, and 14th (they have the same height).
However, its color is different since the model returned a different moveme/cluster for
its representation.

Notice how the 2nd, 6th, 10th, and 14th bars have identical height, indicating that a

human would consider all four motions as a “crossing of the arm in front of the chest”.

Yet, bar number 10 carries a different color, since our algorithm produced multiple

movemes (two in this case) representing the same motion.

5.5 Discussion

In the previous sections, we have presented our approach to the discovery of movemes, which

is based on a three-step process. At first, the sequence is represented by a set of switching

linear dynamical systems, which encode the limb’s dynamics with a small descriptor. The

sequence of descriptors is then heuristically segmented into codewords by means of an energy

121

that is derived from the velocity of the parts in the limb. Finally, the codewords are grouped

together based on their similarity and the resulting clusters, which we call movemes, identify

the stereotypical motions appearing in the sequence.

Although the results of this process are visually appealing, we see an interesting op-

portunity for improvement. More specifically, we would like to rid ourselves of both the

heuristic-based segmentation and the sub-optimal definition of movemes, which are con-

sequences of handling the identification and grouping of codewords as two independent

problems. Borrowing from the fields of data mining and text analysis [GPS99], we present

a few ideas on how to approach the problem of simultaneous segmentation and clustering.

For many languages, it is easy to identify words in a written text, since they are separated

by spaces. This, however, is not always the case. In Chinese, for example, a sentence is a

sequence of characters delimited by periods or commas. In order to perform any type of

analysis on the text, one needs to determine a segmentation of the text into words. This

is particularly challenging, since the length of each word can vary from as little as one to

as many as four or five characters. Furthermore, characters that alone define a word, and

have a meaning of their own, can also belong to longer words, making their interpretation

different depending on context.

Most algorithms that deal with the automatic analysis of written Chinese require that

a segmentation of the text into words be provided. Other approaches use a dictionary to

produce a segmentation of the text into words, and then proceed with the analysis. In our

situation, however, we must not rely on such information being available, since a dictionary

is exactly what we are trying to build from the text.

When approaching this problem, one simplifying assumption is to let the words occur

independently of each other. In [GPS99] it is observed that the task of segmenting the

122

text can then be easily completed, if a probability of occurrence for each word is given.

Alternatively, given the segmented text, it is easy to compute the probability of occurrence

for each word, by simply counting the number of times that word appears. Once again,

this is the dilemma we have been seeing all along in this thesis, and by now we know that

EM is most likely the answer. The probabilities of each word can be taken as the unknown

parameters in the model, while the locations of the codewords’ boundaries are the hidden

variables. Iterating between the two steps of EM yields both the probabilities of the words,

and the most likely segmentation. In [GPS99] it is shown how to efficiently perform the two

steps with dynamic programming.

Although this idea seems to take us in the right direction, we have skipped over a

number of details. The most delicate issue is with the choice of probability model for the

moveme. While with written Chinese, multiple repetitions of the same words appear as the

same concatenation of identical characters, this is not at all the case with the descriptors

in our video sequences. In fact, the type and number of descriptors, contained in a given

moveme, can vary slightly from one codeword instance to another, leaving us with the task

of somehow equating and combining different codewords into one probabilistic model for

the moveme.

One approach could be to represent each moveme with a profile hidden Markov model

(P-HMM). Here the parameters become the probability of occurrence of the moveme, as

well as the stochastic representation of its codewords by the P-HMM.

Given a model, we can establish the probability of any codeword being an instance of

that moveme, by computing the likelihood of the codeword in the P-HMM. This allows us

to assign that codeword to its most likely moveme. Of course “soft assignments” are also

possible, and perhaps preferrable. Once each codeword is mapped to a moveme, multiplying

123

together the probabilities of occurrence of the movemes gives the likelihood of the segmen-

tation. Since the likelihood can efficiently be computed for every possible segmentation,

this concludes the E-step of EM.

In the M-step, we need to update the probability of occurrence of each moveme, as well

as the parameters of their P-HMM representation. The former can be done efficiently as

detailed in [GPS99]. The latter, however, requires us to align the exemplar codewords to

each other, so that a P-HMM can be re-estimated. As we mentioned in previous sections,

the alignment of multiple sequences remains an open question. Nevertheless, this can be

accomplished approximately by means of some heuristics.

Although many details are missing to reach a full end-to-end solution for the simultane-

ous segmentation and grouping of codewords into movemes, we conclude this section feeling

that the process we have outlined is a very promising approach worth exploring. We leave

that for future investigation.

124

Chapter 6

Conclusions and Future Work

In this thesis, we have presented a probabilistic approach to the problem of detection and

labeling of human motion, and its representation by means of atomical motions, or movemes.

Under the assumption that the human body can be decomposed into a set of parts, we

have used the formalism of graphical models to represent the dependencies among them.

In the first part of our work, we have explored the benefits of allowing different degrees of

interactions among the parts, which we represent by means of (loopy) graphical structures.

A second contribution is the introduction in the model of global variables. These properties,

which could include aspects such as size, viewpoint, or center of the person, act as a cohesive

element among the parts, increasing robustness to occlusion and preventing degenerate

situations from occurring. With the enhanced hybrid model, we have also presented a couple

of ways of doing inference, which combine the efficiency of the junction tree algorithm with

the power afforded by Monte Carlo Markov chain sampling methods.

In the second part of our work, we have tackled the problem of representing actions

and activities in video sequences. We hypothesize a hierarchical representation of motion,

based on the temporal extension and semantic interpretation of events. At the bottom layer

of the hierarchy are the movemes: atomical motions which act as building blocks in the

representation of actions and activities.

125

We have presented two approaches to the unsupervised discovery of movemes from

video sequences. Our first attempt relies on a global variables to identify the moveme being

performed at each instant in time. The EM algorithm is used to infer the membership of

each frame in the sequence to one of the movemes. This produces a representation of the

sequence as a probabilistic concatenation of movemes.

Our second attempt to the unsupervised discovery of movemes is driven by the realiza-

tion that dynamic information is an integral part of the motion and is, at times, indispensible

in discriminating between motions that traverse a similar set of poses, but with very different

semantics. In order to transduce the dynamical information in a compact representation we

have used switching linear dynamical systems (SLDS). After introducing the general theory

of an SLDS, we have shown how to learn the parameters from data, and how to do inference

in such models. Following the segmentation and transduction of each limb’s dynamics into

codewords, we have shown how a simple sequence-alignment algorithm, which we borrow

from the field of biology, can be used to robustly compare codewords of different lengths,

even in the presence of small amount of internal shifting and mutations due to noise. Fi-

nally, we have described a standard aggregation procedure that groups similar codewords

into clusters, which we take as the definition of movemes.

Although we feel our work provides a good example of what type of information can

be automatically extracted from the analysis of video, in Sections 2.4 and 5.5 we have

mentioned a few interesting extensions and direction of research, which we leave for future

exploration.

126

Bibliography

[AC99] J. K. Aggarwal and Q. Cai. Human motion analysis: A review. Computer

Vision and Image Understanding, 73(3):428–440, 1999.

[AM00] S. M. Aji and R. J. McEliece. The generalized distributive law. IEEE Trans-

actions on Information Theory, 46(2):325–343, 2000.

[AT04] A. Agarwal and B. Triggs. 3D human pose from silhouettes by relevance vector

regression. In Computer Vision and Pattern Recognition, pages 882–888, 2004.

[Bak89] H. H. Baker. Building surfaces of evolution: The weaving wall. International

Journal of Computer Vision, 3(1):51–72, May 1989.

[Bar78] Y. Bar-Shalom. Tracking methods in a multitarget environment. IEEE Trans-

action on Automatic Control, 23(4):618–626, Aug 1978.

[BCMS01] A. Bissacco, A. Chiuso, Y. Ma, and S. Soatto. Recognition of human gaits. In

Computer Vision and Pattern Recognition, volume 02, page 52, 2001.

[BCS07] A. Bissacco, A. Chiuso, and S. Soatto. Classification and recognition of dynam-

ical models: The role of phase, independent components, kernels and optimal

transport. IEEE Transactions on Pattern Analysis and Machine Intelligence,

29(11):1958–1972, 2007.

127

[BD01] A. F. Bobick and J. W. Davis. The recognition of human movement using

temporal templates. IEEE Transactions on Pattern Analysis and Machine In-

telligence, 23(3):257–267, 2001.

[BGS+05] M. Blank, L. Gorelick, E. Shechtman, M. Irani, and R. Basri. Actions as space-

time shapes. In International Conference of Computer Vision, pages 1395–1402,

2005.

[BI96] A. Blake and M. Isard. The condensation algorithm—conditional density propa-

gation and applications to visual tracking. In Michael Mozer, Michael I. Jordan,

and Thomas Petsche, editors, Neural Information Processing Systems, pages

361–367. MIT Press, 1996.

[Bis95] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University

Press, 1995.

[Bis07] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2007.

[BJ02] F. R. Bach and M. I. Jordan. Learning graphical models with Mercer kernels.

In Suzanna Becker, Sebastian Thrun, and Klaus Obermayer, editors, Neural

Information Processing Systems, pages 1009–1016. MIT Press, 2002.

[BK98] X. Boyen and D. Koller. Approximate learning of dynamic models. In Neural

Information Processing Systems, pages 396–402. MIT Press, 1998.

[BL93] Y. Bar-Shalom and X. Li. Estimation and Tracking: Principles, Techniques

and Software. Artech House, 1993.

128

[Bob97] A. F. Bobick. Movement, activity and action: the role of knowledge in the

perception of motion. Philosophical Transactions of Royal Society of London,

352(1358):1257–1265, Aug 1997.

[BOP97] M. Brand, N. Oliver, and A. Pentland. Coupled hidden Markov models for

complex action recognition. In Computer Vision and Pattern Recognition, pages

994–999, 1997.

[Bre97] C. Bregler. Learning and recognizing human dynamics in video sequences.

In Computer Vision and Pattern Recognition, pages 568–574. IEEE Computer

Society, 1997.

[BW97] A. F. Bobick and A. D. Wilson. A state-based approach to the representa-

tion and recognition of gesture. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 19(12):1325–1337, 1997.

[BYJ97] M. J. Black, Y. Yacoob, and S. X. Ju. Recognizing human motion using param-

eterized models of optical flow. In M. Shah and R. Jain, editors, Motion-based

Recognition, pages 245–269. Kluwer Academic Publishing, 1997.

[CD00] R. Cutler and L. S. Davis. Robust real-time periodic motion detection, anal-

ysis, and applications. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 22(8):781–796, August 2000.

[Chi96] D. M. Chickering. Learning Bayesian networks is np-complete. In D. Fisher and

H. J. Lenz, editors, Learning from data: Artificial Intelligence and Statistics,

chapter 12, pages 121–130. Springer-Verlag, 1996.

129

[CK77] J. E. Cutting and L. T. Kozlowski. Recognizing friends by their walk: Gait

perception without familiarity cues. Bulletin Psychonometric Society, (9):353–

356, 1977.

[DLR77] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete

data via the EM algorithm. Journal of the Royal Statistical Society, 39:1–38,

1977.

[DMP02] D. Del Vecchio, R. M. Murray, and P. Perona. Primitives for human motion:

A dynamical approach. In IFAC World Congress, Barcelona, Spain, 2002.

[DMP03a] D. Del Vecchio, R. M. Murray, and P. Perona. Classification of human motion

into dynamics-based primitives with application to drawing tasks. In European

Control Conference, Cambridge, UK, 2003.

[DMP03b] D. Del Vecchio, R. M. Murray, and P. Perona. Decomposition of human motion

into dynamics-based primitives with application to drawing tasks. Automatica,

(39):2085–2098, July 2003.

[DT05] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection.

In Computer Vision and Pattern Recognition, pages 886–893. IEEE Computer

Society, 2005.

[DTLM96] W. Dittrich, T. Troscianko, S. Lea, and D. Morgan. Perception of emotion

from dynamic point-light displays represented in dance. Perception, (25):727–

738, 1996.

[DTTB07] P. Dollár, Z. Tu, H. Tao, and S. Belongie. Feature mining for image classifica-

tion. In Computer Vision and Pattern Recognition, June 2007.

130

[EBMM03] A. A. Efros, A. C. Berg, G. Mori, and J. Malik. Recognizing action at a distance.

In IEEE International Conference on Computer Vision, pages 726–733, Nice,

France, 2003.

[FAI+05] D. A. Forsyth, O. Arikan, L. Ikemoto, J. O’Brien, and D. Ramanan. Com-

putational Studies of Human Motion: Part I, Tracking and Motion Synthesis,

volume 1, pages 77–254. Now Publishers Inc., 2005.

[FE73] M. A. Fischler and R. A. Elschlager. The representation and matching of

pictorial structures. IEEE Transactions on Computer, 22(1):67–92, January

1973.

[FH00] P. Felzenszwalb and D. Huttenlocher. Efficient matching of pictorial structures.

In Computer Vision and Pattern Recognition, pages 66–73, 2000.

[For86] W. Forstner. A feature-based correspondence algorithm for image matching.

International Archives of Photogrammetry and Remote Sensing, 3(26):150–166,

1986.

[FP02] X. Feng and P. Perona. Human action recognition by sequence of movelet code-

words. In First International Symposium on 3D Data Processing, Visualization

and Transmission, pages 717–723. IEEE Computer Society, 2002.

[Gav99] D. M. Gavrila. The visual analysis of human movement: A survey. Computer

Vision and Image Understanding, 73(1):82–98, 1999.

[Gav00] D. Gavrila. Pedestrian detection from a moving vehicle. In European Conference

of Computer Vision, pages 37–49, 2000.

131

[GC03] P. Giudici and R. Castelo. Improving Markov chain Monte Carlo model search

for data mining. Journal of Machine Learning Research, 50(1-2):127–158, 2003.

[GH96] Z. Ghahramani and G. E. Hinton. Parameter estimation for linear dynamical

systems. Technical Report CRG-TR-96-2, Deptartment of Computer Science,

Univeristy of Toronto, 1996.

[GH98] Z. Ghahramani and G. E. Hinton. Switching state-space models. Technical Re-

port CRG-TR-96-3, Deptartment of Computer Science, University of Toronto,

1998.

[GH00] Z. Ghahramani and G. E. Hinton. Variational learning for switching state-space

models. Neural Computation, 12(4):831–864, 2000.

[Gha98] Z. Ghahramani. Learning dynamic bayesian networks. In Adaptive Processing

of Sequences and Data Structures, International Summer School on Neural Net-

works, “E.R. Caianiello”—Tutorial Lectures, pages 168–197. Springer-Verlag,

1998.

[GPS99] X. Ge, W. Pratt, and P. Smyth. Discovering chinese words from unsegmented

text. In Poster abstract at the ACM International Conference on Research and

Development in Information Retrieval (SIGIR), pages 271–272. ACM, 1999.

[HS88] C. Harris and M. Stephens. A combined corner and edge detection. In Proceed-

ings of The Fourth Alvey Vision Conference, pages 147–151, 1988.

[IF01] S. Ioffe and D. A. Forsyth. Human tracking with mixtures of trees. In Inter-

national Conference of Computer Vision, pages 690–695, 2001.

132

[IF07] N. Ikizler and D. A. Forsyth. Searching video for complex activities with finite

state models. In Computer Vision and Pattern Recognition. IEEE Computer

Society, 2007.

[Joh73] G. Johansson. Visual perception of biological motion and a model for its anal-

ysis. Perception and Psychophysics, 14:201–211, 1973.

[Jor] M. I. Jordan. An Introduction to Probabilistic Graphical Models. (In prepara-

tion.).

[Jor99] M. I. Jordan. Learning in Graphical Models. MIT Press, 1999.

[Kim94] C.-J. Kim. Dynamic linear models with Markov-switching. Journal of Econo-

metrics, 60(1-2):1–22, 1994.

[Lau96] S. L. Lauritzen. Graphical Models. Oxford University Press, USA, July 1996.

[LB94] W. Lam and F. Bacchus. Learning Bayesian belief networks: An approach

based on the MDL principle. Computational Intelligence, 10:269–294, 1994.

[Lev66] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions and

reversals. Soviet Physics Doklady, 10(8):707–710, February 1966.

[LSS05] B. Leibe, E. Seemann, and B. Schiele. Pedestrian detection in crowded scenes.

In Computer Vision and Pattern Recognition, pages 878–885, 2005.

[MFM04] D. R. Martin, C. C. Fowlkes, and J. Malik. Learning to detect natural image

boundaries using local brightness, color, and texture cues. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 26(5):530–549, 2004.

133

[MM94] G. Mather and L. Murdoch. Gender discrimination in biological motion displays

based on dynamic cues. In Royal Society of London, number 259 in B, pages

273–279, 1994.

[MM02] G. Mori and J. Malik. Estimating human body configurations using shape

context matching. In European Conference of Computer Vision, volume 2352,

pages 666–680. Springer, 2002.

[MREM04] G. Mori, X. Ren, A. A. Efros, and J. Malik. Recovering human body config-

urations: Combining segmentation and recognition. In Computer Vision and

Pattern Recognition, pages 326–333, 2004.

[MSSS04] T. Mori, Y. Segawa, M. Shimosaka, and T. Sato. Hierarchical recognition of

daily human actions based on continuous hidden Markov models. In IEEE

International Conference on Automatic Face and Gesture Recognition, pages

779–784, 2004.

[MSZ04] K. Mikolajczyk, C. Schmid, and A. Zisserman. Human detection based on

a probabilistic assembly of robust part detectors. In European Conference of

Computer Vision, volume 3021, pages 69–82. Springer, 2004.

[Mur98] K. P. Murphy. Switching Kalman filters. Technical Report 98-10, Compaq

Research Laboratory, Aug 1998.

[Mur02] K. P. Murphy. Dynamic Bayesian Networks: Representation, Inference and

Learning. PhD thesis, University of California, Berkeley, July 2002.

[MWJ99] K. P. Murphy, Y. Weiss, and M. I. Jordan. Loopy belief propagation for ap-

proximate inference: An empirical study. In Kathryn B. Laskey and Henri

134

Prade, editors, Uncertainty in Artificial Intelligence, pages 467–475. Morgan

Kaufmann, 1999.

[NA94] S. A. Niyogi and E. H. Adelson. Analyzing and recognizing walking figures in

xyt. In Computer Vision and Pattern Recognition, pages 469–474, 1994.

[NBIR00] B. North, A. Blake, M. Isard, and J. Rittscher. Learning and classification

of complex dynamics. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 22(9):1016–1034, 2000.

[ORBD05] S. M. Oh, J. M. Rehg, T. Balch, and F. Dellaert. Learning and inference in

parametric switching linear dynamical systems. In International Conference of

Computer Vision, pages II: 1161–1168, 2005.

[Pas03] M. A. Paskin. Sample propagation. In Neural Information Processing Systems.

MIT Press, 2003.

[Pea88] J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible

inference. Morgan Kaufmann Publishers Inc., 1988.

[PP00] C. Papageorgiou and T. Poggio. A trainable system for object detection. In-

ternational Journal of Computer Vision, 38(1):15–33, 2000.

[PR00] V. Pavlovic and J. M. Rehg. Impact of dynamic model learning on classification

of human motion. In Computer Vision and Pattern Recognition, pages I:788–

795, 2000.

[RFZ05] D. Ramanan, D. A. Forsyth, and A. Zisserman. Strike a pose: Tracking people

by finding stylized poses. In Computer Vision and Pattern Recognition, pages

271–278. IEEE Computer Society, 2005.

135

[Roh97] K. Rohr. Human movement analysis based on explicit motion models, chapter 8,

pages 171–198. Kluwer Academic Publishers, 1997.

[Sch78] G. Schwarz. Estimating the dimension of a model. Annals of Statistics,

6(2):461–464, 1978.

[SGP00] Y. Song, L. Goncalves, and P. Perona. Monocular perception of biological

motion—clutter and partial occlusion. In David Vernon, editor, European Con-

ference of Computer Vision, volume 1843 of Lecture Notes in Computer Science,

pages 719–733. Springer, 2000.

[SGP01a] Y. Song, L. Goncalves, and P. Perona. Learning probabilistic structure for

human motion detection. In Computer Vision and Pattern Recognition, pages

771–777. IEEE Computer Society, 2001.

[SGP01b] Y. Song, L. Goncalves, and P. Perona. Unsupervised learning of human motion

models. In Thomas G. Dietterich, Suzanna Becker, and Zoubin Ghahramani,

editors, Neural Information Processing Systems, pages 1287–1294. MIT Press,

2001.

[SS82] R. Shumway and D. Stoffer. An approach to time series smoothing and forecast-

ing using the EM algorithm. Journal of Time Series Analysis, 3(4):253–264,

1982.

[SS91] R. Shumway and D. Stoffer. Dynamic linear models with switching. Journal of

the American Statistical Association, 86(415):763–769, Sept 1991.

136

[SW81] T. F. Smith and M. S. Waterman. Identification of common molecular sub-

sequences. In Journal of Molecular Biology, volume 147(1), pages 195–197,

1981.

[TK91] C. Tomasi and T. Kanade. Detection and tracking of point features. Technical

Report CMU-CS-91-132, Carnegie Mellon University, April 1991.

[VJ01] P. A. Viola and M. J. Jones. Rapid object detection using a boosted cascade of

simple features. In Computer Vision and Pattern Recognition, pages 511–518,

2001.

[VJS05] P. A. Viola, M. J. Jones, and D. Snow. Detecting pedestrians using patterns of

motion and appearance. International Journal of Computer Vision, 63(2):153–

161, 2005.

[WB95] G. Welch and G. Bishop. An introduction to the Kalman filter. Technical

Report 95-041, University of North Carolina at Chapel Hill, 1995.

[Wel00] M. Welling. Learning System: Caltech CS 156B Class Notes on EM, Spring

2000.

[WF01] Y. Weiss and W. T. Freeman. On the optimality of solutions of the max-

product belief-propagation algorithm in arbitrary graphs. IEEE Transactions

on Information Theory, 47(2):736–744, 2001.

[WWP00] M. Weber, M. Welling, and P. Perona. Unsupervised learning of models for

recognition. In David Vernon, editor, European Conference of Computer Vision,

volume 1842 of Lecture Notes in Computer Science, pages 18–32. Springer, 2000.

137

[YFW00] J. S. Yedidia, W. T. Freeman, and Y. Weiss. Generalized belief propagation.

In Todd K. Leen, Thomas G. Dietterich, and Volker Tresp, editors, Neural

Information Processing Systems, pages 689–695. MIT Press, 2000.

[YFW05] J. S. Yedidia, W. T. Freeman, and Y. Weiss. Constructing free-energy approx-

imations and generalized belief propagation algorithms. IEEE Transactions on

Information Theory, 51(7):2282–2312, 2005.

[YOI92] J. Yamato, J. Ohya, and K. Ishii. Recognizing human action in time-sequential

images using hidden Markov model. In Computer Vision and Pattern Recogni-

tion, pages 379–385, 1992.

[YXC97] J. Yang, Y. Xu, and C. S. Chen. Human action learning via hidden Markov

model. IEEE Transaction on System, Man, and Cybernetics, 27(1):34–44, 1997.

[ZT00] L. Zhao and C. Thorpe. Stereo and neural network-based pedestrian detec-

tion. IEEE Transactions on Intelligent Transportation Systems, 1(3):148 –154,

September 2000.

[ZT01] J. M. Zacks and B. Tversky. Event structure in perception and conception.

Psychological Bulletin, 127:3–21, 2001.

