


ii

c° 2005

Ramez Ahmed Elgammal

All Rights Reserved



iii

To my parents and to Sara



iv

Acknowledgements

As my graduate career comes to an end, I am duly reminded of the tremendously talented

group of scientists and engineers I have met at Caltech. While it is impossible to properly

thank all those that contributed to and enriched my experience at Caltech, I would like to

point out those that impacted me the most.

First and foremost, I would like to thank my advisor Dan Weitekamp. Dan took me

in his group even though I came in as a synthetic chemist and gave me the opportunity

to work on very interesting projects spanning many disciplines. Dan is a vast source of

knowledge, is impressively creative, and had remarkable patience for my erratic work style.

In the Weitekamp group, I had a very fruitful interaction with Dr. Bruce Lambert.

While we never worked on a project together, Bruce was always ready to talk about my

project or about physics in general. His approach to problem solving is amazing. Outside

the lab, Bruce provided enough distractions to keep me sane. It may be possible that we

took too many co ee breaks; my guess would be over 2000 of them. Bruce has become a

great friend and I’ll certainly miss all the fun we had. Thanks for all your help! Other

former Weitekamp group members I would like to thank include: Dr. Jim Kempf (thanks

for getting me started on the optical project), Dr. Gary Leskowitz (for never hesitating

to answer my questions remotely), and Dr. Lou Madsen. Valerie Norton and Mark Butler

provided an interesting dynamic to the lab and I wish you both the best of luck in wrapping

up your degrees.

I would also like to thank my various committee members: Professors Mitchio Okumura,

Bob Grubbs, Harry Gray, Vince McKoy, and Peter Dervan. My committee has given me

very helpful feedback throughout all of the examinations. I sincerely appreciate the advice

and guidance Harry has given me. He has made me feel like part of his group since I rst

arrived at Caltech. Thanks for all your help Harry in writing letters and having your door

open.



v

Shane Foister impressed me from the rst day of grad school on. You’ve been a great

friend throughout the years. Thanks for teaching me about handicapping horse racing, for

being a college basketball fanatic, and for being argumentative.

The Bercaw group has been a second home to me. I’d like to thank my classmate Susan

Schofer for always making me laugh. A special thanks to Dave Weinberg for all of the good

times. I’d say your only fault is being a Duke fan. Dr. Parisa Mehrkokavandi has been a

fun hiking buddy and I know you’ll do an amazing job at UBC. I still have a perfect record

against you in hearts. So I’ll document it here so you don’t forget. Dr. Jonathan Owen has

been a blast. I’ll be waiting for him to make a name for himself very soon.

I also had the pleasure of knowing Dr. Shantanu Sharma. While he is adamant about

blaming me for ending up at Caltech, it did work out for the best. Shantanu is a man

of many talents and I expect to have a partial share of your empire. Dr. William Wehbi

was always a source of constant optimism. Thanks for re-inspiring my interest in Middle

Eastern cuisine and helping me practice my Arabic. Dr. Ali Husain is another remarkable

scientist. I enjoyed all of our discussions about science, economics, and policy.

My family is due a very big thank you for putting up with me not calling when I really

should have. This thesis is dedicated in part to my parents and all of my sisters: Tammie,

Temara, Suzanne, and Sonya. I am truly lucky to have two wonderful parents. My father,

Dr. Attia Elgammal, was my rst and most inspiring teacher of mathematics and science.

It was he that truly got my psyched about science at a very early age. I love you very much

dad, and without you this wouldn’t have been possible. Thanks mom for always being

there to help when I was growing up. I miss and love you tremendously. A very happy

note during my stay at Caltech was the marriage of my sister Temara and me becoming an

uncle. I wish I had more time to see you; you’re just down the road. But I know that you,

Khalid, and Dina will be very happy.

Finally, I would like to thank Dr. Sara Klamo for all of her support and companionship

over the years. Thank you for being my best friend, for always making me smile, and

for providing the balance in my life that I very much need. I look forward to our future

together.



vi

Abstract

This thesis describes a method of mechanically detecting magnetic resonance. The detector

consists of a ferromagnet harmonically bound to a mechanical resonator and measures a

magnetic force of interaction with a nearby sample via dipole-dipole coupling. Flexural

modes of vibration of the resonator are induced by inversion of the sample magnetization at

the mechanical resonance frequency of the device. In this method, a nominally homogeneous

eld at the sample allows coherent spectroscopy over the entire sample volume.

Sensitivity analyses suggest that encoding an NMR signal into mechanical oscillations

favors inductive detection at the micron scale and below with Brownian motion of the

detection being the predominant source of noise and azimuthal eddy currents being the

predominant source of damping. As such, the design issues of a MEMS-based spectrometer

optimized for 50 micron samples have been investigated. Finite element methods were used

and the results for magnetic softening e ects, mechanical stresses, eld homogeneity, mag-

net design, radiofrequency excitation, and the utility of capacitive transduction to provide

tuning of the oscillator’s mechanical resonance frequency and active shimming are discussed.

A piezeoelectrically actuated microvalve is proposed as part of a micro uidic device to al-

low shuttling of liquid samples. We present a new means of ber-optic interferometry for

geometrically con ned regions in which the light exits transverse to core axis. The use of a

composite magnetic array of packed nanoparticles may reduce the damping by 104.

The portability of the spectrometer will allow in situ spectroscopy and towards that end

14N overtone experiments were simulated. Force-detection of this transition is superior not

only at reduced size scales, but over a broad range of magnetic eld strengths. The line

narrowing observed by detecting the overtone transition should allow detailed spectroscopic

analysis not possible by observing the quadrupolar broadened rst-order spectrum. Simu-

lations for a representative class of tholins suggest that the overtone linewidths is of order

tens of kHz.
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We conclude by discussing the feasibility of nanoscale NMR using torque detection

of spin-locked, transverse magnetization, include a derivation of the signal-to-noise and

detector optimization, and comment on the fundamental limitations of quantum statistical

noise.
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Chapter 1

Introduction

In a nuclear magnetic resonance (NMR) experiment, the properties and local environment

of atomic nuclei are probed by inducing transitions between nuclear spin energy levels whose

energy separation is determined by the Zeeman interaction. The magnitude of this splitting

is unique to a given nucleus and is determined by the nuclear gyromagnetic ratio. NMR

spectroscopy allows assignment of molecular structure by acquiring the energy spectrum of

nuclear spins in a molecule, and by interpreting the symmetry and positions of resonance

lines in the spectrum. As such, NMR has become one of the most versatile and ubiquitous

spectroscopic methods. Despite these tremendous successes, NMR experiments su er from

inherent low sensitivity due to the relatively low energy of photons in the radiofrequency

(rf) region of the electromagnetic spectrum.

This thesis describes a general methodology to address these shortcomings with an

emphasis on high-resolution spectroscopy in samples with diameters in the micron range

and below. In this chapter, we will begin by discussing the basic physics of NMR and then

give an extensive description of the new method of detection developed in our laboratory

that promises improved sensitivity over inductive detection. In our method, the NMR

signal is a magnetic force that is encoded in the motion of a mechanical oscillator. In the

following chapters we will present the design issues and progress towards a microfabricated

spectrometer, discuss the issues important for NMR at the nanoscale, and illustrate the

improvement in force detection of inductive detection in 14N overtone experiments.
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1.1 NMR Physics

We aim to provide a heuristic description of the theoretical framework of NMR which will

serve as a guide to the simulations and calculations in the following chapters. To this end,

both the classical and quantum mechanical treatments of NMR is presented.

1.1.1 Classical Mechanical Description

The basic tenet of the classical description of NMR is a magnetic dipole interacting with

some external magnetic eld. This interaction is easily described by a rst order di erential

equation
M
= M×B0 (1.1)

which is known as the Bloch equation.[1] The magnetization M is typically considered to

be a bulk property of the sample and the magnetic moment of an individual spin is given by

= I where is the nuclear gyromagnetic ratio and I is the spin angular momentum.

Equation (1.1) illustrates the torque on the magnetic moment due to the external eld B0.

We will de ne the -axis to be parallel to B0 which gives three equations of motion

=

0

(1.2)

The e ects of spin-lattice 1
1
and spin-spin 1

2
relaxation may be included by adding appro-

priate decay terms to equation (1.2) and (1.5).

As a matter of convenience, we will choose to work in the rotating frame, which trans-

forms equation (1.1) to
M
=M× +

M
¸

(1.3)

where is the rotational frequency of the rotating frame and
£
M
¤
describes evolution

of M in the rotating frame. For the magnetization to be stationary in the rotating frame

we have
£
M
¤
= 0. Typically in NMR experiments, we have an o set eld such that

M
= M× (B + B) (1.4)
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which gives the following equations of motion

=

(( + ) )

(( + ) )

( )

(1.5)

In Figure 1.1 below we see numerical solutions to equation (1.5).

Figure 1.1: Bloch equation simulation showing magnetization trajectories on a Bloch sphere.
These simulations include the e ects of relaxation. (a) 1 = 10 2 with an o set eld of
10Hz, no rf eld, and with magnetization initially along the -axis. (b) The same conditions
as (a) except an rf eld strength of 10Hz.

The e ect of rf pulses may also be considered classically, and their eld will be noted

by B1. Our equation of motion in the non-rotating frame becomes

M
= M× (B +B1 ( )) (1.6)

The desired rotating frame is that in which the oscillating B1 term becomes stationary and

if we assume that À B1, then

M
¸
= M×B1 ( ) (1.7)
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with B1 ( ) = RB1 ( ) where R is a rotation matrix

R =

cos ( ) sin ( ) 0

sin ( ) cos ( ) 0

0 0 1

(1.8)

thus

B1 ( ) =

1 ( ) cos ( ) + 1 ( ) sin ( )

1 cos ( ) 1 ( ) sin ( )

1 ( )

(1.9)

Therefore, for the externally applied pulse to remain stationary in the rotating frame, it

must be rotating at the same frequency as the rotating frame.

1.1.2 Quantum Mechanical Description

If we consider the Hamiltonian H of a spin system in which there is evolution of a density

operator instead of magnetization, then this evolution may be described by the Liouville—

von Neumann equation

= ~ [H ] (1.10)

The density operator will be de ned as

=
X

| i h | (1.11)

which is Hermitian and has a unit trace. The density operator allows for simple computation

of the expectation values of quantum mechanical operators O

hOi = Tr [ O] = Tr [O ] (1.12)

and provides an elegant machinery for studying time evolution. This is illustrated by

considering a unitary operator U ( 0) = exp
£

~H ( 0)
¤
where

| ( )i = U ( 0) | ( 0)i (1.13)



5

leading to a variant of the Liouville-von Neumann equation

( ) = U ( 0) (0)U† ( 0) (1.14)

Analogous to the classical case, a rotating-frame form of the density operator may be

constructed. The e ect of rf pulses on the density operator may be evaluated using the

rotations discussed below.

The mathematics of NMR may be treated in the context of rotations on quantum

mechanical operators. Two methods that have been used are Cartesian and spherical

tensor based rotations. In Cartesian based rotations, all three dimensional rotations can

be reduced to three angles = ( ). The angle rotates the -plane around the -axis

into transformed axes 0 and 0, transforms the original -axis to the -axis creating three

new rotated bases 00, 00, and 0, nally rotates 00 and 00 about the 0-axis into the nal

rotated state ( 000 000 0). This rotation is typically represented by a 3× 3 matrix

R ( ) =

cos cos cos sin sin cos sin cos sin cos sin sin

sin cos cos cos sin sin sin cos cos cos cos sin

sin sin cos sin cos

(1.15)

which can be considered as three rotations: R ( ) = ( ) ( ) ( ).

The study of symmetry and invariants of angular momentum in quantum mechanics

lead to the development of the spherical tensor rotation representation. The Wigner matrix

elements are common forms for rotation of angular momentum and provide a convenient

means to use spherical tensors. For a total angular momentum , there are (2 + 1)2

elements to rotate each of the 2 +1 eigenvectors. The matrix elements will be denoted by

0 , where is the rank of the matrix and the 0 correspond to a particular matrix

element. This may be expressed in terms of the reduced Wigner element

( + 0 ) 0 ( ) (1.16)

These rotations may also be generated from individual rotations

R ( ) = ( ) ( ) ( ) = (1.17)
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The Hamiltonian is readily expressed in a spherical tensor basis and because it is invari-

ant under rotation we may write

H =
X

T (1.18)

where is a complex constant and T is a spherical tensor basis element with T =

where is a tensor product, is a spatial tensor and is a spin tensor. T may be

expressed explicitly as

T =
X
=

( 1) =
X
=

( 1) (1.19)

1.2 NMR Spectroscopy

In Figure 1.2(a), we illustrate the Zeeman interaction, which is linear in the applied magnetic

eld B0. The observed energy level splitting also re ects the local environment of the

nucleus being probed by the NMR experiment, because it is dependent upon the response

due to interactions with electrons and the magnetic coupling of the nucleus to nearby spins.

Figure 1.2(b) depicts a typical apparatus used in NMR experiments. A large, homogeneous

eld B0 at the sample is provided by an electromagnet or superconducting magnet. The

sample resides in a coil of conducting wire which provides the rf irradiation used to induce

NMR transitions. An ac voltage is applied across the coil circuit at a frequency which

provides a linearly-polarized time-dependent magnetic eld with amplitude 2 1 orthogonal

to B0. Resonance is achieved when the irradiation frequency equals the nuclear Larmor

frequency

0 = ~ = 0 (1.20)

where ~ is Planck’s constant divided by 2 and is the nuclear gyromagnetic ratio. The

homogeneity of B0 ensures that the transitions observed are due to the local environment

of the nucleus as opposed to variations of the Zeeman interaction across the sample.



7

Figure 1.2: (a) Zeeman energy splitting of nuclear spin states, which are labeled according to
the allowed values of , the projection of the dimensionless nuclear spin angular momentum
I along B0, for the case where = |I| = 1

2 . (b) A basic NMR experimental apparatus. The
static magnetic eld B0, may be provided by superconducting magnets, electromagnets, or
permanent magnets.

The advent of Fourier transform methods has allowed modern NMR experiments to be

done in the time-domain where pulses of broadband irradiation excite transitions that yield

subsequent time evolution of the nuclear magnetic momentM

M = ~ hIi (1.21)

where is the number of spins in the ensemble and I is the dimensionless nuclear spin

angular momentum operator. A short resonant rf pulse tips M away from B0 and if the

pulse duration is such that 1 = 2 , then the tip angle is 90 and the magnetization

is placed in the transverse plane. This is shown in Figure 1.3.

Figure 1.3: (a) The magnitude of the nuclear magnetic moment is shown which is determined
by the Zeeman splitting and Boltzmann distribution of spins. (b) Precession of M about
B0 after application of a resonant 2 pulse.

As the magnetization evolves in the transverse plane, a voltage is induced in the rf coil
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via Faraday’s law of induction and is proportional to M. The signal voltage is given by

( ) = cos ( 0 ) 2 (1.22)

where is a scaling factor proportional to M and 2 is the transverse nuclear relaxation

time due to spin-spin coupling. ( ) is typically expressed as a free-induction decay, and by

Fourier transforming this time-domain signal, the frequency-domain spectrum is obtained

as a single Lorenztian peak with full width at half maximum (FWHM) of ( 2)
1 as shown

in Figure 1.4. Fourier transform methods have also allowed sophisticated pulse sequences

to be designed to selectively edit the spin Hamiltonian to provide speci c chemical or

spatial information. Despite these advantages, inductively detected NMR su ers from poor

sensitivity. The low fractional polarization, 10 6, and weak magnetic moments per spin

result in the need for samples that have 1018 nuclear spins for adequate sensitivity. We will

now discuss an alternative strategy which promises to improve the sensitivity tremendously

for micron and nanometer scale samples.

Figure 1.4: A time-domain NMR signal is converted to the frequency domain by the oper-
ation of a Fourier transform.

1.3 Force-Detected NMR

1.3.1 Introduction

The rst observation of magnetic resonance was actually a force-detected experiment. In his

classical molecular beam experiment, Rabi [2] utilized the Stern-Gerlach e ect to spatially

separate eigenstates by the projection of their spin angular momentum. The intensity of

the molecular beam was modulated by application of an rf eld and, on resonance, spin ips

were induced. This was accomplished by having the spins pass through an inhomogeneous
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magnetic eld such that a force F existed on the spins due to a gradient G

F = ·G (1.23)

where G = B
r where r is a spatial coordinate. This methodology was later used by

Bloom and coworkers [3, 4] to de ect the molecules by the interaction with the transverse

components of spin angular momentum. The poor spectroscopic resolution and sensitivity

of these methods was improved upon by Pizarro and Weitekamp [5] by con ning the spins

for longer periods of time where their motion was harmonically driven. In this case, the

trajectory of electromagnetically trapped ions was altered by resonance induced changes

via electromagnetically switched eld gradients.

The rst experiment which utilized encoding of force-detection in mechanical oscilla-

tions was done by Gozzini in the 1960’s.[6, 7] These continuous wave (CW) experiments

were done in a homogenous magnetic eld. A free radical sample was bound to a torsional

resonator and an rf eld was applied at the resonance frequency of the spins. The absorp-

tion of the rf photons, followed by rapid thermalization through the resonator produced

a torque on the resonator which was then related to a magnetic resonance signal. While

these experiments proved to be an interesting example of mechanically detected magnetic

resonance, the thermalization of angular momentum with the lattice is a weak e ect and is

not of practical interests, especially for nuclear spins.

In the early 1990’s, it was realized that detection of magnetic forces scales more favorably

than inductive detection at small size scales.[8, 9] This observation lead to the development

of the magnetic resonance force microscope (MRFM).[10, 11, 12] In these experiments a

cantilever with a harmonically bound ferromagnet is driven by cyclically inverting the spin

magnetization in a nearby sample at the mechanical resonance frequency of the oscillator.

The geometry of the MRFM results in large eld gradients at the sample and in accordance

with equation (1.23) improves the sensitivity of these experiments. Recently, gradients as

large as 5×105T m have been produced allowing the observation of magnetic resonance of

a single electron spin.[13] The sub-attonewton per root hertz sensitivity of state-of-the-art

MRFM should allow imaging of 102 nuclear spins, if appropriate means are taken to reduce

the quantum mechanical e ects of spin noise.[14]

Despite the advantages provided by MRFM, coherent spectroscopic measurements on
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anything but a “sensitive slice” of the samples is not possible. The sensitive slice thickness

is of order 1 where = is the eld gradient of the sensor magnet. Practical

limitations set 1 at 100 kHz and the distribution of Larmor frequencies in the sample

can vary as much as 30 MHz and only those spins within the bandwidth of the applied rf

eld will be inverted and detected. Furthermore, the range of elds even with the sensitive

slice in MRFM experiments limits sophisticated NMR experiments that require multiple rf

pulses, rendering MRFM incompatible with nearly all coherent spectroscopy.

The restrictions of reduced spectroscopic resolution, sensitivity, and coherent control

may be mitigated by placing the sample in a nominally homogeneous eld. We have dubbed

this detection method BOOMERANG: better detection of magnetization, enhanced reso-

lution, and no gradient. Our laboratory [15, 16] has been successful in demonstrating this

phenomenon and has shown that by judicious application of multiple-pulse sequences, spec-

tral resolution adequate for chemical purposes is possible. In the remainder of this section,

we will discuss the theory behind the experiment, give a detailed signal-to-noise analy-

sis, and present scaling arguments that show the regime in which force detection becomes

superior to inductive detection.

1.3.2 Homogeneous Fields

An idealized detector would include no eld gradients at the sample. We can imagine a

exible spherically symmetric array of detector magnets surrounding a sample. The sample

will exert forces on the detector causing elliptical distortions which are induced by cyclically

inverting the sample magnetization at the mechanical resonance frequency of the detector.

Because the eld will remain homogeneous during the “breathing sphere” modes, this allows

resolution of chemical shifts and spin-spin couplings, eliminates gradient-based dephasing,

and permits coherent control of the all the spins in the sample. This idealized detector is

shown in Figure 1.5.

However, we require a means of easily detecting the mechanical oscillator excitation. A

natural choice that maintains nominally homogeneous elds at the sample is shown in Figure

1.6. In this case, cyclically driving the spins in a sample excites a exural mode in the

mechanical oscillator causing an axial displacement along the symmetry and magnetization

axis. The detector is surrounded by an annulus where the gap is chosen to be small
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Figure 1.5: Flexible-sphere model of an idealized mechanical detector. The sample is
immersed in a hollowed sphere of exible magnetic material magnetized along the axis of the
vertical arrows. Cyclically inverting the sample magnetization at a mechanical resonance
frequency of the detector causes elliptical distortions proportional to the magnetization.
The eld throughout the sample remains homogeneous during the distortions.

enough to allow free movement of the detector while minimizing resulting inhomogeneities.

In the equilibrium con guration, the annulus and sensor are coplanar. The exible silicon

membrane is shown in a clamped-clamped arrangement with the sensor harmonically bound

to the center.

1.3.3 Theory

The force between a spin-bearing sample and a nearby ferromagnetic detector is given by

the gradient of the potential energy of interaction with respect to the relative coordinate

of the system, F = r = . The coordinate r is chosen to be a harmonic

oscillator coordinate that corresponds to the detector mode. If we assume that the sample

is spherical and uniformly polarized, then the magnetic eld can be represented as a point

dipole allowing the interaction force to be expressed as

F = ( B · ) = +

μ
0

4
·
μ
3r̂r̂ 1

3

¶¶
· (1.24)
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Figure 1.6: Cross-section of a force-detected NMR spectrometer. The dimensions of the
magnet are chosen to maximize the eld homogeneity at the sample and odd-order eld
gradients are eliminated by maintaining re ection symmetry. The detector magnet is
bound to the center of the silicon beam.

where r̂ is the unit vector pointing from the position of the sample dipole moment to that

of the detector , is the gradient with respect to the coordinates of , and B is the

sample’s magnetic eld. In our experimental con guration, we have cylindrical symmetry

and if we replace the dipole byM (r ) ( = ) and integrate over the volume of both

bodies we nd that

F = 0

4 4

£
cos

¡
9 15 cos2

¢
ẑ+
¡
3 15 cos3

¢
ˆ
¤

(1.25)

In equation (1.25) we have assumed that both the magnetization of the sample and de-

tector are constant vectors along the symmetry axis of the cylinder, ẑ. This interaction

force is shown in Figure 1.7.

The steady-state displacement of the mechanical oscillator is given by

=
( )

2 =
( )

(1.26)

where is the quality factor of the oscillator, its motional mass, is its resonance

frequency, and is its e ective spring constant. We observe that the enhancement of

resonant driving is of factor . A more useful parameter to characterize an oscillator is
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Figure 1.7: The force eld between a sample moment and an axial detector moment .
The dotted lines indicate nodal surfaces of revolution at angles of 90 and = arccos

p
3 5

39 2 upon which the z-component of the force vanishes. An idealized detector is con ned
to lie within this nodal surface.

its ringdown time, = 2 . The ringdown time is the time required for the amplitude of

the oscillator’s excitation to decay to 1 of initial value.

1.3.4 Encoding NMR into Mechanical Oscillations

Most NMR experiments in the time-domain detect Larmor precession in the transverse

plane. As illustrated in Figure 1.6, the silicon mechanical oscillator is excited along the

symmetry axis which means that we are detecting longitudinal magnetization. Therefore,

it is necessary to recon gure the detection scheme to measure the sample’s longitudinal

magnetization . The detection scheme is shown below in Figure 1.8.

During the encoding period, the sample magnetization is tipped into the transverse plane

by application of a 2 pulse. The spins evolve during a period 1 either freely or under the

in uence of an NMR pulse sequence. Following evolution, the spins are ipped back to

the -axis by a second 2 pulse and then the spin magnetization is cyclically inverted at the

mechanical oscillator’s resonance frequency driving a picometer scale motion of the oscillator

during the time period 2. The Fourier transform of this signal gives a spectrum whose area

is proportional to the sample magnetization at the onset of the detection period. Weighting
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this Fourier transform gives a single point in a “free-induction decay”, and modulation of

the spins during successive periods in 1 allows pointwise acquisition of the time-domain

NMR signal. Application of a second Fourier transform gives the spectrum of transition

energies.

The spins are cyclically inverted twice per mechanical oscillator period using a novel

phase-cycled, tangent-frequency-modulated adiabatic rapid passage sequence (for more de-

tail see Chapter 2.6). Spurious driving of the oscillator that would be observed in other

methods such as sinusoidal or continuous sweeps, is diminished by inverting at twice the

oscillator resonance frequency and by sweeping from the same side on each inversion.

Figure 1.8: Encoding of NMR into mechanical oscillations.

1.3.5 Signal-to-Noise Analysis

The signal-to-noise ratio of the BOOMERANG NMR experiment is given by

= (1.27)
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with the root-mean square (rms) signal force = 4
2

where the factor of 4 comes

from the Fourier component of the spin inversion sequence. The predominant source of

noise is the time-averaged noise force , which is due to the Brownian motion of the

mechanical oscillator assembly. For a given temperature , the noise force is given by

=
p
4 (1.28)

where is a damping parameter and is equal to 2 and = 1
4 1

is the measurement

bandwidth. Here we use McCombie’s [17, 18] de nition of bandwidth for a process with

transfer function ( ) as

=

Z
0
| ( )|2 | ( max)|2 (1.29a)

1 is the spin-lattice relaxation time during adiabatic rapid passage, our spin inversion

scheme. The signal amplitude is obtained by integrating equation (1.25) over the detector

volume. Doing so gives

= 0 max (1.30)

where is a dimensionless shape factor, 0 is the magnetic permeability of free space, and

is the sample volume. is given by

=
max

4

Z
1
4

¡
9 cos 15 cos3

¢
(1.31)

and in the case of a cylindrical detector of radius and height placed a distance max

from the center of the sample, the shape factor takes the simpli ed form

=
2

max

2

1h
( max + )2 + 2

i3 2 1£
2
max +

2
¤3 2 (1.32)

The SNR for force detection is then

= 0 max

8
(1.33)

The signal-to-noise ratio for inductive detection has been considered in detail.[19] It may
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be expressed as = , where is the rms electromotance of the detection

coil and is the Johnson noise dominated time-averaged voltage noise

=
p
4 (1.34)

where is the total resistance in the coil at the nuclear Larmor frequency, which includes

both skin and proximity e ects. The skin depth is de ned to be

=

μ
2
¶1 2

(1.35)

where is the electrical conductivity and the permeability. Here we take the detection

bandwidth to be = 1
4 1

where 1 is the rotating-frame relaxation time, which may be

maximized using spin-locking methods.

Figure 1.9: Detector magnet dimensions used in signal-to-noise de nition. is the detector
radius, the height, and max the distance from the sample center to the detector.

The most common geometry of detection coils is a solenoid. For an -turn coil of length

2 and radius , we have a similar phenomenological shape factor

=
maxp
2 + 2

(1.36)

where max is de ned here as the distance from the sample center to the inner edge of the

coil. The amplitude of the oscillating electromotance is given by

= 0

max
(1.37)
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and thus the SNR is

= 0

8
(1.38)

1.3.6 Scaling Arguments

For the case of force-detection, we see that by equation (1.33), the only size dependent

parameters are the and max. The signal force thus scales as 2 where is a linear

dimension of the sample and detector. It was shown in the Ph.D. thesis of Garett Leskowitz

[18] that the noise force scales as 3 2 assuming scale invariance of the damping parameter .

Thus the signal-to-noise for force detection scales as 1 2. Similarly for inductive detection,

the signal scales as 2, and there exist two regimes in which the scaling dependence of the

noise is considered. When the wire diameter is larger than the skin depth , the resistance

= is scale invariant ( is the coil’s resistivity, is the length of the unwound conductor,

and is the coil’s cross-sectional area). In this case, scales as 2. When wire

diameter is less than the skin depth, current ows through the wire more uniformly and the

noise term scales as . Therefore, will scale as 5 2. These observations on scaling

in inductive detection have been experimentally con rmed in microcoil NMR by several

groups.[20, 21]

These scaling arguments suggest that decreases signi cantly more slowly with

size than and that depending on the nuclear gyromagnetic ratio and static mag-

netic eld strength 0, there is a well-de ned “break-even” point, typically for samples with

diameters between 80-300 m diameter. We have chosen to fabricate a spectrometer that is

optimized for 50 m sample sizes, which places max at 34 m Relevant samples for both

terrestial and biological applications are shown below in Figure 1.10 These signal-to-noise

simulations assume idealized detectors. For force detection this is a dectector whose mass

is equal to that of the moving magnet and for inductive detection the parameters for an

ideal solenoid, = 0 7, were taken from Hoult and Lauterbur.[19]
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Figure 1.10: Signal-to-noise and scaling simulations for inductive detection (black curves)
and force detection (red and blue curves). The red and blue curves correspond to of
1 s and 80ms respectively. In all cases a fully optimized detector, a one second relaxation
time, and a 0 = 2T are considered and the tabulated parameters are for a 50 m diameter
sample. (a) 1H NMR of gypsum, CaSO4·2H2O and (b) 29Si NMR of scapolite. Both are
suspected to be in Martian soil. (c) 13C NMR of a single crystal 50 kD protein with a
polarization enhanced carbon atom.
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1.4 Thesis Outline

In Chapter 2, we give an extensive discussion of the design issues relevant for fabrication

of a MEMS-based force-detected NMR spectrometer. This includes the design of magnet

geometries, mechanical oscillator design, considerations of sources of damping, development

of a method for capacitive transduction of positioning of the detector magnet as well as tun-

ing of the mechanical oscillator resonance frequency, a detailed discussion of the method of

spin inversion developed in our laboratory, the design parameters for a novel type of silicon-

based micro uidic channel which uses piezoelectrically driven microvalves, the development

of a new method of ber optic interferometry, and an outline of the microfabrication pro-

cedure and initial microfabrication results.

We consider the case of force-detected NMR of nanoscale samples in Chapter 3. Devices

of this size scale whose resonance frequency is in the audiofrequency range will be consid-

erably di cult to fabricate and even if they could be fabricated, their thermal motion will

exceed the device dimensions. As a result, it will be necessary to detect transverse magne-

tization. A derivation of the signal-to-noise ratio for detection of transverse magnetization

with torsional oscillators is presented as well as a preliminary design for these oscillators.

A method for detection of the angular displacements is suggested. We conclude Chapter 3

by discussing quantum statistical spin noise that will dominate for nanoscopic samples.

Chapter 4 is concerned with exploring the utility of overtone NMR, a variant of multiple

quantum NMR, for studying 14N. This work was motivated by preliminary signal-to-noise

calculations done by Bruce Lambert [22] that suggest our method of force detection will

be favorable over conventionally detected spectroscopy. We include simulations on several

molecule of astrobiological importance, tholins.
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Chapter 2

Design of MEMS-Based
Force-Detected Spectrometer

This chapter concerns the design issues of a microelectromechanical system (MEMS) based

force-detected NMR spectrometer. The design is motivated by the signal-to-noise calcu-

lations presented in Chapter 1 and will be based upon practicality, robustness, high eld

homogeneity, and optimal sensitivity for samples with 50 m diameters. As a means of

directing the steps towards microfabrication, we wish to consider structures with: 1) nar-

row, unobstructed detector/annular magnet gaps to maintain high eld homogeneity, 2)

low stress electroplated magnetic lms, 3) mechanical oscillator structures with low dissi-

pation and inertial mass, 4) ne control over observed resonance frequencies, 5) a means of

mitigating damping due to eddy currents, and 6) low power and portability to allow both

terrestrial and laboratory spectroscopic studies.

We will begin by discussing general design issues that re ect both our needs to have

a device for detailed spectroscopic studies and limitations in standard microfabrication

methods. In cases where analytical solutions were not possible, we have made use of nite

element methods and a short description of this methodology is presented. The design of

the silicon oscillator and magnetic assembly is then presented, followed by a detailed analysis

of sources of damping during experiments. Several schemes for radiofrequency excitation of

the spins are presented along with a description of our method for spin inversion, tangent-

phased adiabatic rapid passage. Methods to shuttle liquid samples in and out of the

spectrometer are proposed. A novel means of detecting sub-picometer motion will be

shown that o ers advantageous over other methods, especially in geometrically con ned

structures. We conclude by discussing sources of instrumental noise.
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2.1 General Design Issues

The mechanical oscillator should be designed such that the inertial mass is small compared

to that of the detector magnet, with low mechanical dissipation, high torsional rigidity to

counteract the torsional stress placed on the detector magnet in the annulus. Of particular

importance is the balancing of the resonator’s elastic and magnetic spring con-

stants. is due to the restoring force of the beam, and is due to magnetic forces

between the detector and annulus. The magnetic spring constant is negative and will soften

the e ective spring constant = + . Therefore, will depend upon the

magnetic eld strength, the relative sizes of the magnets, and the gap between the detector

and annulus.

We also seek a device with a resonance frequency in a 2T magnetic eld of 1-10 kHz in

order to e ciently invert the spin magnetization with adiabatic rapid passage. The 2T

eld is chosen based upon the use of soft and low stress magnetic materials that can be

readily fabricated into a device with saturation magnetization between 1 6-2T 0 and the

restriction of the use of hard permanent magnets to provide the static eld. This restriction

is based upon the goal of a portable, low-power spectrometer, where we have restricted the

total power to be less than 100 W and the majority of this power will be utilized by the

radiofrequency excitation circuit.

Mechanisms to eliminate sources of damping, whenever possible, will also be executed.

As we will see, the primary contribution to damping is through azimuthal eddy currents

that are generated by the moving detector magnet. Recalling the signal-to-noise expression

from Chapter 1, the total damping is related to the oscillator ringdown time

= 0 max

8
= 0 maxp

16
(2.1)

and we can see how it limits the signal-to-noise. Appropriate choices of materials and

experimental modi cations will be discussed as a means to minimize .

2.2 The Finite Element Method

The nite element method (FEM) is a numerical technique for obtaining approximate solu-

tions to boundary-value problems (BVPs) of mathematical physics. For a comprehensive
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reference, consult [23]. It was rst proposed in the 1940’s and was rst applied to mechani-

cal and structural problems in the 1950’s. Two approaches have lead to the success of FEM:

Ritz’s variational method and Galerkin’s method. These techniques showed tremendous

success in solving BVPs where a governing di erential equation in a domain is de ned by

L = with the boundary conditions on the boundary that encloses . L is a di erential

operator, is the excitation function, and is the unknown quantity. Electromagnetic

problems typically involve Dirichlet or Neumann boundary conditions.

The Ritz method expresses the BVP in terms of a functional whose minimum corre-

sponds to the governing di erential equation under the given boundary conditions. The

approximate solution is obtained by minimizing the functional with respect to variables

that de ne an approximate solution. In Galerkin’s method, approximate solutions e are
found by a weighted residual method where weighting functions are selected such that in-

tegrating Le over the domain is zero. While these methods showed early success, for

most problems in electromagnetism solutions are not possible. This di culty is overcome

by dividing the problem into subdomains, each having a trial function. Then either the

Ritz or Galerkin method can be employed. This is the basis of the nite element method.

During the past decade, important progress was achieved in nite element methods with

regard to electromagnetic eld simulations. The main idea behind the numerical solution

of di erential equations by the nite element method is the approximation of the solution

by a linear combination of basis functions. The coe cients of the linear combinations are

obtained from the variational or weighted residual problem, equivalent to a minimization

problem. This involves a discretization of the solution domain into subdomains called nite

elements. This discretization is often referred to as mesh generation and o ers exible

approaches to two-dimensional (combining convex quadrangles with triangles) and three-

dimensional (using four-node tetrahedra, right prisms, and general hexahedrons) problems.

This is often the most computationally intensive part of the calculation and is most e cient

when the aspect ratio of the elements is roughly one.

After mesh generation, the next step is interpolation. The solution is typically deter-

mined in terms of the unknown set of nodes on each element. The solution eld is then

con gured by interpolating from the nodal values of that element, where the number of

nodes per element and the choice of interpolation is dictated by the order of required ac-

curacy and the by the degree of continuity needed for the governing equations. Following
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this step, the element properties are derived. This involves assessing the contribution of

each element to the coe cients of the nodal variables of the system of equations. The

system is then assembled and all of the element properties are cast into one set of equations

with the constraints of the boundary conditions of the problem. Finally, the system is

solved and the assembled matrix gives a system of equations which can be solved for the

unknown nodal variables. For linear problems, the equations are solved iteratively or by

sparse matrix methods. Nonlinear problems are solved by Newton-like methods yielding

linear systems which are then solved iteratively.

The problems solved in this thesis using nite element methods were based upon the

Galerkin approach. In all cases, Maxwell 2D/3D c° software from Ansoft Corporation1

was used. Solution convergence was determined by two criteria: energy error and variable

convergence. Maxwell computes the energy of the solution region by computing E ·D for

electrostatic cases or B ·H for magnetic problems. The energy error is de ned as the

deviation from the zero divergence criteria imposed by Maxwell’s equations, viz. ·D

and. · B. The elements with the largest deviations are identi ed and adaptive mesh

re nement is then used in these regions to improve the numerical approximations. The

metric of convergence is set in this case by the user, typically an energy error of 0 1%.

Alternatively, if Maxwell is computing a speci c variable of the system, e.g. forces, torques,

stresses, this solution can be monitored to determine convergence.

2.3 Magnetic Assembly

In this section, we consider the design of the magnet assembly including the symmetric

array of detector and annulus as well as shaped magnetic pole pieces. Attention will be

paid to con gurations which optimize homogeneity and sensitivity.

2.3.1 Detector and Annular Magnet

2.3.1.1 Magnetic Softening

The design of the detector and annular magnet is concerned with a system that provides

good eld homogeneity at the sample, results in maximization of the sensitivity, and gives a

11. Ansoft Corporation, Pittsburg, PA. http://www.ansoft.com
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contribution from magnetic softening such that the resonance frequency of the mechanical

oscillator in the desired magnetic eld is between 1 and 10 kHz.

The e ects of magnetic softening may initially be considered by treating the detector

magnet as a point dipole on axis with the annular magnet.[24] The dipole moment has

magnitude 2 where is the magnetization, is the detector height, and is the

detector radius. If the assumptions of uniformly magnetized magnets directed along the

-axis is made, then magnetic eld generated by the annulus at the detector is due to surface

currents along the top and bottom cylindrical surfaces of the annulus and is given by

(0) = 0

h¡
4 2 + 2

¢ 1 2 ¡
4 2 + 2

¢ 1 2
i

(2.2)

where are the outer and inner radaii of the annulus respectively. The gradient of the

annulus’ eld exerts a force on the detector and for small detector displacement we nd

that this force is ( )
2

2 (0). The sign of the magnetic spring constant is then

shown to be negative, =
2

2 (0). The dipole approximation gives some intuition

about how scales with detector height, radius, and annular gap. However, we have

experimentally observed the dipole approximation underestimates the magnitude of

by roughly a factor of four. Therefore, we now focus our attention on FEM simulations.

Table 2.1 shows the results of an extensive study of nite element simulations. Again,

the approximation was made that both the detector and annular magnets were uniformly

magnetized with the given . This assumption should be valid in our experimental

con gurations given that the static magnetic eld felt by these magnets will be 2T. The

simulations were conducted as follows: The force on the detector magnet was calculated

at ve positions along the -axis where the maximum displacements were chosen such that

=
2

2 ( ) was valid, typically ±5% of . The calculated force was plotted as

a function of distance yielding a linear t with slope . During each simulation,

only one parameter was varied in order to ascertain the geometric e ects on . These

are plotted in Figure 2.1. In Figure 2.1 (a) the dependence on was found to be

= 469 1 + 246 3 1 2 10 6 3 2 with 2 = 0 98. The t in Figure 2.1 (b) gives

= 8 0 + 8 5 4 0 2 with 2 = 0 999. Similarly in Figures 2.1 (c) and (d) we

have = 28 6 7 1 ( 2 = 0 99) and = 5 892 3 867 ( 2 = 0 99) We nd

that varies linearly with and , varies as 3 2, and varies quadratically with .
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The dependence on magnet height was found to be approximately twice as strong as the

radius. Therefore, the magnet design is quite exible and can easily modi ed to observe a

desired .

( m) ( m) ( m) (T 0) (N m)

10 8 3 1.6 -33.7
20 8 1 1.6 —131.1
20 8 3 1.6 -69.0
26 4 3 1.6 -49.2
26 8 3 1.6 -96.2
26 20 3 1.6 -168.6
26 40 3 1.6 -313.9
26 8 0.25 1.6 -371.1
26 8 1 1.6 -195.7
26 8 5 1.6 -58.8
26 8 10 1.6 -19.9
26 8 3 1.3 -63.6
26 8 3 2.0 -148.8
26 8 3 2.5 -234.0
40 8 3 1.6 -148.8

Table 2.1: Finite element simulations of the e ective of on detector radius, height,
annuluar gap, and saturation magnetization.

2.3.1.2 Detector Optimization

We have chosen an max of 34 mbased upon a sample size of 50 m. The electrodeposited

magnetic materials should be low stress to prevent delamination and undue forces on the

spectrometer assembly. These limitations set a maximum of 8 m and we will now

consider the optimal detector size with this constraint.

The total root-mean-squared (rms) force on the detector is given by the integral of the

forces on dipole elements in the detector

=
2

Z
ẑ · dF (2.3)

where is a scaling factor accounting for the amplitude of the Fourier component of the
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Figure 2.1: Plots of versus gap , saturation magnetization , detector height ,
and detector radius . The t from the data in Table 2.1 is shown as a dotted line.

driving.[18] Using equation 1.25, this expression is equal to

=
2

0

4

Z 2

0

Z
max

Z ( )

0

9 2 6 2

( 2 + 2)7 2
(2.4)

=
3

2 2
0

Z
max

( ( )) (2.5)

where ( ( )) =
2

5 and =
p

2 + 2 is the the distance of the dipole element from

the origin. The volume element of the detector id given by = . Thus we have

expressed the signal force as a functional that is parameterized by the shape function .

The noise force may be similarly calculated by considering the damping parameter and

damping rate

= =

Z
max

( ( )) (2.6)
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with ( ( )) = 2. Therefore, the optimal signal-to-noise ratio is given by extremizing

³R
max

( ( ))
´2R

max
( ( ))

(2.7)

where the factors that do not depend on have be eliminated. For the case of right

cylindrical detectors this simpli es to a force

=
2

2

1¡
2 + 1

¢3 2 1³
2 + ( + 1)2

´3 2 (2.8)

and the noise expression is equivalent to the volume of the detector plus added inertial

mass, = 2 +M. M is actually an inert volume multiplied by the ratio of the inert

material’s density to the density of the magnet material. This can also be input as the inert

mass divided by the magnet material’s density and has units of volume.

In the signal-to-noise plots of Chapter 1, we considered a detector with no inert mass.

For this idealized case, extremization of the signal-to-noise functional gives = 0 59 max

and = 0 53 max. For a microfabricated spectrometer with a total mass of 2.9 times

greater than the ducial mass of the detector, a similar extremization gives = 0 83 max

and = 1 17 max which gives a signal-to-noise ratio of 0.67 times that of the optimal

case. In our case, is xed at 8 m giving a optimal detector radius of 26 m. In this

con guration, the signal-to-noise ratio of 0.43 times that of the optimal case. Figures

2.2 and 2.3 show plots for both the optimal and our experimental case. We see for both

con gurations, the signal-to-noise is not sharply peaked.
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Figure 2.2: Signal-to-noise ratio versus the detector radius and height scaled by max.
The optimal sensitivity is observed for a detector with no added inert mass.
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Figure 2.3: Signal-to-noise ratio versus the detector radius and height scaled by max.
In this case, the inert mass equals 2.9 times the detector mass.
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2.3.1.3 Magnetic Materials

A goal of ours is to have a low-stress magnetic material for use in the detector and annular

magnets. The magnetic material should have a of 1 6-2 0T 0 and have good resistance

to corrosion by the bu ered oxide etch (BOE) used during microfabrication. A ternary

plot showing as a function of common alloy concentrations is shown below in Figure 2.4.

The data used to construct this plot was taken from [25, 26, 27]. Electrodeposition allows

speci cally patterned magnets to be incorporated onto the mechanical oscillator structures

and may allow feature sizes below 1 m to be incorporated for creation of the detector-

annular gap and radial slits to mitigate eddy current damping by the use of appropriate

photoresist molds. The alloy composition is controlled through adjusting bath salt and

additive concentrations.

Figure 2.4: Ternary plot of saturation magnetization as a function of nickel, cobalt, and
iron concentrations in electrodeposited magnetic materials.

The electrodeposition process should allow the magnetic lm to have optimized com-

position, deposition rate, internal stress, substrate- lm adhesion, surface roughness, and

magnetostriction. The permeability and coercivity of the magnetic lm are secondary

factors, as they do not e ect the sensitivity or homogeneity of the device. Of greater im-

portance is the conductivity of the lm, which should be minimized to reduce eddy current

damping e ects.
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Typically, materials with high have very high stress, greater than 250MPa, which

will likely result in delamination of the lm.[28, 29] Therefore, we seek materials with

internal stresses of less than 80MPa. Experimentally, we have observed that 85/15 Co:Ni

lms have saturation magnetizations of 1 6T 0 with internal stresses of 65MPa. We are

also investigating recent reports of CoNiFe alloys as superior candidates for future devices.

SEM images of the annular and detector magnets as well as the photoresist molds used to

fabricate them are shown below in Figure 2.5.

Figure 2.5: SEM images of microfabricated magnetic device structures. (a) Preliminary
photoresist mold used to created the annular-detector magnet assembly. The “sunshine”
pattern was used to create the annular radial slits to reduce eddy current damping [30].
The width of each slit is 1 m and the height 10 m. The ring of photoresist created the
1 m gap. (b) The results of using the photoresist mold in (a). (c) A modi ed photoresist
design to include slits in both annular and detector magnets. The gap size is 3 m and the
slits are 3 m× 3 m.
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2.3.2 Static Magnetic Field

One of the biggest assets of the MEMS-based NMR spectrometer is its portability. In order

to meet this goal and have a low-power device, permanent magnets must be used to provide

the B0 eld. The on-axis magnetic eld to a right cylindrical magnet may be calculated

using the Biot-Savart law for a surface current K = |M| ˆ and is found to be

( ) = 0

2

2 +q
( 2 + )2 + 2

+
2q

( 2 )2 + 2

(2.9)

for a cylinder of length and radius . As , we see that ( ) 0
2 . However,

for spectroscopic studies in space we want to minimize this mass. Typical aspect ratios for

these types of magnets are = 1.

Conventional rare-earth magnetic materials such as NdFeB50 have magnetic retentivities

of 1 5T and when cylindrical magnets of this material, even of optimized aspect ratio,

are separated by 1mm the magnetic eld strength in the center of the two pole pieces was

calculated to be 0 8T. This limitation is illustrated by the following:

=
+ 0 +

(2.10)

where os the magnetic eld strength between the pole pieces, is the magnet height,

is the pole separation, and is the coercive eld strength of the permanent magnet

material.[31]

It is possible to add a saturated iron truncated cone to each pole piece and shaping

the iron piece in this manner causes a focusing of magnetic eld lines, e ectively providing

a eld higher than between pole pieces.[32, 33] To ensure saturation magnetization for

the annular magnets, the diameter of the bottom face of the iron pole must be at least the

annular diameter, 2mm. The iron pole piece is shown schematically in Figure 2.6. In the

simulations was set at 20mm, was varied between 0 40 , the eld magnets used

were cylindrical NdFeB502 magnets with a height of 10mm and a diameter of 20mm. The

gap between the two iron pole faces was xed at 1mm. The focusing e ect of the iron

pole pieces is illustrated by observing the lines of magnetic ux, Figure 2.7. We observe

2These magnets are commerically available from Magnetic Solutions, Inc., http://www.magnetic-
solutions.com.
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that truncated cones signi cantly focus the magnetization into the desired region. Future

designs may include the use of Halbach magnetic circuits given the recent development of

homogeneous elds as high as 5T generated inside them.[34, 35, 36, 37] Halbach designs

may also reduce the fringing e ects observed in Figure 2.7.

Figure 2.6: A cross-section of the truncated conical iron pole piece with top diameter ,
bottom diameter , pole height , and cone angle .

(deg) 0 at sample center (T) Homogeneity (ppm)

0 0.61 0.2
10 0.82 1.9
20 1.39 4.5
30 1.76 11.8
33 1.98 25.6
40 2.87 57.1

Table 2.2: Magnetic eld and eld homogeneity as a function of saturated iron pole cone
angle.

Figure 2.7: Plots of absolute value of the magnetic ux through eld magnets. The values on
the right hand side are negative. The gap is 1mm in both cases. (a) Symmetric arrangement
of 10mm tall, 20mm diameter NdFeB50 right cylinders capped by saturated iron truncated
cones with a top diameter of 20mm and = 33 . (b) NdFeB50 cylindrical magnets with
the same dimensions as (a).
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2.3.3 Field Homogeneity and Lineshape Analysis

In an optimal spectrometer con guration the gap between the detector and annular magnet

is minimized to maintain high eld homogeneity at the sample. We will assume that by

design of source magnets, the detector and annular magnets will be fully saturated acquiring

a magnetization of 1 6T 0 for electroplated CoNi (85:15) alloys.

In the simulations that follow, the magnetic elds were calculated self-consistently by

using a Legendre polynomial expansion to order 20 using Mathematica c° Contributions

from the static eld3, annular, and detector magnet were included in calculating the eld

at the sample. The annular planes were separated by 2 max = 68 m. During the

microfabrication process, it is likely that detector magnet will not be exactly coplanar

with the annulus due to anisotropy during electroplating. Therefore, we have considered

detector displacements of ±500 nm from the annular plane. These simulations are plotted

in Figure 2.8 . Qualitatively, we observe that perfect detector alignment gives a nominally

homogeneous eld across the sample and eld gradients of odd order essentially vanish.

Minor shimming will be necessary to remove the second order gradients. For = 1 m

and 3 m
¯̄
2 2

¯̄
= 9 2T m and 31 2T m respectively. Signi cant inhomogeneities.

caused by misalignment of the detector were observed and method to correct for this will

be discussed in the next section of this chapter.

We have also simulated the NMR lineshape for = 1 and 3 m. These simulations were

conducted by expansion of the components of the total magnetic eld in a series of Legen-

dre polynomials followed by calculating the magnetic eld at randomly chosen points in a

50 m spherical volume. The values of the magnetic eld were then plotted as probability

distribution functions, Figures 2.9(a) and 2.10(a). These simulations suggest that even for

misalignment of the detector by ±500 nm, the distribution of Larmor frequencies over the

sample is signi cant. Variations across the sample were taken into consideration in Figures

2.9(b) and 2.10(b). The force between the dipole in the detector and the dipole element

in the sample is sensitive to their relative positions and as expected, this local sensitivity

weighted considerably distorts the lineshape for displaced detectors.

The lineshapes in Figures 2.9(b) and 2.10(b) for the centered detector were tted to a

3The static eld magnets in these simulations were assumed to be cylindrical, but with the appropriate
magnetization and coercivity to provide the eld of the truncated conical pole pieces. The validity of this
assumption is based upon the homogeneous eld at the sample provided by selective shape and placement
of the pole pieces.
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Figure 2.8: Calculation of the magnetic eld at positions along the symmetry axis for the
proposed spectrometer for a detector-annular gap of 1 m (a) and of 3 m (b). The
black line represents a centered detector, the blue line represents the detector 500 nm above
the plane, and the red line the detector 500 nm below the plane.

Lorenztian and the full-width at half maximum linewidths were found to be 16 6 kHz and

48 2 kHz respectively. An additional simulation for = 250nm gave a linewidth of 5 3 kHz.

Therefore, even for a relatively large gap, the expected linewidths are well under our target

Rabi frequency of 100 kHz.

Figure 2.9: Distribution of magnetic elds with a 50 m diameter spherical sample with
= 26 m and = 1 m. (a) The black line is for a centered detector, the red line for the

detector displaced 500 nm above the annulus, and the blue line for the detector displaced
500 nm below the annulus. Simulated lineshapes adjusted for sensitivity variations in the
sample volume.



36

Figure 2.10: Distribution of magnetic elds with a 50 m diameter spherical sample with
= 26 m and = 3 m. (a) The black line is for a centered detector, the red line for the

detector displaced 500 nm above the annulus, and the blue line for the detector displaced
500 nm below the annulus. Simulated lineshapes adjusted for sensitivity variations in the
sample volume.

2.4 Mechanical Oscillator Design

The mechanical oscillator should be designed in a way to constrain the detector magnet

motion to the -axis, with torsional rigidity to prevent the detector magnet to torque in its

bore, be constructed of a low-dissipation material that is relatively easy to use in standard

microfabrication processes, and counteract the negative magnetic spring constant. A nat-

ural choice of a material is silicon, given the explosive volume of known microfabrication

methods and its inherent low dissipation leading to high sensitivity to resonant driving as

well as its relatively large Young’s modulus. The material properties of silicon as a function

of temperature are shown in Table 2.3.[38]

T (K) [100](N m2) ( kg m3) ( J m3-K) (1 K) (m2 s)

300 130× 109 2330 0 28 1 66× 106 2 60× 10 6 8 6× 10 5

150 130× 109 2331 0 28 9 91× 105 6 11× 10 7 4 3× 10 4

70 130× 109 2331 0 28 3 45× 105 4 46× 10 7 2 48× 10 3

Table 2.3: Temperature dependent material properties of silicon.

2.4.1 Rectangular Beams

From the standpoint of fabrication ease, a rectangular beam xed at both ends (clamped-

clamped) with a concentrated mass at the center is the simplest oscillator geometry to
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consider. The clamped-clamped beam requires that the displacement of the beam and its

rst derivative at the clamped points is zero. An oscillator with this shape and boundary

conditions has a resonance frequency in Hz of

= 13 86

s
3 ( + 0 375 )

(2.11)

where is the elastic modulus, is the beam length, is the concentrated mass at the

center of the beam, is the mass of the beam, and is the polar moment of inertia given

by = 1
12

3 where is the beam height and is the beam width.[39] The factor of 0 375

accounts for the motional mass of the beam. Equation (2.11) assumes small displacements

of the beam and purely elastic materials allowing the use of Euler-Bernoulli equations. The

polar moment of inertia is derived by considering exural vibration of the oscillator in the

-axis where =
R

2 where is the area moment of inertia of the beam’s cross

section about the -axis. In the limit À 0 375 , scales as 3 2 3 2 1 2.

Figure 2.11: Components of normal stress.

It is useful at this point to consider the stresses in the beam during excitation. A stress

quantity that is proportional to the strain energy density associated with a change in shape

(with a zero volume change) at a material point is the von Mises stress which is de ned by

=
1

2

q
( )2 + ( )2 + ( )2 + 6

¡
2 + 2 + 2

¢
(2.12)

and is a scalar measure of the stress state (the normal and shear stresses) at any point

within a body.[39] The von Mises criterion is an experimentally based law that can be

used to determine whether the stress state in a material causes plastic ow (or yielding).
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Note, the von Mises criterion is based on the strain energy density associated with a change

in shape (with a zero volume change) at a material point. are the normal stress

components as de ned in Figure 2.11. These are de ned by

=
(1 + ) (1 2 )

[ (1 ) + + ]

where are the components of strain and , , and cycle over the Cartesian axes. The

components are sheer stress tensors and found from the product the the sheer modulus

and sheer strain. When is greater than the yield stress, the material will buckle, and

thus we will examine the this using the nite element approach.

For a beam with dimensions ( = 400 m, = 5 3 m, = 20 m) the calculated von

Mises stress during exural vibration was found to be 1.762 N m2 and the yield stress was

found to be 1.827 N m2. This assumed a of 1000. These calculated values suggest

that use of a mechanical stress buttress is necessary to prevent buckling of the mechanical

oscillator. Adding a 40 m×40 m×40 m silicon cube to the beam, for the same , gives

equal to 2.872 N m2 and a yield stress of 9.784N m2.

Figure 2.12: Calculated von Mises stress for exural vibration of a resonator without a
stress buttress. The units of stress are given in N m2.
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Figure 2.13: Calculated von Mises stress for exural vibration of a resonator with a stress
buttress. The units of stress are given in N m2.

Based upon our current magnetic assembly designs, ( = 26 m, = 8 m, = 26 m,

= 1 6T 0), must be larger than 96 2N m, to prevent snapping of the beam

due to a negative e ective spring constant. The e ective spring constant is given by

= 2 ( + 0 375 ) and for a goal of = 2 · 1 kHz we observe that it will be

necessary to balance to within a few percent. This is displayed in Table 2.4.

( m) (N m) ( kHz)

5 81.3 imaginary
5.1 86.3 imaginary
5.2 91.4 imaginary
5.3 96.8 7.0
5.4 102.4 22.3

Table 2.4: Oscillator resonance frequency as a function of beam height.

2.4.2 Capacitive Transduction

While it is possible to thin the beams with reasonable control by etching, control over

the etch rate on the scale of 100 nm is necessary. One method to avoid this is to use

capacitive transduction. When a voltage is applied between the clamped-clamped beam

and an electrode, an electrostatic force is induced on the beam. For a beam of width

coated with a conductor of width and a separated electrode of width , the parallel plate
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capacitance is

=
0

+
(2.13)

where is , is the relative dielectric constant of the dielectric layer (in this case

the silicon beam), and is the distance separation between the beam and electrode. The

electrostatic force applied to the beam is found by considering the power delivered to the

capacitance

=
1

2
2 0³

+
´2 (2.14)

where is the potential di erence between the beam and electrode and accounts for the

reduction in the parallel-plate capacitance due to the roughness of the metal-to-dielectric

interface. This is observed quite often in the MEMS shunt switch literature.[40] Note that

when = 0, the electrostatic force is

=

μ
1

2
0

2

2

¶
=

μ
2

¶
(2.15)

compared to the case where there is no dielectric layer, = 2 . Therefore, even for very

small metal-dielectric gaps, a large attractive force exists. The restoring force due to this

electrostatic force results in actuation of the oscillator. This force is given by

= ( 0) + ( 0)
3 = ( 0) (2.16)

It should be stated that this model neglects charge injection onto the dielectric, but should

provide a reasonable account of the physics due to the quadrupolar eld felt by the charge

on the dielectric. The snap down voltage is given by

=

μ
+

¶r
2

0

=

μ
+

¶s
2

0
( 0) (2.17)

and should allow the oscillator to be shimmed by more than the 500 nm case we considered

in the lineshape estimate.

While this design allows magnet shimming, it does not allow modulation of the resonance
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frequency readily. A simple arrangement is to use a three-plate capacitor as shown in

Figure 2.14. In addition to adjusting the oscillator’s equilibrium position and its resonance

frequency, this device will also be con gurable to include active feedback with voltages at

on the detector magnet’s position during spin inversion.

Figure 2.14: Model of electromechanical tunable three parallel plate capacitive transducer.

This model serves as a starting point to study the capacitive transducer. Here the top

and bottom plates are mechanically xed while the middle plate is suspended by two springs,

each with a spring constants 2. Without loss of generality, the voltages applied to the

plates may be time-dependent. The equilibrium between the electrostatic and mechanical

forces is given by

=
1

2
12 2

1 +
1

2
23 2

2

=
1

2
0

2
1

( 1 + )2
+
1

2
0

2
2

( 2 )2
(2.18)

Experimentally, we are consigned by the mechanical stress buttress and magnets and

will therefore employ the design shown in Figure 2.15. Finite element simulations were

conducted on a device with this geometry and those results are displayed in Figure 2.16.

The force on the center plate was calculated as functions of 1 and the potential di erences

between the three plates. From the tted data, we roughly nd that the capacitive force

constant is
5 2
1 0
3
1

+
5 2
2 0 Si

3
2
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Figure 2.15: Three-plate capactitive force transducer. This arrangement allows relatively
large surface area capacitor plates to be used to increase the force on the oscillator. In
its working con guration the oscillator will have gold plated on the beam to act as the
electrode at potential 2. The plates are separated by distances 1 and 2, with 1 xed
at 5 m.

Figure 2.16: FEM analysis of three-plate capacitive transducer. (a) The force on the center
plate as a function of distance separation 1. The solid dots corresponds to a 48V potential
di erence and the hollow dots correspond to a 24V potential di erence. The same potential
di erence existed between the middle and bottom plates. (b) The force on the center plate
as a function of potential di erence. The solid dots corresponds to a 1 m 1 separation,
while the hollow dots correspond to a 500 nm 1 separation. The same potential di erence
existed between the middle and bottom plates.

2.4.3 Resonator Characterization

In Figure 2.17, we see a scanning electron micrograph of a microfabricated mechanical

oscillator. This device had a resonance frequency of 111 kHz in a 0 = 0 eld. The

measured in air was found to be 76 and the vacuum measurement gave a of 347. It is

suspected that the low observed of this device is due to damping by magnetic material

remaining in the 1 m gap. The should be improved with the updated design of a 1 m

gap.
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Figure 2.17: Scanning electron microscope image of a microfabricated mechanical oscillator.
The detector and slitted annuluar magnets are clearly seen under the mechanical stress
buttress. The butress dimensions are 40 m× 40 m × 40 m, the beam width is 10 m,
the beam height is 6 m and the beam length is 400 m. SEM image courtesy of Choonsup
Lee.

2.5 Damping

The mechanical properties of micro- and nano-electromechanical systems is of great tech-

nological importance. For an optimized system, the force resolution of a detector is limited

by the thermomechanical noise, which is a consequence of mechanical energy conversion to

heat due to coupling of the mechanical oscillator with its environment. However, the sensi-

tivity is ultimately determined by the sources of damping in the system. We will consider

both internal and external sources of damping and will show that the greatest contribution

is through generation of azimuthal eddy currents by the moving detector magnet.

2.5.1 Air Damping

Air damping increases as the resonator’s surface-to-volume ratio and is proportional to

pressure.[41] The damping is given by

= =
2
μ ¶2r

12
(2.19)
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where is the resonator frequency in the th mode with mode constant , is the

resonator thickness, is the material density, is the resonator length, is the pressure

and is a molecular parameter of the air given by
q

32
9 with as the molecular weight

of air, and is the gas constant. For a beam with thickness 5 3 m, length 400 m at a

pressure of 1 × 10 3 torr, is of order 105. Therefore, air damping is insigni cant at

our size scales and experimental pressure. This is consistent with the observation that the

mean free path of air molecules at this pressure is 76mm.

2.5.2 Thermoelastic Damping

As acoustic modes propagate throughout a solid, there is a mode of damping due to a

nonlinear interaction with a thermal bath of excited state elastic modes. If these modes,

thermal phonons, have a mean free path smaller than the wavelength of the acoustic mode,

then the system obtains regions of local temperature. If the phonon relaxes fast compared to

acoustic mode, then the temperature distribution is well-de ned and the phonon excitations

may be treated collectively. This interaction is governed by the thermal expansion coe -

cient and in an isotropic solid = 1 . The excitation of exural modes in a thermoelastic

solid creates a damping mechanism whereby the coupling between the strain and temper-

ature elds is dissipated as heat through temperature gradients. This damping is known

as thermoelastic damping and sets an upper bound on even an ideally designed mechanical

resonator’s ringdown time. The magnitude of thermoelastic damping depends on only the

material’s temperature dependent thermodynamic properties. For exural vibrations of

thin resonators, the peak damping as a function of frequency is dependent upon the beam

dimensions.

The problem of thermoelastic damping was rst treated by Zener [42, 43] who showed

that the damping can be approximated by a single relaxation time which depends upon the

height of the beam and the material’s thermal di usivity . This problem was recently

treated exactly by Lifshitz and Roukes.[44] Their model considers a exural excitation in

a beam causing both displacement and temperature elds and their assumption that the

length of the beam is large compared to the width and height is valid in all resonator

designs we have considered.
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The thermoelastic damping in a thin beam is given by

1
=

2
0
μ
6
2

6
3

sinh + sin

cosh + cos

¶
(2.20)

where

=
3 2

2 4 3
(2.21)

where is the mode number ( for the fundamental mode is 4.73), is the thermal

expansion coe cient, is the heat capacity per unit volume at constant pressure, and

=
q

is the the thermal di usion length.

For a beam at 300K of length 400 m and height 5 3 m we observe that is

2 64 × 105 corresponding to a of 90 s for a 1 kHz resonance frequency. This drops o

quite rapidly as increases, falling to 800ms for a 50 kHz oscillator. Therefore, we observe

that thermoelastic damping will not contribute signi cantly unless the resonance frequency

for the mechanical oscillator of this size scale is above 50 kHz. The magnetic softening

e ects will ensure this condition is met.

Figure 2.18: Thermoelastic damping as a function of beam height and beam length for
a rectangular silicon beam. In the rst plot, was xed at 400 m and in the second plot
was xed at 5 3 m.

2.5.3 Clamping Losses

We now consider a mechanism of damping by which vibrational energy of a resonator is

dissipated through its support. When a resonator undergoes exural vibration, both a

vibrating shear force and moment is exerted on its clamped ends resulting in excitation of
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elastic waves in the support. We will make the assumption that the elastic wavelength

of the transverse propagating wave is much larger than the beam thickness and that the

ow of vibrational energy into the clamping points is irreversible. This simpli cation has

allowed Euler-Bernoulli theory to be used to derive an analytical expression of the damping

due to clamping loss.[45] Furthermore, the losses due to the vibrating moment are several

orders of magnitude smaller than the shear force and will be neglected.

For a clamped-clamped beam, this was found to be

=
2 43

(3 ) (1 + )
+
1 91

¸
1

( )2

μ ¶3
(2.22)

where is the mode constant ( for the fundamental mode is 1.5056), is the mode

shape factor ( for the fundamental mode is 0 983)

=
sin ( ) + sinh ( )

cos ( ) + cosh ( )
(2.23)

and arises from consideration of the Fourier transform of the two dimensional elastic wave

propagating during excitation and is given by

=
¡
1 2

¢ Z 1

0

2

1 2
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1 2
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is a parameter that relates the mode shape factor to the the longitudinal propagation

velocity , = . The longitudinal and transverse propagation velocities are given

by

2 = ¡
1 2

¢ and 2 =
2
¡
1 + 2

¢ (2.25)

with corresponding wavelengths of =
2 . Substituting these values into equation

2.22 gives

= 0 44

μ ¶3
(2.26)

and for our case, = 400 m and = 5 m, this gives = 2 28× 105.
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2.5.4 Surface Damping

As a resonator is scaled down, the surface-to-volume ratio increases, and it is possible that

surface losses may become signi cant. The surface loss is mostly caused by surface stress,

which arises from absorbates on the surface or by surface defects. These defects usually arise

from exposure to etching chemicals which leave tens of nanometer layers of SiO2 or hydrides

on the surface.[46] The surface dissipation is modeled by considering the complex Young’s

modulus = + where is the dissipative component. For a clamped-clamped

beam, the stored energy can be expressed as

0 =
1

6

Z
0

2
max ( ) (2.27)

where max is the strain occurring on the top or bottom surface of the beam during exural

vibration. For a surface thickness of and complex modulus , the energy loss per cycle

due to the surface layer is

= 2

μ
+
3

¶Z
0

2
max ( ) (2.28)

giving

=
+ 3 2

(2.29)

Typically, both and are di cult to estimate or even experimentally measure [46] but

a for similarly con gured resonators has been found to be roughly 1 5× 105.[47]

2.5.5 Eddy Current Damping

The primary means of experimentally observed damping is through eddy currents. Az-

imuthal eddy currents are generated due to the detector magnet moving up and down

through the annular plane as shown in Figure 2.19. Garret Leskowitz presented an ana-

lytical model for eddy current damping for magnets at the millimeter scale.[18] This model

neglected the time dependence of eddy currents.
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Figure 2.19: Azimuthal eddy currents due to relative motion of magnets.

If the motion of the magnet is con ned to the symmetry axis, its velocity is given by

v = ẑ, and by this symmetry preservation the electric eld can be expressed as

E = ˆ (2.30)

where is the azimuthal component of the magnetic eld and ˆ is a unit vector in this

cylindrical coordinate frame. The induced currents J ( ) = E (r) are also azimuthal and

the dissipated power density is given by

= J ·E = 2 2 (2.31)

The detector moves at a velocity ( ) whose frequency depends on the mechanical oscillator

resonance frequency

( ) = 0 cos (2.32)

and the power density can be expressed as

( ) = 2 ( )

Z
2

= 2 ( ) (2.33)

where is the damping parameter in equation (2.1). Leskowitz [18] also showed that this

damping is scale-invariant and is given by

= 2
2 2

(2.34)

The scale invariance was con rmed by nite element simulations, but the observed damping
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Figure 2.20: Experimental measurment of eddy current damping e ects for the milimeter
scale spectrometer. The oscillator ringdown time is plotted as a function of the number
of radial slits in the annulus for three detector con gurations.

rate for the millimeter scaled device was a factor of 3.5 higher than the analytical result.

The numerical result is in closer agreement with experiments.

We have measured the e ects of eddy current damping for our milimeter-scale spectrom-

eter. In these experiments, between zero and 32 radial slits were added to the annulus.

The width of these slits was 80 m and their length was 500 m. The annulus was made

from mu-metal (HyMu80) with a saturation magnetization of 1T 0 and a conductivity

of 1 61 × 106 S m. The annulus had a radius of 15 25mm and a height of 3mm. The

detector was also made of mu-metal and had 60 m radial slits of length was 200 m, with

a radius of 1 5mm and a height of 3mm. The ringdown time measurements were made

at a pressure of 1 m torr and the values of the motional mass were corrected in the cases

of slitted detector magnets for removal of magnetic material. These results are plotted in

Figure 2.20. We observed improvements in the ringdown time from the case of no slits in

either magnet to 32 slits in the annulus and 8 in the detector of a factor of 10. In these

experiments the size of the gap was 100 m.

In his Ph.D. thesis, Louis Madsen described a case to minimize eddy current damping

by using magnets made of packed nanoparticles.[30] For this case, we will consider spherical

particles and calculate the dissipation in a single sphere. We will assume that the magnetic
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Figure 2.21: Spherical magnetic nanoparticle. Symmetry requires that the eddy currents
to be azimuthal where is along ẑ.

elds that arise from the induced eddy currents are small enough not to a ect nearby

particles. This assumption is analogous to assuming that the resistivity of the material is

in nitely large or that the relative velocities of the moving and stationary magnets is small.

The rst-order changes to the local eld B are given by B = B where is the

longitudinal velocity of the moving magnet. If B is uniform over the sphere, higher order

terms may be neglected and we can calculate the electromotive forces in the sphere. We

rst note that along a circular path a distance from the symmetry axis of the sphere,R
E· l =

R
= 2 . Therefore,

2 =

Z Z
×E · n̂d (2.35)

=
1

2

Z Z ¯̄̄̄
B
¯̄̄̄

=
B 1

2
(2.36)

because Bkn̂ and we are assuming it is uniform over the particle.

The frictional coe cient is given by the dissipated power = 2 where is the

conductivity. This is also the rate at which work is done by the friction in a time .

=
1
Z
F· l = 1

Z
v · v = 2 (2.37)

So
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=
2
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5

where is the sphere radius.

This gives a damping rate of

= =
2

15

μ
B
¶2

5 (2.39)

and since is calculated per particle, over the volume of the packed magnet there are

particles with

= 4
3

3
(2.40)

where is the packing factor. The maximum packing density that can be observed is

hexagonally closed packed, = 0 76. There the total damping is given by

=
1

10
2

μ
B
¶2

(2.41)

where
¡
B
¢2

is averaged over the volume of the entire magnet. It would appear that

scales as the square of the nanoparticle radius, contrary to the prediction of Leskowitz.[18]

However, is a scaled radius depending on the fractionation of the total magnet volume

over each nanoparticle and therefore equation (2.41) is consistent with the observation of

Leskowitz when this is taken into consideration.

As an example, if the initial damping rate for a 52 m diameter detector is broken into

magnets of 500 nm size, is found by

μ
0 5 m

52 m

¶2
10 4 (2.42)

Therefore, if a detector is fabricated out of packed nanoparticles it may be possible to

remove eddy current damping as the primary limitation on the oscillator ringdown time.

Ultimately, this must be balanced with the decreased homogeneity for packed nanoparticle

detectors.
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2.6 Radiofrequency Excitation

2.6.1 Spin Inversion

The oscillator is driven by inverting the nuclear magnetization of the sample twice per

oscillator period. Even in an optimal spectrometer con guration, the spread of Larmor

frequencies is of order 10’s of kHz. Therefore, appropriate means must be taken to in-

vert the inhomogeneously broadened spins with minimal loss in magnetization and with the

avoidance of thermalization with the transverse magnetic eld over a time period compara-

ble to the spin-lattice relaxation time during inversion 1 . The thermalization losses are

given by 2 1
where is the oscillator period. This requirement sets the relaxation time

at 1 +
2 1 +

with as the fraction of magnetization loss per pass.

Adiabatic rapid passage (ARP) is a well-documented means of e cient inversion of a

population of inhomogeneously broadened spins.[48] In the rotating frame, the magnetiza-

tion evolves according the torque equation described in Chapter 1 and is given by

M = M×B = M×
μ

1
bi+ ( ) 0

k̂

¶
(2.43)

where bi= x̂ cos ( ) ŷ sin ( ) and k̂ = ẑ are unit vectors in the rotating frame, {x̂ ŷ ẑ}

are laboratory-frame unit vectors, and ( ) = ( ). In an e cient ARP cycle, B is

followed by the sample magnetization vectorM ( ) if the o set frequency ( ) = ( ) 0

is swept such that the angle ( ) = tan 1 ( ( ) 1) changes linearly with time. This

condition requires ¯̄̄̄ ¯̄̄̄
¿
q

2 2
1 +

2 (2.44)

and
¯̄ ¯̄

is maximized when = 0 which results in a relatively weak B .

Hardy [49, 50] observed that by using tangent-based sweeps, the ARP cycling could be

done a faster rate far from resonance, therefore allowing more e cient inversion of spin

magnetization. This frequency sweep has the form

( ) = 0 tan ( ) (2.45)

where is a sweep shape parameter and where = 2 tan 1
³ ´

where is the

total sweep time and 2 is the sweep width. This inversion sequence also requires much
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less rf power than other methods, which reduces drift of the oscillator resonance frequency

during experiments.

Figure 2.22: The basis of adiabatic rapid passage (ARP). In the rotating-frame, the o set
frequency ( ) is swept such that the angle ( ) = tan 1 ( ( ) 1).

Figure 2.23: Illustration of driving the mechanical oscillator with e cient ARP. is
swept in accordance with equation 2.45, and there are two sweeps per mechanical oscillator
period . Both sweeps occur from the same side of the center frequency 0. is
maximized when the magnetization M is nearly along the static eld. We observe that
( ) is 90 out-of-phase with the driving force.

In our experiments we sweep from the same side of the NMR line on every inversion

to avoid spurious excitation of the oscillator by rf currents in the coil. This is illustrated

in Figure 2.23. Thus, the predominant Fourier components due to non-NMR driving will

be at twice the oscillator frequency. To avoid complications from the inversion ending at
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Figure 2.24: Phase cycling for e cient ARP in the rotating frame. After a single pass
through resonance, the magnetization 1 is not perfectly inverted and on the second pass 2,
we observe that M will not be aligned with the e ective eld. A transverse component
of M is dephased causing a fractional loss of = 1 cos 2 . A 180 phase shift of the rf,
placing the e ective eld at 3, eliminates this loss.

B , which causes the the magnetization to have a non-vanishing transverse component, a

180 phase shift is applied on every other pulse. This phase-cycling improves the driving

time by a factor of four.[30] Figure 2.24 details this phenomenon.

2.6.2 Excitation Coil

The most common excitation coil for NMR is the solenoid. Solenoids do not provide

rigid structures for sample mounting and without signi cant modi cation do not allow for

e ective dissipation of heat during excitation. Heating of the mechanical oscillator causes

the resonance frequency to drift during an experiment, resulting in decreased e ciency

in driving. Therefore, we have constructed a new design which simply consists of two

parallel conductive sheets evaporated on a silicon “I-beam.” The I-beam has dimensions

10mm × 500 m × 450 m (LxWxH) and has a 50 m hole through the center to allow

placement of samples. The silicon gap above and below the hole is kept at 3 m to give

our desired max of 34 m. This arrangement is shown in Figure 2.25.

We would like to use a 100 kHz Rabi frequency for rf excitation of the spins to ensure

complete inversion. Since the experiments will be done in the rotating frame, an additional

factor of two is necessary and thus the 1 eld must have a strength of 4 7mT. In Figures
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Figure 2.25: Radiofrequency excitation coil and silicon coil and sample holder. The length
of the evoporated gold along the narrow portion of the silicon “I-beam” is chosen to be
5 4 m to allow the entire spectrometer to reside in this cavity. The posts in the I-beam
will serve to align the two pieces of the spectrometer together and will provide a wire bond
contact point for radiofrequency currents.

2.26 and 2.27 we show the results of a nite element simulation whose purpose was to identify

the current necessary to generate this 1 eld and to get a sense of the rf homogeneity across

the sample. We nd that the necessary current to generate a 4 7mT 1 eld is 0 527A

and the ac resistance at 90MHz is 0 216 . The eld homogeneity is comparable to

solenoidal microcoils, but requires a higher current to generate the 1 eld.[51] At 90MHz,

the skin depth through gold is 5 m and since our coil thickness is 3 m, skin depth e ects

are not important.
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Figure 2.26: 1 magnetic eld homogeneity provided by parallel-plate rf coil. (a)
contour map through the sample center. (b) contour map of magnetic eld through
the sample center.

Figure 2.27: 1 magnetic eld homogeneity provided by parallel-plate rf coil. (a)
contour map of magnetic eld 10 m above the sample center. (b) contour map of
magnetic eld 20 m above the sample center.

Operating at this current, the required power = 2 is 60mW. The heat transport

equations were solved numerically and it was found that the for this power, the temperature

rise of the mechanical oscillator is 2 1 C. This relatively small temperature increase is due

to mounting the coil on a large silicon support and the surrounding silicon in the mechanical

oscillator structure. The spectrometer geometry is shown in Figure 2.39 and in Figure 2.28

we show a scanning electron micrograph of a wafer containing the I-beam structures and a

rectangular sample hole.



57

Figure 2.28: SEM image of sample and radiofrequency coil support. Image courtesy of
Choonsup Lee.

2.7 Sample Transport

We have yet to discuss how micron-sized samples will be placed into the BOOMERANG

spectrometer. Handling of these samples and placing them into the sample hole shown in

Figure 2.28 by hand is relatively primitive and risks damage to the spectrometer. What we

really seek, is an automated method of sample delivery that will shuttle samples in and out

of the detection region with the possibility of moving the sample several diameters away

during the NMR evolution period to improve the homogeneity and then back again for

detection. A method that takes advantage of the microfabricated devices is to incorporate

a micro uidic architecture into the spectrometer.

Micro uidics has seen an explosive growth in recent years and rather intricate circuitry

can be readily designed, even allowing ne control of chemical reactions and mixing in

pre-de ned reactors. The primary material that has been used for micro uidic channel

assembly is poly-dimethylsiloxane (PDMS). PDMS o ers tremendous exibility in design

as well, is low-cost, and is rather chemically inert, but its substantial proton and carbon

spin density makes it incompatible with 1H and 13C NMR spectroscopy. We will now

outline methods to include silicon-based micro uidics.

This approach will mirror recent developments in piezoelectric microvalves integrated

with silicon micro uidics.[52, 53, 54, 55] We see a cross-section of such a device in Figure

2.29. The diameter of the channel is 40 m and the length is 120 m. The sample channel

has a piezoelectrically controlled microvalve on the left that lets uid in initially. As a

sample passes through it may be contained if the pair of microvalves on the left hand side
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are closed or it may be selectively released and then reintroduced to allow NMR evolution

to occur in a more homogeneous eld.

Figure 2.29: Cross-section of silicon micro uidic channel. There are three piezoelectrically
controlled microvalves indicated in purple. On the right hand side, the two narrow channels
allow samples to leave and reenter or to allow multiple samples to enter allowing study of
chemical reactions.

The uid ow was modeled4 using the Navier-Stokes equations

u ·
³

u+ ( u)
´
+ (u · )u+ = 0 (2.46)

· u = 0 (2.47)

where is the uid density, u is the velocity vector, is the viscosity, and is the

pressure.[56] The uid used in these simulations was water, with viscosity 1× 10 3 Pa s.

The movement of the valve is described by which returns the value of one in the area

corresponding to the valve pin and zero elsewhere. The actuation of the valve is given by

= (2.48)

which is the cross-sectional area of the valve where

= ( 0) ( 1) (2.49)

4The simulation was conducted using the udic mechanics component of ANSYS software,
http:\\www.ansys.com, Canonsburg, PA. I would like to thank the Gharib group at Caltech for generous
use of their software and workstations.
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= 1 ( 1) + ( 2) (2.50)

where 1 and 2 depend on time according to

1 = 0 + max sin (2 ) (2.51)

2 = 0 + max sin (2 ) (2.52)

and where 0, 0, 1, and max are xed in time and describe the size of the valve pin and

amplitude with which the pin moves.

At the inlet, the model uses fully developed laminar ow. The velocity is set to a

parabolic pro le with maximum velocity max. At the outlets, a neutral boundary condition

states that the normal component of the stress tensor is zero:

n·
h

+ ( u) + ( u)
i
= 0 (2.53)

and all other boundaries have condition u =0.[56] The simulation of water transport

through the channel is shown in Figure 2.30. In this simulation we consider the a model

for a chemical reaction in which a reactant is introduced at time zero and then at a time

of 100ms a second reactant is added. We have assumed that the reaction is complete

after 250ms and that after this time the reaction mixture leaves the analysis area. At all

times strictly laminar ow was observed with a maximum Reynolds number of 10.64. This

simulation suggests that sample transport out of the detection area into a region of high

magnetic eld homogeneity and transport back for detection is feasible on time scales that

compare with expected detector ringdown times, 80ms-1 s.
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Figure 2.30: Simulation of Navier-Stokes equations in a silicon micro udic channel with
piezeoelectric microvalves. The contour plots show the velocity eld u in m s
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2.8 Detection of Oscillator Motion

2.8.1 Transverse Fiber-optic Interferometry

Fiber-optic interferometry (FOI) is a versatile method for displacement sensing of both

micro- and macro-scale objects. One of the strongest motivations for using FOI for dis-

placement sensing is its excellent sensitivity, 0 1 pm Hz [57], with large dynamic range.

We will begin by discussing the theory of interferometric detection of oscillator motion.

The FOI consists of a laser (Sharp LT023 diode, = 780nm), directional coupler (50/50,

Gould Electronics), and photodiode detector (ThorLabs FDS010, Si, 9V revese-biased).

The directional coupler delivers light from the laser to the sensing ber and photodetector.

The interference signal is formed between light re ected from a cleave at the end of the

sensing ber and light re ecting from the oscillator and re-entering the ber. The light is

directed through the coupler to the photodiode for detection. The circuit controlling the

laser was adopted from [58] and is shown in Figure 2.31

Figure 2.31: Constant current controller for Sharp LT023 laser diode.

The optical power emitted from the four ber leads can be calculated from optical pa-

rameters. If the laser couples optical power into the interferometer, and the directional

coupler has power splitting ratio , then the optical power delivered to the beam dump is

and the power directed into the signal arm ber is . The beam dump consists

of a bare ber end immersed in index of refraction matched uid to stop re ected light

from re-entering the coupler. At the end of the signal arm ber, a fraction of the power
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is re ected back towards the coupler and has an amplitude dependence on the inter-

ference between a re ection from the cleaved ber end . The amplitude changes as the

ber-to-oscillator spacing changes. The optical power directed into the photodetector is

and the power re ected back into the laser is 2 . The light re ected

back into the the ber is eliminated by using an optical isolator. These parameters along

with the working circuitry of the interferometer used in experiments are displayed in Figure

2.32

Figure 2.32: Schematic diagram indicating pathway, detection, and optical power of laser
light in the ber-optic interferometer.

For an optical ber in vacuum, the re ectance at the ber cleave is

=

μ
1

+ 1

¶2
(2.54)

where is the ber core index of refraction. The oscillator re ection is similar in

magnitude. The optical amplitudes re ecting from these surfaces combine with a phase

shift ( ) of 4 radians for each wavelength of separation, and an additional shift of

occurs when light in a medium of low refractive index re ects from a surface of higher index

of refraction

( ) = +
4

(2.55)
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Thus, the resultant signal re ection is

=
³

1 2
+

1 2 ( )
´³

1 2
+

1 2 ( )
´

= + 2
p

cos (4 ) (2.56)

The optical power that reaches the photodiode is then

=
³

+ 2
p

cos (4 )
´

=
¡
1 ¯ cos (4 )

¢
(2.57)

where is the power loss between the ber and photodiode, is the average output

power, and ¯ is the fringe visibility

¯ =

p
+

(2.58)

The interferometer is most sensitive to position changes at the center of a fringe, when

4 0 = (2 + 1) 2, or fringe center position 0 = (2 + 1) 8, where is an inte-

ger. Expanding in a Fourier series for small deviations from the setpoint 0, the

interferometer output is

=
4 ¯ (2.59)

The signals observed during experiments are voltages and the maximum max and minimum

min amplitudes of the interference signal may be used to de ne the fringe visibility as

¯ =
max min

max + min
(2.60)

This is shown in Figure 2.33.

Typical optical bers have cladding diameters of 125 m, over two times the diameter

of the detector magnet. If the ber-optic interferometer were to operate in its normal lon-

gitudinal arrangement, where the ber core sits directly above the measured oscillator, the

hole required through the static eld magnets would impart a severe reduction in magnetic

eld strength and would introduce large eld inhomogenity across the sample.

An alternative is to cleave the end of the ber at 45 such that the ber axis is parallel to
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Figure 2.33: Interference waveform of the voltage output of the transimpedence ampli er
as a function of 0 .

the annular and detector magnets and the long axis of the oscillator. In this arrangement,

we have a transverse, ber-optic interferometer, TFOI. A Fabry-Perot cavity is the formed

between the cladding-air interface and the surface of the mechanical oscillator as shown in

Figure 2.35. The guided wave in the ber core is con ned by the 45 cleave by total-internal-

re ection and exits the ber through its short axis. The bers used in our experiements

were either purchased from Oz Optics, Inc. or polished in our laboratory. Our polishing

procedure is outlined as follows. First, the polyacrylate coating on the cladding was stripped

by soaking the ber end in acetone. The stripped ber end was then placed through a

stainless steel cylinder whose center was tapped with 400 m diameter bore and whose face

was machined at 45 such that 500 m of ber penetrated through the end of the bore.

The ber was then xed into the bore by thermoset glue, Crystalbond R°. The end of the

ber was scored with a diamond scribe and pressure on the ber at the Crystalbond R°-

stainless steel interface was applied to provide the 45 cleave. The Crystalbond R°- ber end

was then iteratively polished with emory paper and ber polishing paper (ThorLabs, Inc.)

down to 0 1 m roughness. An optical microscope image of the the ber end is shown in

Figure 2.34.
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Figure 2.34: Optical microscope image of 45 cleaved, 125 m diameter ber.

We may assume that the light exits through a plano-concave lens and this leads to a

focal distance of

=
1

where is the radius of curvature and is the index of refraction. is taken to be the

core-cladding radius and for the cladding at = 780nm is 1.4967, the index of refraction

of the cladding is 1.5002.5 Therefore, we calculate to be 126 m. Experimentally, we

nd to be 108 m from the center of the core, or an Fabry-Perot cavity size of 45 m

. This was measured by placing the ber directly on the measured surface, establishing a

zero distance, and then adjusting the distance separation such that the amplitude of the

interference fringe was maximized. During this measurement, the ber was placed on a

translation/goniometer stage controlled by micrometer actuation. Fine control and active

feedback on the interferometer position (vide infra) of the positioning was accomplished by

incorporation of a piezeoelectric actuator. The goniometer served the purpose of adjusting

the angle of the face of the cleaved ber face with the surface of the mechanical oscillator.

It should be noted that this experimental measurement is subject to some error in estab-

lishing the correct zero, due to monitoring the ber being ush with the surface by eye.

Furthermore, during the polishing process, it is possible the surface roughness at both the

cleaved end and the exit end of the ber are causing aberrations in the lens. It is suggested

that after the polishing the ber is sonicated in Syton R°HT-50, a colloidal suspension of
5Oz Optics, Ontario, Canada. http://www.ozoptics.com
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40 nm-sized silica particles.

Figure 2.35: Transverse ber-optic interferometer. A 45 polish at the ber end causes
light to be launched perpendicular to the ber axis by total internal re ection. On the
left, the longitudinal cross-section of the ber is shown de ning the radius of curvature
and the focal distance . On the right, the transverse cross-section is shown where the
Fabry-Perot cavity is de ned by the cladding-air interface and the surface of the mechanical
oscillator. The re ected light is shown as a dotted line. In both cases, the size of the core
has been magni ed by a factor of ve for clarity.

We have also characterized the fringe visibility for the TFOI. Initial attempts to measure

¯ on silicon surfaces was not promising, where the optimum fringe visibility was found to

be 4%. Acceptable fringe visibilities for locking (vide infra) on an interference fringe are

greater than 10%. An identical experiment was performed with 200 nm of gold evaporated

on a silicon substrate and showed an improvement of almost an order of magnitude in

fringe visibility, 38%. This is presumably due the superior re ectivity of gold over silicon.

Therefore, it is advisable to include gold on the buttress surface.

The fringe visibility measurements were performed by maximizing signal with respect

to the goniometer angle to account for alignment issues of the ber and oscillator. The

oscillator was also mounted on a tilt stage to further correct for these issues. There is

acceptable tolerance in the positioning of the ber: a working range of 45 m± 17 m was

found, where the lower and upper limits are referenced to ¯ = 10%. This does require that

a notch be etched in the silicon support to accommodate positioning of the ber.

The angle sensitivity of the TFOI was also measured. The goinometer-mounted ber

was swept through angles of ±20 . At each angular measurement, the height of the Fabry-

Perot cavity was modulated to nd the maximum fringe visibility. These results are shown
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in Figure 2.36. We observed that the TFOI has an angular sensitivity of±4 . While we have

used the fringe visibility as a measure of the practicality of the ber-optic interferometer

as a displacement sensor, its sensitivity actually depends upon the balance between shot

noise and photon pressure noise.[11, 59] These noise sources will be quanti ed in the next

section, but we will state here that they are insigni cant compared to the thermal motion

of the oscillator.

Figure 2.36: Angle sensitivity of the TFOI. Only positive angular deviations are shown
due to the symmetry of the plot.

To correct for thermal drift and rf heating (drifts of 1 m) we have incorporated a ber

position feedback circuit. Since the interferometer is most sensitive in its linear regime,

(Figure 2.33), active feedback on the ber-oscillator gap is necessary. This is accomplished

using the circuit shown in Figure 2.37.[58] is controlled by a potentiometer and is

sent through a voltage follower. The output of the transimpedence ampli er is sent

through a second voltage follower and these signals are combined and sent to a di erential

ampli er. This error signal is then sent to an integrator via a single pole double throw

(SPDT) switch which allows manual adjustments to be made with damage to the circuit.

When the SPDT is o is shorted and the output of the integrator is sent to ground.

When the fringe has become “locked”, the output of the integrator, which is scaled by

( ) 1, is ampli ed by 1+ 2

1
and an o set voltage is added to the ampli ed

signal via the adder and is the subtracted by the inverting ampli er whose output voltage
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Figure 2.37: Feedback circuit for locking the interferometer to the sensitive portion of the
interference waveform. All voltages shown were provided by dc power sources to minimize
electrical noise.

is sent to the piezoelectric. If during experimental observations 0 0, the error signal

has a negative polarity and the output of the integrator V creates a positive voltage, which

becomes ampli ed, expanding the piezoelectric. The opposite is true for 0 0.

While in this con guration, the TFOI will be functional, it may be worthwhile to con-

sider the following modi cation. Recently, it was reported that a cylindrical lens could be

fabricated onto a optical ber.[60] If the radius of curvature of the lens could be lengthened

or if it was possible to design the lens with a low refractive index material which did not

signi cantly distort the path of the light, the working distance could be improved. Al-

ternatively, by fabricating a spherical mirror into the buttress, the focal distance may be

increased to many times that shown in Figure 2.35. A spherical concave mirror has a focal

distance given by

=
2

(2.61)
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where is the radius of curvature. is given by

=
2 + 2

2
(2.62)

where is the mirror radius and is the the concavity depth as shown in Figure ??.

The mirror may be created in the buttress by selective etching if an appropriate photoresist

mask is placed on top of the buttress. We can solve equation 2.62 for and nd that

( ) =

s
1

2

2
(2.63)

A focal distance of 220 m would remove the necessity for the etched notch, and this sets

at 440 m. If we let be 20 m, this sets at 0 5 m which should be attainable

using LIGA.[61, 62, 63]

2.8.2 Other Displacement Sensing Methods

Louis Madsen provided a comprehensive review of other sensing methods in his Ph.D.

thesis. [30] These include piezoresistive [64] and capacitive [65] sensors which could be

batch fabricated directly onto our spectrometer. Capacitive sensing may have the required

noise oor, but as was previously mentioned due to charge counting statistics, their utility is

limited at reduced size scales. A recent report of piezoelectric transducers [66] is exciting in

light of its sensitivity and ability to allow multiplexed detection of multiple devices; which

at present is not possible with ber-optic interferometry. The sensor developed in the

Roukes lab allows for detection of thermomechanical noise and can be used on devices with

resonance frequencies as high as 71MHz.

2.9 System Noise Analysis

The noise in the prototype spectrometer optimized for 3mm samples was considered by

Leskowitz.[18] We will reinvestigate it here to compare the sources of noise in the 50 m

spectrometer to the Brownian motion of the oscillator. The noise in oscillator may be

characterized by the noise in the driving force whose rms uctuation is given by

=
p
4 (2.64)
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with square-root force-noise spectral density 1 2
= 4 . The NMR spectra will be

recorded pointwise, where 1 À , such that ¿ 1
4 . Thus, the oscillator is approx-

imately in steady-state during driving. We may then express a square-root displacement-

noise spectral density as

1 2 = 2

p
4 =

s
4

2 (2.65)

recalling that = is the total damping parameter. If we assume a motional mass

of 3 12 × 10 13 kg, a frequency 2 of 1 kHz, and a damping of 5 0Hz we nd that
1 2
= 6 5nm Hz. Each source of noise will then be compared to this value and will be

appropriately converted to a square-root displacement-noise spectral density by the para-

meters shown in Figure A.6.

Figure 2.38: Signal conditioning path. The selected gain factors are shown for important
connections in the signal path. TIA stands for transimpedence ampli er and converts a
current to a voltage. The photodiode has a responsivity of 0 58 AW , the transimpedence is
107 , and the displacement sensitivity as observed experimentally is 12 nmV . The transverse
ber-optic interferometer is shown in the inset and the interfering wave is depicted as a
dotted line.

The motion of the oscillator is detected interferometrically, and as such two sources of

noise are introduced: photon shot noise and photon pressure noise. Photon shot noise is

due to Poisson statistics of independent light arrivals from the laser eld.[67] For an optical

power incident on the photodiode, the number of photons arriving on average is given

by ~ , where is a given time interval and ~ is the energy of the photons. The
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rms uctuations is then given by

=
~

=
p
2 ~ (2.66)

where = 1
2 . The corresponding square-root noise spectral density is

1 2
~ =

p
2 ~ (2.67)

and with = 1 6 W and for = 780 nm, this gives 1 2
~ = 597 fW Hz. This may be

converted to a displacement-noise by

597
fW

Hz
× 0 58 A

W
× 107 V

A
× 12 nm

V

giving 1 2
~ = 64 fm Hz. The displacement sensitivity of 12 nmV as shown in Figure

A.6 relates the oscillator displacement to the observed voltage at the TIA. The trough-to-

crest di erence in the interference fringe corresponds to a displacement of 4 . The

displacement sensitivity is then 2 4 .

Poisson statistics of the laser radiation also results in uctuations in the radiation

pressure.[68] If we assume that a single photon transfers a momentum 2~ to the oscilla-

tor and similarly have rms uctuations in the number of photons, the rms uctuations

in the transferred momentum is

=
2~

=

r
4 ~

2
(2.68)

This can be thought of inducing a random force = which has a square-root spectral

density
1 2
~ =

r
8 ~

2
(2.69)

with displacement-noise square-root spectral density

1 2
~ =

1
r
8 ~

2
(2.70)

For our proposed device this gives 1 2
~ = 95 fm Hz.

We now consider the noise in the elements along the signal conditioning path. The
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photocurrent in the photodiode has a distinct associated shot noise. For a dc current the

square-root of the noise spectral density is

1 2
= 2 (2.71)

where is the electron charge. We may assume that the photocurrents ( 1 A) in the

MEMS experiments will be comparable to those in the milimeter-scale spectrometer and

may calculate the square-root displacement-noise spectral density by multiplying equation

2.71 by the transimpedence and displacement sensitivity giving 1 2
= 68 fm Hz. The

transimpedence ampli er6 converts the photocurrent to a voltage by use of a resistor which

dominates the noise in the instrument. The square-root voltage-noise spectral density

associated with the Johnson noise of the resistor with resistance is

1 2
=
p
4 (2.72)

and for = 107 , this is 1 2
= 400nV Hz. Similarly, we nd that 1 2

= 4 8 fm Hz.

The voltage noise at the input to the preampli er7 is given to be 1 2
= 1 5nV Hz, thus

1 2
= 0 0018 fm Hz. Finally we consider the e ects of digitization of analog signals.

For a step-size , noise will be added in the range ±2 corresponding to an rms uctuation

of
12
in the bandwidth = 1

2 with sampling time . The square-root voltage-noise

spectral density is
1 2
=

12
2 =

r
6

(2.73)

For current state-of the art 16-bit digitization boards8, with a full range of 2 5V, this

corresponds to a of 2 5V232 = 38 1 V. For samples acquired every 1 s, 1 2
= 15 6nV Hz

giving 1 2
= 0 019 fm Hz.

Therefore, for the experiments planned with the MEMS spectrometer the predominant

noise source will be the Brownian motion noise of the oscillator. All other sources of noise,

even when sums of squares are considered 1 2
= 133 fm Hz are roughly four orders of

magnitude smaller than 1 2.

6Model 181 Current Sensitive Preampli er manural (Princeton Applied Research Corporation, 1978).
7Model SR530 Lock-In Ampli er manual (Stanford Research Systems, 1989).
8See for example, NI PXI-6250 from National instruments, http://www.ni.com. This multichannel

board operates at 1 Ms/ s.
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2.10 Microfabrication Overview and Results

The microfabrication results presented here were due to the e orts of a collaboration with

the Microdevices Laboratory at the Jet Propulsion Laboratory. The essential steps in micro-

fabrication of the spectrometer include photolithography to pattern well-de ned structures

on a substrate, selective etching of these patterned substrates, and electrodeposition to

create the magnetic and radiofrequency excitation structures. Details on earlier iterations

of the process can be found in the Ph.D. thesis of Louis Madsen and for a comprehensive

review of all of the fabrication techniques employed consult the text of May and Sze.[69]

The process ow chart utilized to construct the devices is shown in Figure 2.40. Be-

cause magnetic and oscillator structures were to be de ned on a monolithic wafer and since

alignment of the magnets with the oscillator is crucial we used double-side alignment. For

the 3 m size gap, we are no longer restricted to use a contact aligner in which the pho-

tolithography mask is placed directly onto the substrate wafer. Contact aligners have

1 m tolerance during double-side alignment and requires considerable amounts of time

to create structures. A more direct method which meets our tolerance goals for wider gaps

is a stepper motor. The wider gap also eliminates the use of on milling to remove the

metallic seed layer between the detector and annulus and should lead to much higher device

throughput.

It is useful at this point to list the limitations presented by the microfabrication process.

First, the thickness of the oscillator beams is restricted be greater than 2 m to avoid stic-

tion. Stiction occurs when surface adhesion forces are higher than the mechanical restoring

force of the microstructure. When a device is removed from the aqueous solution after wet

etching of an underlying sacri cial layer, the liquid meniscus formed on hydrophilic surfaces

pulls the microstructure towards the substrate and stiction occurs. There are new methods

to reduce stiction e ects that include passivating the surface with an organic coating which

not only reduces capillary forces and direct chemical bonding, but also reduce electrostatic

forces if the thin organic layer is directly applied to the semiconducting substrate, without

the intervening oxide layer.[70, 71] A second limitation is that the maximum aspect ratio

in photoresist molds is 10:1. The detector and annular magnets are deposited into photore-

sist molds patterned such that radial slits are created to minimize eddy current damping.

For 8 m tall magnets, the width of slits must be greater than 0 8 m. Larger slit sizes
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Figure 2.39: Proposed spectrometer assembly and arrangement. The optical ber used for
interferometry has been omitted for clarity.

both reduce detector sensitivity (removal of magnetic material) and homogeneity. A third

limitation is internal stress in the magnetic lm. As we have stated before, we require

lms with internal stresses lower than 80MPa. Materials that typically have low-stress

and large saturation magnetization such as iron or cobalt-iron alloys have poor corrosion

resistance to bu ered oxide etch (BOE). BOE primarily etches silicon preferentially, but

due to long etch times, BOE di uses into the magnet array and can degrade the magnetic

material. This problem is dealt with by using beams with widths smaller than 40 m

We have eluded to how the spectrometer will be assembled. In addition to creating a

stable structure to support the radiofrequency excitation coil, the I-beam shown in Figure

2.25 serves to align the two pieces of the spectrometer, the top piece containing the me-

chanical oscillator and magnetic assembly and the bottom piece containing the symmetric

magnetic array. Additional I-beam-like structures may be necessary both in the front and

the back of the spectrometer to give it improved structural rigidity.

The proposed spectrometer is shown schematically in Figure 2.39. With the aid of an

optical microscope, the bottom half and I-beam may be secured into place by using a quick

set epoxy resin. Similarly, the top piece and I-beam may be mated. The notch sizes

should have a tolerance of no more than two microns to ensure reasonable alignment of the

detector and sample.
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Figure 2.40: Microfabrication overview. There are ve steps in the process that involve
photolithography. PR stands for photoresist, BOE for bu ered oxide etch, PECVD for
plasma enhanced chemical vapor deposition, TO for thermal oxide, and RIE for reactive
ion etch.
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2.11 Parallel Analysis

The signal-to-noise assumptions we have considered so far are for a single detector. Given

that our proposal is to use microfabrication methods to assemble a spectrometer, there is

a potential to have order 104 detectors on a single wafer. If a sample is evenly distributed

among these detectors there is an improvement in signal-to-noise over measuring the entire

sample in one detector. Assuming that scale invariance of holds and that each detector

in the array is smaller by 10 than the single detector used to measure the entire sample,

the sensitivity improvement is
¡
104 × 10

¢1 2. A reasonable value of for experiments is

4
3 , giving a SNR improvement of 22. Distributing a sample over inductive detectors leads

to a decrease in SNR. Therefore, force-detection o ers promise in both high-throughput

spectroscopy and in combinatorial assays. This is shown schematically in Figure 2.41.

Figure 2.41: Massively parallel analysis with an array of BOOMERANG detectors.

2.12 Conclusions

In this chapter, we have provided a comprehensive study of the design issues relevant towards

fabrication of a force-detected NMR spectrometer optimized for 50 m diameter samples.

The use of nite element methods has facilitated the studies shown here and has provided

many points of reference for the design of the silicon mechanical oscillator structures, the

detector and annular magnet assembly, static- eld magnets with focusing poles, incorpo-

ration of micro uidic channels to analyze liquid samples, and the design of radiofrequency

excitation coils. Results from our microfabrication e orts were also shown, as well as
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the fabrication procedure. We have successfully observed oscillation of silicon resonators

with electroplated annular and ring magnets and are near completion of a full functional

spectrometer.

Sources of damping in the experimental apparatus were rigorously considered and con-

sistent with the observations from the millimeter-scale spectrometer built in our laboratory,

eddy current damping was shown to be the predominant mechanism of loss. In addition to

incorporation of radial slits in both the detector and annulus, we have shown that assembly

of magnetic structures from packed nanoparticles should reduce this damping by roughly

four orders of magnitude.

A new method of interferometric detection was demonstrated and we have suggested

several modi cations to improve its functioning and have considered new piezoelectric trans-

ducers that will assist in multiplexed and parallel analyses.
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Chapter 3

Force-Detected 14N Overtone NMR

3.1 Introduction

Traditional NMR experiments on nuclei with spin 1 are complicated by quadrupolar

induced broadening of the fundamental resonance through an interaction of the spins with

surrounding electric eld gradients. The resulting linewidths can span over several MHz,

however excitation and detection bandwidths of pulsed NMR experiments are typically on

the order of hundreds of kHz. As a result, the presence of a large quadrupolar coupling

makes acquisition of a complete spectrum impossible without retuning of the spectrometer.

The application of solid-state NMR to the study of biological molecules is rapidly in-

creasing and as a result the development of methods to exploit 14N and its 99.6% natural

abundance while allowing for acquisition of high resolution spectra without spectrometer

tuning would be of great interest. 14N is a spin-1 nucleus with two allowed Zeeman transi-

tions with large rst- and second-order quadrupolar interactions, as shown in Figure 3.1.

An analogy to optical spectroscopy that was applied to NMR is overtone spectroscopy.[72,

73, 74] In this approach weakly allowed transitions are directly excited and detected near

multiples of the nuclear Larmor frequency. The size of the coupling, or mixing of spin states,

determines the strength of the transition. For the case of integral spin quadrupolar nuclei,

reduced spectral width is possible due to the invariance overtone transition frequencies to

rst order quadrupole splittings.

In this chapter we will present an introduction to overtone NMR, use an exact treatment

of overtone NMR to compare the signal-to-noise ratios of force- and inductive-detection, and

include simulations of force-detected NMR experiments on tholins and biological molecules.
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Figure 3.1: Spin energy level diagrams for 14N NMR. The traditional Zeeman interaction
is observed in a static magnetic eld with Larmor frequency 0. The quadruolar coupling
splits the fundamental into a doublet with a splitting of 2 (1). For large qudrupolar

couplings, a second-order shift (2) is observed. Overtone transitions at 2 0+2
(2) become

allowed and can be directly probed.

3.2 Theory

3.2.1 Coordinate Systems

Hamiltonians are typically created with an initial reference frame centered on the atom.

We can think of the atomic frame as being the diagonal representation of the interaction. As

soon as we move from this frame via some rotation, elements become mixed combinations

of the atomic frame. This atomic frame is given the name Principle Axis System (PAS).

In the PAS frame the arbitrary interaction in NMR can be reduced to three components.

In the Cartesian frame these are typically given the labels , , and in the spherical

frame they are given the labels (isotropic), (anisotropic) and (asymmetry), and

are related via

=
+ +

3
(3.1)

= (3.2)

=
+
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In the Cartesian interaction frame, PAS is given as

=

0 0

0 0

0 0

(3.3)

The spherical basis is reduced to a sum over the various rank components as

= 0 + 1 + 2 (3.4)

0 0 = 3 (3.5)

1 ±1 = 1 0 = 0 (3.6)

2 ±1 = 0 2 ±2 =
1

2
2 0 =

r
3

2
(3.7)

Another relevant frame is the molecular frame, where the atoms are assumed to be xed

in space. This requires the de nition of another axis system, in which rotations may be

done either by a Cartesian Euler rotation or a spherical Wigner rotation as discussed in

Chapter 1. The Euler angles used to perform this rotation will be called

= ( ) ( ) 1 (3.8)

= 0 +
2X
0=2

0 ( ) (3.9)

3.2.2 Quadrupole Physics

The electrostatic energy from the charge distributions on a nucleus (r ) to an electron

(r ) is given by [24]

=
1

4 0

Z Z
( ) ( )

|r r | (3.10)

and can expressed in spherical coordinates by setting

1

|r r | = 4
X
=0

X
=

1

2 + 1 +1
( ) ( ) (3.11)
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The energy can be reexpressed as

=
X
=0

X
=

where

=

r
4

2 + 1

Z
( ) ( ) (3.12)

and

=
1

4 0

r
4

2 + 1

Z
( ) ( +1) ( ) (3.13)

The quantum mechanical picture is constructed by correspondence and gives

( ) = h |
X
=1

( ) | i (3.14)

where , , and are operators and and are expectation values. A similar

case holds for electrons.

The Hamiltonian is now expressed in terms of tensor operators

H =
X
=0

X
=

A T† =
X
=0

X
=

( 1) A T (3.15)

where operators A and T generate the corresponding expectation values.

The electric eld gradients at a nucleus may be considered by using the principal axis

system to describe both the spin and electric eld gradient coordinates. The Hamiltonian

becomes

H =
2

4 ( 1)

½
3S2 S (S+ 1) +

1

2

¡
S2+ + S

2
¢¾

(3.16)

where is the asymmetry parameter

=
| |

(3.17)

3.2.3 Overtone NMR

For a quadrupolar nucleus of spin I, the Hamiltonian is given by [74]

H = 0S +
£
3S20 S2 +

¡
S20 S20

¢¤
(3.18)
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where the prime denotes the principal axis of the electric eld gradient with quadrupolar

coupling constant, 0 is the nuclear Larmor frequency and =
2

4 (2 1)~ where is the

electron charge, is the nuclear quadrupole coupling constant, and is the asymmetry

parameter. The asymmetry parameter , depends on the electronic environment of the

nucleus as we saw above. The Hamiltonian may be transformed to the laboratory frame

by rotations yielding

H = 0S +

n
6
2

¡
3 cos2 1 +

¡
cos 2 sin2

¢¢
T20

+ T21 T2 1 + T22 + T2 2
ª (3.19)

where and are functions of the Euler angles ( ) which are used to relate the

laboratory and principal axis coordinates:

( ) = [3 sin cos (cos 2 sin cos + sin 2 sin )] (3.20)

( ) = 2 3

2
sin2 +

μ
1

2

¡
1 + cos2

¢
cos 2 + sin 2 sin

¶¸
(3.21)

T2 are the spherical rank tensor operators of rank two and component and are expressible

in terms of the spin operators as shown below.

Operator Expression
T20

1
6

¡
3 2 I (I+ 1)

¢
T2±1

1
2 (I I± + I±I )

T2±2
1
2I±I±

Table 3.1: Spherical tensor operators.

In a high magnetic eld, de ned by 0 À 2 , H has 2 + 1 eigenstates, which are

the | i eigenstates of I . When the high eld limit does not apply, the eigenstates are now

linear superpositions

| i =
1X
0=1

0
¯̄ 0® (3.22)

where 0 are the coupling coe cients.

The matrix elements of the operator S (n̂) determine the magnetic dipole transitions

between two spin states, where n̂ is a unit vector along the axis of the radiofrequency

excitation coil and S is the laboratory frame spin operator for the nucleus. The resulting
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matrix elements S1 1 (n̂) between two spin states | 1i and
¯̄

1

®
is given by

S1 1 (n̂) = h 1|S (n̂)
¯̄

1

®
(3.23)

where this double quantum transition is induced by irradiation at 2 0. This transition

probability depends upon coupling coe cients between these two states 0 .

For an rf coil de ned by polar angle and azimuthal angle , the coupling operatorM

becomes

M = (sin cos )S + (sin sin )S + (cos )S (3.24)

For the overtone transition [74],

h 1|M
¯̄

1

®
=

2 sin cos

2
[ 1 0 ( 1 1 + 1 1) + 1 0 ( 1 1 + 1 1)]

+
2 sin sin

2

£
1 0 ( 1 1 1 1) + 1 0 ( 1 1 1 1)

¤
+ cos

¡
1 1 1 1 1 1 1 1

¢
(3.25)

These mixing coe cients were exactly solved by diagonalizing the Hamiltonian in equation

3.19 and will be used in the signal-to-noise analysis below.

3.3 Signal-to-Noise

In Chapter 1, we considered the signal-to-noise expressions of force and inductive detection.

The case for force detection is given by

= 0
1
2

¡
h 1|S | 1i 1

¯̄
S | 1i

¢
max

p
8 ( )

(3.26)

where the relevant parameters are described in Chapter 1. The matrix elements h ±1|S | ±1i

arise from the fact that S is usually not along the -axis in the principal axis system of

the electric eld gradient tensor. For inductive detection the expression as derived in Tycko

and Opella [74] becomes

= 0

¡¯̄
h 1| I

¯̄
1

®¯̄¢
0

max

p
8 ( )

(3.27)
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h 1|M
¯̄

1

®
for the detection coil along the -axis, = 2 and = 0, becomes

h 1|S
¯̄

1

®
=

2

2
1 0 ( 1 1 + 1 1) + 1 0 ( 1 1 + 1 1) (3.28)

We nd h 1|S
¯̄

1

®
is strongly dependent upon the magnetic eld strength, of order unity

for low magnetic elds and of order 0.1 for high magnetic elds.¯̄
h 1| I

¯̄
1

®¯̄
scales as 1

0 , scales as 1 2
0 as discussed in Chapter 1, and therefore

scales as 3 4
0 . For force detection, scales as 0 and we see that for samples

with diameters of 50 m force-detection becomes superior for magnetic eld strengths above

8× 10 13T, essentially in all cases. A similar analysis for the size dependence shows that

for samples smaller than 500 m, force detection becomes the preferred method of detection.

3.4 Simulations

3.4.1 Electric Field Gradients

The electrostatic potentials and electric eld gradients were calculated in GAMESS.[75]

Accurate calculation of electric eld gradients typically requires that at least double zeta

basis sets be used as well as uncontracting the inner and functions.[76] The basis sets

used in these simulations 6-311G** at the MP2 level of theory. Even for the small organic

molecules studied, converge took three days using a 2 7GHz processor with 2GB of RAM.

The electrostatic potentials are shown for three molecules. Aminopyrdine and a leucine-

like molecule were recently shown to be components of tholins, a class of nitrogen containing

compounds on Titan.[77] These molecules are thought to be progenitors for amino acids.

Also included is a simulation on histidine. On these potential maps, red is the most negative

and blue the most positive. The ordering is as follows: red orange yellow green

blue.
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(MHz)
aminopyrdine-1 -0.04 -0.08 0.12 0.37 4.62
aminopyrdine-2 -0.21 -0.29 0.50 0.16 1.94
leucine-like -0.22 -0.31 0.53 0.29 2.06
histidine-1 -0.37 -0.45 0.82 0 09 3.18
histidine-2 -0.13 -0.42 0.55 0.47 2.11
histidine-3 -0.36 -0.56 0.92 0.22 3.54

Table 3.2: Electric eld gradient tensor elements, asymmetry parameters, and quadrupolar
coupling constant.

Figure 3.2: Electrostatic potential surfaces for aminopyridine.
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Figure 3.3: Electrostatic potential surfaces for leucine-like molecule.

Figure 3.4: Electrostatic potential surfaces for histidine.

3.4.2 NMR Simulations

The rst- and second-order quadrupolar transitions for the leucine-like molecule were sim-

ulated in GAMMA.[78] This simulation was done using the parameters in Table 3.2 and
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assuming a 2T magnetic eld. We observe a reduction in linewidth of more than two orders

of magnitude for the overtone spectrum.

Figure 3.5: Calculated rst-order quadrupole (left) and second-order quadrupole (right)
spectrum for the leucine-like derivative. The overtone spectrum (right) has a line width
over two orders of magnitude smaller than the rst-order spectrum.

3.5 Conclusions

We have shown that detecting 14N overtone transitions by force-detection is favorable for

over all magnetic eld strengths and that the size scales of practical interest for in situ

detection of 14N overtone transitions also signi cantly favor force detection. The removal

of quadrupolar broadening by observing the overtone transition should allow for modest

chemical identi cation, even for mixtures of compounds. Recently, density matrix methods

were applied to overtone NMR for both static and rotating samples.[79] It will be of future

interest to use these results along with observing other methods that include nonsecular

terms in the Hamiltonian. Finally, composite pulse sequences may be utilized both for

further line narrowing and for dealing with the very short nutation time of 14N nuclei.[80, 81]
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Appendix A

Torsional BOOMERANG

A.1 Introduction

As samples are scaled down to the sub-micron range, force-detection with longitudinal mag-

netization can become impractical. Fabrication of mechanical oscillator structures with

exural mode resonance frequencies in the audiofrequency range is a signi cant challenge,

even with considerations of balancing the elastic and magnetic spring constants. Further-

more, this device would have Brownian motion large compared to its size. Therefore, in

order to develop an appropriate spectrometer for nanoscale samples it will be necessary to

detect transverse magnetization. This is shown schematically in Figure A.1.

Figure A.1: Cross-sectional view showing a sample’s spin magnetization precessing at the
Larmor frequency via a dipole-dipole coupled torque to a cylindrical detector magnet sus-
pended about a torsion axis.

The detection will be most sensitive for spin-locked magnetization, whereby the spin

magnetization time is lengthened by setting it along B for a time 1 while the 1 eld
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is on. After the 1 eld is removed, the magnetization decays in a time of order the inverse

line width. In this Appendix we will present a signal-to-noise analysis for this type of

detection.

A.2 Signal-to-Noise

The detector oscillates (librates) in response to a torque from the sample magnetization,

which we take to be a single proton moment = 1 41 × 10 26 JT 1. The con guration

for the maximum torque is shown below. The magnetization of the detector is along the

-axis. The sample moment precesses about the -axis, exerting a torque on the detector

at the Larmor frequency or the frequency of the spin-lock eld.

The total torque is

N =

Z Z
s× F (A.1)

where F is the force on an element of surface current on the magnet, and s is the vector

connecting the axis to the element, which is perpendicular to the axis. The surface current

is that current that gives the same eld outside the magnet as the magnetization of the

detector

J =M× n̂ = (ẑ× n̂) (A.2)

No volume or current density is required for the problem if we assume ×M = 0, i.e. the

magnetization is uniform. Also, since M× n̂ = 0 on the top and bottom, only the round

sides contribute to the torque. The Lorentz force on the current element is

F = J×B (A.3)

where B is the signal eld and is the area of the element.

Consider the geometric illustration below. Let s denote the moment arm of the surface

current element . s = ẑ+ cos x̂ where is the distance from the top of the sensor,

is the azimuthal angle of the position of and is measured from the -axis. The sample

points along the -axis and the rotation axis of the detector is the -axis. Let denote

the -coordinate of with respect to the sample as the origin. Let r denote the position

of with respect to the origin. We will denote as the detector radius, as its height,
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and as the distance of closest approach of the sensor to the sample dipole.

Figure A.2: Side views of torque-based detector showing relevant geometric parameters.

At position r in the eld of the sample dipole

B = 0

4
· (3r̂r̂ 1)

3
= 0

4
x · (3r̂r̂ 1)

3
(A.4)

so

N =

Z
0

Z 2

0
s×F =

Z
0

Z 2

0
( ẑ+ cos x̂)×F

=

Z
0

Z 2

0
( ẑ+ cos x̂)× (J×B)

=

Z
0

Z 2

0
( ẑ+ cos x̂)× M (ẑ× n̂)×

μ
0

4
x · (3r̂r̂ 1)

3

¶¸

= 0

4

Z
0

Z 2

0
( ẑ+ cos x̂) (A.5)

× (ŷ cos x̂ sin )× 3 cos r̂ x̂
4

¸

Equation (A.5) can then be further simpli ed to give

N = 0

4
y

1q
2 + 2

μ
2 + ( + )

2

2 + 2

¶ +

(A.6)

where = + . The torque expression in equation (A.6) is expression for the signal.

We can express equation A.6 in terms of scaled coordinates ˜ = , ˜ = , and
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˜ =

N = 0

4
y

1

˜2 + 2̃

μ
2˜+

³
1 + ˜

´ 2̃

˜2 + 2̃

¶¸1+˜
1

(A.7)

The noise is considered by evaluating the moment of inertia about the torsion axis.

N = y
p
4 (A.8)

where = with damping parameter and moment of inertia .

=

Z Z Z
2

=

Z Z Z
3 cos2 +

Z Z Z
2

= 2

Z Z
2 +

Z
3

= 2 2 1

3
3 +

1

4
4 (A.9)

where is the density of the detector magnet. The moment of inertia is conveniently

expressed as

= 2

μ
1

3
2 +

1

4
2

¶
(A.10)

which can be reexpressed as

= 5

"
2

Ã
˜2

3
+

2̃

4

!#
(A.11)

and

N = y
p
4 5

"
2

Ã
˜2

3
+

2̃

4

!#1 2
(A.12)

For a detector with saturation magnetization 2T 0, with density = 7800 kg m3, a

damping time of 1 s, a bandwidth of 1Hz, and a radius of we observe that the optimally

sized detector has a radius of 1 52 and height of 0 26 . A contour plot is shown below.
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Figure A.3: Signal-to-noise contour plot for torque-detected NMR as a function of scaled
height and radius. The global maximum is marked by an “ .”
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