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Abstract

This thesis develops new hybrid system models and associated inference algorithms to create a “su-

pervisory decoder” for cortical neural prosthetic devices that aim to help the severely handicapped.

These devices are a brain-machine interface, consisting of surgically implanted electrode arrays and

associated computer decoding algorithms, that enable a human to control external electromechanical

devices, such as artificial limbs, by thought alone.

Hybrid systems are characterized by discrete switching between sets of continuous dynamical ac-

tivity. New hybrid models, which are flexible enough to model neurological activity, are created that

incorporate both duration and dynamical state based switching paradigms. Combining generalized

linear models with nonstationary and semi-Markov chains gives rise to three new hybrid systems:

generalized linear hidden Markov models (GLHMM), hidden semi-Markov models (HSMM) with

generalized linear model dynamics, and hidden regressor dependent Markov models (HRDMM).

Bayesian inference methods, including variational Bayes and Gibbs sampling, are derived for the

identification of existing and developed hybrid models. The developed inference algorithms provide

advances over the current hybrid system identification literature by providing a principled way to

incorporate prior knowledge and select between alternative model classes and orders, including the

number of discrete system states.

Future neuroprostheses that seek to provide a facile interface for the paralyzed patient will require

a supervisory decoder that classifies, in real time, the discrete cognitive, behavioral, or planning

state of the brain. The developed hybrid models and inference algorithms provide a framework for

supervisory decoding, where first, a hybrid-state neurological activity model is identified from data,

and then used to estimate the discrete state in real time. The electrical activity of multiple neurons

from a cortical area in the brain associated with motor planning (the parietal reach region), and

multiple signal types, including both spike arrival times and local field potentials, are fused to give

more accurate results. The model structure, including the number of discrete cognitive states, can

also be estimated from the data, resulting in significantly improved decoding performance compared

to existing methods.

Additional demonstrated applications include the automated segmentation of honey bee motion

into discrete primitives, and generating mechanical system models for a pick-and-place machine.



vi

Contents

Acknowledgements iv

Abstract v

Contents vi

List of Figures x

List of Tables xii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Hybrid Systems, Modeling, and Identification . . . . . . . . . . . . . . . . . . 2

1.1.2 A Supervisory Decoder for Neural Prosthetics . . . . . . . . . . . . . . . . . . 3

1.2 Thesis Outline and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Hybrid Systems, Learning Algorithms, and a Review of Hidden Markov Models 9

2.1 Hybrid Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Markov-Based Probabilistic Hybrid Systems . . . . . . . . . . . . . . . . . . . 12

2.1.2 Probabilistic Timed Automata . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.3 PWARX System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3.1 Sequential Bayesian Approach . . . . . . . . . . . . . . . . . . . . . 16

2.1.3.2 Clustering Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.4 Motivation for Probabilistic Learning Algorithms . . . . . . . . . . . . . . . . 18

2.2 Probabilistic Learning Algorithms and Latent Variables . . . . . . . . . . . . . . . . 19

2.2.1 Variational Bayesian Approximations (VB) . . . . . . . . . . . . . . . . . . . 21

2.2.2 Expectation Maximization (EM) . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.3 Gibbs Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Hidden Markov Models (HMM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.1 Expectation Maximization for HMM . . . . . . . . . . . . . . . . . . . . . . . 32



vii

2.3.1.1 The Forward-Backward Algorithm for HMM . . . . . . . . . . . . . 33

2.3.2 Variational Bayes for HMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.2.1 VB-M Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.2.2 VB-E Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3.2.3 Evaluation of the Lower Bound L(q) . . . . . . . . . . . . . . . . . . 43

3 Hidden Markov Models and Extensions as a Basis for Inference in Hybrid Sys-

tems 45

3.1 Introduction and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Generalized Linear Hidden Markov Models (GLHMMs) . . . . . . . . . . . . . . . . 47

3.2.1 Generalized Linear Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.2 GLHMM Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.3 Forward-Backward Algorithm for GLHMM . . . . . . . . . . . . . . . . . . . 52

3.3 Variational Bayes for Inference in GLHMMs . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.1 VB-M Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.2 VB-E Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.3 Calculation of the Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 A Gibbs Sampler for Inference in GLHMMs . . . . . . . . . . . . . . . . . . . . . . . 60

3.4.1 Parameter Estimation Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4.1.1 Multi-Stage Sampling for Non-Conjugate Models . . . . . . . . . . . 62

3.4.2 Data Classification Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5 Variational Methods for HSMM and VTHMM . . . . . . . . . . . . . . . . . . . . . . 64

3.5.1 VTHMM and HSMM as Embeddings in a Stationary HMM . . . . . . . . . . 68

3.5.1.1 VB-M step for the Joint Space HMM . . . . . . . . . . . . . . . . . 72

3.5.1.2 VB-E step for the Joint Space HMM . . . . . . . . . . . . . . . . . 76

3.5.1.3 Lower Bound for Variational Inference in the Joint Space HMM . . 79

3.5.2 Variational VTHMM in O(N2DT ) . . . . . . . . . . . . . . . . . . . . . . . . 80

3.5.3 Variational HSMM in O(N2T +NDT ) . . . . . . . . . . . . . . . . . . . . . 81

3.6 PWARX Identification using Variational Methods and Gibbs Sampling . . . . . . . . 83

3.6.1 Case Study 1: Benchmark Problem . . . . . . . . . . . . . . . . . . . . . . . . 83

3.6.2 Case Study 2: Pick-and-Place Machine . . . . . . . . . . . . . . . . . . . . . . 86

3.7 Hidden Regressor Dependent Markov Models . . . . . . . . . . . . . . . . . . . . . . 89

3.7.1 Forward-Backwards Algorithm for HRDMM . . . . . . . . . . . . . . . . . . . 92

3.7.2 Variational Analysis for HRDMM with Model Selection . . . . . . . . . . . . 94

3.7.3 Identification of Guard Regions . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.7.4 Case Study of HRDMM: Air Conditioner . . . . . . . . . . . . . . . . . . . . 98



viii

3.8 Estimation and Prediction Using Identified Models . . . . . . . . . . . . . . . . . . . 101

4 Model Selection: Priors and Algorithms 104

4.1 Approximating the Model Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.1.1 Information Criteria and Laplace’s Asymptotic Method . . . . . . . . . . . . 107

4.1.2 Model Evidence Calculations Using Posterior Samples from the Gibbs Sampler 109

4.1.2.1 Rao-Blackwellization for Estimation of the Model Evidence . . . . . 110

4.1.2.2 The Stationarity Condition for Estimating the Model Evidence from

Posterior Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.1.3 Variational Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.2 Comparison of Model Selection Methods . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.2.1 Comparison of Information Theoretic Quantities . . . . . . . . . . . . . . . . 117

4.2.2 Model Selection of 3-State AR-HMM . . . . . . . . . . . . . . . . . . . . . . . 118

4.3 Automatic Model Structure Determination Priors . . . . . . . . . . . . . . . . . . . . 121

4.4 Case Study: Oh Bee Dance Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5 Neural Prosthetics Application 130

5.1 Neurological Signal Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.1.1 Local Field Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.1.2 Single Unit Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.2 Case Study 1: Simulated Single Neuron Recording . . . . . . . . . . . . . . . . . . . 136

5.3 Case Study 2: Scherberger Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.3.1 Prior Distributions and Initial Conditions Used for GLHMM Identification . 141

5.4 Case Study 3: Musallam Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.4.1 GLHMM with Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.4.1.1 Prior Information and Initialization Used for Identification of GLHMM

Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.4.2 HSMM with Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.4.2.1 Prior Data for HSMM Supervisory Decoder . . . . . . . . . . . . . . 152

6 Conclusions 154

6.1 Summary of Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.2 Opportunities for Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

A Probability Theorems and Distributions 158

A.1 Axioms and Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

A.2 Probability Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159



ix

B Cross Entropy and KL-Divergence 160

B.1 Cross Entropy of Gaussian Distributions . . . . . . . . . . . . . . . . . . . . . . . . . 161

B.2 KL Divergence between Gaussian Distributions . . . . . . . . . . . . . . . . . . . . . 161

B.3 Cross Entropy of Gamma Distributions . . . . . . . . . . . . . . . . . . . . . . . . . 162

B.4 KL Divergence between Gamma Distributions . . . . . . . . . . . . . . . . . . . . . . 162

B.5 Cross Entropy of Gaussian-Gamma Distributions . . . . . . . . . . . . . . . . . . . . 162

B.6 KL Divergence between Gaussian–Gamma Distributions . . . . . . . . . . . . . . . . 163

B.7 KL Divergence between Dirichlet Distributions . . . . . . . . . . . . . . . . . . . . . 163

C Posteriors and Integrals for AR and Poisson Models 165

C.1 Geometric Mean of AR Likelihood with a Gaussian-Gamma Distribution Parameter

Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

C.2 Geometric Mean of Poisson Likelihood with a Gamma Firing Rate Model . . . . . . 167

C.3 Gaussian-Gamma Conjugate Posterior Update: Weighted Regression for AR Models 167

C.4 Poisson Point Process Conjugate Posterior Update . . . . . . . . . . . . . . . . . . . 169

Bibliography 171



x

List of Figures

1.1 A neural prosthetic: supervisory decoding and neural models . . . . . . . . . . . . . . 4

2.1 A bouncing ball: a simple hybrid system . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 A discrete time finite state hybrid system . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Directed acyclic graph representation of Markov Jump System . . . . . . . . . . . . . 12

2.4 Directed acyclic graph representation of a hidden Markov model . . . . . . . . . . . . 30

3.1 Directed acyclic graph representation of a variable transition hidden Markov model . 66

3.2 Allowable connections for a 2-state VTHMM with a maximum duration of D = 5 . . . 70

3.3 Regressor parameter samples θ̂1,θ̂2 from Gibbs sampler . . . . . . . . . . . . . . . . . 85

3.4 Data from PWARX system and identified model parameters . . . . . . . . . . . . . . 85

3.5 Pick-and-place machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.6 Identification results for pick-and-place machine . . . . . . . . . . . . . . . . . . . . . 88

3.7 Directed acyclic graph of a HRDMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.8 Air conditioning system: a HRDMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.9 Identification a HRDMM model for an air conditioning system . . . . . . . . . . . . . 100

4.1 A 3-state cyclic hidden Markov model . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.2 Prior distribution on system precision τ and system variance σ2 . . . . . . . . . . . . 117

4.3 Comparison of information theoretic quantities related to model evidence . . . . . . . 119

4.4 A Dirichlet distribution to model prior knowledge of the Markov transition kernel . . 122

4.5 Automatic structure determination: the connectivity of the model is automatically

determined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.6 Identification of bee dance motion primitives . . . . . . . . . . . . . . . . . . . . . . . 129

5.1 Finite state machine representation of simulated neuron behavior . . . . . . . . . . . . 136

5.2 Regressor parameter posterior densities and mean estimates . . . . . . . . . . . . . . . 137

5.3 Center-out reach experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.4 Example decode using identified supervisory decoder . . . . . . . . . . . . . . . . . . . 140

5.5 Decoding performance using supervisory decoder . . . . . . . . . . . . . . . . . . . . . 141



xi

5.6 Power spectrum of identified GLHMM model . . . . . . . . . . . . . . . . . . . . . . . 141

5.7 Test trial 100/144 using identified 4-state GLHMM . . . . . . . . . . . . . . . . . . . . 144

5.8 Optimal 8-state GLHMM model class . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.9 Decoding of testing trial 34/144 using 8-state GLHMM . . . . . . . . . . . . . . . . . 148

5.10 Decoding of a double reach using 8-state GLHMM (testing trial 55/144) . . . . . . . . 149

5.11 The optimal 7-state HSMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.12 Example decode with 7-mode HSMM . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.13 7-state HSMM decode of double reach (trial 55/144) . . . . . . . . . . . . . . . . . . . 153



xii

List of Tables

1.1 Model classes and identification algorithms discussed in Chapter 3 . . . . . . . . . . . 7

3.1 Log-concave likelihood forms of g() and f() . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Model selection results using EM, VB and the Gibbs sampler . . . . . . . . . . . . . . 120

5.1 Model parameter estimates of simulated neural system . . . . . . . . . . . . . . . . . . 137

5.2 Supervisory decoder performance using GLHMM and HSMM models . . . . . . . . . 145

5.3 List of model class posterior probabilities . . . . . . . . . . . . . . . . . . . . . . . . . 146



1

Chapter 1

Introduction

This thesis develops new methods for the identification of several classes of hybrid systems that are

characterized by discrete switching between sets of continuous dynamical activity. Inspired by the

characterization of biological systems into discrete sets of behaviors or modes, the developed models

use a mixture of duration, time, and dynamical state-based switching paradigms. Specifically, both

stationary and nonstationary Markov chains are used to govern mode switching, while generalized

linear models are used to represent the set of continuous dynamics. To identify hybrid system

models from data, a Bayesian framework is used, so as to facilitate incorporation of prior knowledge

in a coherent way, and provide a basis for selection between a set of possible models. The inherent

difficulty in identifying hybrid or switching systems from data, is a consequence of the discrete system

states being “hidden”, and not observed. Thus, in identifying this class of systems, simultaneous

identification of the continuous dynamics and classification of the observed data into discrete model

states is required. To approach the identification problem in a structured way, the variational

Bayesian framework, the Gibbs sampler, and the expectation maximization algorithms are adapted

for inference in developed models.

Developed methods are used for model generation in cortical neuroprosthetic medical devices

that aim to help the severely handicapped. In such systems, a “supervisory decoder” is required

to classify the activity of extracellular neural recordings into a discrete set of modes that model

the evolution of the brain’s planning process. In moving from experimental, laboratory-based pros-

thetic development programs to clinical applications and rehabilitation of patients, new automated

methods for generating supervisory decoders and control systems are required. In the long term, the

models and algorithms developed here may eventually form the backbone of an integrated prosthetic

development and deployment system.
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1.1 Motivation

1.1.1 Hybrid Systems, Modeling, and Identification

Hybrid dynamical systems are characterized by the interplay of discrete transitions and continuous

dynamics. These systems have both discrete and continuous states: a hybrid system may jump

between discrete states (or modes of operation), and while within each mode, associated dynamics

determine the evolution of the continuous state. Hybrid systems naturally encompass embedded and

computer-controlled systems, systems involving physical impact, and can model a range of complex

systems found in nature. The primary aim of this thesis, identifying hybrid system models from

data, is derived from this later class of systems. It is often convenient to impose a model with

a finite set of discrete states when analyzing biological and natural systems: The walking gait of

humans is naturally segmented into stance, heel-off, swing, and heel-strike modes [1]; the behaviors

or movements of animals or humans is often reduced to a set of motion primitives, or movemes [2],

that characterize the evolution of the system. Even complicated artificial systems such as air-traffic

control, which models the interaction between the continuous flight dynamics of aircraft, a discrete

set of aircraft maneuvers, and a distributed decision-making process which determines the route of

the aircraft, is modeled as a hybrid system with a finite set of discrete states [3].

The key difficulty in identifying a hybrid system model from observed data is caused by the

interaction of the system’s continuous dynamics and discrete transitions. In most systems in nature

only the state or output of the continuous dynamics are observed. The system’s discrete state, or

mode, is hidden from observation, and needs to be inferred from the data. Classifying the observed

data into the system’s discrete states can be accomplished if the continuous dynamics are known,

and vice versa, if all of the observed data is classified into discrete states, the continuous dynamics

associated with each mode can be identified. However, without knowing either the dynamics or the

discrete states a priori, the identification process requires the simultaneous classification of observed

data, and the identification of the dynamics associated with each mode [4, 5, 6, 7, 8]. The hybrid

system identification problem is combinatorially hard, with the complexity increasing exponentially

in the number of data points and number of modes [4].

To provide a computationally tractable approximation to the hybrid system identification prob-

lem, we use the hidden, latent, or incomplete data model [9] framework typically used in the machine

learning community. In this class of models, latent (or hidden) variables are used to represent the

classification of observed data into each system mode. The widely used hidden Markov model [10], is

typically identified using this latent variable framework. Several existing algorithms, in particular the

expectation maximization (EM) algorithm , variational Bayesian (VB) methods, and Monte Carlo

methods such as Gibbs sampling, can be used for approximate Bayesian inference in latent variable

models. The core contribution of this thesis will be in adapting these algorithms for identification
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of hybrid system models.

A wide range of existing models can be fit in the hybrid system framework. By considering hybrid

systems that are extensions of models for which efficient inference tools exist, tractable inference

algorithms can be developed. This thesis proposes a series of hybrid system models that are suitable

for both activity recognition and neurological prosthetic devices, yet are tractable to identify. The

specific models and relation to existing work are reviewed in the following outline and contributions

section.

1.1.2 A Supervisory Decoder for Neural Prosthetics

A “neural prosthetic” is a brain-machine interface that enables a human, via the use of surgically

implanted electrode arrays and associated computer decoding algorithms, to control external elec-

tromechanical devices by pure thought alone. In this manner, some useful functions can be partially

restored to patients with severe motor disorders (e.g., Lou Gehrig’s disease) or with high-level spinal

cord injuries. Cognitive neural prostheses work by “decoding”, or estimating movement intent or

motor plans from the recorded electrical activity of multiple neurons in brain areas (such as the

posterior parietal or dorsal premotor cortices) associated with motor planning. These decoded plans

can be used to drive devices such as prosthetic arms or computer interfaces [11, 12, 13]. Future

practical clinical neuroprostheses that seek to provide a facile interface for the paralyzed patient will

require a supervisory decoder whose job is to classify, in real time, the discrete cognitive, behavioral,

or planning state of the brain region from which the neural signals are recorded. For example, the

supervisory decoder must determine if: (1) the patient is asleep or disinterested in using the pros-

thetic; (2) the patient wishes to use the prosthetic; (3) the patient is planning an action that must

be decoded; (4) the patient wants to execute the planned action; (5) the patient wants to scrub

or change the current action. While the actual planning process in the brain is quite complex, for

the purposes of supervisory decoding there are a finite number of states that model and govern the

relevant high-level activities of a brain-machine interface. The knowledge of the current state in the

evolution of the planning process can be used in a variety of ways. For example, depending upon

the current state, different algorithms, or different parameters in the algorithm, can be applied to

the decoding of movement plans. Moreover, accurate knowledge of the current cognitive state will

improve the action of the prosthetic system.

The development of a supervisory decoder model and identification algorithms must ideally

consider several practical aspects of neurological systems, and the realities of utilizing prosthetic

devices in a clinical setting. Surgically implanting any device inter-cranially presents a severe risk

to the patient, and in cortical neuroprostheses reduces the number and limits the positioning of

electrodes into brain areas of interest. The current state-of-the-art clinical practice uses chronic

electrode arrays to rehabilitate patients. Once implanted these arrays may produce signals with
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poor signal-to-noise characteristics, and over time signal quality will degrade from reactive gliosis

[14]. To make the risk of surgical implantation acceptable, the performance and expected lifetime

of the prosthetic device should be maximized. By considering all available neurological signals, the

practicality of implanting devices can be extended. In the cortical areas of interest here (posterior

parietal or dorsal premotor), both local field potentials (LFP) signals [15], representing the aggregate

extracellular activity around the implanted electrode, and single unit activity (SUA) [16], which are

recordings of an individual neuron’s electrical impulses, are typically utilized. Even if a signal

modality, such as SUA, can provide the necessary performance in the short term, incorporating LFP

signals, which are more robust to gliosis and neuron death, will prolong the life of the prosthetic

device. The ideal supervisory decoder will integrate both these signals (and perhaps others) in the

modeling and decoding framework. This practical requirement demands a flexible model capable of

representing a range of non-Gaussian dynamical systems.

Assuming that high-quality neurological signals can be obtained from implanted electrodes, there

remains the task of creating adequate models to interpret recorded neural activity. In the creation

of a supervisory decoder, cortical neurological activity is abstracted into a series of discrete states

or processes. This abstraction, while providing an intuitive framework to interpret the neurological

activity, will introduce “noise” from the parts of the system not included in the model. Due to

the incomplete understanding of massively parallel neurological processes, yet-undiscovered cortical

functions, and limited recording ability, any modeling framework will need to account for highly

variant, non-Gaussian process noise. Even if the same task is repeated in a consistent fashion,

the observed neurological process can vary substantially trial-to-trial. Any supervisory decoder

that imposes a discrete set of states to model neurological activity is making an assumption about

underlying neurological processes. Even with carefully designed experiments and expert intuition,

there is no “ground truth” about which discrete mode the brain is currently in, and it may even be

difficult to define the optimal number of discrete states, and their correlation to neurological process.

An ideal supervisory decoder should be able to automatically determine the optimal number of

discrete cognitive states that best represents the observed neurological activity.

To both model the discrete transitions between cognitive states and continuous neurological

dynamics, this thesis proposes using a series of hybrid system models to represent observed neural

activity. Hybrid systems have become of recent interest to the neurophysiological community [17].

While hybrid systems provide a framework in which to model observed cortical neurological activity,

there has been limited development of identification methods for these systems. To both facilitate

inference in neurological systems, as well as other systems of interest, this thesis will focus on the

identification of a class of probabilistic hybrid systems.
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1.2 Thesis Outline and Contributions

The remainder of this thesis is structured as follows: Chapter 2 presents technical background mate-

rial and a literature review, and includes relevant classes of hybrid systems, fundamentals of using a

probabilistic inference approach, and existing learning algorithms. Hybrid system models, including

Markov jump systems (MJS) [18, 19], timed automata [20, 21], and PWARX systems [4, 5, 6, 7, 8],

are presented to contextualize the hybrid models developed in this thesis. Existing hybrid identifica-

tion algorithms are discussed, and in conjunction with the neuroprosthetic application, motivate the

development of a probabilistic inference framework. To complement the hybrid system identification

literature, latent variable models, and specifically the hidden Markov model are introduced, and pro-

vide a basis for reviewing existing inference algorithms present in the machine learning community.

Three inference algorithms, expectation maximization [9], variational Bayes [22, 23, 24], and the

Gibbs sampler [25] are reviewed, both in general and in the context of latent variable models. A key

tool, the forward-backward algorithm (a form of dynamic programming), is discussed in the context

of latent variable models.

In Chapter 3 several hybrid system models are developed in tandem with the adaptation of ex-

isting EM, VB, and Gibbs sampling algorithms to create a new framework for hybrid identification.

The first hybrid system model that is considered is denoted as a generalized linear hidden Markov

model (GLHMM). This GLHMM is a superset of hidden Markov models [10], and combines gen-

eralized linear models (GLM) [26, 27], which represent the systems’ continuous dynamics, with a

discrete state Markov chain to model switching between system modes. Based on the equivalence

of piecewise affine and auto-regressive models [28, 29], GLHMM inference algorithms also provide a

new method to identify MJS. Both Gibbs sampler and VB algorithms are developed for inference in

this defined GLHMM model class. Motivated by timed automata, where switching between discrete

states is a function of the duration spent in each state, a new class of hybrid systems based on

both hidden semi-Markov models (HSMM) [30, 31] and variable transition hidden Markov models

(VTHMM) [32, 33, 34] are developed. The VB method, for the first time, is applied to both in-

ference in HSMM and VTHMM models, as well as their hybrid system counterparts which utilize

GLM dynamics in each mode. These GLHMM and HSMM models will form the basis for the cre-

ation of supervisory decoders in Chapter 4, and in addition can be used for inference in PWARX

models, by adopting a two-step process typical in the hybrid systems community [7, 5]. Based on

the switching characteristics of PWARX models, a new non-stationary, regressor-depended Markov

model (HRDMM) is created, and a variational method for identification of HRDMM systems is de-

veloped. To summarize the model classes and contributions made in Chapter 3, Table 1.1 provides

a concise representation of the developed models and algorithms developed in this thesis. Chapter

3 concludes with a set of estimation (or decoding) algorithms which utilize key tools developed for
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Table 1.1: Model classes and identification algorithms discussed in Chapter 3: This table denotes
the contributions made, by inclusion of the section number, in the context of a range of models
and algorithms present in the literature. Original contributions or seminal papers on the identifica-
tion of each model type are denoted for each learning algorithm: expectation maximization (EM),
variational Bayes (VB), and the Gibbs sampler (GS).

HMM GLHMM VTHMM & HSMM GL-VTHMM & GL-HSMM HRDMM
EM [10] AR-HMMs [10] [30, 31, 32, 33, 34] Sec. 3.5 Sec. 3.7
VB [35, 36] Sec. 3.3 Sec. 3.5 Sec. 3.5 Sec. 3.7
GS [37] Sec. 3.4 [38] Sec. 3.5

the identification algorithms.

To take full advantage of the developed model classes and identification algorithms, Chapter 4

considerers the problem of model class selection. In this chapter, the structure of proposed models

is considered uncertain, and hence must be inferred from observed data. A detailed analysis of the

information theoretic basis for model selection and model evidence decomposition are presented,

both making new intuitive observations, as well as reviewing state-of-the-art model selection pro-

cedures. This information theoretic perspective provides new fundamental reasons to consider the

variational approach as an alternative to the EM algorithm. In addition, estimators to calculate

information theoretic quantities from posterior samples are reviewed, and equivalence between two

existing estimators is proven in the case of latent variable models. This, for the first time allows

an information-theoretic comparison of the VB, Gibbs sampler, and EM algorithms. In addition,

several case studies are conducted that demonstrate the advantages of using the VB or Gibbs sam-

pling approaches. In addition to model class selection, the use of automatic structure determination

(ASD) priors is applied to developed models. The term ASD is applied to denote a body of work

[39, 40, 36, 24, 41], that stems from the automatic relevance determination (ARD) literature [42].

To conclude Chapter 4, ASD priors newly developed for HSMMs, are utilized to automatically de-

termine the number and structure of discrete motion primitives that represent a honey bee dance

[43, 44].

Chapter 5 applies the developed modeling and identification framework to create supervisory

decoders for neural prosthetics applications. This approach provides several advantages over existing

supervisory decoders: First, by developing model classes capable of integrating a broad range of

dynamical systems types, the inclusion of many typical neurophysiological signal types is facilitated

into a supervisory decoding framework. Notably, this thesis incorporates both local field potentials

and single unit activity, but can utilize most neurophysiological signal types. Second, developed

methods are capable of identifying models automatically, and do not require pre-sorted neural data to

initialize the identification processes. Third, in combination with the model selection tools of Chapter

4, the number, connectivity, and neurological relevance of each discrete state in the supervisory

decoder is automatically determined. Fourth, the use of a HSMM allows the creation of supervisory
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decoders that automatically build models which consider the duration spent in each cognitive state.

Fifth, by tackling the problem from a Bayesian standpoint, the model can be updated with more data

as it becomes available: over time the neurological signals will change due to cell death, plasticity,

and reactive gliosis. In addition to these contributions, the developed methods are computationally

efficient, and can hence be practically deployed into clinical environments. To demonstrate the

characteristics of the proposed approach, several case studies are conducted on recorded neural

data, and real-time decoding algorithms are used to verify the effectiveness by using the models to

infer the cognitive discrete state.

Finally, Chapter 6 summarizes the contributions of the thesis, and suggests future work directions

and extensions based on the presented algorithms and case studies.
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Chapter 2

Hybrid Systems, Learning
Algorithms, and a Review of
Hidden Markov Models

2.1 Hybrid Systems

Hybrid dynamical systems are characterized by containing both continuous and discrete behavior,

and are defined by a set of continuous dynamics, and discrete logic. Hybrid system can be used to

model a wide variety of physical systems, such as a bouncing ball, [45] which switches between free

fall and elastic impact modes. Hybrid system theory can also be used to model systems controlled by

discrete logic, or embedded (discrete) computing. For example, one can imagine a thermodynamic

model of an air conditioned building being split into two distinct continuous modes, one where the

air conditioner is on, and one where it is off. More complicated systems, such as an aircraft collision

avoidance system [3], are modeled as hybrid automata with aircraft switching between cruising and

avoidance flight control maneuvers. The gait of humans [1] has been effectively modeled as a hybrid

system, in which walking is broken down into stance, heel-off, swing, and heel-strike modes. The

process of fault detection, where a system enters a critical state or failure mode is also a hybrid

system [46].

x

r

g

mode 1 mode 2

x>r

x<r

ball surface

center of mass

Figure 2.1: Bouncing ball: a simple hybrid system. This system is a canonical example of hybrid
system, with two discrete modes: mode 1 is a free fall state and mode 2 is an elastic impact state.
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This thesis studies the identification of hybrid system models from observed data. Because

data collection with digital systems inherently creates discrete time observations of the system, all

models in this thesis will be represented in discrete time. Due to the finite nature of data collection,

only models with a finite number of discrete states will be considered. This leads to the formal

definition of a discrete time finite state hybrid dynamical system (Def. 2.1), which is used to

introduce terminology and the concepts behind hybrid system theory. Subsequent sections review

three specific examples of hybrid systems: Markov Jump Systems in Section 2.1.1, Probabilistic

Timed Automata in Section 2.1.2, and Piecewise Affine or Piecewise Auto Regressive Exogenous

(PWARX) systems in Section 2.1.3.

Definition 2.1 (Discrete Time Hybrid Dynamical System). A discrete time finite state hybrid

dynamical system G is a collection G = {S,X ,Y,U , F,H, π}, where:

1. S = {S1, S2, ..., SN} is a set of discrete states, or modes of the system. The mode index of a

system at time tk is denoted mk, and mk = i when Si is the discrete state at tk.

2. U is a set of input variables. The system input at tk is denoted uk ∈ U .

3. X = R
N is a set of continuous states, which at time tk is denoted xk. Associated with each

mode si is a function fi(·), which defines the evolution or flow of the continuous system state:

xk = fi (xk−1, uk−1) if mk = i . (2.1)

4. Y is a set of outputs, denoted yk, that depend on the continuous state and current discrete

state. Associated with each discrete state si is an observation function gi such that:

yk = gi (xk, uk) if mk = i . (2.2)

5. H is a set of guard functions, hij(xk,mk) for i, j = 1, ..., N . The system which is in mode Si

at time tk, can transition to state Sj at tk+1 if the guard function hij is active:

mk+1 = j,mk = i if hij(xk, uk) ≥ 0 . (2.3)

6. F represents the set of dynamical and measurement functions fi, gi for i = 1, ..., N .

7. π ∈ X × S is a set of initial states or conditions of the system.

�
Remark 2.1. This definition highlights aspects of hybrid systems which are important in model

creation and system identification. Another common aspect of hybrid systems that is not given in
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the above definition is that of reset maps: If the system transitions from si to sj at time tk, then

the continuous state can be reset to another point by the function R(i, j, xk) : S × S ×X → X . If

any of the functions f(.), g(.), h(.), R(.) are stochastic, then the system is called a stochastic hybrid

system [47]. �
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Figure 2.2: Finite graph representation of a discrete time finite state hybrid system with N discrete
modes, as described in Definition 2.1

The point in utilizing a hybrid system model is that very complicated non-linear systems can

often be broken down into a set of simple dynamical systems and a set of logical transition rules.

This allows tractable development of control systems and verification procedures to be applied to

the system. For certain classes of hybrid systems there already exist powerful toolboxes for optimal

and model predictive control (HYSDEL, Hybrid Toolbox), and verification and reachability analysis

(PHAVer, MATISSE), as well as many other developed toolkits.

While the problems of estimation and control of hybrid systems have been reasonably well ex-

plored, the problem of identification, or learning hybrid models from observed data, has not yet

reached a point where it can be generally applied. Hybrid system identification has been a field of

research for more than twenty-five years, starting with a specific class of Markov jump systems, a

review of which was published by Tugnait [48] in 1982. This class of systems, where the discrete

mode transitions are governed by a hidden Markov chain, is a model class that is still actively used

in economics and control theory [49]. Inference in these system is still an open area of research, due

to the combinatorial complexity inherent in identifying these types of systems from data. Since the

year 2000, there have been several contributions to hybrid identification theory, with algorithms that

identify Auto Regressive (AR) models with state-dependant mode switching. Notably in this class

of systems are piecewise affine models. Timed automata are also used in the hybrid system commu-

nity, and identification of similar model types exists in the machine learning and speech processing

community (Section 3.5).
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2.1.1 Markov-Based Probabilistic Hybrid Systems

The simplest probabilistic hybrid systems are based around a Markov transition kernel A = {aij},
with the probability of transition from mode si to mode sj depending only on the current mode.

P
(
mk+1 = j|mk = i

)
= aij , where

N∑
j=1

aij = 1, and aij ≥ 0, ∀i, j (2.4)

This transition kernel (2.4) can be written in terms of a probabilistic guard function given in Def.

2.1, but it is considerably more convenient to treat the evolution of discrete state variable mk as a

Markov chain.

A large number of models previously treated in the probabilistic hybrid systems community

incorporate stationary Markov transitions [47]. The Markov transition kernel A can be made to

be a function of the current continuous state [50], giving more flexibility in the modeling process,

but adds significant computational complexity even in estimation of the system state. Chapter 3

addresses a class of nonstationary Markov model which are functions of the full hybrid state (both

mk and xk), as well as the duration spent in each mode. Identification algorithms for these types of

systems are also presented, which are believed to be the only algorithms currently capable of being

applied to these systems.

xk 1- xk

mk

xk 1+

y
k

u
k

yk 1+

uk 1+

yk 1-

uk 1-

mk 1+mk 1- ...

...

...

...

......

......

Figure 2.3: Directed acyclic graph representation of Markov Jump System, which gives the condi-
tional dependence of system variables. Grey nodes represent observed data, in this case the system
input uk and the system output yk. Typically the system mode mk and the continuous state xk are
not directly observed or measured.

A Markov Jump System (MJS) is a hybrid system with a Markov transition kernel (2.4), with
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linear state space dynamics associated with each mode:

xk = Amk
xk +Bmk

uk (2.5)

yk = Cmk
xk , (2.6)

where Ai, Bi, Ci are the parameters of the linear dynamics associated with the ith mode. MJS are

also known as switching linear systems, jump linear systems, and Markov jump linear systems. If

the Markov transition kernel is relaxed to incorporate time or duration spent in each mode explicitly,

these systems are known as segmental models.

MJS yield tractable estimation algorithms [51, 52] for inferring the hybrid state (xk,mk), and

provides a framework that is tractable for developing feedback controllers [19]. Identification algo-

rithms for these systems are derived from the field of hidden Markov models, such as the variational

method by Ghahramani [53], and are utilized in the speech processing community.

Because the identification of a MJS is similar to that of hidden Markov models, the reader is

referred to Section 2.3, and references within.

2.1.2 Probabilistic Timed Automata

In timed automata [20], the notion of time is captured by a finite set of real valued clocks. Each

individual clock can be reset to zero upon certain transition of the automaton, in effect giving the

duration, or time since the last reset. The transition of the timed automaton depend on constraints

or guard functions of the current clock values. Probabilistic timed automata extend this formalism

to allow nondeterminism in which mode to transition to and which clock is reset.

Timed automata with one or two clocks have been studied extensively [54], and have been used

to verify the IEEE 802.11 Wireless protocol [55] and the IEEE 1394 root connection protocol.

Timed automata are inherently hybrid systems in that the complete system state includes in-

formation about the current discrete state as well as the clock values, which evolve in continuous

time, albeit with simple deterministic behavior. Timed automata provide a more complete set of

switching logic than Markov jump systems (or Markov decision processes [56]), in which durations

are associated with transitions. In a discrete time setting, probabilistic timed automata with one

clock are equivalent to nonstationary or semi-Markov chains (Section 3.5) [57].

Timed automata do not typically associate dynamics with each mode. The interesting aspect of

timed automata is the temporal switching behavior, and this can be extended in a natural way by

associating dynamics to each mode [21]. If one clock is used, this is also called a segment model

[43], which is a superset of Markov jump systems. In Section 3.5, the identification of two related

models is considered: nonstationary and semi-Markov models.
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2.1.3 PWARX System

Piecewise autoregressive exogenous (PWARX) models are a subset of hybrid systems, and differ

from MJS as the discrete mode transitions depend on the continuous system state and dynamics.

This model class has been used extensively when identifying hybrid models from data. The linear

dynamics in each mode are defined by an auto-regressive exogenous (ARX) process. ARX models

are a powerful model for system identification as they avoid the inherent unidentifiability of state

space models, caused by equivalence under unitary transforms, yet retain the same modeling fidelity

[58]. A recent review paper on PWARX identification algorithms [8] gives the standard definition

of this model, which is presented below in Def. 2.2.

PWARX models are equivalent to a wide range of hybrid systems, notably to piecewise affine

(PWA) models [29], mixed logic dynamics (MLD) and linear complementarity (LC) frameworks

[28]. This equivalence allows a wide range of developed control and verification tools to be used with

PWARX models.

Definition 2.2 (Piecewise autoregressive exogenous (PWARX) system). A PWARX system takes

the form: G = {S,U ,X ,Y,Θ} where:

1. S = {S1, . . . , SN} is a set of N discrete states, or modes of G. The system mode Si at

time tk is denoted by mk = i. The hidden state sequence for all 1 ≤ k ≤ T , is denoted

m1:T = {m1,m2, ...,mT }.

2. U is a set of input variables. The system input at tk is denoted uk ∈ U .

3. The regressor space X is partitioned into N disjoint convex polyhedral regions {χi}N
i=1, where

∪N
i=1χi = X and for i 
= j, χi ∩ χj = 0. The mode of the model is determined by which region

χi the regressor xk is contained in. At step k, the model is said to be in mode i if

mk = i if xk ∈ χi , (2.7)

with the regressor xk defined as:

xk = [1, yk−1, . . . , yk−ny , uk−1, . . . , uk−nu ]′ ∈ X ⊂ R
nu+ny+1 . (2.8)

Furthermore, each polyhedral region is defined by a set of separating hyperplanes in the regressor

space described by:

h′ijxk = 0 , (2.9)

where hij is a vector, such that for all xk ∈ χi, h′ijxk ≤ 0 and for all xk ∈ χj, h′ijxk > 0. The

collection of all hyperplanes defining each region χi is denoted Hi = {hij}N
j=1.
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4. yk ∈ Y is the system output at tk, and is given by the following piecewise ARX map, where

θmk
are the parameters associated with the mth

k mode:

yk = θT
i xk + ek

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

i = 1 if xk ∈ χ1

...

i = s if xk ∈ χN

, (2.10)

where ek ∼ N (0, σ2) is the system noise.

5. Θ is the set of all parameters associated with the model, including all hyperplane sets Hi and

AR parameters θi.

�
PWARX systems use the regressor state to create a static transition map (2.10), meaning the cur-

rent system mode only depends on xk, and not directly on the previous discrete mode mk−1, as

in Markov models. This transition map provides the ability to model a wide range of interesting

phenomenon, such as guard rules of a bouncing ball (Fig. 2.1), power systems [59], and manufactur-

ing processes [60]. In Section 3.7, this regressor-based switching behavior is incorporated into the

Markov transition kernel, and gives greater flexibility in modeling hysteretic behavior.

There exist several different methods to identify PWARX models from data. Juloski [8] compares

and summarizes four of these; a Bayesian Approach [7], a Clustering Procedure [59], the Algebraic

Geometric Approach, [6], and the Bounded-Error Procedure [5]. Other approaches exist which uti-

lize mixed-integer programming [4] and gradient-based identification routines [61]. The PWARX

identification problem is summarized in Def. 2.3:

Definition 2.3 (PWARX identification problem).

Given: A system that is of PWARX form (Def. 2.2), with a known number of modes N , known

sub-model ARX orders ny and nu, that are consistent throughout all sub-models, and a data

set {(yk, xk)}T
k=1

Identify: The parameters {θi}N
i=1, and the hyperplanes (or guardlines) that bound the polyhedral

regions {χi}N
i=1

�
The identification problem in Def. 2.3 is known to be NP -hard, and in particular is worst case

exponential in the number TN , the number of data points T times the number of modes N [4]. The

only identification method that is guaranteed to find a the globally optimal solution is the mixed-

integer programming approach, but is not useable for large data sets because of the complexity

issue.
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Two approaches are briefly outlined below: The Bayesian approach in Section 2.1.3.1 and the

clustering procedure in Section 2.1.3.2. These approaches are mentioned for their ability to incor-

porate prior knowledge about the system, and effective performance in real data, respectively [8].

Intuition into the success of these methods will motivate the development of future algorithms in

Section 3.7.

These methods do not consider the hyperplanes during in the initial identification process. A

subsequent identification step of identifying the separating hyperplanes is applied after all the data

is classified. While this is suboptimal, it allows the use of powerful existing techniques for guard line

identification [59], such as: solving for N(N − 1)/2 linear classifiers [24]; robust linear programming

[62]; support vector machine with a linear kernel; multi-category support vector machines [63].

Another potential Bayesian method that may be more robust to outliers is relevance vector machines

(see [24], and references within).

2.1.3.1 Sequential Bayesian Approach

The sequential Bayesian approach operates like a filter, classifying the the data pair (yk, xk) into a

generating mode si, conditioned on the estimate of the model parameters {θi}N
i=1 at the current time

step. After classifying the data pair, the model parameters are updated. Identification is completed

in a single pass of the data, (yk, xk) for k = 1, ..., T . It is assumed that there is an informative a

priori pdf of the model parameters θi, and the error ek (2.10) is normally distributed with a known

variance σ2.

Following the notation of [7], the probability the data pair (yk, xk) is generated from mode si

is expressed as a conditional density function1: P
(
mk = i|yk, xk

)
, and is computed using Bayes’

theorem, hence the original name of the algorithm:

P (mk = i|yk, xk) =
P (yk, xk|mk = i)P (mk = i)∑N

j=1 P (yk, xk|mk = j)P (mk = j)
. (2.11)

The prior pdf P (mk = j) is equal to 1
N , as it is assumed that there is no prior knowledge about the

mode of the new data point. The conditional likelihood function of the data, P (yk, xk|mk = i) is

evaluated by marginalizing over the current estimate of the parameters for mode si:

P
(
yk, xk|mk = i

)
=

∫
Θi

N (yk − θT
i xk, σ

2)Pk(θi)dθi , (2.12)

where P (yk, xk|θi) = N (μ, σ2) is a normal distribution with mean μ = yk − θT
i xk, and variance σ2.

This method assumes the variance is a fixed and known quantity. The probability density function

of the parameters Pk(θi) is recomputed at every time step tk. If a particular data point is assigned to

1In later section we will explicitly condition on the model class and model parameters θi, however the original
notation used by Juloski is kept here
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mode si, then this density is updated using Bayes’ rule: P (θi|yk, xk) can be computed using Bayes

Rule:

Pk(θi|yk, xk) =
P (yk, xk|θi)Pk−1(θi)∫

Θi
P (yk, xk|θi)Pk−1(θi)dθi

. (2.13)

This sequential Bayesian method, which creates a estimate of the model parameters from a data

set (yk, xk) for k = 1, ..., T , is summarized in Algorithm 2.1:

Algorithm 2.1 Sequential Bayesian Approach to Parameter Estimation
1: Initiate model with a priori parameter density functions P0(θi), for i = 1, ..., N

2: for k = 1 to T do

3: use the data pair (yk, xk), compute the likelihood P (mk = i|yk, xk) using (2.11) and (2.12).

The data pair is assigned to the mode with the highest likelihood:

mk = argmax
i

P (mk = i|yk, xk) (2.14)

4: update the parameter pdf of θi if mk = i, using (2.13). For all θj , j 
= i, set Pk(θj) = Pk−1(θj)

5: end for

In the original method of Juloski [7], the PDFs (2.11) and (2.13) are computed using a particle

filtering approach. After the parameters of each mode are estimated and the data points have

been classified, the regressor space X is split into polyhedral regions using robust mixed linear

programming.

This method requires two main approximations:

1. Data is assigned to a certain mode conditioned only on the observed data up to that time step.

2. Data is assigned in a maximum likelihood manner.

The effect of these assumptions gives the algorithm local convergence properties, and without ac-

curate prior estimates of parameters algorithm may produce large errors [7]. In effect, a wrongly

classified data point can never be reassigned and causes suboptimal behavior.

2.1.3.2 Clustering Procedure

The clustering technique [59] first classifies the data points into modes (the clustering step) and then

splits the regressor state space into polyhedral regions. Optimal clustering is computationally hard

so an efficient suboptimal “K-means” procedure is used.

The basis of the clustering algorithm is to group nearby (in a Euclidean sense) points into local

data sets (LDs). The justification is that PWARX systems are locally linear, so small subsets of the

data {yk, xk}T
k=1, which are close to each other, are likely to belong to the same mode. For each
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data point (yk, xk) a LDs designated Ck is constructed from the c− 1 closest (in a Euclidean sense)

neighbors, where c is an adjustable tuning parameter.

This process creates LDs of two types; mixed LDs, which contain points from more than one

mode, and pure LDs, which contain data points from only a single mode.

After the LDs have been formed, a least-squares estimate of the parameters θLS
k based on the

data assigned to each LDs Ck is calculated. Also associated with each LD is the position x̂k of the

LDs, which is the average of the regressors xk contained in that LDs, and an empirical covariance

matrices Vk of the parameters θLS
k , and covariance-like estimate Qk of the the position.

A weighted K-means clustering algorithm is used to partition a feature vector ξk = [θLS
k ,mk],

and hence assign the local data sets (and regressor points xk) into modes. The weighting in the

K-means algorithm incorporates the covariance information Qk and Vk, with the aim that mixed

LDs should have larger covariance matrices, and will then contribute less to the clustering of the

feature vectors. (see [59] for more details)

The final step of the algorithm, done after the clustering step, is to estimate the subregions χi,

using robust linear programming.

This technique utilizes the local linearity of PWARX systems. It adds structure to the identi-

fication problem by pre-grouping data points based on the prior knowledge that data points from

the same mode should be close in some Euclidian sense. However it is noted that the algorithm is

very sensitive to the order of the ARX submodels, and erratic behavior may occur if the order is

not known exactly.

2.1.4 Motivation for Probabilistic Learning Algorithms

The literature on system identification in the hybrid systems community is limited to a small range

of systems, primarily in PWARX models. Two identification algorithms were explicitly reviewed,

the sequential Bayesian approach in Section 2.1.3.1 and the clustering approach in Section 2.1.3.2.

The clustering approach, a widely used and effective algorithm, gains advantage by exploiting

the structure of the problem. This is achieved by an effective yet ad-hoc procedure of pre-grouping

data points into local data sets. This approach is hampered however by a greedy k-means learning

algorithm that is ineffective in dealing with model selection and errors in chosen model order.

The sequential Bayesian approach, seemingly less effective in practice [8], is able to introduce

prior knowledge in a more structured way, but suffers from oversimplifying assumptions.

An ideal algorithm should be based on sound generalizable principles, incorporate structural

knowledge about the problem, and be robust to the specified model class.

This thesis proposes that probabilistic learning algorithms, in particular Monte Carlo methods

such as Gibbs sampling, and approximate deterministic methods such as variational Bayes should

be used as a basis for algorithmic development. For the reader not already convinced of the advan-
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tages to approaching the problem in a probabilistic framework, Section 2.2 reviews the probabilistic

learning principles important for hybrid systems. In short, this class of methods is able to approach

the problems of over-fitting, prior knowledge (Chapter 3) and model selection (Chapter 4) from a

principled viewpoint.

This probabilistic approach has already been shown to be effective in Hybrid systems such as

Markov jump systems [53], and hidden Markov models. Preliminary work [64, 65] has shown Gibbs

sampling to be an natural and effective method for hybrid system identification.

2.2 Probabilistic Learning Algorithms and Latent Variables

The hybrid system identification problem of the previous section can be naturally recast as a proba-

bilistic inference problem. Indeed the work of Juloski [7], in Section 2.1.3.1 approaches the problem

in a probabilistic framework. This section introduces the foundations of probabilistic modeling

for hybrid system identification, and emphasizes the key role played by latent variables in creating

tractable inference algorithms. The approach used here has an inherently Bayesian viewpoint; knowl-

edge of the model is used to create prior distributions, and these priors are updated with observed

data to form posterior estimates of the model. Taking a Bayesian viewpoint in the creation of models

has several advantages, including providing a rigorous approach to incorporating important prior

knowledge about the system of interest in the model creation process. Additionally the use of prior

density functions reduces model over-fitting, providing better generalization and predictive ability of

the model. This inherent property of Bayesian inference is especially pronounced in cases where only

a small amount of relevant data is available, and maximum likelihood methods can over-fit the data

to such an extent that the model is unusable. In hybrid system identification, this problem can arise

when identifying the transition rules between discrete modes of the system. Even in lengthy data

sets, there may only be a few transitions between certain discrete modes, resulting in over-fitting

when using maximum likelihood methods. Three different existing algorithms: variational Bayes,

expectation maximization, and Gibbs sampling, are reviewed and compared in this section, before

being utilized for hybrid system identification in Chapter 3.

All of the identification algorithms developed in this thesis will use Bayes’ theorem (A.6) for

inferring both model structure and parameter values. The posterior distribution p
(
Θ|Y,M)

of the

model parameters Θ, can be written as a function of the likelihood : p
(
Y |Θ,M)

, the prior : p
(
Θ|M)

and model evidence: p
(
Y |M)

as follows:

p
(
Θ|Y,M)

=
p
(
Y |Θ,M)

p
(
Θ|M)

p
(
Y |M) (2.15)

where M is the model class, Θ are the model parameters specified by the model class and Y is the
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observed data used to update the model. The model class M defines the structure of the model,

including the functional form, the number of parameters and any prior information associated with

the model. Chapter 4 studies Bayesian model class selection in detail, giving an information theoretic

interpretation the model evidence (2.15). In brief, Bayes’ theorem can also used to select different

model structures. Given a set of m possible model classes, {M1, ...,Mm}, the posterior probability

of each model can be determined by:

P
(Mi|Y

)
=

p
(
Y |Mi

)
P
(Mi

)
∑m

j=1 p
(
Y |Mj

)
P
(Mj

) . (2.16)

Remark 2.2. For the remainder of Chapters 2 and 3, the choice of model class M is not explicitly

denoted, although it should be stressed that all distributions are conditioned on this information.

When required, such as when choosing between different models in Chapter 4, model class condi-

tioning will made explicit. �
The difficulty in applying Bayesian inference is due to the complexity of evaluating the model

evidence p
(
Y |M)

. In the hybrid system models of interest (Section 2.1), there is an additional

problem of having to classify the observed data, a problem referred to as latent variable modeling.

Latent variable models or incomplete data models [9] treat the classification of observed data as

a set of extra variables. In the hybrid system models of Section 2.1, the process of classifying the

observed data Y = {yk}T
k=1, amounts to inferring the discrete state or mode mk from which that

data was generated. In the hybrid system case the discrete modes {mk}T
k=1 are referred to as latent

variables.

The term “incomplete data” is derived from the fact that the likelihood of the observed data

or incomplete-data likelihood p
(
Y |Θ)

cannot be evaluated without the latent variables. Instead,

the complete-data likelihood p
(
Y, Z|Θ)

or the likelihood of both the observed data and the latent

variables Z is typically specified by the model. The incomplete data likelihood is the marginal of

the complete data likelihood:

p
(
Y |Θ)

=
∑
Z

p
(
Y, Z|Θ)

. (2.17)

This marginalization (2.17) involves summing over all possible combinations of latent variables, which

results in a combinatorial explosion of the number of operations required to evaluate the incomplete

data likelihood. Approximate inference schemes are therefore required to infer the model’s posterior

distribution.

Several algorithms have been utilized for inference in latent variable models including expectation

maximization (EM) [9], Gibbs sampling (Gibbs) [25], and variational inference or variational Bayes

(VB) [23, 36]. A significant body of work applies these algorithms to hidden Markov models and their

extensions [38, 66, 10, 67, 32, 37]. One of the main observation in this thesis is that by considering
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hybrid systems as extensions to hidden Markov models, all of these algorithms can be applied for

inference in hybrid systems, as described in Section 3.

The remainder of this section gives an overview of each the EM, Gibbs and VB inference methods,

presented in such a way to compare the differences and strengths of between each. The preference

choosing one method should be based on the amount of data on hand, what approximations are

reasonable to apply, and the amount of computational resources at hand. In brief:

• EM provides a local, efficient, point estimate to the posterior probability of model parameters,

and excels when ample data creates a concentrated peaked posterior probability mass.

• Gibbs sampling provides a set of samples from the actual posterior distribution, giving more

insight into the model, but it is computationally expensive with large data sets.

• Variational Bayes provides a medium between these methods, giving greater flexibility in esti-

mating the posterior density of the model then EM, while retaining computational efficiency.

For the set of problems considered in this thesis, variational methods were found to be most suited

because they are efficient enough to handle large amounts of observed data, while providing suffi-

ciently descriptive posterior estimates to facilitate effective model selection and avoid over-fitting.

Chapter 4 provides several case studies that demonstrate the advantage of the Gibbs sampling and

VB approaches in calculating the model evidence and subsequent model selection problems.

While all of these methods provide different approximations to the posterior, the underlying im-

plementation of the methods remain surprisingly similar. The next three sections will illustrate how

inference in the posterior distribution of the model p
(
Θ|Y )

can be achieved by applying successive

sub-model identification and data classification steps:

Data Classification: P
(
Z|Θ, Y )

(2.18)

Identification: p
(
Θ|Z, Y )

(2.19)

The next three subsections will demonstrate how each of the algorithms are used to sequentially

estimate the above distributions. First the Variational Bayes method is derived in a general form and

then applied specifically to approximating latent variable models. The EM algorithm will then be

derived as a special case of the variational method, and includes reference back to more traditional

theoretical foundations. Finally Gibbs sampling is introduced, and a qualitative comparison between

the three methods is given.

2.2.1 Variational Bayesian Approximations (VB)

Variational inference or Variational Bayes (VB) is an approximate inference scheme that seeks to

minimize the Kullback-Liebler (KL) divergence between a restricted family of functions of the model
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parameters, and the actual posterior distribution of the model parameters [24]. There are two main

attractions for using this method: the algorithm is efficient, with computation time similar to

expectation maximization. As variational methods seek to fit a function of the model parameters

and not just a point estimate of the parameters, over-fitting is avoided and the functions can be

used for improved model selection (see Chapter 4).

Variational methods have been applied to a range of problems in Bayesian inference, including

hidden Markov models [35], general graphical models with incomplete data [23], mixture models

[68], Markov jump systems [53], and are also referred to as ensemble methods.

This section will start with a general introduction to VB, following the derivations in the text

by Bishop [24], before returning to the specific application of inference in hybrid systems and latent

variable models.

To establish a general variational framework, it is assumed the model is parameterized by a set

Φ. In the case of hybrid systems and latent variable models this parameter set includes both the

model parameters and the latent variables: Φ = {Θ, Z}. Here is it assumed that the selected model

class defines the joint density of the parameters Φ and the observations: P
(
Y,Φ

)
. The probability

of the data (model evidence) is then the marginal of this joint density: p(Y ) =
∫
Φ
p(Y,Φ)dΦ.

Proposition 2.1. [24] Given any distribution q(Φ), the following decomposition holds:

log p(Y ) = L(q(Φ)) +KL
(
q(Φ)||p (Φ|Y )

)
,

where

L(q(Φ)) =
∫

Φ

q(Φ) log
p(Y,Φ)
q(Φ)

dΦ (2.20)

KL(q(Φ)||p (Φ|Y )) = −
∫

Φ

q(Φ) log
p (Φ|Y )
q(Φ)

dΦ . (2.21)

�

Proof. By direct substitution of p(Y,Φ) = p (Φ|Y ) p(Y ) into (2.20).

The variational method aims to maximize the lower bound L(q(Φ)) (2.20), hence minimizing

the KL divergence (2.21) between the parameter posterior and the distribution q(Φ). This lower

bound is the negative of the variational free energy, more typically used in physics [35]. Note that

KL(q(Φ)||p (Φ|Y )) ≥ 0, with the equality holding if and only if q(Φ) = p (Φ|Y ), a theorem called

Gibbs’ inequality.

The maximization of the lower bound is typically not tractable for arbitrary functions q(Φ).

Instead the form of q(Φ) is restricted to a specific family of distributions, and the maximization

procedure will find the member of this family for which the KL divergence is minimized. The
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restriction of the form of q(Φ) is problem dependent, and should be made as general as possible to

provide a good approximation. In general a factorial form of q(Φ) will be convenient to consider,

where given a disjoint partition of Φ = {Φ1, ...,Φm}:

q(Φ) =
M∏
i=1

q(Φi) . (2.22)

In the case of the hybrid system and latent variable models, this approximation is realized by

factorizing the parameters and latent variables: q(Θ, Z) = q(Θ)q(Z). Other than this assumption

there are no additional restrictions on the distributions q(Φ).

The variational method now seeks to find the distributions q(Φ), of the form (2.22), which

maximize the lower bound (2.20). Substituting (2.22) into (2.20) yields:

L(q(Φ)) =
∫ M∏

i=1

q(Φi)

[
log p(Y,Φ) − log

(
M∏
i=1

q(Φi)

)]
dΦ . (2.23)

Considering the lower bound as a function of the factor Φj , and defining Φi�=j = {Φ1, ...,ΦM} / {Φj},
and q(Φi�=j) =

∏
i�=j q(Φi) the bound is written:

L(q(Φj)) =
∫
q(Φj)

[∫
q(Φi�=j) log p(Y,Φ)dΦi�=j

]
dΦj −

∫ M∏
i=1

q(Φi) log

(
M∏
i=1

q(Φi)

)
dΦ . (2.24)

Proposition 2.2 ([24] Optimal Solution for Φj). The optimal solution for q(Φj), which maximizes

L(q(Φj)) is:

log q�(Φj) =
∫
q(Φi�=j) log p(Y,Φ)dΦi�=j + const . (2.25)

�

Proof. Note that the second term of (2.24) can be written as the entropy of Φj , plus a constant

term C which is equal to the entropy of q(Φi�=j):

L(q(Φj)) =
∫
q(Φj)

[∫
q(Φi�=j) log p(Φ, Y )dΦi�=j

]
dΦj −

∫
q(Φj) log(Φj)dΦj + C .

This equation can then be rewritten as the negative of a KL-divergence:

L(q(Φj)) =
∫
q(Φj) log

exp
[∫
q(Φi�=j) log p(Φ, Y )dΦi�=j

]
q(Φj)

dΦj + C .

Using Gibbs’ inequality, the above equation is then maximized with the proposed optimal solution

(2.25).

The optimal solution (2.25) for each i = 1, ...,M provides a sequence of equations whose solution
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will increase the lower bound (Algorithm 2.2). A general method to increase the lower bound starting

with a initial distributions q(Φi) for i = 1 : m, is to sequentially update each Φi using the optimal

solution. Convergence is guaranteed as the lower bound is convex in each of the factors [69].

Algorithm 2.2 General Variational Bayes Algorithm
1: Choose initial distributions: Φi, for i = 1 : m

2: while ΔL(q) > tol do

3: for i=1:m do

4: q(Φi) ∝ exp
[∫
q(Φi�=j) log p(Y,Φ)dΦi�=j

]
5: end for

6: ΔL(q) = change in lower bound L(q) from last step

7: end while

Returning to the notation of the hybrid system and latent variable models (Section 2.2), the

parameter set is written Φ = {Θ, Z}, where Z refers to the latent variables, and Θ the system

parameters. To make the latent variable problem tractable, the factorization assumption (2.22)

becomes:

q(Z,Θ) = q(Z)q(Θ) . (2.26)

This approximation allows the problem to be split up into classification (estimation of the latent

variables), and parameter identification problems. In the case of the hybrid system and latent

variable models, it was assumed that the complete data likelihood p
(
Y, Z|Θ)

is specified by the

model. This requires using decomposition p
(
Y, Z,Θ

)
= p

(
Y, Z|Θ)

p
(
Θ
)
. It then follows from (2.25)

that the following recursion relations maximize the lower bound:

q(Θ) =
1
CΘ

exp

[∑
Z

q(Z) log p
(
Y, Z|Θ)]

p
(
Θ
)

(2.27)

q(Z) =
1
CZ

exp
[∫

q(Θ) log p
(
Y, Z|Θ)

dΘ
]
, (2.28)

where CΘ and CZ are normalizing constants. Equations (2.27) and (2.28), make use of the realiza-

tions that
∑

Z q(Z) log p
(
Θ
)

= log p
(
Θ
)
, and that

∫
q(Θ) log p

(
Θ
)
dΘ is not a function of Z. The

above steps are again in the form of parameter identification and data classification steps (recall

equations (2.18) and (2.19)). Furthermore, in the hybrid system identification problems of interest,

it is shown that (2.28) and (2.27) can be solved efficiently. The effect of the factorization assumption

is discussed in Section 4.2.



25

2.2.2 Expectation Maximization (EM)

This section on the EM algorithm is presented to allow a comparison of EM and VB methods.

The reader is assumed to be familiar with traditional derivations of EM such as in the text by

McLachlan and Krishnan [70], or the original formulation by Dempster [9]. This section is brief, as

all derivations follow as a special case of VB in Section 2.2.1.

Using the latent variable and hybrid system models as motivation, the same terminology of

latent variables Z, parameters Θ, and observations Y is used. The major difference from the VB

section is that the EM algorithm was originally designed to find the maximum of the likelihood

function: p
(
Y |Θ)

. Furthermore the EM method finds a maximum point estimate of Θ. As previously

discussed the incomplete data likelihood is the marginal of the complete data likelihood: p
(
Y |Θ)

=∑
Z p

(
Y, Z|Θ)

.

As in the VB section, a distribution q(Z) is introduced over the latent variables. A similar

decomposition holds:

log p(Y ) = L(q(Z),Θ) +KL
(
q||p) , (2.29)

where

L(q(Z),Θ) =
∑
Z

q(Z) log
p
(
Y, Z|Θ)
q(Z)

(2.30)

KL(q||p) = −
∑
Z

q(Z) log
p (Z|Y,Θ)
q(Z)

. (2.31)

The argument for maximizing the lower bound remains the same as in VB, and the EM algorithm

now reduces to a two-stage sequential optimization technique: the M-step of maximizing the lower

bound with respect to the parameters Θ, and E-step of maximizing the lower bound with respect

to the latent variable distribution q(Z).

The E-step in the EM algorithm then maximizes the lower bound, given a value of Θ, which we

denote Θold. Using the decomposition log p
(
Y, Z|Θ)

= log P
(
Z|Y,Θ)

+log p
(
Y |Θ)

, the lower bound

is written as the KL divergence:

L(q(Z),Θold) =
∑
Z

q(Z) log
p
(
Z|Y,Θold

)
q(Z)

−
∑
Z

q(Z) p
(
Y |Θold

)
. (2.32)

Because the second term is a constant, the E-step is equivalent to obtaining:

E-step: q(Z) = p
(
Z|Y,Θold

)
. (2.33)

The M-step in the EM algorithm maximizes the lower bound for a given function of q(Z). After the
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E-step substituting in q(Z) = p
(
Z|Y,Θold

)
the lower bound is therefore:

L(q(Z),Θ) =
∑
Z

p
(
Z|Y,Θold

)
log p

(
Y, Z|Θ)−∑

Z

p
(
Z|Y,Θold

)
log p

(
Z|Y,Θold

)
. (2.34)

By just considering the terms in the lower bound that are a function of Θ, this is the same as

maximizing Q(Θ,Θold), where:

Q(Θ,Θold) =
∑
Z

p
(
Z|Y,Θold

)
log p

(
Y, Z|Θ)

(2.35)

or explicity in terms of the variable θ

M-step : Θ = argmax
Θ

∑
Z

p
(
Z|Y,Θold

)
log p

(
Y, Z|Θ)

. (2.36)

Note that the above function Q(Θ,Θold) is the same auxiliary function used in the original

EM derivations. If maximum a posteriori (MAP) learning is undertaken using EM, the goal of

this optimization procedure changes to maximizing p
(
Θ|Y )

instead of p
(
Y |Θ)

. Using Bayes’ rule,

log p
(
Θ|Y )

= log p
(
Y |Θ)

+ log p
(
Θ
)− log p

(
Y
)
, then substituting the decomposition (2.29) results

in:

log p
(
Θ|Y )

= L(q(Z),Θ) +KL
(
q||p) + log p

(
Θ
)− log p

(
Y
)
. (2.37)

Now instead of just maximizing the lower bound L(q(Z),Θ), both the combination of the lower

bound and the prior is maximized: L(q(Z),Θ) + log p
(
Θ
)
. This has no effect of the E-step of the

algorithm, as log p
(
Θ
)

is not a function of Z. The M-step (for MAP) is simply modified by now

maximizing:

Q(Θ,Θold) =
∑
Z

p
(
Z|Y,Θold

)
log p

(
Y, Z|Θ)

+ log p
(
Θ
)
. (2.38)

In the MAP case this modifies the M step to:

M-step : Θ = argmax
Θ

∑
Z

p
(
Z|Y,Θold

)
log p

(
Y, Z|Θ)

+ log p
(
Θ
)

(2.39)

While the EM algorithm is widely used, it is seen here to be a subcase of the VB algorithm.

2.2.3 Gibbs Sampling

This section introduces both the multi-stage Gibbs sampler, and a subcase called the two-stage

Gibbs sampler. Both of these Markov chain Monte Carlo methods provide many optimality proper-

ties, but the distinction is made because the two-stage Gibbs sampler is immediately applicable in
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identification of hybrid systems and latent variable models, and also provides additional theoretical

convergence properties.

This section gives a brief general overview of the Gibbs sampler, and then states some con-

vergence properties before applying the sampler to latent variable models. An excellent reference

for a complete review and derivation of the Gibbs sampler properties Robert and Casella [25], in

particular the chapter called ‘The Two-Stage Gibbs Sampler’.

For the multi-stage Gibbs sampler, it is assumed the model is parameterized by a set Φ, which

can be written as Φ = {Φ1, ...,Φm} , where the Φis are either one or multidimensional. The goal

of Gibbs sampling is then to simulate from, or produce a set of samples which are distributed like,

the joint distribution p
(
Φ1, ...,Φm

)
. A set of N samples is denoted {Φ̂(t)}N

t=1, where the tth sample

Φ̂(t) � Φ̂(t)
1 , ..., Φ̂(t)

m from the joint distribution is denoted by:

Φ̂(t)
1 , ..., Φ̂(t)

m ∼ p
(
Φ1, ...,Φm

)
, (2.40)

where the symbol ∼ is defined as distributed as.

Drawing samples from the joint distribution (2.40) is often intractable, and instead it is assumed

that the corresponding conditional distributions, p
(
Φi|Φ1,Φ2, ...,Φi−1,Φi+1, ...,ΦM

)
for i = 1, ...,m

can be sampled from.

Gibbs sampling works by utilizing the structure of the model to simplify the problem of simulating

from the joint distribution p
(
Φ1, ...,Φm

)
. A multi-stage Gibbs sampler used to drawN samples from

the joint distribution is given in Algorithm 2.3.

Algorithm 2.3 Multi-Stage Gibbs Sampler: draw N samples from p
(
Φ
)

1: Start with initial samples: Φ̂(0) = Φ̂(0)
1 , ..., Φ̂(0)

m

2: for t=0,...,N do

3: Φ̂(t+1)
1 ∼ p

(
Φ1|Φ̂(t)

2 , ..., Φ̂(t)
m

)
4: Φ̂(t+1)

2 ∼ p
(
Φ2|Φ̂(t+1)

1 , Φ̂(t)
3 ..., Φ̂(t)

m

)
5:

...

6: Φ̂(t+1)
i ∼ p

(
Φi|Φ̂(t)

1 , Φ̂(t)
2 , ..., Φ̂(t)

i−1, Φ̂
(t)
i+1, ..., Φ̂

(t)
M

)
7:

...

8: Φ̂(t+1)
m ∼ p

(
Φm|Φ̂(t+1)

2 , ..., Φ̂(t+1)
m−1

)
9: end for

A significant advantage of Gibbs sampling is that only the conditional distributions are required

for simulation. Since even in high-dimensional problems the individual conditional distributions are

typically of low dimension, the complexity of the problem is reduced.

As mentioned, the Gibbs sampler is a Markov Chain Monte Carlo method; by construction of
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Algorithm 2.3, (Φ̂(t)) is a Markov chain. That is (Φ̂(t)) is a function only of (Φ̂(t−1)) as defined by

Alg. 2.3.

Convergence in MCMC methods has a very specific meaning, simply that the Markov chain

(Φ̂(t)) has a unique stationary distribution which is equal to the joint distribution p
(
Φ
)
. In much

more obvious terms, convergence implies that the average:

1
N

N∑
t=1

f(Φ(t)) , (2.41)

converges to the expectation
∫
f(Φ) p

(
Φ
)

almost surely [25], as N → ∞ for every bounded function

f . Furthermore, the Markov chain can be shown to converge to the stationary distribution from any

point in the domain of the distribution, meaning practically that Alg. 2.3 can be initialized with

any reasonable starting point Φ̂(0).

Proving convergence for the Gibbs sampler is a lengthy process, but as stated in Robert and

Casella [25], most decompositions (Alg. 2.3) satisfy the convergence requirements. Of more practical

importance than proving convergence will occur, is diagnosing when the Markov chain has converged.

Specifically, deciding when enough samplesN have been drawn is not trivial. Diagnosing convergence

usually involves either visually inspecting the sampler output, or running multiple Gibbs samplers

(and hence chains (Φ(t))) and comparing the variance within each chain to the variance between

chains. The specific convergence diagnostic tools used in the rest of this thesis will be presented

with the specific algorithms developed for individual models.

The two-stage Gibbs sampler is a subcase of the multi-stage Gibbs sampler. It is of particular

interest in the hybrid system and latent variable inference problems, as it can reduce inference of

the joint density function p
(
θ, Z|Y )

into the component parts of parameter estimation and data

association:

Algorithm 2.4 Two-Stage Gibbs Sampler: draw N samples from p
(
θ, Z|Y )

1: Start with initial samples: Θ̂(0)

2: for t=0,...,N do

3: Ẑ(t+1) ∼ p
(
Z|Θ̂(t), Y

)
4: Θ̂(t+1) ∼ p

(
Θ|Ẑ(t+1), Y

)
5: end for

Note that the samples Θ(t) from Algorithm 2.4 are also distributed like the marginal probability

[25]:

Θ̂(t+1) ∼ p
(
Θ|Y )

=
∑
Z

p
(
Θ, Z|Y )

. (2.42)

An important property of Algorithm 2.4 is that not only do the joint samples (Ẑ(t+1), Θ̂(t+1))
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form a Markov chain, but also each sequence (Ẑ(t+1)) and (Θ̂(t+1)) is a Markov chain. First consider

the stationary Markov transition kernel produced by Algorithm (2.4) over the joint variables:

K ((Z�,Θ�)|(Z,Θ)) = p
(
Θ�|Z�, Y

)
p
(
Z�|Θ, Y )

. (2.43)

As stated in [25] the kernel (2.43) has a stationary distribution of p
(
Θ, Z|Y )

. Furthermore Algorithm

2.4 produces the subchain (Θ̂(t)) that has the transition kernel:

K (Θ�|Θ) =
∑
Z

p
(
Θ�|Z�, Y

)
p
(
Z�|Θ, Y )

. (2.44)

2.3 Hidden Markov Models (HMM)

This section gives a formal definition of the hidden Markov model (HMM), and reviews HMM

inference using the EM and VB algorithms in Sections 2.3.1 and 2.3.2 . In brief, a HMM is a

discrete Markov chain with an emission distribution associated with each state that generates the

observed output. The term hidden is used to denote that the discrete state is not observed. HMMs

have a long history in computer science, especially in speech processing [10]. The definition of a

HMM (Def. 2.4) is as follows:

Definition 2.4 (Hidden Markov Model). A HMM is a system G = {S,Y,Θ}, where:

1. S = {S1, . . . , SN} is a set of N discrete states, or modes of G. The system mode Si at

time tk is denoted by mk = i. The hidden state sequence for all 1 ≤ tk ≤ T , is denoted

m1:T = {m1,m2, ...,mT }.

2. The evolution of the discrete states mk over S is described by a first order Markov chain, where

the system state mk at time tk depends only on the state mk−1 at time tk−1:

P
(
mk = j|mk−1 = i

)
= aij . (2.45)

The state transitions are completely described by the transition kernel matrix A = [aij ], where:

aij ≥ 0, and
N∑

j=1

aij = 1 . (2.46)

3. yk ∈ Y is the system output at tk. The observations are independent when conditioned on

the discrete state, and are completely defined by the parameterized distribution p
(
yk|mk, θmk

)
,

where θmk
are the parameters associated with the mth

k mode.

4. The initial condition π ∈ R
N , or the discrete state at t0 is defined as: π(i) = P

(
m0 = i

)
.
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5. The set of all system parameters is denoted Θ. This includes the transition parameters

A = [aij ], the initial condition π, and the parameters of the conditional observation densi-

ties θmk
,mk = 1, .., N .

�
Remark 2.3. Note that Def. 2.4 of a HMM does not specify a specific form of the observation densities

p
(
yk|mk, θmk

)
. In the classical HMM formulation [10], the observation space Y consists of a finite

discrete set of n symbols V = {v1, . . . , vn}, where each symbol vi represents a possible observation

of the system being modeled. For instance, in a coin toss experiment, the observation symbols vi

are simply the observations the coin landing with either the head or tails side facing up. In this

situation the conditional observation distribution p
(
yk|mk

)
is typically modeled as a multinominal

distribution. It should be noted that the observation space Y can be arbitrarily defined, with the

only requirement that the distribution p
(
yk|mk

)
can be specified. A common choice for modeling

continuous system outputs Y = R
n is the Gaussian distribution. The distinction between a HMM

with discrete or continuous observation spaces is not typically made in the literature, so the above

definition is consistent. �

mk

y
k

yk 1+yk 1-

mk 1+mk 1- ......

......

Figure 2.4: Directed acyclic graph representation of a hidden Markov model. Arrows represent
the conditional dependence of system variables. Grey nodes represent observed variables and white
nodes represent hidden variables.

The joint likelihood of the complete-data likelihood, or the likelihood of both the observed outputs

y1:T and the hidden or latent states m1:T of a sequence of length T is given by:

p
(
m1:T , y1:T |Θ

)
= P

(
m1|π

)
p
(
y1|m1, θm1

) T∏
k=2

P
(
mk|mk−1, A

)
p
(
yk|mk, θmk

)
. (2.47)

The Markov chain transition kernel in a HMM implicity defines a probability distribution of state

duration P
(
d
)
. This is illustrated by the question: given that the model is in state Si at time tk,

what is the probability that the model will stay in state Si for d time steps? This probability can

be evaluated as:

P
(
mk+1:k+d−1 = i,mk+d 
= i|mk = i

)
= (aii)

d−1 (1 − aii) = P
(
d
)
,

which is a Geometric distribution.
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For the remainder of this section we will refer to a hidden Markov model as a system with a finite

discrete observation set. The probabilities P
(
yk|mk = i

)
are the emission probabilities for each of

n symbols at each state:

θi(v) � P
(
yk = v|mk = i

)
, where

n∑
v=1

θi(v) = 1 and 0 ≤ θi(v) ≤ 1∀i, v

As discussed in Section 2.2, there is considerable merit in specifying priors on a model, and

estimating the posterior distributions of models. In the majority of this thesis, there is an underlying

assumption that in choosing a model, the form and parameters of the prior of that model are

specified. In the above definition of a hidden Markov model there is no explicit formulation for prior

distributions, just as the form of the observation density is not specified.

We will now define a suitable prior distribution over the parameters of a hidden Markov model.

These priors are typically used in the literature [35, 36], as they provide tractable posterior distri-

butions:

p
(
Θ
)

= p
(
π
)
p
(
A
)
p
(
θ1
)
... p

(
θN

)
(2.48)

p
(
π
)

= Dir
(
π1, ..., πN |π0

1 , ..., π
0
N

)
(2.49)

p
(
θi

)
= Dir

(
θi(1), ..., θi(n)|θ0i (1), ..., θ0i (n)

)
(2.50)

where Dir
(·|·) denotes the Dirichlet distribution. The prior on the transition kernel A is specified

independently for each row ai: = [ai1, ..., aiN ] of A:

p
(
A
)

=
N∏

j=1

p
(
ai:

)
, (2.51)

where for each ai::

p
(
ai:

)
= Dir

(
ai1, ..., aiN |a0

i1, ..., a
0
iN

)
. (2.52)

Using p
(
π
)

as an example, the form of a Dirichlet prior is:

p
(
π
)

=
Γ
(∑N

i=1 π
0
i

)
∏N

i=1 Γ (π0
i )

N∏
i=1

π
π0

i −1
i .

Throughout this thesis the superscript 0 will be used to denote the parameters of the prior. The

choice of these parameters and the implications of using priors is discussed in Chapter 4.

The rest of this chapter will now derive inference algorithms for estimating the HMM parameters

using the EM and VB methods.
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2.3.1 Expectation Maximization for HMM

The basic theory of inference in hidden Markov models was published by Baum et.al. [71] in a series

of papers written in the late 1960s and early 1970s. This Baum-Welch Algorithm was later shown to

be a special case of the expectation maximization algorithm. Perhaps the most referenced paper on

EM-based inference in HMMs is the tutorial from Rabiner [10], however a recent book by Cappe et.

al. [66] gives a clearer explanation in terms of deriving the EM algorithm and providing comparisons

to other inference methods such as Gibbs sampling.

Using the terminology originally introduced by Dempster [9] for the EM algorithm, the aim is to

find the parameters that maximize the incomplete-data likelihood p
(
y1:T |Θ

)
, by instead considering

the complete-data likelihood : p
(
m1:T , y1:T |Θ

)
.

From the derivation of the EM algorithm in Section 2.2.2, the incomplete data likelihood is

maximized by iterating between the E and M step of the algorithm.

The M-step of the algorithm is first considered below, where it is assumed there the E-step has

just computed the distribution over the hidden states: P
(
m1:T |y1:T ,Θold

)
. From (2.36) the M-step

is equivalent to maximizing Q(Θ,Θold) with respect to Θ, where:

Q(Θ,Θold) =
∑

m1:T ∈ST

P
(
m1:T |y1:T ,Θold

)
log p

(
y1:T ,m1:T |Θ

)
. (2.53)

The maximization of the function (2.53) results in the following parameters updates:

π(i) = P
(
mk = i|y1:T ,Θold

)
ai,j =

∑T−1
k=1 P

(
mk = i,mk+1 = j|y1:T ,Θold

)
∑T−1

k=1 P
(
mk = i|y1:T ,Θold

) (2.54)

θi(v) =
∑T

k=1 δ(yk = v) P
(
mk = i|y1:T ,Θold

)
∑T

k=1 P
(
mk = i|y1:T ,Θold

) ,

where δ(·) is the Kronecker delta function. To give an insight into the derivation of these update

formulas, the formula for the transition kernel update (2.54) given above is simply thought of as

the expected number of transitions from state Si to state Sj normalized by the expected number of

transitions from state Si.

The E-step of the EM algorithm (2.36) calculates the PDF P
(
m1:T |y1:T ,Θold

)
. However in the

case of a HMM, the M-step (2.54) only requires calculation of two marginal statistics of the joint
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density P
(
m1:T |y1:T ,Θold

)
:

γk(i) � P
(
mk = i|y1:T ,Θ

)
=

∑
m1:T ∈ST

P
(
m1:T |y1:T ,Θ

)
δ(mk = i) (2.55)

ξk(i, j) � P
(
mk = i,mk+1 = j|y1:T ,Θ

)
=

∑
m1:T ∈ST

P
(
m1:T |y1:T ,Θ

)
δ(mk = i,mk+1 = j) . (2.56)

The E-step of the EM algorithm then reduces from calculating the complete density function

P
(
m1:T |y1:T ,Θold

)
to the marginal statistics (2.55) and (2.56). These marginal statistics are the key

to inference in HMMs, and can also be considered as a smoothing problem. As in linear systems,

this problem is solved using dynamic programming, such as the Rauch-Tung-Striebel or Kalman

smoother (see any optimal control text book such as [72]). This involves running a forward filter for

estimating the probability of the hidden variable mk given the observed data up to the current time

step k, and then running a backwards smoother. An in depth look at the dynamic programming

routing known as the forward-backward algorithm is now considered.

2.3.1.1 The Forward-Backward Algorithm for HMM

The forward-backward algorithm calculates the required marginal statistics (2.55) and (2.56) of the

conditional latent mode variable density: P
(
m1:T |y1:T ,Θ

)
. Before getting into specific details about

the forward-backward process, the form of the distribution P
(
m1:T |y1:T ,Θ

)
is considered. By using

the product rule:

log P
(
m1:T |y1:T ,Θ

)
= log P

(
m1:T , y1:T |Θ

)− log P
(
y1:T |Θ

)
. (2.57)

The conditional mode distribution (2.57) can be expanded by substituting the complete data likeli-

hood (2.47):

log p
(
m1:T |y1:T ,Θ

)
= log P

(
m1|π

)
+

T∑
k=1

log p
(
yk|mk, θmk

)
+

T∑
k=2

P
(
mk|mk−1, A

)− log P
(
y1:T |Θ

)
.

(2.58)

This specific form (2.58) of the conditional mode distribution is important, and will be used later in

the thesis. In particular this form appears when using the variational framework in Section 2.3.2.

The forward-backward algorithm to solve for the marginal statistics of (2.58) is now considered.

The forward filter in the forward-backward algorithm [10, 66] is represented by the forward variables2:

αk(i) � P
(
mk = i|y1:k,Θ

)
. (2.59)

2The forward variables were originally defined as: P
(
y1:k, mk = i

)
[10]. This definition can cause numerical

underflow, as the probability of the data y1:T tends to becomes very small for large data sets. While the use of the
non-scaled version persists in the literature, the work of several other authors [36, 66, 73] is followed here.
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The backwards variables are likewise used to represent the backwards smoothing operation:

βk(i) � P
(
yk+1:T |mk = i,Θ

)
. (2.60)

The forward and backward variables are used to estimate the marginal statistics γk() and ξk()

required by the M-step (2.54). The marginal probability of the mode of the kth data point is

calculated using Bayes’ theorem as follows:

γk(i) = P
(
mk = i|y1:T ,Θ

) ∝ p
(
yk+1:T |mk = i,Θ

)
P
(
mk = i|y1:k,Θ

)
(2.61)

∝ αk(i)βk(i) . (2.62)

The probability ξk() can likewise be formulated in terms of the forward and backward variables

using Bayes’ theorem and then the product rule:

ξk(i, j) = P
(
mk = i,mk+1 = j|y1:T ,Θ

)
∝ p

(
yk+2:T |mk+1 = j,Θ

)
P
(
mk = i,mk+1 = j|y1:k+1,Θ

)
∝ βk+1(j) p

(
yk+1|mk+1 = j, θmk

)
P
(
mk+1 = j|mk = i,Θ

)
P
(
mk = i|y1:k,Θ

)
∝ βk+1(j) p

(
yk+1|mk+1 = j, θmk

)
aijαk(i) . (2.63)

The rest of this section derives recursive formulas for the forward (2.59) and backwards (2.60)

variables. The derivations are shown in full here as similar derivations will later be used for nonsta-

tionary and variable transition hidden Markov models (Section 3.5), as well as for variational update

schemes and newly derived regressor-based switching models (Section 3.7).

Proposition 2.3 (Forward variable recursion for HMMs). The forward variables can be updated

using:

αk(i) =
p
(
yk|mk = i, θi

)
cyk

N∑
j=1

ajiαk−1(j) (2.64)

where the normalizing constant is:

cyk
= p

(
yk|y1:k−1,Θ

)
=

N∑
i=1

p
(
yk|mk = i, θi

) N∑
j=1

ajiαk−1(j) . (2.65)

�
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Proof.

αk(i) =
p
(
yk|mk = i, θi

)
P
(
mk = i|y1:k−1,Θ

)
p
(
yk|y1:k−1,Θ

) (Bayes)

=
p
(
yk|mk = i, θi

)
p
(
yk|y1:k−1,Θ

) N∑
j=1

P
(
mk = i|mk−1 = j, A

)
P
(
mk−1 = j|y1:k−1,Θ

)
(Total Prob.)

By substituting definitions of aij and αk−1(j) into the above equation, the proof of (2.64) is com-

pleted. The normalizing constant cyk
(2.65) is realized by the constraint that

∑N
i=1 αk(i) = 1.

Remark 2.4. The computation complexity of computing the forward variables for k = 1, ..., T for a

HMM with N discrete states is O(N2T ). �
Remark 2.5. The normalizing constant allows the calculation of the incomplete data likelihood,

utilizing the product rule (A.3):

p
(
y1:T |Θ

)
=

T∏
k=1

p
(
yk|y1:k−1,Θ

)
(2.66)

=
T∏

k=1

cyk
. (2.67)

Evaluation of the incomplete data likelihood (2.66) should be done in log-space to avoid numerical

underflow: log p
(
y1:T |Θ

)
=

∑T
k=1 log cyk

. �

Proposition 2.4 (Backward variable recursion for HMM). The backward variables can be updated

using:

βk−1(i) =
N∑

j=1

βk(j) p
(
yk|mk = j, θj

)
aij . (2.68)

�

Proof.

βk−1(i) =
N∑

j=1

p
(
yk:T ,mk = j|mk−1 = i,Θ

)
(Marginalization)

=
N∑

j=1

p
(
yk+1:T |mk = j,Θ

)
p
(
yk,mk = j|mk−1 = i,Θ

)
(Product Rule)

=
N∑

j=1

p
(
yk+1:T |mk = j,Θ

)
p
(
yk|mk = j, θj

)
p
(
mk = j|mk−1 = i, A

)
(Product Rule)

This formula is equivalent to (2.68) by the using the definitions of aij and βk(j).

Remark 2.6. The computation complexity of computing the backwards variables for k = 1, ..., T for

a HMM with N discrete states is O(N2T ). �
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A difficulty in implementing the backwards smoother (2.68), is that calculating βk may result

in numerical underflow (consider that the probability p
(
y1:T |Θ

)
is likely to be very small for large

amounts of data). To calculate the backward variables using the relation (2.68) the variables will

need to be scaled. The most common solution to this scaling problems is to use the normalizing

constant cyk
from the forward variables to scale the backwards ones [10]. The new backwards

recursion for the scaled backwards variables β̃ becomes:

β̃k−1(i) =
1
cyk

N∑
j=1

β̃k(j) p
(
yk|mk = j, θj

)
aij (2.69)

and hence the scaled backwards variables β̃k(j) are expressed in terms of the original variables βk(j):

β̃k(j) =
T∏

t=k

c−1
yt
βk(j) . (2.70)

The effectiveness of using (2.69) is demonstrated by considering the product of the normalizing

constants
∏T

t=k cyt = p
(
yk+1:T |y1:k

)
used in (2.70). By decomposing the unscaled backward variable

using the conditional independence of HMM and then Bayes’ theorem:

βk(i) � P
(
yk+1:T |mk = i,Θ

)
= P

(
yk+1:T |mk = i, y1:k,Θ

)
=

P
(
mk = i|y1:T ,Θ

)
P
(
yk+1:T |y1:k,Θ

)
P
(
mk = i|y1:k,Θ

) , (2.71)

we see that the term P
(
yk+1:T |y1:k,Θ

)
in (2.71), which may cause numerical issues, will cancel with

the product of the scaling constants cyk
.

In summary, an algorithm to compute the forward and backward variables is given in Alg. 2.5.
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Algorithm 2.5 Forward-Backward Algorithm for hidden Markov models
1: Initialize forward variables: α0(i) ≡ π(i)

2: for k = 1 to T do

3: for i = 1 to N do

4: αk(i) =
p
(
yk|mk=i,θi

)
p
(
yk|y1:k−1,Θ

) ∑N
j=1 ajiαk−1(j)

5: where p
(
yk|y1:k−1,Θ

)
=

∑N
i=1 p

(
yk|mk = i, θi

)∑N
j=1 ajiαk−1(j)

6: end for

7: end for

8: Initialize backwards variables: βT (i) = 1

9: for k = T to 2 do

10: for i = 1 to N do

11: β̃k−1(i) = 1

p
(

yk|y1:k−1

) ∑N
j=1 β̃k(j) p

(
yk|mk = j, θj

)
aij

12: end for

13: end for

2.3.2 Variational Bayes for HMM

In this section, the Variational Bayes framework is used for inference in hidden Markov models.

The developments in this section follow from an unpublished work by MacKay [35], and the thesis

of Beal [36]. This derivation assumes familiarity with the variational methods described in Section

2.2.1, and will utilize the forward-backward algorithm derived in Section 2.3.1.

Following from Section 2.2.1, the aim of VB is to approximate the posterior distribution of the

HMM model p
(
Θ,m1:T |y1:T

)
with a factorized set of functions: q(m1:T )q(Θ). To find the best

approximation, we seek to minimize the KL divergence between p
(
Θ,m1:T |y1:T

)
and q(m1:T )q(Θ).

This is equivalent to maximizing the lower bound (2.20) of the model evidence, and in latent variable

models, is achieved by sequentially computing the following VB-E (2.28) and VB-M (2.27) steps:

VB-M step q(Θ) =
1
CΘ

exp

⎡
⎣ ∑

m1:T ∈ST

q(m1:T ) log p
(
y1:T ,m1:T |Θ

)⎤⎦ p
(
Θ
)

(2.72)

VB-E step q(m1:T ) =
1

Cm1:T

exp
[∫

q(Θ) log p
(
y1:T ,m1:T |Θ

)
dΘ

]
. (2.73)

The remainder of this section will provide solutions to the VB-E (2.73) and VB-M (2.72) steps,

which can then be used in the variational inference algorithm (Alg. 2.2). Furthermore, an analytical

expression for the variational lower bound to the model evidence is derived.
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2.3.2.1 VB-M Step

Using the complete data likelihood for a HMM (2.47), the VB-M step (2.72) can be written:

log q(Θ) = log p
(
π
)
+

∑
m1:T ∈ST

q(m1:T ) log πm1 +log p
(
A
)
+

∑
m1:T ∈ST

q(m1:T )
T∑

k=2

log P
(
mk|mk−1, A

)

+
N∑

i=1

log p(θi) +
∑

m1:T∈ST

q(m1:T )
T∑

k=1

log P
(
yk|mk, θmk

)− logCΘ . (2.74)

In expression (2.74) several HMM parameters are independent, implying without further assumption

that: q(Θ) = q(π)q(A)q(θ1 , ..., θN ). This simplifies computing the distribution q(Θ), as instead we

now can consider each component independently. For example, the distribution q(A), which is the

variational approximation of the Markov transition matrix A, can be computed by considering all

terms in (2.74) that are functions of A:

log q(A) = log p
(
A
)

+
∑

m1:T ∈ST

q(m1:T )
T∑

k=2

log P
(
mk|mk−1, A

)
+ CA , (2.75)

where CA is a normalizing constant. Direct analysis of equation (2.75) is intractable because of the

summation over all possible mode sequences m1:T . Instead (2.75) can be written:

log q(A) =

log p
(
A
)

+
∑

m1:T ∈ST

T∑
k=2

N∑
j=1

N∑
i=1

q(m1:T )δ(mk = j,mk−1 = i) log P
(
mk = j|mk−1 = i, A

)
+ CA ,

(2.76)

where δ(·) is the Kronecker delta function. While (2.76) may not seem like much of an improvement

over (2.75), it allows the use of the following marginal distribution:

ξk(i, j) � q(mk = j,mk−1 = i) =
∑

m1:T ∈ST

q(m1:T )δ(mk = j,mk−1 = i) , (2.77)

where (2.77) is a direct application of the Marginalization Theorem (this is the same methodology as

used in the EM algorithm for HMMs (2.56)). This marginal statistic (2.77) substituted into (2.76)

results in:

log q(A) =
N∑

j=1

N∑
i=1

log a
a0

ij−1

ij +
T∑

k=2

N∑
j=1

N∑
i=1

ξk(i, j) log aij + CA , (2.78)

where CA is a constant, and the prior p(A) has been substituted from (2.48). The equation (2.78)

is proportional to a product of Dirichlet distributions, where the ith row of the transition kernel A,
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is denoted ai: � [ai1, ai2, ..., aiN ]:

q(A) =
N∏

i=1

q(ai:) where q(ai:) = Dir
(
ai1, ..., aiN |[aT

i1, ..., a
T
iN ]

)
, (2.79)

where the parameters of the Dirichlet distribution q(ai:) in (2.79) are:

aT
ij = a0

ij +
T∑

k=2

ξk(i, j) .

Now that q(A) has been calculated, the distributions q(θ1, ..., θN ) and q(π) are derived. First

the calculation of q(θ1, ..., θN ) is considered. All terms in equation (2.74) that contain θ1, ..., θN are

collected to define the distribution q(θ1, ..., θN ):

log q(θ1, ..., θN ) =
N∑

i=1

log p(θi) +
∑
ST

q(m1:T )
T∑

k=1

log P
(
yk|mk, θk

)
+ Cθ1:N (2.80)

where Cθ1:N is a constant. Equation (2.80) is simplified by using a second marginal distribution of

q(m1:T ):

log q(θ1, ..., θN ) =
N∑

i=1

log p(θi) +
N∑

i=1

T∑
k=1

∑
ST

q(m1:T )δ(mk = i) logP
(
yk|mk = i, θi

)
+ C

=
N∑

i=1

log p(θi) +
N∑

i=1

T∑
k=1

γk(i) log P
(
yk|mk = i, θi

)
+ C , (2.81)

where the marginal distribution is then defined:

γk(i) � q(mk = i) =
∑

m1:T ∈ST

q(m1:T )δ(mk = i) , (2.82)

and where δ(·) is Kronecker delta. The distribution q(θ1, ..., θN ) can be further decomposed using the

form of equation (2.81) where the θi parameters are mutually independent, implying q(θ1, ..., θN ) =

q(θ1)...q(θN ). By considering all terms containing θi in equation (2.81):

log q(θi) = log p(θi) +
T∑

k=1

γk(i) P
(
yk|mk = i, θi

)
+ Cθi , (2.83)

where Cθi is a constant. Substituting in (2.50) for the prior p
(
θi

)
, and given that P

(
yk = v|mk = i, θi

)
= θi(v), from Definition 2.4, equation (2.83) can be written:

log q(θi) =
n∑

v=1

log θi(v)
θ0

i (v)−1 +
n∑

v=1

T∑
k=1

γk(i)δ(yk = v) log θi(v) + Cθi . (2.84)
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Equation (2.84) is proportional to a Dirichlet distribution:

q(θi) = Dir
(
θi(1), ..., θi(n)|[θT

i (1), ..., θT
i (n)]

)
(2.85)

where

θT
i (v) = θ0i (v) +

T∑
k=1

γk(i)δ(yk = v) .

The computation of q(π) is similar to that of q(θi): by considering all terms containing π in

equation (2.74), it can be shown that:

q(π) = Dir
(
π(1), ..., π(N)|πT (1), ..., πT (N)

)
, (2.86)

where πT (i) = γ1(i) + π0(i);

In summary, this section has provided analytical solutions for calculating the distributions q(A),

q(π), and q(θ1), ..., q(θN ). Furthermore, as q(Θ) = q(A)q(π)q(θ1), ..., q(θN ), this provides the re-

quired solution to the VB-M step (2.72).

Remark 2.7. A significant result of the VB-M step is that only the marginal distributions γk and ξk

are required, instead of the joint mode distribution q(m1:T ). This will simplify the following VB-E

step presented in the next section. �

2.3.2.2 VB-E Step

This section solves the VB-E step (2.73) of the Variational Bayes algorithm. A significant result of

the VB-M step is that only the marginal statistics γk and ξk of the distribution q(m1:T ) need to be

calculated (see Remark 2.7) instead of the full distribution q(m1:T ). These marginal statistics (2.77)

and (2.82) will be calculated using a similar forward-backward algorithm to that used in the EM

algorithm. Essentially, the distribution q(m1:T ) will be converted into the same functional form as

equation (2.58), for which the forward-backward algorithm was originally devised.

The VB-E step derivation starts by substituting the HMM complete data likelihood (2.47) into

the VB-E equation (2.73) resulting in:

log q(m1:T ) =∫
Θ

q(Θ)

[
log P

(
m1|π

)
+

T∑
k=2

log P
(
mk|mk−1, A

)
+

T∑
k=1

log p
(
yk|mk, θmk

)]
dθ − logCm1:T . (2.87)

Utilizing the functional form of the parameters, q(Θ) = q(π)q(A)q(θ1)...q(θN ), found in the VB-M
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step, equation (2.87) is expanded:

log q(m1:T ) =
∫

π

q(π) log P
(
m1|π

)
dπ +

T∑
k=2

∫
A

q(A) log P
(
mk|mk−1, A

)
dA

+
T∑

k=1

∫
θmk

q(θmk
) log p

(
yk|mk, θmk

)
dθmk

− logCm1:T . (2.88)

To simplify (2.88), the following geometric means are defined:

π̃i = exp
∫

π

q(π) log P
(
m1 = i|π)dπ (2.89a)

ãij = exp
∫

A

q(A) log P
(
mk = j|mk−1 = i, A

)
dA (2.89b)

b̃i = exp
∫

θi

q(θi) log p
(
yk|mk = i, θi

)
dθi . (2.89c)

Before substituting (2.89) into the the expression for q(m1:T ) (2.88), analytical expressions for the

geometric means (2.89) are derived.

The calculation of the geometric mean ãij in (2.89b) is derived first. From the VB-M step we

know that q(A) factorizes such that the rows ai: of A are independent q(A) = q(a1:) . . . q(a1:), where

each q(a1:) is a Dirichlet distribution (2.79). Using this decomposition simplifies (2.89b) into:

ãij = exp
∫

ai:

q(ai:) log aijdai: (2.90)

Equation (2.90) is the geometric mean of a Dirichlet distribution. A Dirichlet distribution has the

following geometric mean (see (A.16)):

φ̃i =
∫

φ

logφiDir
(
φ1, ..., φn|u1, ..., un

)
dφ

= ψ(ui) − ψ

⎛
⎝ n∑

j=1

uj

⎞
⎠ , (2.91)

where ψ is is the digamma function (A.13). Note that geometric means (e.g. φ̃), are sub-normalized

probability distributions, such that
∑

i φ̃i ≤ 1, by application of Jensen’s Inequality: E[log(x)] ≤
log(E[x]) as log is a concave function, and E[·] is the expectation.

Substituting the form of the Dirichlet distribution (2.91) into the expression for the geometric

mean (2.89b) results in:

ãij = ψ(aT
i j) − ψ

(
N∑

r=1

aT
ir

)
, (2.92)

where aT
ij are the parameters of q(A) given in (2.79). The calculation of the other geometric means

in (2.89) are easily computed as q(θi) and q(π) are Dirichlet distributions (2.85) and (2.86), and are
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also calculated using (2.91).

The geometric means (2.89) are substituted into the expression (2.88) for q(m1:T ) resulting in:

log q(m1:T ) = log π̃m1 +
T∑

k=2

log ãmkmk+1 +
T∑

k=1

log b̃mk
(yk) − logCm1:T . (2.93)

This distribution (2.93) is the same form as the posterior distribution P
(
m1:T |y1:T ,Θ

)
calculated

by the forward-backward algorithm (2.58). The only difference between equation (2.58) and (2.93)

is that the geometric means (2.89) are sub-normalized probability distributions. Sub-normalized

distributions are simply unnormalized distributions that integrate to less then one, and can hence

be normalized with a constant factor. The distinction between sub-normalized and unnormalized

distributions is later important in proving lower bounds. This does not affect the application of the

forward-backward algorithm to (2.93) as any constant terms inside the logarithms can be moved

into the normalizing constant Cm1:T . The forward variable recursion for (2.93) is now stated:

αk(i) =
b̃i(yk)
cyk

N∑
j=1

ãjiαk−1(j) , (2.94)

where:

cyk
=

N∑
i=1

b̃i(yk)
N∑

j=1

ãjiαk−1(j) . (2.95)

Note that the normalizing constants cyk
in (2.95) must be smaller than if normalized distributions

were used. The backwards variable recursion for (2.93) is stated:

βk−1(i) =
N∑

j=1

βk(j)b̃j(yk)ãij . (2.96)

The marginal distributions (2.61) and (2.63) are not affected if the forward and backward variables

are multiplied by a constant:

γk(i) ∝ αk(i)βk(i) (2.97)

ξk(i, j) ∝ βk+1(j)b̃j(yk)ãijαk(i) . (2.98)

The VB-E step then proceeds as follows: First the forward variables are initialized by α1(i) =

πib̃i(y1). Recursion (2.94) is used to calculate the forward variables for k = 2, ..., T . The backward

variables are initialized by setting βT (i) = 1, and then βk(i) is calculated using the recursion (2.96).

The marginal distributions that are required for the VB-M step are calculated using (2.97) and

(2.98).
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2.3.2.3 Evaluation of the Lower Bound L(q)

Evaluating the lower bound (2.20) of the variational framework is important as it allows for conver-

gence testing (Alg. 2.2), and model selection (Chapter 4). This section will derived the lower bound

for HMM following the work of Beal [36].

The first step in calculating the lower bound is to compute the normalizing constant Cm1:T from

the VB-E step. As noted in [36] the forward-backward algorithm can be used to do this. Recall

that using the forward-backward algorithm for the EM algorithm evaluated the marginal statistics

of (2.58):

log p
(
m1:T |y1:T ,Θ

)
= log πmk

+
T∑

k=1

log bmk
(yk) +

T∑
k=2

aij − log P
(
y1:T |Θ

)
, (2.99)

where we have used πi = P
(
m1 = i|π), bi(yk) = p

(
yk|mk = i, θmk

)
and aij = P

(
mk = i|mk−1 = j, A

)
.

When using the forward algorithm, the product of the normalizing constants (2.66) calculates the

normalizing constant: P
(
y1:T |Θ

)
=

∏T
k=1 cyk

in (2.99). Using Variational Bayes, the forward-

backward algorithm instead operates on the sequence (2.93):

log q(m1:T ) = log π̃m1 +
T∑

k=2

log ãmkmk+1 +
T∑

k=1

log b̃mk
(yk) − logCm1:T . (2.100)

The only difference between (2.99) and (2.100) is that the distributions π̃i, ãij , and b̃mk
(yk) are

sub-normalized. The product of the normalizing constants cyk
in VB (2.94) still determines the

normalizing constant Cm1:T :

Cm1:T =
T∏

k=1

cyk
. (2.101)

Calculating the normalizing constant Cm1:T using (2.101) directly after every VB-E step makes

the computation of the lower bound far easier. The lower bound (2.20) is simplified using the

factorization q(Θ,m1:T ) = q(m1:T )q(Θ) and q(Θ) = q(A)q(π)q(θ1)...q(θN ) resulting in:

L(q(m1:T ,Θ)) =
∫

Θ

q(Θ) log
p
(
Θ
)

q(Θ)
dΘ +

∫
Θ

∑
m1:T∈ST

q(Θ,m1:T ) log p
(
m1:T , y1:T |Θ

)
dθ

−
∑

m1:T ∈ST

q(m1:T ) log q(m1:T ) . (2.102)
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The entropy of q(m1:T ) in (2.102) can be decomposed after the VB-E step by using equation (2.73):

H
(
q(m1:T )

)
= −

∑
m1:T∈ST

q(m1:T ) log q(m1:T )

= −
∑

m1:T∈ST

q(m1:T )
∫

Θ

q(Θ) log p
(
m1:T , y1:T |Θ

)
dθ − logC(m1:T ) . (2.103)

Substituting (2.103) into (2.102) results in:

L(q(m1:T ,Θ)) =
∫

Θ

q(Θ) log
p
(
Θ
)

q(Θ)
dΘ + logC(m1:T ) . (2.104)

The KL divergence of the parameters
∫
q(Θ) log

p
(
Θ
)

q(Θ) dΘ can be simplified by the factorial form of

q(Θ). The lower bound (2.104) is then evaluated as:

L(q(m1:T ,Θ)) =∫
π

q(π) log
p
(
π
)

q(π)
dΘ +

N∑
i=1

∫
q(ai:) log

p
(
ai:

)
q(ai:)

dai: +
N∑

i=1

∫
θi

q(θi) log
p
(
θi

)
q(θi)

dθi + logC(m1:T ) .

(2.105)

All KL divergences in (2.105) are between two Dirichlet distributions, the solution of which is derived

in Appendix B. Evaluating this lower bound (2.105) directly after the VB-E step achieves three

things: First, as both the VB-E and VB-M step increase the lower bound, it provides a method

for checking the correctness of the coded algorithm (that is: if the lower bound ever decreases,

something is wrong). Second, monitoring the lower bound provides and indication of convergence

of the VB algorithm (See Alg. 2.2). Third, this lower bound will be used for model selection in

Chapters 4 and 5 of this thesis.
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Chapter 3

Hidden Markov Models and
Extensions as a Basis for Inference
in Hybrid Systems

3.1 Introduction and Motivation

This chapter introduces a series of hybrid system models and develops inference algorithms for

identification of the model parameters using observed data. Each of these models combines a discrete

time dynamical system with finite state switching systems of increasing complexity. First, generalized

linear hidden Markov models (GLHMMs), are introduced, which combine a generalization of linear

dynamical systems with discrete switching determined by a stationary Markov chain. In the second

model class, the discrete switching is determined by a non-stationary Markov chain. Specifically

variable transition hidden Markov models (VTHMM) and hidden semi-Markov Models (HSMM) are

used which explicitly model the duration spent in each discrete state of the hybrid system. In the

third model class, nonstationary regressor-dependant Markov chains are introduced to govern the

transition behavior of the system. In this case the discrete state transitions depend on the state of

the system’s dynamics. This new class of Markov chains leads to a class of hybrid systems termed

hidden-regressor-dependant Markov models (HRDMM).

By considering hybrid systems as extensions to Markov models, powerful existing inference algo-

rithms that exist for hidden Markov models (HMM) can be extended to the hybrid system identifi-

cation problem. In the previous chapter, the expectation maximization (EM) algorithm, the Gibbs

sampler, and variational Bayes (VB) were applied to HMMs. In this chapter these algorithms will

be applied to the presented GLHMM, VTHMM, HSMM and HRDMM models.

The dynamical systems associated with each discrete mode of the hybrid system will be rep-

resented in this thesis by generalized linear models (GLMs). This choice of dynamical system is

preferred over state space representations for two reasons: First, inference in GLMs models is more
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tractable then in state space models because GLMs are extensions of auto-regressive (AR) models

where the system output evolves according to a regression of previous system outputs. Inference

in state space models is a more difficult problem as it requires the estimation of a hidden state.

Equivalent state space representations can be created from AR models [28, 58], a subclass of GLMs.

Furthermore, AR models are commonly used in the hybrid systems community, especially for the

PWARX models discussed in Section 2.1.3. GLMs are also useful for modelling point processes,

such as a counting process, where observations are discrete. This added flexibility is important for

considered neurophysiological applications.

The hybrid system community has considered few problems in identifying hybrid systems from

observed data. The identification of only two sets of models is considered: Markov jump systems1

(see MJS in Section 2.1.1 and associated references) and the piecewise auto-regressive exogenous

models (see PWARX models in Section 2.1.3 and references within). As motivation for the models

explored in this thesis, consider the discrete state transition behavior associated with either of these

models: The MJS transitions are governed by a stationary Markov process, implying the evolution

of system’s discrete state (or mode) is only a function of the previous discrete state. This type of

transition rule, also used in the GLHMM, is best suited to modeling systems where the discrete state

is correlated in time. Simply put, observations collected during a short time interval are more likely

to be generated from the same discrete mode. This is a very reasonable assumption for many systems,

especially for the applications considered in this thesis. This idea that sequentially collected data are

likely to be generated by the same discrete state of the hybrid system is extended in the VTHMM and

HSMM models. Secondly the PWARX type models incorporate a very different switching behavior.

In simple terms, the discrete mode of a PWARX system is only a function of the system output, and

is not directly dependent on the discrete state of previous time steps2. Typically, when identifying

PWARX systems, the time correlation of data points is completely disregarded [4, 6, 59], and instead

data points are clustered based on a regressor of previous system outputs alone. PWARX models are

well suited to modeling a wide range of systems, and provide a class of models which can be readily

identified, yet incorporate the system dynamics in the switching behavior. However, considering

the applications in this thesis, where system observations are very noisy, it is found that clustering

data points without using correlation in time is inadequate to form reasonable models. Instead the

identification of PWARX type systems is approached in two ways. First, instead of just clustering

points based on regressor values, a version of the GLHMM is used to both cluster points in time

and use regressor values. Second, the developed HRDMM models provide a combination of Markov

and PWARX based switching behavior.
1Technically only the control and estimation, not identification, of MJS is published in the hybrid system commu-

nity. Instead most work in MJS is considered by researchers in machine learning and bio-informatics. See [53] and
references within.

2Note that as the system output is a function of the discrete states, previous discrete states indirectly affect the
current discrete state.
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This chapter is organized into the the following sections:

1. Section 3.2 will first define a class of generalized linear models that are used to represent

the dynamics of the continuous states, and then define the GLHMM model. Section 3.3 will

derive a variational Bayes inference algorithm for identification of GLHMM systems, followed

by Section 3.4 where a Gibbs sampler is developed for GLHMM identification.

2. Section 3.5 will define the HSMM and VTHMM models, and derive a class of hybrid systems

based on these non-stationary Markov systems. A variational Bayesian algorithm is developed

for the identification of HSMM, VTHMM and associated hybrid systems. Furthermore, an

existing Gibbs sampler for VTHMM models [38] can be improved using the derived forward-

backward recursions used for the variational inference algorithm.

3. Section 3.6 identifies PWARX models by relaxing the problem into a GLHMM identification

problem, allowing the use of inference algorithms developed in Sections 3.2 – 3.4 . Results

show that this approach generally provides equivalent performance to current PWARX identi-

fication methods, and may provide better performance in certain cases. This PWARX model

identification problem is used to motivate Section 3.7 where a new HRDMM model is defined,

and several HRDMM inference algorithms are developed.

4. This chapter concludes by presenting a series of causal and noncausal estimation algorithms.

These estimators use components of the developed identification algorithms, and can use an

identified model to infer the state sequence of new data in real time.

3.2 Generalized Linear Hidden Markov Models (GLHMMs)

This section defines a class of hybrid system called generalized linear hidden Markov models (GLH-

MMs). This model class is motivated by neurophysiological applications, which require flexibility in

representing various neurological signals. Generalized linear models (GLMs) are capable of modeling

a wide range of signals, and contain linear auto-regressive models as a special case. Consequently

existing auto-regressive hidden Markov models [10, 67] are a special case of the GLHMM model

specified here. Furthermore GLHMM models can represent systems with multiple output signals of

mixed type: for instance, linear models may be used to represent some system outputs, and a point

process can be used to model other system outputs.

Before defining a GLHMM in Definition 3.4, a review of generalized linear models is presented.

This review (Section 3.2.1) will contain both a general GLM definition, as well as several specific

cases that are used in this thesis. Furthermore, relevant issues pertaining to identification of these

models is discussed.
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3.2.1 Generalized Linear Models

Generalized linear models (GLMs) [26, 27], are an extension of linear regression that allows modeling

of situations where observations of the system state are not normally distributed. In GLMs, a linear

predictor is used to predict a function of the mean μk ∈ R of the outcome (observed) variable:

g(μk) = wTxk , (3.1)

where g(·) is a smooth invertible link function, xk ∈ R
d is a regressor vector of observed values or

known inputs, and w ∈ R
d is a vector of parameters. Note that the subscript k is used to denote

association with the observation yk collected at time tk.

The observed output of a GLM, yk, is distributed according to a distribution f(μk) whose mean

μk is described by the inverse of the link function:

y ∼ f(μk), where μk = g−1(wTxk) . (3.2)

The distribution, f(·), and the link function, g(·), are smooth and are often constrained to

be pairs of compatible functions, as described in Table 3.1. In some cases f(·) is parameterized,

such as when using a normal distribution: f(·) = N (·, σ2), where σ2 is the variance of the normal

distribution. In such cases, we will denote the set of all parameters associated with the GLM as θ

(e.g. θ = {w, σ2}).
GLM parameters are often identified via maximum likelihood methods [74]. To usefully identify

GLMs with either Gibbs sampling or variational Bayesian methods, it must be shown that the

density function p(θ|x1:T , y1:T ) is of a convenient form, which here will mean either log-concave

or conjugate. In practice, the distribution f(μk) is often constrained to the exponential family of

distributions, with an associated compatible link function g(μk), as shown in Table 3.1. These

compatible functional forms have been proven to yield log-concave likelihoods [75], for which there

exist efficient simulation tools appropriate for Gibbs sampling and can also be incorporated into

the Variational Bayesian framework. Gilks [76] describes an adaptive rejection sampling technique

which is based on bounding a log-concave density function with upper and lower hulls, allowing

single samples to be drawn from the distribution with only a few function evaluations. Jaakkola

describes local variational approximations that allow variational inference [77] in log-concave GLMs.

These approximations allow for efficient inference of GLM parameters, but do require the addition

of additional nuisance parameters.

While all the log-concave GLMs shown in Table 3.1, can be used in the inference algorithms

developed in this section, a convenient subclass of conjugate GLMs are first considered. A conjugate

model is defined such that the posterior distribution of the model parameters, after being updated
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Table 3.1: Log-concave likelihood forms of g() and f()
f(μ) g(μ)

Normal identity operator
Gamma g(μ) = logμ, or g(μ) = μγ , (−1 ≤ γ < 0)
Poisson g(μ) = logμ or g(μ) = μγ , (−1 ≤ γ < 0)
Binomial g(μ) = logit(μ) or g(μ) = Φ−1(μ), or g(μ) = log (−log(1 − μ))

with observed data using Bayes theorem, is of the same form as the prior distribution. Conjugate

models allow extremely efficient updating of model parameters as analytical posterior expressions

can be derived, avoiding the need for adaptive rejection sampling or addition of nuisance parameters.

The following two classes of conjugate GLMs are used in subsequent examples throughout this

thesis. The first example is auto-regressive models, also called an auto-regressive exogenous model

if a known external input is applied:

Definition 3.1 (Auto Regressive Dynamics). An auto regressive (AR) model is a generalized linear

model where the data likelihood yk ∈ R is given by the normal distribution:

yk ∼ N (
wTxk, (τ)−1

)
(3.3)

with xk = [yk−1, ..., yk−n]T , and θ = {w, τ}. Typically the parameters w are refered to as the AR

weights, and τ is the precision, or inverse of the variance. In this thesis a conjugate Gaussan-Gamma

(A.14) distribution is used for representing prior parameter information:

p(w, τ) = p
(
w|τ)p(τ) = N (

w|w0, (τΛ0)−1
)
Gam

(
τ |a0, b0

)
, (3.4)

where w0 ∈ R
n,Λ0 ∈ R

n×n, a0 ∈ R, b0 ∈ R are hyper-parameters, N (
w|w0, (τΛ0)−1

)
is the multi-

variate Gaussian distribution (A.7) and Gam(τ |a0, b0) is the Gamma (A.10) distribution. Note for

most applications is it sufficient to consider the class of prior precision matrices Λ0 = λ0I, where

λ0 ∈ R, and I ∈ R
n×n is the identity matrix. �

Definition 3.2 (Stationary Poisson Point Process). A stationary Poisson point process is a gener-

alized linear model where the data likelihood for yk ∈ N is a Poisson distribution (A.17)

p (yk|λ) =
λ(yk)e−λ

(yk)!
, (3.5)

and θ = λ is termed the “firing rate”, in application of this model to neural data analysis. In this

thesis a conjugate Gamma distribution (A.10) prior is used for the firing rate parameter λ:

p(λ) = Gam
(
λ|a0, b0

)
. (3.6)
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�
A nonstationary Poisson point process model is now considered, which is a log-concave (but non-

conjugate) GLM. This nonstationary point process has been previously used for modeling neuronal

single unit activity in GLHMMs [65, 64], and was originally proposed for modeling neural activity

by Truccolo et.al. in [78].

Definition 3.3 (Nonstationary Poisson Point Process). A stationary point process is a log-concave

generalized linear model where the data likelihood of yk ∈ N is a Poisson distribution (A.17)

p (yk|xk) =
λ(yk)e−λ

(yk)!
, (3.7)

and where λ = wTxk is a nonstationary rate which depends on a regressor of previous output

xk = [yk−1, ..., yk−n]T . The model is parameterized by θ = λ. While there is no conjugate prior

available for this model, this thesis will use a Gaussian distribution to reprint prior information:

p(w) = N (
w|w0,Σ0

)
, (3.8)

where w0 ∈ R
n and Σ0 ∈ R

n×n are hyper-parameters. �

3.2.2 GLHMM Definition

The definition of generalized linear hidden Markov models combines general linear models (Section

3.2.1) and hidden Markov models (Def. 2.4). This class of models and subsequent identification

algorithms has been previously presented in [64, 65].

Definition 3.4 (Generalized Linear Hidden Markov Model). A GLHMM is a system G = {S,U ,Y,Θ}
where:

1. S = {S1, S2, . . . , SN} is a set of N unobservable discrete states, whose evolution is governed by

a first order Markov process. At each tk, let mk denote the mode index, i.e., at tk the system

is in state Smk
. The probability of switching between modes of the system is governed by a first

order Markov chain with transition matrix A = [aij ]:

P (mk = j|mk−1 = i) = aij . (3.9)

2. yk ∈ Y is the set of observed system outputs measured at tk. The measurement takes the form

yk =
[
y1

k, . . . , y
n
k

]T , where each output yc
k is referred to as a channel. Each channel yc

k is

modeled as a generalized linear model, with parameters that depend on the discrete mode Smk
:

yc
k ∼ fc

(
gc

−1
(
θc

mk
xc

k

))
. (3.10)
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Here fc is assumed to be a probability distribution from the exponential family, and gc is a link

function. The linear predictor, θc
mk
xc

k, is composed of a regressor xc
k of ny previous outputs

and nu previous observations of other system covariates or inputs uk ∈ U :

xc
k =

[
yc

k−1, . . . , y
c
k−ny

, uk−1, . . . , uk−nu

]T

, (3.11)

and a corresponding parameter vector θc
mk

. The set of regressors for all channels at tk is

denoted xk = {x1
k, ..., x

C
k }.

3. Θ is the set of all model parameters, including the transition kernel matrix A, and the system

parameters θc
i , for i = 1, ..., N and c = 1, ..., C.

�
Remark 3.1. The need for several channels of the form (3.10) arises from the application of this work

to cortical neural prosthetics (Chapter 5), where multiple implanted electrodes record the electrical

activity of several cortical neurons. The independence between channels is a good assumption for

models of the firing of individual neurons. In some multiple output systems, this independence

assumption may be inappropriate. However this independence can be relaxed in a straightforward

manner. By introducing observations from other channels in the regressor (3.11), the dependence of

one channel on another can be represented. This approach is used in Section 4.4 where correlation

between regressor channels is required. �
Remark 3.2. A Dirichlet prior distribution is defined for each row of the Markovian kernel (3.9):

Dir
(
[ai1, ai2, ..., aiN ]|[a0

i1, a
0
i2, ..., a

0
iN ]

)
(3.12)

where a0
ij are hyper-parameters. The prior parameters for θc

i will depend on the specific model (3.10)

chosen for that channel. See Definitions 3.1 and 3.2 for details. �
The complete-data likelihood of a GLHMM (Def. 3.4) of a sequence of length T follows directly

from that of a HMM (2.47) and is given by:

p
(
m1:T , y1:T |Θ

)
= P

(
m1|π

)
p
(
y1|m1, x1, θm1

) T∏
k=2

P
(
mk|mk−1, A

)
p
(
yk|mk, xk, θmk

)
, (3.13)

where, due to the independence between channels:

p
(
yk|mk, xk, θmk

)
=

C∏
c=1

p
(
yc

k|mk, x
c
k, θ

c
mk

)
. (3.14)

Note that the regressors x1, ..., xn contain previous observed outputs y−n, y1−n, ..., y0 that are not

directly incorporated into the model likelihood (3.13). These observations, which are labeled with
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negative subscripts, do not have associated latent variables but are instead used to initialize the

model so the data likelihood p
(
y1|m1, x1, θm1

)
is defined.

Gibbs sampling and variational inference algorithms for the GLHMM class are now derived. A

key step for inference in both of these algorithms is the forward-backward recursion for computing

the marginal smoothing statistics of the posterior mode probabilities.

3.2.3 Forward-Backward Algorithm for GLHMM

Dynamic programming is again required for smoothing the posterior probability of the latent mode

variables. This section shows that essentially the same forward-backward recursions used for HMMs

(Section 2.3.1) can be used for GLHMMs. The only practical difference is the conditioning on the

regressor, which contains previous values of the observed system state. The following forward and

backward variables are defined:

Forward Variables: αk(i) � P
(
mk = i|y−n:k,Θ

)
(3.15)

Backwards Variables: βk(i) � P
(
yk+1:T |mk = i, y−n:k,Θ

)
. (3.16)

The essential difference in the forward-backward variables as compared to the HMM case is the

presence of the regressor variables y−n:k in the definition backward variables βk. This difference

is necessary to incorporate the regressor xk in the observation densities p
(
yk|xk,mk, θk

)
. HMMs

that incorporated regressors into the model, such as the auto-regressive HMM [10], utilize similar

forward-backward recursions to those presented here. However the definitions of the variables (3.15)

and (3.16) differ slightly from this earlier work, and the recursions are shown here for completeness.

Note that the conditional mode distribution P
(
m1:T |y−n:k,Θ

)
can be expressed using the com-

plete data likelihood (3.13), as was done for the HMM (2.58):

log p
(
m1:T |y1:T ,Θ

)
=

log P
(
m1|π

)
+

T∑
k=1

log p
(
yk|mk, xk, θmk

)
+

T∑
k=2

P
(
mk|mk−1, A

)− log P
(
y1:T |Θ

)
, (3.17)

where

log p
(
yk|mk, xk, θmk

)
=

C∑
c=1

log p
(
yc

k|mk, x
c
k, θ

c
mk

)
. (3.18)

Proposition 3.1 (Forward variable recursion for GLHMMs). The forward variables (3.15) can be

updated using:

αk(i) =
p
(
yk|mk = i, xk, θi

)
cyk

N∑
j=1

ajiαk−1(j) (3.19)
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where the normalizing constant is:

cyk
= p

(
yk|y1:k−1,Θ

)
=

N∑
i=1

p
(
yk|mk = i, xk, θi

) N∑
j=1

ajiαk−1(j) . (3.20)

�

Proof. Follows directly from the proof of the forward recursion (2.64) for HMMs (Proposition 2.3).

Remark 3.3. The forward variable recursion allows the calculation of the incomplete data likelihood

by taking the product of the normalizing constants: p
(
y1:T |Θ

)
=

∏T
k=1 p

(
yk|y1:k−1,Θ

)
. �

Proposition 3.2 (Backward variable recursion for GLHMM). The GLHMM backward variables

can be updated using:

βk−1(i) =
N∑

j=1

βk(j) p
(
yk|mk = j, xk, θj

)
aij . (3.21)

�

Proof.

βk−1(i) =
N∑

j=1

p
(
yk:T ,mk = j|mk−1 = i, y−n:k−1,Θ

)
(Marginalization)

=
N∑

j=1

p
(
yk+1:T |mk = j, y−n:k−1,Θ

)
p
(
yk,mk = j|mk−1 = i, y−n:k−1,Θ

)
(Product Rule)

=
N∑

j=1

βk(j) p
(
yk|mk = j, y−n:k−1, θj

)
p
(
mk = j|mk−1 = i, y−n:k−1, A

)
(Product Rule)

The above equation is equivalent to equation (3.21) by using the definition of aij and noting that

p
(
yk|mk = j, y−n:k−1, θj

)
= p

(
yk|mk = j, xk, θj

)
.

Scaling of the backward variables is required to avoid numerical underflow. The same method is

used as for HMM (2.69), scaling by p
(
yk|y1:k−1,Θ

)
. The new backwards recursion for the scaled

backwards variables β̃ becomes:

β̃k−1(i) = c−1
yk

N∑
j=1

β̃k(j) p
(
yk|mk = j, xk, θj

)
aij (3.22)

and hence the scaled backwards variables β̃k(j) are expressed in terms of the original variables βk(j):

β̃k(j) =
T∏

t=k

c−1
yk
βk(j) . (3.23)
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The forward and (scaled) backwards variables are now used to generate marginal statistics of the

discrete state, and are exactly the same as for the standard HMM case. The marginal probability

of the mode of the kth data point is calculated using Bayes theorem as follows:

γk(i) = P
(
mk = i|y−n:T ,Θ

)
(3.24)

∝ αk(i)βk(i) , (3.25)

and:

ξk(i, j) = P
(
mk = i,mk+1 = j|y−n:T ,Θ

)
(3.26)

∝ βk+1(j) p
(
yk+1|mk+1, xk, θmk+1

)
aijαk(i) . (3.27)

3.3 Variational Bayes for Inference in GLHMMs

This section applies the variational framework for inference in GLHMM (Def. 3.4) models. This work

builds on Section 2.3.2, which applied VB to HMMs. The aim of using VB for identifying GLHMM

is the same: the posterior distribution of the model p
(
Θ,m1:T |y1:T

)
is to be approximated by a

factorized set of functions q(m1:T )q(Θ). Finding the (locally) best approximation of the posterior

amounts to sequentially solving the following VB-E and VB-M update steps:

VB-M step q(Θ) =
1
CΘ

exp

⎡
⎣ ∑

m1:T ∈ST

q(m1:T ) log p
(
y1:T ,m1:T |Θ

)⎤⎦ p
(
Θ
)

(3.28)

VB-E step q(m1:T ) =
1

Cm1:T

exp
[∫

q(Θ) log p
(
y1:T ,m1:T |Θ

)
dΘ

]
. (3.29)

While these VB-E and VB-M steps appear the same as for HMM, there is added difficulty in their

computation: the parameter space for GLHMMs, Θ = {π,A, θc
i , i = 1, . . . , N, c = 1, . . . , C} is larger,

and furthermore, instead of associating static distributions to each mode, the GLHMM is formed

around a set of dynamical systems. The remainder of this section will develop solutions to the

update equations (3.28) and (3.29).

3.3.1 VB-M Step

This section derives the VB-M step (3.28) for GLHMMs. This derivation is similar to the VB-M

calculations for HMMs (Section 2.3.2.1), and some aspects of the derivation, such as the variational

form of the transition matrix A and the initial state π, are the same as in HMMs, since the GLHMM

definition has not changed this aspect of the model. Instead, the added complexity of identifying

the GLHMM model class arises from the continuous dynamics associated with each mode.
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Calculating the VB-M (3.28) step proceeds by substituting the complete data likelihood (3.13)

for GLHMMs into (3.28) resulting in:

log q(Θ) = log p
(
π
)
+

∑
m1:T ∈ST

q(m1:T ) log πm1 +log p
(
A
)
+

∑
m1:T ∈ST

T∑
k=2

q(m1:T ) log P
(
mk|mk−1, A

)

+
N∑

i=1

C∑
c=1

log p(θc
i ) +

∑
m1:T∈ST

T∑
k=1

C∑
c=1

q(m1:T ) log P
(
yc

k|mk, x
c
k, θ

c
mk

)− logCΘ . (3.30)

The expression (3.30) for the variational distribution q(Θ) is similar to that of a HMM (2.74) in

that many of the components of Θ are independent in (3.30). The distribution q(Θ) can be factored

into: q(Θ) = q(π)q(A)
∏C

c=1 q(θ
c
1, ..., θ

c
N ). Thus, the distribution q(A) can be derived by considering

all terms in (3.30) that are functions of A:

log q(A) = log p
(
A
)

+
∑

m1:T ∈ST

T∑
k=2

q(m1:T ) log P
(
mk|mk−1, A

)
+ CA , (3.31)

where CA is a normalizing constant. Expression (3.31) is exactly the same as for a HMM, (2.75)

and hence:

q(A) =
N∏

i=1

q(ai:) where q(ai:) = Dir
(
ai1, ..., aiN |[aT

i1, ..., a
T
iN ]

)
. (3.32)

The priors (3.12) for the transition matrix A are of the same form used by HMMs (2.48), and

hence the parameters of the Dirichlet distribution (3.32) are again: aT
ij = a0

ij +
∑T

k=2 ξk(i, j) (see

(2.79)). Note that the marginal statistic ξk(i, j) defined in (2.77) is used. The distribution q(π) is

also identical to that of HMM (2.86).

To complete the calculation of q(Θ) in equation (3.30), the distributions q(θc
1, ..., θ

c
N ), for c =

1, ..., C are now considered. By collecting terms of (3.30) containing θc
i , for i = 1, ..., N :

log q(θc
1, ..., θ

c
N ) (3.33)

=
N∑

i=1

log p(θc
i ) +

N∑
i=1

T∑
k=1

∑
ST

q(m1:T )δ(mk = i) log P
(
yc

k|mk, x
c
k, θ

c
mk

)
+ Cθc

1:N

=
N∑

i=1

log p(θc
i ) +

N∑
i=1

T∑
k=1

γk(i) log P
(
yc

k|mk = i, xc
k, θ

c
mk

)
+ Cθc

1:N
, (3.34)

where the Cθc
1:N

is a constant, and the definition of the marginal statistic is the same as (2.82):

γk(i) � q(mk = i) =
∑

m1:T ∈ST

q(m1:T )δ(mk = i) , (3.35)

and δ(·) is Kronecker delta. By considering the form of (3.34) the distribution q(θc
1, ..., θ

c
N ) can be
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further factorized: q(θc
1, ..., θ

c
N ) =

∏N
i=1 q(θ

c
i ) where,

log q(θc
i ) = log p(θc

i ) +
T∑

k=1

γk(i) P
(
yc

k|mk = i, xc
k, θ

c
mk

)
+ Cθc

i
, (3.36)

where Cθc
i

is a constant. The computation of equation (3.36) is the major difference between varia-

tional inference in HMM and GLHMMs. The remainder of this section will consider the computation

of (3.36) for the conjugate GLM dynamics models, in particular that for AR-models (Def. 3.1) and

for stationary Poisson point processes (Def. 3.2). Beal and Ghahramani [23] have previously noted

that, in general, the variational posterior of conjugate exponential models can be analytically com-

puted, and have the same form as the prior. However, the posterior of the conjugate (AR and

Poisson) models still needs to be derived, and applied to (3.36).

Remark 3.4. The non-conjugate (but log-concave) GLM forms, such as the nonstationary point

process (Def. 3.3) and logistic regression models (Def 3.3), are not considered in this section. The

interested reader is referred to Jaakkola [77] for a tutorial on using the variational approach for

log-concave GLMs, or to Bishop [24] for the case of logistic regression models. The derivations are

left out of this thesis, as they require a straightforward but lengthy explanation, and require an

additional step of optimizing nuisance parameters. Furthermore, for the neurological application in

Chapter 5, considering only the AR and stationary point process models is sufficient. �
The computation of (3.36) for an AR-model (Def. 3.1) is derived in Appendix C.3. The result

is repeated here for convenience:

q(θc
i ) = q(wc

i , τ
c
i ) = N (

wc
i |ŵc

i , (τΛ
c
i )

−1
)
Gam(τc

i |αc
i , β

c
i ) , (3.37)

where the parameters ŵc
i , Λc

i , α
c
i , β

c
i parameterize the posterior distribution and are computed as

follows:

Λc
i =

T∑
k=1

γk(i)xc
kx

c
k

T + Λ0 (3.38)

ŵc
i = (Λc

i)
−1

(
T∑

k=1

γk(i)ykxk + Λ0w0

)
(3.39)

αc
i = a0 +

1
2

T∑
k=1

γk(i) (3.40)

βc
i = b0 +

1
2
(w0 − ŵc

i )
T Λ0(w0 − ŵc

i ) +
1
2

T∑
k=1

γk(i)
(
y − (ŵc

i )
Txc

k

)
, (3.41)

and where Λ0, w0, a0,b0 are priors defined in (3.4).

The computation of (3.36) for a stationary Poisson point process (Def. 3.2) is derived in Appendix
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C.4. The result is repeated here:

q(θc
i ) = q(λc

i ) = Gam
(
λc

i |αc
i , β

c
i

)
, (3.42)

where the parameters αc
i and βc

i are computed:

αc
i = a0 +

T∑
k=1

γk(i)yc
k (3.43)

βc
i = b0 +

T∑
k=1

γk(i) , (3.44)

and where a0 and b0 are the priors defined in (3.6).

In summary, this section has computed the VB-M step (3.28) for GLHMM. Two important

aspects of this derivation are highlighted: First, the VB-M step only required the marginal statistics

γk and ξk of the variational distribution q(m1:T ). Secondly, it was shown that q(Θ) is factorized,

without any further assumptions, into q(Θ) = q(π)q(A)
∏C

c=1

∏N
i=1 q(θ

c
i ). The VB-E step, computed

in the next section, will make use of these aspects of the VB-M step.

3.3.2 VB-E Step

The VB-E step (3.29) for GLHMMs is similar to that of HMMs, and amounts to solving the integral

(3.29), the logarithm of which is presented here:

log q(m1:T ) =
∫
q(Θ) log p

(
y1:T ,m1:T |Θ

)
dΘ + logCm1:T . (3.45)

The VB-E step for GLHMM is more difficult then HMM for two reasons: the integral over the

parameters space, Θ, is higher dimensional, and the complete data likelihood (3.13) is more com-

plicated. However the integral (3.45) is still tractable, by noting that the VB-M step showed that

q(Θ) is factorized as q(Θ) = q(π)q(A)
∏N

i=1

∏C
c=1 q(θ

c
i ). Using this factorization, and substituting

the form of the complete data likelihood (3.13), the integral (3.45) is simplified (this is essentially

the same simplification used for HMMs (2.88)):

log q(m1:T ) = log π̃mk
+

T∑
k=1

log ãmkmk−1 +
T∑

k=1

log b̃mk
(yk, xk) − logCm1:T , (3.46)
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where the following geometric means are defined:

π̃i = exp
∫
q(π) log p(m1 = i|π)dπ (3.47a)

ãij = exp
∫
q(A) log p (mk = j|mk−1 = i, A) dA (3.47b)

b̃i(yk, xk) = exp
∫
. . .

∫ [
C∏

c=1

q(θc
i )

]
C∑

c=1

log p (yc
k|mk = i, xc

k, θ
c
i ) dθ

1
i ...dθ

C
i . (3.47c)

The geometric mean (3.47c) is further simplified by commuting the sum and integral terms in (3.47c):

b̃i(yk, xk) =
C∏

c=1

b̃ci(yk, xk) , (3.48)

where:

b̃ci (yk, xk) = exp
∫
q(θc

i ) log p (yc
k|mk = i, xc

k, θ
c
i ) dθ

c
i . (3.49)

Remark 3.5. Note that the geometric means (3.47) produce sub-normalized3 probability distribu-

tions, e.g.
∫
b̃ci(yk, xk)dyk < 1, by application of Jensen’s inequality: E[log(x)] ≤ log(E[x]) as log is

a concave function, and where E[·] is the expectation. �
The problem of evaluating these geometric means (3.47a), (3.49), and (3.47b) is now addressed.

The geometric mean for the Markov transition matrix (3.47b), and for the initial parameter (3.47a)

are exactly the same as in the HMM case (2.91), and will not be repeated here. The remaining

problem to be solved is calculation of the geometric means b̃ci(yk, xk), which will depend on the

specific generalized linear models used. Two important GLM cases, the auto-regressive model (Def.

3.1) and the Poisson point process model (Def. 3.2) will be considered in this section due to their

extensive use in Chapters 4 and 5.

For the AR model, the geometric mean (3.49) is expressed as follows:

b̃ci (y
c
k, x

c
k) = exp

∫ ∞

0

∫
Rd

q(wc
i , τ

c
i ) ln p (yc

k|mk = i, xc
k, w

c
i , τ

c
i ) dwc

idτ
c
i . (3.50)

This equation (3.50) can be analytically integrated, the derivation of which is done in Appendix C.1,

but repeated here for convenience:

b̃ci(y
c
k, x

c
k) = exp

[
−1

2
xc

k
T Λc

i
−1xc

k − 1
2
(
yc

k − (ŵi
c)

Txc
k

)2 αc
i

βc
i

+
1
2
(
ψ(αc

i ) − log βc
i

)− 1
2

log(2π)
]

(3.51)

3A sub-normalized distribution, discussed originally in Section 2.3.2.2 for HMM, is proportional to a normalized
probability distribution (i.e. that integrates to one), and where the proportionality constant is less then one.
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For the stationary Poisson point process model (Def. 3.2), the geometric mean (3.49) is expressed

as follows:

b̃ci (y
c
k, x

c
k) = exp

∫
q(λc

i ) log p (yc
k|mk = i, λc

i ) dλ
c
i . (3.52)

This equation (3.52) can be analytically integrated (see Appendix C.2) to yield:

b̃ci (y
c
k, x

c
k) =

1
yc

k!
exp

(
yc

k (ψ(αc
i ) − log(βc

i )) −
αc

i

βc
i

)
. (3.53)

Now that the geometric means (3.47) in expression (3.46) have been computed analytically,

equation (3.46) can be calculated using the forward-backward algorithm (Section 3.2.3), as was

done for HMM in (2.93). The forward variables are updated using the recursion:

αk(i) =
b̃i(yk, xk)

cyk

N∑
j=1

ãjiαk−1(j) . (3.54)

After completing the the forward pass, the product of the normalizing constants, cyk
, in (3.46) is:

Cm1:T =
T∏

k=1

cyk
.

The backwards filter βk is similarly calculated as for HMM (2.96), as well as the calculation of the

marginal statistics γk and ξk (see (2.97) and (2.98) respectively).

3.3.3 Calculation of the Lower Bound

The lower bound of the variational method for GLHMMs can be calculated after the VB-E step,

and is expressed as:

L(q(m1:T ,Θ)) =
∫

Θ

q(Θ) log
p
(
Θ
)

q(Θ)
dΘ + logC(m1:T ) (3.55)

where (3.55) is derived from (2.104). The KL divergence from the parameter prior to the posterior

can be simplified by substituting the factorized form: q(Θ) = q(π)q(A)
∏C

c=1

∏N
i=1 q(θ

c
i ), which was

derived during the VB-M step. The lower bound for GLHMMs (3.55) can then be written:

L(q(m1:T ,Θ)) =∫
π

q(π) log
p
(
π
)

q(π)
dΘ +

N∑
i=1

∫
q(ai:) log

p
(
ai:

)
q(ai:)

dai: +
N∑

i=1

C∑
c=1

∫
θc

i

q(θc
i ) log

p
(
θc

i

)
q(θc

i )
dθc

i + logC(m1:T ) .

(3.56)
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To allow efficient calculation of the lower bound, analytical expression for the KL divergences in

(3.56) are derived in Appendix B. For example the KL divergence of the dynamics of channel c in

mode i is expressed:

KL
(
q(θc

i )||p(θc
i )
)

= −
∫

θc
i

q(θc
i ) log

p
(
θc

i

)
q(θc

i )
dθc

i . (3.57)

The KL divergence (3.57) for the AR models posterior (3.37) is calculated in Appendix B.6. Likewise

the KL-divergence (3.57) for the stationary Poisson point process posterior (3.42) is calculated in

Appendix B.4. For an information theoretic perspective of why the lower bound (3.56) is useful for

model selection, see Chapter 4.

3.4 A Gibbs Sampler for Inference in GLHMMs

This section derives both two-stage and multi-stage Gibbs samplers for GLHMMs [64, 65]. The

multi-stage sampler is only required for non-conjugate GLMs (see Section 3.2.1), and will be derived

in Section 3.4.1.1. A two-stage Gibbs sampling method for GLHMMs follows directly from the two-

stage Gibbs sampler (Alg. 2.4) in Section 2.2.3. Algorithm 3.1 draws tmax samples from the joint

distribution p
(
Θ,m1:T |y1:T

)
of a GLHMM. Let the tth sample of a variable, Θ, be denoted: Θ̂(t).

Algorithm 3.1 Two-Stage Gibbs Sampler for GLHMM

1: Initial mode estimate: m̂(0)
1:T

2: for t = 0 to tmax do

3: Θ̂(t+1) ∼ p
(
Θ|m̂(t)

1:T , y1:T
)

4: m̂
(t+1)
1:T ∼ p

(
m1:T |Θ̂(t+1), y1:T

)
5: end for

The core of algorithm involves sequentially drawing samples from the two conditional distribu-

tions, shown in lines 3 and 4 of Algorithm 3.1, and can be considered identification and classification

steps respectively. Sections 3.4.1 and 3.4.2 describe how to efficiently draw samples from the required

conditional distributions in Algorithm 3.1.

3.4.1 Parameter Estimation Step

Drawing samples from the conditional parameter distribution p
(
Θ|m1:T , y1:T

)
is simplified by the

independence assumptions made in Definition 3.4 of a GLHMM, and the form of the complete data

likelihood (3.13):

p
(
Θ|m1:T , y1:T

)
=

N∏
i=1

C∏
c=1

p
(
θc

i |m1:T , y1:T
)
p
(
A|m1:T , y1:T

)
. (3.58)
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The data y1:T and corresponding regressor x1:T are split into discrete sets that depend on the discrete

system state m1:T :

Yc
i = {yc

k : mk = i, k = 1, . . . , T} and X c
i = {xc

k : mk = i, k = 1, . . . , T} . (3.59)

The problem of sampling from (3.58) is reduced to NC + 1 independent sampling problems:

θ̂c
i ∼ p

(
θc

i |Yc
i ,X c

i

)
for i = 1, ..., N and c = 1, . . . , C (3.60)

Â ∼ p
(
A|m1:T , y1:T

)
(3.61)

whereas the individual distributions p
(
θc

i |Yc
i ,X c

i

)
can be sampled from efficiently as they are in the

conjugate GLM family. For instance, both the AR models (Def. 3.1) and the stationary Poisson

point process (Def. 3.2) can be sampled from analytically. For instance, the AR model posterior,

derived in Appendix C.3 is:

p
(
wc

i , τ
c
i |Yc

i ,X c
i

)
= N (

wc
i |w̄c

i , (τ
c
i Λc

i)
−1

)
Gam(τc

i |αc
i , β

c
i ) , (3.62)

where the parameters ŵc
i , Λc

i , α
c
i , β

c
i parameterize the posterior distribution and are computed using

(3.59) as follows:

Λc
i =

∑
xk∈X c

i

xc
kx

c
k

T + Λ0 (3.63)

w̄c
i = (Λc

i )
−1

( ∑
∀k:mk=i

ykxk + Λ0w0

)
(3.64)

αc
i = a0 +

1
2

T∑
k=1

δ(mk = i) (3.65)

βc
i = b0 +

1
2
(w0 − ŵc

i )
T Λ0(w0 − w̄c

i ) +
1
2

∑
∀k:mk=i

(
y − (w̄c

i )
Txc

k

)
, (3.66)

and where Λ0, w0, a0, b0 are priors defined in (3.4). Sampling from (3.62) requires sampling τ̂c
i ∼

Gam (τc
i |αc

i , β
c
i ), and then sampling ŵc

i ∼ N (
wc

i |w̄c
i , (τ̂

c
i Λc

i )
−1

)
. For information on sampling from

common distributions such as the Gaussian and Gamma distributions see [25].

Conditioned on m1:T , each row, ai(1:N), of the transition kernel A can be sampled from indepen-

dently [37, 66]:

p
(
A|m1:T

)
=

N∏
i=1

p
(
ai(1:N)|m1:T

)
. (3.67)
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The conditional posterior of each row p
(
ai(1:N)|m1:T

)
is a Dirichlet distribution:

p
(
ai(1:N)|m1:T

)
= Dir

(
ai1, ai2, . . . , aiN |aT

i1, a
T
i2, . . . , a

T
iN

)
(3.68)

where the posterior parameters aij are formed using the number of transitions in m1:T from Si to

Sj :

aT
ij = a0

ij +
T∑

k=2

δ (mk−1 = i) δ (mk = j) . (3.69)

See either [37] or [66] on how to sample from a Dirichlet distribution.

3.4.1.1 Multi-Stage Sampling for Non-Conjugate Models

In the case where the GLM dynamics are of non-conjugate (but log-concave) form, adaptive rejection

sampling [76] can be used to simulate posterior samples. This requires the creation of a multi-stage

Gibbs sampler (Alg. 3.2), which is essentially the same as the two-stage sampler (Alg. 2.4), but

now samples from the parameters Θ in several stages.

In particular each parameter set θc
i can no longer be updated jointly (as in (3.60)), as it does not

have a conjugate form. Instead it is assumed that θc
i = [θc

i (1), ..., θc
i (R)], and each element of θc

i (r)

will be sampled conditioned on the remainder of the set θc
i :

θc
i (r) ∼ p

(
θc

i (r)
∣∣m1:T , θ

c
i (r

−), θc
i (r

+)y1:T
)

(3.70)

where θc
i (r

−) = {θc
i (s) : s < r} and θc

i (r
+) = {θc

i (s) : s > r}. Note that (3.70) is log-concave (as

the GLM is log-concave) and will be sampled from using adaptive rejection sampling. A multi-stage

Gibbs sampler, which sequentially samples from each θc
i (r) is given in Algorithm 3.2:
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Algorithm 3.2 Multi-Stage Gibbs Sampler for GLHMM with log-concave GLM models

1: Initial estimate: m̂(0)
1:T , Θ̂

(0)
1:T

2: for t = 0 to tmax do

3: for c = 1 to C do

4: for i = 1 to N do

5: for r = 1 to R do

6: θ̂c
i (r)

(t+1) ∼ p
(
θc

i (r)
∣∣m̂(t)

1:T , θ̂
c
i (r

−)
(t+1)

, θ̂c
i (r

+)
(t)
, y1:T

)
7: end for

8: end for

9: end for

10: Â(t+1) ∼ p
(
A|m̂(t)

1:T

)
11: m̂

(t+1)
1:T ∼ p

(
m1:T |Θ̂(t+1), y1:T

)
12: end for

3.4.2 Data Classification Step

The data classification step in both the multi-stage Gibbs sampler (Alg. 3.2) and two-stage sampler

(Alg 3.1) requires sampling from the conditional mode distribution p
(
m1:T |Θ, y1:T

)
. Extending

previous work, [64, 65] the entire mode sequence m1:T will be sampled in a single block update using

the forward filter (3.15) and backward Markovian sampling [66].

The forward variables p
(
mk = i|y1:k,Θ

)
for GLHMMs (3.15) are first evaluated for k = 1 : T

using the recursion (3.19) in Section 3.2.3. The Markovian backwards sampler, shown in Algorithm

3.3, is then used to simulate the entire state sequence m1:T from p
(
m1:T |Θ, y1:T

)
.

Algorithm 3.3 Markovian Backward Sampling
1: mT ∼ p (mT |y1:T ,Θ)

2: for k = T − 1 to 1 do

3: mk ∼ p (mk|y1:k,mk+1,Θ)

4: end for

The simulation of mk ∼ p (mk|y1:k,mk+1,Θ) in Algorithm 3.3 is accomplished using the forward

variables and Bayes’ theorem:

p (mk = i|y1:k,mk+1 = j,Θ) =
p (mk = i|y1:k,Θ) p (mk+1 = j|mk = i)∑d
i=1 p (mk =i|y1:k,Θ) p (mk+1 = j|mk = i)

. (3.71)

Equation (3.71) is a discrete distribution, and is evaluated using the forward variables p (mk = i|y1:k,Θ),

and transition parameters aij = p (mk+1 = j|mk = i). Simulating a mk from (3.71) can be accom-
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plished by creating a vector:

Pmk
= [p (mk = 1|y1:k,mk+1 = j,Θ) , ..., p (mk = N |y1:k,mk+1 = j,Θ)] , (3.72)

where
∑
Pmk

= 1. Drawing a sample from (3.71) is accomplished by generating a random number

from a uniform distribution on [0, 1], and then choosing mk = i, where i is the first element of the

cumulative sum of Pmk
that is greater or equal to the random number.

3.5 Variational Methods for HSMM and VTHMM

This section develops variational learning algorithms for the hidden semi-Markov model (HSMM) and

variable transition hidden Markov model (VTHMM). These models explicitly model the duration

spent in each hidden discrete state with a probability distribution. This modeling of duration is

equivalent to clocks in timed automata (Section 2.1.2), and hence provide useful framework for

identification in these systems. HSMM and VTHMM are formally described below in Definition 3.5

and Definition 3.6 respectively.

The aim of this section is twofold: first apply variational inference methods to these systems. This

is a novel development, and will allow use of the variational frameworks’ model selection tools, and

give the added benefit of approaching the inference problem from a Bayesian perspective. Secondly,

and more inline with the goals of this thesis, is to associate dynamics with each mode of the VTHMM

and HSMM, and hence devise a new class of hybrid systems with timed transitions. The addition

of dynamics will directly follow from the GLHMM defined in Section 3.2.

In brief, a VTHMM is a superset of HSMMs [38], and provides more flexibility in modeling

allowed transitions between the models’ discrete states, but contains significantly more parameters.

The HSMM, while having less flexibility, allows for more efficient learning algorithms, as recently

formulated by Yu and Kobayashi [73, 79]. The survey paper [80] gives a useful comparison of

VTHMMs and HSMMs in a maximum likelihood EM-based inference framework.

Definition 3.5 (Hidden Semi-Markov Model). A HSMM is a system G = {S,D,Y,Θ};

1. S = {S1, . . . , SN} is a set of of N discrete states, or modes of G. The system is denoted to be

in state Si mode at time tk by mk = i. The hidden state sequence for 1 ≤ k ≤ T is denoted

m1:T = {m1,m2, ...,mT }.

2. D = {1, 2, ..., D} is a discrete set of durations, or time spent in a given state Si. The remaining

time, or residual time, of the current state mk is denoted τk.

3. The joint process (mk, τk) evolves in two stages: if (mk, τk) = (i, d), where d ≥ 1, then the semi-

Markov chain deterministically counts down the residual time and transitions to (mk+1, τk+1) =
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(i, d− 1). If (mk, τk) = (i, 1) then system probabilistically transitions to (mk+1, τk+1) = (j, d)

for some j 
= i, according to the transition kernel [aij ] and the duration probability pj(d),

where:

P
(
mk+1 = j|mk = i, τk = 1

)
= aij where aii = 0 (3.73)

P
(
τk+1 = d|mk+1 = j, τk = 1

)
= pj(d) , (3.74)

are Multinomial4 distributions such that 0 ≤ pi(d) ≤ 1 and
∑D

d=1 pi(d) = 1, and 0 ≤ aij ≤ 1

and
∑N

j=1 aij = 1. In more intuitive terms, if the system G transitions from mode Si to Sj at

step k, then the system will remain in state Sj for duration tk = d with probability pj(d).

4. The observed system output at tk is denoted yk ∈ Y. The output yk depends only on the current

mode mk, and is assumed to be parameterized by θmk
. The observed output state sequence from

1 ≤ k ≤ T is denoted y1:T = {y1, y2, ..., yT }.

5. The system’s initial state condition, π ∈ R
N , at t0, is defined as: π(i, d) = p

(
m1 = i, τ1 = d

)
.

6. The set of all system parameters is denoted Θ. This includes the transition parameters A =

[aij ], the initial condition π, the parameters θmk
for mk = 1, .., N , and the duration probabilities

pi(d).

�
This HSMM model class includes the explicit-duration HMM (EDHMM) developed by Fergu-

son [30], and the continuously variable duration hidden Markov Models (CVDHMM) developed by

Levinson [31]. HSMM are also called segment models when each discrete mode is associated to a

linear state space model [81].

Variable transition hidden Markov models (VTHMMs) which are defined in Definition 3.6, are

also known as inhomogeneous HMMs (IHMM) [32], and non-stationary HMMs (NSHMM) [38, 33,

34].

Definition 3.6 (Variable Transition Hidden Markov Model). A VTHMM is a system G = {S,D,Y,Θ};

1. S = {S1, . . . , SN} is a set of of N discrete states, or modes of G. The system is said to be

in mode Si at time tk when mk = i. The hidden state sequence for 1 ≤ k ≤ T , is denoted

m1:T = {m1,m2, ...,mT }.

2. D = {1, 2, ..., D} is a discrete set representing the duration spent in the current mode Si. At

time tk the length of time, or duration, that the system has remained in the mode mk is denoted

by τk.
4The distribution P

(
τk+1 = d|mk+1 = j, τk = 1

)
can easily be changed to a parametric distribution like the Poisson

distribution, which is discussed in [38].
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3. The system state mk evolves according to a non-stationary Markov process:

P
(
mk+1 = j|mk = i, τk = d

)
= aij(d) . (3.75)

The duration evolves deterministically: if (mk, τk) = (i, d) and mk+1 = i then τk+1 = d + 1,

otherwise if mk+1 
= i then τk+1 = 1. Furthermore if (mk, τk) = (i,D) and mk+1 = i then

τk+1 = D, i.e., the state τk = D is a catch-all state5.

4. The observed system output at tk is denoted yk ∈ Y. The output yk depends only on the

current mode mk, and is assumed to be parameterized by θmk
. The data likelihood is de-

noted p
(
yk|mk, θmk

)
. The observed output state sequence from 1 ≤ k ≤ T is denoted y1:T =

{y1, y2, ..., yT }.

5. The system initial condition π, is defined as: πid = p
(
m1 = i, τ1 = d

)
6.

6. The set of all system parameters is denoted Θ. This includes the non-stationary transition

parameters A = {aij(d)}, for d = 1, ..., D, the initial condition π, and the parameters θmk
for

mk = 1, .., N .

�
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Figure 3.1: Directed acyclic graph representation of a variable transition hidden Markov model,
which gives the conditional dependence of system variables. Grey nodes represent observed data yk.

Remark 3.6. The typical definitions of VTHMM and HSMM use discrete (Multinomial) distributions

for the conditional observation densities p
(
yk|mk, θmk

)
(see Def. 3.5, item 4, and Def 3.6, item 4).

However in this thesis the interest is in associating continuous dynamics with each discrete mode,
5In the VTHMM definitions [32, 33] it is not explicitly defined what happens when τk = D, and mk+1 = mk.

This is because both [32] and [33] define D = k, the total length of the sequence until the current time step for all
calculations. However, in both papers the authors later state that the duration is constrained to a fixed D < k, but
do not explicitly change the provided derivations. Here we will assume that if (mk , τk) = (i, D) and mk+1 = i then
τk+1 = D.

6Note that in some definitions, the initial condition is forced to start with t1 = 1, implying that πid = 0 if d �= 1.
While this is sensible in some situations, it is not appropriate for all circumstances and hence will not be directly
enforced here. If it is known that the duration t1 = 1, this fact can be enforced through a judicious choice of prior
parameters
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instead of a stationary discrete distribution, and so the specific form of p
(
yk|mk, θmk

)
is left undefined

in the above definitions. Based on the GLHMM Section 3.2 of this thesis, we will use generalized

linear models to represent p
(
yk|mk, θmk

)
, and these distributions will additionally condition upon a

regressor of previous observations xk. This deviation from the original definitions (Def. 3.5 & 3.6)

will be remarked upon as necessary to facilitate the inference of VTHMM and HSMM with GLM

dynamics. �
The key difference between a HSMM and VTHMM is the complexity and flexibility of the kernel

which models transitions between discrete states. The VTHMM has significantly more flexibility in

the ability to model discrete transitions, but this added flexibility should not always be employed.

For a 10-mode system (N = 10), with maximum duration of D = 100, the VTHMM will have

N2D = 10000 transition parameters to identify; where the HSMM will have ND + N2 = 1100

parameters (and further compare to a HMM with N2 = 100 parameters). The added compactness of

the HSMM stems from the deterministic counting down in each mode. While at any duration, τk = d,

the VTHMM can transition to another discrete state, the HSMM is constrained to only transition

when τk = 1. The choice of using a VTHMM or HSMM is then application dependent and will

depend on the size of the problem and amount of training data available; in the neurophysiological

applications of this thesis the HSMM model framework will be used.

Because a Bayesian perspective is used for inferring model parameters, prior distributions for the

VTHMM and HSMM are now defined. These priors are based on the work of Djuric and Chun [38],

which is one of the few times priors have been introduced into the VTHMM and HSMM frameworks.

Definition 3.7 (Prior Distribution for HSMM). Because distributions pi(d) and aij from definition

3.5 are Multinomial, a suitable conjugate prior is the Dirichlet distribution. The prior distribution

of aij is similar to that in GLHMM and HMMs, where each row of ai: is independent:

Dir
(
ai1, ..., aii−1, aii+1, ..., aiN |[a0

i1, ..., a
0
ii−1, a

0
ii+1, ..., a

0
iN ]

)
, (3.76)

but where aii = 0 by definition of a HSMM. The prior distribution of pi(:) is independent from other

modes (j 
= i), where for each mode Si the prior probability of the duration spent in that mode is

modeled with a Dirichlet distribution:

Dir
(
pi(1), ..., pi(D)|p0

i (1), ..., p0
i (D)

)
. (3.77)

�
The prior distribution for VTHMM is now defined:

Definition 3.8 (Prior Distribution for VTHMM). The prior distribution for A(d) = {aij(d)} is
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defined as a Dirichlet distribution for each row ai:(d) at each time d = 1, ..., D.

Dir
(
ai1(d), ..., aiN (d)|[a0

i1(d), ..., a
0
iN (d)]

)
, (3.78)

this essentially just defines a new transition kernel for each possible duration d. �
There already exist several inference algorithms for both the HSMM and VTHMM models. Gibbs

sampling for these methods was introduced by Djuric and Chung [38]. This method is fully Bayesian

and each sampling step is efficient, however convergence may be very slow [38, 66]. There also

exist several approximate EM algorithms, where the E-step is replaced by generating the maximum

likelihood state sequence using the Viterbi algorithm [34]. This has the advantage of segmenting

the data in the corresponding E-step, and makes counting (or estimating the duration of each state)

easier.

The variational methods developed here are an extension of existing EM methods already devel-

oped for these model classes. The most efficient EM algorithms for both HSMM and VTHMM are

used: the EM algorithms [33] and [32] developed for VTHMM, and the recently developed methods

by Yu and Kobayashi [73, 79] for HSMMs are considered. This later method provides an algorithm

with computational complexity O(N2T + NDT ), as opposed to most methods with complexity

O(N2DT ), as noted in the survey [80].

To develop variational methods for variable transition hidden Markov models (VTHMM) and

hidden semi-Markov models (HSMM), three separate steps will be taken:

1. The VTHMM and HSMM models will be reformulated as stationary hidden Markov models in

the joint space (mk, τk) ∈ S ×D. This will allow direct application of the variational Bayesian

method developed for GLHMM, and has computational complexity O(N2D2T ).

2. Specific forward-backward recursions [32] developed for the VTHMMs are utilized to improve

the computational efficiency of the variational inference algorithm. This results in an inference

algorithm with computational complexity O(N2DT ).

3. The HSMM recursions developed by Yu and Kobayashi, [73], are applied, resulting in a varia-

tional inference algorithm with computation complexity of O(N2T +NDT ).

In all of the above steps the lower bound for the model will be derived, demonstrating the

continued usefulness of the VB method for model selection.

3.5.1 VTHMM and HSMM as Embeddings in a Stationary HMM

This section demonstrates that both the VTHMM and HSMM models, and hybrid systems based

on these models, can be embedded in a stationary hidden Markov model. This is equivalent to



69

considering the joint process (mk, τk) as a single Markov chain, and allows the variational inference

algorithms presented in Section 3.3 to be utilized directly. First the stationary HMM is defined,

allowing explicit mappings from the VTHMM, HSMM, and associated hybrid system models into

the stationary HMM to be formulated. The resulting mappings and variational updates can then

be used to perform variational Bayesian inference.

Definition 3.9 (Stationary HMM in Joint Space S×D). Consider a stationary HMM with discrete

state (mk, τk) as a special case of the standard HMM (Def. 2.4). This HMM is an embedding of

either a HSMM or VTHMM model, and has the following properties:

1. The discrete state transitions are governed by a stationary HMM chain with kernel Φ such

that:

p
(
(mk, τk) = (j, d′)|(mk−1, τk−1) = (i, d)

)
= φ(i,d)(j,d′) . (3.79)

Here, the state mk is denoted the mode, and the state τk is denoted the duration.

2. The observation probabilities associated with each state (mk, τk) are independent of the dura-

tion7:

p
(
yk|mk, τk,Θ

)
= p

(
yk|mk, θmk

)
. (3.80)

3. The initial condition of the system is defined as:

π(j,d) � P
(
(m1, τ1) = (j, d)

)
. (3.81)

4. The specific parameter set associated Θ with the stationary HMM will depend on the type of

system embedded: for a HSMM model, Θ = {π, pj(d), aij , θmk
}, and for a VTHMM model,

Θ = {π, aij(d), θmk
} for i, j = 1, ..., N and d = 1, ..., D.

�
A mapping between a VTHMM and the stationary HMM (Def. 3.9) is now derived using the

definition of a VTHMM (Def. 3.6):

• The transition kernel Φ of the HMM (3.79) is an injective map of the VTHMM:

φ(i,d)(j,d′) � P
(
(mk+1, τk+1) = (j, d′)|(mk, τk) = (i, d)

)

=

⎧⎪⎨
⎪⎩
aij(d) if {j = i, d′ = d+ 1} or {j = i, d = D} or {j 
= i, d′ = 1}
0 else .

(3.82)

7The distribution p
(
yk|mk, θmk

)
will later be modified the form used in GLHMMs (Def 3.4), but is left ambiguous

here to remain consistent with typical definitions of HSMM and VTHMM.
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Figure 3.2: Allowable connections for a 2-state VTHMM with a maximum duration of D = 5. Note
that the dotted connections represent the ability to transition into the same state when τk = D.
As demonstrated above, there are only 20 possible connections which can be solved with O(N2D)
complexity. For the fully connected graph above there would be 100 connections, or O(N2D2)
complexity.

The prior distribution over the parameters aij(d) is defined by (3.78). The zero components

of the kernel Φ do not have an associated prior, as they are deterministic.

• The conditional observation densities p
(
yk|mk, θmk

)
in the HMM 3.80 and the initial condition

π are the same as in Definition 3.6 of a VTHMM.

An example of this embedding for VTHMM systems into a stationary HMM is shown in Fig. 3.2

for a system with two modes N = 2 and a maximum duration of D = 5.

A similar mapping between a HSMM and the stationary HMM (Def 3.9) is derived using the

definition (Def 3.5):

• The transition kernel Φ of the HMM (3.79) is a injective map of the HSMM:

φ(i,d)(j,d′) � P
(
(mk+1, τk+1) = (j, d′)|(mk, τk) = (i, d)

)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if j = i, d > 1, d′ = d− 1

aijpj(d′) if d = 1

0 else .

(3.83)

The prior distribution over the parameters aij and pj(d) is defined by (3.77). The constant

components (taking values in {0, 1}) of the kernel Φ do not have an associated prior, as they

are deterministic.

• The conditional observation densities p
(
yk|mk, θmk

)
and initial condition π are the same in

Definition 3.5 of a HSMM.
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To illustrate the mapping between a VTHMM and the HMM, consider a 2-state VTHMM with

a maximum duration of 5. The stationary HMM kernel is then:

Φ =
[
φ(i,d)(j,d′)

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 a11(1) 0 0 0 a12(1) 0 0 0 0

0 0 a11(2) 0 0 a12(2) 0 0 0 0

0 0 0 a11(3) 0 a12(3) 0 0 0 0

0 0 0 0 a11(4) a12(4) 0 0 0 0

0 0 0 0 a11(5) a12(5) 0 0 0 0

a21(1) 0 0 0 0 0 a22(1) 0 0 0

a21(2) 0 0 0 0 0 0 a22(2) 0 0

a21(3) 0 0 0 0 0 0 0 a22(3) 0

a21(4) 0 0 0 0 0 0 0 0 a22(4)

a21(5) 0 0 0 0 0 0 0 0 a22(5)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

which in conjunction with Figure 3.2, is both useful for visualizing the embedding, as well as demon-

strates the number of deterministic (or zero probability) transitions in the stationary HMM.

The complete data likelihood of the stationary HMM (Def. 3.9) follows directly from that of a

HMM (2.47):

p
(
m1:T , τ1:T , y1:T |Θ

)
= P

(
m1, τ1|π

)
p
(
y1|m1, θm1

) T∏
k=2

P
(
mk, τk|mk−1, τk−1, A

)
p
(
yk|mk, θmk

)
.

(3.84)

To apply variational Bayes for inference in the stationary HMM, the VB-E and VB-M steps are

modified from the standard GLHMM (3.29) and (3.28) by applying definition (Def. 3.9):

VB-M: q(Θ) =
1
CΘ

exp

⎡
⎣ ∑

(m1:T ,τ1:T )∈(S×D)T

q(m1:T , τ1:T ) log p
(
y1:T ,m1:T , τ1:T |Θ

)⎤⎦p
(
Θ
)

(3.85)

VB-E: q(m1:T , τ1:T ) =
1

Cmτ
exp

[∫
q(Θ) log p

(
y1:T ,m1:T , τ1:T |Θ

)
dΘ

]
, (3.86)

where the approximation that the variational posterior factorizes has been made: q(Θ,m1:T , τ1:T ) =

q(Θ)q(m1:T , τ1:T ). As discussed in Section 2.2.1, sequentially solving the VB-E step (3.86) and the

VB-M step (3.86) will (locally) maximize the variational lower bound. This lower bound maximiza-

tion is equivalent to minimizing the KL divergence from the full posterior p
(
Θ,m1:T , τ1:T |y1:T

)
to

the factorized distribution q(Θ)q(m1:T , τ1:T ), hence providing the “best” variational approximation

possible. The remainder of this section will provide solutions to the VB-E (3.86) and VB-M (3.85)

steps for the stationary joint-space HMM (Def. 3.9).
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3.5.1.1 VB-M step for the Joint Space HMM

The computation of the VB-M step (3.85) is very similar to that derived for HMM (Section 2.3.2.1)

and GLHMM (Section 3.3). The only effective difference in the the VB-M step (3.85) compared to

the VB-M step for GLHMMs (3.28) is the additional summation over the latent variables τ1:T . This

has little practical effect in the VB-E step, because of the invariance of the densities:

p
(
yk|mk, τk,Θ

)
= p

(
yk|mk, θmk

)
. (3.87)

Next the PDF (3.87) must be modified to include the GLM dynamics defined Section 3.14:

p
(
yk|mk, xk, θmk

)
=

C∏
c=1

p
(
yc

k|mk, x
c
k, θ

c
mk

)
. (3.88)

Calculation of the VB-M step (3.85) step proceeds by substituting the complete data likelihood

(3.84) into (3.85) resulting in:

log q(Θ) = log p
(
π
)

+
∑

(m1:T ,τ1:T )

∈(S×D)T

q(m1:T , τ1:T ) log πm1,τ1+

log p
(
Φ
)

+
∑

(m1:T ,τ1:T )

∈(S×D)T

T∑
k=2

q(m1:T , τ1:T ) log P
(
mk, τk|mk−1, τk−1,Φ

)
+

N∑
i=1

C∑
c=1

log p(θc
i ) +

∑
(m1:T ,τ1:T )

∈(S×D)T

T∑
k=1

C∑
c=1

q(m1:T , τ1:T ) log P
(
yc

k|mk, x
c
k, θ

c
mk

)− logCΘ . (3.89)

Note that the distributions associated with the GLMs (3.88) are used. Expression (3.89) for the

variational distribution q(Θ) is similar to that of a GLHMM (3.30), and again many of the model

parameters Θ are independent. Without further assumption, the distribution q(Θ) is factored into:

q(Θ) = q(π)q(Φ)
∏C

c=1 q(θ
c
1, ..., θ

c
N ). The major difference between this variational expression (3.89)

and that of a GLHMM is the added complexity of summing over τ1:T . While this will not have much

effect on some of the factors, it does change the calculation of q(Φ) (as opposed to q(A) in GLHMMs).

The distribution q(Φ) can be derived by considering all terms in (3.89) that are functions of q(Φ):

log q(Φ) = log p
(
Φ
)

+
∑

(m1:T ,τ1:T )

∈(S×D)T

q(m1:T , τ1:T )
T∑

k=2

log P
(
mk, τk|mk−1, τk−1,Φ

)
+ CΦ , (3.90)

where CΦ is a normalizing constant. Again a marginal statistic of q(m1:T , τ1:T ) is used, now defined
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as:

ξk(i, d, j, d′) � q
(
(mk, τk) = (j, d′), (mk−1, τk−1) = (i, d)

)
=∑

(m1:T ,τ1:T )

∈(S×D)T

q(m1:T , τ1:T )δ
(
(mk, τk) = (j, d′), (mk−1, τk−1) = (i, d)

)
, (3.91)

where δ(·) is the Kronecker delta function. The statistic (3.91) allows q(Φ) in (3.90) to be simplified:

log q(Φ) = log p
(
Φ
)

+
T∑

k=2

N∑
i=1

N∑
j=1

D∑
d=1

D∑
d′=1

ξk(i, d, j, d′) log P
(
mk, τk|mk−1, τk−1,Φ

)
+ CΦ . (3.92)

At this point it is more efficient to consider the HSMM and VTHMM cases separately, since the

form of the transition matrix Φ is difference for each of the embeddings (3.82) and (3.83). For the

VTHMM model, where q(Φ) = q(aij(d)), the marginal statistic ξk(i, d, j, d′) is only non-zero for the

cases ξk(i, d, i, d + 1), ξk(i,D, i,D), and ξk(i, d, j, 1), where j 
= i. Hence, in the case of VTHMM

(3.90) can be written:

log q(Φ) � log q({aij(d)}) =
D∑

d=1

N∑
j=1

N∑
i=1

log aij(d)
a0

ij(d)−1

+
T∑

k=2

N∑
i=1

D∑
d=1

ξk(i, d, i, d+ 1) log aii(d) +
T∑

k=2

N∑
i=1

ξk(i,D, i,D) log aii(D)

+
T∑

k=2

N∑
j=1

N∑
i=1

D∑
d=1

ξk(i, j, d, 1) log aij(d) + CΦ , (3.93)

where the prior form of q(aij(d)) is taken from (3.78). Equation (3.93) is proportional to the product

of Dirichlet distributions, with all rows ai:(d) of the transition matrix for every duration d being

independent:

VTHMM: q(Φ) = q({aij(d)}) =
D∏

d=1

N∏
i=1

q(ai:(d)) , (3.94)

where:

q(ai:(d)) = Dir
(
ai1(d), ..., aiN (d)|[aT

i1(d), ..., a
T
iN (d)]

)
(3.95)

and:

aT
ij(d) = a0

ij(d) +

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑T
k=2 ξk(i, d, j, 1) if j 
= i∑T
k=2 ξk(i, d, i, d+ 1) if j = i and d < D∑T
k=2 ξk(i,D, i,D) if j = i and d = D

. (3.96)

Equation (3.92) is now computed for the HSMM case, where q(Φ) = q({aij}, {pi(d)}). By using
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the embedding (3.82) for HSMM, it is computed that:

HSMM: q(Φ) = q({aij}, {pi(d)}) =

[
N∏

i=1

q(ai:)

]⎡
⎣ N∏

j=1

q(pj(:))

⎤
⎦ , (3.97)

where the distributions in (3.97) are Dirichlet distributions:

q(ai:) = Dir
(
ai1, ..., aii−1, aii+1, ..., aiN |aT

i1, ..., a
T
ii−1, a

T
ii+1, ..., a

T
iN

)
(3.98)

q(pi(:)) = Dir
(
pi(1), ..., pi(D)|pT

i (1), ..., pT
i (D)

)
, (3.99)

with parameters:

pT
j (d) = p0

j(d) +
T∑

k=2

∑
∀i�=j

ξk(i, 1, j, d) (3.100)

aT
ij = a0

ij +
T∑

k=2

D∑
d=1

ξk(i, 1, j, d) for j 
= i , (3.101)

and aii = 0 by the definition of a HSMM.

In summary, we have so far calculated the distribution q(Φ) using (3.89). It remains to calculate

the distributions q(θc
1, ..., θ

c
N ) and q(π). First the calculation of q(θc

1, ..., θ
c
N ) is addressed, whereby

collecting all terms of θc
i in (3.89):

q(θc
1, ..., θ

c
N ) =

N∑
i=1

log p(θc
i )+

∑
(m1:T ,τ1:T )

∈(S×D)T

T∑
k=1

q(m1:T , τ1:T ) log P
(
yc

k|mk, x
c
k, θ

c
mk

)− logCθc
1:N

. (3.102)

Following from the GLHMM derivation (3.34), it can be shown that by defining the following

marginal statistic:

γk(i, d) � q
(
(mk, τk) = (i, d)

)
=

∑
(m1:T ,τ1:T )

∈(S×D)T

q(m1:T , τ1:T )δ
(
(mk, τk) = (i, d)

)
, (3.103)

where δ(·) is Kronecker delta, the distribution q(θc
1, ..., θ

c
N ) in (3.102) is factorized without any further

assumptions: q(θc
1, ..., θ

c
N ) =

∏N
i=1 q(θ

c
i ). Furthermore, the distribution q(θc

i ) is given by:

log q(θc
i ) = log p(θc

i ) +
T∑

k=1

D∑
d=1

γk(i, d) P
(
yc

k|mk = i, xc
k, θ

c
mk

)
+ Cθc

i
. (3.104)

The exact form of q(θc
i ) in (3.104) will depend on the GLM dynamics associated with each discrete

mode. If we define γ′k(i) =
∑D

d=1 γk(i, d), then (3.104) is identical to the expression used in the
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VB-M step of GLHMM (3.36) and in the (discrete output) HMM (2.84). Instead of repeating the

final posterior expressions of (3.104), the reader is referred to the previous sections.

The calculation of q(π) is now considered. By grouping all terms in (3.89) that contain π, the

distribution q(π) can be calculated:

q(π) = log p
(
π
)

+
∑

(m1:T ,τ1:T )

∈(S×D)T

q(m1:T , τ1:T ) log πm1,τ1 . (3.105)

This equation can be simplified by again using the marginal statistic (3.103):

q(π) = log p
(
π
)

+
T∑

k=1

D∑
d=1

γk(i, d) log πm1=i,τ1=d + Cπ . (3.106)

The distribution of the initial condition (3.106) is proportional to a Dirichlet distribution:

q(π) = Dir
(
π11, ...., π1D, π21, ..., πND|πT

11, ...., π
T
1D, π

T
21, ..., π

T
ND

)
, (3.107)

with parameters:

πT
id = πT

id + γk(i, d) . (3.108)

In summary, this section has described how to compute the VB-M step (3.85) for VTHMM

and HSMM, both in the case when discrete output distributions and generalized linear models

representing dynamics associated to each mode are used. Two important results of this section are

remarked upon. First, the distribution q(Θ) is factorized into the following forms:

VTHMM: q(Θ) = q(π)
D∏

d=1

N∏
i=1

q(ai:(d))
N∏

j=1

C∏
c=1

q(θc
j) (3.109)

HSMM: q(Θ) = q(π)
N∏

i=1

q(ai:)q(pi(:))
N∏

j=1

C∏
c=1

q(θc
j) . (3.110)

Secondly, only marginal statistics (3.91) and (3.103) of the distribution q(m1:T , τ1:T ) are required:

γk(i, d) �
∑

(m1:T ,τ1:T )

∈(S×D)T

q(m1:T , τ1:T )δ
(
(mk, τk) = (i, d)

)
(3.111)

ξk(i, d, j, d′) �
∑

(m1:T ,τ1:T )

∈(S×D)T

q(m1:T , τ1:T )δ((mk, τk) = (j, d′), (mk−1, τk−1) = (i, d)) , (3.112)

In the following VB-E section, these marginal distributions will be computed for the stationary joint

space HMM (Def. 3.9).
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3.5.1.2 VB-E step for the Joint Space HMM

The VB-E step (3.86) for the stationary joint HMM (Def. 3.9), and hence for the VTHMM and

HSMM, can be calculated using the same forward-backward algorithm as for GLHMMs. However,

this approach is inefficient and has computational complexity of O(N2D2T ), as will be demonstrated

in the rest of this section. Sections refsec:VTHMMinN2DT and 3.5.3 will then build on the results

of this section and provide forward-backward recursions that allow the computation of the VB-E

step in O(N2DT ) and O(N2T +NDT ) for VTHMM and HSMM, respectively.

The computation of the VB-E step (3.86) for the stationary joint HMM is conducted by substi-

tuting the the complete data likelihood, (3.84) into (3.86):

log q(m1:T , τ1:T ) =∫
Θ

q(Θ)

[
log P

(
m1, τ1|π

)
+

T∑
k=2

log P
(
mk, τk|mk−1, τk−1, A

)
+

T∑
k=1

C∑
c=1

log p (yc
k|mk = i, xc

k, θ
c
i )

]
dΘ

− logCmτ . (3.113)

Note that the GLM dynamics distribution
∏C

c=1 p (yc
k|mk = i, xc

k, θ
c
i ) has been used in (3.113) in-

stead of the stationary distribution p
(
yk|mk, θmk

)
for generality. Using the factorization q(Θ) =

q(π)q(Φ)
∏N

i=1

∏C
c=1 q(θ

c
i ) results in:

log q(m1:T , τ1:T ) = log π̃(m1,τ1)+
T∑

k=2

log φ̃(mk−1,τk−1)(mk,τk)+
T∑

k=1

log b̃mk
(yk, xk)− logCmτ , (3.114)

where from the GLHMM derivation (3.48):

b̃i(yk, xk) =
C∏

c=1

b̃ci(yk, xk) , (3.115)

and (3.115) can be computing using either (3.51) for AR-models, (3.53) for Poisson point processes,

or (2.91) for stationary Dirichlet distributions.

The geometric mean π̃(m1,τ1) from (3.114) can also be calculated using (2.91) as q(π) is a Dirichlet

distribuion (3.107).

The remaining geometric mean φ̃(i,d)(j,d′) in (3.114), will differ for embeddings of VTHMM or

HSMM models into stationary HMM. From (3.113) and (3.114) the distribution φ̃(i,d)(j,d′) is:

φ̃(i,d)(j,d′) = exp
∫
q(Φ) log P

(
(mk, τk) = (j, d′)|(mk−1, τk−1) = (i, d),Φ

)
dΦ , (3.116)

where the distributions q(Φ) and P
(
(mk, τk) = (j, d′)|(mk−1, τk−1) = (i, d),Φ

)
depend on if a VTHMM

or HSMM was embedded into the stationary HMM.
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In the case of a VTHMM, q(Φ) =
∏D

d=1

∏N
i=1 q(ai:(d)) (see (3.94)). Using the embedding (3.82),

the expression (3.116) can be written:

VTHMM: φ̃(i,d)(j,d′) =

⎧⎪⎨
⎪⎩
ãij(d) if{ j = i, d′ = d+ 1} or {j = i, d = D} or {j 
= i, d′ = 1}
0 else

(3.117)

where:

ãij(d) = exp
∫
q(Φ) log aij(d) dΦ (3.118)

= exp
∫
q(ai:(d)) log aij(d) dai:(d) . (3.119)

In the case of a HSMM (3.97) the distribution q(Φ) =
∏N

i=1 q(ai:)
∏N

j=1 q(pj(:)), and the embedding

(3.83) are applied to equation (3.116). First consider the case when a HSMM has finished counting

down and τk = 1, meaning that there is no remaining time left in the current mode mk = i. Equation

(3.116) can then be written:

φ̃(i,1)(j,d′) = exp
∫
q(Φ) log aijpj(d′)dΦ for j 
= i . (3.120)

Recall that aii = 0 from the definition of a HSMM. Equation (3.120) is simplified using the properties

of the logarithm:

φ̃(i,1)(j,d′) = exp
[∫

q(Φ) log aijdΦ +
∫
q(Φ)pj(d′)dΦ

]
(3.121)

= exp
[∫

q(ai:) log aijdai:

]
exp

[∫
q(pj(:))pj(d′)dpj(:)

]
(3.122)

= ãij p̃j(d′) , (3.123)

where:

ãij = exp
∫
q(ai:) log aijdai: for j 
= i (3.124)

p̃j(d′) = exp
∫
q(pj(:)) log pj(d′)dpj(:) (3.125)

are geometric means of Dirichlet distributions and can be calculated using (2.91). Note that ãii = 0.

Equation (3.116) is now considered when τk 
= 1, when from Definition 3.5, the transition to the

next state is now deterministic (with probability 0 or 1). Because these transitions are deterministic,

and are not functions of the parameters Φ, the transitions are invariant to the integral (3.116), i.e.,
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for any constant c: exp
∫
q(Φ) log c dΦ = c. This implies that:

HSMM: φ̃(i,d)(j,d′) � P
(
(mk+1, τk+1) = (j, d′)|(mk, τk) = (i, d)

)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if j = i, d > 1, d′ = d− 1

ãij p̃j(d′) if d = 1, j 
= i

0 else .

(3.126)

In summary of this section so far, the VB-E step requires the calculation of the marginal statistics

of q(m1:T , τ1:T ). Equation (3.114) gives the form of this distribution q(m1:T , τ1:T ), which is a function

of several geometric means. The derivations following (3.114) calculate these geometric means for

both the VTHMM (3.117) and HSMM (3.126).

Because the form of (3.114) is exactly the same as for GLHMMs (3.46), the same forward-

backwards algorithm can be used. Because we are considering the joint space S ×D, the equivalent

forward and backward variables are:

αk(i, d) � P
(
(mk, τk) = (i, d)|y1:k,Θ

)
(3.127)

βk(i, d) � P
(
yk+1:T |(mk, τk) = (i, d),Θ

)
. (3.128)

Using the forward-backward algorithm for GLHMM (Section 3.2.3) forward parameters now initial-

ized by:

α1(i, d) =
πid p

(
y1|mk = i

)
∑N

j=1

∑D
d′=1 πjd′ p

(
y1|mk = j

) . (3.129)

The forward variable recursion developed for GLHMM models (3.19) is directly applied to the joint

space stationary HMM:

α′
k(j, d′) = bi(yk, xk)

N∑
i=1

D∑
d=1

φ(i,d)(j,d′)αk−1(i, d) (3.130)

cyk
= p

(
yk|y1:k−1,Θ

)
=

N∑
j=1

D∑
d′=1

α′
k(j, d′) (3.131)

αk(j, d′) =
α′

k(j, d′)
cyk

. (3.132)

Note that the product of the constants cyk
in (3.131) still calculates the data likelihood p

(
y1:T |Θ

)
.

The backward parameter recursion follows from (3.22):

β̃k−1(i, d) = c−1
yk

N∑
j=1

β̃k(j, d′) p
(
yk|mk = j, xk, θj

)
φ(i,d)(j,d′) , (3.133)
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and is initialized by:

β̃T (i, d) = c−1
yk

. (3.134)

Note that complexity of applying these forward-backward algorithms in the joint space is O(N2D2T ).

The marginal statistics of the joint process are also a direct application of the GLHMM E-step. From

equation (3.24):

γk(i, d) = P
(
mk = i, τk = j|y−n:T ,Θ

)
(3.135)

∝ αk(i, d)β̃k(i, d) , (3.136)

and from equation (3.26):

ξk(i, d, j, d′) = P
(
mk = i,mk+1 = j|y−n:T ,Θ

)
(3.137)

=
1
cξk

βk+1(j, d′) p
(
yk+1|mk+1 = j, xk, θj

)
φ(i,d)(j,d′)αk(i, d) , (3.138)

where cξk
is a normalizing constant:

cξk
=

N∑
i

D∑
d

N∑
j

D∑
d′
βk+1(j, d′) p

(
yk+1|mk+1 = j, xk, θj

)
φ(i,d)(j,d′)αk(i, d) . (3.139)

The forward-backward recursion works equally well when the distributions are sub-normalized, how-

ever now the forward recursion calculates normalizing constant of the joint process Cmτ in (3.113).

Sections 3.5.2 and 3.5.3 will derive more efficient forward-backward recursions from this starting

point. The key idea is that because many elements of Φ are zero, they do not need to be propagated

in the recursions, reducing the computational burden of calculating the marginal statistics.

3.5.1.3 Lower Bound for Variational Inference in the Joint Space HMM

The lower bound (2.20) for a joint space HMM is given by

L(q(m1:T , τ1:T ,Θ)) =
∫

Θ

q(Θ) log
p
(
Θ
)

q(Θ)
dΘ + logCmτ (3.140)

where equation (3.140) is derived from (2.104) and Definition 3.9. By using the factorizations (3.110)

and (3.109), the lower bound (3.140) can be expressed as a sum of KL-divergences which can be

efficiently calculated. Note that logCmτ is calculated after every VB-E step. The lower bound for

the HSMM case is presented here, with the VTHMM case a straightforward modification8.

By using the factorization (3.110) of q(Θ) for HSMMs, the lower bound is calculated after the

8For the VTHMM case, the discrete transition parameters pi(d) and aij in (3.141) are replaced with aij(d). Because
the posterior of these parameters is also a Dirichlet distribution, the same functional form is retained.
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E-step as:

L(q(m1:T , τ1:T ,Θ)) =
∫

π

q(π) log
p
(
π
)

q(π)
dΘ +

N∑
i=1

∫
q(ai:) log

p
(
ai:

)
q(ai:)

dai:

+
N∑

i=1

∫
q(pi(:)) log

p
(
pi(:)

)
q(pi(:))

dpi(:) +
N∑

i=1

C∑
c=1

∫
θc

i

q(θc
i ) log

p
(
θc

i

)
q(θc

i )
dθc

i + logCmτ . (3.141)

To allow efficient calculation of the lower bound (3.141), analytical expression for the KL-

divergences are derived in Appendix B. For example the KL-divergence of the duration distribution

KL
(
q(pi(:))||p(pi(:))

)
= −

∫
pi(:)

q(pi(:)) log
p
(
pi(:)

)
q(pi(:))

dpi(:) , (3.142)

is the KL-divergence between two Dirichlet distributions, which is calculated in Appendix B.7.

3.5.2 Variational VTHMM in O(N2DT )

The computational complexity of inference in VTHMM models can be reduced by creating a more

efficient forward-backward algorithm, by not propagating the zero probability transitions in the

kernel Φ. The forward-backward recursions presented here follow from the papers [33] and [32].

By considering only the non-zero entries of the Φ matrix one can obtain the following. The

forward parameters can be updated recursively using the update following equations (for 1 ≤ j ≤ N):

α′
k+1(j, 1) =

D∑
d=1

N∑
i=1

αk(i, d)aij(d) p
(
yk+1|mk = j

)
(3.143)

α′
k+1(j, d+ 1) = αk(j, d)ajj p

(
yk+1|mk = j

)
for 1 ≤ d < D − 2 (3.144)

α′
k+1(j,D) = (αk(j,D − 1) + αk(j,D)) ajj p

(
yk+1|mk = j

)
. (3.145)

These equations follow directly from the embedding (3.82), and are identical to those presented in

both [33] and [32]9. The forward recursion given in (3.145) allows the forward parameters αk(i, d), i =

1 : N, d = 1 : D, k = 1 : T to be computed in O(N2DT ). The backward recursion is then solved

recursively [32] using:

βk(j, d) =

⎡
⎣∑

i�=j

βk+1(i, 1)aji(d) p
(
yk+1|mk = i

)⎤⎦ + βk+1(j, d+ 1)ajj(d) p
(
yk+1|mk = i

)
. (3.146)

Remark 3.7. The backwards recursion (3.146) allows the backwards parameters βk(i, d), i = 1 :

N, d = 1 : D, k = 1 : T to be computed in O(N2DT ). �
9Neither paper explicitly states what happens if the system remains in a given state Sj for d = D steps. Based on

the dialogue in [32], we have added equation (3.145).
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The memory requirement of this method can be reduced by storing only the αk(i, d), βk(i, d),

and γk(i, d) terms with memory requirements O(NDT ). Then instead of calculating and storing

the ξk term, just calculate the non-zero terms in (3.93), which then has computational complexity

O(N2DT ), as required to calculate aT
ij(D) in (3.96), for i = 1, ..., N , j = 1, ..., N and d = 1, ..., D.

3.5.3 Variational HSMM in O(N2T + NDT )

This section derives efficient forward-backward recursions that can be utilized for variational infer-

ence for HSMM. These recursions are based on the work Yu and Kobayashi [73, 79], but modify

their recursions to allow for the sub-normalized distributions (3.126) used in Variational Bayes, and

account for the addition of GLM dynamics.

The key to deriving an efficient recursion to update the forward variables (3.130) is to consider

the allowed transitions into a particular state. From Def. 3.5, the joint state (mk, τk) = (i, d) can

be reached in two ways: either from the same mode with decrease in the duration (mk−1, τk−1) =

(i, d + 1), or from another mode if the duration τ is already at one, (mk−1, τk−1) = (j, 1) and

j 
= i. The forward variable recursion (3.130) can thus be written as a combination of these two

possibilities:

α′
k(i, d) = αk−1(i, d+ 1)bi(yk, xk) +

⎡
⎢⎣ N∑

j=1
j �=i

αk−1(j, 1)aji

⎤
⎥⎦ bi(yk, xk)pi(d) . (3.147)

By evaluating the sum
[∑N

j=1
j �=i

αk−1(j, 1)aji

]
in (3.147), then α′

k(i, d) can be calculated for i = 1 : N

and d = 1 : D in O(ND + N2), and hence the entire forward sequence for k = 1, ..., T requires

O(NDT +N2T ) computation.

The backwards sequence can likewise be computed in an efficient recursion, by considering only

the non-zero transitions in Φ: The transitions from state (mk, τk) = (i, d) will occur deterministically

if d > 1 to (mk+1, τk+1) = (i, d− 1). If d = 1, then the state transitions to (mk+1, τk+1) = (j, d′) for

some j ∈ 1, ..., N and d′ ≥ 1. By then considering only these non-zero probability transitions, the

backward recursion (3.133) is reduced to:

β̃k(i, d) =

⎧⎪⎨
⎪⎩
c−1
yk
bi(yk, xk)β̃k+1(i, d− 1) for d > 1

c−1
yk

∑N
j=1 aijbj(yk, xk)

[∑D
d=1 pj(d)β̃k+1(j, d)

]
for d = 1 .

(3.148)

Evaluating the sum
[∑D

d=1 pj(d)β̃k+1(j, d)
]

only once in (3.148) for each j takes O(ND) operations.

The calculation of β̃k(i, d) for i = 1 : N and d = 1 : D only then takes O(ND +N2), and hence the

entire forward sequence for k = 1, ..., T takes O(NDT +N2T ).

The calculation of the marginal statistic ξk(i, d, j, d′) in (3.91) can be greatly simplified by con-
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sidering the use of ξk(i, d, j, d′) in HSMM models (3.100):

aT
ij = a0

ij +
T∑

k=2

D∑
d=1

ξk(i, 1, j, d) (3.149)

pT
j (d) = p0

j(d) +
T∑

k=2

∑
∀i�=j

ξk(i, 1, j, d) . (3.150)

Instead of calculating and storing ξk(i, d, j, d′), each equation (3.149) and (3.150) is now considered

separately. In equation (3.149), the marginal statistic ξk(i, d, j, d′) will be replaced by

ζk(i, j) � p
(
mk = i, τk = 1,mk−1 = j|y1:T

)
=

D∑
d′=1

ξk(i, 1, j, d′) . (3.151)

This new variable (3.151) can be calculated efficiently using only the non-zero elements Φ in equation

3.137:

ζk(i, j) =
1
cξk

αk−1(i, 1)ajibj(yk, xk)

[
D∑

d=1

pj(d)βk(j, d)

]
, (3.152)

where cξk
is the normalizing constant (3.139). Note that the summation

[∑D
d=1 pj(d)βk(j, d)

]
is

only calculated once for each j, and hence (3.152) can be calculated in O(ND+N2) for each k. The

normalizing constant cξk
can also be efficiently calculated, whereby considering only the non-zero

components of (3.139):

cξk
=

N∑
i=1

N∑
j=1

[
αk(i, 1)ajibj(yk, xk)

D∑
d′=1

pj(d′)βk+1(j, d′)

]
(3.153)

+
N∑

i=1

[
D∑

d=2

αk(i, d)bi(yk, xk)βk+1(i, d− 1)

]
, (3.154)

as using the similarity of equation (3.153) to (3.152), the normalizing constant can also be calcu-

lated10 in O(ND +N2). To evaluate (3.150) in the VB-M step, a second variable is introduced:

ηk(j, d′) � p
(
mk = j, τk = d′, τk−1 = 1|y1:T

)
=

N∑
i=1
i�=j

ξk−1(i, 1, j, d′) . (3.155)

The variable (3.151) is calculated using only the non-zero elements Φ in equation 3.137:

ηk(j, d′) =
1
ck

[
N∑

i=1

αk−1(i, 1)aij

]
bj(yk, xk)pj(d′)βk(j, d′) . (3.156)

10It is computationally convenient to first calculate the normalizing constant cξk
before ζk(i, j) and store the values

calculated in (3.153) for evaluating ζk(i, j).
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By calculating the summation
[∑N

i=1 αk−1(i, 1)aij

]
only once for each j, the computation of (3.156)

is O(ND +N2) for each k

In summary, this section has provided a method to conduct variational inference in HSMM with

O(ND + N2) complexity. This is the first time variational methods have been applied to HSMM

models, and by modifying the recursions of Yu and Kobayashi [79, 73], the proposed method is

more computationally efficient then typical EM-based HSMM inference methods with complexity

O(N2D) [80].

3.6 PWARX Identification using Variational Methods and

Gibbs Sampling

This section utilizes the GLHMM identification framework to identify piecewise autoregressive ex-

ogenous (PWARX) models (see Section 2.1.3). A two-stage method [8, 59, 6] used in the hybrid

systems community is adapted: First the PWARX problem is relaxed by removing dependance on

the switching hyperplanes, allowing the system to be modeled using GLHMMs. Second, the pos-

terior mode sequence m1:T , in conjunction with the regressors xk, are used to find the separating

hyperplanes using multi-category robust linear programming [62].

The fundamental difference between PWARX and GLHMM models is the discrete transition

characteristics of the system. PWARX models define a disjoint set of polyhedral regions {χi}N
i=1 in

the regressor space. The system is said to be in mode mk = i if the regressor xk ∈ χi (see Section

2.1.3 for details). By using the GLHMM identification process, the posterior mode probabilities

P
(
m1:T |y1:T

)
are automatically recovered, which then allows identification of the hyperplanes defin-

ing each region χi. This two-stage process is exactly the same as used in the sequential Bayesian

approach (Section 2.1.3.1) and the clustering approach (Section 2.1.3.2). By using this two-stage

GLHMM approach, the model selection tools developed in Chapter 4 can be applied to the PWARX

model identification problem.

Two case studies are presented. Case study 1 [65] involves a simple two-state “benchmark”

problem [8] to verify the suitability of the GLHMM framework. Case study 2 studies a pick-and-

place machine data set that has previously been analyzed in the hybrid system community [60].

3.6.1 Case Study 1: Benchmark Problem

To allow comparison of the GLHMM framework to existing methods of hybrid system identifica-

tion, the intersecting hyperplanes PWARX system from the comparison paper on hybrid system

identification [8] is considered:
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The PWARX system is defined as yk = h(xk) + ek, where h is:

h(xk) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
xk 1

] [
0.5 0.5

]T

if xk ∈ [−2.5, 0]

[
xk 1

] [
−1 2

]T

if xk ∈ (0, 2.5]

. (3.157)

Data is generated by drawing the regressor from a uniform distribution xk ∼ U [−2.5, 2.5], for

k = 1, . . . , 100. The noise, ek, is Gaussian with variance σ2.

The two-stage Gibbs sampler (Alg. 3.1) for GLHMM was used as following: Gaussian priors on

all regressor parameters p(θi) = N (0, 103) were used. Following from [8] the variance σ2 is assumed

to be known and does not need to be estimated. The regressor parameter pdfs (3.60) were explicitly

derived using Bayes’ theorem:

p
(
θi|X i,Yi

)
= N (E(θi),Σi) where

Σi = σ2(X i TX i + α2I)−1 and E(θi) = (X i TX i + α2I)−1X iTYi . (3.158)

The Markovian transition parameters A are not needed in this example, as xk is drawn from a

uniform distribution, and there is correlation in sequential mode values mk and mk+1. The mode

estimate m1:T in (3.71) is modified by using non-Markov switching behavior:

P
(
mk|yk, xk,Θ

)
=

p
(
yk|xk, θi,mk = i

)
∑N

j=1 p
(
yk|xk, θj ,mk = j

) , (3.159)

as in [65].

An example of the first 1500 samples drawn by the Gibbs sampler is shown in Fig. 3.3. The last

500 samples are used to estimate parameters, shown in Fig. 3.4. Linear programming was used to

infer the position of the hyperplane guard.

Following a procedure11 in [8], the effectiveness of the Gibbs sampling procedure is tested by

running the algorithm on (3.157) with a range of noise intensities σ2. It was found that Gibbs

sampling was able to identify parameters to a level of precision between the algebraic approach [6]

and the clustering-based procedure [59], when the regressor length and number of modes N was

known exactly.

While this PWARX “benchmark” example is useful for comparing to existing PWARX meth-

ods, it does not demonstrate any of the strengths of Bayesian inference. The GLHMM inference

framework is capable of determining the AR-model orders, and number of discrete modes in an

automated, information theoretic basis (see Chapter 4). As derived in Section 3.4.1, the GLHMM

11The metric E[Δθ] from the comparison paper [8] is used.
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method can also automatically determine the system variance σ2. These capabilities separate the

GLHMM proposed here with the identification methods reviewed in [8].

3.6.2 Case Study 2: Pick-and-Place Machine

This section used a pick-and-place machine data set [60]12 to demonstrate PWARX identification

using GLHMM models and the variational algorithm. In the pick-and-place machine experimental

setup, shown schematically in Fig. 3.5, a mounting head is fixed above the impacting surface. The

mounting head contains a vacuum pipette which is actuated by an electric motor and is connected

to the mounting head via a spring. The position of the pipet relative to the mounting head is

measured using a position sensor. The impact surface simulates the elastic properties of a printed

circuit board, exhibits both linear and dry friction. The pick-and-place machine data set also

contains information from a contact sensor, although in actual pick-and-place machine operation

these sensors are not typically used [60]. For specific details about the experimental setup and the

motivation for identifying and modeling the pick-and-place machine as a PWARX system, please

refer to [60].

The identification of the pick-and-place machine was conducted as follows. A GLHMM (Def.

3.4) with two discrete states, S = {S1, S2}, and one autoregressive channel (Def. 3.1) was used:

yk =

⎧⎪⎨
⎪⎩
N (θT

1 xk, τ
−1
1 ) if mk = 1

N (θT
2 xk, τ

−1
2 ) if mk = 2

, (3.160)

with the regressor xk = [yk−1, yk−2, uk−11]T . The GLHMM mode (3.160) was identified using the

variational method (Section 3.3). Minimally informative priors were used during the identification

process (see Definition 3.4 for details):

a0
ij = 1, ∀i, j ∈ {1, 2} . (3.161)

w0 = 0, λ0 = 0.01, a0 = 1, b0 = 1 . (3.162)

Once the GLHMM model has been identified, the hyperplane h12 that defines the boundary

between the polyhedral regions in the regressor space is found using the posterior mode sequence

m1:T . This two-stage method is compared to a model generated using a contact sensor, which gives a

“ground truth” of the actual mode sequence. This sensor, while providing very noisy measurements,

provides a reasonable benchmark to compare the identified model. The posterior mode sequences of

the identified GLHMM model, and the subsequently identified hyperplane of the PWARX model,

are compared with those derived using the contact sensor in Figure 3.6. Results show favorable
12A. Juloski is greatly thanked for providing this data set.
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(mass)

mounting head
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spring
non-linear friction

applied force input

yk

(a) (b)

Figure 3.5: Pick-and-place machine first-principles model from [60]. The system consists of an
actuated vacuum pipette (mass), which will contact an impacting surface. The impacting surface
and actuator are mechanically constrained such that only movement in the vertical axis is allowed.
The system exhibits both linear and dry friction. In the considered data set, there are only two
discrete states or modes: (a) a free mode, where the mass is not in contact with the impacting
surface, and (b) an impact mode where the mass is in contact with the impacting surface. There
also exist lower and upper saturation limits imposed by the range of the actuator, but these are not
observed with appropriate inputs.

comparisons of the identified model; as discussed in [60], the posterior model can confuse dry friction

with the contact mode. In this case, relatively small changes in the input will cause no movement

in the position of the vacuum pipette.
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Figure 3.6: Pick-and-place machine identification results. (a) Posterior state sequence using
GLHMM model. (b) Posterior state sequence using PWARX model generated from GLHMM re-
sults (see text for details). (c) A “ground truth” state sequence determined by a contact sensor. (d)
Observed output from the contact sensor. (e) Observed state sequence yk (blue) and control input
uk (red). (f) Regressor space representation of observed data and control input. The data points
are color coded according to the corresponding state sequence, where each regressor point (uk, yk)
is assigned to the most likely mode mk. (g) Identified PWARX model segmentation of the regressor
space. The identified hyperplane is depicted with a black line. (h) Using the “ground truth” mode
sequence from the contact sensor, the hyperplane is found using linear programming.
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3.7 Hidden Regressor Dependent Markov Models

Based on the identification of PWARX systems and generalized linear hidden Markov models, a new

class of stochastic hybrid system is developed. This new model is formed around a non-stationary,

regressor dependent, Markov transition kernel. This work is influenced by [50], which proposes an

estimation algorithm for hybrid system models with non-stationary kernels.

In the previous section, identification of PWARX systems was approached in a two-stage process.

The key to this approach, also used in [8, 6, 59], is the relaxation of the problem by removing

the systems mode dependance on the polyhedral regions which ultimately determine the switching

behavior. In essence, the problem is relaxed from identifying a PWARX model into a clustering

problem. This approach has the advantage of allowing powerful existing classification techniques to

be applied to the identification of the hyperplanes which determine the polyhedral regions in the

regressor space.

In this section, the deterministic hyperplane boundaries which define the switching behavior of a

PWARX system are replaced by probabilistic boundaries. Specifically, logistic regression functions

(i.e., the softmax function) are used to define the probabilistic switching surfaces, or guards, of the

system. The systems guards can be naturally formulated as a regressor dependant Markovian tran-

sition kernel, and motivate the creation of a hidden regressor dependent Markov model (HRDMM).

The inference algorithms developed for GLHMM models in Section 3.3 can be extended for iden-

tification of this new HRDMM model class in such a way that the guard functions are directly

incorporated into the identification process.

A formal definition of the HRDMM model is given in Definition 3.10. Several necessary al-

gorithms, including a forward-backward recursion, that are needed for identification of HRDMM

systems are then developed in Sections 3.7.1 to 3.7.3. Finally, Section 3.7.2 develops a variational

inference algorithm for HRDMMs models.

Definition 3.10 (Hidden Regressor Dependent Markov Model (HRDMM)). A HRDMM system is

of the form: G = {S,U ,Y,X , H,Θ} where:

1. S = {S1, . . . , SN} is a set of N discrete states, or modes of G. The system mode Si at

time tk is denoted by mk = i. The hidden state sequence for all 1 ≤ k ≤ T , is denoted

m1:T = {m1,m2, ...,mT }.

2. X is the regressor space, where xk is the regressor at time tk:

xk = [1, yk−1, . . . , yk−n, u
T
k ]T ∈ X ≡ R

n+1 , (3.163)

where uk ∈ U is a set of known input variables.
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3. X contains a set of N2−N guard regions {Rij}N
i�=j=1, and N invariant regions {Rii}N

i=1. Each

region Rij is defined as active at tk if xk ∈ Rij . The set of all regions associated with state Si

is defined Ri � {Rij , ∀j}. The guards regions Rij for j 
= i are treated as a probabilistic half

spaces defined by a hyperplane hij ∈ X ∗. By convention the invariant region will have hii � 0.

The probability of a region being active is a defined by the soft-max function:

P
(
xk ∈ Rij |Hi, xk

)
=

exp(hT
ijxk)∑N

l=1 exp
(
hT

ilxk

) , (3.164)

where set of all hyperplanes associated with mode Si is denoted Hi � {hij , ∀j : j 
= i}.The

system discrete state mk evolves according to which guard (or invariant) region is active. The

discrete state evolves according the the following non-stationary Markovian kernel:

aij(xk) � P
(
mk = j|mk = i, xk, Hi

)
= P

(
xk ∈ Rij |Hi, xk,mk = i

)
. (3.165)

H is defined as the set of all hyperplanes.

4. yk ∈ Y is the system output at tk, and is an auto-regressive function dependent on the system

mode mk, the parameters associated with mode Smk
: θmk

and σ2
mk

and the regressor xk:

p
(
yk|xk,mk, θmk

, σ2
mk

)
= N (

θT
mk
xk, σ

2
mk

)
. (3.166)

5. Θ is the set of all parameters associated with the continuous dynamics of the model and includes

all AR parameters θi, σ
2
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Figure 3.7: Directed acyclic graph of a HRDMM. Only the connection for the step tk is fully shown.

Remark 3.8. The softmax decision boundary implies that the regions Rij are convex and disjoint,

and that only one region is active at any time. The softmax function (3.164) is defined by here by

setting hii = 0. This convention is used so that the hyperplanes hij correspond to those in PWARX
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models. Note however that this choice is arbitrary, because the transition function is invariant to

the addition of any constant C:

P
(
xk ∈ Rij |Hi, xk

)
=

exp(hT
ijxk)∑N

l=1 exp
(
hT

ilxk

) =
exp(hT

ijxk + C)∑N
l=1 exp

(
hT

ilxk + C
) . (3.167)

�

Remark 3.9. The HRDMM model can be considered a probabilistic generalization of a PWARX

(Def. 2.2) system, where now the evolution of the discrete state mk depends on the full hybrid

state (mk−1, xk) instead of just xk. This inclusion of mk−1 allows for the modeling of hysteretic

systems. If PWARX behavior is desired, then the softmax function (3.164) can be constrained to be

the same for all modes such that hij = hi′j∀i′. Intuition into the hysteretic modeling capabilities of

the HRDMM is is given by an example of an air conditioner in Figure 3.8. �
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Figure 3.8: Air Conditioning System: a HRDMM. This system has two modes: Mode 1 “ON” and
Mode 2 “OFF”. (a) A finite state machine representation of the air conditioner. (b) Sample output
of the HRDMM. Here the temperature yk asymptotically approaches 30 if the air conditioner is off,
and approaches 20 if the air conditioner is on. The system guards transition the system from on to
off if yk < 24 and from off to on if yk > 27.

An interesting relationship between the regressor dependent Markov transition kernel (3.164)

and the stationary kernel used in GLHMMs, is when the hyperplane hij is non-zero in only the first
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element, and no longer depends on the regressor xk:

aij(xk) =
exp(hij(1))∑N

l=1 exp (hil(1))
. (3.168)

In this case (3.168), the variables hij(1) actually form a softmax basis [82] for the stationary kernel

A used in HMMs.

Following from GLHMMs (3.13), the complete data likelihood of a sequence of length T for a

HRDMM is given by:

p
(
m1:T , y−n:T |Θ, H

)
= P

(
m1|π

)
p
(
y1|m1, x1, θm1

) T∏
k=2

P
(
mk|mk−1, xk, H

)
p
(
yk|mk, xk, θmk

)
.

(3.169)

Before explicitly deriving a variational inference algorithm for HRDMMs in Section 3.7.2, forward-

backward recursions for the non-stationary kernel are developed.

3.7.1 Forward-Backwards Algorithm for HRDMM

This section derives a forward-backward recursion for HRDMM models. Following from Section 3.2.3

of GLHMM, the goal of the derived algorithm is to calculate the following forward and backward

variables:

αk(i) � P
(
mk = i|y−n:k,Θ, H

)
(3.170)

βk(i) � P
(
yk+1:T |mk = i, y−n:k,Θ, H

)
, (3.171)

and the marginal probabilities:

γk(i) � P
(
mk = i|y−n:T ,Θ, H

)
(3.172)

=
∑

m1:T ∈ST

P
(
m1:T |y−n:T ,Θ, H

)
δ(mk = i)

ξk(i, j) � P
(
mk = i,mk+1 = j|y−n:T ,Θ, H

)
(3.173)

=
∑

m1:T ∈ST

P
(
m1:T |y−n:T ,Θ, H

)
δ(mk = i)δ(mk+1 = j) ,

where y−n:T = {y−n, y1−n, ..., y0, y1:T , } are the observations augmented with the initial regressor

values (see Section 3.2.3). The marginal statistics (3.172) and (3.173) are again derived as functions
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of the forward (3.170) and backward (3.171) variables. Using Bayes’ theorem:

γk(i) ∝ p
(
yk+1:T |mk = i, y−n:k,Θ, H

)
P
(
mk = i|y−n:k,Θ, H

)
(3.174)

=∝ αk(i)βk(i) . (3.175)

The marginal statistic (3.173) is likewise formulated using Bayes’ theorem and then the probability

axiom (A.3):

ξk(i, j) ∝ p
(
yk+2:T |mk+1 = j,Θ, H

)
P
(
mk = i,mk+1 = j|y−n:k+1,Θ, H

)
(3.176)

∝ βk+1(j) p
(
yk+1|mk+1, y−n:k

)
P
(
mk+1 = j|mk = i, y−n:kΘ, H

)
P
(
mk = i|y−n:k,Θ, H

)
(3.177)

∝ βk+1(j) p
(
yk+1|mk+1, xk+1

)
aij(xk)αk(i) , (3.178)

where (3.178) uses the definition of xk = [1, yk−n, ..., yk−1].

Proposition 3.3 (Forward variable recursion for HRDMM). The forward variables can be updated

using:

αk(i) =
1
cyk

p
(
yk|mk = i, xk, θi

) N∑
j=1

aji(xk)αk−1(j) (3.179)

where the normalizing constant is:

cyk
= p

(
yk|y1:k−1,Θ, H

)
=

N∑
i=1

p
(
yk|mk = i, xk, θi

) N∑
j=1

aji(k)αk−1(j) . (3.180)

�

Proof.

αk(i) =
p
(
yk|mk = i, y1:k−1, θi

)
P
(
mk = i|y1:k−1,Θ, H

)
p
(
yk|y1:k−1,Θ, H

) (Bayes)

=
p
(
yk|mk = i, y1:k−1, θi

)
p
(
yk|y1:k−1,Θ, H

)
×

N∑
j=1

P
(
mk = i|mk−1 = j, y1:k−1,Θ, H

)
P
(
mk−1 = j|y1:k−1,Θ, H

)
(Total Prob.)

The above equation is equivalent to (3.179) by using the definitions of aij(xk) and αk−1(j). The

normalizing constant (3.180) is realized by the constraint that
∑N

i=1 αk(i) = 1.

Remark 3.10. The forward variable recursion allows the calculation of the incomplete data likelihood

by taking the product of the normalizing constants: p
(
y1:T |Θ, H

)
=

∏T
k=1 p

(
yk|y1:k−1,Θ, H

)
. �
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Proposition 3.4 (Backward variable recursion for HRDMM). The backward variables can be up-

dated using:

βk−1(i) =
N∑

j=1

βk(j) p
(
yk|mk = j, xkθj

)
aij(xk) . (3.181)

�

Proof.

βk−1(i) = P
(
yk+1:T |mk = i, y−n:k−1,Θ, H

)
=

N∑
j=1

p
(
yk:T ,mk = j|mk−1 = i, y−n:k−1,Θ, H

)
(Marginalization)

=
N∑

j=1

p
(
yk+1:T |mk = j, y−n:k,Θ, H

)
p
(
yk,mk = j|mk−1 = i, y−n:k−1Θ, H

)
(Product Rule)

=
N∑

j=1

p
(
yk+1:T |mk = j, y−n:kΘ

)
p
(
yk|mk = j, y−n:k−1, θj

)

× p
(
mk = j|mk−1 = i, y−n:k−1, A

) (Product Rule)

The above equation is equivalent to (3.181) by substitution of definitions of aij and βk(j).

3.7.2 Variational Analysis for HRDMM with Model Selection

To identify HRDMMs from observed data, a variational inference algorithm is derived. This algo-

rithm will deviate from variational inference in GLHMM (Section 3.3) in one significant way; the

hyperplanes hij are treated as hyperparameters, and are updated using type II maximum likelihood.

This identification scenario is chosen for two reasons. First, it allows automatic relevance determi-

nation (ARD) to be applied to identification of hyperplanes hij . In the case where the regressor

xk is augmented with several extra input variables, then ARD will automatically determine which

regressor parameters are important and “prune” away unneeded variables. Secondly, using type II

maximum likelihood is more tractable then a fully Bayesian implementation13.

Type II maximum likelihood typically maximizes model hyperparameters (in this case H) with

respect to the model evidence p
(
y1:T |H

)
. Evaluation of the model evidence requires integration

over the model parameters Θ and latent variables m1:T (see Chapter 4 for an indepth discussion

of the model evidence and relation to the model selection problem). For inference in HRDMMs,

we will instead seek to maximize the model evidence times a prior over the hyperparameters14:
13Variational Bayesian inference for multi-category linear regression is an active area of research [24]. If full varia-

tional Bayesian inference is required, future HRDMM definitions could instead utilize Probit regression or the relevance
vector machine [41] as a classifier.

14This is equivalent to viewing the identification of H as a continuous model class selection problem, where p
(
H

)
is then a prior over the model classes (see Chapter 4 for details on model class selection). For details on using this
hyperparameter approach, see [68].
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p
(
y1:T |H

)
p
(
H
)
.

The primary goal of identification of a HRDMM model involves finding the optimal hyperplanes

H that define the switching of the system. Because maximizing a function of the model evidence,

p
(
y1:T |H

)
p
(
H
)
, is intractable due to the integration over Θ, m1:T , a variational approach is used.

From Proposition 2.1 in Chapter 2, p
(
y1:T |H

)
p
(
H
)

can be approximated by:

log[p
(
y1:T |H

)
p
(
H
)
] ≥ L(q(Θ), q(m1:T ), H

)
+ log p

(
H
)

(3.182)

where from equation (2.20):

L(q(Θ), q(m1:T ), H) =
∑

m1:T ∈ST

∫
Θ

q(m1:T )q(Θ) log
p
(
y1:T ,m1:T ,Θ|H)
q(m1:T )q(Θ)

dΘ . (3.183)

The identification of a HRDMM model thus involves a two-step process, where (3.182) is maximized

with respect to H and then the lower bound (3.183) is maximized with respect to the factorized

distribution q(Θ)q(m1:T ).

The maximization of the lower bound (3.183) is now derived, and follows directly from variational

inference in GLHMMs, and again the VB-E and VB-M steps are used:

VB-M step: q(Θ) =
1
CΘ

exp

⎡
⎣ ∑

m1:T ∈ST

q(m1:T ) log p
(
y1:T ,m1:T |Θ, H

)⎤⎦p
(
Θ
)

(3.184)

VB-E step: q(m1:T ) =
1

Cm1:T

exp
[∫

q(Θ) log p
(
y1:T ,m1:T |Θ, H

)
dΘ

]
. (3.185)

Using complete data likelihood (3.169) the VB-M step (3.185) becomes:

log q(Θ) = log p
(
π
)

+
∑
ST

q(m1:T ) log πm1 +
∑
ST

q(m1:T )
T∑

k=2

log P
(
mk|mk−1, xk, H

)

+
N∑

i=1

log p(θi) +
∑
ST

q(m1:T )
T∑

k=1

log P
(
yk|mk, θk

)− logCΘ . (3.186)

By using the marginal statistics (3.172) of q(m1:T ), and using the independence in eq : 3RD8, q(Θ) =

q(π)
∏

i q(θi) where:

log q(θi) = log p(θi) +
T∑

k=1

γk(i) P
(
yk|mk = i, xk, θmk

)
+ Cθi , (3.187)

which in the case of an AR model, is a Gaussian-Gamma distribution as derived in (3.37) for

GLHMMs.
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Using the complete data likelihood (3.169) and following Section 3.3.2, the VB-E step (3.184) is:

log q(m1:T ) = log π̃mk
+

T∑
k=1

log amkmk−1(xk) +
T∑

k=1

log b̃mk
(yk, xk) − logCm1:T , (3.188)

where the geometric means π̃mk
and b̃mk

(yk, xk) have already been calculated in (3.47) for GLHMM

models, and Cm1:T is a constant. Equation (3.188) can then be evaluated using the forward-backward

recursion developed in Section (3.7.1), and where now the product of the normalizing constants

evaluates : Cm1:T =
∏T

k=1 cyk
. This allows calculation of the lower bound using equation (3.55).

The important result in the VB-E step (as in the GLHMM counterpart) is that the marginal statistics

γk(i), in (3.172) and ξk(i, j) in (3.173) for the distribution q(m1:T ) are calculated.

The maximization of (3.182), with respect to the hyperplanes H is denoted “MAX-H”:

MAX-H step: H = argmax
H

[L(q(Θ), q(m1:T ), H
)

+ log p
(
H
)]

. (3.189)

The MAX-H step (3.189) is solved by decomposing the lower-bound into terms just involving H:

L(q(Θ), q(m1:T ), H) =
∑

m1:T∈ST

q(m1:T ) log
T∏

k=2

P
(
mk|mk−1, xk, H

)
+ CH (3.190)

where CH is a constant that is not a function of H , and the form of the complete data likelihood

(3.169) has been used. By using the marginal statistic ξk(i, j) in (3.173) of q(m1:T ) calculated in

the VB-E step (3.185), equation (3.190) is simplified:

L(q(Θ), q(m1:T ), H) =
N∑

i=1

N∑
j=1

T∑
k=2

ξk(i, j) log P
(
mk = j|mk−1 = i, xk, H

)
+ CH (3.191)

as eachHi is independent in (3.191), the MAX-H step can proceed by maximizing eachHi separately.

The lower bound of as a function of each Hi is written:

L(q(Θ), q(m1:T ), Hi) =
N∑

j=1

T∑
k=2

ξk(i, j) log
exp(hT

ijxk)∑N
l=1 exp

(
hT

ilxk

) + CHi . (3.192)

The MAX-H step then requires the maximization of

Hi = argmax
Hi

⎡
⎣ N∑

j=1

T∑
k=2

ξk(i, j) log
exp(hT

ijxk)∑N
l=1 exp

(
hT

ilxk

) + log p
(
Hi

)⎤⎦ . (3.193)

Equation (3.193) is known as the weighted cross entropy cost function for the multi-class classification

problem [24]. This function is convex, and many efficient optimization routines developed specifically
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for this problem exist. Section 3.7.3 considers the computation of (3.193) for two specific priors p
(
Hi

)
that have proved advantageous in the machine learning community.

In summary, this section proposes a variational inference algorithm to identify a HRDMM from

data. To clarify the required steps to implement this algorithm, Algorithm 3.4 implements a routine

that will maximize the term [p
(
y1:T |H

)
p
(
H
)
] from (3.182):

Algorithm 3.4 Variational Algorithm for Identification of HRDMMs
1: Choose initial distributions, q(Θ), q(m1:T ), and initial hyperparameter set H

2: while ΔC >tol do

3: MAX-H step: H = argmaxH

[L(q(Θ), q(m1:T ), H
)

+ log p
(
H
)]

4: VB-M step: q(Θ) = 1
CΘ

exp
[∑

m1:T∈ST q(m1:T ) log p
(
y1:T ,m1:T |Θ, H

)]
p
(
Θ
)

5: VB-E step: q(m1:T ) = 1
Cm1:T

exp
[∫
q(Θ) log p

(
y1:T ,m1:T |Θ, H

)
dΘ

]
6: ΔC = change in L(q(Θ), q(m1:T ), H

)
+ log p

(
H
)

from last step

7: end while

3.7.3 Identification of Guard Regions

Inferring the guard regionsRij defined by hyperplanes hij in (3.164) is a multi-class logistic regression

problem. This section will discuss a MAP optimization algorithm for identification of hyperplanes

(3.193) for two different priors p
(
Hi

)
. To relate to existing inference algorithms15 [83] the following

notation is introduced:

p
(
mk = j|mk−1 = i, xk, Hi

)
= aij(xk) =

exp(φj
ki)∑N

l=1 exp(φl
ki)

, (3.194)

where

φj
ki � hT

ijxk . (3.195)

Typically in multi-class logistic regression, the regressors xk and the classifications, i.e., that xk ∈
Rij , are assumed to be known. In the case of HRDMMs, the classification of regressors is uncer-

tain, but after each VB-E step, the marginal statistic ξk(i, j) can be used to give a probabilistic

classification of each regressor.

The goal in solving the MAX-H step (3.193), using notation (3.194) is then to maximize the

following function.
N∑

j=1

T∑
k=2

ξk(i, j) log aij(xk) + log p
(
Hi

)
(3.196)

Two priors are typically used in maximization of (3.196). The first is a simple regularization prior,

15There is a wealth of information on multi-class logistic regression. If the provided algorithms are not sufficient,
try using the keywords “Multiclass Logistic Regression”, or “Multinomial Logistic Regression”, and for automatic
relevance determination of hyperplane parameters, use the keywords “Sparse”,“Laplace Priors”, or “LASSO”.
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which is simply a product of Gaussian distributions:

p
(
Hi

)
=

N∏
j=1

p
(
hij

)
(3.197)

where:

p
(
hij

)
= N (0, σ2I) . (3.198)

This regularization prior simply stops the maximization of (3.196) from becoming unbounded if the

regressors can be linearly separated [24].

A more interesting prior that automatically prunes elements of the regressor is based on L1-

regularization:

p
(
hij

)
= α

N∑
j=1

d∑
r=1

|hij(r)| . (3.199)

This regularization term is known as the LASSO method in the context of ML learning, and is

equivalent to a laplace prior [83], which will automatically prune out elements of the priors. The

parameter α can be set to a particular value, integrated out by using Jeffery’s prior (p(α) = 1/α)

[83], or chosen by maximization with respect to the model evidence [84]. While all of these methods

are computationally simple, the last is a form of automatic relevance determination. See [40] for

theoretical aspects comparing integrating out parameters compared to evidence maximization.

Regardless of the process of choosing α, all methods use the convex cost function similar to

(3.196).

3.7.4 Case Study of HRDMM: Air Conditioner

A simple two-mode case study is presented to demonstrate some key HRDMM concepts. For this

case study, the air conditioner example in Figure 3.8 is used. The primary goal of this study is

to identify, only using observed data, the switching logic of the air conditioner. Recall that the

system has two modes: Mode S1 “ON” and Mode S2 “OFF”. The temperature yk asymptotically

approaches 30 if the air conditioner is off, and approaches 20 if the air conditioner is on. The system

guards transition the system from on to off if yk < 24 and from off to on if yk > 27.

In terms of a HRDMM, the system is specified as follows:

yk =

⎧⎪⎨
⎪⎩
θT
1 xk + εk if mk = 1 (‘on’)

θT
2 xk + εk if mk = 2 (‘off’)

, (3.200)

where xk = [yk−1, 1], and where θ1 = [0.99, 0.2] and θ2 = [0.96, 1.2], and εk is zero mean and

normally distributed noise with variance σ2 = 0.01.
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The discrete transitions of the system are specified with the following discrete logic:

mk+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if mk = 1 & xk ∈ R11

2 if mk = 1 & xk ∈ R12

1 if mk = 2 & xk ∈ R21

2 if mk = 2 & xk ∈ R22

, (3.201)

where the regionsRij in (3.201) are defined by R11 = {xk > 24}, R12 = {xk ≤ 24}, R22 = {xk < 27},
R21 = {xk ≥ 27}.

The system was identified as follows. Initially all the hyperplanes16 h12 and h21 were set equal

to hij = [01]T , i.e., independent of the regressor xk. This essentially turns the first identification

step into a classification problem. The priors on the hyperplanes were set as zero-mean Gaussians,

(3.198) with σ2 = 1000. Algorithm 3.4 was run until the change Δ < 1e − 3. The results of this

identification process are shown in Figure 3.9, and demonstrate the principles behind HRDMM

model identification.
16Recall that, by definition of a HRDMM, hii = [00]T .
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Step 5
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Figure 3.9: Identification of HRDMM model with Algorithm 3.4: Three steps of the algorithm are

shown, along with the non-stationary transition kernel (grey line), and the regressor points xk. The

regressor points are color coded to represent which guard or invariant region Rij they belong to,

with the y-axis representing the probability of xk belonging to a certain region. The transition

kernel (grey line) is depicted for each algorithmic step in two separate plots. Plots denoted (a) show

the transition kernel a12(xk), which give the probability of transitioning from mode S1 “ON”, to

mode S2 “OFF”. Plots denoted (b) show the transition kernel a21(xk). By step 10, Algorithm 3.4

has converged, with the transition kernel a12(xk) switching from ON to OFF when the temperature

drops to around 24 degrees, and transition kernel a21(xk) turning the air conditioner ON when the

temperature is warmer then around 27 degrees.
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3.8 Estimation and Prediction Using Identified Models

This thesis has developed several hybrid system models, including GLHMMs (Section 3.2), HSMMs

and VTHMMs with GLM dynamics (Section 3.5), and HRDMMs (Section 3.7). Three algorithms:

Expectation Maximization (EM), Variational Bayes (VB) and the Gibbs sampler, were applied to

identify the developed hybrid system models from observed data. In this section, identified models

will be used to create both non-causal and real-time implementable state estimators, where given a

new data set, the goal is to infer the hidden (or latent) state sequence m1:T . Four estimators are

considered: The forward filter, the smoother, the fixed lag smoother, and the Viterbi algorithm. All

of these estimators will use the developed forward-backward recursions, used in the identification

process, to form a set of estimation tools.

Specifically, we will assume that a model (i.e., a GLHMMs, HSMM or HRDMM) has been

identified from an observed data set y1:T . After the identification process, estimates17 ΘEST, of the

model parameters can be used to represent the identified model. The first estimate of the model

parameters considered is the maximum a posterior value ΘMAP:

ΘMAP = argmax
Θ

p
(
Θ|y1:T

)
. (3.202)

The estimate ΘMAP is directly calculated by EM algorithm, and is calculated by taking the analytic

maximum of the factorized distribution q(Θ) when using VB. A second estimate, the expected value

of the posterior density ΘE can also be used:

ΘE =
∫

Θ

p
(
Θ|y1:T

)
dΘ . (3.203)

The estimate ΘE is found using the Monte Carlo estimate (2.42) when using Gibbs sampling, and

by taking the expected value of the factorized distribution q(Θ) for the VB algorithm. The choice

of the two estimators (3.202) and (3.203) is somewhat arbitrary from a practical point of view; in

this thesis preference is given to the expected value estimator (3.203), as it may avoid over-fitting

and result in better generalization. However, if these estimators do not produce consistent results,

then more complicated procedures should be used. For example, consider using the full simulated

posterior of the Gibbs sampler [25], or performing smoothing with the variational algorithm using

q(Θ) as in the identification process (i.e., the VB-E step) [36].

The four estimators are now defined. It is assumed that the model estimate ΘEST has been

formed, and that estimation takes place on a new observed data set y1:T ′ of length T ′. The forward

filter is now defined:

Definition 3.11 (Forward Filter). The forward filter is a casual filter suitable for processing data

17In the case of HRDMMs, Θ is replaced by {Θ, H}.



102

in real time, as it is observed. If k data y1:k have been observed, the forward filter calculates the

probability of the current system mode mk:

p
(
mk|y′1:k,ΘEST

)
. (3.204)

�
The forward filter (3.204) corresponds exactly to the forward variables in the forward-backward

recursions used in the identification process (see (3.15) for GLHMMs, (3.127) for VTHMMs and

HSMM where mk is replaced by the joint state (mk, τk), and (3.170) for HRDMMs). The corre-

sponding forward recursions are then used to calculate (3.204) With each new collected data point,

the previous mode estimate p
(
mk−1|y′1:k−1,ΘEST

)
is used, so only one forward recursion must be

calculated.

Definition 3.12 (Smoother). The smoother is a non-causal filter that utilizes all available data to

make an estimate of the systems’ mode at tk. The smoother calculates the marginal probability:

p
(
mk|y1:T ′ ,ΘEST

)
. (3.205)

�
The smoother (3.205) corresponds exactly to the marginal distribution γk(i) defined by the forward-

backward recursions. The calculation of mk then involved running both the forward and backward

recursions (see (3.24) for GLHMMs, (3.135) for VTHMMs and HSMM where mk is replaced by the

joint state (mk, τk), and (3.172) for HRDMMs).

Definition 3.13 (Fixed Lag Smoother). A fixed lag smoother is a non-causal filter that delays the

estimate of the current system mode mk by L time steps. The fixed lag smoother calculates the

marginal distribution:

p
(
mk|y1:k+L,ΘEST

)
. (3.206)

�
In noisy systems or duration based models, waiting to collect L more data yk+1:L will smooth the

mode estimate, and if the lag L is small enough, subsequent control or decision making may not be

affected. The process of calculating (3.206) is essentially the same as for the smoother. The forward

filter recursion is evaluated for p
(
mk+L|y1:k+L,ΘEST

)
, and then the backwards recursion is run from

k + L− 1 to k.

Definition 3.14 (Viterbi Algorithm). The Viterbi algorithm [10] is a non-causal filter that calculates
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the optimal state sequence:

m1:T ′ = argmax
m1:T ′

p
(
m1:T ′ |y1:T ′ ,ΘEST

)
. (3.207)

�
The Viterbi algorithm uses a two-step process to calculate the optimal state sequence, similar to the

forward-backward recursion [10]. The algorithm is not provided, as it has been explicitly derived for

HMMs in [10], VTHMMs in [33, 34], and HSMM in [79, 31]. The addition of GLM dynamics does

not effect the Viterbi decoder, which only requires that the distribution p
(
yk|mk, xk,ΘEST

)
can be

evaluated. The Viterbi algorithm is fundamentally different from the estimators in Definitions 3.11

to 3.13. The Viterbi algorithm does not provide a probabilistic estimate of the state mk, instead

choosing a maximum of m1:T ′ , which can potentially reduce the intuition about the observed process.

However, a benefit to the Viterbi algorithm, that has found wide use in the speech processing

community, is that the estimated system sequence m1:T ′ obeys all constraints of the model. For

instance, if some transition aij has zero probability, then the estimate m1:T ′ will not ever transition

from Si to Sj . The smoother (Def. 3.12) does not guarantee this. For instance if the smoother

estimate mk at each time step was chosen to be the argument maximizing (3.205), then the entire

sequence m1:T ′ may not obey constraints aij .

The choice of estimation algorithm (Def 3.11 to 3.14), should be made based on the application.

For many real-time control problems, the forward filter may be the only practical option available.

The applications in this thesis will use all four decoding methods. For developing supervisory

decoders for neural prosthetic devices in Chapter 5, a there is a preference for using the forward

filter and fixed lag smoother as these estimators can give estimates of the discrete cognitive state

within a reasonable time window. The fixed lag smoother is essential for use with duration based

models, as the forward filter does not adequately take into account the duration constraints and

time spent in each mode.
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Chapter 4

Model Selection: Priors and
Algorithms

Model selection is the process of selecting a specific model class from a proposed finite set of model

classes using observed data. The model class defines the structure of the model, including the

functional form, the number of model parameters, and any prior information used in the model

inference process. A finite set of of m model classes is denoted M = {M1, ...,Mm}, where the ith

model class is denoted Mi. It is convenient to think of a model as a particular realization from a

model class, in that while the model class defines the model structure, the model itself defines the

value of parameters associated with that structure.

This chapter will focus on applying model selection to the models presented in Chapter 3, using

representative examples motivated by the neurophysiological problems of Chapter 5. The generalized

linear hidden Markov models (Section 3.2) will be used extensively for algorithmic comparisons in

this chapter, both due to their applicability to the applications of interest, and the wide range of

GLHMM subclasses that are considered in practice.

Model selection algorithms are developed for the three identification algorithms considered in

Chapters 2 and 3: Variational Bayes, Expectation Maximization, and Gibbs sampling. While this

thesis restricts model selection to these inference algorithms, it should be noted that there are alter-

native model selection approaches including variable dimension Monte Carlo samplers and annealed

importance sampling, which are briefly reviewed in Section 4.1.2.

This thesis will use Bayesian model class selection to select the “best” model from a discrete

set of model classes. Given a set of m possible model classes, M = {M1, ...,Mm}, the posterior

probability of each model class is given by Bayes’ theorem:

P
(Mi|y1:T

)
=

p
(
y1:T |Mi

)
P
(Mi

)
∑m

j=1 p
(
y1:T |Mj

)
P
(Mj

) , (4.1)

where y1:T is the observed data, P
(Mi

)
is the prior probability of model class i, and the conditioning
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on the set M is left implicit. If all models are considered equally plausible a priori, so that P
(M)

is

a uniform distribution, then the probability of selecting a model class from set M is based entirely

on the model evidence: p
(
y1:T |Mi

)
, which is also referred to as the marginal data likelihood. The

“best” model is then the model class with the highest model evidence. Section 4.1 will explicitly

show how using the model evidence for model selection automatically penalizes complex models, and

avoids over-fitting of data. If there are several model classes with similar posterior probabilities, a

subset of model classes can be used for inference with Bayesian model averaging [85].

In addition to choosing between a discrete set of models with Bayesian model class selection (4.1),

the process of using automatic structure determination priors (ASD) is discussed in Section 4.3.

ASD priors are informative distributions that allow learning algorithms to automatically “prune”

unnecessary elements from the model structure; in this thesis ASD priors are used to determine the

allowed transitions between discrete system states. Using ASD priors in combination with model

selection allows the number of models in the set M to be reduced, making the inference problem

less computationally expensive.

The remainder of this chapter makes several contributions:

• The importance of model evidence for model selection is discussed in Section 4.1, and de-

composition of the model evidence to demonstrate model complexity penalization is reviewed.

Approximate methods of estimating the model evidence based on EM, VB, and Gibbs sampler

are reviewed. Based on this review, current methods of model evidence estimation using poste-

rior samples from the Gibbs sampler are specialized of latent variable models, and equivalence

between two existing methods is proven.

• Model evidence approximations are empirically tested and compared on simulated data sets.

It is shown that the VB and Gibbs sampling allow for significantly improved model selection

as compared to the EM algorithm.

• The effect of automatic structure determination priors are demonstrated in conjunction with

model selection, and are shown to provide an efficient means of inferring neurological models.

• The empirical results obtained by applying model selection methods to simulated data sets

are considered in conjunction with derived theoretical properties of EM, VB, and Gibbs algo-

rithms, in order to provide practical guidance on selection of the best model selection method.

It is concluded that the variational method is most appropriate for the neurophysiological ap-

plications considered in this thesis, due to the computational requirements incurred from the

Gibbs sampler, and lack of suitable model selection tools available for the EM algorithm.

• VB is used in conjunction with ASD priors and HSMMs to automatically determine the number

of discrete states or movement primitives present in a bee dance data set. This is the first time
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ASD priors have been used with HSMM, and results indicate that using little prior knowledge,

the model selection tools can produce results rivaling that of a an experienced user manually

segmenting the data.

4.1 Approximating the Model Evidence

This section begins with a general discussion about model complexity and decompositions of the

model evidence p
(
y1:T |Mi

)
. These decompositions are important as they motivate the approxima-

tions made to model evidence in Sections 4.1.1 to 4.1.3. Because we are interested in applying model

selection to the hybrid system and latent variable models in Chapter 3, the following notation is

assumed: An observed data sequence of length T is denoted y1:T , with the associated latent mode

variables denoted m1:T . The model class Mi defines the parameter set1 Θ, and also defines the

complete data likelihood: p
(
y1:T ,m1:T |Θ,Mi

)
.

A simple decomposition of the model evidence is derived by first marginalizing out the latent

modes m1:T and then using the theorem of total probability:

p
(
y1:T |Mi

)
=

∫ ∑
m1:T ∈ST

p
(
y1:T ,m1:T |Θ,Mi

)
p
(
Θ|Mi

)
dΘ . (4.2)

This decomposition shows the difficulty in evaluating the model evidence: the integral in (4.2)

is typically too complicated to analytically evaluate; Θ is typically of high dimension; and the

summation over all possible discrete mode sequences implies the complexity grows combinatorially

with data length T . However, the above equation (4.2) can be simplified by using a key result of the

forward-backward algorithm (Alg. 2.5) which evaluates the incomplete data likelihood for a specific

Θ:

p
(
y1:T |Θ,Mi

)
=

∑
m1:T ∈ST

p
(
y1:T ,m1:T |Θ,Mi

)
. (4.3)

Evaluating the distribution (4.3) by dynamic programming allows for simplification of the model

evidence (4.2). However this still leaves (4.2) intractable because of the dimension of Θ and lack of

a closed form for the incomplete data likelihood (4.3).

Let us now derive a decomposition of the model evidence which highlights the complexity pe-

nalization inherent in the use of Bayesian model class selection. Assuming that the incomplete data

likelihood (4.3) can be evaluated, a decomposition derived by Muto and Beck [86] is repeated here. To

start the derivation, note that the marginal posterior distribution of the parameters p
(
Θ|y1:T ,Mi

)
1The association of the parameter Θ to the model class model class Mi is left implicit, and no subscript is added

to the parameter set.
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is normalized (integrates to one), implying:

log p
(
y1:T |Mi

)
= log

[
p
(
y1:T |Mi

)] ∫
p
(
Θ|y1:T ,Mi

)
dΘ . (4.4)

Since the model evidence is not a function of the parameters Θ, the log evidence can be brought

inside the integral, and expanded using Bayes’ theorem:

log p
(
y1:T |Mi

)
=

∫
log

[
p
(
y1:T |Θ,Mi

)
p
(
Θ|Mi

)
p
(
Θ|y1:T ,Mi

)
]

p
(
Θ|y1:T ,Mi

)
dΘ . (4.5)

Equation (4.5) is further decomposed using the properties of logarithms:

log p
(
y1:T |Mi

)
=∫

log
[
p
(
y1:T |Θ,Mi

)]
p
(
Θ|y1:T ,Mi

)
dθ −

∫
log

[
p
(
Θ|y1:T ,Mi

)
p
(
Θ|Mi

)
]

p
(
Θ|y1:T ,Mi

)
dθ . (4.6)

Decomposition (4.6) demonstrates that the model evidence is composed of two terms, a data fit

term and a complexity penalization term: The first term of (4.6) is the expected value of the log-

likelihood of the data, and represents the average fit of the model class. The second term of (4.6) is

the KL divergence (or relative entropy) from the prior parameter distribution to the posterior, and

is a measure of the information gained from the data. This second term penalizes model complexity,

preventing selection of model classes that over-fit the data.

The following sections will make use of the two decompositions (4.2) and (4.6) to approximate

the model evidence.

4.1.1 Information Criteria and Laplace’s Asymptotic Method

In this section Akaike’s information criterion (AIC), the Bayesian information criterion (BIC), and

Laplace’s method for asymptotic approximation are derived as approximations to the model evidence.

These derivations follow from Beck and Yuen [87], and are shown explicitly to allow comparison

of these methods and to stress the implications of assumptions that are used in their derivation.

Here it is assumed that the parameter set Θ is a vector of M elements.

First Laplace’ method is derived by considering the integral of the the incomplete data likelihood:

p
(
y1:T |Mi

)
=

∫
p
(
y1:T |Θ,Mi

)
p
(
Θ|Mi

)
dΘ . (4.7)

Equation (4.7) comes from the model evidence (4.2), using the forward-backward algorithm to evalu-

ate the incomplete data likelihood (4.3). The model evidence (4.7) is now approximated by defining

f(Θ) � p
(
y1:T |Θ,Mi

)
p
(
Θ|Mi

)
, and then replacing log f(Θ) with a 2nd-order Taylor expansion at
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the maximum a posteriori value ΘMAP , which is a maximum of f(Θ). This Taylor series approx-

imation is equivalent to replacing the posterior PDF for Θ with Gaussian distribution [87]. The

Taylor expansion is given by

log f(Θ) ≈ log f(ΘMAP ) − 1
2
(Θ − ΘMAP )TH(ΘMAP )(Θ − ΘMAP ) (4.8)

where the Hessian takes the form H(ΘMAP ) = −∇∇ log p
(
y1:T |ΘMAP ,Mi

)
p
(
ΘMAP |Mi

)
, and the

first-order term in the Taylor expansion does not appear, since ΘMAP is a local maximum of f . By

substituting the Taylor expansion (4.8) into the integral expression of the model evidence (4.7), the

model evidence is now expressed as a unnormalized Gaussian distribution and can be analytically

integrated:

p
(
y1:T |Mi

) ≈ ∫
f(ΘMAP ) exp

[
1
2
(Θ − ΘMAP )TH(ΘMAP )(Θ − ΘMAP )

]
dΘ

= f(ΘMAP )(2π)m/2|H(ΘMAP )|−1/2 . (4.9)

Equation (4.9) gives Laplace’s asymptotic approximation to the model evidence:

log p
(
y1:T |Mi

) ≈ log p
(
y1:T |ΘMAP ,Mi

)
+ log p

(
ΘMAP |Mi

)
+
M

2
log(2π) − 1

2
ln |H(ΘMAP )| .

(4.10)

The last three terms in Laplace’s approximation (4.10) are often called the Log Ockham Factor,

B = log p
(
ΘMAP |Mi

)
+ M

2 log(2π) − 1
2 ln |H(ΘMAP )|, which penalizes model complexity [24, 87].

However, calculating the Hessian can require considerable analytical analysis and be computationally

intensive [88] and specific to each model class. Beck and Yuen [87] show that as the number of data

points T becomes very large, and assuming the posterior has a single peak2, the Ockham factor can

be approximated by B = 1
2M logN +R, where M is the number of parameters, N is the number of

observed data points, and R is a function that depends on the prior and is independent of N .

The Bayesian information criterion (BIC) (Schwarz [89]) is now derived by replacing the Ockham

factor in (4.10) with B = 1
2M logN :

BIC(Mi) = log p
(
y1:T |ΘMAP ,Mi

)− 1
2
M logN . (4.11)

Note that the approximation made in BIC (4.11) ignores the effect of the prior information in the

model selection process, which may be reasonable if the priors are very broad or non-informative.
2Is globally identifiable [87].
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Akaike’s information criterion (AIC) (Akaike [90])3 can now be viewed as a modification of BIC:

AIC(Mi) = log p
(
y1:T |ΘMAP ,Mi

)−M . (4.12)

It should be noted that any method, including Gibbs sampling or variational methods, can be

used to estimate the MAP parameter values ΘMAP , so AIC, BIC and Laplace’s method can be

generally applied. However, it can be the case that the posterior distribution of the parameters is

not approximately Gaussian (or even uni-modal) and Laplace’s method and subsequent asymptotic

approximations are inappropriate. The following two sections focus on approximations to the model

evidence that do not require the asymptotic and peaked posterior assumptions used in this section.

4.1.2 Model Evidence Calculations Using Posterior Samples from the

Gibbs Sampler

Model selection using Markov Chain Monte Carlo methods is often approached using reversible jump

algorithms that sample from variable dimension models, where the number of model parameters

is treated as a uncertain. To use these methods it is necessary to specify all model classes M =

{M1, ...,Mm} at the outset, and require careful choice and tuning of transition rules between models

to operate efficiently [25]. Also, recently developed methods such as annealed importance sampling

[91] and tempered-MCMC [92], have inherent properties that allow model selection, but may require

excessive computation effort [23].

This section instead seeks to approximate the model evidence p
(
y1:T |Mi

)
by using the posterior

samples drawn from the two-stage Gibbs Sampler (Alg. 2.4). While MCMC methods have rapidly

become mainstream for model updating and prediction, calculating the model evidence to facilitate

model selection is extremely challenging. Direct Monte Carlo simulation for the model evidence

(4.7) requires sampling from the prior p
(
Θ|Mi

)
. However, this creates inefficient estimators because

p
(
y1:T |Θ,Mi

)
will have high values only in a small region of the parameter space, resulting in high

variance estimators.

Two methods for estimating the model evidence from posterior samples are considered here. This

thesis will refer to the methods as: the Stationarity method, proposed in a restricted way by Ritter

and Tanner [93], and in generality by Cheung and Beck [94]; and the Rao-Blackwellization method

proposed by Chib [95].

While the algorithm by Cheung and Beck [94] is applicable to a wide range of MCMC methods,

the Stationarity method will only be considered in the context of latent variable models and Gibbs

sampling. The Rao-Blackwellization method [95] is specific to Gibbs sampling, but is documented

3Akaike presented AIC in an equivalent form which required minimization rather then maximization and differs
by a factor of two.



110

by Chib [96] to give better performance in estimating model evidence than the Stationarity method.

In Section 4.1.2.2 the Stationarity method is specialized for use with latent variable methods and

it is proven that this marginalized Stationarity method provides exactly the same estimator as

[95]. Furthermore, the Rao-Blackwellization method [95] does not extend easily to general sampling

algorithms, or even the multi-stage Gibbs sampler. This implies that marginalizing the Stationarity

method, with its superior generalization properties, is a valuable tool for use in latent variable

models. Given the wide applicability of latent variable models in economics, biology, engineering,

and physics, the marginalized Stationarity method should be of interest in many fields.

As stated by Chib [96] and references within, there exist other estimators for model evidence in

the literature [97, 98] but these are not considered here as they require either extensive tuning or

suffer from instability.

Recall that MCMC algorithms such as the Gibbs sampler draw samples from the posterior param-

eter PDF. In the case of latent variable models, samples from the joint distribution {Θ̂(t), m̂
(t)
1:T } ∼

p
(
Θ,m1:T |y1:T ,Mi

)
are collected. Furthermore, MCMC samples of Θ are distributed like the

marginal distribution: {Θ̂(t)} ∼ p
(
Θ|y1:T ,Mi

)
. With enough samples Nt, the expected value of

arbitrary functions f are approximated asymptotically by the Monte Carlo estimate (2.41):

1
Nt

Nt∑
t=1

f(Θ̂(t)) →
∫

Θ

f(Θ) p
(
Θ|y1:T ,Mi

)
as Nt → ∞ . (4.13)

This Monte Carlo estimate of the marginal distribution (4.13) also applies to the latent variables:

1
Nt

Nt∑
t=1

f(m̂(t)
1:T ) →

∑
m1:T ∈ST

f(m1:T ) P
(
m1:T |y1:T ,Mi

)
as Nt → ∞ . (4.14)

4.1.2.1 Rao-Blackwellization for Estimation of the Model Evidence

Chib has introduced a method for using posterior samples from the Gibbs sampler to estimate the

model evidence [95]. Using Bayes’ theorem the model evidence is decomposed as:

p
(
y1:T |Mi

)
=

p
(
y1:T |Θ,Mi

)
p
(
Θ|Mi

)
p
(
Θ|y1:T ,Mi

) . (4.15)

This identity (4.15) holds for any Θ. For any given Θ, say Θ�, all the PDFs on the right hand

side of equation (4.15) can be evaluated analytically except for the posterior parameters PDF

p
(
Θ|y1:T ,Mi

)
, as its normalizing constant is not known. The posterior parameter PDF is in-

stead approximated by a Monte Carlo estimate π̂(Θ�|y1:T ), giving the following approximation to

the model evidence (4.15):

log p
(
y1:T |Mi

) ≈ log p
(
y1:T |Θ�,Mi

)
+ log p

(
Θ�|Mi

)− log π̂(Θ�|y1:T ) . (4.16)
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The Monte Carlo approximation π̂(Θ�|y1:T ) is now derived. First, let the tth posterior sample

of the Gibbs sampler be {Θ̂(t), m̂
(t)
1:T }. Also, recall the posterior density for the parameters Θ is

evaluated using the Theorem of Total Probability:

p
(
Θ|y1:T ,Mi

)
=

∑
m1:T∈ST

p
(
Θ|y1:T ,m1:T ,Mi

)
P
(
m1:T |y1:T ,Mi

)
. (4.17)

π̂(Θ�|y1:T ) is now defined as the Monte Carlo estimate (4.14) of the posterior density (4.17):

π̂(Θ�|y1:T ) =
1
Nt

Nt∑
t=1

p
(
Θ�|y1:T , m̂(t)

1:T ,Mi

)
. (4.18)

This approximation (4.18) is called Rao-Blackwellization [95], hence the name assigned to this

method in this thesis. By substituting (4.18) into the model evidence expression (4.16), a prin-

cipled approximation to the model evidence is derived.

Chib extends this Rao-Blackwellization method from the two-stage Gibbs sampler presented

here, into the multi-stage Gibbs sampler [95], although this requires simulating from a set of new

conditional distributions, with the additional amount of computation increasing linearly with the

number of additional stages of the sampler. The additional simulation steps are added to any

overhead already inherent with the use of a multi-stage Gibbs sampler.

Chib declares in [96] that this Rao-Blackwellization method is a better approximation then the

Stationarity method (Section 4.1.2.2). It is stated in [96] that: “when Θ is high dimensional and

the model contains latent variables [the Kernel method of [93]] tends to be less accurate then [the

Rao-Blackwellization] method...”. However, this thesis shows that by marginalizing the Stationarity

method, the two estimators are equivalent in the latent variable case.

4.1.2.2 The Stationarity Condition for Estimating the Model Evidence from Posterior

Samples

The Stationarity method4 presented in this section was originally derived by Ritter and Tanner [93] in

a restricted form called the Gibbs Stopper, designed for monitoring convergence of the Gibbs sampler.

Cheung and Beck [94] have recently derived a more complete view of this method, facilitating model

selection with both Gibbs samplers and several classes of MCMC algorithms.

This section starts by directly applying the Stationarity method from [94] to latent variable

models. This method is then specialized for latent variable models by using marginalization, and

its equivalence to the Rao-Blackwellization method of Chib for two-stage sampling is proven. Recall

that when the two-stage Gibbs sampler (Alg. 2.4) is applied to latent variable models, one constructs

4This method is denoted the “Stationarity” method because of the inherent use of the the stationary property of
the induced Markov chain created by the MCMC algorithms.
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a Markov transition kernel K(Θ�,m�
1:T |Θ,m1:T ) with a stationary distribution p

(
Θ,m1:T |y1:T ,Mi

)
where:

K(Θ�,m�
1:T |Θ,m1:T ) = p

(
m�

1:T |Θ�, y1:T ,Mi

)
p
(
Θ�|m1:T , y1:T ,Mi

)
. (4.19)

The key idea of the Stationarity method is that, by construction, the Markov chain corresponding

to this transition kernel 4.19 has its stationary PDF as the posterior density implying:

p
(
Θ�,m�

1:T |y1:T ,Mi

)
=

∑
m1:T∈ST

∫
K(Θ�,m�

1:T |Θ,m1:T ) p
(
Θ,m1:T |y1:T ,Mi

)
dΘ . (4.20)

Following directly from [94], a Monte Carlo estimate (4.13) can now be used to evaluate the joint

posterior (4.20):

p
(
Θ�,m�

1:T |y1:T ,Mi

) ≈ 1
Nt

Nt∑
t=1

K(Θ�,m�
1:T |Θ̂(t), m̂

(t)
1:T ) . (4.21)

This estimator (4.21) is now modified for use with latent variable models, where the model evidence

calculations (4.16) require an estimate of the marginal posterior: p
(
Θ�|y1:T ,Mi

)
instead of the joint

posterior (4.21). This specialization of the Stationarity method (4.21) to latent variable models is

realized by considering the form of the desired distribution:

p
(
Θ�|y1:T ,Mi

)
=

p
(
Θ�,m�

1:T |y1:T ,Mi

)
p
(
m�

1:T |Θ�, y1:T ,Mi

) , (4.22)

where (4.22) is derived using the product rule. Equation (4.22) is significant because of the form

of the kernel (4.19), which also contains the term p
(
m�

1:T |Θ�, y1:T ,Mi

)
. This implies that the

Stationarity method (4.20) can be simply modified as follows. First the kernel (4.19) is substituted

into (4.20):

p
(
Θ�,m�

1:T |y1:T ,Mi

)
=

∑
m1:T ∈ST

∫
Θ

p
(
m�

1:T |Θ�, y1:T ,Mi

)
p
(
Θ�|m1:T , y1:T ,Mi

)
p
(
Θ,m1:T |y1:T ,Mi

)
dΘ . (4.23)

Now the decomposition (4.22) can be used to cancel out terms in (4.23), resulting in:

p
(
Θ�|y1:T ,Mi

)
=

∑
m1:T∈ST

∫
Θ

p
(
Θ�|m1:T , y1:T ,Mi

)
p
(
Θ,m1:T |y1:T ,Mi

)
dΘ . (4.24)

By marginalizing over the variable Θ in (4.24), the Rao-Blackwellization method of Section 4.1.2.1
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is shown to be a special case of the Stationarity method (4.24) for a two-stage sampler:

p
(
Θ�|y1:T ,Mi

)
=

∑
m1:T∈ST

p
(
Θ�|m1:T , y1:T ,Mi

)
P
(
m1:T |y1:T ,Mi

)
, (4.25)

where the density (4.25) then has the following Monte Carlo estimate (4.14):

p
(
Θ�|y1:T ,Mi

) ≈ 1
Ny

Nt∑
t=1

p
(
Θ�|m̂(t)

1:T , y1:T ,Mi

)
. (4.26)

The result in equation 4.26 is equivalent to the estimator derived by Chib (4.18), yet by using the

Stationarity method we have added generality to the method, as described in the following remark:

Remark 4.1. The specialization of the Stationarity method (4.20) to latent variable models applies

for the general sampling algorithms defined in [94]. Consider the following multi-stage Gibbs sampler

kernel, where now the parameter space Θ is sampled in stages such that Θ = [ΘT
1 ,Θ

T
2 , ...,Θ

T
R]T . A

kernel for this sampler is then:

K(Θ�,m�
1:T |Θ,m1:T ) = p

(
m�

1:T |Θ�
1, . . . ,Θ

�
R, y1:T ,Mi

)
p
(
Θ�

R|Θ�
1, . . . ,Θ

�
R−1,m1:T , y1:T ,Mi

)
. . .

. . .p
(
Θ�

1|Θ2, . . . ,ΘR,m1:T , y1:T ,Mi

)
. (4.27)

Note that substituting (4.27) into the Stationarity condition (4.20) again facilitates the removal

of the term p
(
m�

1:T |Θ�
1, . . . ,Θ�

R, y1:T ,Mi

)
from the integral in (4.27). An equivalent multi-stage

generalization of (4.26) can then be devised. This technique should have wide applicability due to

the extensive use of latent variable models in biology, economics, and engineering. �

Remark 4.2 (Cheung and Beck [94]). The KL divergence (or information gain) from the prior to the

posterior in the decomposition (4.6) can be obtained by the expression:

∫
log

[
p
(
Θ|y1:T ,Mi

)
p
(
Θ|Mi

)
]

p
(
Θ|y1:T ,Mi

)
dθ ≈ 1

Nt

Nt∑
t=1

log p
(
y1:T |Θ̂(t),Mi

)− log p
(
y1:T |Mi

)
. (4.28)

This approximation (4.28) will be used in Section 4.2.1 to compare against the KL divergence

expression in the variational lower bound (2.20) between the prior and the factorized posterior q(Θ).

�

4.1.3 Variational Lower Bound

Variational Bayes (Section 2.2.1) inherently creates a lower-bound approximation (2.20) to the model

evidence (4.2). This lower-bound approximation has previously been used for model selection in a

series of models including multi-variate auto-regressive order estimation [99], and the estimation of
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the number of discrete components in mixture models [23]. In this latter reference, VB was found

to have superior model selection performance to BIC, and Annealed Importance Sampling. Model

selection for (discrete) hidden Markov models has been conducted on simulated data sets using VB

[36], but in the context of pruning the model structure, and not directly comparing discrete model

classes.

In this section the variational lower bound for latent variable models (2.20) is restated:

L(q(m1:T ,Θ)) =
∫

Θ

∑
m1:T ∈ST

q(Θ)q(m1:T ) log
p
(
m1:T , y1:T |Θ

)
q(m1:T )

dθ −
∫

Θ

q(Θ) log
q(Θ)
p
(
Θ
)dΘ , (4.29)

to allow comparison to the model evidence decomposition (4.6).

In Sections 2.3.2.2 and 3.3.2 it was shown that the first term of (4.29) is equivalent to a sub-

normalized probability distribution: p
(
y1:T |Θ̄,Mi

)
, which is a lower bound to the incomplete data

likelihood. The lower bound (4.29) can hence be thought of a data fit term (an approximation to

the incomplete data likelihood) and a complexity penalization term, which is the KL divergence of

the identified model parameters q(Θ) from the prior:

L(q(m1:T ,Θ)) = p
(
y1:T |Θ̄,Mi

)− ∫
Θ

q(Θ) log
q(Θ)
p
(
Θ
)dΘ . (4.30)

By writing the variational lower-bound as a data fit term minus a KL divergence term (information

gain) in (4.30), it can be directly compared to the decomposition of the model evidence (4.6) proposed

by Muto and Beck. The similarity of (4.6) and (4.30) adds insight into the effectiveness of the

variational method, and is the first time the structure of the lower bound has been directly compared

to the model evidence using these decompositions.

The KL divergence term in (4.30) is empirically compared to the actual KL divergence from the

prior to the posterior as estimated by the Gibbs sampler (4.28) in Section 4.2.1. This appears to be

the first time these two information theoretic terms have ever been directly compared.

4.2 Comparison of Model Selection Methods

The previous section (4.1) has discussed and derived several methods for approximating the model

evidence. These various approximations in turn allow the use of Bayesian model class selection (4.1),

to choose between a finite set of model classes.

This section introduces several simulated data sets for empirical comparison of the discussed

model selection approaches. Specifically, this section compares the performance of: (1) AIC (4.12)

and BIC (4.11) information critera used in conjunction with the EM algorithm; (2) the Stationarity

method (4.18) using samples from the Gibbs sampler (GIBBS); and (3) the variational lower bound
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Figure 4.1: 3-state cyclic hidden Markov model: (a) Finite graph representation of discrete state
and associated transitions. (b) A simulated output y1:T of length T = 1000 using the parameters
defined in (4.32). (c) Corresponding simulated discrete states m1:T .

approximation (4.29) (VB). Laplace’s asymtotic method is not considered for two reasons: First,

the required calculations to analytically compute the Hessian in the applications of interest are so

complicated as to be impractical. Second, Laplace’s method is known to be inaccurate in cases

where the posterior is not well represented by a Gaussian distribution; this is exactly the case found

with the sum-to-one constraints found with the Markovian transition kernel A in hidden Markov

models [82]

The rest of this section is arranged as follows: First a specific GLHMM is defined to provide em-

pirical comparisons. In Section 4.2.1 the defined GLHMM is used to compare information theoretic

quantities associated with the model evidence. In this section only the “true” GLHMM mode is

considered, and is designed to give intuition into how Bayesian model class selection automatically

penalizes complexity. In addition, Section 4.2.1 gives direct empirical comparison of the informa-

tion gain as calculated by both the variational approximation, and the information gained in the

un-approximated posterior using Gibbs sampling. This analysis allows direct verification of the effec-

tiveness of the variational approximation in applications of interest, and to the best of the authors

knowledge, it is the first time these quantities have been compared. In Section 4.2.2, the model

selection methods are compared by calculating the posterior probability of a set of model classes.

This section uses a three-state auto-regressive hidden Markov model (AR-HMM) to compare

model selection algorithms. The AR-HMM shown in Figure 4.1 is defined by equations (4.31) and

parameters (4.32) and is a special case of the GLHMM (Definition 3.4), using an auto-regressive

model (Definition 3.1) of order 2 to generate dynamics in each discrete mode. The cyclic nature

of the following AR-HMM simulates the repetitive nature of state transitions in the neurological
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applications of Chapter 5:

yk = N (
θT

mk
xk, σ

2
mk

)
, xk = [yk−1, yk−2] , p

(
mk = j|mk−1 = i

)
= aij (4.31)

where

A = [aij ] =

⎡
⎢⎢⎢⎣
0.99 0.01 0.00

0.00 0.97 0.03

0.02 0.00 0.98

⎤
⎥⎥⎥⎦ , θ1 =

⎡
⎣ 0.5

−0.3

⎤
⎦ , θ2 =

⎡
⎣ 0.7

−0.4

⎤
⎦ , θ3 =

⎡
⎣0.8

0.1

⎤
⎦ ,

σ2
1 = 0.02, σ2

2 = 0.04, σ2
3 = 0.005 . (4.32)

A Dirichlet distribution models the prior information for each row of the transition kernel A:

Dir
(
[ai1, ai2, ..., aiN ]|[a0

i1, a
0
i2, ..., a

0
iN ]

)
, (4.33)

where the specific prior parameters [a0
ij ] depend on the number of discrete modes N :

a0
ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

50 if j = i

1 if i < N and j = i+ 1

1 if i = N, j = 1

0.01 else

, e.g. if N = 3: A0 =

⎡
⎢⎢⎢⎣

50 1 0.01

0.01 50 1

1 0.01 50

⎤
⎥⎥⎥⎦ . (4.34)

The prior parameters (4.34) are informative, and bias the model identification process to choose a

cyclic HMM structure. The exact effect of these prior values is demonstrated in Section 4.3.

The prior information of the AR-dynamics is modeled by the Gaussian-Gamma distribution

(specified in Def. 3.1) and is the same for each mode Si

p(wi, τi) = N (
wi|w0, (τiλ0I)−1

)
Gam

(
τi|a0, b0

)
, (4.35)

where the prior parameters are given by:

w0 = 0 ∈ R
n, λ0 = 0.001, a0 = 5 b0 = 0.1 . (4.36)

The parameters 4.36 are informative, and impose a constraint on the signal variance. Figure 4.2

shows the prior PDF on the precision τi and its reciprocal, the variance σ2
i . The prior on the AR

parameters w is minimally informative due to the parameter λ0.

Remark 4.3. The model class for an AR-HMM with N discrete states and nth-order AR dynamics,
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Figure 4.2: Prior distribution on system precision τ and system variance σ2

and prior information (4.34) and (4.36) is denoted M(N,n). �

4.2.1 Comparison of Information Theoretic Quantities

The decomposition of model evidence (4.6) into a model fit term and the KL divergence from the

prior to the posterior provides a useful basis for algorithm comparison. This section is unique in

the variational literature in that the KL divergence estimated by VB can be directly compared to

the KL divergence from the prior to the posterior, as calculated by Gibbs sampling (4.28), and is

useful for verifying the correctness of both approaches. This quantitative comparison gives insight

into how “tight” the lower bound approximation is, and the effect of the factorization relaxation

(2.22) used in latent variable models. In the AR-HMM considered here, the VB algorithm provides

a very accurate lower bound, indicating that the factorization is a relatively small approximation in

terms of practical effect.

Comparisons were conducted by simulating 500 data segments from the 3-state HMM (4.31),

(4.32), with the length of each segment being varied between 100 and 10000 data points. 50 segments

of each length:

T = 100, 166, 278, 464, 774, 1291, 2154, 3593, 5994, 10000 (4.37)

were created. In this section, we are only considering computation of information theoretic quantities

related to the model evidence, which inherently assumes convergence of learning algorithms. For

a meaningful comparison, all algorithms used only the correct 3-state 2nd-order AR-HMM model

class (M(3,2)), and were initialized with the exact discrete-state sequence simulated for each data

segment, guaranteeing convergence to the globally optimal solution. The next section will instead

focus on choosing between several model classes. The EM and VB algorithms were run until the

change in the incomplete data likelihood and lower bound, respectively, fell below a threshold of

1e− 7. The Gibbs sampler was used to draw 500 samples with no burn in period.

Results are averaged over all 50 data segments of length T . Figure 4.3 show the average model

evidence p
(
y1:T |M(3,2)

)
for each approximation. The KL divergence from the prior to the posterior

as calculated by the Gibbs sampler (4.28) is also compared to the variational lower bound (VB) and
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the KL divergence from the prior to the factorized posterior q(Θ).

The VB and Gibbs sampler based algorithms give remarkably similar estimation of all quantities.

The lower bound of the VB method provides a good approximation to the more computationally

intensive Gibbs sampler in this AR-HMM case. The AIC and BIC model evidence approximations

are also shown in Figure 4.3 (b). Note that as AIC (4.12) is defined as the incomplete data likelihood

at the MAP value p
(
y1:T |ΘMAP ,M(3,2)

)
minus the number of parameters M = N(N − 1) +Nn, it

appears as a constant. AIC and BIC do not provide a method to estimate the information gain (KL

divergence) and are hence not shown in Fig. 4.3 (c). As seen in Fig. 4.3, the AIC and BIC methods

provide poor approximations to the model evidence. The next section will give a fairer comparison

by directly comparing the model selection performance of each approximation.

It should be noted that the similarity of information theoretic quantities between the Gibbs

sampler and the variational method should only occur when there is a single peak in the posterior

PDF. If the Gibbs sampler explores multiple peaks that are significantly disjoint (i.e. is uniden-

tifiable), and is compared to the variational method with it’s inherent local properties, then there

will be an discrepancy in the information gain between methods. In this thesis it was found that

with the amounts of data used and the relatively short sampling runs of the Gibbs sampler, there is

usually only one posterior peak explored by the sampler. Note however, that in the case of mixture

models, or HMM based models, there will always be multiple peaks in the posterior PDF due to

the so called “label switching problem”, where the posterior is unidentifiable because of the multiple

ways of labeling the modes. In this section, the label switching problem is ignored, due to the

local nature of the implemented sampling schemes. In the future, if better samplers or longer runs

are conducted, then one of the many existing solutions to the label switching problem should be

implemented [100, 101].

4.2.2 Model Selection of 3-State AR-HMM

This section directly compares the model selection performance of the model evidence approxima-

tions: AIC, BIC, GIBBS, and VB. Two data sets of length T = 1000 and T = 5000 were generated

from the 3-state second-order AR-HMM model (Fig. 4.1 and equations (4.31) and (4.32)).

The following procedure was implemented 50 times for each of the 15 model classes M(N,n),

N = 2, 3, 4, n = 1, 2, 3, 4, 5 for both data sets T = 1000 and T = 5000:

• A random discrete state sequence m(0)
1:T of length T was generated from the uniform distribu-

tion: p
(
mk = i

)
= 1

N , for k = 1 : T .

• The EM algorithm was initialized with AR-parameters maximizing p
(
wi, τi|m(0)

1:T

)
and a tran-

sition kernel A maximizing the prior distribution (4.33). The EM algorithm was run until the

MAP estimate: log p
(
y1:K |ΘMAP ,M(N,n)

)
+ log p

(
ΘMAP |M(N,n)

)
changed less then 1e − 7
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Figure 4.3: Comparison of information theoretic quantities related to the model evidence calculation:
50 data segments of length T were generated, for T = [100, ....10000]. All plotted values show the
averaged quantities over the 50 trials. (a) The average incomplete data likelihood at the MAP
value p

(
y1:T |ΘMAP ,M(3,2)

)
given by the EM algorithm. (b) The model evidence minus the MAP

data likelihood p
(
y1:T |M(3,2)

)
-p
(
y1:T |ΘMAP ,M(3,2)

)
for the AIC, BIC, Gibbs sampler (GIBBS) and

variational lower bound (VB) estimates. (d) The KL divergence from the prior to posterior parameter
densities from both the variational estimate and the Gibbs sampler. The results demonstrate that
VB approximation provides a very accurate lower bound to the model evidence in this AR-HMM
example, as verified by the Gibbs sampler. In addition, the information gain (complexity penalization
term) from the Gibbs sampler and VB are practically identical. This gives strong evidence that
assumptions made in the VB algorithm are reasonable for this model class.
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Table 4.1: Model selection results: The posterior probability for the model classes M(N,n), where
N is the number of discrete modes, and n is the autoregressive order, is tabulated. The results are
stated as percentages (posterior probability times 100). The “true” model used to generate the data
sequences was a model of class M(3,2). Model selection results for two data sequences of T = 1000
and T = 5000 samples are shown. The variational and Gibbs sampler estimates produce the most
accurate results for both data segments.

1000 data points
(N, n)

(2,2) (2,3) (3,2) (3,3) (3,4) (3,5) (4,2) (4,3) (4,4) (4,5)
BIC 75.64 0.06 24.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AIC 0.00 0.00 87.16 10.58 0.67 0.02 1.43 0.09 0.01 0.00
VB 0.00 0.00 99.78 0.02 0.00 0.00 0.22 0.00 0.00 0.00
GIBBS 0.00 0.00 99.52 0.02 0.00 0.00 0.45 0.01 0.00 0.00

5000 data points
(N,n)

(2,2) (2,3) (3,2) (3,3) (3,4) (3,5) (4,2) (4,3) (4,4) (4,5)
BIC 1.00 0.01 98.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AIC 0.00 0.00 16.32 40.88 1.16 0.32 2.35 32.92 0.68 5.37
VB 0.00 0.00 99.86 0.04 0.00 0.00 0.10 0.00 0.00 0.00
GIBBS 0.00 0.00 99.77 0.03 0.00 0.00 0.20 0.00 0.00 0.00

between iterations.

• The VB algorithm was initialized using the distribution q(wi, τi) = p
(
wi, τi|m(0)

1:T

)
and q(A)

was set to the prior distribution on the A matrix (4.33). VB was run until the change in the

lower bound between iterations was less then 1e− 7.

• The Gibbs algorithm was initialized with AR-parameters simulated from p
(
wi, τi|m(0)

1:T

)
and

an A matrix sampled from (4.33). The Gibbs sampler was run for a 500 iteration burn in

period5, after which the sampler was run for a subsequent 500 samples. For the Stationarity

method for model evidence calculations, the maximum a posteriori parameter from the burn-in

period was used as Θ� in (4.18).

• AIC and BIC quantities were calculated using the MAP likelihood: log p
(
y1:K |ΘMAP ,M(N,n)

)
from the EM algorithm. The model evidence was calculated using the last 500 samples of the

Gibbs sampler.

The maximum model evidence approximation generated by each method from the 50 runs is used

for calculating the posterior probability of the model classes M(N,n) for N = 2, 3, 4, n = 1, 2, 3, 4, 5.

The posterior probability of the model classes with non-zero probability are shown in Table 4.1, for

AIC, BIC, the Gibbs sampler (GIBBS), and VB.

5500 samples were found on several test runs to give an adequate burn-in period where convergence was tested
visually.
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Table 4.1 shows the Gibbs sampler and variational Bayesian methods produce consistent and

accurate model selection criteria for the simulated AR-HMM, outperforming the AIC and BIC infor-

mation criterions by a significant margin. Here the AIC criterion is biased towards more complicated

models, and the BIC criterion towards simpler models.

The variational method was found to be the fastest algorithm for identification: the slight increase

in computational burden for each iteration was offset by a decrease in the number of iterations to

converge compared to the EM algorithm. Gibbs sampling took considerably longer to converge due

to the increased number of iterations required6.

4.3 Automatic Model Structure Determination Priors

A efficient tool used in Bayesian inference are priors that allow automatic determination of model

structure. We define these priors as ASD priors, for automatic structure determination7. ASD

priors incorporate a bias towards reducing the number of model parameters or simplifying the

model structure, and applied inference algorithms can then automatically prune out unnecessary

model elements. These priors have previously been used for determining the number of components

in a mixture model [24] and the number of modes in a (discrete) hidden Markov model [36]. There

are, however, two potential downfalls to using ASD priors to automatically select the number of

modes or components of a model: there is no direct incorporation of prior knowledge about the

number of modes, and the method can over-prune the model structure.

This thesis advocates a combination of discrete model class selection (discussed in Section 4.2.2)

used in combination with ASD priors to avoid over-pruning of model structure, allow addition of

prior knowledge about the number of discrete states, yet retain the efficiency of automatic structure

determination. The remainder of this section is structured as follows: First a specific Dirichlet ASD

prior is defined, and the form of the distribution is analyzed. Second, an example that highlights

the effect of a ASD priors used with GLHMM is presented. Third, ASD priors that are appropriate

for HSMM are defined. The following Section 4.4 will present a case study of ASD priors used with

HSMMs.
6A computation time comparison is not given, as the Gibbs algorithm was optimized and written in C, where as

the other methods used a combination of Matlab and C. In practice each iteration of the Gibbs sampler, VB, and
EM algorithms are similar, as essentially the same computations are required, so it is simply the number of iterations
required to converge that determines the computational speed of the algorithm.

7This work can also be viewed as a variation of automatic relevance determination (ARD), where model structure
is pruned by maximizing the model evidence with respect to hyperparameters of the prior distributions, also called
type II maximum likelihood [68]. The ASD priors in this thesis instead inherently prune model structure. The
evolution from ARD to ASD priors is demonstrated in the publication history of Bishop, where originally [68] ARD
was used for selection of the number of components in a mixture model, with a subsequent text advocating ASD priors
instead [24]. Note that Bishop does not use the term ASD, which is defined in this thesis for convenience, to form
a distinction between priors that allow automatic pruning of model structure and those that do not. MacKay [40]
provides a comparison of using ARD, or instead doing a full Bayesian analysis and integrating over all parameters.
Bishop and Tipping also write a chapter in [102] called “Bayesian Regression and Classification” which shows that
integrating out hyperparmeters effectively results in an ASD prior.
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The automatic structure determination used in this thesis is based around the Dirichlet distri-

bution (A.15), for modeling the prior information of the Markov transition kernel A. By choosing

suitable prior parameters a0
ij < 1, the prior biases the inference procedure to give zero weight to tran-

sition probabilities between Si → Sj [39, 36]. In a departure from previous methods, we advocate

the use of non-uniform priors, which are especially useful in identifying cyclic structure of transition

sequences, especially in cases such as the neurological applications in Chapter 5, where each discrete

mode has some physical meaning connected to it. By giving each self-transition probability aii a

larger prior probability a0
ii > 1, the inference algorithms will no longer prune away discrete states.

This approach was used in the last section (as seen in the prior parameters of A (4.34)) and shows

model class selection successfully applied to cyclic AR-HMMs. This section takes a more detailed

look at the specific effect of the choice of prior distributions used in this thesis. Figure 4.4 shows a

Dirichlet prior (for a single row of A) with parameters a0
i < 1 for a 3-state model, compared to a

prior with a0
i > 1.

1
a 1

a

1
1

0 00 0

1 1

2
a 2

a

1 2 3
,P )( ,a a a 1 2 3

,P )( ,a a a

(a) (b)

Figure 4.4: 3-state Dirichlet distribution used to model prior knowledge about a row of the transition
kernel Ai: = [a1, a2, a3]. Notice that only axes a1 and a2 are shown, as a3 is determined by the
sum-to-one constraint: a3 = 1 − a1 − a2. (a) Prior used for automatic structure determination:
a0 = [0.5, 0.5, 0.5], where the probability mass is concentrated in having only one or two connections
with a low probability of all three transition probabilities being active. (b) A more typical prior
with a0 = [5, 5, 5], which enforces all transition probabilities to be non-zero.

An illustrative example of the power of ASD is now presented. We define a 5-state AR-HMM

(with second-order AR dynamics), with transition kernel A, shown in (4.38):

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.96 0.04 0 0 0

0 0.960 0.04 0 0

0 0 0.95 0.05 0

0 0 0.025 0.95 0.025

0.04 0 0 0 0.960

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.38)
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A simulated data sequence of length T = 2500 is generated from the 5-state AR-HMM, and iden-

tified using the VB method. Figure 4.5 shows how the inference algorithm automatically prunes

out allowed transitions of the model as the number of iterations of the VB algorithm increases.

The resulting identified model had states matched to the simulated model by comparing identified

parameter values associated with each mode.

The parameters a0
ij of the Dirichlet prior distribution for the transition probabilities aij is given

by:

[a0
ij ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5.0 0.01 0.01 0.01 0.01

0.01 5.0 0.01 0.01 0.01

0.01 0.01 5.0 0.01 0.01

0.01 0.01 0.01 5.0 0.01

0.01 0.01 0.01 0.01 5.0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.39)

The purpose of choosing the above prior distribution is twofold: the large self transition prior

probabilities a0
ii > 1 enforce that all 5 states are active in the identified model, and also increase

the posterior probability that self transitions are more likely. In the neural application of Chapter

5, there is considerable prior knowledge about the duration spent in each discrete state, and by

choosing an appropriate prior distribution the posterior models will be biased towards this behavior.

Furthermore, in the case of the neural data, we know there are few transitions between most states;

a cyclic transition pattern is expected. Shown in Fig. 4.5 the number of non-zero state transitions

is limited by the choice of a0
ij < 1. If the prior distribution instead used a0

ij ≥ 1, then all posterior

transitions aij would be non-zero.

Remark 4.4 ([36]). There is an excellent interpretation for the strength, or amount of information

contained, in the specified Dirichlet prior distribution (4.39). We have previously used a Dirichlet

distribution to represent each row ai:, of the transition matrix:

p
(
ai:

)
= Dir

(
ai1, ..., aiN |[a0

i1, ..., a
0
iN ]

)
. (4.40)

Using this conjugate prior (4.40), it was shown in (2.79) that the posterior distribution is also a

Dirichlet distribution:

p
(
ai:|y1 : T

)
= Dir

(
ai1, ..., aiN |[aT

i1, ..., a
T
iN ]

)
(4.41)

where aT
ij = a0

ij +
∑T

k=1 ξk(i, j), and
∑T

k=1 ξk(i, j) is the expected number of transitions from Si to

Sj . The prior parameter a0
ij in (4.41) can then be thought of as the number of observed transitions

in an additional imaginary data set (i.e., each a0
ij essentially represents an additional number of

transitions between Si and Sj). The total strength of the prior can then be defined as the number of

observations in the imaginary data set, which is simply the sum
∑N

j=1 a
0
ij . For instance, the sum of
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the rows in (4.39) is 5.04, so this prior distribution can be thought of as equivalent to an imaginary

data set with approximately 5 transitions. Because the example in Fig. 4.5 uses 2500 data points,

the prior (4.39) is dominated by observed data in the posterior distribution. �
Remark 4.4 has severe implications for the use of Dirchlet priors in HSMM models. Because the

maximum duration D is potentially large, the prior distribution p0
i (1 : D) (see Def. 3.7) needs to be

carefully chosen: If the maximum duration is D = 500, and the prior is chosen such that p0
i (d) = 1,

then by Remark 4.4, this is equivalent to observing 500 transitions into mode Si. Even in large data

sets, the number of transitions between modes in a HSMM may be reasonably small, and hence

the prior will dominate in the posterior distribution. To avoid this problem, this thesis advocates

the use of a fixed strength prior, where the prior is chosen such that
∑D

d=1 p
0
i (d) = c, where c is a

constant representing the strength of the prior.

A convenient method of creating priors for HSMM durations is to utilize a Gamma distribution

(A.10). The prior for the duration of each mode is then generated by:

p0
i (d) = c dα−1 β

α exp(−βd)
Γ(α)

(4.42)

where (4.42) is a Gamma distribution, and the user can choose appropriate parameters for α, β, and

c. Equation (4.42) is convenient as the Gamma distribution has mean α
β and variance α

β2 , giving an

intuitive method to insert prior knowledge into the identification process. Note that the value c, the

strength of the prior, may need to be carefully chosen. If the parameter c is made very small, then

all prior values p0
i (d) will be close to zero, resulting in the identification algorithm pruning away

the majority of durations. If the value of c is large, then the prior parameters will dominate the

posterior distribution. For the applications in this thesis, the strength of the prior is varied between

5 ≤ c ≤ 25 depending on the amount of observed data.



125

S
T

E
P

5

S
T

E
P

25

S
T

E
P

75

S
T

E
P

15
0

G
R

O
U

N
D

T
R

U
T

H

S
te

p
k

1
2
5
0
0

(a
)

(b
)

F
ig

ur
e

4.
5:

A
ut

om
at

ic
st

ru
ct

ur
e

de
te

rm
in

at
io

n:
V
ar

ia
ti
on

al
B

ay
es

is
us

ed
to

in
fe

r
th

e
m

od
el

pa
rm

et
er

s.
V

B
w

as
ru

n
fo

r
15

0
it
er

at
io

ns
,
th

e
re

su
lt
s

of
w

hi
ch

ar
e

pl
ot

te
d.

(b
)

T
he

m
ar

gi
na

l
pr

ob
ab

ili
ty

of
th

e
di

sc
re

te
st

at
e

p( m k
|y 1

:2
5
0
0

) is
pl

ot
te

d
as

ap
pr

ox
im

at
ed

by
q(
m

1
:2

5
0
0
),

fo
r

se
ve

ra
ls

te
ps

of
th

e
V

B
al

go
ri

th
m

.
(a

)
Fo

r
ea

ch
st

ep
of

th
e

V
B

al
go

ri
th

m
,
th

e
tr

an
si

ti
on

pr
ob

ab
ili

ti
es
a

ij
be

tw
ee

n
di

sc
re

te
st

at
es

th
at

ar
e

nu
m

er
ic

al
ly

di
ffe

re
nt

in
th

e
va

ri
at

io
na

la
pp

ro
xi

m
at

io
n
q(
A

)
fr

om
th

e
pr

io
r

di
st

ri
bu

ti
on

ar
e

in
di

ca
te

d
w

it
h

an
ar

ro
w

(t
he

di
re

ct
io

n
of

th
e

ar
ro

w
im

pl
ie

s
in

to
w

hi
ch

st
at

e
th

e
sy

st
em

ca
n

tr
an

si
ti

on
).

A
s

th
e

nu
m

be
r

of
V

B
it

er
at

io
ns

in
cr

ea
se

s,
th

e
pr

ob
ab

ili
ty

of
tr

an
si

ti
on

s
q(
A

)
ap

pr
oa

ch
es

th
e

gr
ou

nd
tr

ut
h

(4
.3

8)
.



126

4.4 Case Study: Oh Bee Dance Data Set

This section applies variational model selection using ASD priors and HSMM with GLM dynamics

to the dancing bee data set [43]8. This is the first time variational methods or ASD priors have ever

been applied to a HSMM.

The goal of [43] is similar to this thesis: A maximum likelihood EM approach is taken to identify

parameterized segmented switching linear dynamical system (PS-SLDS). In the terminology of this

thesis, the PS-SLDS is equivalent to a Markov jump system (Section 2.1.1) with a semi-Markov

transition kernel (Def. 3.5). The analysis in this section differs from [43] in two respects: First, [43]

initialize their model using a data-driven technique, and have a pre-determined number of discrete

modes. This method forms a prior guess about the state sequence m1:T , by running cleverly designed

pre-filters on the bees heading angle data to give a initial segmentation of discrete states9. This

accurate initialization allows the learning process to proceed more efficiently, avoids local minima,

and provides good results. This section will instead forgo the data-driven filter in [43] and use

the dancing bee data to demonstrate automatic structure determination in a Bayesian HSMM with

GLM dynamics using the variational algorithm. Here, the identification process will be initialized

with very broad priors, without using an initial segmentation of the discrete modes, and without

a fixed number of discrete states. The second difference between [43] and the model used here, is

we choose to use GLM dynamics, as opposed to state space models. This section also demonstrates

how the GLM can be used to represent fully observed state space models.

In brief, the data set consists of a bee worker executing a series of maneuvers called a dance,

which communicates the location of pollen or food to other bees in the hive [44]. For this analysis,

three data segments (trials) of bee dance data were used (see Fig. 4.4). The dance is conducted in

a planer hive surface, allowing the bee’s state to be modeled by three variables, the x-position, the

y-position and the heading angle φ:

yk =

⎡
⎢⎢⎢⎣
y1

k

y2
k

y3
k

⎤
⎥⎥⎥⎦ �

⎡
⎢⎢⎢⎣

x− position

y − position

φ− heading angle

⎤
⎥⎥⎥⎦ (4.43)

The bees motion is recorded by video camera, and the x, y, φ position of the bee is extracted from the

video stream by a series of pre-processing steps [43]. The bees motion during the dance is typically

segmented by hand into three [44, 43] distinct motion primitives or patterns: turning left, turning

right and waggling, where the bee moves forward but rapidly oscillates its heading angle. These

three canonical states are illustrated in Fig. 4.4 (g). The goal of this case study is to automatically

8This data is freely available online at http://www.cc.gatech.edu/∼dellaert/. The author greatly thanks Oh, Rehg
and Dellart for providing this resource to the community.

9The exact procedure for creating the data-driven initial guess of the model is presented in the tech-report [103]
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detect the number of discrete modes, segment the data into the correct mode sequence and identify

representative motion model for each motion primitive.

The dynamics of the bee in each discrete state (or motion primitive) will be represented by a

“stack” of GLMs:

yk =

⎡
⎢⎢⎢⎣
θ1i (1) 0 θ1i (2) 0 0 0

0 θ2i (1) 0 θ2i (2) 0 0

0 0 0 0 θ3i (1) θ3i (2)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1
k−1

y2
k−1

sin(y3
k−1)

cos(y3
k−1)

y3
k−1

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ εk (4.44)

where the error εk is zero-mean and normally distributed:

εk ∼ N

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣
0

0

0

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣
θ1i (3) 0 0

0 θ2i (3) 0

0 0 θ3i (3)

⎤
⎥⎥⎥⎦ .

⎞
⎟⎟⎟⎠ (4.45)

Note that this model (4.44) is equivalent to a nonlinear state space model with a fully observable

state. If the restricted form of covariance matrix (4.45) is not adequate, then a full multi-variate

AR-model could be used instead of (4.44).

The priors on the system parameters were designed to be minimally informative. The hyper-

parameters of the dynamics model were not found to be important, and a wide range of minimally

informative parameters could be chosen for the Gaussian-Gamma distributions. The priors for the

transition matrix and the duration models are explicitly stated here: ASD prior were used for the

transition matrix A, resulting in automatic deamination of the number of discrete states in the data

sequences:

a0
ij = 0.1 for i 
= j , (4.46a)

and where a0
ij is not defined due to the structure of a HSMM. The prior for the duration of each

mode is generated by a gamma distribution:

p0
i (d) = c dα−1 β

α exp(−βd)
Γ(α)

(4.46b)

with parameters α = 10, β = 5, and where c = 5 is a constant that is equivalent to number of

observations that prior represents (see Remark 4.4 in the previous section). The maximum allowed

duration was D = 250.

The model was initialized by using an initial distribution over the joint state m1:T , τ1:T , generated
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by adding random white noise to a uniform distribution, and then re-normalized.

p
(
mk = i, τk = d

) ∝ 1
ND

+ 0.05r , (4.47)

where r is a uniform random number, N is the number of discrete states, and D is the maximum

allowed duration.

The identification process proceeds as follows: the model is initialized with five discrete states

(N=5) using (4.47) to generate a state sequence over each dance trial. As the identification process

proceeds, states are pruned away due to the bias of the ASD priors. The VB algorithm is run until

convergence (when the change in the lower bound is less then 1e−7). This procedure was repeated 5

times, and the model with the maximum posterior probability was chosen, and is depicted in Figure

4.4. Note that the method was robust to changes in the prior information, choosing the optimal

3-state model when using the range 0.01 < a0
ij < 0.5. It was found that if the prior term a0

ij was

greater then 0.5, then the optimal model would typically have more discrete modes.

The combination of the VB algorithm, HSMM model, and ASD priors provided excellent results

that were consistent with data segmented by an expert user. Not only did the algorithm find

the correct number of modes, but the identified mode sequences were very similar to the expert’s

ground truth. Furthermore, the identification process was initialized without the use of an expert

or pre-filter, and only required the specification of minimally informative priors.
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Chapter 5

Neural Prosthetics Application

Cortical neuroprostheses are being developed to restore motor function in individuals with high-level

spinal cord injuries or severe motor disorders (e.g., Lou Gehrig’s disease). Neuroprostheses work by

recording the activity of multiple neurons in cortex and decoding movement intent or movement

plans from this neural activity in order to generate control signals that can be used to drive devices

such as prosthetic arms or computer interfaces [11, 12, 13]. Future practical clinical neuroprostheses

will require a supervisory decoder (Fig. 1.1) whose job is to classify, in real time, the discrete cognitive

or behavioral state of the brain region from which the neural signals are recorded. For example, the

supervisory decoder must determine: (1) if the prosthetic patient is awake or conscious; (2) if the

patient wants to use the prosthetic; (3) if the brain is currently planning a movement that should be

decoded by the prosthetic; (4) if or when the movement is to be executed; (5) if the patient wants

to change or scrub a plan while it is being executed; etc. The knowledge of the current state in the

evolution of the planning process can be used in a variety of ways. For example, depending upon

the current state, different algorithms, or different parameters in the algorithm, can be applied to

the decoding of movement plans.

This chapter models the neural processes related to the brain-machine interface as a hybrid

dynamical system, where the discrete states are associated to the cognitive or planning brain states,

and the continuous states model the observed neural activity, such as firing rate. Thus, the design of

a supervisory decoder is a two part process: (1) the identification (or learning) of the hybrid model

that represents neural activity in each discrete cognitive state as well as the transition rules between

cognitive states; (2) the design of an estimator which uses the identified hybrid model to classify the

current neural activity into discrete cognitive or planning states.

There are a number of reasons we use the framework of hybrid systems theory to formulate our

approach to the design of supervisory decoding systems. First, the supervisory decoding problem

is naturally formulated in this framework. Second, the process of learning a supervisory decoding

model requires both the identification of the parameters of the supervisory decoding model and

the simultaneous classification of neural activity into discrete modes. These distinct computational
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processes are easily handled in a hybrid system identification framework presented in Chapter 3.

Furthermore, the model selection methods presented in Chapter 4 allow the identification of models

when the prior knowledge about the discrete cognitive process is incomplete. Third, our formalization

of the problem in hybrid systems terms allows for scaling of our method to reasonably complex hybrid

supervisory decoding systems. Fourth, if neuroprostheses are to become widely used in clinical

applications, a formal and automated approach to their design is necessary so that the process of

adapting a prosthetic to each patient is not so labor intensive. Fifth, the hybrid system framework

easily incorporates many dynamical models typically used in neural decoding, and allows for the

fusion of disjoint types of signals, such as action potentials, local field potentials, and eye trackers.

The idea of using discrete state, or supervisory, decoders in neural prosthetic systems is not

original to this thesis. It dates at least to the work of Shenoy et al. [13], who developed, using an

ad hoc approach, a finite state machine model and decoder that classified plan activity from the

parietal reach region into three discrete states; a baseline state, a plan state, and a reach state.

Using off-line analysis, they showed that the imposition of a supervisory decoder on the decoding

process could improve overall system accuracy. Recently, Kemere et.al. [104] have demonstrated,

using signals from dorsal premotor cortex, the decoding of two different discrete states. Their work

assumed a homogeneous Poisson rate model for neural firing, and used an expectation-maximization

framework to find the model parameters. While their work is not directly related to the subject of

this chapter, it should be noted that Wu et al. [105] have used a switching Kalman filter, a type of

hybrid system, for decoding continuous arm movements. Also a recent paper by Srinivasan et. al.

[17] has proposed the idea of using hybrid systems to model neural activity. Srinivasan et.al. do not

propose a method to identify these systems from data, but do discuss a particle filtering approach

to the estimation (state inference) problem.

This chapter will focus on identifying supervisory decoders based on neural recordings from the

parietal cortex of a macaque monkey while the animal carries out tasks that simulate the operation

of a neural prosthetic. Previous work [13, 15, 16] has demonstrated that the parietal reach region

(PRR) in the posterior parietal cortex contains both motor planning activity as well as neural

correlates of the discrete cognitive and planning states needed for a supervisory controller. The

work of Snyder et.al. [13] suggests that the parietal reach region (PRR) may be well suited for

generating signals useful for decoding the discrete cognitive state in prosthetics applications, as it

encodes plan activity selective for arm movements, which is not dependent upon actual movement

occurring. The developed supervisory decoders will combine multiple neural signal types including

both local field potentials (LFP), and single unit (SUA) activity (see Section 5.1 for details on these

neural signals). It is demonstrated that improved performance is achieved by utilizing more than

one signal type, and has the additional benefit of potentially lengthening the use of the implanted

prosthetic device.
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To demonstrate the effectiveness of our proposed approach, several case studies are conducted,

where a supervisory decoder is first identified from neural data, and then used to estimate key

cognitive discrete states:

Case Study 1: Simulated Data Set (Section 5.2) A simulated data set consisting of a single

neuron with a nonstationary firing rate is developed. The activity is modeled as a single

output GLHMM, and is identified using a Gibbs sampler. Not only does the Gibbs sampler

accurately identify the simulated data set, but the posterior samples are analyzed to infer the

identifiability of the model.

Case Study 2: Scherberger Data Set [15] (Section 5.3) A neural data set collected by H. Scher-

berger [15] is analyzed, that consists of both SUA and LFP signals collected from the parietal

cortex of a macaque monkey. A GLHMM model is identified from the neural data, which fuses

the activity from both signal modalities, using Gibbs sampling. In this example, the number

of discrete cognitive states is assumed to be known, and is determined by the experimental

paradigm (see Fig. 5.3). The process by which the supervisory decoder was identified did

not use any knowledge of the experimental cues or markers. The subsequent decoding results

using the identified model show that the inference framework developed in Chapter 3 can be

successfully applied to neural data: Key cognitive states related to prosthetic movement can

be decoded with accuracy of up to 97.9%, even when the supervisory decoder is trained on

a small data set using little prior information. The data used in this case study has a high

signal-to-noise ratio, as each recording electrode was individually moved to a cortical location

providing optimal signal quality.

Case Study 3: Musallam Data Set [16] (Section 5.4) A neural data set collected from the pari-

etal cortex of a macaque monkey by S. Musallam [16] is analyzed. The Musallam data set

consists of SUA and LFP signals recorded with a 64-electrode array. A subset of the electrodes,

those with a high signal-to-noise ratio, were used in the identification and estimation process.

Initially a GLHMM was identified where the number of discrete cognitive states was assumed

to be known, however this resulted in a comparatively poor decode performance of 46.5%. The

decode performance was achieved using the variational method, however similar results were

achieved using the Gibbs sampler, and even when the training data set was pre-segmented

using experimental markers and cues or expert opinion. The model selection tools developed

in Chapter 4 were applied to identify the number of discrete cognitive states in the GLHMM,

which resulted in a model with extra discrete states. This new supervisory decoder model

was identified using variational methods, and achieved a decoding performance of 85.4%. The

identified GLHMM was found to contain several new states during a memory period, and enter

a subset of the new discrete cognitive state for only brief temporal periods, perhaps accounting
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for either artifacts in the neural signals, or distraction of the monkey during the experiment.

To model the duration of cognitive states explicitly, the HSMM with GLM dynamics (Def.

3.5 in Chapter 3) was used instead of the GLHMM for creating a supervisory decoder model.

This new model, even when the minimum dwell time in each cognitive state is constrained,

retained many of the characteristics of the identified GLHMM. The identified HSMM supervi-

sory decoding model achieved a higher decode performance of 91.67%. These identified models

effectively incorporated prior information about the experimental paradigm, and are suited to

future prosthetic development work. Even when training on small data sets, with limited

knowledge about the discrete temporal periods, the model identification and model selection

steps can be quickly computed.

The neural case studies and theory development in Chapters 3 and 4 of this thesis contain several

key contributions to the neural prosthetics community in regards to the creation of discrete state

decoders and supervisory decoders:

• A new hybrid-system identification framework for supervisory decoders is proposed and devel-

oped. The utilization of more then one neural signal type when decoding, and the ability to

completely automate the approach (without the pre-segmentation of some neural data), are

improvements over existing methodologies.

• The proposed identification algorithms incorporate prior knowledge about the neural system

into the model and constrain neural dynamics to physiological limits. The Bayesian perspective

utilized in this thesis allows explicit incorporation of prior knowledge pertaining to dynamics

such as neuron firing rates, and the allowable transitions and durations of discrete cognitive

states.

• Developed algorithms automatically determine the transition rules between discrete cognitive

states. Prior work either focuses on hand tuning a finite state machine [13] to constrain the

duration spent in each cognitive state, or utilizes Markov-based switching [104] models, that do

not prune away subsets of allowed transitions. Here automatic identification of both Markov

and semi-Markov transition rules are considered, allowing the automatic creation of duration

based transition logic.

• Automatic model selection procedures are developed which allow for the addition (or removal)

of discrete cognitive and planning states. Instead of assuming that the subjects cognitive

states are defined exactly by external events, the number and transitions between discrete

cognitive states are automatically determined. This work may lead to increased performance

in traditional prosthetic decoding work, such as determining intended reach direction, as neural

temporal periods of interest can be identified in a more refined way.
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5.1 Neurological Signal Models

The front end of a cortical neural prosthetic typically consists of a multi-electrode array implanted

in cortical tissues [11, 12, 13, 16]. The signal recorded from each electrode contains multiple signal

components that arise from different physiological origins and whose characteristics require different

signal models, which are now briefly reviewed. Based on the conducted case studies, two neural

signal types are considered here: local field potentials (LFP) and single unit activity (SUA). These

signal classes are only a subset of all potential neural signals available for use with prosthetics [106].

5.1.1 Local Field Potentials

Cortical local field potentials (LFP) arise from the aggregate dendritic electric potentials originating

from neurons in a “listening sphere” that surrounds the electrically active tip of the recording

electrode [15]. Such signals average the dendritic activity of a few thousand nearby neurons. In

practice, the LFP signal component is derived by amplification and band-pass filtering (usually in

the range of 2–300 Hz) of the electrode signal. Historically, the LFP is modeled from the knowledge

of its spectrogram [15, 107], which is optimally obtained from multitaper methods [108] which

apply the Fourier transform to tapered time series obtained from the digitization of the LFP signal.

Spectrograms of the LFP signal in the parietal cortex show that temporal variations of the power

in certain frequency bands is correlated with intended arm reach direction, as well as changes in

planning state [15, 107]. The average power in each frequency band can be modeled as a random

variable with a log normal distribution.

Autoregressive (AR) (see Def. 3.1) or vector autoregressive (VAR) equations can be used for

parametric spectral estimation [108], and will be used here to model the LFP signal in the time

domain. AR modeling of signals is typical in electroencephalogram (EEG) recordings [109, 110,

99], and occasionally time domain representations of LFP signals are considered in the implanted

electrode studies [106]. A pth-order AR model, denoted AR(p), takes the form:

yk =
p∑

i=1

β(i)yk−i + ηk , (5.1)

where yk ∈ R is the LFP signal sampled at time tk, and ηk ∼ N (0, σ2) is zero mean noise with

covariance σ2, and the model parameters are θ =
{
β(1), ..., β(p), σ2

}
. Note that the spectral density

of a stationary AR(p) process (5.1) is given by [108]:

S(f) =
σ2Δt∣∣∣1 −∑p

j=1 β(j) exp−i2πfjΔt
∣∣∣2 , (5.2)

where f is the frequency and Δt is the sampling period. While the spectrogram has been the
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primary LFP modeling tool in prior work, there are two main advantages of using time domain

AR models instead of frequency domain spectrogram methods. First, the real-time computation of

the spectrogram is an excessive practical burden, and it additionally introduces a time lag in the

response of the neural prosthetic system since, a large window size (typically 512 or 1024 msec)

is needed to obtain good precision. This lag may cause undesirable psychophysical delays for the

prosthetic-using patient. The AR approach effectively uses considerably smaller window sizes: the

largest data window used in this thesis is from a 55th-order AR model sampled at 1 kHz, resulting

in an effective window width of 55 msec.

5.1.2 Single Unit Activity

Neurons generate characteristic electrical pulses called action potentials, or spikes, whose arrival

times, and not waveform shape, are believed to encode information. Mathematical models used

to decode neural stimuli typically focus on the firing (spiking) rate of individual neurons [111].

Numerous studies have shown that single unit activity1 can be correlated to intended reach direction,

as well as temporal or cognitive state in the posterior parietal cortex [15, 107]. Following standard

practice, the spike arrival times are discretized into sufficiently small time bins (1 msec in our

experiments) so that only one spike at most is assigned to each bin. Let the beginnings of each

discretized sampling interval be denoted by the sequence of times {t1, t2, . . . , tk, . . . , tT }. Thus, each

bin corresponds to the time interval (tk, tk+1]. The signal yk is the number of spikes arriving in the

interval (tk, tk+1]. When the bin size is sufficiently small, the spike arrival times can be modeled as

a point process with a stationary Poisson distribution (see Def. 3.2):

f(yk, λ) =
λyke−λ

yk!
, (5.3)

where λ is the firing rate of the neuron, and is the only parameter of the model (θ = λ). An extension

of this process (5.3) can be used, the nonstationary Poisson process (see Def. 3.3) model can also

be used to represent single spiking unit activity [78]. In this similar model, the nonstationary firing

rate is a log linear function of the neuron’s spiking history:

λk = exp

[
β(0) +

p∑
i=1

β(i)yk−i

]
. (5.4)

As discussed in the definition of a GLHMM (Def. 3.4), the linear regressor (5.4) can also contain

other system variables of interest. The next section will utilize this nonstationary model (5.4), but in

1The action potentials, or spikes, of more than one neuron may be recorded on a single electrode. A two-step
process isolates the activity of a single neuron, or unit. First, spike waveforms are detected (in the midst of substantial
background noise) in the electrical signal. The detection process also provides an estimate of the spike waveform’s
arrival time, the time at which the spike amplitude peaks. A spike sorting process [16] then analyzes the waveform
shapes, and clusters the waveforms according to different putative neural signal sources.
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Figure 5.1: Finite state machine representation of simulated neuron behavior

subsequent case studies, the stationary firing rate model (5.3) was found to give equal performance

due to the low firing rates of neurons in the analyzed data sets.

5.2 Case Study 1: Simulated Single Neuron Recording

To illustrate some key characteristics of our approach, a simulation of recorded spiking activity

from a single neuron present in a higher brain cortex is created. This neuron’s spiking activity is

dependent on the unobservable discrete state of the surrounding cortex. For this simple example,

the cortex has two discrete states: S1, an “attention” state (i.e., the patient wants to actively use the

neural prosthetic) and S2, a “baseline” state (i.e., sleep or disinterest in using the neural prosthetic).

The transition of this cortical region between the attention and baseline states is assumed to follow

Markov transition probabilities. The number of spikes in successive 0.01 s time bins, for a 10 s

interval is simulated.

The discrete modes are modeled by setting m1 = 1 and evolving the discrete state mk, k =

1, . . . , 1000, using Markov transitions with parameters A = [ai,j ]:

P (mk+1 = j|mk = i) = aij , where A =

⎡
⎣0.9 0.1

0.1 0.9

⎤
⎦ . (5.5)

The neurons spiking activity in each mode is modeled with Poisson-GLMs (Def. 3.2). The firing

rate, λk, in each mode Si, is determined by two components: θi(1), the nominal firing rate of the

mode, and θi(2), representing a change in rate depending on the spiking history. θi(2) can model

refractory periods, a dwell period in spiking activity that is experienced immediately after spike

firing:

λk =

⎧⎨
⎩e

(θ1(1)+θ1(2)yk−1) if mk = 1

e(θ2(1)+θ2(2)yk−1) if mk = 2
. (5.6)

The following regressor parameters are used:

θ1 =
[
−1 −10

]T

, θ2 =
[
−2 0

]T

. (5.7)

The parameters (5.7), correspond to a nominal firing rate of 36.78 Hz in the “attention” state, and

a nominal rate of 13.53 Hz in the “baseline” state.
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Table 5.1: Model parameter estimates. Expected value (E[·]) and the maximum a posteri (MAP)
estimates are used, compared with actual parameter values (Model).

Model MAP E[·]
A

[
0.9 0.1
0.1 0.9

] [
0.898 0.102
0.102 0.898

] [
0.897 0.102
0.096 0.904

]
θ1

[−1 −10
]T [−0.964 −2.704

]T [−1.003 −25.01
]T

θ2
[−2 0

]T [−2.013 0.201
]T [−2.108 −0.021

]T
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Figure 5.2: Regressor parameter posterior densities and mean estimates

The number of spikes in the current time bin are generated from a Poisson distribution with rate

λk:

yk ∼ Poisson (λk) . (5.8)

An output sequence yk, k = 1, . . . , 1000 was generated from the single neuron model by using Poisson

and discrete random number generators in Matlab. There were a total of 211 spike events over the

simulated 10 second duration.

The multi-stage Gibbs sampling algorithm for GLHMM (see Algorithm 3.1 in Section 3.4)

was run, setting zmax = 5000; the last 3000 generated samples were used for statistical analy-

sis. Regressor parameter priors are set to dispersed normal distributions: θi,j = N (
0, 102

)
for

i ∈ {1, 2}, j ∈ {1, 2}. Dirichlet priors are used for each row of A:
[
a11 a12

]
∼ D

([
α1 α2

])
,[

a21 a22

]
∼ D

([
α2 α1

])
. Several different informative parameterizations were chosen that in-

corporate the assumption that sequential modes values mk, mk+1 are more likely to belong to the

same mode Si: [
α1 α2

]
=

[
90 10

]
,
[
80 20

]
,
[
70 30

]
. (5.9)

The solution was invariant when using different informative priors (5.9), and the key parameter

estimates matched the model values (see Table 5.1).
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The only wide discrepancy between the MAP and expectation estimates is for the refractory pa-

rameter θ1(2). Gibbs sampling allows analysis of the posterior densities, by constructing a histogram

of the samples. The posterior density for θ1(2), shown in Fig. 5.2, has a large support, indicating

that the parameter is unidentifiable from the generated data set. This posterior distribution remains

bounded, because of the proper prior distribution used by the algorithm. This unidentifiablity prob-

lem arises because the refractory physics of spike firing dictate that no sequential outputs yk and

yk+1 in S2 both contain spikes. Hence the only information that can be deduced from the poste-

rior distribution is the refractory parameter θ1(2) significantly lowers the firing rate after a spike

event has just occurred. The posterior densities thus allow the user to realize when a parameter is

unidentifiable, or nearly unidentifiable.

5.3 Case Study 2: Scherberger Data Set

The two-stage Gibbs sampler (Alg. 3.1) is applied to a neural data set obtained from experiments

with rhesus monkeys [15] to identify a GLHMM supervisory decoder model. This data set consists

of recordings from two male rhesus (Macaca mulatta) monkeys, Animal C and Animal D, from

electrodes placed in various positions within the parietal reach region (PRR) of the posterior parietal

cortex. The neural data set contains both LFP and neural spike arrival time signals [15]. While

we have analyzed data from both animals, for brevity the results presented below focus on the 96

electrode recordings from animal D.

The data recordings occurred while the monkeys repetitively executed a delayed center-out reach-

ing task, which is commonly used to simulate the actions of a neural prosthetic. Such simulations

are a necessary step in the development of this technology for eventual human use. This task is

illustrated in Fig. 5.3. A task-board is placed within arm reaching distance in front of the mon-

key’s visual field of view. Each trial proceeds as follows: A light located in the center of the task

board is illuminated, and the monkey must place its reaching arm on the light to indicate that it

is attending to the trial. A target light is flashed at one of 8 target locations around the task board

perimeter for a short cue period, and then the target light is extinguished. After a random time

delay (the memory period, during which the monkey must remember the target location and also

plan its upcoming reach to the target), the center light is extinguished, cueing the monkey to reach

to the remembered target location. After the monkey reaches for a target location, the original

target is redisplayed. If the monkey has successfully reached for the correct target location, while

also respecting the temporal structure of the sequence, it is given a juice reward.

To simulate the action of a neural prosthetic, the neural signals from the PRR are “decoded”

during the memory period (when the monkey can only be planning a reach, and not executing a

physical reach), to predict the monkey’s subsequent physical reach, even before the reach occurs.
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Figure 5.3: Center-out reach experiment: a) displayed experimental cues, b) corresponding cognitive
or behaviorial states.

Successful prediction of the subsequent reach from the memory period signals validates the ability

to decode a reaching plan from PRR neural activity. Practically, these experiments demonstrate, for

example, the ability of the brain machine interface to control cursor movements on a computer screen

using neural signals. Such cursor control is a basic function that would allow paralyzed patients to

use a computer. In more advanced experiments that more accurately simulate a neural prosthetic,

the monkey is taught to purely think about the reach to the target, and the desired cursor command

is decoded from this thought [16].

We can also use these trials to simulate and validate a supervisory decoding system. The trial

structure has an associated discrete number of different cognitive and planning states: (1) a baseline

state where the monkey is idle, or starting to attend to the upcoming trial; (2) a cue period during

which the target location is lit; (3) a memory period during which the location of the now extinguished

target must be remembered by the monkey, and during which the monkey plans its upcoming arm

movement; (4) a short “go” period (which is really a transition between memory and execution

states) during which the planned movement is initiated; and (5) a reach or execute period during

which the arm moves to the target location. To successfully simulate a supervisory decoder, we

seek to demonstrate that the onset and duration of these different planning/cognitive periods can

be correctly estimated solely from the neural signals recorded during the trial. The actual reaching

behavior of the monkey is actively recorded during the task execution, providing us with a reasonably

good ground truth model against which the predictions can be compared. We are particularly

interested in estimating the onset of the reach state (the “go” signal). In an neural prosthetic, this

signal will trigger the execution of an action associated with the decoded planning activity.

Training (identification) and testing (estimation) data sets were created by randomly choosing

an n electrode subset, En, from the set of available electrode signals, E . We limited our selection to

the subsets of the recorded data which included at least 7 successful reaches in each of 8 possible

reach directions, and whose signal-to-noise quality exceeded a threshold [15]. From the data set En,

two reach trials in each of the 8 directions were randomly chosen (16 trials total) to form the training
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Figure 5.4: Example decode: a) Recorded neural spike arrival times for 6 electrodes; b) Local field
potentials for 6 electrodes; c) Cognitive states as defined by experimental cues; d) Decoded cognitive
state.

set. A testing data set was formed from the remaining 5 trials in each of the 8 directions (40 trials

total). This is done 7 times for the given value of n, where n was varied from 1 to 6, resulting in 42

data sets, each containing 16 training trials and 40 testing trials.

For each of the 42 training data sets, a GLHMM was identified using the two-stage Gibbs sampler

(Alg. 3.1), with prior distributions and initial conditions specified in Section 5.3.1. Estimation of

the discrete cognitive state in the corresponding testing data sets is then done using the Viterbi

algorithm (Def. 3.14). For each trial, a discrete state estimation, or decode, was considered correct

when the reach state was decoded within a 300 ms window of the “go” signal, as shown in Fig.

5.4. The exact timing of the go signal is obtained experimentally by watching for the onset of

the monkey’s arm motion. The average percentage of correct decoding trials versus the number of

electrodes n is shown in Fig. 5.5. The error bars represent standard deviations of percent correct

over the seven repetitions described above.

Figure 5.5 shows that a high level of decoding performance can be achieved using a relatively

small number of electrodes. This is a promising result, as the surgical complexity and risk associated

with the implantation of the electrodes is proportional to the number of electrodes.

In addition to the high percent correct of decodes, the lag between the estimated onset of the

reach state and the actual reach is small, 0.027s on average. From the psychophysical point of view,

this is a negligible lag.

To relate the identified models back to the science conducted in [15], we can calculate the power

spectral density (PSD) of the identified models, and show that we recover similar phenomenon of

changing power in different frequency bands through time in LFP signals. The PSD of the AR
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Figure 5.5: Decoding results: Percentage of correctly decoded trials, where the reach state was
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Figure 5.6: Power spectrum of the identified AR models for each discrete cognitive state for a single
electrode.

models for a single electrode in each discrete state is shown in Fig. 5.6. The AR models in each

discrete state show the characteristic noise peak at 60 Hz and 120 Hz, however the large discrepancy

at lower frequencies is consistent with the ranges considered in other studies using spectrographic

methods.

5.3.1 Prior Distributions and Initial Conditions Used for GLHMM Iden-

tification

This section presents the prior distributions and initialization procedure used in identifying the

GLHMM from the Scherberger data set. The most important prior distribution specified for the

GLHMM is the prior on the Markovian transition matrix A. Using the ASD prior discussed in

Chapter 4, allows the the GLHMM to be biased towards identifying a left-to-right HMM. Specifically
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the following prior distribution was used:

[a0
ij ] =

⎡
⎢⎢⎢⎢⎢⎢⎣

50 1 0.001 0.001

0.001 50 1 0.001

0.001 0.001 50 1

0.001 1 0.001 50

⎤
⎥⎥⎥⎥⎥⎥⎦

. (5.10)

The identified model was invariant to many of the chosen prior parameters, however it was necessary

to use small (¡0.01) values for appropriate entries in (5.10) to keep the identified model’s left-to-right

structure. If a uniform prior distribution was used instead of (5.10), the identified model will switch

quickly between discrete modes, and does not contain any relevant information.

The prior distributions for the GLM dynamics in each mode were found to be invariant to

any reasonable choice of prior parameters. The large amount of neural data overwhelms any prior

information in the posterior distribution. The use of prior distribution for neural dynamics still

provides a useful function: If at any time during the identification process one or more discrete

modes are not assigned any data, the posterior of the distribution remains proper. Furthermore it

was essential to use prior distributions when modeling firing rates in the Scherberger data set. This

data set is characterized by low firing rates of SUA on each electrode. It was found to be common

that long periods occurred where single neurons did not fire for an extended period. If the firing

behavior of these neurons was modeled using a maximum likelihood approach, the most likely firing

rate parameter is zero. Due to the use of Poisson likelihood function in the GLHMM, this results

in a local minima, where the model then has zero probability of that neuron ever emitting a spike.

The use of proper prior distributions avoids these local minima.

The prior distribution for SUA signals was modeled as a gamma distribution in the case of a

stationary Poisson process (see Def. 3.2) with parameters a0 = 2 and b0 = 20. This results in a

mean firing rate of 40 Hz with a wide support that tapers off at 100 Hz. Model selection was found

to be invariant to a large range of prior values. In the case of a nonstationary point process model

(Def. 3.3) the prior distribution was defined as a zero mean Gaussian distribution with a diagonal

covariance matrix σ2I, with σ2 = 1000.

Gaussian-Gamma distributions are used to represent prior AR-likelihood LFP neural signals.

The precision parameter (inverse of the covariance) is modeled with a Gamma distribution with

parameters a0 = 15 and b0 = 1. This approximately corresponds to a prior on the variance with

mean of 0.07, and is appropriate based on the range of the recorded LFP signals. The AR model

parameters are represented with a minimally informative zero-mean distribution with w0 = 0 and

Λ0 = 0.1I.

The model is initialized by drawing a sample of the model parameters. This sample was generated

for the transition matrix parameters by taking a random sample from the Dirichelt distribution
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defined by parameters (5.10). The initialization of the neural dynamics parameters was achieved by

sampling from a posterior distribution, where all neural data in the training set is used to form the

posterior distribution. To insure convergence of the Gibbs sampler, the evolution of the parameter

samples was visually monitored.

5.4 Case Study 3: Musallam Data Set

The variational Bayesian algorithm is applied to a rhesus monkey data set, [16], and used to identify

both GLHMM and HSMM based supervisory decoder models. The data set consists of recordings

from three male rhesus monkeys, Monkey S, Monkey C, and Monkey O, from a 64 electrode array

implanted in the medial intraparietal area (MIP), a component of the PRR and a 32 electrode array

implanted in area 5. The neural data set contains both LFP and neural spike arrival time signals.

Due to larger number of collected trials, and higher performance [16], the results in this section focus

on the 64 electrode array recordings from the PRR of monkey S.

The neural activity of the monkey was recorded during repetitive completion of the center-

out reach task previously described in Section 5.3 and depicted in Figure 5.3. A large number of

electrodes in the 64 electrode array had poor signal to noise ratios, or did not contain relevant

information. Based on the performance results of Section 5.3, six LFP recordings and 12 SUA

signals whose signal-to-noise ratio passed a threshold were chosen to form the presented data set.

All supervisory decode models in this section were trained on the first 5 trials in each of 4 reach

directions (20 training trials), and then decode performance was evaluated on the subsequent 36

reach trials in each direction (144 testing trials).

Both GLHMM and HSMM models were identified from the Musallam data set. Decoding for

GLHMMs was conducted with both the forward filter (Def. 3.11), and the non-causal Viterbi

algorithm (Def. 3.14). Decoding for HSMM was conducted using a fixed lag smoother (Def. 3.13)

and the Viterbi algorithm. Decode performance is defined using the unique detection of the “go”

signal, or onset of the reach period, as defined in Section 5.3 and depicted in Figure 5.4.

Initial results, identifying the 4-state GLHMM supervisory decoder, provided comparatively poor

results. Using the variational algorithm to identify the GLHMM, only 46.53% of testing trials were

correctly decoded with the Viterbi algorithm. Similar performance was achieved when the model

was identified using the Gibbs sampler, or when a “hand built” model was created by pre-segmenting

the training data set using experimental cues.

With extensive testing, the lower performance in the Musallam data set compared with the

Scherberger data set (Section 5.3) was tentatively attributed to confusion between neural activity in

subsets of the memory period, and a later segment of the reach period. This typically causes false

positives, where an extra “go” signal is decoded when using the forward filter, or may cause the
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Figure 5.7: Testing trial 100/144 using identified 4-state GLHMM: (a) The discrete cognitive states
as defined by the experimental cues; (b) The Viterbi algorithm is used to decode the discrete state
sequence; (c) The forward filter is used to decode the discrete state sequence; (d) Recorded arm
movement using a touch screen – the removal of the monkeys arm from the screen causes saturation
of the recorded x-y arm position. The total arm movement period is highlighted by a grey section.

Viterbi algorithm to miss detection of the actual “go” signal completely (see Fig. 5.7). Furthermore

there appear to be artifacts, or residual activity, during the baseline period, but due to the nature

of neural recordings and lack of explanatory evidence, no conclusions about the baseline period of

activity can be proposed.

The complete lack of a ground truth has severe implications for deriving a better supervisory

decoder. While several external cues used in the center-out reach experiment can be used to propose

a likely sequence of discrete cognitive states, it is impossible to confirm the accuracy of this imposed

structure. Inevitably there will be many more complicated processes present in the brain cortices

of interest; the only pertinent question is what effect will these unmodeled events have on the

decoding of periods of interest. Instead of proposing and cross validating possible sets of discrete

cognitive states, this section will use the Bayesian model class section methods derived in Chapter 4

to automatically choose the most suitable model. This methodology has the advantage of providing

a rigorous model selection framework that is computationally efficient2, allowing for effective use

with prosthetic patients. In addition small training data sets can be utilized for model creation, as

no training trials are required to be “thrown away” for use in a validation set. These properties of

the Bayesian model class selection methodology are crucial for effective implementation in human

prosthetic patients, where there are potentially a large number of discrete states of interest, and

potentially a short amount of time from data collection to controller implementation.

The next two sections investigate the use of model selection for automatic creation of supervisory

decoders: Section 5.4.1 applies model selection to GLHMM models and Section 5.4.2 applies model

selection to HSMM based supervisory decoder models. In brief it was found that using model
2Bayesian model class selection is more efficient compared to using cross validation, where the identification process

needs to be rerun many times on a “leave one out” data set for each covariant of interest.
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Table 5.2: Supervisory decoder performance using GLHMM and HSMM models: The decode perfor-
mance for the 4-state GLHMM model based on experimental cues is compared with the most-likely
8-state GLHMM and 7-state HSMM identified using Bayesian model class selection. Both the Viterbi
algorithm and the forward filter are used to estimate (decode) the discrete states on the 144-trial
testing data set. The forward filter, as a causal algorithm, can produce false positives where the
onset of the reach state is decoded outside of actual arm movement window (see Fig. 5.4 for details).
The percentage of correctly decoded trials (% Correct) refers to when the “go” signal decoded within
300 ms of the arm movement onset and no false positives occur. The percentage of trials where go
signal (% Go Signal) is decoded within 300 ms of arm movement, whether or not there are false
positives, is also tabulated. Because of the noncausal nature of the Viterbi algorithm there is only
ever one “go” signal decoded, and hence no false positives.

Forward Filter Viterbi
% Correct % Go Signal % Correct

4-state GLHMM 34.03 80.56 46.53
8-state GLHMM 81.25 99.31 85.42
7-state HSMM 87.5 (0) 96.53 (100) 91.67

selection, as opposed to specifying a model directly from experimental cues, drastically increased

decoding performance. Table 5.2 summarizes these results.

5.4.1 GLHMM with Model Selection

To improve the performance of the supervisory decoder, the number of discrete cognitive states is

now treated as uncertain, and hence required to be identified from the neural data set. This model

selection process uses the methodology presented in Chapter 4: The number of discrete modes

in the GLHMM are chosen using Bayesian model class selection, and the connectivity, or allowed

transitions between discrete states, are determined by using ASD priors.

The identification of the number of modes in the supervisory decoder is not the only problem in

model inference: The key to effectively using a supervisory decoder is knowing what each discrete

mode represents. If a model with 10 modes is identified, the important task of understanding what

each mode of the model represents in the actual neural system needs to be addressed. If we are

interested in decoding the “go” signal, then somehow the model identification process needs to

determine which discrete modes correspond to this neural process. To deal with this association

problem, the set of potential model classes are defined by a submode-insertion algorithm. This

submode-insertion algorithm is based on the premise that the left-to-right nature of the repetitive

center-out reach task should be preserved.

The submode-insertion algorithm simply proposes a set of model classes by creating submodes,

or substates associated with the original baseline, cue, memory, reach cognitive modes defined by

the experiment. We do not impose any transition structure between submodes, but create prior

distributions that bias towards a left-to-right evolution between submode groups. This submode

concept is illustrated in Figure 5.8, where the left-to-right nature of the total model structure



146

Table 5.3: List of posterior probability of model classes Mc. The optimal model class found using
Bayesian model class selection is denoted M�

c . Each model class is denoted by a vector denoting
the number of substates associated with each experimental period (see text for details). The model
defined by the experimental cues is then defined M1 = [1111]. The optimal model class found using
model selection is Mc = [1232]. The second most likely model class is Mc = [1132]. The difference
between the log posterior probability of the model classes P

(Mc|y1:T
)

is known as the log odds.
Mc log P

(Mc

)− log P
(M�

c

)
[1111] −6.772e2
[1132] −1.604e2
[1232] 0

is depicted. In addition to preserving prior knowledge about the model structure, the submode

approach gives intuition into each new discrete state’s association; for instance, if a substate was

generated from the original reach mode, then it is likely to be associated with intended movement

onset.

A set of model classes were generated by inserting submodes into each original state. We use the

vector M1 = [1, 1, 1, 1] to denote the original left-to-right 4-mode GLHMM model class (see Fig. 5.8

(d)). The addition of a submode into the memory period is denoted M1 = [1, 1, 2, 1]. The optimal

8-state GLHMM model found using Bayesian model class selection is denoted: M1 = [1, 2, 3, 2].

This 8-state model has only one baseline state, two cue sub-states, three memory period substates

and two reach substates (see Table (5.3) for the log odds of each model class).

For completeness, the original method to propose a set of model classes M = {M1, ...,MG},
simply took all combinations of the vector Mc = [n1, n2, n3, n4], where ni is varied between 1 to

4. This results in a very large number (256) of proposed model classes, however, using the efficient

VB algorithm, this is a computationally achievable number of models to identify. This method was

used to identify the optimal 8-state GLHMM. However, this method is not appropriate for general

use, as even extending the number of possible substates to 5 instead of 4 results in a large increase

of potential models. Furthermore it is quickly apparent that the addition of substates into some

modes produces very low probability model classes. For general use, a suboptimal substate-insertion

algorithm is suggested, where a single substate is added to the most likely model class that has

been identified. By repetitively adding substates to only the most likely model, and updating the

most likely model class after each new model is identified, only a subset of potential model classes

need to be explored. By biasing the insertion algorithm to add substates in logical positions, the

8-state GLHMM was identified as the most likely model class and only required calculation of 27

model classes. While future work should be conducted into the general applicability of the proposed

suboptimal insertion algorithm, it was found to efficiently identify models of interest in the neural

examples considered here.

It was found that the optimal model Mc = [1232] was the most likely model. The log odds (see

Table 5.3) between Mc = [1232] and the next most likely model Mc = [1132] are such that the
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Figure 5.8: The optimal 8-state GLHMM model class identified using a combination of Bayesian
model class selection and ASD priors. (a) Original left-to-right state sequence defined by experi-
mental cues of the first trial of the training data set; the states represent baseline, cue, memory,
and reach, respectively. (b) The corresponding 8-state GLHMM state sequence found during the
identification process. (c) The recorded arm movement during the trial: the movement is recorded
with a touch screen, and the x-y coordinates saturate to a lower bound when the monkey’s hand
is removed from the screen. The grey section highlights period when arm movement occurred. (d)
The original left-to-right transition sequence defined by the experimental cues. (e) The 8 sub-states
of the optimal GLHMM model, with allowed transitions between states depicted with an arrow.

posterior density effectively assigns all probability to the single model. In general it was found that

the model class section algorithm would single out an individual model class with all other models

having effectively zero posterior probability. This is a typical result when using Bayesian model class

selection with reasonably large data sets.

The 8-state GLHMM provided improved supervisory decoding performance over the original 4-

state GLHMM specified from the experimental markers. The forward filter decoded 81.25% of trials

correctly. It should be noted that the forward filter found almost all of the actual “go” signals

(99.31% of trials), however the total performance of the decode algorithm is reduced by the presence

of false positives. The Viterbi algorithm was used for decoding and resulted in 85.42% of trials

correctly decoded. This improved performance over the forward filter is due to the non-causality of

the filter.

In view of the impressive performance gains of 8-state GLHMM, there may be concern that the

model is over-learning, or “fitting” to the trial structure of the experiment, and ignoring the neural

signals. While the learned 8-state model is validated on a large testing data set, it is still possible

that only the sequential nature of the trial is being fit, and that the model may not generalize well

to trials outside of this repetitive structure. This concern stems from the fact that that addition of

extra states in a HMM can approximate modeling the duration in each mode [80]. There are three
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Figure 5.9: Decoding of testing trial 34/144 using 8-state GLHMM: In this example there is a false
positive using the forward filter decode algorithm, represented by the dark red state in (d). This
trial is presented as it demonstrates the continued confusion between the later periods of the reach
state and the memory period. (a) Recorded LFP signals. (b) SUA activity of the 12 neurons used in
the decode process. (c) Original left-to-right state sequence defined by experimental cues; the states
represent baseline, cue, memory, and reach, respectively. (d) The recorded arm movement during
the trial. The grey section highlights the period where arm movement occurs

pieces of evidence that suggest this model will generalize to other trial structures, and is capable of

decoding outside of the trial structure: First, the presence of false positives means that the effect of

the neural data is still present in the decoding. Second, the experiments themselves were designed

to have a range of time spent in each experimental mode; notably the duration of the memory

period was varied in [16] from 1.2 to 1.8 seconds. Third, and perhaps the most compelling, is the

decode of testing trial 55/144. In this reach trial, the monkeys’ behavior breaks from the structured

center-out reach structure, and the monkey instead conducts two reaches. The first reach is to an

incorrect target, and the second reach occurs after a brief delay period to the correct target. None of

the training trials contained two reaches or deviated from the standard center-out reach structure.

The forward filter is able to capture both reaches, negating the possibility of outfitting the model

structure.

In Section 5.4.2, the effect of explicitly modeling the duration in each state is directly analyzed by

replacing the Markovian transition rules of the GLHMM with the HSMM model. By considering the

duration of each mode explicitly, prior information can be used to bias the model away from quickly

switching between discrete states. From a neurophysiological point of view, the rapid switching

between neural process found using the 8-state GLHMM may not be characteristic of expected

behavior.
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Figure 5.10: Decoding of a double reach using 8-state GLHMM (testing trial 55/144): In this trial
the monkey first reaches for a target and then after a delay period conducts a second corrective reach
to a second target. The forward filter is able to detect both reaches. Note that this trial is classified
as a “false positive” given the performance criterion defined in Section 5.3. (a) Original left-to right
state sequence defined by experimental cues. (b) Decoded state sequence using forward filter. (c)
The recorded arm movement during the trial: the movement is recorded with a touch screen, and
the x-y coordinates saturate to a lower bound when the monkeys hand is removed from the screen.
The grey section highlights the period where arm movement occurs.

5.4.1.1 Prior Information and Initialization Used for Identification of GLHMM Mod-

els

The prior information for the transition matrix A of each model class Mc was defined as:

a0
ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

50 if j = i

1 if j = i+ 1

0.1 if Si and Sj are sub-states

0.001 else

, (5.11)

and where the HSMM is constrained so self-transitions are not allowed. For example, the prior P
(
A
)

for Mc = [1231] is:

A0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

50 1 0.001 0.001 0.001 0.001 0.001

0.001 50 1 0.1 0.001 0.001 0.001

0.001 0.1 50 1 0.001 0.001 0.001

0.001 0.001 0.001 50 1 0.1 0.1

0.001 0.001 0.001 0.1 50 1 0.1

0.001 0.001 0.001 0.1 0.1 50 1

0.001 0.001 0.001 0.001 0.001 0.001 50

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.12)

where groups of substates in (5.12) are denoted in bold. All other priors are retained from Section

5.3.1. The transition matrix prior distribution (5.12) strongly biases the model to choosing a left-

to-right structure. This prior enforces the number of discrete states specified by the model class,
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but allows automatic determination of the allowed transitions between substates (see ASD priors in

Chapter 4).

The initialization of the variational algorithm for each model class was conducted using the

following procedure: The experimental cues were used to divide each training trial into appropriate

segments. Each segment was then randomly split into the appropriate number of sub-states defined

by the model class. This initialization allows for rapid convergence of the VB algorithm, and allows

the supervisory decoder to associate identified submodes to an appropriate experimental period.

5.4.2 HSMM with Model Selection

In this section a supervisory decoder based on the HSMM with GLM dynamics (Def. 3.5) is used to

model the neural activity of the Musallam data set. The variational learning algorithm for HSMM

developed in Section 3.5.3 is used in conjunction with the Bayesian model class selection and ASD

priors defined in Chapter 4.

The suboptimal substate insertion method (described in Section 5.4.1) for enumerating a set of

model classes was used. The model class with the highest posterior probability was a 7-state HSMM

with: Mc = [1, 1, 3, 2] (see Figure 5.11). This model is remarkably similar to that identified with the

GLHMM (see Section 5.4.1). The prior distributions (Section 5.4.2.1) used to model knowledge of

duration in each state were minimally informative, but were biased against rapid switching between

discrete states. The identified HSMM model retained the characteristic switching between several

substates of the memory period, found when identifying the GLHMM model. By increasing the

amount of information contained in the prior distributions, the identified models could be constrained

to avoid this behavior, however this type of model class has significantly smaller posterior probability

when compared to the less informative counterparts.

Supervisory decoding using the 7-state HSMM requires the use of a fixed lag smoother (Def.

3.13) instead of the forward filter used for GLHMMs. This fixed lag smoother delays estimation of

the discrete cognitive state by a fixed amount of time (in this section a 0.1 second lag was used).

The fixed lag smoother is required due to the nature of the HSMM. An indicative example decode

using the forward filter, the fixed lag smoother and the smoother (Def. 3.12) which uses all data

from the trial are compared in Figure 5.12.

The fixed lag smoother (with a 0.1 second lag) used in conjunction with the identified 7-state

HSMM correctly decoded 87.5% of trials. The fixed lag smoother decodes the correct “go” signal in

96.53% of trials, but the total performance of the decode algorithm is degraded by the presence of

false positives. The smoother, using all data from the trial, correctly decodes 91.67% of trials. The

forward filter proved to be practically useless for decoding: 0% of trials were correctly decoded, due

to the excessive number of false positives occurring in the decode process. Note that the forward filter

did decode the actual “go” signal in 100% of the trials, but these “correct” decodes are practically
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Figure 5.11: The optimal 7-state HSMM identified using a combination of Bayesian model class
selection and ASD priors. (a) Original left-to-right state sequence defined by experimental cues
of the first trial of the training data set; the states represent baseline, cue, memory, and reach,
respectively. (b) The corresponding 7-state HSMM state sequence found during the identification
process. (c) The recorded arm movement during the trial. (d) The original left-to-right transition
sequence of the 4-mode model. (e) The 7 sub-states of the optimal HSMM model, with allowed
transitions between states depicted with an arrow. (f) The posterior distribution of the duration
spent in each discrete state. the maximum allowed duration D for any state was defined as 300, but
there is no significant probability mass for durations longer then 100.
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Figure 5.12: Example decode with 7-mode HSMM when using: (b) The forward filter. (c) Smoother
which utilized all of the observed data. (d) Fixed lag smoother with a lag of 0.1 seconds. The decode
has been shifted by 0.1 seconds to align with the smoothing results and arm movement. (a) The
original left-to-right state sequence defined by experimental cues. (e) The recorded arm movement
during the trial. This trial was chosen to demonstrate the improved decoding ability of the smoother
over the fixed lag filter. In the majority of trials the smoother and fixed-lag smoother produce nearly
identical results. In all trials the forward filter produced many low-duration false positives typically
indistinguishable from the decoding of the actual “go” signal.

indistinguishable from the false positives. The forward filter proves to be a poor choice for decoding

HSMM, as it does not effectively take into account the duration spent in each mode. In the speech

processing community the non-causal Viterbi algorithm is typically used in conjunction with HSMM

(or HMM) for decoding [10]. We found that by accepting a small lag, the fixed lag smoother could

recover most of the performance of the smoother using all of the data. The introduction of a 0.1

second lag in a neurological supervisory decoder is a negligible amount of time.

5.4.2.1 Prior Data for HSMM Supervisory Decoder

This section gives specific details about the prior distribution used in identifying HSMM supervisory

decoders from the Musallam data set. The prior distributions on the GLM dynamics are the same

as are used in (5.3.1). The priors on the HSMM transition matrix were biased to give an overall

left-to-right model, but transitions between substates were not constrained and used an ASD prior

to determine connectivity:

a0
ij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if j = i+ 1

0.1 if Si and Sj are sub-states

0.001 else

, (5.13)
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Figure 5.13: 7-state HSMM decode of double reach (trial 55/144): In this trial the monkey first
reaches for a target and then after a delay period conducts a second corrective reach to a second
target. (a) Original left-to-right state sequence defined by experimental cues. (b) Decoded state
sequence using forward filter. (c) The recorded arm movement during the trial. The grey section
highlights the period where arm movement occurs

and where the HSMM is constrained so self-transitions are not allowed. The model identification

process was found to be invariant to a range of hyperparmaters used in the prior definition. The

prior distribution on the duration spent in each mode is generated by a Gamma distribution:

p0
i (d) = c dα−1 β

α exp(−βd)
Γ(α)

, (5.14)

where α = 10, β = 1/5. The value of c was set to 20, and represents the effective number of

data points that the prior represents (see Remark 4.4 in Section 4.3). It was found that careful

consideration of the prior distribution of the duration was required. Because of the nature of

HSMM, there can be a very small number of transitions between discrete states, and if the constant

c is chosen to be too high (> 100), then the prior information “swamps” the posterior distribution.

if the value of c is chosen to be very small (e.g., 1) then the prior resembles a ASD prior and

few posterior durations have any significant probability mass. This difficulty may be avoidable by

choosing to use parameterized (e.g. Poisson or Gamma) distributions for the posterior duration

model.
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Chapter 6

Conclusions

6.1 Summary of Thesis Contributions

The primary contribution of this thesis is the definition of a series of hybrid system models, and

the development of Bayesian inference algorithms for identification of these models from observed

data. By associating continuous dynamics with both stationary and nonstationary Markov chains,

a series of hybrid models capable of modeling a range of biological and engineering systems were

developed. Motivating the development process is the application of supervisory decoding for neural

prosthetics (Chapter 5). Here, neural activity is modeled as a hybrid system which represents

both the continuous dynamics of observed extracellular neural activity, and the discrete transitions

between different cognitive or planning states.

The developed models and identification methods of Chapter 3 provide novel contributions in

both the fields of hybrid systems and machine learning. A series of hybrid system models based on

the hidden Markov model (HMM), the hidden semi-Markov model (HSMM), and the variable tran-

sition hidden Markov model (VTHMM), were created by the addition of generalized linear model

(GLM) dynamics. The resulting hybrid systems, including the generalized linear hidden Markov

model (GLHMM), and its HSMM and VTHMM counterparts, were used to model both biologi-

cal and mechanical systems. A key contribution in the thesis is the extension of the variational

Bayesian (VB) framework to identification of the developed hybrid models; even without the addi-

tion of GLM dynamics, applying VB to HSMM and VTHMM models is a significant contribution

to the machine learning literature. These models are typically used in speech processing technology,

and the developed VB approach has several inherent advantages over the standard EM implemen-

tation. An additional Bayesian inference algorithm, the Gibbs sampler, is also adapted for use in

GLHMM models. The GLHMM framework is applied to the identification of piecewise autoregres-

sive exogenous (PWARX) models, a class of models that define discrete transitions based on the

autoregressive state. Apart from providing a novel method of PWARX identification, this analysis

motivates the development of a new class of hybrid system: the hidden regressor-dependent Markov



155

model (HRDMM).

When creating hybrid models of many systems, the prior intuition about the system’s structure

may be incomplete, and Bayesian model class selection can be used to infer the number of discrete

modes, transition structures, and orders of continuous dynamics of the model. Chapter 4 shows

the importance of the model evidence for Bayesian model class selection in information theoretic

terms, and applies two methods to evaluate the evidence. First, the developed VB approach in

Chapter 3 inherently provides an estimate of the model evidence. Second, the Stationarity method

for estimating the model evidence from posterior samples is refined for use in hybrid systems and

systems with latent variables. This Stationarity method allows the Gibbs sampler to be effectively

used for model class selection in hybrid systems. In addition to Bayesian model class selection,

automatic structure determination (ASD) priors are defined which represent a body of work that

allows subsequently applied inference algorithms to “prune” out unneeded model structure. ASD

priors are developed for the HSMM model, and are then demonstrated by automatically identifying

the number of movement primitives in a bee dance data set.

The developed Gibbs sampler and VB inference algorithms (Chapter 3) and associated model

selection tools (Chapter 4) are used to build a supervisory decoder for neural prosthetics in Chapter 5.

The design of a supervisory decoder, whose job it is to classify, in real time, the discrete cognitive or

behavioral state of the brain region from which the neural signals are recorded, consists of two parts:

(1) the identification of the hybrid model which represents the neural activity in each discrete state,

as well as the transitions between states; (2) the design of an estimator which uses the hybrid model

to classify activity into the discrete cognitive or behavior states. Three important contributions

are made in the new framework over existing supervisory decoders: new models which are capable

of both explicitly modeling the duration spent in each cognitive state and incorporating disjoint

types of recorded neural signals are developed; the developed identification process is automatic, in

that it does not require recorded neural data to be pre-segmented; and, if incomplete information

about either the number of cognitive modes or the underlying neural process exists, then model class

selection methods can be deployed to automatically infer the optimal model structure. All of these

contributions were shown to improve the performance of the supervisory decoder on recorded neural

data sets.

6.2 Opportunities for Future Work

While the proceeding chapters have presented novel contributions to the machine learning, hybrid

system, and neural prosthetic literature, there are three areas of research that will further the contri-

butions of this thesis. The first two research areas relate to new applications and refinements of the

designed models. The third research area proposes new experiments and algorithmic developments
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which may improve the developed supervisory decoder framework and facilitate confidence in its

deployment to clinical prosthetic patients.

While the main theme of this thesis considerers hybrid models with both continuous dynamics

and discrete switching, the application of VB to HSMM and VTHMM models provides an oppor-

tunity to contribute to speech processing technology. Typical speech processing methodologies use

discrete HMM, HSMM, or VTHMM models with a multinominal likelihood function, and the field

is characterized by incremental improvements of a few percent performance on decoding recorded

audio data sets. The superior generalization properties of the VB algorithm over EM may pro-

vide yet another performance gain in decoding technology when using HSMM or VTHMM models.

Furthermore, the developed VB inference algorithm for HSMM has O(ND + N2) computational

complexity, where N is the number of discrete states, and D is the maximum duration, as opposed

to most HSMM identification algorithms with O(N2D) computational complexity.

The development of the HRDMM model in Chapter 3 was motivated by an application that is

unexplored in this thesis. Specifically, the application of segmenting animal motion into behavioral

primitives, and exploring interaction of the environment and other animals with the animals decision

making processes is proposed. In Chapter 4, we demonstrated automatic segmentation of bee motion

into several motion primitives. A novel research direction is to directly model the switching between

these motion, or behavioral primitives, as a function of the environment. For instance, the proximity,

or angle subtended in the visual field, by other nearby animals could be used as a basis for switching

between discrete motion primitives. In essence, if the bee tended to stop as it neared another bee,

this could be modeled in the regressor dependent Markovian transition kernel of the HRDMM. Using

the provided ARD methods for HRDMMs, a large number of potential covariates could be added

into the regressor, and the observed animals behavior could be used to automatically select which

covariances are important in the animals decision making process. This method would prove useful

in genetic experiments, where automatic phenotyping of animal behavior is required. If a new genetic

strain of bee (or fly) is created in the laboratory, the ’aggressiveness’ of the new animal genotype

could be automatically measured as the willingness to give way to other nearby flies. Another

potential system that would benefit from the application of HRDMM models is that of autonomous

vehicles driving in an urban environment. A known problem in this situation is the modeling of

other vehicles (or pedestrians) in the proximity of the autonomous vehicle. If nearby vehicles were

modeled with a HRDMM, the transitions between basic driving primitives such as turning, stopping

or accelerating could be modeled as a function of the distance to landmarks such as traffic lights,

stop signs or intersections. Applying the proposed HRDMM to these applications may require some

application dependent modifications: the choice of the softmax basis for the HRDMM transition

kernel was based on PWARX models; this softmax function could be replaced by better classifiers,

such as the relevance vector machine, or kernel that depends on a combination of temporal and state
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based variables.

The primary application area, which motivated the development of proposed hybrid system mod-

els and identification algorithms, is the creation of a supervisory decoder for neural prosthetics. The

developed supervisory decoder framework was successfully demonstrated on recorded neural data,

but there remain many research avenues to explore the potential of the developed systems. To

directly demonstrate the suitability of the developed supervisory decoder for clinical human pros-

thetic patients, a series of experiments and extensions should be considered. First, current data sets

can be more completely analyzed and the consistency of model order selection to different training

trial selections should be investigated. Second, the identification and application of the supervisory

decoder to neural data sets in which a sequence of reaches are conducted is required. Third, and

perhaps most difficult, is the implementation of self-paced experiments where the supervisory de-

coder is used to initiate actual prosthetic movement. Putting the supervisory decoder ‘in the loop’

will have many consequences not apparent when using pre-recorded data sets. The plasticity of

the brain potentially means that the observed neural activity will change over time in response to

the decoder. The proposed Bayesian inference framework is naturally updated over time with the

addition of new observed data, however it is difficult to predict the effects of relearning or updating

neurological models at this early stage. Finally the developed supervisory decoder framework may

prove of use in understanding cortical processes in the brain. The new methods allow for an infor-

mation theoretic perspective to be used in estimating the number of discrete states and transition

structure between cognitive and planning activities. This added information may improve current

methods of decoding intended reach directions in brain areas such as the posterior parietal or dorsal

premotor cortices by refining the periods of activity used for decoding. Thus, in the long term,

the advances in this thesis may provide the backbone of a practical neuroprosthetic system which

incorporates recordings from higher cortical areas.
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Appendix A

Probability Theorems and
Distributions

This section provides a quick reference for several probability theorems and distributions which are

repetitively used in the thesis. This section does not seek to provide a tutorial on probability theory.

A.1 Axioms and Theorems

Three axioms of probability are assumed throughout this thesis:

P1 : P
(
b|a) ≥ 0 (A.1)

P2 : P
(
b|a) + P

(∼ b|a) = 1 (A.2)

[Product Rule] P3 : P
(
c, b|a) = P

(
c|b, a)P

(
b|a) (A.3)

If proposition a states that only one of {b1, ..., bN} is true, then the following probability theorems

can be used; Marginalization Theorem [Sum Rule]:

P
(
c|a) =

N∑
n=1

P
(
c, bn|a

)
(A.4)

Theorem of Total Probability:

P
(
c|a) =

N∑
n=1

P
(
c|bn, a

)
P
(
bn|a

)
(A.5)

Bayes’ Theorem is fundamental throughout the thesis:

P
(
bn|c, a

)
=

P
(
c|bn, a

)
P
(
bn|a

)
P
(
c|a) (A.6)
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A.2 Probability Distributions

Distribution Density, Moments, Entropy, etc.

Multivariate normal N (z|w,Σ) =
1

(2π)d/2|Σ|1/2
exp

[
−1

2
(z − w)T Σ−1(z − w)

]
(A.7)

Parameters z ∈ R
d, mean: w ∈ R

d covariance: Σ ∈ R
d×d

First moment
∫
zTaN (z|w,Σ)dz = wT a (A.8)

Second moment
∫

(zTAzT )N (z|w,Σ)dz = Tr(AΣ) + wTAw (A.9)

Gamma Gam
(
τ |a, b) =

1
Γ(a)

baτa−1e−bτ (A.10)

Parameters τ > 0, shape: a > 0, rate: b > 0

Mean E[τ ] =
a

b
(A.11)

Geometric mean E[log τ ] = ψ(a) − log b (A.12)

where Γ is the gamma function, and:

ψ(x) =
d

dx
ln Γ(x) =

Γ′(x)
Γ(x)

(A.13)

is the digamma function

Gamma-Gaussian
N (z|w, (τΛ)−1)Gam(τ |a, b) =

|τΛ|1/2

(2π)d/2
exp

[
−τ

2
(z − w)T Λ(z − w)

] 1
Γ(a)

baτa−1e−bτ
(A.14)

Parameters z ∈ R
d, τ > 0, shape: a > 0, rate: b > 0 mean: w ∈ R

d,Λ ∈ R
d×d

Dirichlet Dir
(
π|α) =

Γ(
∑N

i=1 αi)∏N
i=1 Γ(αi)

N∏
i=1

παi−1
i such that: πi > 0,

N∑
i

πi = 1; (A.15)

Parameters π = {π1, ..., πN}, α = {α1, ..., αN}

Geometric mean 〈logαj〉 = ψ(αj) − ψ(
N∑

i=1

αi) (A.16)

Poisson Pois
(
y|λ) =

λye−λ

y!
(A.17)

Parameters y ∈ N, rate: λ > 0 (A.18)
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Appendix B

Cross Entropy and KL-Divergence

Approaching model selection from an information theoretic basis often requires the calculation of

the information gained from the prior to the posterior of a model. This information gain is also

called the relative entropy or the Kullback-Leibler divergence in information theory. To maintain

consistency with the Variational learning community, this thesis will use the term Kullback-Leibler

(KL) divergence. In this section the KL divergence between several distributions used throughout

the thesis are calculated. This is required for two reasons: First, the KL-divergence of the Gaussian-

Gamma distribution for AR models, which has a multivariate Gaussian distribution is not readily

found in the literature. Second, the KL divergence of many other distributions, which are well

known, are not always correctly stated1, and may otherwise be difficult to find.

The KL divergence from distribution q(x) to distribution p(x) is defined:

KL(q||p) =
∫
q(x) log

q(x)
p(x)

dx . (B.1)

A useful decomposition of the KL divergence is formulated in terms of the cross entropy H(q, p),

and entropy H(q):

KL(q||p) = H(q, p) −H(q) (B.2)

where H(q, p) is the cross entropy between two distributions q(x) and p(x):

H(q, p) = −
∫
q(x) log p(x)dx

= −Eq [log p(x)] , (B.3)

and H(q) is the entropy of a distribution p(x):

H(q) = −
∫
q(x) log q(x)dx . (B.4)

1Wikipedia for advanced mathematics is not recommended



161

The following sections will proceed by first calculating the cross entropy of various distributions,

and then using this result to infer the KL divergence.

B.1 Cross Entropy of Gaussian Distributions

Consider two normal distributions (A.7):

p(x) = N (x|xp,Σp), q(x) = N (x|xq ,Σq) . (B.5)

The cross entropy (B.3) of these distributions is calculated using the linearity of the expectation

operator:

−H(q, p) = Eq [log p(x)]

= log
( |Σp|−1/2

(2π)n/2

)
+ Eq

[
−1

2
xT Σ−1

p x

]
+ Eq

[
xT Σ−1

p xp

]
+ Eq

[
−1

2
xT

p Σ−1
p xp

]
. (B.6)

These expectations (B.6) are calculated using the first and second moments (A.8),(A.9) of a multi-

variate normal distribution:

−H(q, p) = log
( |Σp|−1/2

(2π)n/2

)
− 1

2
Tr

(
Σ−1

p Σq

)− 1
2
xT

q Σ−1
p xq + xT

q Σ−1
p xp − 1

2
xT

p Σ−1
p xp . (B.7)

In simplified form:

H(q, p) =
1
2
[
log |Σp| + n log(2π) + Tr

(
Σ−1

p Σq

)
+ (xq − xp)T Σ−1

p (xq − xp)
]
. (B.8)

B.2 KL Divergence between Gaussian Distributions

The KL divergence between two normal distributions can now be derived using the cross entropy

(B.8) and noting that the entropy is a subcase of the cross entropy:

KLN (q||p) = H(q, p) −H(q, q)

=
1
2

(
log

(
det(Σp)
det(Σq)

)
+ Tr

(
Σ−1

p Σq

)− Tr(In) + (xq − xp)T Σ−1
p (xq − xp)

)
, (B.9)

where n is the dimension of x ∈ R
n.
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B.3 Cross Entropy of Gamma Distributions

Consider two Gamma distributions (A.10):

p(τ) = Gam(τ |ap, bp), q(τ) = Gam(τ |aq , bq) . (B.10)

The cross entropy (B.3) of these distributions can be evaluated by expanding the log p(τ) term using

the definition (A.10), and using the linearity of the expectation operator:

−H(q, p) = Eq[log p(τ)]

= log
(

b
ap
p

Γ(ap)

)
+ Eq [(ap − 1) log τ ] + Eq[−bpτ ] . (B.11)

The last two terms of (B.11) are evaluated using the mean (A.11) and geometric mean (A.12) of the

Gamma distribution:

H(q, p) = − log bap
p + log Γ(ap) − (ap − 1) (ψ(aq) − log(bq)) + bp

aq

bq
. (B.12)

B.4 KL Divergence between Gamma Distributions

The KL divergence between two Gamma distributions can now be derived using the cross entropy

(B.12):

KLGam (q||p) = = H(q, p) −H(q, q)

= log
Γ(ap)b

aq
q

Γ(aq)b
ap
p

+ (aq − ap)(ψ(aq) − log(bq)) + (bp − bq)
aq

bq
. (B.13)

B.5 Cross Entropy of Gaussian-Gamma Distributions

Consider two Gaussian-Gamma distributions (A.14) :

p(x, τ) = Np Gamp, q(x, τ) = Nq Gamq , (B.14)

where the following notation is used for compactness:

Np = N (x|xp, (τAp)−1), Gamp = Gam(τ |ap, ap) . (B.15)

The cross entropy (B.3) is now stated explicitly terms of the above distributions:

H(q, p) = −
∫ ∫

Nq Gamq log [Np Gamp] dxdτ . (B.16)
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Using the independence of x of the distribution Gamp, and splitting the log term of (B.16) results

in:

H(q, p) = −
∫

Gamq

[∫
Nq logNpdx

]
dτ +

∫
Nq

[∫
Gamq log Gampdτ

]
dx . (B.17)

The second term in the RHS of (B.17) is simplified by recognizing the inner integral of τ is the cross

entropy of the Gamma distributions (B.12) and the outer integral over x is of a normalized Gaussian

and simply integrates to one. The first term in (B.17) is left as an expectation of the cross entropy

of normal distributions:

H(q, p) = EGamq
[H(Nq,Np)] +H(Gamq,Gamp) (B.18)

B.6 KL Divergence between Gaussian–Gamma Distributions

The KL divergence of two Gaussian-Gamma distributions is derived using the Cross entropy (B.18):

KLNGam (q||p) = H(q, p) −H(q, q)

= EGamq
[H(Nq,Np) −H(Nq,Nq)] +H(Gamq,Gamp) −H(Gamq,Gamq) (B.19)

= EGamq [KLN (Nq||Np)] +KLGam (Gamq||Gamp) (B.20)

The second term of (B.20) is evaluated using the KL divergence between Gamma distribution (B.13).

The first term in (B.20) can be calculated by noting that if Σp = (τAp)−1 and Σq = (τAq)−1 are

substituted in to the KL divergence expression (B.9), then the result is linear in τ . This allows the

expectation operator, a linear operator, to be moved inside the KL divergence and τ to be replaced

with its expected value:

KLNGam (q||p) =

KLN
(N (x|xq , (〈τ〉Aq)−1)||N (x|xp, (〈τ〉Ap)−1)

)
+KLGam (Gamq||Gamp) , (B.21)

where 〈τ〉 = aq

bq
is the expectation of τ with respect to the distribution Gamq.

B.7 KL Divergence between Dirichlet Distributions

The KL divergence between two Dirichlet distributions:

p(a) = Dir(a|αT ), q(a) = Dir(a|α0) (B.22)
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is [36]:

KLDir (q||p) =

log
Γ (

∑n
i=1 αT (i))

Γ (
∑n

i=1 α0(i))
+

n∑
i=1

log
Γ (α0(i))
Γ (αT (i))

+
n∑

i=1

(αT (i) − α0(i))

(
ψ(αT (i)) − ψ

(
n∑

i=1

α0(i)

))
(B.23)

where n is the length of α.
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Appendix C

Posteriors and Integrals for AR
and Poisson Models

C.1 Geometric Mean of AR Likelihood with a Gaussian-

Gamma Distribution Parameter Model

This section calculates the geometric mean of AR model likelihood under the Gaussian-Gamma

distribution:

bk(y, x) = exp
∫ ∞

0

∫
Rd

q(w, τ) ln p (y, x|w, τ ) dwdτ (C.1)

where the data likelihood for a single observation (x, y) is:

p (y, x|w, τ ) =
( τ

2π

)1/2

exp
(
−τ

2
(
y − wTx

)2
)
, (C.2)

and the Gaussian-Gamma distribution of the model parameters is defined as:

q(w, τ) = N (
w; ŵ, (τΛ)−1

)
Gam(τ |aT , bT ) . (C.3)

Here Λ is a positive definite precision matrix, and w ∈ R
d. Because the Gaussian-Gamma distribu-

tion (C.3) defines the distribution of τ independently of w, the geometric mean (C.1) is simplified

by explicitly substituting of (C.3):

bk(y, x) = exp
∫

τ

Gam (τ |aT , bT )
[∫

w

log p (y, x|w, τ )N (
w; ŵ, (τΛ)−1

)
dw

]
dτ (C.4)

This integral (C.4) is analytically integrated by first considering the inner integral of w, which is

defined as F (τ), and can be evaluated by expanding the error
(
y − wTx

)2 term of the likelihood
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(C.2):

F (τ) =
∫

w

log p (y, x|w, τ )N (
w; ŵ, (τΛ)−1

)
dw

=
∫

w

log
( τ

2π

)1/2

N (
w; ŵ, (τΛ)−1

)
dw −

∫
w

τ

2
(y2)N (

w; ŵ, (τΛ)−1
)
dw (C.5)

+
∫

w

τ

2
(2wTxy)N (

w; ŵ, (τΛ)−1
)
dw −

∫
w

τ

2
(wTxxTw)N (

w; ŵ, (τΛ)−1
)
.dw (C.6)

To solve the integrals in (C.5) and (C.6), the first (A.8) and second (A.9) moments of the multi-

variate normal distribution are used, resulting in:

F (τ) = log
( τ

2π

)1/2

− τ

2
(
y2

)
+
τ

2
(
2yxT ŵ

)− τ

2
(
ŵTxxT ŵ + Tr

(
xxT (τΛ)−1

))
. (C.7)

The Trace expression in (C.7) can be simplified by using the commutative property: Tr(AB) =

Tr(BA), implying:

Tr
(
xxT (τΛ)−1

)
= Tr

(
xT (τΛ)−1x

)
= xT (τΛ)−1x . (C.8)

Using the complete square (y2 − 2yxT ŵ + ŵTxxT ŵ) = (y − ŵTx)2 and substituting the Trace

expression (C.8) further simplifies (C.7):

F (τ) = log
( τ

2π

)1/2

− τ

2
(
y − ŵTx

)2 − 1
2
xT Λ−1x . (C.9)

The analytic expression (C.9) can now be substituted into the geometric mean expression (C.1):

bk(y, x) = exp
∫

τ

Gam (τ |aT , bT )F (τ)dτ (C.10)

= exp
∫

τ

log
( τ

2π

)1/2

Gam (τ |aT , bT ) dτ (C.11)

× exp
∫

τ

−τ
2
(
y − ŵTx

)
Gam (τ |aT , bT ) dτ (C.12)

× exp
∫

τ

−1
2
xT Λ−1x Gam(τ |aT , bT ) dτ . (C.13)

The integrals (C.11) to (C.13) are now analytically integrated. By noting that Gam (τ |aT , bT ) is

normalized, implying that it integrates to 1, the integral (C.13) simplifies to:

exp
∫

τ

−1
2
xT Λ−1xGam [τ |aT , bT ] dτ = exp

(
−1

2
xT Λ−1x

)
. (C.14)

Integral (C.12) is simplified by calculating the the mean of the Gamma distribution (A.11):

exp
[
−1

2
(
y − ŵTx

)2
∫

τ

τGam (τ |aT , bT ) dτ
]

= exp
[
−1

2
(
y − ŵTx

)2 aT

bT

]
(C.15)
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Integral (C.11) is solved by rearranging terms to form the geometric mean of the Gamma distribution

(A.12):

exp
∫

τ

1
2

(log τ − log(2π))Gam (τ |aT , bT ) dτ

= exp
[∫

τ

1
2

log τGam (τ |aT , bT ) dτ −
∫

τ

1
2

log(2π)Gam (τ |aT , bT ) dτ
]

= exp
[
1
2
(
ψ(aT ) − log bT

)− 1
2

log(2π)
]

(C.16)

The Gaussian-Gamma geometric mean bk(x, y) is now calculated by substituting equations

(C.14), (C.15) and (C.16) into (C.10):

bk(y, x) = exp
[
−1

2
xT Λ−1x− 1

2
(
y − ŵTx

)2 aT

bT
+

1
2
(
ψ(aT ) − log bT

)− 1
2

log(2π)
]
. (C.17)

C.2 Geometric Mean of Poisson Likelihood with a Gamma

Firing Rate Model

This section calculates the geometric mean of a Poisson observation likelihood with a Gamma firing

rate distribution:

b(y) = exp
∫
q(λ) log p (y|λ) dλ , (C.18)

where the firing rate λ is represented by a Gamma (A.10) distribution q(λ) = Gam(λ|a, b) and the

observation y likelihood is a Poisson distribution (A.17). The integral (C.18) is then:

b(y) = exp
∫

(y log(λ) − λ− log(y!)) Gam(λ|a, b)dλ . (C.19)

The geometric mean (C.19) is simplified by using the mean (A.11) and geometric mean (A.12) of a

Gamma distribution, resulting in the analytic expression:

b(y) =
1
y!

exp
(
y (ψ(a) − log(b)) − a

b

)
. (C.20)

C.3 Gaussian-Gamma Conjugate Posterior Update: Weighted

Regression for AR Models

In this section the posterior q(w, τ) of the AR model (Def 3.1) parameters w ∈ R
d and precision

τ > 0 ∈ R are calculated using a Gaussian-Gamma (A.14) prior: p
(
w|τ)p(τ) and conjugate Gaussian

likelihood: p (yk, xk|w, τ ). The likelihoods are weighted, with each data point yk having associated
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weight rk. The form of the AR model log posterior is given by:

log q(w, τ) = log p (w|τ) + log p(τ) +
T∑

k=1

rk log p (yk, xk|w, τ ) + C (C.21)

For generality the prior will be assumed to have parameters w0 ∈ R
d, A0 ∈ R

d×d, a0 ∈ R, b0 ∈ R:

p(w, τ) = N (
w|w0, (τA0)−1

)
Gam (τ |a0, b0) , (C.22)

furthermore A0 is positive definite precision matrix and has the Schur decomposition A0 = UT
0 U0.

For completeness the (Gaussian) form of the data likelihood is recalled to be:

p (yk, xk|w, τ ) =
( τ

2π

)1/2

exp
(
−τ

2
(wTxk − yk)2

)
, (C.23)

where yk ∈ R has associated regressor xk ∈ R
d. The following matrices are now defined for k =

1, ..., T :

X =

⎡
⎢⎢⎢⎣
xT

1

...

xT
T

⎤
⎥⎥⎥⎦ ∈ R

T×d,

⎡
⎢⎢⎢⎣
y1
...

yT

⎤
⎥⎥⎥⎦ ∈ R

T×1, R =

⎡
⎢⎢⎢⎣
r1

. . .

rT

⎤
⎥⎥⎥⎦ ∈ R

T×T . (C.24)

The posterior (C.21) is reformulated in terms of the defined matrices (C.24):

log q(w, τ) =
d

2
log τ − τ

2
(w − w0)TA0(w − w0) + (a0 − 1) log τ − b0τ (C.25)

+
1
2

T∑
k=1

rk log τ − τ

2
(Y −Xw)TR(Y −Xw) + C , (C.26)

where the terms in line (C.25) are derived from the prior (C.22), the terms in (C.26) are from the

likelihood (C.23), and C is a constant. All terms in the log posterior (C.26) and (C.25) that depend

on the regressor parameters w are grouped and the following identity is noted:

−τ
2
(w − w0)TA0(w − w0) − τ

2
(Y −Xw)TR(Y −Xw) = −τ

2
(v − Lw)T (v − Lw) , (C.27)

where the following matrices have been defined:

v =

⎡
⎣R 1

2 y

U0w0

⎤
⎦ , L =

⎡
⎣R 1

2X

U0

⎤
⎦ , R

1
2 =

⎡
⎢⎢⎢⎣
√
r1

. . .
√
rT

⎤
⎥⎥⎥⎦ . (C.28)
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Furthermore, the following completed-square identity is proposed:

(v − Lw)T (v − Lw) = (v − Lŵ)T (v − Lŵ) + (w − ŵ)TLTL(w − ŵ) (C.29)

where ŵ is the pseudo inverse:

ŵ = (LTL)−1LTv (C.30)

Equation (C.29) can be verified by expanding the RHS of (C.29), and substituting ŵTLTLŵ =

vTLŵ, which is a direct result of the pseudo inverse definition (C.30). The posterior (C.21) is then

simplified using the relations (C.27), (C.29) and matrices (C.28):

log q(w, τ) =
d

2
log τ + (a0 − 1) log τ − b0τ +

(
1
2

T∑
k=1

rk

)
log τ (C.31)

− τ

2
(w − ŵ)TLTL(w − ŵ) + −τ

2
(v − Lŵ)T (v − Lŵ) + C . (C.32)

The posterior (C.31) can be verified to be the following Gaussian-Gamma distribution by equating

terms:

q(w, τ) = N (
w|ŵ, (τAT )−1

)
Gam (τ |aT , bT ) , (C.33)

such that:

ŵ =(LTL)−1LTv =(XTRX +A0)−1(XTRY + A0w0) (C.34)

AT =LTL =XTRX +A0 (C.35)

aT =a0 +
1
2

T∑
k=1

rk (C.36)

bT =b0 +
1
2
(v − Lŵ)T (v − Lŵ) =

b0 +
1
2
(w0 − ŵ)TA0(w0 − ŵ)

+
1
2
(y −Xŵ)TR(y −Xŵ)

(C.37)

C.4 Poisson Point Process Conjugate Posterior Update

In this section the posterior q(λ) of the stationary Poisson point process model (Def. 3.2) with firing

rate λ ≥ 0 is calculated for a Gamma prior p
(
λ
)
. The form of the point process posterior is:

log q(λ) =
T∑

k=1

rk log p (yk|λ) + log p(λ) + C , (C.38)

where C is a constant, and the likelihood is a Poisson distribution:

p (yk|λ) =
λyke−λ

yk!
. (C.39)



170

Given that the prior of the firing rate λ is a gamma distribution Gam(λi|a0, b0) equation (C.38) can

be written:

log q�(λi) =
T∑

k=1

rk log
λyke−λ

yk!
+ (a0 − 1) logλ− b0λ+ C . (C.40)

Equation (C.40) is simplified:

log q(λ) =

(
a0 +

T∑
k=1

ykrk − 1

)
logλ−

(
b0 +

T∑
k=1

rk

)
λ , (C.41)

and now (C.41) is the same form as a Gamma distribution: Gam
(
λ|aT , bT

)
where:

aT =a0 +
T∑

k=1

ykrk (C.42)

bT =b0 +
T∑

k=1

rk . (C.43)
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