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Abstract

This thesis presents a unified framework for geometric discretization of highly

oscillatory mechanics and classical field theories, based on Lagrangian variational

principles and discrete differential forms. For highly oscillatory problems in me-

chanics, we present a variational approach to two families of geometric numerical

integrators: implicit-explicit (IMEX) and trigonometric methods. Next, we show

how discrete differential forms in spacetime can be used to derive a structure-

preserving discretization of Maxwell’s equations, with applications to computa-

tional electromagnetics. Finally, we sketch out some future directions in discrete

gauge theory, providing foundations based on fiber bundles and Lie groupoids, as

well as discussing applications to discrete Riemannian geometry and numerical

general relativity.
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Chapter One

Introduction

1.1 overview

In recent years, two important techniques for geometric numerical discretization

have been developed. In computational electromagnetics, spatial discretization

has been improved by the use of mixed finite elements and discrete differential

forms. Simultaneously, the dynamical systems and mechanics communities have

developed structure-preserving time integrators, notably variational integrators

that are constructed from a Lagrangian action principle.

In this thesis, we present several contributions to time discretization for highly

oscillatory mechanical systems, and to spacetime discretization for classical field

theories, both from a common Lagrangian variational perspective. The resulting

numerical methods have several geometrically desirable properties, including mul-

tisymplecticity, conservation of momentum maps via a discrete version of Noether’s

theorem, preservation of differential structure and gauge symmetries, lack of spu-

rious modes, and excellent long-time energy conservation behavior. Many tradi-

tional numerical integrators (such as Runge–Kutta and node-based finite element

methods) may fail to preserve one or more of these properties, particularly when

simulating dynamical systems with important differential-geometric symmetries

and structures—as is the case, in particular, with discrete field theories such as

computational electromagnetics and numerical relativity. Like finite element meth-

ods, however, the geometric methods presented here can be readily applied to

unstructured meshes (such as simplicial complexes), with little restriction of mesh

topology or geometry.

The main idea for constructing these methods, drawing from recent work on

variational integrators for mechanics, is the following: rather than discretizing


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the equations of motion directly, first discretize the Lagrangian action functional

of the system, and then derive the discrete equations of motion from a variational

principle. That is, when the continuous system satisfies Euler–Lagrange equations

for a particular action, then a variational integrator will consist of discrete Euler–

Lagrange equations associated to some discrete action. In previous work, this

action integral has been discretized using a numerical quadrature rule on a mesh

of support nodes, e.g., using nodal finite elements of a certain order. While this

approach was quite successful for certain problems, such as integrating ODEs in

mechanics or PDEs in elastodynamics, it was less successful in its application to

other field theories, especially electromagnetics. This thesis departs from previous

efforts in discretizing field theories by treating the Lagrangian itself as a discrete

differential form.

1.2 lagrangian mechanics and variational integrators

In this section, we provide a brief review of some of the key concepts and techniques

from continuous-time Lagrangian mechanics. In addition, we show how variational

integrators can be used to develop numerical time-discretization methods that

preserve this Lagrangian structure. For a more comprehensive review of these

topics, the reader may refer to Marsden and Ratiu () and Marsden and West

().

.. Continuous-Time Lagrangian Mechanics.

The Lagrangian and the Action Integral. To define a mechanical system, we let Q

be a smooth manifold, called the configuration space, and let T Q be its tangent

bundle, called the phase space. The Lagrangian is a function L : TQ → R. For a

path q : [0,T ] →Q, with initial time 0 and final time T , define the action functional

S[q] =
∫ T

0
L

(
q(t ), q̇(t )

)
dt .

Here, the “dot” notation q̇(t ) = d
dt q(t ) denotes an ordinary derivative with respect

to time. For notational brevity, we will often suppress the time parameter (t ) where

it is implicitly clear, for example, writing L
(
q, q̇

)
.
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Hamilton’s Principle and the Euler–Lagrange Equations. Suppose we wish to find

the trajectory q(t ) whose values at the initial and final time are given to be q(0) = q0

and q(T ) = qT . Hamilton’s principle of stationary action says that this trajectory

must satisfy δS[q] = dS[q] ·δq = 0, where δq is any variation of the path that pre-

serves the initial- and final-time conditions, i.e., δq(0) = δq(T ) = 0. The variation

of the action can then be written as

dS[q] ·δq =
∫ T

0

[
∂L

∂q

(
q, q̇

) ·δq + ∂L

∂q̇

(
q, q̇

) ·δq̇

]
dt

=
∫ T

0

[
∂L

∂q

(
q, q̇

)− d

dt

∂L

∂q̇

(
q, q̇

)] ·δq dt

= 0,

where in the second step we have integrated by parts, noting that the boundary

terms disappear since δq vanishes at the endpoints. Since δq is an arbitrary vari-

ation, the trajectory q satisfies Hamilton’s principle if and only if it solves the

Euler–Lagrange equations,

∂L

∂q

(
q, q̇

)− d

dt

∂L

∂q̇

(
q, q̇

)= 0,

which is a second-order system of ordinary differential equations in q .

Example ... For a system with constant mass matrix M and a potential V : Q →R,

the Lagrangian is given by the difference between kinetic and potential energy,

L
(
q, q̇

)= 1
2 q̇T M q̇ −V (q). The Euler–Lagrange equations are therefore −∇V (q)−

d
dt

(
M q̇

) = 0, or equivalently M q̈ = −∇V (q). This coincides with the familiar F =
M a expression of Newton’s second law for a conservative force.

Remark. This Lagrangian variational structure is closely related to the “weak for-

mulation” of a problem, often encountered in the analysis of differential equations,

and commonly used as a framework to develop variational numerical methods (e.g.,

by solving a variational problem on a space of finite elements). Suppose we define

C (Q) to be the space of C 2 paths q : [0,T ] →Q satisfying the boundary conditions,

so that variations δq live in the tangent space TqC (Q). In this language, Hamilton’s

principle specifies the following weak problem:

Find q ∈C (Q) such that for all δq ∈ TqC (Q), we have dS[q] ·δq = 0.
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It should be noted that this is developed as a variational problem from first princi-

ples; by contrast, it is common practice to “reverse engineer” a variational problem

by, for example, integrating the desired differential equation against a test function

and then performing integration by parts.

Euler–Lagrange Flows are Symplectic. Let us define the one-parameter flow map

Ft : T Q → TQ, taking
(
q0, q̇0

) 7→ (
q(t ), q̇(t )

)
, where q is the solution to the Euler–

Lagrange equations with initial conditions
(
q(0), q̇(0)

)= (
q0, q̇0

)
. It is then possible

to define a restricted action functional STQ : TQ →R, using the flow map to pull the

Lagrangian back to the space of initial conditions

STQ
(
q0, q̇0

)= ∫ T

0
F∗

t L
(
q0, q̇0

)
dt =

∫ T

0
L

(
q, q̇

)
dt .

Now, let us vary with respect to the initial conditions, along variations δq0 and δq̇0

dSTQ
(
q0, q̇0

) · (δq0,δq̇0
)= ∫ T

0

[
∂L

∂q

(
q, q̇

) ·δq + ∂L

∂q̇

(
q, q̇

) ·δq̇

]
dt

=
∫ T

0

[
∂L

∂q

(
q, q̇

)− d

dt

∂L

∂q̇

(
q, q̇

)] ·δq d t +
[
∂L

∂q̇

(
q, q̇

) ·δq

]T

0

=
[
∂L

∂q̇

(
q, q̇

) ·δq

]T

0
.

Note that, because these variations do not have the fixed-endpoint property as

before, we pick up a boundary term when integrating by parts in step . Moreover,

the nonboundary term vanishes in step , since q is a solution of the Euler–Lagrange

equations.

Now, let us define the canonical 1-form θL ∈Ω1(TQ) such that θL ·δq = ∂L
∂q̇ ·δq ,

or in coordinates, θL = ∂L
∂q̇ i dq i . Then the previous equation can be rewritten simply

as dSTQ = F∗
T θL −θL . Taking the exterior derivative of both sides and noting that

ddSTQ = 0, we get

F∗
T (dθL) = dθL .

Therefore, defining the symplectic 2-form ωL =−dθL = dq i ∧d ∂L
∂q̇ i , it follows that

the Euler–Lagrange flow map preserves ωL and hence is a symplectic flow.

Remark. Symplecticity is typically discussed in the context of Hamiltonian flows on

T ∗Q, where one defines the canonical 1-form θH = pi dq i and symplectic 2-form
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ωH = −dθH = dq i ∧dpi . This is equivalent to the Lagrangian formulation with

respect to the Legendre transformation TQ → T ∗Q, which takes
(
q, q̇

) 7→ (
q, p

)=(
q, ∂L

∂q̇

(
q, q̇

))
.

Noether’s Theorem and Momentum Maps. Suppose that a Lie group G with Lie

algebra g acts on Q, and that the Lagrangian is invariant with respect to this G-

action. Then, if we take some element ξ ∈ g with infinitesimal generator ξT Q ∈ T Q,

this invariance says that

dSTQ
(
q0, q̇0

) ·ξTQ = 0.

However, we have previously shown that dST Q = F∗
T θL −θL , so it follows that

F∗
T

(
θL ·ξTQ

)= θL ·ξTQ ,

and so the quantity θL ·ξTQ is conserved by the Euler–Lagrange flow. Therefore,

we can define a conserved momentum map J : T Q → g∗, given by
〈

J
(
q, q̇

)
,ξ

〉 =
θL

(
q, q̇

) ·ξTQ . This fundamental result is known as Noether’s theorem.

The Hamilton–Pontryagin Variational Principle. Another variational approach to

Lagrangian mechanics—which has the added appeal of intrinsically combining the

Hamiltonian point of view on T ∗Q and the Lagrangian perspective on T Q—is the

so-called Hamilton–Pontryagin principle, whose variational structure was studied

by Yoshimura and Marsden (). Rather than extremizing the action over paths

q on Q, one defines an extended action functional on paths
(
q, v, p

) ∈ T Q ⊕T ∗Q,

consisting of position as well as velocity and momentum; this bundle is called the

Pontryagin bundle. The Hamilton–Pontryagin action is given by

S
[
q, v, p

]= ∫ T

0

[
L

(
q, v

)+〈
p, q̇ − v

〉]
dt ,

where 〈·, ·〉 is the pairing between covectors and vectors. The idea is to treat position

q and velocity v as independent variables, and then to use the momentum p as a

Lagrange multiplier to (weakly) enforce the constraint v = q̇ .
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If we take variations of this action, assuming as before that q satisfies boundary

conditions, so that δq = 0 at the endpoints, we get

dS[q, v, p] · (δq,δv,δp
)= ∫ T

0

[〈
∂L

∂q

(
q, v

)
,δq

〉
+

〈
∂L

∂v

(
q, v

)
,δv

〉
+〈

δp, q̇ − v
〉+〈

p,δq̇ −δv
〉]

=
∫ T

0

[〈
∂L

∂q

(
q, v

)− ṗ,δq

〉
+

〈
∂L

∂v

(
q, v

)−p,δv

〉
+〈

δp, q̇ − v
〉]

.

Setting this equal to zero, one obtains the implicit Euler–Lagrange equations

ṗ = ∂L

∂q

(
q, v

)
, p = ∂L

∂v

(
q, v

)
, q̇ = v.

Thus, in addition to the Euler–Lagrange equations and the constraint q̇ = v , one also

obtains the Legendre transform as part of the equations, an automatic consequence

of the Hamilton–Pontryagin variational principle.

.. Discrete Mechanics and Variational Integrators.

The Discrete Lagrangian and the Action Sum. Suppose that we wish to discretize

a mechanical system, whose continuous Lagrangian is L : TQ → R, on the time

interval [0,T ]. First, we partition the time interval by a finite number of points

0 = t0 < . . . < tN = T ; likewise, the path q : [0,T ] →Q is replaced by a sequence of

configurations q0, . . . , qN , where qn ≈ q (tn). Then the discrete Lagrangian is a func-

tion Lh : Q ×Q →R, so that Lh
(
qn , qn+1

)≈ ∫ tn+1
tn

L
(
q, q̇

)
dt , e.g., using a particular

quadrature rule. The continuous action functional is therefore approximated by

the discrete action sum

Sh
(
q0, . . . , qN

)= N−1∑
n=0

Lh
(
qn , qn+1

)≈ ∫ T

0
L

(
q, q̇

)
dt .

The Discrete Hamilton’s Principle and Euler–Lagrange Equations. We say that a dis-

crete trajectory satisfies Hamilton’s stationary action principle if δSh
(
q0, . . . , qN

)=
0; again we require the endpoints to be fixed, so δq0 = δqN = 0. The variation of the

discrete action is therefore

δSh
(
q0, . . . , qN

)= N−1∑
n=0

[
D1Lh

(
qn , qn+1

) ·δqn +D2Lh
(
qn , qn+1

) ·δqn+1
]

,
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where D1Lh and D2Lh denote the partial derivatives of Lh with respect to the first

and second arguments. Performing “summation by parts” and using the fact that

the variation at the endpoints is fixed, we get

δSh
(
q0, . . . , qN

)= N−1∑
n=1

[
D1Lh

(
qn , qn+1

)+D2Lh
(
qn−1, qn

)] ·δqn = 0.

Therefore, since the variations δqn are arbitrary, Hamilton’s principle is equivalent

to the Discrete Euler–Lagrange (DEL) equations

D1Lh
(
qn , qn+1

)+D2Lh
(
qn−1, qn

)= 0, n = 1, . . . , N −1.

This defines a discrete update rule taking
(
qn−1, qn

) 7→ (
qn , qn+1

)
, which can be

thought of as the flow map of the DEL equations.

This specifies a numerical method, called a variational integrator, for approxi-

mating solutions to the Euler–Lagrange equations.

Example ... Consider a mechanical system with the Lagrangian L : TQ → R,

where Q is a vector space, and suppose we wish to discretize this system at the

times t0 < . . . < tN , with uniform time step size h = tn+1 − tn for n = 0, . . . , N − 1.

Then, using the second-order trapezoidal quadrature rule, we obtain the discrete

Lagrangian

Ltrap
h

(
qn , qn+1

)= 1

2

[
L

(
qn ,

qn+1 −qn

h

)
+L

(
qn+1,

qn+1 −qn

h

)]
.

This results in the DEL equations

1

2

[
∂L

∂q

(
qn ,

qn+1 −qn

h

)
+ ∂L

∂q

(
qn ,

qn −qn−1

h

)]
= 1

2h

[
∂L

∂q̇

(
qn ,

qn+1 −qn

h

)
+∂L

∂q̇

(
qn+1,

qn+1 −qn

h

)
− ∂L

∂q̇

(
qn ,

qn −qn−1

h

)
− ∂L

∂q̇

(
qn−1,

qn −qn−1

h

)]
,

which can be seen as an approximation of the continuous Euler–Lagrange equa-

tions.

In particular, if the Lagrangian is of the form L
(
q, q̇

) = 1
2 q̇T M q̇ −V (q), for

a constant mass matrix M and potential function V : Q → R, then the discrete

Lagrangian becomes

Lh
(
qn , qn+1

)= h

2

( qn+1 −qn

h

)T
M

( qn+1 −qn

h

)
− h

2

[
V

(
qn

)+V
(
qn+1

)]
,
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and the DEL equations can be written

M
qn+1 −2qn +qn−1

h2 =−∇V
(
qn

)
.

This is equivalent to the Störmer/Verlet method, which is a second-order symplectic

integrator.

Initial and Final Conditions in Phase Space. This formulation of variational inte-

grators presents one immediate difficulty. To solve an initial value problem, for

example, we must specify the first two positions
(
q0, q1

)
, and compute up to the

final two positions
(
qN−1, qN

)
. However, this is not how most problems are posed;

rather, we usually wish to specify the initial position and velocity
(
q0, q̇0

) ∈ TQ

and solve for the final conditions
(
qN , q̇N

) ∈ TQ. In addition, the symplectic form

is defined on TQ (or T ∗Q), so to speak about the symplecticity of a numerical

method, we will also have to understand the relationship between flows in Q ×Q

and flows in the phase space T Q.

To do this, suppose we add two additional time steps very close to the initial and

final times, t−ε = t0 −ε and tN+ε = tN +ε. Then, taking fixed-endpoint variations of

qn , we have δq−ε = δqN+ε = 0, while δq0 and δqN can now be nonzero. Therefore,

in addition to the usual DEL equations for k = 1, . . . , N−1, we get two new equations

D1Lh
(
q0, q1

)+D2Lh
(
q−ε, q0

)= 0

D1Lh
(
qN , qN+ε

)+D2Lh
(
qN−1, qN

)= 0.

Now, let us look at the limiting behavior of these equations as ε→ 0. Supposing

Lh
(
q−ε, q0

)≈ εL
(
q−ε, q0−q−ε

ε

)
, i.e., the discrete Lagrangian approximates the action

integral to at least first-order accuracy, we then have

D2Lh
(
q−ε, q0

)≈ ∂L

∂q̇

(
q−ε,

q0 −q−ε
ε

)
→ ∂L

∂q̇

(
q0, q̇0

)
.

Likewise, at the final time step we have the limit

D1Lh
(
qN , qN+ε

)→−∂L

∂q̇

(
qN , q̇N

)
.

Therefore, we can define a transformation between initial conditions
(
q0, q̇0

)
and

(
q0, q1

)
so as to satisfy

D1Lh
(
q0, q1

)+ ∂L

∂q̇

(
q0, q̇0

)= 0.
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Similarly, we have another transformation for the final conditions, defined by the

equation

−∂L

∂q̇

(
qN , q̇N

)+D2Lh
(
qN−1, qN

)= 0.

Pulling back by the continuous form of the Legendre transform, p = ∂L
∂q̇

(
q, q̇

)
, we

can write these conditions as

D1Lh
(
q0, q1

)+p0 = 0

−pN +D2Lh
(
qN−1, qN

)= 0,

which agrees with the discrete Legendre transform (see Marsden and West, ).

This shows that the discrete Legendre transform, far from being an arbitrary map

between T ∗Q and Q×Q, can be defined in terms of the original variational principle

by using a limiting argument. Later, we will extend this argument to understand

the initial, final, and boundary values of discrete field theories, as well as their

multisymplectic structure.

Variational Integrators are Symplectic. Now that we have shown how to define initial

and final conditions on T Q for variational integrators, we can define a discrete flow

map Fh : TQ → TQ, taking
(
q0, q̇0

) 7→ (
q1, q̇1

)
, which corresponds to one time step

of the DEL equations. (For multiple time steps, Fh can be applied repeatedly by

composition.) Then, as in the continuous case, we have a restricted action, which

is simply

Sh,TQ
(
q0, q̇0

)= Lh
(
q0, q1

)
.

Taking variations of this restricted action with respect to the initial conditions, we

get

δSh,TQ
(
q0, q̇0

)= D1Lh
(
q0, q1

) ·δq0 +D2Lh
(
q0, q1

) ·δq1

=−∂L

∂q̇

(
q0, q̇0

) ·δq0 +
∂L

∂q̇

(
q1, q̇1

) ·δq1.

In terms of the canonical 1-form θL , defined as before, this expression can be

written as

dSh,TQ = F∗
h θL −θL .
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Finally, taking the exterior derivative of both sides and recalling the definition of

the symplectic 2-form ωL =−dθL , then the identity dd = 0 implies

F∗
hωL =ωL ,

and hence the discrete flow map is symplectic. This is, of course, also true when

taking N time steps for any N ∈N, since the composition

N︷ ︸︸ ︷
Fh ◦ · · · ◦Fh of symplectic

maps is also symplectic.

Discrete Noether’s Theorem: Variational Integrators Preserve Momentum Maps. As

in the continuous case, consider the momentum map J : TQ → g∗ defined by〈
J
(
q, q̇

)
,ξ

〉= θL
(
q, q̇

) ·ξTQ , where again, the Lagrangian is invariant with respect

to the Lie group G , ξ is an arbitrary element of its Lie algebra g, and ξTQ is the

infinitesimal generator of ξ. Then

0 = dSh,TQ ·ξTQ = F∗
h

(
θL ·ξTQ

)−θL ·ξT Q ,

and hence

F∗
h

(
θL ·ξTQ

)= θL ·ξTQ .

Therefore, the flow of the DEL equations conserves the quantity θL ·ξT Q , and so the

momentum map J is invariant with respect to this flow.

1.3 differential forms, pdes, and discretization

As we have seen, variational integrators provide a geometric framework for time

discretization. While this is sufficient for the ODEs of classical mechanics, the PDEs

of classical field theory require a unified approach to discretizing both time and

space. Differential forms provide a useful foundation for doing this. In addition to

being covariant (which is useful in itself for field theories on smooth manifolds),

they are also readily discretized using the chains and cochains of algebraic topology,

which preserve important topological structures and invariants from homology

and cohomology theory.
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.. Elliptic and Hyperbolic PDEs on Smooth Manifolds. First, we will outline

how some common elliptic and hyperbolic PDEs can be written in terms of dif-

ferential forms on smooth manifolds. In particular, we will focus on the Laplace–

Beltrami operator, and its application to Laplace’s and Poisson’s equations, as well

as the wave equation. Later, in Chapter , we will apply this same general approach

to Maxwell’s equations for electromagnetism.

The Laplace–Beltrami Operator. We will first quickly recall the basic operators of

exterior calculus, in order to define the Laplace–Beltrami operator on differential

forms. (For a more exhaustive review of exterior calculus, see Abraham, Marsden,

and Ratiu, , Chapter ).

Let X be a smooth, orientable (n +m)-dimensional pseudo-Riemannian man-

ifold, with metric signature (n,m). Let Ωk (X ) denote the space of differential k-

forms on X , where d: Ωk (X ) →Ωk+1(X ) is the exterior derivative and ∗ : Ωk (X ) →
Ωn+m−k (X ) is the Hodge star associated to the metric on X . Next, we define the

codifferential operator δ : Ωk+1(X ) →Ωk (X ) to be

δ= (−1)(n+m)k+1+m ∗d∗ .

Finally, we define the Laplace–Beltrami operator, applied to scalar functions on

X , to be δd: Ω0(X ) →Ω0(X ). One can also apply the Laplace–Beltrami operator

to k-forms for general k ; another generalization is the Laplace–de Rham operator

(δd+dδ) : Ωk (X ) →Ωk (X ), which reduces to Laplace–Beltrami when k = 0.

Laplace–Beltrami as an Elliptic Operator. Suppose that X is an n-dimensional

Riemannian manifold, and let u ∈Ω0(X ) be a scalar function on X . If X =Rn with

the Euclidean metric, then the Laplace–Beltrami operator δd is precisely the usual

Laplacian ∆, up to a sign. To see this, observe that in standard coordinates

∗d∗du =∗d∗
(
∂i u dxi

)
=∗d

(
∂i u dn−1xi

)
=∗

(
∂i∂

i u dn x
)
= ∂i∂

i u =∆u,

where this expression uses the Einstein index notation for summing over i .
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More generally, suppose that X has the Riemannian metric g . Then in local

coordinates, we have g = gi j dxi ⊗dx j , and

∗d∗du =∗d∗
(
∂i u dxi

)
=∗d

(√∣∣g ∣∣∂i u dn−1xi

)
=∗

[
∂i

(√∣∣g ∣∣∂i u

)
dn x

]
= 1√∣∣g ∣∣∂i

(√∣∣g ∣∣∂i u

)
.

Here, following the usual conventions of tensor calculus,
∣∣g ∣∣ denotes the (absolute)

determinant of the matrix
(
gi j

)
and ∂i = g i j∂ j , where

(
g i j

)
is the inverse matrix

of
(
gi j

)
. Therefore, a general elliptic operator—traditionally written as ∇·a∇ for

some function a—can be expressed as the Laplace–Beltrami operator for a suitable

metric. This includes the possibility for the metric to be inhomogeneous and/or

anisotropic, relative to a certain coordinate parametrization.

Laplace’s and Poisson’s Equations. One of the most fundamental elliptic PDEs is

Poisson’s equation

∆u = f ,

which is called Laplace’s equation in the special case f = 0. We can use the Laplace–

Beltrami operator to translate this problem in terms of differential forms on a

Riemannian manifold X .

Given some scalar function f ∈Ω0(X ), we wish to find another scalar function

u ∈Ω0(X ) such that

δdu = f .

This is the second-order formulation of Poisson’s equation. One can also intro-

duce an auxiliary field v ∈Ω1(X ), and then rewrite this as a first-order system of

equations

du = v, δv = f .
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Alternatively, this can be written, following the approach to multisymplectic field

theory outlined in Bridges (), as(
0 δ

d 0

)(
u

v

)
=

(
f

v

)
.

Here, the matrix J∂ =
(

0 δ
d 0

)
provides a generalization of the operator J d

dt in Hamilto-

nian mechanics, where J = (
0 −I
I 0

)
is the usual symplectic matrix.

Now, suppose that u is simply a scalar potential for the 1-form v = du, and we

only care about solving for the values of v . In this case, we can eliminate the explicit

dependence on u by observing that dv = ddu = 0, and therefore we can simply

solve the system

dv = 0, δv = f .

This is equivalent to finding a vector field v ] ∈ X(X ), which is curl-free and has

divergence f . If, later, one needs to reconstruct u from a solution for v , then this

can be done (at least locally) by using the Poincaré lemma.

Laplace–Beltrami as a Hyperbolic Operator. Suppose now that X is an (n + 1)-

dimensional Lorentzian manifold, i.e., a pseudo-Riemannian manifold with metric

signature (n,1). In this case, since the metric is positive-definite in n dimensions

and negative-definite in 1 dimension, the Laplace–Beltrami operator δd becomes

a hyperbolic operator. In particular, the negative term arises when taking the first

Hodge star, in order to raise the index ∂i = g i j∂ j .

Consider the simple (1+1)-dimensional example of X =R1,1, where in coordi-

nates the metric is given by

g = dx ⊗dx −dt ⊗dt .

Then, if u ∈Ω0(X ), we have

∗d∗du =∗d∗ (ux dx +ut dt )

=∗d(ux dt +ut dx)

=∗ (uxx dx ∧dt +ut t dt ∧dx)

= uxx −ut t

=�u,
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where � denotes the d’Alembertian wave operator. Therefore, the Laplace–Beltrami

operator δd generalizes the d’Alembertian � on a Lorentzian manifold, much as

it generalizes the Laplacian ∆ on a Riemannian manifold. In particular, the wave

speed can be specified by choosing the appropriate Lorentzian metric g .

The Wave and Transport Equations. The wave equation is the hyperbolic PDE

�u = 0.

In R1,1, it is common in the PDE literature to “factor” the wave operator as

�u =
(
∂2

∂x2 − ∂2

∂t 2

)
u =

(
∂

∂x
− ∂

∂t

)(
∂

∂x
+ ∂

∂t

)
u,

so by substituting v =
(
∂
∂x + ∂

∂t

)
u, one can simply study the first-order equation

vt = vx ,

which is also called the transport equation.

On a general Lorentzian manifold, the wave equation is simply written as

δdu = 0,

which is formally identical to Laplace’s equation. Again, the wave speed is deter-

mined by the metric, which manifests in the Hodge star operator. Just as before, we

can rewrite this as the first-order system

du = v, δv = 0,

or simply in terms of v ∈Ω1(X ) as

dv = 0, δv = 0.

This latter formulation can be seen as a more geometric version of the transport

equation. Furthermore, because the “factorization” �= δ◦d works for any n, not

just n = 1, this can be seen as a coordinate-free generalization of transport and

conservation laws for any number of spatial dimensions.
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.. Lagrangian Variational Principles and Multisymplectic Geometry. Just as

the ODEs of classical mechanics can be described by a Lagrangian variational

structure, so too can the PDEs of classical field theory. Because the Lagrangian

is defined as a quantity to be integrated (via the action integral), it is natural to

develop a generalization of this structure in terms of differential forms. To do this,

we will replace the Lagrangian function L by a Lagrangian density L ∈Ωn+m(X ),

so that the action integral is given by S = ∫
L . Ordinary Lagrangian mechanics is a

special case: given a time interval X = [0,T ] and a Lagrangian function L : TQ →R,

the corresponding Lagrangian density is L = L dt . Furthermore, this variational

structure leads to a generalization of symplectic geometry, called multisymplectic

geometry, which reduces to ordinary symplecticity in the one-dimensional case of

mechanics.

In the above summary, we have glossed over one fundamental question—What

is the appropriate generalization of the tangent bundle TQ and cotangent bundle

T ∗Q to fields over the higher-dimensional manifold X ?—to which several possible

answers have been given. One approach (as in Marsden, Patrick, and Shkoller, ;

Marsden, Pekarsky, Shkoller, and West, ; and Gotay and Marsden, ) is to

view fields over X as sections of some fiber bundle B → X , with fiber Y , and then

to consider the first jet bundle J 1B and its dual
(

J 1B
)∗

as the appropriate analogs

of the tangent and cotangent bundles. (Informally, the jet bundle consists of Y -

valued functions and their Jacobians.) One drawback of this approach, however,

is that it is more general than required for fields of differential forms: one often

cares only about the antisymmetric part of the Jacobian (i.e., the exterior derivative)

rather than all of its components individually. We will follow an approach that

hews more closely to that of Bridges (), who uses the so-called total exterior

algebra bundle, consisting of differential forms over X , rather than the jet bundle.

However, our approach will diverge from Bridges’ in several ways, particularly

in the generalization of the Hamilton–Pontryagin variational principle, and the

associated Legendre–Hodge transform (which generalizes the Legendre transform

from mechanics).

In this section, we will develop this theory relatively quickly, primarily by exam-

ple, examining its application to the scalar PDEs introduced in the previous section.

Later chapters will expand this treatment to more sophisticated field theories, in-
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cluding electromagnetics and nonabelian gauge theories, such as general relativity.

Note that we will avoid the δ notation for taking variations, reserving the use of this

symbol for the codifferential. (As done earlier without comment, we use a bold d to

indicate a functional exterior derivative, which can be evaluated along a variation,

in order to distinguish it from the usual exterior derivative d for forms on X .)

Hamilton’s Principle and Euler–Lagrange Equations. As before, let X be an ori-

entable pseudo-Riemannian manifold, with u ∈Ω0(X ) a scalar field, and consider

the Lagrangian density

L (u,du) =−1

2
du ∧∗du.

This expression is closely related to the L2 inner product (·, ·) : Ωk (X )×Ωk (X ) →R

on differential k-forms, which is defined by

(
α,β

)= ∫
X
α∧∗β.

An important property of this inner product is that the codifferential δ is dual to

the exterior derivative d (hence its name), corresponding to integration by parts,

assuming that the boundary terms vanish. Specifically, let α ∈Ωk (X ),β ∈Ωk+1(X ),

and then by the Leibniz rule,

d
(
α∧∗β)= dα∧∗β−α∧∗δβ.

Integrating over X and applying Stokes’ theorem,∫
∂X
α∧∗β= (

dα,β
)− (

α,δβ
)

,

so when the left-hand side vanishes, we have
(
dα,β

)= (
α,δβ

)
.

Therefore, the action associated to the Lagrangian density L is

S[u] =
∫

X
L =−1

2
(du,du) .

Let ũ ∈Ω0(X ) be a variation of u preserving boundary conditions, so that ũ|∂X = 0.

Then the variation of the action along ũ is

dS[u] · ũ =− (dũ,du) =− (ũ,δdu) .
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Setting this variation equal to zero, we get the Euler–Lagrange equation

δdu = 0,

which coincides with Laplace’s equation or the wave equation, respectively, when

X is Riemannian or Lorentzian.

More generally, a nonhomogeneous linear system, such as Poisson’s equation,

is obtained by adding a term to the Lagrangian density

L =−1

2
du ∧∗du +u ∧∗ f ,

for some f ∈Ω0(X ), where f does not depend on u. If f does depend on u (i.e.,

the system is nonlinear) then one must take a slightly different approach: keeping

the Lagrangian density as before, L = −1
2 du ∧∗du, one can use the modified

variational principle

dS[u] · ũ + (
ũ, f

)= 0,

which generalizes the Lagrange–d’Alembert principle from mechanics.

A Generalized Hamilton–Pontryagin Principle for Fields. Following a similar ap-

proach to the Hamilton–Pontryagin principle, we define two auxiliary fields v ∈
Ω1(X ), w ∈ Ωn+m−1(X ), using w as a Lagrange multiplier to weakly enforce the

constraint v = du. To do this, we define the extended action

S[u, v, w] =
∫

X
[L (u, v)+ (v −du)∧w] .

For example, take the Lagrangian density corresponding to Poisson’s equation,

L (u, v) =−1

2
v ∧∗v +u ∧∗ f .

Now, suppose that ũ, ṽ , w̃ are variations that vanish on the boundary ∂X . Then the

variation of the extended action is

dS[u, v, w] · (ũ, ṽ , w̃) =
∫

X

[−ṽ ∧∗v + ũ ∧∗ f + (ṽ −dũ)∧w + (v −du)∧ w̃
]

=
∫

X

[
ũ ∧ (∗ f +dw

)− ṽ ∧ (∗v −w)+ (v −du)∧ w̃
]

.
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Setting this equal to zero, we get the implicit Euler–Lagrange equations

dw =−∗ f , w =∗v, du = v.

This formulation effectively separates the topological content of the equations (the

first and third equations, which only involve exterior derivatives of the fields) from

their geometric content (the second equation, which uses the metric to establish

duality between w and v).

The second equation is analogous to the Legendre transform in mechanics;

Bridges () refers to a closely related generalization as the Legendre–Hodge

transform. In this case, the transform is defined simply by the Hodge star operator

between a 1-form and its dual. In fact, we will see later that this transform plays a

crucial role in electromagnetics, where it corresponds to the constitutive laws for

Maxwell’s equations.

Multisymplectic Geometry. Returning to Hamilton’s action principle, suppose now

that we restrict u to the space of Euler-Lagrange solutions, while taking a variation

η that no longer vanishes the boundary ∂X . In this case, if we vary the restricted

action along η, we get only the boundary integral term

dS[u] ·η=
∫
∂X
η∧∗du.

If we vary this yet again, along another variation ν, this becomes

ddS[u] ·η ·ν=
∫
∂X

1

2

(
η∧∗dν−ν∧∗dη

)
.

The left-hand side vanishes, since dd ≡ 0, resulting in the identity∫
∂X

(
η∧∗dν−ν∧∗dη

)= 0

for all η and ν. We can verify this directly, as follows. Since η and ν are variations

taken in the space of Euler–Lagrange solutions, then we must have δdη= δdν= 0.

Now, applying Stokes’ theorem to the left-hand side above, and using this fact about



CHAPTER . INTRODUCTION 

η and ν, we get∫
∂X

(
η∧∗dν−ν∧∗dη

)= ∫
X

(
dη∧∗dν−η∧∗δdν−dν∧∗dη+ν∧∗δdη

)
=

∫
X

(
dη∧∗dν−dν∧∗dη

)
= (

dη,dν
)− (

dν,dη
)

= 0,

since the inner product (·, ·) is symmetric.

Let us now rephrase these statements in the language of multisymplectic geom-

etry. Take the canonical Cartan 1-form, associated to the Lagrangian density L , to

be θL = du ∧∗du, so that varying the restricted action gives

dS[u] ·η=
∫
∂X
θL ·η.

Then the multisymplectic 2-form is ωL =−dθL = du ∧d∗du, and thus

ddS[u] ·η ·ν=
∫
∂X
ωL ·η ·ν= 0.

This last equation is called the multisymplectic form formula. Returning to the

special case of mechanics, where X = [0,T ] ⇒ ∂X = {0,T }, this reduces to the

statement that the (multi)symplectic 2-form is equal at the two endpoints.

Note that, with respect to the Legendre–Hodge transform (u,du,∗du) 7→ (u, v, w),

we have ωL = du ∧dw . This formally agrees with the canonical symplectic 2-form

ωL = dq ∧dp for the case of Lagrangian mechanics.

.. Discrete Differential Forms and Operators. In this section, we show how to

define differential forms and operators on a discrete mesh, in preparation for using

this framework for computational modeling of classical fields. By construction,

the calculus of discrete differential forms automatically preserves a number of

important geometric structures, including Stokes’ theorem, integration by parts

(with a proper treatment of boundaries), the de Rham complex, Poincaré duality,

Poincaré’s lemma, and Hodge theory. Therefore, this provides a suitable foundation

for the coordinate-free discretization of geometric field theories. In subsequent

chapters, we will also use these discrete differential forms as the space of fields on

which we will define discrete Lagrangian variational principles.
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The particular “flavor” of discrete differential forms and operators we will be

using is known as discrete exterior calculus, or DEC for short; see Hirani ()

and Leok (). (For related efforts in this direction, see also Harrison, ;

and Arnold, Falk, and Winther, .) Guided by Cartan’s exterior calculus of

differential forms on smooth manifolds, DEC is a discrete calculus developed,

ab initio, on discrete manifolds, so as to maintain the covariant nature of the

quantities involved. This computational tool is based on the notion of discrete

chains and cochains, used as basic building blocks for compatible discretizations

of important geometric structures such as the de Rham complex (Desbrun, Kanso,

and Tong, ). The chain and cochain representations are not only attractive from

a computational perspective due to their conceptual simplicity and elegance; as we

will see, they also originate from a theoretical framework defined by Whitney (),

who introduced the Whitney and de Rham maps that establish an isomorphism

between simplicial cochains and Lipschitz differential forms.

Mesh and Dual Mesh. DEC is concerned with problems in which the smooth n-

dimensional manifold X is replaced by a discrete mesh—precisely, by a cell complex

that is manifold, admits a metric, and is orientable. The simplest example of such a

mesh is a finite simplicial complex, such as a triangulation of a 2-D surface. We will

generally denote the complex by K , and a cell in the complex by σ.

Given a mesh K , one can construct a dual mesh ∗K , where each k-cell σ corre-

sponds to a dual (n −k)-cell ∗σ. (∗K is “dual” to K in the sense of a graph dual.)

One way to do this is as follows: place a dual vertex at the circumcenter of each

n-simplex, then connect two dual vertices by an edge wherever the corresponding

n-simplices share an (n −1)-simplex, and so on. This is called the circumcentric

dual, and it has the important property that primal and dual cells are automatically

orthogonal to one another, which is advantageous when defining an inner prod-

uct (as we will see later in this section). For example, the circumcentric dual of a

Delaunay triangulation, with the Euclidean metric, is its corresponding Voronoi

diagram (see Figure .). For more on the dual relationship between Delaunay

triangulations and Voronoi diagrams, a standard reference is O’Rourke (). A

similar construction of the circumcenter can be carried out for higher-dimensional

Euclidean simplicial complexes, as well as for simplicial meshes in Minkowski
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space. Note that, in both the Euclidean and Lorentzian cases, the circumcenter

may actually lie outside the simplex if it has a very bad aspect ratio, underscoring

the importance of mesh quality for good numerical results.

There are alternative ways to define the dual mesh—for example, placing dual

vertices at the barycenter rather than the circumcenter—but we will use the cir-

cumcentric dual unless otherwise noted. Note that a refined definition of the

dual mesh, where dual cells at the boundary are restricted to K , will be discussed

in Chapter  to allow proper enforcement of boundary conditions in computational

electromagnetics.

Figure .: Given a 2-D simplicial mesh (left), we can construct its circumcentric
dual mesh, called the Voronoi diagram of the primal mesh (right). In bold, we show
one particular primal edge σ1 (left) and its corresponding dual edge ∗σ1 (right);
the convex hull of these cells CH(σ1,∗σ1) is shaded dark grey.

Discrete Differential Forms. The fundamental objects of DEC are discrete differ-

ential forms. A discrete k-form αk assigns a real number to each oriented k-

dimensional cell σk in the mesh K . (The superscripts k are not actually required by

the notation, but they are often useful as reminders of what order of form or cell we

are dealing with.) This value is denoted by
〈
αk ,σk

〉
, and can be thought of as the

value of αk “integrated over” the element σk , i.e.,

〈α,σ〉 ≡
∫
σ
α.

For example, 0-forms assign values to vertices, 1-forms assign values to edges, etc.

We can extend this to integrate over discrete paths by linearity: simply add the

form’s values on each cell in the path, taking care to flip the sign if the path is
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oriented opposite the cell. Formally, these “paths” of k-dimensional elements are

called chains, and discrete differential forms are cochains, where 〈·, ·〉 is the pairing

between cochains and chains.

Differential forms can be defined either on the mesh K or on its dual ∗K . We

will refer to these as primal forms and dual forms, respectively. Note that there is

a natural correspondence between primal k-forms and dual (n−k)-forms, since

each primal k-cell has a dual (n −k)-cell. This is an important property that will be

used below to define the discrete Hodge star operator.

Exterior Derivative. The discrete exterior derivative d is constructed to satisfy

Stokes’ theorem, which in the continuous sense is written∫
σ

dα=
∫
∂σ
α.

Therefore, if α is a discrete differential k-form, then the (k +1)-form dα is defined

on any (k +1)-chain σ by

〈dα,σ〉 = 〈α,∂σ〉 ,

where ∂σ is the k-chain boundary of σ. For this reason, d is often called the

coboundary operator in cohomology theory.

Diagonal Hodge Star. The discrete Hodge star transforms k-forms on the primal

mesh into (n −k)-forms on the dual mesh, and vice-versa. In our setup, we will use

the so-called diagonal (or mass-lumped) approximation of the Hodge star (Bossavit,

) because of its simplicity, but note that higher-order accurate versions can be

substituted. Given a discrete form α, its Hodge star ∗α is defined by the relation

1

|∗σ| 〈∗α,∗σ〉 = κ(σ)
1

|σ| 〈α,σ〉 ,

where |σ| and |∗σ| are the volumes of these elements, andκ is the causality operator,

which equals +1 when σ is spacelike and −1 otherwise. (For more information on

alternative discrete Hodge operators, the reader may refer to, e.g., Arnold et al.,

; Auchmann and Kurz, ; Tarhasaari, Kettunen, and Bossavit, ; and

Wang, Weiwei, Tong, Desbrun, and Schröder, .)
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Inner Product. Define the L2 inner product (·, ·) between two primal k-forms to be

(
α,β

)=∑
σk

κ(σ)

(
n

k

)
|CH(σ,∗σ)|

|σ|2 〈α,σ〉〈β,σ
〉

=
∑
σk

κ(σ)
|∗σ|
|σ| 〈α,σ〉〈β,σ

〉
where the sum is taken over all k-dimensional elements σ, and CH(σ,∗σ) is the n-

dimensional convex hull ofσ∪∗σ (see Figure .). The final equality holds as a result

of using the circumcentric dual, since σ and ∗σ are orthogonal to one another, and

hence |CH(σ,∗σ)| = (n
k

)−1 |σ| |∗σ|. (Indeed, this is one of the advantages of using

the circumcentric dual, since one only needs to store volume information about the

primal and dual cells themselves, and not about these primal-dual convex hulls.)

This inner product can be expressed in terms of α∧∗β, as in the continuous case,

for a particular choice of the discrete primal-dual wedge product; see Desbrun,

Hirani, and Marsden ().

Note that since we have already defined a discrete version of the operators

d and ∗, we immediately have a discrete codifferential δ, with the same formal

expression as given previously. See Figure . for a visual diagram of primal and

dual discrete forms, along with the corresponding operators d,∗,δ, for the case

where K is a 3-D tetrahedral mesh.

Implementing DEC. DEC can be implemented simply and efficiently using linear

algebra. A k-form α can be stored as a vector, where its entries are the values of

α on each k-cell of the mesh. That is, given a list of k-cells σk
i , the entries of the

vector are αi =
〈
α,σk

i

〉
. The exterior derivative d, taking k-forms to (k +1)-forms, is

then represented as a matrix: in fact, it is precisely the incidence matrix between

k-cells and (k +1)-cells in the mesh, with sparse entries ±1. The Hodge star taking

primal k-forms to dual (n −k)-forms becomes a square matrix, and in the case

of the diagonal Hodge star, it is the diagonal matrix with entries κ
(
σk

i

) |∗σk
i |

|σk
i | . The

discrete inner product is then simply the Hodge star matrix taken as a quadratic

form.

Because of this straightforward isomorphism between DEC and linear algebra,

problems posed in the language of DEC can take advantage of existing numerical
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d d d

0-forms (vertices) 1-forms (edges) 2-forms (faces) 3-forms (tets)

d d d

Figure .: This figure is an illustration of discrete differential forms and operators
on a 3-D simplicial mesh. In the top row, we see how a discrete k-form lives on
k-cells of the primal mesh, for k = 0,1,2,3; the bottom row shows the location of
the corresponding dual (n −k)-forms on the dual mesh. The differential operators
d and δ map “horizontally” between k and (k +1) forms, while the Hodge star ∗
and its inverse ∗−1 map “vertically” between primal and dual forms.

linear algebra codes. As an illustration, see Figure ., in which spherical harmonics

have been computed by constructing the discrete Laplace–Beltrami matrix for a tri-

angulated sphere, and then using a standard numerical eigensolver to compute the

eigenvectors of this matrix. For more details on programming and implementation,

refer to Elcott and Schröder ().

Algebraic Foundations of Discrete Differential Forms. The above ideas can be for-

malized by introducing the following definitions from homological algebra (for

reference see, e.g., Weibel, ; and Bott and Tu, ).

Definition ... A chain complex C• consists of a sequence of abelian groups Ck ,

connected by homomorphisms ∂k : Ck →Ck−1 satisfying ∂k ◦∂k+1 = 0. This can be

represented by the diagram

· · ·→Ck+1
∂k+1−−−→Ck

∂k−→Ck−1 →··· ,
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Figure .: A visualization of spherical harmonics. These images show two eigen-
vectors of the discrete Laplace–Beltrami matrix for a triangulated 2-sphere.

where the composition of any two consecutive arrows is zero. These homomor-

phisms ∂k are called boundary maps.

Definition ... A cochain complex C • consists of a sequence of abelian groups C k ,

connected by homomorphisms dk : C k →C k+1 satisfying dk ◦dk−1 = 0. This can be

represented by the diagram

· · ·→C k−1 dk−1

−−−→C k dk

−→C k+1 →··· ,

where the composition of any two consecutive arrows is zero. These homomor-

phisms dk are called coboundary maps.

Remark. Chain and cochain complexes have an even more general definition,

where the spaces Ck and C k are taken to be R-modules for some ring R. For our

purposes, however, we will only be encountering the case where R =Z is the ring

of integers. A Z-module is simply an abelian group, where integer multiplication

corresponds to repeated addition in the group.

One of the most important examples of a cochain complex is the de Rham

complex of differential forms on a manifold X , written asΩ•(X ). In this case, the

coboundary map dk : Ωk (X ) →Ωk+1(X ) is given by the exterior derivative, which

takes k-forms to (k +1)-forms. In fact, our earlier, heuristic definition of discrete
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k-forms as “one degree of freedom per oriented k-cell” is far from arbitrary. Rather,

it allows us to construct a cochain complex of discrete differential forms on a mesh,

whose geometric structure is closely tied to that of the de Rham complex.

Suppose for example that K is an oriented simplicial complex, where an oriented

k-simplex is an equivalence class of ordered k-tuples of vertices
(
vi0 , . . . , vik

)
, mod-

ulo even permutations. There are two equivalence classes for each set of vertices,

corresponding to even and odd permutations, which we write as ±[
vi0 , . . . , vik

]
for

i0 < ·· · < ik . (For example, [v0, v1] is the directed edge from v0 → v1, while − [v0, v1]

is the opposite-directed edge v0 ← v1.) A k-simplex also has k +1 incident faces of

dimension k −1, which are obtained by omitting one of the vertices. We use the

notation
[
vi0 , . . . , v̂i j , . . . , vik

]
to denote the face which omits the j th vertex, vi j .

Definition ... Given a simplicial complex K , the simplicial chain complex C•(K )

is defined as follows. The space of simplicial k-chains Ck (K ) is the free abelian

group generated by the oriented k-simplices of K (i.e., formal linear combinations

of k-simplices with integer weights). The simplicial boundary maps ∂k : Ck (K ) →
Ck−1(K ) are given by

∂k
([

vi0 , . . . vik

])= k∑
j=0

(−1) j [
vi0 , . . . , v̂i j , . . . vik

]
.

Note that, since the groups Ck (K ) are free, it suffices to define the boundary maps

on the basis elements in this way.

It is easy to see that this forms a chain complex, i.e., that ∂k◦∂k+1 = 0. Notice that

in the expression (∂k ◦∂k+1)
([

vi0 , . . . , vik+1

])
, the term

[
vi0 , . . . , v̂i j , . . . , v̂i j ′ , . . . , vik+1

]
appears twice for each 0 ≤ j < j ′ ≤ k +1, once with + sign and once with − sign,

and so all the terms cancel.

Definition ... Let K be an oriented simplicial complex with chain complex C•(K ).

Then we can define the simplicial cochain complex C •(K ) as follows. The space

of simplicial k-cochains is C k (K ) = Hom(Ck (K ),R), which is the abelian group

of homomorphisms from Ck (K ) into R. There is a natural pairing 〈·, ·〉 : C k (K )×
Ck (K ) →R given by 〈α,c〉 =α (c). The simplicial coboundary operator dk : C k (K ) →
C k+1(K ) can then be defined as the dual of ∂k+1 : Ck+1(K ) →Ck (K ) with respect to

the pairing. That is, we define it such that 〈dα,c〉 = 〈α,∂c〉.
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These simplicial k-cochains are precisely the discrete k-forms introduced pre-

viously, while the coboundary maps dk give the discrete exterior derivative. Fur-

thermore, we can generalize the above definition to a complex of A-valued discrete

forms, for any abelian group A, by taking C k (K ; A) = Hom(Ck (K ), A).

1.4 summary of contributions

In Chapter , we discuss the application of variational integrators to highly oscil-

latory mechanical systems. This consists of two primary contributions. First, we

introduce a new variational implicit-explicit (IMEX) integrator—which achieves

superior numerical stability to explicit multiple-time-stepping methods, yet at a

lower computational cost than fully implicit time integrators—and demonstrate its

behavior by performing several numerical experiments, including an application

to the Fermi–Pasta–Ulam problem. After this, we show how another class of inte-

grators for highly oscillatory problems, the so-called trigonometric integrators, can

be understood as variational integrators by use of a specially tailored quadrature

approximation for the discrete Lagrangian.

In Chapter , we show how Maxwell’s equations can be discretized using dis-

crete differential forms in spacetime. By treating the electromagnetic Lagrangian

density as a differential form, these methods are able to combine the techniques of

variational integrators for time discretization, along with those of discrete differen-

tial forms and conforming finite elements for spatial discretization. Moreover, we

use this foundation to construct an asynchronous variational integrator (AVI) for

Maxwell’s equations, which allows for improved efficiency by taking different time

step sizes at different locations in space.

Finally, in Chapter , we lay the foundations for future work in discretizing

noncommutative gauge theories, for which the existing abelian framework of dis-

crete differential forms is insufficient. Drawing on the mathematical tools of fiber

bundles and Lie groupoids, we provide some initial results toward understanding

discretization of connection 1-forms and curvature 2-forms, showing particularly

how discrete Riemannian geometry and general relativity may be modeled in terms

of orthonormal frame bundles.



Chapter Two

Variational Integrators for Highly

Oscillatory Problems in Mechanics

2.1 introduction

.. Problem Background. Many systems in Lagrangian mechanics have compo-

nents acting on different time scales, posing a challenge for traditional numerical

integrators. Examples include:

. Elasticity: Several spatial elements of varying stiffness, resulting from irregu-

lar meshes and/or inhomogeneous materials (Lew, Marsden, Ortiz, and West,

).

. Planetary Dynamics: N -body problem with nonlinear gravitational forces,

arising from pairwise inverse-square potentials. Multiple time scales result

from the different distances between the bodies (Farr and Bertschinger, ).

. Highly Oscillatory Problems: Potential energy can be split into a “fast” linear

oscillatory component and a “slow” nonlinear component. These problems

are widely encountered in modeling molecular dynamics (Leimkuhler, Reich,

and Skeel, ), but have also been used to model other diverse applications,

for example, in computer animation (Etzmuß, Eberhardt, and Hauth, ;

Boxerman and Ascher, ).

Because these systems each satisfy a Lagrangian variational principle, they lend

themselves readily to variational integrators: a class of geometric numerical integra-

tors designed for simulating Lagrangian mechanical systems. By construction, vari-

ational integrators preserve a discrete version of this Lagrangian variational struc-


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ture; consequently, they are automatically symplectic and momentum-conserving,

with good long-time energy behavior (Marsden and West, ).

Explicit Methods, Multiple Time Stepping, and Resonance Instability. The Stör-

mer/Verlet (or leapfrog) method is one of the canonical examples of a geometric

(and variational) numerical integrator (see Hairer, Lubich, and Wanner, ). Yet,

it and other simple, explicit time stepping methods do not perform well for prob-

lems with multiple time scales. The maximum stable time step for these methods

is dictated by the stiffest mode of the underlying system; therefore, the fastest force

dictates the number of evaluations that must be taken for all forces, despite the fact

that the slow-scale forces may be (and often are) much more expensive to evaluate.

To reduce the number of costly function evaluations associated to the slow

force, several explicit variational integrators use multiple time stepping, whereby

different time step sizes are used to advance the fast and slow degrees of free-

dom. These include substepping methods, such as Verlet-I/r-RESPA and mollified

impulse, where for each slow time step, an integer number of fast substeps are

taken (Izaguirre, Ma, Matthey, Willcock, Slabach, Moore, and Viamontes, ).

More recently, asynchronous variational integrators (AVIs) have been developed,

removing the restriction for fast and slow time steps to be integer (or even rational)

multiples of one another (Lew et al., ). Multiple-time-stepping methods can

be more efficient than single-time-stepping explicit methods, like Störmer/Verlet,

since one can fully resolve the fast oscillations while taking many fewer evaluations

of the slow forces. This is especially advantageous for highly oscillatory problems,

where the slow forces are nonlinear and hence more computationally expensive to

evaluate.

One drawback of multiple-time-stepping methods, however, is that they can ex-

hibit linear resonance instability. This phenomenon occurs when the slow impulses

are nearly synchronized, in phase, with the the fast oscillations. These impulses

artificially drive the system at a resonant frequency, causing the energy (and hence

the numerical error) to increase without bound. The problem of numerical reso-

nance is well known for substepping methods (Biesiadecki and Skeel, ), and has

also recently been shown for AVIs as well—in fact, the subset of fast and slow time

step size pairs leading to resonance instability is dense in the space of all possible
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parameters (Fong, Darve, and Lew, ). Resonance instability can therefore be

difficult to avoid, particularly in highly oscillatory systems with many degrees of

freedom, as in molecular dynamics applications.

Implicit Methods for Single Time Stepping with Longer Step Sizes. Because multiple-

time-stepping methods have these resonance problems, a number of single-time-

stepping methods have been developed specifically for highly oscillatory problems.

As noted earlier, single-time-stepping methods cannot fully resolve the fast oscilla-

tions without serious losses in efficiency. Therefore, the goal of these methods is

to take long time steps, without actually resolving the fast oscillations, while still

accurately capturing the macroscopic behavior that emerges from the coupling

between fast and slow scales. The challenge is to design methods that allow for

these longer time steps, without destroying either numerical stability or geometric

structure.

One obvious candidate integrator is the implicit midpoint method, which is

(linearly) unconditionally stable, as well as variational (hence symplectic) and sym-

metric. Unfortunately, the stability of the method comes at a cost: because the

integrator is implicit in the slow (nonlinear) force, a nonlinear system of equa-

tions must be solved at every time step. Therefore, just like the fully resolved

Störmer/Verlet method, this means that the implicit midpoint method requires an

excessive number of function evaluations.

Implicit-Explicit Integration. For highly oscillatory problems, implicit-explicit

(IMEX) integrators have been proposed as a potentially attractive alternative to

either explicit, multiple-time-stepping methods or implicit, single-time-stepping

methods. Rather than using separate fast and slow time step sizes, IMEX methods

combine implicit integration (e.g., backward Euler) for the fast force with explicit

integration (e.g., forward Euler) for the slow force. Because the fast force is linear,

this semi-implicit approach requires only a linear solve for the implicit portion, as

opposed to the expensive nonlinear solve that would be required for a fully implicit

integrator, like the implicit midpoint method.

IMEX methods were developed by Crouzeix (), and have continued to

progress, including the introduction of IMEX Runge–Kutta schemes for PDEs
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by Ascher, Ruuth, and Spiteri (). However, in all of these methods, the split-

ting is done at the level of the Euler–Lagrange differential equations, rather than

at the variational level of the Lagrangian. Consequently, a wide variety of IMEX

schemes have been created, both geometric and non-geometric, but in general they

cannot guarantee properties such as symplecticity, momentum conservation, or

good long-time energy behavior, which are known for variational integrators. As an

example of an IMEX integrator that is not “geometric” in the usual sense, consider

the LI and LIN methods of Zhang and Schlick (), which combine the backward

Euler method with explicit Langevin dynamics for molecular systems. Because the

use of backwards Euler introduces artificial numerical dissipation, these methods

use Langevin dynamics (i.e., stochastic forcing) to inject the missing energy back

into the system.

Chapter Overview. In Section ., we develop IMEX numerical integration from

a Lagrangian, variational point of view. We do this by splitting the fast and slow

potentials at the level of the Lagrangian action integral, rather than with respect to

the differential equations or the Hamiltonian. From this viewpoint, implicit-explicit

integration is an automatic consequence of discretizing the action integral using

two distinct quadrature rules for the slow and fast potentials. The resulting discrete

Euler–Lagrange equations coincide with a semi-implicit algorithm that was origi-

nally introduced by Zhang and Skeel () as a “cheaper” alternative to the implicit

midpoint method; Ascher and Reich (b) also studied a variant of this method

for certain problems in molecular dynamics, replacing the implicit midpoint step

by the energy-conserving (but non-symplectic) Simo–Gonzales method.

We also show that this variational IMEX method is free of resonance instabilities;

the proof of this fact is naturally developed at the level of the Lagrangian, and does

not require an examination of the associated Euler–Lagrange equations. We then

compare the resonance-free behavior of variational IMEX to the multiple-time-

stepping method r-RESPA in a numerical simulation of coupled slow and fast

oscillators. Next, we evaluate the stability of the variational IMEX method, for large

time steps, in a computation of slow energy exchange in the Fermi–Pasta–Ulam

problem. Finally, we prove that the variational IMEX method accurately preserves

this slow energy exchange behavior (as observed in the numerical experiments) by



CHAPTER . VARIATIONAL INTEGRATORS FOR HIGHLY OSCILLATORY
PROBLEMS IN MECHANICS 

showing that it corresponds to a modified impulse method.

After this, in Section ., we briefly show how variational integrators can be

used to model another popular class of methods for highly-oscillatory problems,

called trigonometric integrators.

.. A Brief Review of Variational Integrators. The idea of variational integrators

was studied by Suris () and Moser and Veselov (), among others, and a

general theory was developed over the subsequent decade (see Marsden and West,

, for a comprehensive survey).

Suppose we have a mechanical system on a configuration manifold Q, specified

by a Lagrangian L : T Q →R. Given a set of discrete time points t0 < ·· · < tN with uni-

form step size h, we wish to compute a numerical approximation qn ≈ q (tn) , n =
0, . . . , N , to the continuous trajectory q(t ). To construct a variational integrator for

this problem, we define a discrete Lagrangian Lh : Q ×Q → R, replacing tangent

vectors by pairs of consecutive configuration points, so that with respect to some

numerical quadrature rule we have

Lh
(
qn , qn+1

)≈ ∫ tn+1

tn

L
(
q, q̇

)
d t .

Then the action integral over the whole time interval is approximated by the discrete

action sum

Sh[q] =
N−1∑
n=0

Lh
(
qn , qn+1

)≈ ∫ tN

t0

L
(
q, q̇

)
d t .

If we apply Hamilton’s principle to this action sum, so that δSh[q] = 0 when

variations are taken over paths with fixed endpoints, then this yields the discrete

Euler–Lagrange equations

D1Lh
(
qn , qn+1

)+D2Lh
(
qn−1, qn

)= 0, n = 1, . . . , N −1,

where D1 and D2 denote partial differentiation in the first and second arguments, re-

spectively. This defines a two-step numerical method on Q×Q, mapping
(
qn−1, qn

) 7→(
qn , qn+1

)
. The equivalent one-step method on the cotangent bundle T ∗Q, map-

ping
(
qn , pn

) 7→ (
qn+1, pn+1

)
, is defined by the discrete Legendre transform

pn =−D1Lh
(
qn , qn+1

)
, pn+1 = D2Lh

(
qn , qn+1

)
,

where the first equation updates q , and the second updates p.
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Examples. Consider a Lagrangian of the form L
(
q, q̇

) = 1
2 q̇T M q̇ −V (q), where

Q =Rd , M is a constant d ×d mass matrix, and V : Q →R is a potential. If we use

trapezoidal quadrature to approximate the contribution of V to the action integral,

we get

Ltrap
h

(
qn , qn+1

)= h

2

( qn+1 −qn

h

)T
M

( qn+1 −qn

h

)
−h

V
(
qn

)+V
(
qn+1

)
2

,

which we call the trapezoidal discrete Lagrangian. It is straightforward to see that

the discrete Euler–Lagrange equations for Ltrap
h correspond to the explicit Stör-

mer/Verlet method. Alternatively, if we use midpoint quadrature to approximate

the integral of the potential, this yields the midpoint discrete Lagrangian,

Lmid
h

(
qn , qn+1

)= h

2

( qn+1 −qn

h

)T
M

( qn+1 −qn

h

)
−hV

( qn +qn+1

2

)
,

for which the resulting integrator is the implicit midpoint method.

2.2 a variational implicit-explicit method

In this section, we show how to develop a variational integrator that combines as-

pects of the Störmer/Verlet and implicit midpoint methods mentioned above. The

main idea is that, given a splitting of the potential energy into fast and slow com-

ponents, we define the discrete Lagrangian by applying the midpoint quadrature

rule to the fast potential and the trapezoidal quadrature rule to the slow potential.

The resulting variational integrator is implicit in the fast force and explicit in the

slow force. After this, we focus on the specific case of highly oscillatory problems,

where the fast potential is quadratic (corresponding to a linear fast force). In this

case, we show that the IMEX integrator can be understood as Störmer/Verlet with a

modified mass matrix.

.. The IMEX Discrete Lagrangian and Equations of Motion. Suppose that we

have a Lagrangian of the form L
(
q, q̇

)= 1
2 q̇T M q̇ −U (q)−W (q), where U is a slow

potential and W is a fast potential, for the configuration space Q =Rd . Then define

the IMEX discrete Lagrangian

LIMEX
h

(
qn , qn+1

)= h

2

( qn+1 −qn

h

)T
M

( qn+1 −qn

h

)
−h

U
(
qn

)+U
(
qn+1

)
2

−hW
( qn +qn+1

2

)
,
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using (explicit) trapezoidal approximation for the slow potential and (implicit) mid-

point approximation for the fast potential. The discrete Euler–Lagrange equations

give the two-step variational integrator on Q ×Q

qn+1 −2qn +qn−1 =−h2M−1
[
∇U

(
qn

)+ 1

2
∇W

( qn−1 +qn

2

)
+ 1

2
∇W

( qn +qn+1

2

)]
,

and the corresponding discrete Legendre transform is given by

pn = M
( qn+1 −qn

h

)
+ h

2
∇U

(
qn

)+ h

2
∇W

( qn +qn+1

2

)
,

pn+1 = M
( qn+1 −qn

h

)
− h

2
∇U

(
qn+1

)− h

2
∇W

( qn +qn+1

2

)
.

To see how this translates into an algorithm for a one-step integrator on T ∗Q, it

is helpful to introduce the intermediate stages

p+
n = pn − h

2
∇U

(
qn

)
, p−

n+1 = pn+1 +
h

2
∇U

(
qn+1

)
.

Substituting these into the previous expression and rearranging yields the algorithm

Step : p+
n = pn − h

2
∇U

(
qn

)
,

Step :


qn+1

p−
n+1

= qn +hM−1
(

p+
n +p−

n+1

2

)
,

= p+
n −h∇W

( qn +qn+1

2

)
,

Step : pn+1 = p−
n+1 −

h

2
∇U

(
qn+1

)
,

where Step  corresponds to a step of the implicit midpoint method.

This can be summarized, in the style of impulse methods, as:

. kick: explicit kick from U advances
(
qn , pn

) 7→ (
qn , p+

n

)
,

. oscillate: implicit midpoint method with W advances
(
qn , p+

n

) 7→ (
qn+1, p−

n+1

)
,

. kick: explicit kick from U advances
(
qn+1, p−

n+1

) 7→ (
qn+1, pn+1

)
.

In particular, notice that this reduces to the Störmer/Verlet method when ∇W ≡ 0

and to the implicit midpoint method when ∇U ≡ 0. Also, if the momentum pn

does not actually need to be recorded at the full time step (i.e., collocated with the

position qn), then Step  can be combined with Step  of the next iteration to create

a staggered “leapfrog” method.
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Interpretation as a Hamiltonian Splitting Method. This algorithm on T ∗Q can also

be interpreted as a fast-slow splitting method (McLachlan and Quispel, ; Hairer,

Lubich, and Wanner, , II. and VIII..) for the separable Hamiltonian H =
T +U +W , where T is the kinetic energy, as follows. LetΦT+W

h : T ∗Q → T ∗Q denote

the numerical flow of the implicit midpoint method with time step size h, applied

to the fast portion of the Hamiltonian T +W , and let ϕU
h : T ∗Q → T ∗Q be the

exact Hamiltonian flow for the slow potential U (i.e., constant acceleration without

displacement). Then the variational IMEX method has the flow mapΨh : T ∗Q →
T ∗Q, which can be written as the following composition of exact and numerical

flows:

Ψh =ϕU
h/2 ◦ΦT+W

h ◦ϕU
h/2.

This formulation highlights the fact that variational IMEX is symmetric (since it is a

symmetric composition of symmetric methods) as well as symplectic (since it can

be written as a composition of symplectic maps).

.. Application to Highly Oscillatory Problems. For highly oscillatory problems

on Q =Rd , we start by taking a quadratic fast potential

W (q) = 1

2
qTΩ2q, Ω ∈Rd×d symmetric and positive semidefinite.

A prototypicalΩ is given by the block-diagonal matrixΩ= (
0 0
0 ωI

)
, where some of the

degrees of freedom are subjected to an oscillatory force with constant fast frequency

ωÀ 1. We also denote the slow force g (q) =−∇U (q) and assume, without loss of

generality, that the constant mass matrix is given by M = I . Therefore, the nonlinear

system we wish to approximate numerically is

q̈ +Ω2q = g (q).

This is the conventional setup for highly oscillatory problems, used by Hairer et al.

(, XIII) and others.

Applying the IMEX method to this example, we get the discrete Lagrangian

LIMEX
h

(
qn , qn+1

)= h

2

( qn+1 −qn

h

)T ( qn+1 −qn

h

)
−h

U
(
qn

)+U
(
qn+1

)
2

−h
( qn +qn+1

2

)T
Ω2

( qn +qn+1

2

)
,
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and so the two-step IMEX scheme is given by the discrete Euler–Lagrange equations

qn+1 −2qn +qn−1 +
h2

4
Ω2 (

qn+1 +2qn +qn−1
)= h2g

(
qn

)
.

Combining terms, we can rewrite this as[
I + h2

4
Ω2

](
qn+1 −2qn +qn−1

)+h2Ω2qn = h2g
(
qn

)
,

which is equivalent to Störmer/Verlet with a modified mass matrix I +(hΩ/2)2. This

equivalence can similarly be shown to hold for the one-step formulation of the

IMEX scheme on T ∗Q—that is, the two methods also produce the same pn , as well

as the same qn .

In fact, this correspondence between IMEX and a modified Störmer/Verlet

method is true not just in the discrete Euler–Lagrange equations, but in the discrete

Lagrangian itself. This follows immediately from the following proposition.

Proposition ... Suppose we have a Lagrangian L
(
q, q̇

)= 1
2 q̇T M q̇ − 1

2 qTΩ2q and

its corresponding midpoint discrete Lagrangian Lmid
h . Next, define the modified

Lagrangian L̃
(
q, q̇

)= 1
2 q̇T M̃ q̇ − 1

2 qTΩ2q, having the same quadratic potential but

a different mass matrix M̃, and take its trapezoidal discrete Lagrangian L̃trap
h . Then

Lmid
h ≡ L̃trap

h when M̃ = M + (hΩ/2)2.

Proof. The midpoint discrete Lagrangian is given by

Lmid
h

(
qn , qn+1

)= h

2

( qn+1 −qn

h

)T
M

( qn+1 −qn

h

)
− h

2

( qn +qn+1

2

)T
Ω2

( qn +qn+1

2

)
.

Now, notice that we can rearrange the terms

−
( qn +qn+1

2

)T
Ω2

( qn +qn+1

2

)
=

( qn+1 −qn

2

)T
Ω2

( qn+1 −qn

2

)
− 1

2
qT

nΩ
2qn − 1

2
qT

n+1Ω
2qn+1

=
( qn+1 −qn

h

)T
(

hΩ

2

)2 ( qn+1 −qn

h

)
− 1

2
qT

nΩ
2qn − 1

2
qT

n+1Ω
2qn+1.

Therefore the discrete Lagrangian can be written in the trapezoidal form

Lmid
h

(
qn , qn+1

)= h

2

( qn+1 −qn

h

)T
[

M +
(

hΩ

2

)2]( qn+1 −qn

h

)
−h

2

(
1

2
qT

nΩ
2qn + 1

2
qT

n+1Ω
2qn+1

)
,

which is precisely L̃trap
h

(
qn , qn+1

)
when M̃ = M + (hΩ/2)2.
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Corollary ... Consider a highly oscillatory system with an arbitrary slow potential

U , quadratic fast potential W (q) = 1
2 qTΩ2q, and constant mass matrix M = I , so

that the Lagrangian L and IMEX discrete Lagrangian LIMEX
h are defined as above.

Next, take the modified Lagrangian L̃ with the same potentials but different mass

matrix M̃. Then LIMEX
h ≡ L̃trap

h when M̃ = I + (hΩ/2)2.

.. Analysis of Linear Resonance Stability. To study the linear resonance sta-

bility of this IMEX integrator, we consider a model problem where U and W both

correspond to linear oscillators. Let U (q) = 1
2 qT q and W (q) = 1

2 qTΩ2q , where

Ω = ωI for some ωÀ 1, and again let the mass matrix M = I . Although this is

something of a “toy problem”—obviously, one could simply combine U and W

into a single quadratic potential 1
2

(
1+ω2

)
qT q—it is illustrative for studying the

numerical resonance of multiple-time-stepping methods, since the system has no

external forcing terms and hence no real physical resonance.

To prove that the IMEX method does not exhibit linear resonance instability, we

show that the stability condition only requires that the time step be stable for the

explicit slow force, and is independent of the fast frequencyω. The idea of the proof

is to use the results from Section .., showing that the IMEX method is equivalent

to Störmer/Verlet with a modified mass matrix, and then to apply the well-known

stability criteria for Störmer/Verlet.

In particular, for a harmonic oscillator with unit mass and frequency ν, the

Störmer/Verlet method is linearly stable if and only if |hν| ≤ 2, as can be shown by

a straightforward calculation of the eigenvalues of the propagation matrix (Hairer

et al., , p. ). For a system with constant mass m, this condition generalizes to

h2ν2 ≤ 4m.

Theorem ... The IMEX method is linearly stable, for the system described above,

if and only if h ≤ 2 (i.e., if and only if h is a stable time step size for the slow oscillator

alone).

Proof. As proved in the previous section, the IMEX method for this system is equiv-

alent to Störmer/Verlet with the modified mass matrix I + (hΩ/2)2. Now, this

modified oscillatory system has constant mass m = 1+ (hω/2)2 and frequency
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ν=
p

1+ω2. Therefore, the necessary and sufficient condition for linear stability is

h2 (
1+ω2)≤ 4

(
1+ h2

4
ω2

)
,

and since the h2ω2 terms cancel on both sides, this is equivalent to h2 ≤ 4, or

h ≤ 2.

This shows that, in contrast to multiple-time-stepping methods, the IMEX

method does not exhibit linear resonance instability. It should be noted that non-

linear instability is known to be possible for the implicit midpoint method, although

even that can be avoided with a time step size restriction that is considerably weaker

than that required for explicit methods (see Ascher and Reich, a).

.. Numerical Experiments.

Coupled Linear Oscillators. To illustrate the numerical resonance behavior of the

variational IMEX scheme, as compared with a multiple-time-stepping method, we

consider the model problem from Section .. for dimension d = 1 (i.e., Q = R).

Figure . shows a log plot of the maximum absolute error in total energy (i.e., the

Hamiltonian) for both r-RESPA and the variational IMEX method, for a variety of

frequenciesω. MATLAB simulations were performed over the time interval [0,1000],

with fixed time step size h = 0.1, and with the normalized frequency ωh/π ranging

over (0,4.5]. Additionally, to fully resolve the fast oscillations, r-RESPA took  fast

substeps of size h/100 = 0.001 for each full time step of size h.

The r-RESPA method exhibits “spikes” in the total energy error near integer

values of ωh/π, corresponding to the parameters where resonance instability de-

velops and the numerical solution becomes unbounded. (The finite size of these

spikes is due to the fact that the numerical simulation was run only for a finite

interval of time. Interestingly, one also sees “negative spikes,” where the fast and

slow oscillations are exactly out-of-phase and cancel one another.) It should be

noted that the small substep size of r-RESPA is sufficient for stable integration of

the fast force alone; it is only the introduction of the slow force that makes things

unstable. By contrast, the maximum energy error for the variational IMEX method
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Figure .: Maximum energy error of r-RESPA and variational IMEX, integrated
over the time interval [0,1000] for a range of parameters ω. The r-RESPA method
exhibits resonance instability near integer values of ωh/π, while the variational
IMEX method remains stable.

is nearly constant for all values of ω, showing no sign of resonance. This is fully

consistent with the theoretical result obtained in Theorem ...

The Fermi–Pasta–Ulam Problem. As an example of a nontrivial highly oscillatory

problem with nonlinear slow potential, we chose the modified Fermi–Pasta–Ulam

(FPU) problem considered by Hairer et al. (, I. and XIII), whose treatment we

will now briefly review. The FPU problem consists of 2` unit point masses, which

are chained together, in series, by alternating weak nonlinear springs and stiff linear

springs. The displacements of the point masses are denoted q1, . . . , q2` ∈R (where

the endpoints q0 = q2`+1 = 0 are taken to be fixed), and their conjugate momenta

are pi = q̇i for i = 1, . . . ,2`. (This particular setup is due to Galgani et al., , and

is a variant of the problem originally introduced by Fermi, Pasta, and Ulam, .)
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In these variables, the FPU system has the Hamiltonian

H
(
q, p

)= 1

2

∑̀
i=1

(
p2

2i−1 +p2
2i

)+ ω2

4

∑̀
i=1

(
q2i −q2i−1

)2 +
∑̀
i=0

(
q2i+1 −q2i

)4 ,

which contains a quadratic potential for the ` stiff linear springs, each with fre-

quency ω, and a quartic potential for the `+1 soft nonlinear (cubic) springs. How-

ever, it is helpful to perform the coordinate transformation (following Hairer et al.,

, p. )

x0,i =
q2i +q2i−1p

2
, x1,i =

q2i −q2i−1p
2

,

y0,i =
p2i +p2i−1p

2
, y1,i =

p2i −p2i−1p
2

,

so that (modulo rescaling) x0,i corresponds to the location of the i th stiff spring’s

center, x1,i corresponds to its length, and y0,i , y1,i are the respective conjugate

momenta. Writing the Hamiltonian in these new variables, we have

H(x, y) = 1

2

∑̀
i=1

(
y2

0,i + y2
1,i

)
+ ω2

2

∑̀
i=1

x2
1,i

+ 1

4

[(
x0,1 −x1,1

)4 +
`−1∑
i=1

(
x0,i+1 −x1,i+1 −x0,i −x1,i

)4 + (
x0,`+x1,`

)4

]
,

which considerably simplifies the form of the fast quadratic potential.

Following the example treated numerically by Hairer et al. () and McLach-

lan and O’Neale (), we consider an instance of the FPU problem, integrated

over the time interval [0,200], with parameters `= 3, ω= 50, whose initial condi-

tions are

x0,1(0) = 1, y0,1(0) = 1, x1,1(0) =ω−1, y1,1(0) = 1,

with zero for all other initial values. This displays an interesting and complex

property of the FPU problem, called slow energy exchange, which results from the

slow nonlinear coupling between the stiff springs. If we consider only the energy in

the stiff springs, written as

I j
(
x1, j , y1, j

)= 1

2

(
y2

1, j +ω2x2
1, j

)
, j = 1,2,3,

then the initial conditions start with all of the energy in I1 and none in I2, I3. Over

the course of the time interval, this energy is transferred in a characteristic way
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from I1 to I3, gradually transitioning through the middle spring I2. Furthermore,

the total stiff energy I = I1 + I2 + I3 remains nearly constant, i.e., is an adiabatic

invariant of the system.

Figure . shows several numerical simulations of this FPU energy exchange,

computed both with Störmer/Verlet and with the variational IMEX method for

different choices of time step size. The first plot is a reference solution, computed

using Störmer/Verlet with h = 0.001, fully resolving the fast oscillations. However,

we see that the Störmer/Verlet solution’s quality and stability degrade rapidly as

we increase the step size (for h = 0.03, we have hω= 1.5, which is near the upper

end of the stability region |hω| ≤ 2). By contrast, the variational IMEX method

performs extremely well for h = 0.03–0.15, degrading gradually as the time step

size increases. Even as the numerical solution begins to undergo serious degra-

dation for h = 0.2–0.3, the qualitative structure of the energy exchange behavior

between I1, I2, I3 is still maintained. (Compare Hairer et al., , p. , Figure .;

see also McLachlan and O’Neale, , who examine a wide variety of geometric in-

tegrators, particularly trigonometric integrators, for the FPU problem, with respect

to both resonance stability and slow energy exchange.)

In Figure . we show the numerical behavior of the variational IMEX method,

applied to this same FPU problem, on a longer time scale (T = 4000) and for large

time steps (h = 0.1,0.3). At h = 0.1, the IMEX simulation still displays the correct

qualitative energy behavior, with respect to both the slow energy exchange and

the adiabatic invariant I , and the numerical solution remains bounded. However,

by h = 0.3, numerical stability has broken down, as oscillatory coupling in the fast

modes leads to unbounded amplitude growth. This illustrates one of the drawbacks

of implicit midpoint-type methods: despite the lack of linear resonances, numerical

instability can still result for very large time steps due to nonlinear coupling (Ascher

and Reich, a,b).

This example was chosen to demonstrate that the variational IMEX method

does not attain its stability merely by “smoothing out” the fast frequencies, in a

way that might destroy the structure of any fast-slow nonlinear coupling. Rather,

despite the fact that it does not resolve the fast frequencies, the method is still

capable of capturing the complex multiscale interactions seen in the FPU problem.
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(a) Reference solution:
Störmer/Verlet with time
step size h = 0.001
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(b) Störmer/Verlet with
h = 0.01
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(c) Störmer/Verlet with
h = 0.030 50 100 150 200
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(d) IMEX with h = 0.03
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(e) IMEX with h = 0.1
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(f) IMEX with h = 0.15
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(g) IMEX with h = 0.2
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(h) IMEX with h = 0.25
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(i) IMEX with h = 0.3

Figure .: The IMEX method robustly captures slow energy exchange in the Fermi–
Pasta–Ulam problem with ω= 50, even for large time steps. Because the fast force
is integrated implicitly, IMEX remains stable and degrades gradually as the time
step size increases—unlike the fully explicit Störmer/Verlet method, which rapidly
becomes unstable.
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(b) IMEX with h = 0.3

Figure .: Numerical simulation of the FPU problem for T = 4000, which shows
the behavior of the IMEX method on the ω2 scale. For h = 0.1, we already have
hω= 5, yet the oscillatory behavior and adiabatic invariant are qualitatively correct.
By contrast, for h = 0.3, the method has begun to blow up; oscillatory coupling is a
drawback of implicit midpoint methods for large time steps.

.. Analysis of Slow Energy Exchange in the IMEX Method. In the previous

section, the numerical experiments for the Fermi–Pasta–Ulam problem seemed

to suggest that the variational IMEX method preserves the slow energy exchange

between the fast oscillatory modes. This is somewhat surprising, since the method

does not actually resolve these fast oscillations. However, in this section, we will

prove that, in fact, this method does accurately reproduce the slow energy exchange

behavior, as long as the numerical solutions remain bounded. This is demonstrated

by showing that the variational IMEX method can be understood as a modified

impulse method; that is, the midpoint step exactly resolves the oscillations of some

modified differential equation. We can then apply some of the existing theory about

numerical energy exchange for impulse methods.

First, let us rewrite the fast oscillatory system as(
Ωq̇

ṗ

)
=

(
0 Ω

−Ω 0

)(
Ωq

p

)
,

so it follows that the exact solution satisfies(
Ωq(t +h)

p(t +h)

)
=

(
cos(hΩ) sin(hΩ)

−sin(hΩ) cos(hΩ)

)(
Ωq(t )

p(t )

)
.
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Now, in these transformed coordinates, the implicit midpoint method has the

expression (
I −hΩ/2

hΩ/2 I

)(
Ωqn+1

pn+1

)
=

(
I hΩ/2

−hΩ/2 I

)(
Ωqn

pn

)
.

Therefore, if we take the skew matrix

A =
(

0 hΩ

−hΩ 0

)
,

it follows that (
Ωqn+1

pn+1

)
= (I − A/2)−1 (I + A/2)

(
Ωqn

pn

)
.

Notice that the expression (I − A/2)−1 (I + A/2) = cay(A) is the Cayley transform,

which maps skew matrices to special orthogonal matrices (and can be seen as

an approximation to the exponential map). Hence the stability matrix is special

orthogonal, so we can write(
Ωqn+1

pn+1

)
=

(
cos

(
hΩ̃

)
sin

(
hΩ̃

)
−sin

(
hΩ̃

)
cos

(
hΩ̃

))(
Ωqn

pn

)

for some modified frequency Ω̃. Therefore, the stability matrix for the implicit

midpoint method corresponds to the exact flow matrix for a modified oscillatory

system.

As an example, suppose we have Ω = (
0 0
0 ωI

)
for some constant frequency ω.

Applying the Cayley transform, it can be seen that the modified frequency ω̃ satisfies

hω/2 = tan(hω̃/2) .

Squaring both sides, this becomes

(hω/2)2 = tan2 (hω̃/2) = 1−cos(hω̃)

1+cos(hω̃)
,

which finally gives the solution for the modified frequency,

ω̃= 1

h
arccos

(
1− (hω/2)2

1+ (hω/2)2

)
.
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Remark. This perspective provides another explanation as to why the variational

IMEX method does not exhibit resonance: we always have hω̃ < π. In fact, the

Cayley transform does not map to a rotation by π, except in the limit as hω→∞.

Therefore, for any finite h and ω, we will never encounter the resonance points

corresponding to integer multiples of π.

However, it should be noted that this leads to another possible source of in-

stability, if the time step size h becomes too large. Since ω̃ < π/h, the modified

frequency ω̃ must shrink as h grows. If ω̃ is very small, this can lead to unbounded

amplitude growth in the fast modes (as we saw in Figure .) since it requires less

energy to induce this amplification.

Since the implicit midpoint method has now been seen as the exact solution

of a modified system, we can write the variational IMEX method as the following

modified impulse scheme:

Step : p+
n = pn − h

2
∇U

(
qn

)
,

Step :

(
Ωqn+1

p−
n+1

)
=

(
cos

(
hΩ̃

)
sin

(
hΩ̃

)
−sin

(
hΩ̃

)
cos

(
hΩ̃

))(
Ωqn

p+
n

)
,

Step : pn+1 = p−
n+1 −

h

2
∇U

(
qn+1

)
.

Suppose again that Ω = (
0 0
0 ωI

)
for some constant frequency ω, and likewise Ω̃ =(

0 0
0 ω̃I

)
. (This includes the case of the FPU problem.) We now finally have what

we need to prove our main result on the slow energy exchange behavior of the

variational IMEX method, following essentially the same approach as Hairer et al.

(, XIII, especially XIII.).

Theorem ... Let the variational IMEX method be applied to the problem above,

and suppose the numerical solution remains bounded. Then the ordinary differential

equation describing the slow energy exchange in the numerical solution is consistent

with that for the exact solution; this holds up to order O
(
ω−3

)
.

Proof. As demonstrated by Hairer et al. (, p. ), the slow energy exchange

behavior in the exact solution is governed by the equation

2iωż1 =
∂g1

∂x1

(
y0,0

)
z1 +O

(
ω−3) ,
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where the variables appearing above are coefficients in the modulated Fourier

expansion of the exact solution. Furthermore, Hairer et al. establish that (bounded)

numerical solutions for the unmodified impulse method satisfy

2iωżh,1 =
∂g1

∂x1

(
yh,0,0

)
zh,1 +O

(
ω−3) ,

where the variables are now coefficients in the modulated Fourier expansion of

the numerical solution. Hence, slow energy exchange for the unmodified impulse

method is consistent with that for the exact solution.

For the modified impulse method, we must now replace ω with ω̃ on the left

hand side of the equation above. However, notice that Step  of the modified

method advances the original state vector
(
Ωqn
pn

)
, rather than the modified

(
Ω̃qn
pn

)
.

Changing from
(
Ωqn
pn

)
to

(
Ω̃qn
pn

)
introduces a scaling factor of ω̃/ω on the right hand

side. Therefore, the variational IMEX method satisfies the slow energy exchange

equation

2i ω̃żh,1 =
ω̃

ω

∂g1

∂x1

(
yh,0,0

)
zh,1 +O

(
ω−4ω̃

)
.

Finally, cancelling the ω̃ factors and multiplying by ω, we once again get

2iωżh,1 =
∂g1

∂x1

(
yh,0,0

)
zh,1 +O

(
ω−3) ,

which is the same as the original impulse method. This completes the proof.

2.3 variational trigonometric integrators

Another popular approach to highly oscillatory problems has been that of trigono-

metric integrators (see Hairer et al., , Chapter XIII). These methods are con-

structed to exactly integrate a harmonic oscillator, which corresponds to the case

where the slow potential vanishes. In general, these can be written either as a

two-step method on Q ×Q

qn+1 −2cos(hΩ) qn +qn−1 = h2Ψg
(
Φqn

)
,
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or as a one-step method on T ∗Q

q1 = cos(hΩ) q0 +Ω−1 sin(hΩ)+ h2

2
Ψg0

p1 =−Ωsin(hΩ) q0 +cos(hΩ) p0 +
h

2

(
Ψ0g0 +Ψ1g1

)
,

where these Ψ and Φ correspond to a certain choice of filter functions evaluated

hΩ.

In this section, we show how these integrators can be derived from a discrete

Lagrangian variational principle, using a quadrature approximation that is specially

tailored for “nearly linear” highly oscillatory systems. We begin by doing this for

the simplified 1-D case where q and ω are scalars, and move on to the general case

where q ∈Rd is a vector andΩ ∈Rd×d a matrix.

.. Scalar Case.

Exact Quadrature for Oscillatory Lagrangians. Suppose that we have a purely

oscillatory system with the Lagrangian

L
(
q, q̇

)= 1

2
q̇2 − 1

2
ω2q2.

We wish to construct a discrete Lagrangian that is exact for systems of this type.

Let q(t ) = a cos(ωt )+b sin(ωt ), and define q0 = q (−h/2) and q1 = q (h/2). Then

the coefficients a and b can be expressed as

a = q0 +q1

2cos
(

hω
2

) , b = q1 −q0

2sin
(

hω
2

) .

Next, we compute the integral∫ h/2

−h/2
L

(
q, q̇

)
d t =

∫ h/2

−h/2

[
1

2
q̇2 − 1

2
ω2q2

]
d t

= ω

2sin(hω)

[
cos(hω)

(
q2

0 +q2
1

)−2q0q1
]

= ω

2sin(hω)

[(
q1 −q0

)2 − (1−cos(hω))
(
q2

0 +q2
1

)]
= ω

2sin(hω)

[
h2

( q1 −q0

h

)2
− 4

ω2 sin2
(

hω

2

)(
1

2
ω2q2

0 +
1

2
ω2q2

1

)]
= h2ω

2sin(hω)

[( q1 −q0

h

)2
− sinc2

(
hω

2

)(
1

2
ω2q2

0 +
1

2
ω2q2

1

)]
= h

2sinc(hω)

[( q1 −q0

h

)2
− sinc2

(
hω

2

)(
1

2
ω2q2

0 +
1

2
ω2q2

1

)]
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which begins to resemble the kinetic-minus-potential form of a discrete Lagrangian

for this purely oscillatory system.

Generalization to Highly Oscillatory Problems. Inspired by this, we define the

following discrete Lagrangian

Lh
(
q0, q1

)= h

2sinc(hω)

[( q1 −q0

h

)2
− sinc2

(
hω

2

)[
V

(
q0

)+V
(
q1

)]]
,

where V (q) = 1
2ω

2q2 +U (q). (This is exact when the slow potential U vanishes.) To

allow filtering, we define an even more general discrete Lagrangian

Lh
(
q0, q1

)= h

2sinc(hω)

[( q1 −q0

h

)2
−ΨΦ−1 [

V
(
Φq0

)+V
(
Φq1

)]]
,

whereΨΦ= sinc2(hω/2). The resulting one-step scheme is

q1 = cos(hω) q0 +ω−1 sin(hω) p0 +
h2

2
Ψg0

p1 =−ωsin(hω) q0 +cos(hω) p0 +
h

2

(
Ψ0g0 +Ψ1g1

)
,

where gn =−∇U
(
Φqn

)
,Ψ1 sinc(hω) =Ψ, andΨ0 = cos(hω)Ψ1.

.. Vector Case. More generally, suppose thatΩ2 is a symmetric, positive semidef-

inite matrix, and that the fast oscillatory potential is 1
2 qTΩ2q . Then, similar to the

previous case, we have∫ h/2

−h/2
L

(
q, q̇

)
d t = h

2

[( q1 −q0

h

)T
(sinc(hΩ))−1

( q1 −q0

h

)
−1

2
qT

0

[
Ωsinc

(
hΩ

2

)]2

(sinc(hΩ))−1 q0 −
1

2
qT

1

[
Ωsinc

(
hΩ

2

)]2

(sinc(hΩ))−1 q1

]
.

This suggests a discrete Lagrangian of the general form

Lh
(
q0, q1

)= h

2

( q1 −q0

h

)T
Ψ−1Φ

( q1 −q0

h

)
− h

2

[
V

(
Φq0

)+V
(
Φq1

)]
.

Taking the partial derivatives of this discrete Lagrangian, we have

p0 =−D1
(
q0, q1

)=Ψ−1Φ
( q1 −q0

h

)
+ h

2
Φ∇V

(
Φq0

)
p1 = D2

(
q0, q1

)=Ψ−1Φ
( q1 −q0

h

)
− h

2
Φ∇V

(
q1

)
.
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This gives a two-step scheme of the form

qn+1 −2qn +qn−1 =−hΨ∇V
(
Φqn

)
.

The associated one-step scheme is

q1 = q0 +hΨΦ−1p0 −
h2

2
Ψ∇V

(
Φq0

)
p1 =Ψ−1Φ

( q1 −q0

h

)
− h

2
Φ∇V

(
q1

)
= p0 −

h

2
Φ

[∇V
(
Φq0

)+∇V
(
Φq1

)]
.

Highly Oscillatory Problem. As before, we now suppose that the potential has the

form V (q) = 1
2 qTΩ2q +U (q), and define the slow force g (q) =−∇U (q). Then the

one-step scheme becomes

q1 = q0 +hΨΦ−1p0 −
h2

2
Ψ

[
Ω2Φq0 − g0

]
=

(
I − h2

2
ΨΩ2Φ

)
q0 +hΨΦ−1p0 +

h2

2
Ψg0,

and similarly, for the momentum,

p1 = p0 −
h

2
Φ

[
Ω2Φq0 − g0 +Ω2Φq1 − g1

]
=−h

2
Φ2Ω2 (

q0 +q1
)+p0 +

h

2
Φ

(
g0 + g1

)
=−h

2
Φ2Ω2

[(
2I − h2

2
ΨΩ2Φ

)
q0 +hΨΦ−1p0 +

h2

2
Ψg0

]
+p0 +

h

2
Φ

(
g0 + g1

)
=−hΦ2Ω2

(
I − h2

4
ΨΦΩ2

)
q0 +

(
I − h2

2
ΨΦΩ2

)
p0 +

h

2
Φ

[(
I − h2

2
ΨΦΩ2

)
g0 + g1

]
.

Back to Exact Quadrature. Now, in the exact quadrature case, we had the filters

Φ= sinc

(
hΩ

2

)
sinc(hΩ)−1/2 , Ψ=Φsinc(hΩ) = sinc

(
hΩ

2

)
sinc(hΩ)1/2 .

If we substitute the productΨΦ= sinc2
(

hΩ
2

)
, we get

I − h2

4
ΨΦΩ2 = I −

(
hΩ

2

)2

sinc2
(

hΩ

2

)
= 1− sin2

(
hΩ

2

)
= cos2

(
hΩ

2

)
,
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as well as

hΦ2Ω2 =
hΩ2 sinc2

(
hΩ

2

)
sinc(hΩ)

=
4Ωsin2

(
hΩ

2

)
sin(hΩ)

=
4Ωsin2

(
hΩ

2

)
2sin(hΩ)cos(hΩ)

= 2Ω tan

(
hΩ

2

)
,

and so multiplying these together, we arrive at

2Ω tan

(
hΩ

2

)
cos2

(
hΩ

2

)
= 2Ωsin

(
hΩ

2

)
cos

(
hΩ

2

)
=Ωsin(hΩ) .

Similarly, for the other terms

I − h2

2
ΨΦΩ2 = 1−2sin2

(
hΩ

2

)
= cos(hΩ) .

To simplify the g0 and g1 terms, we define

Ψ1 =Φ, Ψ0 =Ψ1 cos(hΩ) .

The final one-step algorithm, in this case, is thus

q1 = cos(hΩ) q0 +Ω−1 sin(hΩ)+ h2

2
Ψg0

p1 =−Ωsin(hΩ) q0 +cos(hΩ) p0 +
h

2

(
Ψ0g0 +Ψ1g1

)
,

the same form as Hairer et al. ().



Chapter Three

Computational Electromagnetics

In this chapter, we introduce a general family of variational, multisymplectic nu-

merical methods for solving Maxwell’s equations, using discrete differential forms

in spacetime. In doing so, we demonstrate several new results, which apply both

to some well-established numerical methods and to new methods introduced

here. First, we show that Yee’s finite-difference time-domain (FDTD) scheme, along

with a number of related methods, are multisymplectic and derive from a discrete

Lagrangian variational principle. Second, we generalize the Yee scheme to unstruc-

tured meshes, not just in space, but in 4-D spacetime. This relaxes the need to take

uniform time steps, or even to have a preferred time coordinate at all. Finally, as an

example of the type of methods that can be developed within this general frame-

work, we introduce a new asynchronous variational integrator (AVI) for solving

Maxwell’s equations. These results are illustrated with some prototype simulations

that show excellent energy and conservation behavior.

3.1 introduction

The Yee scheme (also known as finite-difference time-domain, or FDTD) was in-

troduced in Yee () and remains one of the most successful numerical methods

used in the field of computational electromagnetics, particularly in the area of mi-

crowave problems. Although it is not a “high-order” method, it is still preferred for

many applications because it preserves important structural features of Maxwell’s

equations that other methods fail to capture. Among these distinguishing attributes

are that the electrical charge density constraint ρ = ∇·D is exactly conserved in

a discrete sense, and electrostatic solutions of the form E = −∇φ indeed remain

stationary in time (see Bondeson, Rylander, and Ingelström, ). In this chapter,


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we show that these desirable properties are direct consequences of the variational

and discrete differential structure of the Yee scheme, which mirrors the geometry

of Maxwell’s equations. Moreover, we will show how to construct other variational

methods that, as a result, share these same numerical properties, while at the same

time applying to more general domains.

.. Variational Integrators and Symmetry. Structure-preserving integrators have

been used primarily for the simulation of classical mechanical systems, where

features such as symplecticity, conservation of momentum, and conservation of

energy are essential. (For a survey of various methods and applications, see Hairer

et al., .) Among these, variational integrators are developed by discretizing the

Lagrangian variational principle of a system, and then requiring that numerical tra-

jectories satisfy a discrete version of Hamilton’s stationary-action principle. These

methods are automatically symplectic, and they exactly preserve discrete momenta

associated to symmetries of the Lagrangian: for instance, systems with transla-

tional invariance will conserve a discrete linear momentum, those with rotational

invariance will conserve a discrete angular momentum, etc. In addition, variational

integrators can be seen to display good long-time energy behavior, without artificial

numerical damping (see Marsden and West, , for a comprehensive overview of

key results).

This variational approach was extended to discretizing general multisymplec-

tic field theories, with an application to nonlinear wave equations, in Marsden

et al. (, ), which developed the multisymplectic approach for continuum

mechanics. Building on this work, Lew et al. () introduced asynchronous vari-

ational integrators (AVIs), with which it becomes possible to choose a different

time step size for each element of the spatial mesh, while still preserving the same

variational and geometric structure as uniform-time-stepping schemes. These

methods were implemented and shown to be not only practical, but in many cases

superior to existing methods for problems such as nonlinear elastodynamics. Some

further developments are given in Lew, Marsden, Ortiz, and West ().

While there have been attempts to apply the existing AVI theory to computa-

tional electromagnetics, these efforts encountered a fundamental obstacle. The

key symmetry of Maxwell’s equations is not rotational or translational symmetry,
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as in mechanics, but a differential gauge symmetry. Without taking additional

care to preserve this gauge structure, even variational integrators cannot be ex-

pected to capture the geometry of Maxwell’s equations. As will be explained, we

overcome this obstacle by combining variational methods with Discrete Exterior

Calculus (DEC). This differential/gauge structure also turns out to be important for

the numerical performance of the method, and is one of the hallmarks of the Yee

scheme.

.. Preserving Discrete Differential Structure. As an illustration of this, consider

the basic relation B =∇×A, where B is the magnetic flux and A is the magnetic vector

potential. Because of the vector calculus identities ∇·∇× = 0 and ∇×∇= 0, this

equation has two immediate and important consequences. First, B is automatically

divergence-free. Second, any transformation A 7→ A+∇ f has no effect on B; this

describes a gauge symmetry, for which the associated conserved momentum is

∇×D−ρ (which must equal zero by Gauss’ law). A similar argument also explains

the invariance of electrostatic solutions, since E =−∇φ is curl-free and invariant

under constant shifts in the scalar potential φ. Therefore, a proper variational

integrator for electromagnetism should also preserve a discrete analog of these

differential identities.

This can be done by viewing the objects of electromagnetism not as vector fields,

but as differential forms in 4-D spacetime, as is typically done in the literature on

classical field theory. Using the framework of DEC to discretize these differential

forms, as previously introduced in Section .., the resulting variational integrators

automatically respect discrete differential identities such as d2 = 0 (which contains

the previous div-curl-grad relations) and Stokes’ theorem. Consequently, they also

respect the gauge symmetry of Maxwell’s equations, and therefore preserve the

associated discrete momentum.

.. Geometry Has Practical Consequences. The Yee scheme, as we will show, is

a method of precisely this type, which explains many of its observed numerical

qualities. For instance, one of its notable features is that the electric field E and

magnetic field H do not live at the same discrete space or time locations, but at

separate nodes on a staggered lattice. The reason why this particular setup leads
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to improved numerics is not obvious: if we view E and H simply as vector fields

in 3-space—the exact same type of mathematical object—why shouldn’t they live

at the same points? Indeed, many finite element method (FEM) approaches do

exactly this, resulting in a “nodal” discretization. However, from the perspective of

differential forms in spacetime, it becomes clear that the staggered-grid approach is

more faithful to the structure of Maxwell’s equations: as we will see, E and H come

from objects that are dual to one another (the spacetime forms F and G =∗F ), and

hence they naturally live on two staggered, dual meshes.

The argument for this approach is not merely a matter of theoretical interest:

the geometry of Maxwell’s equations has important practical implications for nu-

merical performance. For instance, the vector-field-based nodal discretization,

used in FEM, results in spurious artifacts due to its failure to respect the underlying

geometric structure. The Yee scheme, on the other hand, produces resonance spec-

tra in agreement with theory, without spurious modes (see Bondeson et al., ).

Furthermore, it has been shown in Haber and Ascher () that staggered-grid

methods can be used to develop fast numerical methods for electromagnetism,

even for problems in heterogeneous media with highly discontinuous material

parameters such as conductivity and permeability.

By developing a structure-preserving, geometric discretization of Maxwell’s

equations, not only can we better understand the Yee scheme and its characteristic

advantages, but we can also construct more general methods that share its desir-

able properties. This family of methods includes the “Yee-like” scheme of Bossavit

and Kettunen (), which presented the first extension of Yee’s scheme to un-

structured grids (e.g., simplicial meshes rather than rectangular lattices). General

methods like these are highly desirable: rectangular meshes are not always practi-

cal or appropriate to use in applications where domains with curved and oblique

boundaries are needed (see, for instance Clemens and Weiland, ). By allowing

general discretizations while still preserving geometry, one can combine the best

attributes of the FEM and Yee schemes.

.. Contributions. Using DEC as a structure-preserving, geometric framework

for general discrete meshes, we have obtained the following results:
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. The Yee scheme is actually a variational integrator: that is, it can be obtained

by applying Hamilton’s principle of stationary action to a discrete Lagrangian.

. Consequently, the Yee scheme is multisymplectic and preserves discrete mo-

mentum maps (i.e., conserved quantities analogous to the continuous case

of electromagnetism). In particular, the conserved electrical charge density

is understood as a discrete momentum map of this integrator, while the

preservation of electrostatic potential solutions corresponds to the identity

d2 = 0, where d is the discrete exterior derivative operator.

. We also create a foundation for more general schemes, allowing arbitrary dis-

cretizations of spacetime, not just uniform time steps on a spatial mesh. One

such scheme, introduced here, is a new asynchronous variational integrator

(AVI) for Maxwell’s equations, where each spatial element is assigned its own

time step size and evolves “asynchronously” with its neighbors. This means

that one can choose to take small steps where greater refinement is needed,

while still using larger steps for other elements. Since refining one part of

the mesh does not restrict the time steps taken elsewhere, an AVI can be

computationally efficient and numerically stable with fewer total iterations.

In addition to the AVI scheme, we also describe how completely covariant

spacetime integrators for electromagnetism can be implemented, without

even requiring a + split into space and time components.

.. Outline. We will begin by reviewing Maxwell’s equations: first developing

the differential forms expression from a Lagrangian variational principle, and next

showing how this is equivalent to the familiar vector calculus formulation. We will

then motivate the use of DEC for computational electromagnetics, explaining how

electromagnetic quantities can be modeled using discrete differential forms and

operators on a spacetime mesh. These DEC tools will then be used to set up the

discrete Maxwell’s equations, and to show that the resulting numerical algorithm

yields the Yee and Bossavit–Kettunen schemes as special cases, as well as a new

AVI method. Finally, we will demonstrate that the discrete Maxwell’s equations

can also be derived from a discrete variational principle, and will explore its other
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discrete geometric properties, including multisymplecticity and momentum map

preservation.

3.2 maxwell’s equations

This section quickly reviews the differential forms approach to electromagnetism,

in preparation for the associated discrete formulation given in the next section. For

more details, the reader can refer to Bossavit () and Gross and Kotiuga ().

.. From Vector Fields to Differential Forms. Maxwell’s equations, without free

sources of charge or current, are traditionally expressed in terms of four vector

fields in 3-space: the electric field E, magnetic field H, electric flux density D, and

magnetic flux density B. To translate these into the language of differential forms,

we begin by replacing the electric field with a 1-form E and the magnetic flux

density by a 2-form B . These have the coordinate expressions

E = Ex dx +Ey dy +Ez dz

B = Bx dy ∧dz +By dz ∧dx +Bz dx ∧dy,

where E = (Ex ,Ey ,Ez ) and B = (Bx ,By ,Bz ). The motivation for choosing E as a

1-form and B as a 2-form comes from the integral formulation of Faraday’s law,∮
C

E ·dl =− d

dt

∫
S

B ·dA,

where E is integrated over curves and B is integrated over surfaces. Similarly,

Ampère’s law, ∮
C

H ·dl = d

dt

∫
S

D ·dA,

integrates H over curves and D over surfaces, so we can likewise introduce a 1-form

H and a 2-form D .

Now, E and B are related to D and H through the usual constitutive relations

D = εE, B =µH.

As shown in Bossavit and Kettunen (), we can view ε and µ as corresponding

to Hodge operators ∗ε and ∗µ, which map the 1-form “fields” to 2-form “fluxes” in
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space. Therefore, this is compatible with viewing E and H as 1-forms, and D and B

as 2-forms.

Note that in a vacuum, with ε= ε0 and µ=µ0 constant, one can simply express

the equations in terms of E and B, choosing appropriate geometrized units such

that ε0 = µ0 = c = 1, and hence ignoring the distinction between E and D and be-

tween B and H. This is typically the most familiar form of Maxwell’s equations, and

the one that most students of electromagnetism first encounter. In this presen-

tation, we will restrict ourselves to the vacuum case with geometrized units; for

geometric clarity, however, we will always distinguish between the 1-forms E and

H and the 2-forms D and B .

Finally, we can incorporate free sources of charge and current by introducing

the charge density 3-form ρ dx ∧dy ∧dz, as well as the current density 2-form

J = Jx dy ∧dz + Jy dz ∧dx + Jz dx ∧dy . These are required to satisfy the continuity

of charge condition ∂tρ+dJ = 0, which can be understood as a conservation law

(in the finite volume sense).

.. The Faraday and Maxwell 2-Forms. In Lorentzian spacetime, we can now

combine E and B into a single object, the Faraday 2-form

F = E ∧dt +B.

There is a theoretical advantage to combining the electric field and magnetic flux

into a single spacetime object: this way, electromagnetic phenomena can be de-

scribed in a relativistically covariant way, without favoring a particular split of

spacetime into space and time components. In fact, we can turn the previous con-

struction around: take F to be the fundamental object, with E and B only emerging

when we choose a particular coordinate frame. Taking the Hodge star of F , we also

get a dual 2-form

G =∗F = H ∧dt −D,

called the Maxwell 2-form. The equation G =∗F describes the dual relationship

between E and B on one hand, and D and H on the other, that is expressed in the

constitutive relations.
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.. The Source 3-Form. Likewise, the charge density ρ and current density J

can be combined into a single spacetime object, the source 3-form

J = J ∧dt −ρ.

Having defined J in this way, the continuity of charge condition simply requires

that J be closed, i.e., dJ = 0.

.. Electromagnetic Variational Principle. Let A be the electromagnetic poten-

tial 1-form, satisfying F = dA, over the spacetime manifold X . Then define the

4-form Lagrangian density

L =−1

2
dA∧∗dA+ A∧J ,

and its associated action functional

S[A] =
∫

X
L .

Now, take a variation α of A, where α vanishes on the boundary ∂X . Then the

variation of the action functional along α is

dS[A] ·α= d

dε

∣∣∣∣
ε=0

S[A+εα]

=
∫

X

(−dα∧∗dA+α∧J
)

=
∫

X
α∧ (−d∗dA+J

)
,

where in this last equality we have integrated by parts, using the fact thatα vanishes

on the boundary. Hamilton’s principle of stationary action requires this variation to

be equal to zero for arbitrary α, thus implying the electromagnetic Euler–Lagrange

equation,

d∗dA =J . (.)

.. Variational Derivation of Maxwell’s Equations. Since G = ∗F = ∗dA, then

clearly Equation . is equivalent to dG =J . Furthermore, since d2 = 0, it follows
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that dF = d2 A = 0. Hence, Maxwell’s equations with respect to the Maxwell and

Faraday 2-forms can be written as

dF = 0 (.)

dG =J . (.)

Suppose now we choose the standard coordinate system (x, y, z, t ) on Minkowski

space X = R3,1, and define E and B through the relation F = E ∧dt +B . Then a

straightforward calculation shows that Equation . is equivalent to

∇×E+∂t B = 0 (.)

∇·B = 0. (.)

Likewise, if G =∗F = H ∧dt −D , then Equation . is equivalent to

∇×H−∂t D = J (.)

∇·D = ρ. (.)

Hence this Lagrangian, differential forms approach to Maxwell’s equations is strictly

equivalent to the more classical vector calculus formulation in smooth spacetime.

However, in discrete spacetime, we will see that the differential forms version is not

equivalent to an arbitrary vector field discretization, but rather implies a particular

choice of discrete objects.

.. Generalized Hamilton–Pontryagin Principle for Maxwell’s Equations. We

can also derive Maxwell’s equations, variationally, by using a similar approach to the

generalized Hamilton–Pontryagin principle, which we introduced in Section ..

for scalar fields. To do this, we treat A and F as separate fields, while G acts as a

Lagrange multiplier, weakly enforcing the constraint F = dA. Define the extended

action to be

S[A,F,G] =
∫

X

[
−1

2
F ∧∗F + A∧J + (F −dA)∧G

]
.
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Then, taking the variation of the action along some α,φ,γ (vanishing on ∂X ), we

have

dS[A,F,G] · (α,φ,γ
)= ∫

X

[−φ∧∗F +α∧J + (
φ−dα

)∧G + (F −dA)∧γ
]

=
∫

X

[
α∧ (

J −dG
)+φ∧ (G −∗F )+ (F −dA)∧γ

]
.

Therefore, setting this equal to zero, we get the equations

dG =J , G =∗F, F = dA.

This is precisely equivalent to Maxwell’s equations, as derived above. However,

this approach provides some additional insight into the geometric structure of

electromagnetics: the gauge condition F = dA and constitutive relations G = ∗F

are explicitly included in the equations of motion, as a direct result of the variational

principle.

.. Reducing the Equations. When solving an initial value problem, it is not

necessary to use all of Maxwell’s equations to evolve the system forward in time. In

fact, the curl equations . and . automatically conserve the quantities ∇·B and

∇·D−ρ. Therefore, the divergence equations . and . can be viewed simply as

constraints on initial conditions, while the curl equations completely describe the

time evolution of the system.

There are a number of ways to see why we can justify eliminating the divergence

equations. A straightforward way is to take the divergence of Equations . and ..

Since ∇·∇×= 0, we are left with

∂t (∇·B) = 0, ∂t (∇·D)+∇· J = ∂t
(∇·D−ρ)= 0.

Therefore, if the divergence constraints are satisfied at the initial time, then they

are satisfied for all time, since the divergence terms are constant.

Another approach is to notice that Maxwell’s equations depend only on the

exterior derivative dA of the electromagnetic potential, and not on the value of

A itself. Therefore, the system has a gauge symmetry: any gauge transformation

A 7→ A +d f leaves dA, and hence Maxwell’s equations, unchanged. Choosing

a time coordinate, we can then partially fix the gauge so that the electric scalar
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potential φ = A (∂/∂t ) = 0 (the so-called Weyl gauge), and so A has only spatial

components. In fact, these three remaining components correspond to those of

the usual vector potential A. The reduced Euler–Lagrange equations in this gauge

consist only of Equation ., while the remaining gauge symmetry A 7→ A+∇ f yields

a momentum map that automatically preserves ∇·D−ρ in time. Equations . and

. are automatically preserved by the identity d2 A = 0; they are not actually part of

the Euler–Lagrange equations. A more detailed exposition of these calculations will

be given in Section ...

3.3 discrete forms in computational electromagnetics

In Section .., we gave a quick review of the fundamental objects and operations

of Discrete Exterior Calculus (DEC), a structure-preserving calculus of discrete

differential forms. By construction, DEC automatically preserves a number of

important geometric structures, and hence it provides a fully discrete analog of

the tools used in the previous section to express the differential forms version

of Maxwell’s equations. In subsequent sections, we will use this framework to

formulate Maxwell’s equations discretely, emulating the continuous version.

.. Rationale Behind DEC for Computational Electromagnetism. Modern com-

putational electromagnetism started in the s, when the finite element method

(FEM), based on nodal basis functions, was used successfully to discretize the dif-

ferential equations governing 2-D static problems formulated in terms of a scalar

potential. Unfortunately, the initial success of the FEM approach appeared unable

to carry over to 3-D problems without spurious numerical artifacts. With the in-

troduction of edge elements in Nédélec () came the realization that a better

discretization of the geometric structure of Maxwell’s electromagnetic theory was

key to overcoming this obstacle (see Gross and Kotiuga,  for more historical

details). Mathematical tools developed by Weyl and Whitney in the s, in the

context of algebraic topology, turned out to provide the necessary foundations on

which robust numerical techniques for electromagnetism can be built, as detailed

in Bossavit ().
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.. Initial and Boundary Values with DEC. Particular care is required to properly

enforce initial and boundary conditions on the discrete spacetime boundary ∂K .

For example, in electromagnetism, we may wish to set initial conditions for E and

B at time t0—but while B is defined on ∂K at t0, E is not. In fact, as we will see,

E lives on edges that are extruded between the time slices t0 and t1, so unless we

modify our definitions, we can only initialize E at the half-step t1/2. (This half-

step issue also arises with the standard Yee scheme.) There are some applications

where it may be acceptable to initialize E and B at separate times (for example,

when the fields are initialized randomly and integrated for a long time to compute

a resonance spectrum), but we wish to be able to handle the more general case.

Although our previous exposition of DEC thus far applies anywhere away from a

boundary, notions as simple as “dual cell” need to be defined carefully on or near

∂K .

For a primal mesh K , the dual mesh ∗K is defined as the Voronoi dual of K

restricted to K . This truncates the portion of the dual cells extending outside of

K ; compare Figure . with the earlier Figure .. This new definition results in the

addition of a dual vertex at the circumcenter of each boundary (n−1)-simplex, in

addition to the interior n-simplices as previously defined. To complete the dual

mesh ∗K , we add a dual edge between adjacent dual vertices on the boundary, as

well as between dual boundary vertices and their neighboring interior dual vertices,

and proceed similarly with higher-dimensional dual cells. For intuition, one can

imagine the (n −1)-dimensional boundary to be a vanishingly thin n-dimensional

shell. That is, each boundary (k −1)-simplex can be thought of as a prismal k-cell

that has been “squashed flat” along the boundary normal direction. This process is

quite similar to the use of “ghost cells” at the boundary, as is commonly done for

finite volume methods (see LeVeque, ). Note that these additional dual cells

provide the boundary ∂K with its own dual mesh ∗(∂K ). In fact, the boundary of

the dual is now equal to the dual of the boundary, i.e., ∂(∗K ) =∗(∂K ). Returning to

the example of initial conditions on E and B , we recall that E is defined on extruded

faces normal to the time slice t0. Therefore, thanks to the proper restriction of

the Voronoi diagram to the domain, we can now define E on edges in ∂K at time

t0, where these edges can be understood as vanishingly thin faces (i.e., extruded

between some t−ε and t0 for ε→ 0). Notice finally that with this construction of
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Figure .: In this 2-D example, the dual mesh is properly defined near the boundary
by adding dual vertices on the boundary edges. The restricted Voronoi cells of the
primal boundary vertices (shaded at right) thus have boundaries containing both
dual edges (dashed lines) and primal boundary half-edges.

∗K , there is a dual relationship between Dirichlet conditions on the dual mesh

and Neumann conditions on the primal mesh, e.g., between primal fields and dual

fluxes, as expected.

.. Discrete Integration by Parts with Boundary Terms. With the dual mesh

properly defined, dual forms can now be defined on the boundary. Therefore,

the discrete duality between d and δ can be generalized to include nonvanishing

boundary terms. If α is a primal (k −1)-form and β is a primal k-form, then

(
dα,β

)= (
α,δβ

)+〈
α∧∗β,∂K

〉
. (.)

In the boundary integral, α is still a primal (k − 1)-form on ∂K , while ∗β is an

(n −k)-form taken on the boundary dual ∗(∂K ). Equation . is readily proved

using the familiar method of discrete “summation by parts,” and thus agrees with

the integration by parts formula for smooth differential forms.

.. A Spectrally Accurate Discrete Hodge Star. Throughout this chapter, we will

exclusively use the “diagonal” approximation to the discrete Hodge star operator,

although it is possible to construct higher-order Hodge stars. Because of the popu-

larity of spectral methods in the computational electromagnetics community, we

now show briefly how a spectral Hodge star may be constructed on a structured,

periodic mesh.
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Spectral Derivative at Primal Nodes. Suppose we have a 2π-periodic function f ,

which is discretized by sampling f j = f (x j ) at the N equally spaced points (where

N is an even integer)

x j = j h, for j =−N
2 , . . . , N

2 −1, h = 2π

N
. (.)

Spectral methods define a discrete derivative operator by using the property of the

Fourier transform

f̂ ′
k = i k f̂k .

Replacing this by the N -point discrete Fourier transform, we define the operator

Dh to be �Dh f k = i k f̂k .

This provides an approximation to f ′(x j ) that is spectrally accurate and can be

implemented efficiently using the Fast Fourier Transform.

Spectral Derivative at Dual Nodes. However, in DEC, it is essential that the deriva-

tives be defined at the half steps x j+1/2, which are the nodes of the dual mesh. The

function f can easily be shifted to these points by multiplying in the frequency

domain à( f+1/2
)

k = e i kh/2 f̂k ,

so that the spectral derivative at half steps becomes

á(
Dh f+1/2

)
k = i ke i kh/2 f̂k .

Modifying the Hodge Star instead of the Exterior Derivative. In DEC, the exterior

derivative d is defined to satisfy a discrete Stokes’ theorem, which in dimension 1 is(
d f

)
j , j+1 = f j+1 − f j ,

corresponding to the fundamental theorem of calculus. This can be written in the

frequency domain as

d̂ f k =
(
e i kh −1

)
f̂k .

Since d is purely a topological operator, maintaining this definition is essential to

preserving differential structure. Therefore, to obtain a higher order of accuracy,

we must focus instead on tuning the Hodge star, which is a geometric operator.
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Spectral Discrete Hodge Star. We wish to construct an operator ∗ taking discrete

0-forms to 1-forms, such that

d f = (
Dh f+1/2

)
dx =∗(

Dh f+1/2
)

,

i.e., so that DEC agrees with the spectral approximation to the derivative at half

steps. If ∗̂ corresponds to the Hodge in the frequency domain, then(
e i kh −1

)
f̂k = ∗̂k i ke i kh/2 f̂k .

Therefore

∗̂k = e i kh −1

i ke i kh/2
= e i kh/2 −e−i kh/2

i k
= 2sin(kh/2)

k
= h

sin(kh/2)

kh/2
.

To reduce this further, we use the fact h = 2π/N , and then

∗̂k = h
sin(πk/N )

πk/N
= h sinc(k/N ).

Here the normalized sinc function is

sinc(x) = sin(πx)

πx
,

where the singularity at x = 0 is removed so that sinc(0) = 1. Likewise, to go from

1-forms back to 0-forms, simply take the inverse

�(∗−1
)

k = [h sinc(k/N )]−1 .

3.4 implementing maxwell’s equations with dec

In this section, we explain how to obtain numerical algorithms for solving Maxwell’s

equations with DEC. To do so, we will proceed in the following order. First, we

will find a sensible way to define the discrete forms F , G , and J on a spacetime

mesh. Next, we will use the DEC version of the operators d and ∗ to obtain the

discrete Maxwell’s equations. While we haven’t yet shown that these equations are

variational in the discrete sense, we will show later in Section . that the Lagrangian

derivation of the smooth Maxwell’s equations also holds with the DEC operators, in

precisely the same way. Finally, we will discuss how these equations can be used to

define a numerical method for computational electromagnetics.
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In particular, for a rectangular grid, we will show that our setup results in the

traditional Yee scheme. For a general triangulation of space with equal time steps,

the resulting scheme will be Bossavit and Kettunen’s scheme. We will then develop

an AVI method, where each spatial element can be assigned a different time step,

and the time integration of Maxwell’s equations can be performed on the elements

asynchronously. Finally, we will comment on the equations for fully generalized

spacetime meshes, e.g., an arbitrary meshing of R3,1 by 4-simplices.

Note that the idea of discretizing Maxwell’s equations using spacetime cochains

was mentioned in, e.g., Leok (), as well as in a paper by Wise () taking the

more abstract perspective of higher-level “p-form” versions of electromagnetism

and category theory.

.. Rectangular Grid. Suppose that we have a rectangular grid in R3,1, oriented

along the axes (x, y, z, t ). To simplify this exposition (although it is not necessary),

let us also suppose that the grid has uniform space and time steps ∆x,∆y,∆z,∆t .

Note that the DEC setup applies directly to a nonsimplicial rectangular mesh, since

an n-rectangle does in fact have a circumcenter.

Setup. Since F is a 2-form, its values should live on 2-faces in this grid. Following

the continuous expression of F

F = Ex dx ∧dt +Ey dy ∧dt +Ez dz ∧d t

+Bx dy ∧dz +By dz ∧dx +Bz dx ∧dy,

and due to the tensor product nature of the regular grid, the exact assignment of

each 2-face becomes simple: the six components of F correspond precisely to the

six types of 2-faces in a 4-D rectangular grid. Simply assign the values Ex∆x∆t to

faces parallel to the xt-plane, Ey∆y∆t to faces parallel to the y t-plane, and Ez∆z∆t

to faces parallel to the zt-plane. Likewise, assign Bx∆y∆z to faces parallel to the

y z-plane, By∆z∆x to faces parallel to the xz-plane, and Bz∆x∆y to faces parallel

to the x y-plane. This is pictured in Figure ..

Let us look at these values on the faces of a typical 4-rectangle [xk , xk+1]×[
yl , yl+1

]× [zm , zm+1]× [tn , tn+1]. To simplify the notation, we can index each value

of F by the midpoint of the 2-face on which it lives: for example, F |n+
1
2

k+ 1
2 ,l ,m

is stored
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Figure .: Values of F are stored on the primal 2-faces of a 4-D rectangular grid.
Shown here are the three mixed space/time 3-cells, and the one purely spatial 3-cell
(lower right).

on the face [xk , xk+1]×
{

yl
}× {zm}× [tn , tn+1], parallel to the xt-plane. Hence, the

following values are assigned to the corresponding faces:

xt-face : Ex |n+
1
2

k+ 1
2 ,l ,m

∆x∆t

y t-face : Ey
∣∣n+ 1

2

k,l+ 1
2 ,m

∆y∆t

zt-face : Ez |n+
1
2

k,l ,m+ 1
2

∆z∆t

y z-face : Bx |nk,l+ 1
2 ,m+ 1

2
∆y∆z

xz-face : By
∣∣n
k+ 1

2 ,l ,m+ 1
2
∆z∆x

x y-face : Bz |nk+ 1
2 ,l+ 1

2 ,m
∆x∆y.
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We see that a “staggered grid” arises from the fact that E and B naturally live on

2-faces, not at vertices or 4-faces.

Equations of Motion. The discrete equations of motion are, as in the continuous

case,

dF = 0, dG =J ,

where now these equations are interpreted in the sense of DEC. Let us first look at

the DEC interpretation of dF . Since dF is a discrete 3-form, it takes values on the

3-faces of each 4-rectangle. Its values are as follows:

x y t-face :−
(

Ex |n+
1
2

k+ 1
2 ,l+1,m

− Ex |n+
1
2

k+ 1
2 ,l ,m

)
∆x∆t

+
(

Ey
∣∣n+ 1

2

k+1,l+ 1
2 ,m

− Ey
∣∣n+ 1

2

k,l+ 1
2 ,m

)
∆y∆t

+
(

Bz |n+1
k+ 1

2 ,l+ 1
2 ,m

− Bz |nk+ 1
2 ,l+ 1

2 ,m

)
∆x∆y

xzt-face :−
(

Ex |n+
1
2

k+ 1
2 ,l ,m+1

− Ex |n+
1
2

k+ 1
2 ,l ,m

)
∆x∆t

+
(

Ez |n+
1
2

k+1,l ,m+ 1
2

− Ez |n+
1
2

k,l ,m+ 1
2

)
∆z∆t

−
(

By
∣∣n+1
k+ 1

2 ,l ,m+ 1
2
− By

∣∣n
k+ 1

2 ,l ,m+ 1
2

)
∆x∆z

y zt-face :−
(

Ey
∣∣n+ 1

2

k,l+ 1
2 ,m+1

− Ey
∣∣n+ 1

2

k,l+ 1
2 ,m

)
∆y∆t

+
(

Ez |n+
1
2

k,l+1,m+ 1
2

− Ez |n+
1
2

k,l ,m+ 1
2

)
∆z∆t

+
(

Bx |n+1
k,l+ 1

2 ,m+ 1
2
− Bx |nk,l+ 1

2 ,m+ 1
2

)
∆y∆z

x y z-face :
(

Bx |nk+1,l+ 1
2 ,m+ 1

2
− Bx |nk,l+ 1

2 ,m+ 1
2

)
∆y∆z

+
(

By
∣∣n
k+ 1

2 ,l+1,m+ 1
2
− By

∣∣n
k+ 1

2 ,l ,m+ 1
2

)
∆x∆z

+
(

Bz |nk+ 1
2 ,l+ 1

2 ,m+1
− Bz |nk+ 1

2 ,l+ 1
2 ,m

)
∆x∆y.
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Setting each of these equal to zero, we arrive at the following four equations:

Bx |n+1
k,l+ 1

2 ,m+ 1
2

− Bx |nk,l+ 1
2 ,m+ 1

2

∆t
=

Ey
∣∣n+ 1

2

k,l+ 1
2 ,m+1

− Ey
∣∣n+ 1

2

k,l+ 1
2 ,m

∆z
−

Ez |n+
1
2

k,l+1,m+ 1
2

− Ez |n+
1
2

k,l ,m+ 1
2

∆y

By
∣∣n+1
k+ 1

2 ,l ,m+ 1
2
− By

∣∣n
k+ 1

2 ,l ,m+ 1
2

∆t
=

Ez |n+
1
2

k+1,l ,m+ 1
2

− Ez |n+
1
2

k,l ,m+ 1
2

∆x
−

Ex |n+
1
2

k+ 1
2 ,l ,m+1

− Ex |n+
1
2

k+ 1
2 ,l ,m

∆z

Bz |n+1
k+ 1

2 ,l+ 1
2 ,m

− Bz |nk+ 1
2 ,l+ 1

2 ,m

∆t
=

Ex |n+
1
2

k+ 1
2 ,l+1,m

− Ex |n+
1
2

k+ 1
2 ,l ,m

∆y
−

Ey
∣∣n+ 1

2

k+1,l+ 1
2 ,m

− Ey
∣∣n+ 1

2

k,l+ 1
2 ,m

∆x

and

Bx |nk+1,l+ 1
2 ,m+ 1

2

− Bx |nk,l+ 1
2 ,m+ 1

2

∆x
+

By
∣∣n
k+ 1

2 ,l+1,m+ 1
2
− By

∣∣n
k+ 1

2 ,l ,m+ 1
2

∆y

+
Bz |nk+ 1

2 ,l+ 1
2 ,m+1

− Bz |nk+ 1
2 ,l+ 1

2 ,m

∆z
= 0.

(.)

These equations are the discrete version of the equations

∂t B =−∇×E, ∇·B = 0.

Moreover, since E and B are differential forms, this can also be seen as a discretiza-

tion of the integral version of Maxwell’s equations as well! Because DEC satisfies a

discrete Stokes’ theorem, this automatically preserves the equivalence between the

differential and integral formulations of electromagnetism.
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Doing the same with the equation dG =J , evaluating on dual 3-faces this time,

we arrive at four more equations:

Dx |n+
1
2

k+ 1
2 ,l ,m

− Dx |n−
1
2

k+ 1
2 ,l ,m

∆t
=

Hz |nk+ 1
2 ,l+ 1

2 ,m
− Hz |nk+ 1

2 ,l− 1
2 ,m

∆y
−

Hy
∣∣n
k+ 1

2 ,l ,m+ 1
2
− Hy

∣∣n
k+ 1

2 ,l ,m− 1
2

∆z
− Jx |nk+ 1

2 ,l ,m

D y
∣∣n+ 1

2

k,l+ 1
2 ,m

− D y
∣∣n− 1

2

k,l+ 1
2 ,m

∆t
=

Hx |nk,l+ 1
2 ,m+ 1

2

− Hx |nk,l+ 1
2 ,m− 1

2

∆z
−

Hz |nk+ 1
2 ,l+ 1

2 ,m
− Hz |nk− 1

2 ,l+ 1
2 ,m

∆x
− Jy

∣∣n
k,l+ 1

2 ,m

Dz |n+
1
2

k,l ,m+ 1
2

− Dz |n−
1
2

k,l ,m+ 1
2

∆t
=

Hy
∣∣n
k+ 1

2 ,l ,m+ 1
2
− Hy

∣∣n
k− 1

2 ,l ,m+ 1
2

∆x
−

Hx |nk,l+ 1
2 ,m+ 1

2

− Hx |nk,l− 1
2 ,m+ 1

2

∆y
− Jz |nk,l ,m+ 1

2

and

Dx |n+
1
2

k+ 1
2 ,l ,m

− Dx |n+
1
2

k− 1
2 ,l ,m

∆x
+

D y
∣∣n+ 1

2

k,l+ 1
2 ,m

− D y
∣∣n+ 1

2

k,l− 1
2 ,m

∆y

+
Dz |n+

1
2

k,l ,m+ 1
2

− Dz |n+
1
2

k,l ,m− 1
2

∆z
= ρ

∣∣n+ 1
2

k,l ,m .

(.)

This results from storing G on the dual grid, as shown in Figure .. This set of

equations is the discrete version of

∂t D =∇×H− J, ∇·D = ρ.

After eliminating the redundant divergence equations . and . (see Sec-

tion .. for details) and making the substitutions D = εE, B =µH, the remaining

equations are precisely the Yee scheme, as formulated in Bondeson et al. (, pp.

–).
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Figure .: Values of G =∗F are stored on dual 2-faces in a rectangular grid. Shown
here are a mixed space/time dual 3-cell (left), corresponding to a spacelike primal
edge; and a purely spatial dual 3-cell (right), corresponding to a timelike primal
edge. There are also two other mixed space/time cells, as in Figure ., that are not
shown here.

.. Unstructured Spatial Mesh with Uniform Time Steps. We now consider the

case of an unstructured grid in space, but with uniform steps in time as advocated

in, e.g., Bossavit and Kettunen (). Suppose that, instead of a rectangular grid

for both space and time, we have an arbitrary space discretization on which we

would like to take uniform time steps. (For example, we may be given a tetrahedral

mesh of the spatial domain.) This mesh contains two distinct types of 2-faces. First,

there are triangular faces that live entirely in the space mesh at a single position

in time. Every edge of such a face is spacelike—that is, it has positive length—so

the causality operator defined in Section .. takes the value κ= 1. Second, there

are rectangular faces that live between time steps. These faces consist of a single

spacelike edge extruded by one time step. Because they have one timelike edge,

these faces satisfy κ=−1. Again, the circumcentric-dual DEC framework applies

directly to this type of mesh, since the prismal extrusion of a 3-simplex still has a

circumcenter.

Setup. Again, we can characterize the discrete values of F by looking at the contin-

uous expression

F = E ∧dt +B.
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Figure .: For an unstructured spatial mesh, F is stored on primal 2-faces (left),
while G =∗F is stored on dual 2-faces (right). Shown here are the values on mixed
space/time 3-cells. (The purely spatial 3-cells, which correspond to the divergence
equations and do not contribute to the equations of motion, are not shown.)

Therefore, let us assign B to the purely spacelike faces and E∆t to the mixed

space/time faces. Looking at G = ∗F shows that mixed dual faces should store

H∆t and spacelike dual faces should store D ; see Figure ..

Equations of Motion. As in Bossavit (), we can store the values of each differ-

ential form over every spatial element in an array, using the method described in

Section ... This leads to the arrays B n and H n at whole time steps n, and E n+1/2

and Dn+1/2 at half time steps. Let d1 denote the edges-to-faces incidence matrix for

the spatial domain. That is, d1 is the matrix corresponding to the discrete exterior

derivative, taken only in space, from primal 1-forms to primal 2-forms. Similarly,

the transpose dT
1 corresponds to the exterior derivative from spatial dual 1-forms to

dual 2-forms. Then the equation dF = 0, evaluated on all prismal 3-faces, becomes

B n+1 −B n

∆t
=−d1E n+1/2.

Likewise, the equation dG = J , evaluated on all space/time 3-faces in the dual

mesh, becomes
Dn+1/2 −Dn−1/2

∆t
= dT

1 H n − J n .

We can also evaluate dF = 0 and dG =J on spacelike 3-faces, e.g, tetrahedra; these

simply yield the discrete versions of the divergence conditions for B and D , which

can be eliminated.
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Therefore, the DEC scheme for such a mesh is equivalent to Bossavit and

Kettunen’s Yee-like scheme; additionally, when the spatial mesh is taken to be

rectangular, this integrator reduces to the standard Yee scheme. However, we now

have solid foundations to extend this integrator to handle asynchronous updates

for improved efficiency.

.. Unstructured Spatial Mesh with Asynchronous Time Steps. Instead of choos-

ing the same time step size for every element of the spatial mesh, as in the previous

two sections, it is often more efficient to assign each element its own, optimized

time step, as done in Lew et al. () for problems in elastodynamics. In this case,

rather than the entire mesh evolving forward in time simultaneously, individual

elements advance one-by-one, asynchronously—hence the name asynchronous

variational integrator (AVI). As we will prove in Section ., this asynchronous up-

date process will maintain the variational nature of the integration scheme. Here,

we again allow the spatial mesh to be unstructured.

Setup. After choosing a primal space mesh, assign each spatial 2-face (e.g., triangle)

σ its own discrete time set

Θσ =
{

t 0
σ < ·· · < t Nσ

σ

}
.

For example, one might assign each face a fixed time step size ∆tσ = t n+1
σ − t n

σ ,

taking equal time steps within each element, but with ∆t varying across elements.

We further require for simplicity of explanation that, except for the initial time, no

two faces take the same time step: that is,Θσ∩Θσ′ = {t0} for σ 6=σ′.

In order to keep proper time at the edges e where multiple faces with different

time sets meet, we let

Θe =
⋃
σ3e

Θσ =
{

t 0
e ≤ ·· · ≤ t Ne

e

}
.

Therefore the mixed space-time 2-faces, which correspond to the edge e extruded

over a time step, are assigned the set of intermediate times

Θ′
e =

{
t 1/2

e ≤ ·· · ≤ t Ne−1/2
e

}
,

where t k+1/2
e = (t k+1

e + t k
e )/2. The values stored on a primal AVI mesh are shown in

Figure ..
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Figure .: Shown here is part of an AVI mesh, for a rectangular spatial mesh (left)
and for an unstructured spatial mesh (right). The different heights of the spacetime
prisms reflect the fact that elements can take different time steps from one another.
Moreover, these time steps can be asynchronous, as seen in the mismatch between
the horizontal faces.

SinceΘe ⊃Θσ when e ⊂σ, each spatial edge e takes more time steps than any

one of its incident faces σ; as a result, it is not possible in general to construct a

circumcentric dual on the entire spacetime AVI mesh, since the mesh is not prismal

and hence the circumcenter may not exist. Instead, we find the circumcentric dual

to the spatial mesh, and assign same time steps to the primal and dual elements

Θ∗σ =Θσ, Θ∗e =Θe .

This results in well-defined primal and dual cells for each 2-element in spacetime,

and hence a Hodge star for this order. (A Hodge star on forms of different order is

not needed to formulate Maxwell’s equations.)

Equations of Motion. The equation dF = 0, evaluated on a mixed space/time 3-cell,

becomes
B n+1
σ −B n

σ

t n+1
σ − t n

σ

=−d1
∑{

E m+1/2
e : t n

σ < t m+1/2
e < t n+1

σ

}
. (.)

Similarly, the equation dG =J becomes

Dm+1/2
e −Dm−1/2

e

t m+1/2
e − t m−1/2

e
= dT

1

(
H n
σ 1{t n

σ=t m
e }

)
− J m

e , (.)
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where 1{t n
σ=t m

e } equals 1 when face σ has t n
σ = t m

e for some n, and 0 otherwise. (That

is, the indicator function “picks out” the incident face that lives at the same time

step as this edge.)

Solving an initial value problem can then be summarized by the following

update loop:

. Pick the minimum time t n+1
σ where B n+1

σ has not yet been computed.

. Advance B n+1
σ according to Equation ..

. Update H n+1
σ =∗−1

µ B n+1
σ .

. Advance Dm+3/2
e on neighboring edges e ⊂σ according to Equation ..

. Update E m+3/2
e =∗−1

ε Dm+3/2
e .

Iterative Time Stepping Scheme. As detailed in Lew et al. () for elastodynamics,

the explicit AVI update scheme can be implemented by selecting mesh elements

from a priority queue, sorted by time, and iterating forward. However, as written

above, the scheme is not strictly iterative, since Equation . depends on past

values of E . This can be easily fixed by rewriting the AVI scheme to advance in the

variables A and E instead, where the potential A effectively stores the cumulative

contribution of E to the value of B on neighboring faces. Compared to the AVI for

elasticity, A plays the role of the positions x, while E plays the role of the (negative)

velocities ẋ. The algorithm is given as pseudocode in Figure ., for the case where

current J = 0. Note that if all elements take uniform time steps, the AVI reduces to

the Bossavit–Kettunen scheme.

Numerical Experiments. We first present a simple numerical example demonstrat-

ing the good energy behavior of our asynchronous integrator. The AVI was used to

integrate in time over a 2-D rectangular cavity with perfectly electrically conduct-

ing (PEC) boundaries, so that E vanishes at the boundary of the domain. E was

given random values at the initial time, so as to excite all frequency modes, and

integrated for  seconds. Each spatial element was given a time step equal to /

of the stability-limiting time step determined by the CFL condition.
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// Initialize fields and priority queue
for each spatial edge e do

Ae ← A0
e , Ee ← E 1/2

e , τe ← t0 // Store initial field values and times
for each spatial face σ do
τσ← t0

Compute the next update time t 1
σ

Q.push(t 1
σ,σ) // Push element onto queue with its next update time

// Iterate forward in time until the priority queue is empty
repeat

(t ,σ) ← Q.pop() // Pop next element σ and time t from queue
for each edge e of element σ do

Ae ← Ae −Ee (t −τe ) // Update neighboring values of A at time t
if t < final-time then

Bσ← d1 Ae

Hσ←∗µBσ

De ←∗εEe

De ← De +d1(e,σ)Hσ(t −τσ)
Ee ←∗εDe

τσ← t // Update element’s time
Compute the next update time t next

σ

Q.push(t next
σ ,σ) // Schedule σ for next update

until (Q.isEmpty())

Figure .: Pseudocode for our Asynchronous Variational Integrator, implemented
using a priority queue data structure for storing and selecting the elements to be
updated.

This simulation was done for two different spatial discretizations. The first is a

uniform discretization so that each element has identical time step size, which coin-

cides exactly with the Yee scheme. The second discretization randomly partitioned

the x- and y-axes, so that each element has completely unique spatial dimensions

and time step size, and so the update rule is truly asynchronous. The energy plot

for the uniform Yee discretization is shown in Figure ., while the energy for the

random discretization is shown in Figure .. Even for a completely random, irregu-

lar mesh, our asynchronous integrator displays near-energy preservation qualities.

Such numerical behavior stems from the variational nature of our integrator, which

will be detailed in Section ..
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Figure .: Energy vs. time for the AVI with uniform space and time discretization.
This is the special case where the AVI reproduces the Yee scheme—which is well
known to have good energy conservation properties, as seen here. (The vertical
“tick marks” on the plot show where the elements become synchronized, since they
take uniform time steps.)
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Figure .: Energy vs. time for the AVI with random spatial discretization and fully
asynchronous time steps. Despite the lack of regularity in the mesh and time steps,
the AVI maintains the good energy behavior displayed by the Yee scheme.



CHAPTER . COMPUTATIONAL ELECTROMAGNETICS 

0

0.005

0.01

0.015

0.02

0 2e+09 4e+09 6e+09 8e+09 1e+10

1

Figure .: To produce the power spectrum shown at left, the electric field E was
initialized with random data (to excite all frequencies) and integrated forward in
time, measuring the field strength at a particular sample point for every time step,
and then performing a discrete Fourier transform. The locations of the amplitude
“spikes” are in close agreement with the analytic resonant frequencies, shown by
the dashed vertical lines. The spatial mesh, shown at right, was refined closer to
the boundary, and coarser in the interior, allowing the AVI to produce this result
with fewer total steps than uniform-time-stepping would require.

In addition, we tested the performance of the AVI method with regard to com-

puting the resonant frequencies of a 3-D rectangular cavity, but using an unstruc-

tured tetrahedral spatial mesh. While the resonant frequencies are relatively simple

to compute analytically, nodal finite element methods are well known to produce

spurious modes for this type of simulation. By contrast, as shown in Figure .,

the AVI simulation produces a resonance spectrum in close agreement with theory.

Furthermore, by refining the mesh close to the spatial boundary, while using a

coarser discretization in the interior, we were able to achieve these results with less

computational effort than a uniformly fine mesh would require.

.. Fully Unstructured Spacetime Mesh. Finally, we look at the most general

possible case: an arbitrary discretization of spacetime, such as a simplicial 4-

complex. Such a mesh is completely relativistically covariant, so that F cannot be

objectively separated into the components E and B without a coordinate frame. In
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most engineering applications, relativistic effects are insignificant, so a + mesh

(as in the previous subsections) is almost always adequate, and avoids the addi-

tional complications of spacetime mesh construction. Still, we expect that there are

scientific applications where a covariant discretization of electromagnetism may

be very useful. For example, many implementations of numerical general relativity

(using Regge calculus for instance) are formulated on simplicial 4-complexes; one

might wish to simulate the interaction of gravity with the electromagnetic field, or

charged matter, on such a mesh.

Spacetime Mesh Construction. First, a quick caution on mesh construction: since

the Lorentz metric is not positive definite, it is possible to create edges that have

length 0, despite connecting two distinct points inR3,1 (so-called “null” or “lightlike”

edges). Meshes containing such edges are degenerate—akin to a Euclidean mesh

containing a triangle with two identical points. In particular, the DEC Hodge star is

undefined for 0-volume elements (due to division by zero). Even without 0-volume

elements, it is still possible for a spacetime mesh to violate causality, so extra care

should be taken. Methods to construct causality-respecting spacetime meshes over

a given spatial domain can be found in, e.g., Erickson, Guoy, Sullivan, and Üngör

() and Thite ().

When the mesh contains no inherent choice of a time direction, there is no

canonical way to split F into E and B . Therefore, one must set up the problem by

assigning values of F directly to 2-cells (or equivalently, assigning values of A to

1-cells). For initial boundary value problems, one might choose to have the initial

and final time steps be prismal, so that E and B can be used for initial and final

values, while the internal discretization is general.

Equations of Motion. The equations dF = 0 and dG = J can be implemented

directly in DEC. Since this mesh is generally unstructured, there is no simple al-

gorithm as the ones we presented above. Instead, the equations on F results in

a sparse linear system which, given proper boundary conditions, can be solved

globally with direct or iterative solvers. However, it is clear from the previous

three examples that the methods of Yee, Bossavit–Kettunen, and our AVI integrator

are special cases where the global solution is particularly simple to compute via
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synchronous or asynchronous time updates.

Mesh Construction and Energy Behavior. It is known that, while variational inte-

grators in mechanics do not preserve energy exactly, they have excellent energy

behavior, in that it tends to oscillate close to the exact value. This is only true,

however, when the integrator takes time steps of uniform size; adaptive and other

nonuniform stepping approaches can give poor results unless additional measures

are taken to enforce good energy behavior. (See Hairer et al., , Chapter VIII, for

a good discussion of this problem for mechanics applications.)

Therefore, there is no reason to expect that arbitrary meshes of spacetime

will yield energy results as good as the Yee, Bossavit–Kettunen, and AVI schemes.

However, if one is taking a truly covariant approach to spacetime, “energy” is

not even defined without specifying a time coordinate. Likewise, one would not

necessarily expect good energy behavior from the other methods with respect to

an arbitrary transformation of spatial coordinates. Which sort of mesh to choose is

thus highly application dependent.

3.5 theoretical results

In this section, we complete our exposition with a number of theoretical results

about the discrete and continuous Maxwell’s equations. In particular, we show

that the DEC formulation of electromagnetism derives from a discrete Lagrangian

variational principle, and that this formulation is consequently multisymplectic.

Furthermore, we explore the gauge symmetry of Maxwell’s equations, and detail

how a particular choice of gauge eliminates the equation for ∇ ·D−ρ from the

Euler–Lagrange equations, while preserving it automatically as a momentum map.

Theorem ... The discrete Maxwell’s equations are variational.

Proof. The idea of this proof is to emulate the derivation of the continuous Maxwell’s

equations from Section .. Interpreting this in the sense of DEC, we will obtain the

discrete Maxwell’s equations.
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Given a discrete 1-form A and dual source 3-form J , define the discrete La-

grangian 4-form

Ld =−1

2
dA∧∗dA+ A∧J ,

with the corresponding discrete action principle

Sd [A] = 〈Ld ,K 〉 .

Then, taking a discrete 1-form variation α vanishing on the boundary, the corre-

sponding variation of the action is

dSd [A] ·α= 〈−dα∧∗dA+α∧J ,K
〉= 〈

α∧ (−d∗dA+J
)

,K
〉

.

(Here we use the bold d to indicate that we are differentiating over the smooth space

of discrete forms A, as opposed to differentiating over discrete spacetime, for which

we use d.) Setting this equal to 0 for all variations α, the resulting discrete Euler–

Lagrange equations are therefore d∗dA =J . Defining the discrete 2-forms F = dA

and G =∗F , this implies dF = 0 and dG =J , the discrete Maxwell’s equations.

.. Multisymplecticity. The concept of multisymplecticity for Lagrangian field

theories was developed in Marsden et al. (), where it was shown to arise from the

boundary terms for general variations of the action, i.e., those not restricted to van-

ish at the boundary. As originally presented, the Cartan form θL is an (n +1)-form,

where the n-dimensional boundary integral is then obtained by contracting θL

with a variation. The multisymplectic (n+2)-formωL is then given byωL =−dθL .

Contracting ωL with two arbitrary variations gives an n-form that vanishes when

integrated over the boundary, a result called the multisymplectic form formula,

which results from the identity d2 = 0. In the special case of mechanics, where

n = 0, the boundary consists of the initial and final time points; hence, this implies

the usual result that the symplectic 2-form ωL is preserved by the time flow.

Alternatively, as communicated to us by Patrick (), one can view the Cartan

form θL as an n-form-valued 1-form, and the multisymplectic form ωL as an

n-form-valued 2-form. Therefore, one simply evaluates these forms on tangent

variations to obtain a boundary integral, rather than taking contractions. These two

formulations are equivalent on smooth spaces. However, we will adopt Patrick’s
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latter definition, since it is more easily adapted to problems on discrete meshes:

θL and ωL remain smooth 1- and 2-forms, respectively, but their n-form values

are now taken to be discrete. See Figure . for an illustration of the discrete

multisymplectic form formula.

Theorem ... The discrete Maxwell’s equations are multisymplectic.

Proof. Let K ⊂ K be an arbitrary subcomplex, and consider the discrete action

functional Sd restricted to K . Suppose now that we take a discrete variation α,

without requiring it to vanish on the boundary ∂K . Then variations of the action

contain an additional boundary term

dSd [A] ·α= 〈
α∧ (−d∗dA+J

)
,K

〉+〈α∧∗d A,∂K 〉 .

Restricting to the space of potentials A that satisfy the discrete Euler–Lagrange

equations, the first term vanishes, leaving only

dSd (A) ·α= 〈α∧∗dA,∂K 〉 . (.)

Then we can define the Cartan form θLd by

θLd ·α=α∧∗dA.

Since θLd takes a tangent vector α and produces a discrete 3-form on the boundary

of the subcomplex, it is a smooth -form taking discrete 3-form values. Now, since

the space of discrete forms is itself actually continuous, we can take the exterior

derivative in the smooth sense on both sides of Equation .. Evaluating along

another first variation β (again restricted to the space of Euler–Lagrange solutions),

we then get

d2Sd [A] ·α ·β= 〈
dθ ·α ·β,∂K

〉
.

Finally, defining the multisymplectic form ωLd =−dθLd , and using the fact that

d2Sd = 0, we get the relation 〈
ωLd ·α ·β,∂K

〉= 0 (.)

for all variationsα,β; Equation . is a discrete version of the multisymplectic form

formula. Since this holds for any subcomplex K , it follows that these schemes are

multisymplectic.



CHAPTER . COMPUTATIONAL ELECTROMAGNETICS 

Figure .: To illustrate the discrete multisymplectic form formula ., we have
here a 2-D asynchronous-time mesh K , where the shaded region is an arbitrary
subcomplex K ⊂K . Given any two variations α,β of the field, and the multisym-
plectic form ωLd , the formula states that ωLd ·α ·β vanishes when integrated over
the boundary ∂K (shown in bold).

.. Gauge Symmetry Reduction and Covariant Momentum Maps. We now ex-

plore the symmetry of Maxwell’s equations under gauge transformations. This

symmetry allows us to reduce the equations by eliminating the time component of

A (for some chosen time coordinate), effectively fixing the electric scalar potential

to zero. Because this is an incomplete gauge, there is a remaining gauge symmetry,

and hence a conserved momentum map. This conserved quantity turns out to be

the charge density ρ =∇·D, which justifies its elimination from the Euler–Lagrange

equations. These calculations are done with differential forms and exterior calculus,

hence they apply equally to the smooth and discrete cases of electromagnetism.

.. Choosing a Gauge. Because Maxwell’s equations only depend on dA, they

are invariant under gauge transformations of the form A 7→ A+d f , where f is any

scalar function on spacetime. If we fix a time coordinate, we can now choose the
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Weyl gauge, so that the time component At = 0. Therefore, we can assume that

A = Ax dx + Ay dy + Az dz.

In fact, Ax , Ay , Az are precisely the components of the familiar vector potential A,

i.e., A = A[.

.. Reducing the Equations. Having fixed the gauge and chosen a time coordi-

nate, we can now define two new “partial exterior derivative” operators, dt (time)

and ds (space), where d = dt +ds . Since A contains no dt terms, ds A is a 2-form

containing only the space terms of dA, while dt A contains the terms involving both

space and time. That is,

dt A = E ∧dt , ds A = B.

Restricted to this subspace of potentials, the Lagrangian density then becomes

L =−1

2
(dt A+ds A)∧∗ (dt A+ds A)+ A∧J

=−1

2
(dt A∧∗dt A+ds A∧∗ds A)+ A∧ J ∧dt .

Next, varying the action along a restricted variation α that vanishes on ∂X ,

dS[A] ·α=
∫

X
(dtα∧d−dsα∧H ∧dt +α∧ J ∧dt ) (.)

=
∫

X
α∧ (dt D −ds H ∧dt + J ∧dt ) .

Setting this equal to zero by Hamilton’s principle, one immediately gets Ampère’s

law as the sole Euler-Lagrange equation. The divergence constraint dsD = ρ, corre-

sponding to Gauss’ law, has been eliminated via the restriction to the Weyl gauge.

Noether’s Theorem Implies Automatic Preservation of Gauss’ Law. Let us restrict

A to be an Euler-Lagrange solution in the Weyl gauge, but remove the previous

requirement that variations α be fixed at the initial time t0 and final time t f . Then,

varying the action along this new α, the Euler–Lagrange term disappears, but we

now pick up an additional boundary term due to integration by parts

dS[A] ·α=
∫
Σ
α∧D

∣∣∣∣t f

t0

,



CHAPTER . COMPUTATIONAL ELECTROMAGNETICS 

where Σ denotes a Cauchy surface of X , corresponding to the spatial domain. If we

vary along a gauge transformation α= ds f , then this becomes

dS[A] ·ds f =
∫
Σ

ds f ∧D

∣∣∣∣t f

t0

=−
∫
Σ

f ∧dsD

∣∣∣∣t f

t0

.

Alternatively, plugging α= ds f into Equation ., we get

dS[A] ·ds f =
∫

X
ds f ∧ J ∧dt =−

∫
X

f ∧ds J ∧dt =−
∫

X
f ∧dtρ =−

∫
Σ

f ∧ρ
∣∣∣∣t f

t0

.

Since these two expressions are equal, and f is an arbitrary function, it follows that(
dsD −ρ)∣∣t f

t0
= 0.

This indicates that dsD −ρ is a conserved quantity, a momentum map, so if Gauss’

law holds at the initial time, then it holds for all subsequent times as well.

.. Boundary Conditions and Variational Structure. It should be noted that the

variational structure and symmetry of Maxwell’s equations may be affected by

the boundary conditions that one chooses to impose. There are many boundary

conditions that one can specify independent of the initial values, such as the

PEC condition used in the numerical example in Section ... However, one

can imagine more complicated boundary conditions where the boundary interacts

nontrivially with the interior of the domain—such as dissipative or forced boundary

conditions, where energy/momentum is removed from or added to the system.

In these cases, one will obviously not conclude that the charge density ∇ ·D is

conserved, but more generally that the change in charge is related to the flux

through the spatial boundary. This is because, in the momentum map derivation

above, the values of f on the initial time slice causally affects its values on the

spatial boundary at intermediate times, not just on the final time slice. Thus, the

spatial part of ∂X cannot be neglected for arbitrary boundary conditions.

3.6 conclusion

The continued success of the Yee scheme for many applications of computa-

tional electromagnetism, for over four decades, illustrates the value of structure-

preserving numerical integrators for Maxwell’s equations. Recent advances by,
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among others, Bossavit and Kettunen, and Gross and Kotiuga, have demonstrated

the important role of compatible spatial discretization using differential forms,

allowing for Yee-like schemes that apply on generalized spatial meshes. In this

paper, we have extended this approach by considering discrete forms on space-

time, encapsulating both space and time discretization, and have derived a general

family of geometric numerical integrators for Maxwell’s equations. Furthermore,

since we have derived these integrators from a discrete variational principle, the

resulting methods are provably multisymplectic and momentum-map-preserving,

and they experimentally show correct global energy behavior. Besides proving the

variational nature of well-known techniques such as the Yee and Bossavit–Kettunen

schemes, we have also introduced a new asynchronous integrator, so that time step

sizes can be taken nonuniformly over the spatial domain for increased efficiency,

while still maintaining the desirable variational and energy behavior of the other

methods.

Future Work. One promising avenue for future work involves increasing the order

of accuracy of these methods by deriving higher-order discrete Hodge star operators.

While this would involve redefining the Hodge star matrix to be non-diagonal, the

discrete Maxwell’s equations would remain formally the same, and hence there

would be no change in the variational or multisymplectic properties proven here.

It would be interesting to explore whether using a spectrally accurate Hodge star,

such as the one developed in Section .., might make the performance of these

geometric schemes competitive for applications where non-variational spectral

codes are currently favored.

Additionally, the recent work of Kale and Lew () has shown that AVIs can

be implemented as parallel algorithms for solid mechanics simulations. This uses

the fact that, due to the asynchronous update procedure, an element does not

need information from every one of its neighbors at every time step, which lessens

the need for communication among parallel nodes. The resulting parallel AVIs, or

PAVIs, can therefore take advantage of parallel computing architecture for improved

efficiency. It is reasonable to expect that the same might be done in the case of our

electromagnetic AVI.

While we have experimentally observed the fact that variational integrators
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exhibit near-energy conservation, little is known about this behavior from a the-

oretical standpoint. In the case of ODEs in mechanics, backwards error analysis

has shown that these methods exactly integrate a nearby smooth Hamiltonian

system, although not much known about how this relates to the discrete variational

principle on the Lagrangian side. Some initial work has been done in Oliver, West,

and Wulff () to understand, also by a backward error analysis approach, why

discrete multisymplectic methods also display good energy behavior.

Finally, variational methods using discrete spacetime forms may be developed

for field theories other than electromagnetism. Promising candidates include nu-

merical general relativity and fluid dynamics, although the latter is complicated by

the difficulty in finding a proper discretization of the infinite-dimensional diffeo-

morphism group. If discrete Lagrangian densities are developed for these theories,

it should be straightforward to combine them with the electromagnetic Lagrangian,

resulting in numerical methods to simulate, e.g., gravity coupled with an electro-

magnetic field, or the dynamics of a charged or magnetic fluid.



Chapter Four

Future Directions: Foundations for Discrete

Gauge Theory and General Relativity

4.1 fiber bundles and gauge theory

Fiber bundles are an important component of the modern, geometric approach

to covariant field theory, especially gauge theory. To motivate their introduction,

suppose we wish to describe a field over a space X , where the field takes values in

some other space Y . We will refer to X as the base space and Y as the fiber space

(the reasons for this nomenclature will soon become clear). Naïvely, one might

describe such a field as a function X → Y , or equivalently as a graph in the product

space X ×Y .

However, not all fields can be described in this way. Consider the example of

a vector field over an n-dimensional manifold X . The tangent space is Tx X ∼=Rn

for each point x ∈ X , so locally a vector field corresponds to a function Vx → Rn ,

where Vx 3 x is some local coordinate neighborhood. Generally, though, one cannot

extend this to a global function X →Rn , and hence a vector field is more than just

an Rn-valued function on X . Fundamentally, this is because the tangent bundle

T X is not simply the product X ×Rn . Rather, it is a bundle of the individual tangent

spaces Tx X ∼=Rn , which may be connected to one another in nontrivial ways.

Informally, a fiber bundle with base X and fiber Y is a space that locally (though

not necessarily globally) resembles the product space X ×Y . At each point x ∈ X ,

there is attached a copy of the fiber Yx
∼= Y , and moreover in a local neighborhood

Vx 3 x, the collection of fibers over Vx is homeomorphic to Vx ×Y . This generalizes

the concept of vector bundles (including the tangent bundles discussed above),

which correspond to the special cases where Y is a vector space. We now formalize


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this concept, loosely following the treatment of Steenrod ().

Definition ... A fiber bundle with base X and fiber Y consists of a bundle space

B , along with a projection map π : B → X . In addition, there must exist a local

trivialization for the bundle, consisting of an open covering of X by local neighbor-

hoods V j , along with homeomorphisms φ j : V j ×Y →π−1
(
V j

)
, which provide local

coordinates for B . This local trivialization must satisfy the following conditions:

.
(
π◦φ j

)(
x, y

)= x for all x ∈V j , y ∈ Y (i.e., the projection map corresponds, in

local coordinates, to projection on the first factor),

. if we define φ j ,x : Y → π−1(x) by φ j ,x (y) =φ j
(
x, y

)
, then for any x ∈Vi ∩V j ,

the coordinate transition function φ−1
j ,x ◦φi ,x : Y → Y corresponds to the

action of a group element γ j i (x) ∈G , where G is a Lie group acting effectively

on the left of Y called the structure group of the bundle. Moreover, the map

γ j i : Vi ∩V j →G , taking x 7→ γ j i (x), is continuous.

For each x ∈ X , we call Yx =π−1(x) the fiber over x.

A prototypical illustration of a fiber bundle satisfying this definition is shown

in Figure ..

In fact, given an open covering of the base, most of the geometric structure of a

fiber bundle can be deduced from the coordinate transition maps γ j i , without even

specifying the individual coordinate functions φ j . As long as the transition maps

satisfy γk jγ j i = γki whenever Vi ∩V j ∩Vk is nonempty, then one can construct an

associated fiber bundle for any fiber Y with a left G-action by gluing together the

local coordinate patches (see Steenrod, , §). For this reason, we can often safely

assume that we are working with a principal bundle, in which the fiber Y = G is

equal to the structure group, and G acts on itself by left translation. For brevity, we

will often refer to a principal bundle with structure group G as a principal G-bundle,

or simply a G-bundle.

This bundle structure gives us a more powerful and covariant way to describe

certain fields. Rather than functions f : X → Y , which may only be defined locally,

we can speak of these fields as sections of a fiber bundle with base X and fiber Y .



CHAPTER . FUTURE DIRECTIONS: FOUNDATIONS FOR DISCRETE GAUGE
THEORY AND GENERAL RELATIVITY 

Figure .: Here we see an illustrative diagram of a fiber bundle over a 2-D base
X , with 1-D fiber Y . The projection map π takes the 3-D bundle space B down to
the base. The fibers above the points x0, x1 ∈ X are given by Y0 =π−1 (x0) and Y1 =
π−1 (x1), respectively. Note that there are many different ways to identify the fibers
Y0 and Y1; picking a particular homeomorphism between the two corresponds to a
connection on the bundle.

Definition ... A section of a fiber bundle is a function f : X → B such that

π◦ f : X → X is the identity map. That is, for each x ∈ X , we have f (x) ∈ Yx .

Gauge theory, however, is not directly concerned with sections of a bundle.

Rather, it is concerned with gauge fields, which describe the manner in which

different fibers are connected to one another. Maxwell’s equations provide one of

the simplest examples of such a gauge theory. The electromagnetic potential 1-

form A ∈Ω1(X ) can be thought of as the principal connection of a U(1)-bundle over

spacetime, while the Faraday 2-form F is the curvature of this principal connection.

Locally, the principal connection of a G-bundle is a g-valued 1-form, where g is the

Lie algebra of G . Since u(1) ∼=R is the Lie algebra for the case of Maxwell’s equations,
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we have thus far been able to ignore this principal bundle structure and simply see

A and F as real-valued differential forms on the base. In large part, one can safely

get away with this because U(1) is an abelian group, and so u(1) ∼=R has a trivial Lie

bracket structure.

However, this is not the case for Lie groups in general, and in fact, most “inter-

esting” gauge theories—such as Yang–Mills theory—have nonabelian gauge groups.

In such cases, the previously introduced method of discretization by chains and

cochains breaks down: we cannot simply add together the values of the connection

1-form for different edges along a path, since the order of composition matters. To

incorporate the idea of “composable” transformations, which depend on the order

in which a path is traversed, we need the mathematical framework of groupoids,

which will be the subject of the next section.

4.2 lie groupoids and bundle connections

Given a principal G-bundle, which we will denote π : P → P/G ∼= X , one can relate

the structure of a principal connection to the study of certain Lie groupoids on X . In

particular, there are two groupoids—called the gauge groupoid and the monodromy

groupoid—that are particularly relevant to gauge theory, and which will be the

theoretical underpinning of the subsequent discretization methods. It should be

noted that there is a direct correspondence between this groupoid approach to

connections, and the more traditional presentation of “infinitesimal connections”

taking Lie algebra values, via the correspondence between a Lie groupoid and its

associated Lie algebroid (see Mackenzie, , Chapters –).

.. Basic Definitions. Before delving into the particular groupoids relevant to

gauge theory, we recall the definition of (Lie) groupoids.

Definition ... A groupoid G over a set of objects X , written G ⇒ X , consists of

the following structures:

. a pair of maps α : G → X and β : G → X , called the source and the target;
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. an associative binary operation
(
h, g

) 7→ hg defined from G2 → G , where

G2 =
{(

h, g
) ∈G ×G |α (h) =β

(
g
)}

is called the set of composable pairs, such

that α
(
hg

)=α(g ) and β
(
hg

)=β(h);

. an identity map 1: X → G , taking x 7→ 1x , having α (1x ) = β (1x ) = x, and

satisfying g 1α(g ) = 1β(g )g = g for all g ∈G ;

. an inverse map G → G , taking g 7→ g−1, with α
(
g−1

) = β(g ) and β
(
g−1

) =
α(g ), which satisfies g−1g = 1α(g ) and g g−1 = 1β(g ).

In the language of category theory, this can be put more succinctly: a groupoid is a

(small) category in which every morphism is an isomorphism. For x0, x1 ∈ X , let

Hom(x0, x1) ⊂G denote the set of groupoid elements with source x0 and target x1,

that is, Hom(x0, x1) =α−1 (x0)∩β−1 (x1).

The groupoid G ⇒ X is said to be a Lie groupoid if in addition, G and X are

smooth manifolds, the maps defined above are smooth, and in particular α and β

are surjective submersions.

Example .. (groups as groupoids). As an important (albeit somewhat trivial)

example, any group G can be considered as a groupoid over a single object. This is

because any two elements g ,h ∈G are composable, and so every element has the

same source and target objects. In particular, a Lie group is a Lie groupoid over a

single object.

Example .. (pair groupoid). Given a smooth manifold X , the pair groupoid

X ×X ⇒ X is a Lie groupoid, and one which plays a fundamental role in the theory

of discrete Lagrangian mechanics (see Weinstein, ). The source and target

maps for the pair groupoid are α : (x1, x0) 7→ x0 and β : (x1, x0) 7→ x1, respectively;

composition is given by ((x2, x1) , (x1, x0)) 7→ (x2, x0); the identity map is x 7→ (x, x);

and the inverse map is (x1, x0) 7→ (x0, x1).

Example .. (fundamental groupoid). If X is a smooth manifold, then the fun-

damental groupoidΠ(X ) ⇒ X is the Lie groupoid whose elements are homotopy

classes of paths in X . That is, Hom(x0, x1) is the homotopy class of paths from

x0 to x1, and in particular, Hom(x, x) ∼=π1(X , x) is the fundamental group of of X

based at x ∈ X . In this groupoid, composition is defined by path concatenation, the
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identity map x 7→ 1x is given by the constant path at x, and inversion reverses the

direction of a path.

Note that Π(X ) ∼= X × X if and only if X is simply connected, since a simply

connected manifold has exactly one homotopy class of paths between any two

points. Therefore, the fundamental groupoid can be seen as a more general version

of the pair groupoid for nonsimply connected manifolds.

Example .. (gauge groupoid). Suppose we have a principal bundle P → P/G ∼=
X . The gauge groupoid describes the space of transformations from one fiber to

another, i.e., G-equivariant diffeomorphisms between fibers. To introduce the

formal definition, we will primarily follow the treatment of Mackenzie (). Con-

sider the space P ×P containing pairs of bundle elements
(
y1, y0

) ∈ Y1 ×Y0, where

as before Y0 = π−1 (x0) and Y1 = π−1 (x1) for some x0, x1 ∈ X . Since there is a left

action G ×P → P , we can also define a left action G × (P ×P ) → P ×P by applying

the former action diagonally, i.e., g
(
y1, y0

)= (
g y1, g y0

)
. Then the gauge groupoid

(P ×P )/G ⇒ X is the Lie groupoid of G-orbits
{

g
(
y1, y0

) | g ∈G
}

in P ×P , where the

groupoid operations are a straightforward extension of those previously given for

the pair groupoid.

Example .. (monodromy groupoid). Just as the fundamental groupoid Π(X )

was seen to be a generalized version of the pair groupoid X × X , for nonsimply

connected X , likewise the monodromy groupoidΠ(P )/G is a generalized version of

the gauge groupoid (P ×P )/G for nonsimply connected bundles.

.. Discrete Bundles and Path Connections. Mackenzie () defines the idea

of a path connection as lifting paths from the base to the groupoid. This provides a

link between the language of groupoids described above, and the more familiar no-

tion of a connection as providing “parallel transport” along a path. In gauge theory,

one is generally concerned with path connections in either the gauge groupoid or

the corresponding monodromy groupoid.

To discretize this idea of a path connection, let us suppose that we have an

n-dimensional simplicial complex K , which triangulates some base manifold X .

For any two neighboring n-simplices σi ,σ j ∈ Kn , with σi ∩σ j 6= ∅, we assign a

transition map γ j i ∈ G . (Alternatively γ j i ∈ G̃ , where G̃ is the universal cover of
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Figure .: The gauge groupoid (P ×P )/G consists of G-equivariant transformations
between fibers of the principal bundle P . Here, we see an element of the gauge
groupoid defined by identifying a representative pair of elements y0 ∈ Y0 and
y1 ∈ Y1, and using their G-orbits to extend this to a bijection between Y0 and Y1.

G .) That is, a discrete connection assigns a group element γ j i to each directed

edge j ← i in the dual mesh. This can be extended to compute the holonomy of

the connection over a discrete path or loop, by composing the group elements

assigned to each edge in the path. (Reversing the direction of an edge causes its

corresponding group element to be inverted.) This is consistent with the definitions

used in certain approaches to discrete gauge theory (Oeckl, ).

In groupoid language, this corresponds to the following. Given a simplicial

complex K , construct the directed graph whose vertices and edges are those of

the dual mesh ∗K (i.e., the adjacency graph for n-simplices). Now, there is a free

functor (usually written Free: Graph → Gpd) from the category of directed graphs

to the category of groupoids. The discrete path groupoid P (K ) is the free groupoid

generated by this directed graph, i.e., whose elements are reduced sequences

of composable directed edges. A discrete gauge connection is then a groupoid
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Figure .: Starting with a primal mesh (left), we construct the discrete path
groupoid, which is the free groupoid generated by the directed graph underly-
ing the dual mesh (center). A discrete connection labels each directed edge with a
group element, either belonging to the gauge group or to its universal cover (right);
this generates a groupoid morphism from the discrete path groupoid to the gauge
group, which can be considered as a groupoid over a single object.

morphism P (K ) →G , where the group G is considered as a groupoid over a single

object, while a discrete monodromy connection is a groupoid morphism P (K ) → G̃ ,

where again, G̃ is the universal cover of G . These definitions are illustrated in

Figure ..

4.3 discrete riemannian geometry with frame bundles

.. Angle Deficit as Discrete Gaussian Curvature. Consider a simplicial complex

where all simplices are Euclidean, so that curvature only occurs only at cone sin-

gularities where simplices meet. According to a common approach, the curvature

around an (n −2)-simplex σi is given by the corresponding angle deficit εi , shown

in Figure .. This can be stored as a curvature 2-form on the dual cell ∗σi . When

n = 2, this corresponds to Gaussian curvature κ, which satisfies∑
i
εi =

∫
κdA = 2πχ,

a result linking geometry and topology known as the Gauss–Bonnet theorem. We

now show that the definition of “discrete curvature as angle deficit” preserves a

discrete analog of the Gauss–Bonnet theorem.
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Figure .: For a 2-D mesh composed of Euclidean triangles, curvature appears
as a cone singularity where several triangles meet at a common vertex (left). This
corresponds to an angle deficit: the angles around the vertex fail to add to 2π, as
they would for a flat mesh. This deficit can be seen explicitly by cutting along an
edge and laying the triangles flat (right).

Proposition .. (Discrete Gauss–Bonnet). If K is a triangulated 2-manifold with-

out boundary, then the angle deficits εi sum to
∑

i εi = 2πχ, where χ is the Euler

characteristic of K .

Proof. Let us start with the well-known formula χ= |K0|− |K1|+ |K2|. The sum of

the angle deficits is ∑
i
εi =

∑
i

(2π−θi ) = 2π |K0|−
∑

i
θi ,

where θi is the angle sum around vertex i . Now, since each triangle has angle sum

π, the total angle sum for K is
∑

i θi = π |K2|, and hence
∑

i εi = 2π
(|K0|− 1

2 |K2|
)
.

Finally, note that each triangle has three edges, and each edge is incident on two

triangles, so 3 |K2| = 2 |K1|, or equivalently 1
2 |K2| = |K1|− |K2|. Therefore,

∑
i
εi = 2π

(
|K0|−

1

2
|K2|

)
= 2π (|K0|− |K1|+ |K2|) = 2πχ,

which completes the proof.

.. Parallel Transport of Orthonormal Frames. There is an alternative way to

understand why discrete curvature can be defined, reasonably, as the angle deficit
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around an (n −2)-simplex. We can do this by discretizing the Cartan formalism for

Riemannian geometry, which relates affine connections and Riemannian curvature

to the principal connection and curvature forms on an orthonormal frame bundle.

Suppose that each n-simplex has its own local coordinate frame. This can

be specified by an Rn-valued 1-form e, called the solder form, which maps each

directed edge in the simplex to its corresponding vector in the local coordinate

frame. This lets us pull back a fixed metric on Rn (e.g., the Euclidean metric) to a

metric on each simplex. For example, the length of an edge is just the length of its

corresponding vector in Rn , that is,
∣∣σi

∣∣= ∣∣e (
σi

)∣∣.
When two simplices are neighbors, we require their metrics to agree on the

intersection. Therefore, the transition map between the two frames is given by a

rotation in SO(n). Labeling the corresponding dual edge by this rotation defines a

connection 1-form A. The holonomy of this connection around the boundary of

a dual face is the curvature 2-form F = dA. This curvature is precisely a rotation

through the angle deficit εi , as illustrated in Figure .. (This general setup was also

used in Frauendiener, , although here we will take a different approach to the

equations of general relativity.)

Remark. Note that, if we use the gauge group G = SO(n), we can only define curva-

ture modulo 2π. One cannot distinguish, for example, between an angle deficit of

π and −π, since they each correspond to the same SO(n) group element, and only

differ in their “winding number,” corresponding to different homotopy classes. To

distinguish between these elements, we need to use the universal cover, which for

n > 2 is given by the spin group G̃ = Spin(n).

.. General Relativity and Regge Calculus. Given the forms e and F defined

above, we can now attempt to discretize the Palatini action of general relativity. In

3-D, this action can be written

S=
∫

tr(e ∧F ) =
∑

i

〈
e i ,Fi

〉
=

∑
i

∣∣∣σi
∣∣∣εi ,

where the trace and the pairing 〈·, ·〉 correspond to the Killing form on the Lie

algebra so(3) ∼= R3. Note that, since Fi is simply a rotation about the vector e i in

R3, the vectors corresponding to e i and Fi are parallel. Hence,
〈

e i ,Fi
〉

is simply the
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curved connection!at connection

Figure .: As another way to measure curvature on a discrete surface, we can
parallel-translate an orthonormal frame around the vertex, i.e., along the boundary
of its dual face, and measure the resulting rotation of the frame. For a flat connec-
tion, the frame undergoes no net rotation as it is transported (left). For a curved
connection, however, the frame is rotated with respect to its initial configuration
(right). The angle of this rotation precisely equals the angle deficit around the
vertex.

product of their magnitudes
∣∣σi

∣∣εi . In 4-D, we define a bivector-valued discrete

2-form B = e ∧e, so S = ∫
B ∧F =∑

i 2
∣∣σi

∣∣εi . (See Baez, , and Miller,  for a

discussion related to this general approach.)

This agrees precisely with the discrete action of Regge calculus (Regge, ),

which is an approach to discretizing general relativity based on the concept of

curvature as angle deficit at a cone singularity. If, instead of using the special

orthogonal group, we use its universal cover—the spin group—we in fact arrive at

some proposed lattice quantum gravity models, which label edges and faces by

spin symbols. In particular, for G̃ = Spin(3) = SU(2), we have the Ponzano–Regge

model; for G̃ = Spin(4) = SU(2)×SU(2), we get the Barrett–Crane model (Barrett

and Crane, ); and for G̃ = Spin(3,1) = SL(2,C), we get a discrete version of the

Plebański action. (For further discussion of discrete models of gravity, both classical

and quantum, refer to the survey by Regge and Williams, .)
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