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Abstract

To complement the utility of thermodynamic calculations in the design and analysis of

nucleic acid secondary structures, we seek to develop efficient and scalable algorithms for

the analysis of secondary structure kinetics. Secondary structure kinetics are modeled

by a first-order master equation, but the number of secondary structures for a sequence

grows exponentially with the length of the sequence, meaning that for systems of interest,

we cannot write down the rate matrix, much less solve the master equation. To address

these difficulties, we develop a method to construct macrostate maps of nucleic acid free

energy landscapes based on simulating the continuous-time Markov chain associated with

the microstate master equation. The method relies on the careful combination of several

elements: a novel procedure to explicitly identify transitions between macrostates in the

simulation, a goodness-of-clustering test specific to secondary structures, an algorithm to

find the centroid secondary structure for each macrostate, a method to compute macrostate

partition functions from short simulations, and a framework for computing transition rates

with confidence intervals. We use this method to study several experimental systems from

our laboratory with system sizes in the hundreds of nucleotides, and develop a model prob-

lem, the d-cube, for which we can control all of the relevant parameters and analyze our

method’s error behavior. Our results and analysis suggest that this method will be useful

not only in the analysis and design of nucleic acid mechanical devices, but also in wider

applications of molecular simulation and simulation-based model reduction.
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Chapter 1

Introduction

Nucleic acids play varied roles in the cell, DNA as a storage medium and RNA as a mes-

senger and regulatory element [3]. Recently, nucleic acids have been used as a versatile

nanotechnological building material. This is due in part to the relative simplicity of the

material (compared to, for example, proteins): The specificity of Watson-Crick base pairing

(A pairs to T and G to C) and the fact that understanding structural features at the level

of secondary structures is sufficient for nanotechnological applications, makes nucleic acids

relatively easy to analyze and design. A wide range of work has been done designing both

structures and dynamic devices [45, 46]. Recently, researchers have built devices whose

autonomous function obeys prescribed dynamics [57].

The thermodynamic properties of nucleic acid secondary structures are well studied and

can be computed efficiently by dynamic programming algorithms [37]. The inverse problem

of design, choosing a sequence that adopts a particular structure with high probability,

though probably not solvable in polynomial time, is also well understood [20]. Secondary

structure kinetics are less well studied. The difference may partially be a result of the

fact that there is an experimentally parameterized model for folding energies [35, 43], but

relatively little known about kinetics at the secondary structure level. Authors have studied

kinetics via the master equation formalism [58] and Monte Carlo simulations [25], but neither

of these approaches alone is sufficient for large problems—the master equation because of

the exponentially large number of secondary structures that must be enumerated and the

Monte Carlo simulations because of the difficulty in interpreting the simulated trajectories.

This thesis fills this gap by developing a simulation-based method to characterize the folding

kinetics of nucleic acids that scales to systems of experimental interest.
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Figure 1.1: A non-pseudoknotted secondary structure. To compute the energy of a struc-
ture, it is decomposed into hairpin loops, interior loops, multi-loops, and base stacks; the
energies of each component are then added together.

1.1 Nucleic acid secondary structures

The primary structure of a nucleic acid (NA) is the sequence of bases, taken from {A,C,G,U}

for RNA or {A,C,G, T} for DNA, that comprise the strand. The strand may fold and base

pair with itself. The pairs form only between the bases {A·U, C ·G, A·T, G·T, G·U}. Nu-

cleic acid secondary structures ignore the full three-dimensional conformation by considering

only which bases are paired with each other. No base is allowed to pair with more than

one other base, and all base pairs must be nested. That is, for a strand with bases labeled

1, . . . , N , if base m is paired to n and r to s then either m< r < s < n or r <m< n< s.

This prohibits pseudoknots.1 Figure 1.1 shows a non-pseudoknotted secondary structure

with the different types of loops in the energy model labeled. The secondary structures for

a particular sequence form a discrete space, Ω, and the energy of each structure is com-

puted via a loop-decomposition model that has been experimentally parameterized [35, 43].

1The prohibition of pseudoknots is an algorithmic, not a physical, constraint. Pseudoknots are, in fact,
integral to the formation of many biologically and nanotechnologically important structures [49, 55]; however,
until recently they have been excluded from most NA folding algorithms because pseudoknotted structures
cannot easily be included in the dynamic programming framework that underlies most algorithms. Indeed,
pseudoknot minimum free energy (MFE) determination is NP-hard [2, 33]. Recent work has included
restricted classes of pseudoknots in MFE determination, partition function, and kinetic simulation algorithms
[21, 28, 41].
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Though the space is discrete, the number of secondary structures for a sequence has been

empirically found to scale exponentially with its length, N [60];

|Ω| ≈ 1.8N . (1.1)

Given a particular NA sequence we are typically not interested in a single secondary

structures but rather the ensemble of structures. For this work we consider an ensemble to

be a probability space, that is, the triple (Ω,F , p) of states, a σ-algebra of measurable sets

on Ω, and a probability measure on F . The σ-algebra on F will always be all subsets of Ω,

so we will leave it out of the notation. If a measure is unspecified it is assumed to be the

Boltzmann equilibrium distribution

π(s) =
e−∆G(s)/kBT

Q
, (1.2)

where ∆G(s) is the free energy of structure s, kB is Boltzmann’s constant, and T the

temperature, though we will sometimes explicitly refer to the “equilibrium ensemble.”2

The normalizing constant, Q, is the partition function

Q =
∑
s∈Ω

e−∆G(s)/kBT . (1.3)

A useful construct for manipulating ensembles of secondary structures is the pair prob-

ability matrix. For a sequence of length N , the pair probability matrix is an N × (N + 1)

matrix whose (i, j)th entry is the probability in (Ω, p) that bases i and j are paired; the

(i, (N + 1))st entry is the probability that base i is unpaired. More formally, we define a

map, ρ, from the space of probability measures on Ω to the space of N × (N + 1) matrices

with entries in [0, 1] by

ρ :M(Ω) −→ [0, 1]N×(N+1), Pi,j = ρi,j(p) =
∑
s∈Ω

p(s)S(s)i,j , (1.4)

where S(s)i,j = 1 if i and j are paired in s and S(s)i,N+1 = 1 if i is unpaired. The norm

2There are two common definitions of ensemble in physics [15]. One is a set of constraints on the system,
for example, constant temperature, volume, and particle number in the Canonical ensemble. The second is
simply the set of configurations of the system. The probability distribution on those configurations is left
unspecified, but for our purposes it is important to keep track of whether the system is at equilibrium, or if
we are considering a non-equilibrium probability measure, such as one resulting from a kinetic simulation.
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that we use to compare pair probability distributions is the `1 norm, which is defined by

‖P −R‖1 =
1
2

N∑
i=1

N+1∑
j=1

|Pi,j −Ri,j |. (1.5)

When comparing individual secondary structures, a natural metric is the nucleotide dis-

tance, which counts the number of nucleotides paired differently in the two structures. This

is equivalent to (1.5) with both matrices representing ensembles of just one structure, and

when comparing two single structures, we may denote this by d(s1, s2). An alternative

metric is the base-pair distance, which is the cardinality of the symmetric difference of the

base pairs in the two structures. This can also be computed by leaving out the (N + 1)st

column from the sum in (1.5), that is,

‖P −R‖BP =
1
2

N∑
i=1

N∑
j=1

|Pi,j −Ri,j |. (1.6)

1.2 Thermodynamics of nucleic acid secondary structures

The loop-based energy model by which secondary structures are evaluated lends itself to

the efficient calculation of thermodynamic quantities of the equilibrium ensemble. This

is because the energy of a secondary structure is merely the sum of the energies of its

constituent loops. Further, the nesting property for non-pseudoknotted structures means

that when a pair is formed between indices d and e, the substructures on (i, d − 1), (d +

1, e− 1), and (e+ 1, N) are independent. Thus, a dynamic programming approach can be

used to calculate on short subsequences and build up to longer subsequences. In this way,

quantities that at first glance are sums over an exponentially large number of structures

can be calculated in time that is polynomial in the sequence length.

The application of dynamic programming to the thermodynamics of nucleic acid sec-

ondary structures has a long history, beginning in the 1970s with the work of Waterman

and Smith [52] and Nussinov et al. [40], and followed by Zuker and Stiegler [61]. In 1990

McCaskill [37] introduced an algorithm to compute the partition function and base pair

probabilities for the single-stranded equilibrium ensemble of non-pseudoknotted structures,

and this algorithm is the basis of subsequent work in this area. Lyngsø et al. [34] suggested

improvements that reduce the computational complexity from O(N4) to O(N3) for a se-
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quence of length N without approximation. Rivas and Eddy [41] describe an algorithm

that extends the prediction of minimum free energy structures to a class of pseudoknots.

Dirks and Pierce [21, 22] extended partition function and pair probability calculations to a

smaller class of pseudoknots. Dirks et al. [19] extended the partition function calculations to

complexes of interacting strands, and computed the equilibrium concentrations for a dilute

solution of interacting strands. Other researchers have sought to extend dynamic program-

ming approaches to calculating additional properties of ensembles. For example, Miklós

et al. [38] calculated the mean and variance of the free energy over the ensemble. Ding

and Lawrence [18] developed a method to generate samples from the equilibrium ensemble

using the recursions that make up the partition function calculation. Though invaluable for

analysis and design of nucleic acids, thermodynamic calculations do not give insight into

the folding (or mis-folding) of a strand.

1.3 Nucleic acid secondary structure kinetics

Secondary structure kinetics are modeled by a first-order master equation that follows the

time-varying probabilities of all states in the system [25, 58]. For each state in the system

d

dt
pi(t) =

|Ω|∑
j=1

[kijpj(t)− kjipi(t)] .

Aggregating the transition rates, kij , into the rate matrix, K, the equation becomes

d

dt
p = Kp, (1.7)

and with initial condition p0, has solution

p(t) = eKtp0. (1.8)

For secondary structures, a pair of states is considered to be connected if one can be reached

from the other by an elementary move, which we define as the addition or removal of a single

base pair.3 Since each state is connected to the open conformation (with no base pairs) by

3Other moves between secondary structures, such as shifting one end of a base pair, are possible, but
they are not implemented in the simulation software we use [44], so we will not include them.
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a sequence of elementary moves, the system as a whole is irreducible.

Though the free energies of secondary structures are well established, transition rates

are not. For this study we use the Kawasaki [30] rule to construct approximate rates, as

has been done in previous work [25]. With this rule, the rate matrix, has entries,

kij =

 e−(∆Gi−∆Gj)/2kBT i is connected to j

0 otherwise

kii = −
∑
j 6=i

kji.

(1.9)

These rates obey detailed balance, that is, they are reversible with respect to π, so kijπ(j) =

π(i)kji. This fact and irreducibility are sufficient to ensure that p(t) → π as t → ∞. The

rate matrix is not symmetric, but reversibility implies that it is self-adjoint with the inner

product

〈x, y〉π = xTdiag(π)−1y, x, y ∈ R|Ω|.

Thus, it has real eigenvalues and a complete set of eigenvectors. The eigenvalues can be

ordered 0 = λ0 > −λ1 ≥ · · · ≥ −λ|Ω|−1, and the eigenvector corresponding to λ0 is π. Then

(1.8) can be rewritten

p(t) = π + c1v1e
−λ1t + · · ·+ c|Ω|−1v|Ω|−1e

−λ|Ω|−1t, (1.10)

where vi are right eigenvectors and ci are constants depending on the initial conditions.

(See Brémaud [7] or van Kampen [50] for additional background.) The master equation

can be solved directly via a numerical method. Alternatively, one can construct stochastic

trajectories through state space by simulating the continuous time Markov chain generated

by K [25].

1.4 Goals and outline

Our goal is to develop a macrostate analog to the microstate master equation (1.7) with

physically meaningful macrostates and transition rates that are consistent with the under-

lying microstate dynamics. We present two coarse-graining methods. The first (Chapter 2)

is a top-down approach where we partition the free energy landscape into basins surround-
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ing local minima and their connecting saddles and compute transition rates by solving

eigenvalue problems on small sub-matrices. The second (Chapter 3) is an approach based

on simulating the continuous-time Markov chain generated by K, that is the combination

of several elements: a procedure to explicitly identify transitions between macrostates in

the simulation, a problem-specific goodness-of-clustering test, an algorithm to find the cen-

troid secondary structure for each macrostate, a method to compute macrostate partition

functions from many short simulations, and a procedure for computing transition rates via

first-passage time simulations with confidence intervals. We apply this method to systems

of experimental interest in our laboratory. In Chapter 4 we develop a model problem that

allows detailed analysis of the simulation-based method and suggests its wider applicabil-

ity. Chapter 5 describes the algorithm to compute the centroid in detail and examines

the relationship between the centroid and the minimum free energy structure in how they

characterize the equilibrium ensemble.
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Chapter 2

An Enumerative Approach to
Constructing Macrostates Rate
Matrices

This chapter presents a top-down approach to finding macrostates and computing transition

rates with the goal of developing a macrostate analog to the secondary structure master

equation (1.7). The method is the combination of two new ideas: an algorithm to partition

the free energy landscape into basins while retaining information about the connectivity of

the landscape and a method to compute phenomenological transition rates by solving local

eigenvalue problems. The computation of rates follows from the analysis of Widom who

analyzed transition rates for a two-basin case in a series of papers in the 1960s [53, 54]. We

compare our method to related work by Wolfinger et al. [56], who use a different partitioning

approach, and we gain insight into when their method of computing transition rates works.

2.1 Barrier trees and basin graphs: Partitioning the sec-

ondary structure landscape

A top-down decomposition of a nucleic acid free energy landscape begins with a procedure

for grouping secondary structures into macrostates. General methods exist that are based

on, for example, the eigenstructure of the rate matrix [14] or graph partitioning [10]. Al-

ternatively, one could seek to use physical insight into the system to construct macrostates

before looking at the rate matrix: Flamm et al. [26] construct a “barrier tree” consisting of

all basins (local minima) and saddle points in the free energy landscape (Figure 2.1 (a)).

The leaves of the tree correspond to the local minima, while interior nodes correspond to
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Figure 2.1: (a) A simple free energy landscape and its barrier tree. (b) A free energy
landscape and its basin graph.

saddles. The height of a saddle between two leaves represents the highest energy that must

be reached to travel between the two minima.

Though the barrier tree provides important information about the height of saddles

separating states, it ignores the connectivity of the landscape. For example, in Figure 2.1

it appears from the tree description that to travel from 3 to 1, one must follow the path

3 → 5 → 6 → 7 → 1, while in reality 4 and 2 must also be visited. In order to have

a representation that is more true to the connectivity of the free energy landscape, we

generalize the notion of the barrier tree to a basin graph, where the connectivity of the

basins and saddle points in the landscape is explicit. This is shown in Figure 2.1 (b).

In order to group secondary structures into basins and saddles, we enumerate all sec-

ondary structures, and we assume that they are sorted by increasing energy. A secondary

structure satisfies one of the following characteristics (“downhill” is with respect to the free

energy):

1. The structure has no downhill neighbors: It is a new basin.

2. The structure’s downhill neighbors are all part of the same basin: It is added to that

basin.

3. The structure’s neighbors reside in a number of basins or saddles: It is part of the

saddle joining all basins reachable by downhill steps.

The algorithm considers the structures in order of increasing energy and adds them to

the appropriate basin or saddle. It requires only a single pass, and since the number of

neighbors of a secondary structure for a sequence of length N is at most N2—there are

at most N2 possible base pairs and neighbors only differ by one base pair—the running
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Figure 2.2: A discrete two-basin potential

time is bounded by N2|Ω|, where |Ω| is the number of secondary structures. If a group of

neighboring structures has the same energy, then they are treated as a single state for the

purposes of determining which of (1–3) hold.

Figure 2.1 shows a simple free energy landscape and its basin graph. Figure 2.3 shows

a basin graph for the landscape of a 21 nucleotide RNA sequence. The blue, numbered

circles represent basins and the purple circles saddles. Basin graphs are the foundation

of our macrostate approach, as each basin in the free energy landscape will comprise a

macrostate.

2.2 Phenomenological rate constants for a particle in a two-

basin landscape

In an insightful analysis, Widom [54] elucidated the relation between the phenomenological

reaction rates between two macroscopic substances, A and B, and the underlying transi-

tion probabilities between all of the microstates in the system. We will present his whole

derivation, since the insight gained will lead us to a coarsening method for complete NA

landscapes.

Consider the two-basin landscape with discrete states depicted in Figure 2.2. We assume

that the transitions only occur between adjacent states and the rates between states obey

detailed balance with respect to the Boltzmann equilibrium distribution. Intuitively, a

particle started in any state within one basin will quickly reach “equilibrium” within that

basin. On longer time scales it will make transitions between the basins, and it is this

transition rate that we wish to derive.

We assume that the dynamics are governed by a master equation with rate matrix K
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(Section 1.3). The solution for a particular microstate, i, is

pi(t) = π(i) + c1v1
i e
−λ1t + · · ·+ c|Ω|−1v

|Ω|−1
i e−λ|Ω|−1t, (2.1)

where the vj are the eigenvectors of K and the cj are constants that depend on the initial

condition. The barrier between the two basins suggests that there is a separation of time-

scales with the slowest scale corresponding to transitions between the basins. Thus, λ1 �

λ2, and for t� (λ2 − λ1)−1 the solution is approximated by

pi(t) = π(i) + c1v1
i e
−λ1t. (2.2)

Differentiating this expression and substituting the result into itself gives

dpi(t)
dt

= λ1 [π(i)− pi(t)] . (2.3)

Since we are interested in populations of the two basins and not individual microstates, we

define

pA(t) =
∑
i∈A

pi(t) and πA =
∑
i∈A

π(i), (2.4)

and similarly for B. Then, by conservation of mass, pA(t) + pB(t) = 1, and

−dpA(t)
dt

=
dpB(t)
dt

= kfpA(t)− kbpB(t), (2.5)

where

kf = λ1πB and kb = λ1πA. (2.6)

We call kf and kb the phenomenological rate constants. These are the transition rates that

would be measured in an experiment. A generalization of the method described here will

allow us to compute rate constants between all pairs of basins in a NA free energy landscape.

2.2.1 Distinguishing rate constants

At equilibrium, the flow of probability from A to B is

keqBA =
∑
i∈A

∑
j∈B

kji
e−∆G(i)/kBT

QA
, (2.7)
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where e−∆G(i)/kBT /QA is the probability of being in state i conditioned on being in basin

A. The following relation holds:
πB
πA

=
kf
kb

=
keqBA
keqAB

. (2.8)

However, the rates are not equivalent: The phenomenological rates, kf and kr depend,

through λ1, on all microstate transitions in the system, while the equilibrium flows, keqBA

and keqAB, depend only on those rates that cross the dividing surface between A and B.

The equilibrium flows are always greater than the phenomenological rates, but when the

step that crosses the border between A and B is rate limiting, the equilibrium flows may

be a good approximation to the phenomenological rates [53]. We call these flows the local

equilibrium (LE) rates.

Although they are not the correct rate constants away from equilibrium, several authors

have used the equilibrium flows to construct macrostate rate matrices. Wolfinger et al. [56]

identify macrostates with local minima on the barrier tree and compute the equilibrium flows

between minima. Zhang and Chen [59] also compute LE rates, but they use a simplified

energy model and partition the landscape by hand, searching for rate-limiting base stacks.

The approach we outline in the following section uses the correct phenomenological rates.

2.3 Dominant local relaxation

Having presented basin graphs and the method to compute phenomenological transition

rates, we now outline our coarsening approach. We identify a macrostate with each basin

in the basin graph and compute phenomenological rates to determine transitions between

them. In particular, we construct the basin graph for a sequence, identifying B basins. After

rearranging indices, each basin corresponds to a block on the diagonal of the microstate rate

matrix. For each pair of connected basins, we compute the transition rates by computing

the smallest nonzero eigenvalue for the sub-matrix composed of the basins’ two diagonal

blocks and the corresponding off-diagonal blocks.

Denoting the eigenvalue for pair (a, b) by λ(a,b)
1 , the transition rates between a and b are

kba =
λ

(a,b)
1 Qb

Qa +Qb
and kab =

λ
(a,b)
1 Qa

Qa +Qb
.

For basins that are not connected, the rates are zero. The time-varying probability of basin
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a is

pa(t) =
B∑
b=1

[kabpb(t)− kbapa(t)] . (2.9)

We call this approach dominant local relaxation (DLR). This has several advantages over

a method that considers the entire rate matrix at once. First, the method allows us to

compute eigenvalues for small sub-problems rather than for the entire rate matrix. Further,

the macrostates have a clear physical interpretation as minima in the free energy landscape

and group similar structures. Importantly, the transition rates are the phenomenological

rates that would be measured in an experiment.

If all saddles in the free energy landscape connected only two basins, the procedure

outlined above would work as described. In reality, a saddle may connect arbitrarily many

basins (as is illustrated in Figure 2.3). In the case of a saddle connecting L basins, we

approximate the solution for t� (λL − λL−1)−1 by

pi(t) =
L−1∑
j=0

cjvji e
−λjt, (2.10)

where v0 = π, λ0 = 0, and c0 = 1 (see (1.10)). As before, we sum the micro-states within

each of the L basins, to get

pA(t) =
∑
i∈A

pi(t) =
∑
i∈A

L−1∑
j=0

cjvji e
−λjt =

L−1∑
j=0

cj v̄jAe
−λjt, (2.11)

where v̄j is a macrostate eigenvectors whose entries are the sum of vji within each macrostate.

Thus, a similarity transformation for these grouped eigenvectors yields

kdlr = V̄ Λ̄V̄ −1. (2.12)

where V̄ is the L × L matrix formed from the vectors v̄ji , and Λ̄ is the matrix with

λ0, . . . , λL−1 along the diagonal. The matrix kdlr contains transition rates among the L

basins. Since saddles may connect many basins, and the saddles may be interleaved (if

basins 1,2,3 are connected by a 3-way saddle as are 3,4,5, then basins 1–5 must be treated

at once), we may end up solving for the eigenvalues of the entire rate matrix at once. To

avoid this, we assume that the two-way saddles are the most important in capturing the
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dynamics, and only perform pairwise calculations.

2.3.1 Examples

Our first example is the 21 nucleotide RNA sequence whose basin graph and master-equation

solutions are shown in Figure 2.3. The size of the circles qualitatively indicate the basin

or saddle’s equilibrium probability. In addition to computing rates via the DLR method,

we compare the LE approach and, as a control, solve the microstate master equation and

group the solution into basins. We see from Figure 2.3 that the DLR solution, calculated

using only two-way saddles (pairs of basins), is virtually indistinguishable from the grouped

microstate solution. The LE solution, on the other hand, significantly overestimates the

rate of transition into the frustrated state (2).

We now show a larger example that tests the practical limits of this method. We study

a 39 nucleotide RNA with 3.67 × 107 secondary structures. This is too many structures

to perform a basin decomposition, so we instead consider the 1.57 × 106 structures within

25 kcal/mol of the minimum free energy. (The starting conformation is 15.5 kcal/mol above

the MFE.) The method identifies 3780 basins. Constructing the basin graph and computing

the DLR and LE rates took approximately 80 hours to run on a single processor. Figure 2.4

shows the macrostate solution using both the LE and DLR rates. (This problem is too

large to solve the microstate master-equation.) The LE approach seems to significantly

over-estimate the transition rate out of the starting basin, labeled 283, and the approach

to equilibrium, but without a microstate solution for comparison we cannot make firm

conclusions.

2.3.2 Saddle assignments

As Widom [53] noted, the local equilibrium rates are sensitive to the exact boundary between

the two basins. This suggests the question: How dependent is the improvement of the DLR

rates over the LE rates on the choice of dividing surface? We answered this question by

considering four methods for assigning each state in a saddle to a basin:

1. Add the state to the lowest-energy neighboring basin.

2. Add the state to the highest-energy neighboring basin.
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3. Add the state to the basin of a random neighbor, ensuring that each basin remains

connected.

4. Add the state to the basin of its lowest-energy neighbor. This is a discrete version of

steepest-descent.

To make the difference between (1) and (4) clear: The low basin method chooses the lowest

basin according to the depth of the minimum in the basin. The steepest descent method

looks only at neighboring structures and chooses the basin of the lowest-energy neighbor.

Figure 2.5 compares the four saddle assignment methods for a 27 nucleotide RNA sequence.

The DLR solution is very close to the microstate solution for all assignment methods,

though it is slightly off for the high basin method. Although the computation of the DLR

eigenvalue does not depend on the precise dividing surface between basins, moving states

from one basin to the other changes the relative size of their partition functions slightly.

More importantly, saddle assignments may affect the DLR rates because we only compute

the rates between pairs of basins, even though higher-order saddles exist.

As expected, the LE rates display much greater sensitivity to the saddle assignment

method, performing particularly poorly for the low basin and high basin methods. More
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Figure 2.5: Comparing saddle assignment methods for the 27 nucleotide RNA sequence,
GUGAACCUGGACUAUGUCCUCACUCAC: (a) low basin, (b) high basin, (c) random basin, and (d)
steepest descent.

surprising is how close to the microstate solution the LE solution with steepest descent

saddle assignments is, only slightly overestimating the major transition rates.

It seems that the steepest descent saddle assignment method creates basin divisions that

make the microstate transitions crossing the dividing surface rate-limiting. An intuitive

justification for why that would be the case is as follows. Recall from (2.6) that

kf + kb = λ1πB + λ1πA = λ1. (2.13)
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We seek to describe the analog to λ1 for the LE rates. Substituting (1.9) into (2.7) and

replacing kf and kb in (2.13), we find

λEQ = keqBA + keqAB

=
∑
i∈A

∑
j∈B

kji
e−∆G(i)/kBT

QA
+ kij

e−∆G(j)/kBT

QB

=
∑
i∈A

∑
j∈B

e−(∆G(i)−∆G(j))/2kBT
e−∆G(i)/kBT

QA
+ e−(∆G(j)−∆G(i))/2kBT

e−∆G(j)/kBT

QB

=
∑
i∈A

∑
j∈B

e−(∆G(i)+∆G(j))/2kBT

QA
+
e−(∆G(j)+∆G(i))/2kBT

QB

=
∑
i∈A

∑
j∈B

QA +QB
QAQB

e−(∆G(i)+∆G(j))/2kBT .

Since λEQ ≥ λ1 (Section 2.2.1), we derive the best approximation by choosing the dividing

surface to minimize λEQ. Because the choice of dividing surface does not change QA or QB

much, we achieve this by choosing the states on either side of the dividing surface to have

as high an energy as possible. The steepest descent saddle assignment does this by keeping

steep edges within a basin and placing shallow edges, which connect two high-energy states,

between basins.

Thus, with an appropriate choice of dividing surface, the LE rates can perform nearly as

well as the DLR rates. Further, analysis of λEQ suggested that the steepest descent method

for determining the dividing surface might be a near-optimal strategy.

2.4 Summary and outlook

Dominant local relaxation is an appealing approach to constructing a reduced-size master

equation for secondary structure kinetics. Identifying macrostates with nodes in the basin

graph, which represent local minima in the free energy landscape, ascribes a clear physical

meaning to the macrostates. By computing transition rates separately for each pair of

connected basins, we replace a potentially intractable, large eigenvalue calculation on the

whole rate matrix with many smaller ones. Further the rates have a physical meaning. In

contrast to approaches like the local equilibrium approximation, we need not precisely fix

the border between macrostates since the eigenvalue computation considers all microstate

transitions whether they cross the dividing surface between basins or not. However, our
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analysis of saddle assignments suggests that with the proper choice of dividing surface, the

LE rates perform nearly as well as the DLR rates, and they have the advantage of requiring

only a sum over states rather than solving a sparse but potentially ill-conditioned eigenvalue

problem.

In practice, neither approach is feasible for sequences of experimental interest because

it requires enumerating all secondary structures in the free energy landscape. Since the

number of structures grows exponentially with sequence length, no method that requires

enumerating secondary structures will be computationally practical. Wolfinger et al. [56]

seek to address this problem by considering only secondary structures within a given energy

gap of the minimum free energy. Though this allows for the analysis of somewhat longer

sequences, the energy gap must decrease as the sequence length increases. Synthetic DNA

machines rely on large changes in free energy for their functioning, and any approach that

considers only structures near the minimum free energy will have little to say about such

a system. An alternative approach might be to sample structures from the equilibrium

distribution, then identify basins from the sample. This requires fewer structures than

the enumeration approach, but landscape features that are not significantly represented in

the equilibrium ensemble, such as a high energy starting state or metastable intermediate

states, will be missed. These limitations led us to pursue an alternative approach based on

simulations, which is presented in the next chapter.
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Chapter 3

Simulation-Based Coarse-Graining
of Nucleic Acid Free Energy
Landscapes

The coarse-graining approach presented in the previous chapter and related work are all

limited by the fact that for problems of interest, the list of microstates is too large to write

down. Answering this question of how to solve a problem that is too large to write down

is the central goal of this work, and in this chapter we present a solution. Clearly, we

cannot solve the microstate equations, but we identify physically meaningful macrostates

and compute transition rates between them.

The approach relies on the ability to efficiently simulate secondary structure kinetics as

a continuous time Markov chain [25]. Simulations of the kinetics do not immediately give an

useful picture of the free energy landscape because the simulations are difficult to interpret.

However, an advantage of simulations is the ability to start them at a structure of experi-

mental interest and explore the features of the landscape important to the folding from that

starting point, which may not be well represented in the equilibrium ensemble. Our method

addresses the issue of interpretation by identifying physically meaningful macrostates and

computing transition rates between them.

3.1 Method

Simulating the continuous-time Markov chain generated by the secondary structure rate

matrix, K (Section 1.3), can be done efficiently, without storing K, by computing transi-

tion rates as needed at each step [25]. That is, we construct the single sparse column of
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K corresponding to the current state, and use the rates to determine the exit time from

the current state and the subsequent state. Recent work has extended the simulations to

multiple interacting strands and improved the computational complexity of computing the

rates by exploiting the loop-based structure of the energy model [44]. This means that

we can simulate the chain long enough to observe several macrostate transitions. Thus,

we seek a method to identify these macrostate transitions within a simulation and charac-

terize the secondary structures in each macrostate. To do this we search for segments of

the trajectory over which the Markov Chain appears stationary and points at which large

scale transitions occur (Step 1). Then we cluster the resulting pair probability distribu-

tions over each stationary segment into macrostates and find a centroid structure for each

macrostate (Step 2), compute macrostate partition functions via a large number of very

short simulations (Step 3), and compute transition rates by estimating first-passage times

from simulations between macrostates (Step 4). Finally, we compute macrostate initial

conditions from additional short simulations (Step 5). The following sections address each

of these steps.

3.1.1 Locating transitions

To identify macrostate transitions we must develop a measure of how close the chain is to

local equilibrium over a short period of time. Given a simulation trajectory Xt, 0 ≤ t ≤ T ,

with Xt ∈ Ω, we choose a length of time, τ , longer than the time to reach local equilibrium,

and compare the vector of empirical measures for sliding sub-trajectories of length τ . For

the sub-trajectory from time a to b, X[a,b], the empirical measures are computed by

µs(X[a,b]) =
1

b− a

∫ b

a
1[Xt = s]dt, ∀s ∈ Ω. (3.1)

We compare these empirical measures at each time t via the distance in variation,

dV
(
µ(X[t−τ,t]), µ(X[t,t+τ ])

)
=

1
2

∑
s∈Ω′

|µs(X[t−τ,t])− µs(X[t,t+τ ])|, (3.2)

summing only over Ω′ ⊂ Ω, the structures with nonzero empirical measure. In practice,

|Ω′| � |Ω|, which is why the calculation of (3.2) is practical. Since µs(X[a,b]) is a probability

measure, dV ∈ [0, 1]. Assuming that the trajectory is ergodic within each macrostate, if τ is
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Figure 3.1: Discrete two-well free energy landscape (a), and a simulation of Kawasaki
dynamics on that landscape (b). The distance in variation computed for that simulation
with τ = 20 (c), 200 (d), and 2000 (e).

longer than the local relaxation time and the trajectory remains in a single macrostate over

the interval [t − τ, t + τ ] then dV ≈ 0. Alternatively, if a macrostate transition occurs at

time t, µ(X[t−τ,t]) and µ(X[t,t+τ ]) represent the local equilibrium distributions for different

macrostates and dV ≈ 1. To gain an intuitive understanding of the identification step,

consider Figure 3.1. Panel (a) shows a discrete two-well free energy landscape, and (b)

shows a simulation of the Kawasaki dynamics (1.9) on that landscape. Note that there are

three transitions between wells. Panels (c)–(e) show the distance in variation computed for

this simulation with τ = 20, 200, and 2000. For τ = 20 there is too much noise to clearly

identify the macrostate transitions, but they are clearly identifiable for τ = 200. When

τ = 2000 the transitions are over-smoothed and, though the transitions are visible to the

eye, the measure dV does not reach unity for the second two transitions.

For nucleic acid problems, we do not know which τ should be chosen a priori since that

would require prior knowledge of the relevant timescales in the kinetics for a particular

sequence. In practice we make an initial guess; if the method identifies macrostates with

mean exit time on the order of or shorter than τ , a longer τ should be chosen. If we identify

few or no macrostates, we may try a shorter τ to see if there are additional macrostates

that are important at shorter timescales.

Thus, we scan the trajectory Xt for 0 ≤ t ≤ T and identify points where the distance
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in variation is close to unity. In practice we must define a threshold γ that quantifies the

notion “close to unity.” We find the set of intervals

T (γ) =
{
t
∣∣ dV (µ(X[t−τ,t]), µ(X[t,t+τ ])

)
≥ γ

}
, (3.3)

and choose the time of maximum dV within each interval

T ∗k = argmax
t∈T (γ)

k

dV
(
µ(X[t−τ,t]), µ(X[t,t+τ ])

)
. (3.4)

Define m = |T ∗| + 1 and augment T ∗ with the points T ∗0 = 0 and T ∗m+1 = T . The sub-

trajectories between successive points of T ∗ are contained within a single macrostate, so we

slice the trajectory at these points, defining

Xi = X[T ∗i−1,T
∗
i ], i = 1, . . . ,m. (3.5)

3.1.2 Clustering macrostates and finding macrostate centroids

Macrostates could be characterized by their empirical measures; however, representing the

macrostates by pair probability matrices is both more memory-efficient and lends itself

to finding a representative secondary structure for each macrostate. For each segment,

we compute the pair probability matrix from the empirical measure over that segment

(Section 1.1),

P i = ρ(µ(Xi)), i = 1, . . . ,m. (3.6)

The trajectory may visit the same macrostate several times. To avoid over-counting

macrostates, we cluster similar pair probability distributions to find the distinct macrostates.

We use a hierarchical agglomerative clustering algorithm. To begin, each pair probability

matrix is its own cluster. All inter-cluster distances are computed and the closest two clus-

ters are merged. This is repeated until a stopping criterion is satisfied [31]. (See Figure 3.2

and Jain et al. [29] for a more detailed explanation of the clustering procedure.)

Though we are interested in defining macrostates, the simulations underlying our method

are at the level of secondary structures. In particular, to compute first-passage times (Step

4), we must define starting and ending configurations as particular secondary structures.

For this reason, we seek to define a representative secondary structure for each macrostate.
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Figure 3.2: Hierarchical clustering of two-dimensional data. (a) Points in the complex plane
that are to be clustered. The hierarchical agglomerative clustering algorithm begins with
each data point as the representative of its own cluster and repeatedly merges the two
closest clusters. The output can be represented as a dendrogram (b)–(d) where two nodes
are joined in the tree at the distance at which they were merged. The three panels differ
in the method used to compute the inter-cluster distances. (b) The “single link” method
uses the minimum distance between two clusters; (c) the “average link” uses the average
distance between points in each cluster; (d) the “complete link” uses the maximum distance
between points.

Such representative structures also aid in interpreting the results.

We simultaneously address the problem of determining a stopping criterion and finding

a representative secondary structure. To choose a representative structure we find the

centroid of the macrostate with respect to the `1 norm, that is, the structure with the

smallest probability-weighted distance to all structures in the macrostate. If we denote the

probability space of macrostate k by (Ω, pk), the centroid structure satisfies

scent = argmin
s∈Ω

n(s)

= argmin
s∈Ω

∑
σ∈Ω

pk(σ)‖S(σ)− S(s)‖1

= argmin
s∈Ω

N − N∑
j=1

N+1∑
i=1

S(s)i,jP ki,j

 .
This optimization problem can be solved efficiently via dynamic programming. The quantity

n(scent) gives a measure of how tightly clustered the secondary structures in the macrostate

are. We will explain how to find scent in more detail in Chapter 5.

A wide variety of approaches exist to determine the optimal number of clusters to

choose in a hierarchical clustering procedure. (See Maulik and Bandyopadhyay [36] for

explanations of several approaches.) These all seek to balance having a small number

of well-separated clusters with having tightly packed clusters. In our situation, the pair
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probability matrices being clustered are themselves distributions of secondary structures.

Our goodness-of-clustering function should take into account the closeness of the secondary

structures within the macrostate and not just the closeness of the pair probability matrices.

With this in mind, we choose the number of macrostates that maximizes the following

quantity:

C(B) =

min
m,n=1,...,B

m 6=n

‖scent
m − scent

n ‖1(
1
B

B∑
m=1

min
n=1,...,B
m 6=n

‖scent
m − scent

n ‖1

)(
1
B

B∑
m=1

n(scent
m )

) . (3.7)

The sum of n(scent) over the macrostates on the bottom rewards tightly packed clusters.

The minimum inter-cluster distance over all pairs, in the numerator, divided by the average

minimum inter-cluster distance rewards clusters that are evenly spaced. In particular, the

minimum in the numerator ensures that a number of macrostates will not be chosen so that

two macrostate centroids coincide.

3.1.3 Computing partition functions

Next, we wish to approximate the partition function for each macrostate. For (Ω, π) this

can be calculated via dynamic programming [37], but since secondary structures are not

explicitly enumerated, we cannot easily find partition functions for individual macrostates.

We can, however, compute approximations to the macrostate partition functions. The

insight is that a simulation started at the centroid of a macrostate and run for time τ should

end within the macrostate, since the transition time is much greater than τ . Additionally,

the end point of that simulation should be an independent sample from the equilibrium

distribution within the macrostate, since the mixing time is, by construction, shorter than

τ . Thus, to compute the partition function we run a simulation of length τ and form the

set A of the distinct structures visited, computing

QA =
∑
s∈A

e−∆G(s)/kBT . (3.8)
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Then we perform L additional simulations, recording the final state at time τ as Xi
τ , i =

1, . . . , L. We estimate the partition function for the macrostate by

Qm =
QA

1
L

∑L
i=1 1 [Xi

τ ∈ A]
. (3.9)

Intuitively, to estimate the size of the macrostate, we compute the size of a subset, A, then

estimate the fraction of the total that A represents. Dividing the size of A by the fraction

of the total that A represents gives the total size. By computing confidence intervals for the

probability in the denominator, we obtain confidence intervals for the partition function.

We compute confidence intervals using the Hoeffding [27] bound, which states that for

independent random variables, Z1, . . . , Zn with 0 ≤ Zi ≤ 1, for all i,

P
[
Z̄ −E[Z] ≥ t

]
≤ e−2nt2 . (3.10)

Rearranging to get bounds on t for a predetermined error probability, α, we find

t ≤
√
− logα

2n
.

From the macrostate partition functions we define the macrostate equilibrium distribution

πM (i) = Qi

/ B∑
j=1

Qj . (3.11)

3.1.4 Computing transition rates

Once we have identified a representative secondary structure for each macrostate, we com-

pute transition rates by simulating transitions between the representative secondary struc-

tures and computing first-passage times. The passage times, along with the requirement

that the macrostate rate matrix be reversible with respect to πM allow us to calculate

forward and reverse transition rates for each pair of macrostates. We could simulate both

forward and backward rates for each pair of macrostates and then check against πM for

reversibility, or we could use the ratio of forward to backward rates to estimate πM instead

of (3.11). However, due to large changes in energy, transitions are often nearly irreversible,

and it is impractical to simulate backward rates. We always simulate transitions from states
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with small πM to states with larger πM . In addition, we compute confidence intervals for

the rates.

To calculate macrostate transition rates by first-passage time simulations, we assume

that first-passage times between macrostates are a good approximation of the transition

rates, and that the first passage times are exponentially distributed with a rate λ that we

wish to estimate. The assumption of an exponential distribution is consistent with the goal

of developing a macrostate master equation, since the transition times in a first-order master

equation are exponentially distributed. That is, exponentially distributed transition times

are a consequence of the separation of time scales and high energy barrier that characterize

correctly identified macrostates (Section 2.3). Given observed passage times, Ti, we can

compute the maximum-likelihood estimate of λ,

λ̂ =
1
Tn
, where Tn =

1
n

n∑
i=1

Ti. (3.12)

In addition to an estimate for λ, we would like to compute confidence intervals. Assume

that there are only two macrostates. The quantity
∑n

i=1 Ti, a sum of exponentially dis-

tributed random variables, is by definition distributed according to a gamma distribution

with parameters n and λ,
n∑
i=1

Ti ∼ Gamma(n, λ).

Multiplying both sides of this expression by λ/n, and noting the homogeneity of the gamma

density implies that

λTn ∼ Gamma(n, n).

The distribution of λTn is independent of λ so we can use quantiles of Gamma(n, n) to

construct a confidence interval for λ with confidence level 1− α. Noting that by definition

Gamma(n, n) ≡ χ2
2n, we have

P

(
χ2

2n,α/2

Tn
< λ <

χ2
2n,1−α/2

Tn

)
= 1− α. (3.13)

See Ross [42], Chapter 5, for a complete description of estimating exponential rates and

confidence intervals. In practice, we must designate a maximum time for the first-passage

simulations, but the simulation may not leave the macrostate before this time (this is
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Type I censoring). We can incorporate these non-transitions into our estimate for λ, where

trajectories that do not exit a macrostate give estimates of the probability that no transition

occurs by time Tmax. Thus, we compute

T
′
n =

1
r

n∑
i=1

Ti

where r is the number of successes and Ti = Tmax if no transition occurred. In other

words, we can estimate the rate by dividing the total time simulated by the total number

of transitions observed.

To construct confidence intervals for Type I censored simulations, we use an approximate

method, which is the expression of (3.13) but with the number of successes, r, in place of

n. This has the advantage of not requiring a separate implementation from the case where

all simulations are successful. It happens to be exact under the related Type II censoring

(when one simulates until a given number of passages are observed), and performs well in

practice [48].

When there are more than two macrostates in the system, transitions between them

are not independent. For example, if we simulate transitions from macrostate 3 to 2 or

1, these transitions are competing processes with rates λ23 and λ13. Thus exit times from

macrostate 3 will be exponentially distributed with rate (λ23 +λ13). For B macrostates the

exit time from macrostate i has the following distribution

exit time from i ∼ Exp

 B∑
j=1
j 6=i

λji

 . (3.14)

To estimate the individual λji we estimate the total exit rate via (3.12) and form confidence

intervals via (3.13). Then we estimate the probability for each macrostate that an exit from

macrostate i ends in macrostate j. The probability that a transition from macrostate i ends

in macrostate j is

pji = λji/

B∑
l=1
l 6=i

λli, (3.15)

and we estimate it by

p̂ji =
#jumps from i to j

#exits from i
. (3.16)
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In general we compute M passages from si, i = B, . . . , 2, and define Tmi to be a passage

time from si to one of sj , j 6= i. Let Emji = 1 if simulation m from si ends at sj and zero

otherwise. Then we define,

Ti =
1
M

M∑
m=1

Tmi , i = 2, . . . , B

pji =
1
M

M∑
m=1

Emji , i = 2, . . . , B

and define the macrostate rate matrix, K̂, by

k̂ji = pli/Ti if i > j

k̂ij = k̂jiQi/Qj if i < j (3.17)

k̂ii = −
B∑
i=1
i6=j

k̂ji.

In constructing confidence intervals for the pji, the situation where there are three

macrostates is a special case. With three macrostates the number of jumps from i to j

has a binomial distribution with propensity given by (3.15). We use Wilson’s method for

confidence intervals, which performs well in practice [1]. Given an estimated value, p̂, the

ends of the 1− α confidence interval are

p̂+
z2
α/2

2n ± zα/2

√
1
n

[
p̂(1− p̂) +

z2
α/2

4n

]
1 +

z2
α/2

n

,

where zα/2 is the α/2 quantile of the standard normal distribution.

When there are more than three macrostates, the binomial distribution becomes a multi-

nomial distribution, a problem for which confidence intervals are not well understood. We

use a conservative approximate confidence interval [24], with endpoints

p̂ji ±
1.13√
n
,

which gives a coverage probability of at least 0.95.
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3.1.5 Computing initial conditions

The start structure that we specify for our simulations may not be the centroid of a

macrostate. This is not a shortcoming of the method, since by averaging the trajecto-

ries over time τ we cannot resolve kinetics on a time-scale shorter than τ . To compute

the macrostate distribution at time τ , we run L simulations of length τ and record which

macrostate the end structure, Xτ , is closest to. Thus, we estimate

pi(τ) =
1
L

L∑
l=1

1

[
argmin
b=1,...,B

‖P b − S(Xi
τ )‖1 = i

]
, i = 1, . . . , B. (3.18)

3.1.6 Algorithmic implementation and complexity

Algorithm 3.1 shows pseudo-code for the method presented in this section. The pseudo-code

assumes that there is one simulation trajectory, X, but in practice we run several simulations

from the starting conformation of interest. Step 1 is repeated for each trajectory, giving a

larger collection of Xi; Ω′ is enlarged to include all secondary structures visited by any of the

simulations. Because much of the method involves running many independent simulations,

it is easily parallelized. The clustering step must be done on a single processor, but as we

will see in the next section, it accounts for a small portion of the overall running time.

Precise analysis of the time and space complexity is impossible because of the stochastic

nature of the method and the sequence dependence of the number of macrostates and

transition rates. However, we can provide an upper bound on the simulation time, which

dominates the overall running time.1 Assume that the sequence is N nucleotides long, there

are b initial trajectories of length T , the averaging window is τ , the number of macrostates

found is B, and the maximum time for rate simulations is Tmax. In the worst case, running

a simulation for time t is O(tN3) [44]. The steps of the method require simulating for the

following times:

1. Identification: bT

2. Clustering: no simulation

3. Partition functions: (L+ 1)Bτ

1The clustering step scales quadratically with the number of non-transition segments. Each centroid
computation is O(N3).



32Step 1 (Identify transitions):
Input: Simulation trajectory, Xt, 0 ≤ t ≤ T
Parameters: Averaging window size, τ , and transition threshold, γ
Output: Non-transition segments, Xi, i = 1, . . . ,m
Procedure:
Dt = dV

`
µ(X[t−τ,t]), µ(X[t,t+τ ])

´
, τ ≤ t ≤ T − τ

T ∗ = {t|Dt > γ,Dt is locally maximal}
m = |T ∗|+ 1
T ∗0 = 0, T ∗s = T
Xi = X[T∗i−1,T

∗
i ], i = 1, . . . ,m

Step 2 (Cluster macrostates and find centroid structures):
Input: Xi from step 1
Output: Number of macrostates, B, and centroid structures, si, i = 1, . . . , B
Procedure:
P i = ρ

`
µ
`
Xi
´´
, i = 1, . . . ,m

B = m
repeat
dij = ‖P i − P j‖1, i, j = 1, . . . , B, i 6= j
(i∗, j∗) = argmini 6=j dij

P i
∗

= 1
2

“
P i

∗
+ P j

∗
”

Pk = Pk+1, k = j∗, . . . , B − 1

si = argmins∈Ω N −
PN
j=1

PN+1
k=1 S(s)j,kP

i
j,k, i = 1, . . . , B

B = B − 1
until C(B) is maximized

Step 3 (Compute partition functions):
Input: Number of macrostates, B, and centroid structures, si, i = 1, . . . , B, from step 2
Parameters: Number of simulations, L
Output:

Macrostate partition functions, Qi, i = 1, . . . , B
Procedure:

for i = 1, . . . , B
Simulate Xt, 0 ≤ t ≤ τ
A = unique(Xt, 0 ≤ t ≤ τ)
c = 0
for i = 1, . . . , L:

Simulate Xt, 0 ≤ t ≤ τ
c = c+ 1 [Xτ ∈ A]

end

QA =
P
s∈A e

−∆G(s)/kBT

Qi = LQA/c
end
quicksort si by Qi

Step 4 (Calculate transition rates):
Input: Centroid structures, si, and partition functions, Qi, from steps 2 and 3
Parameters: Number of simulations, M
Output:

Transition rates k̂ij , i, j = 1, . . . , B (with confidence intervals)
Procedure:

for i = B, . . . , 2, m = 1, . . . ,M
Tmi = simulated passage time from si to one of sl, l 6= i
Emli = 1

ˆ
Tmi ends at sl

˜
, l = 1, . . . , B, l 6= i

end

Ti = 1
M

PM
m=1 T

m
i , i = 2, . . . , B

pji = 1
K

PK
k=1 E

k
ji, i = 2, . . . , B, j = 1, . . . , B, i 6= j

for i, j = 1, . . . , B

k̂ji = pjii/Ti if i > j

k̂ij = k̂jiQi/Qj if i < j

k̂ii = −
P
l kli if i = j

end
Step 5 (Compute initial conditions):

Input: Macrostate pair probability matrices, P i

Parameters: Number of simulations, L
Output: Initial conditions, pi(τ), i = 1, . . . , B
Procedure:

for l = 1, . . . , L
Simulate Xt, 0 ≤ t ≤ τ
for i = 1, . . . , B
pi(τ) = pi(τ) + 1

L
1

ˆ
argminb=1,...,B ‖P b − S(Xi

τ )‖1 = i
˜

end
end

Algorithm 3.1: Pseudocode for the trajectory-based method
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4. Transition rates: M(B − 1)Tmax

5. Initial conditions: Lτ

where in practice we choose M = 500 and L = 1000, which give appropriately tight

confidence intervals for any sequence. In practice, only the identification step and com-

puting the transition rates are significant, so a worst-case estimate of simulating time is

O
(
(bT +MBTmax)N3

)
. Importantly, all steps of the method that process simulations are

linear or constant in the length of the simulation. Thus, in terms of factors of T or N , our

method adds no extra time complexity.

Only the identification step uses significant memory. The other steps require memory

only for pair probability matrices, representative secondary structures for the basins, and

vectors of passage times. An unsophisticated implementation of the identification step

would require storing the simulation trajectories, the list of distinct secondary structures

visited, and the pair probability matrices for each non-transition region of the trajectory.

We can avoid storing the complete trajectories by computing the distance in variation and

the pair probability matrices as the simulation proceeds. In addition, we can clear the list of

visited structures each time we identify a transition. Like the time complexity, the memory

limitations on sequence length are sequence dependent, depending on N , τ , the number of

moves in a simulation of length τ , and the time between macrostate transitions.

3.2 Examples

3.2.1 RNA hairpin

We first demonstrate the effectiveness of the method on an RNA sequence for which we

can solve the microstate master equation. Figure 3.3 shows the solution to the macrostate

master equation for the 23 nucleotide RNA sequence GUCGCGUCGCGUCGCUAUGCGAC. The sec-

ondary structure drawings show the representative structure for each macrostate. As a

control, we also show the solution to the microstate master equation where the solution

has been grouped into local minima by the method of Wolfinger et al. [56]. Visually the

solutions are very close, and the trajectory-based method groups three local minima into

a single macrostate. Comparing these three structures, we see that they are all related by

a 3′ stem with other structure on the 5′ end. Transitions between these basins occur in
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time shorter than τ , so it is expected that the trajectory-based method groups them into

a single macrostate. The macrostate rate matrix should reflect the long time dynamics of

the microstate system, which is reflected in the smallest nonzero eigenvalues. Computing

the eigenvalues for the micro- and macrostate rate matrices (d) shows that they are indeed

very close, and that the confidence intervals contain the microstate eigenvalues.2 Panel (c)

shows the fraction of time spent at each step in the method running on a single processor.

The largest fraction is spent in the simulations from which we compute rates, and the other

significant step is the initial simulation and transition identification. Solving the microstate

master equation took 204 minutes on a single processor, while the trajectory-based method

took 425 minutes. Though slower for short sequences, the trajectory-based method can find

solutions for sequences that are too long to solve the microstate master equation.

Panel (b) shows the speed gained from running on multiple cores. We see an increase

in speed that is sub-linear in the number of nodes. Though the independence of the simu-

lations run on each processor suggests that we should have near-perfect speedup, a simple

probabilistic argument shows why that is not the case: The length of each of the simula-

tions from which we estimate transition rates is approximately exponentially distributed.

By default we simulate 500 passage times to estimate the rate. On a single processor the

expected running time is

Trun =
500
λ
,

where λ is the transition rate. On L processors, the expected running time for a single

processor, j, is

T jrun =
500
Lλ

,

but we must wait until all processors have finished to proceed. As L increases, the proba-

bility that one of the T jrun is significantly larger than its expectation is large.

As an analogy, imagine that a group of people are waiting to checkout at a supermarket.

Customers take 1 minute or 3 minutes to checkout with 50% probability. If there are ten

customers in one line, with high probability it will take about 20 minutes for everyone to

leave the store. Alternatively, with 10 registers it will take 3 minutes for everyone to leave

2We compute confidence intervals for each transition rate, but when there are more than two macrostates
this does not translate into confidence intervals for the eigenvalues. In this case, we report the complete
range of eigenvalues calculated from 1000 rate matrices whose rates have been sampled uniformly from their
95% confidence intervals.
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Figure 3.3: (a) Microstate and trajectory-based solutions to the master equation for the 23
nucleotide RNA GUCGCGUCGCGUCGCUAUGCGAC. The secondary structure drawings show the
representative structures for each macrostate. (b) Speedup from running the trajectory-
based method on multiple nodes as compared to the time on a single node. (c) The fraction
of total running time spent in each step of the method. (d) Nonzero eigenvalues of the
macrostate rate matrix compared with the smallest nonzero eigenvalues of microstate ma-
trix. The bars shows the range of eigenvalues corresponding to 95% confidence intervals for
the macrostate transition rates.
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Figure 3.4: The plot shows a comparison of the speedup in Figure 3.3 (b) to simulations
of exponential random variables. The red error bars are for the actual running times. The
table shows actual running time for each node from a representative run on 1, 2, 4, 8, and
12 nodes.

the store—less than perfect speedup.

To test this hypothesis, we drew 504 exponential random variables then grouped them

into L ‘processors’ for L = 1, 2, 4, 8, 12. For each L we computed the maximum sum of a

group, that is, the computational time for running the simulations. This experiment was

averaged over 100 realizations and compared with the actual running times averaged over 10

runs. Figure 3.4 shows strong agreement between the simulated and actual running times.

The table in Figure 3.4 shows per-node timing information of a representative run for each

number of nodes. As the number of nodes increases, we can clearly see the deviation of the

slowest node’s run time from the ideal. Thus, though our method should parallelize almost

perfectly, it does so only in expected run time, and the actual speedup is less than optimal.

An alternative to assigning an equal number of trajectories to each node is to designate

a head node that assigns trajectories to nodes one at a time. Nodes whose simulations take

longer will run a smaller total number of trajectories than nodes with faster simulations. In

simulating the transitions between a pair of basins, the maximum time that a node would

be idle is the length of a single simulation. Designating a node as a master node would

reduce the running time by 1/(N −1) on N nodes. To reduce running time by 1/N , we run
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Figure 3.5: Speedup under parallelization using the revised scheduling of rate-calculating
trajectories.

N + 1 MPI processes on the N nodes, designating the first process as the master. Since the

time spent assigning trajectories is small, the master MPI process can share a node with

a computing process without significant slowdown. Figure 3.5 shows the speedup obtained

with this improved trajectory assignment scheme. The scaling is much closer to optimal

than when assigning equal numbers of trajectories to the nodes.

3.2.2 Hybridization chain reaction

As a second example, we compare the hybridization chain reaction (HCR) system [23] and

a poorly designed variant that has structure in the initiator regions. In this system, the

single-stranded initiator (I) opens the hairpin (H1), exposing a single-stranded region that

can open hairpin (H2). In this way, a polymer is formed, incorporating as many H1 and

H2 hairpins as are present. We would expect that structure in the single-stranded initiator

regions would slow the polymerization down. Figure 3.6 compares macrostate solutions for

these two systems. Though the polymerized state (1) in the alternate system (b) has higher

equilibrium probability, the secondary structure in the initiator regions markedly slows the

kinetics. The standard HCR system as shown has 1.16 × 1027 secondary structures, so no

enumerative method could be employed to find macrostates.

Focusing just on the standard HCR system, we find the macrostates and transition rates

for a system with an initiator, and two copies each of the hairpins H1 and H2. The total
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Figure 3.6: HCR [23] (a) and a variant (b) where the initiator sequences have secondary
structure in the initiator regions. (c) compares solutions of the two macrostate rate matrices.
(d) shows the solution in more detail on a linear time scale. (e) a graph showing the
connectivity of the macrostates for both systems. Note that, unlike in Chapter 2, the size
of the circles is not scaled by the equilibrium probability of the macrostate. To construct
these solutions, 16 trajectories half a second (a) and 5 seconds (b) long were run at 10µM
and 23◦C. The macrostate transition rates are summarized in the following table.

Standard Structured initiator
Macrostate pair Forward Reverse Forward Reverse

(2, 1) 1.94× 10−6 2.56× 10−8 1.41× 10−6 2.37× 10−10

(3, 1) 4.69× 10−7 6.80× 10−12 1.52× 10−7 3.85× 10−16

(3, 2) 1.44× 10−6 1.58× 10−9 3.44× 10−7 5.18× 10−12
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length of the system is 216 nucleotides, and the system has 1.60 × 1051 secondary struc-

tures. In an experimental setting the hairpins of like sequence would be indistinguishable,

but they must be explicitly labeled for the kinetic simulations. As a result there are 15

macrostates, corresponding to successively adding each of the H1 and H2 hairpins to the

polymer. Figure 3.7 shows both the solution over the 15 macrostates and the solution where

indistinguishable macrostates have been grouped. The top plot (b) shows the log time scale

in microseconds, while the lower plot (c) shows a linear plot with a scale of seconds. It is

notable that the maximum probability reached in macrostate (4) is significantly lower than

in (3) or (2). This is for two reasons: First, many of the trajectories leaving macrostate (5)

visit one of the lower-energy macrostates without visiting (4) first. Second, from each of (4

a,b) the system has two choices of H2 to add to the polymer, effectively doubling the tran-

sition rate. Once the polymer has reached state (3) it is committed to an ordering of H1s

and H2s. Note that the running time (e) is dominated by the computation of the transition

rates. This is because exit times from 14 of the basins must be computed. Fortunately this

step is trivial to parallelize, and could be performed on as many processors as are available.

3.2.3 Three-arm junction

A second example from our laboratory is a catalytic three-arm junction [57]. In this system,

an initiator strand allows three hairpins to form a three-way junction. At the last step, the

initiator is released so that it can catalyze the formation of additional junctions. Figure 3.8

summarizes the results of running the trajectory-based algorithm on this system. The

macrostate identities (a) correlate well with our expectations of how the system functions.

Starting in macrostate (5), each step entails opening a hairpin and adding it to the growing

structure. The final step from (2) to (1) entails displacing the initiator strand from the

junction. Time courses of the macrostate solution (c,d) show that the displacement of the

initiator is the rate-limiting step in the reaction. All other steps involve binding to a toehold

before the displacement reaction occurs, so it is not surprising that this final step is rate

limiting.

As with HCR, the trajectory-based method allows us to easily evaluate alternative

designs computationally. Figure 3.9 shows a comparison between the design of Figure 3.8

and an alternative design where a two-nucleotide toehold is introduced to mediate the

final step in the reaction. The kinetics of the modified system are significantly faster as
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Figure 3.7: HCR[23] with two copies of each hairpin. There are fifteen macrostates corre-
sponding to the various ways of adding the H1 and H2 hairpins, four copies each of (1),
(2), and (3), two copies of (4), and a single copy of (5). The red solution in (b,c) has like
basins grouped, while each of the 15 basins is plotted separately in the blue solution. (d)
Graph showing the connectivity of the macrostates. (e) Running time. Sixteen trajectories
of 1.5 seconds were run at a concentration of 10µM .
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Figure 3.8: Catalytic three-arm junction [57]. The system is 186 nucleotides long. (a) Rep-
resentative secondary structures for each macrostate. (b) Graph showing the connectivity
of the macrostates. Solution of the master equation on log (c) and linear (d) plots. Sixteen
trajectories 5 seconds long were run at 23◦C and 1µM . The macrostate transition rates are
summarized in the following table.

Macrostate pair Forward Reverse
(2, 1) 8.03× 10−2 1.51× 10−5

(3, 2) 2.88× 10−1 9.47× 10−4

(4, 2) 2.37× 10−2 5.16× 10−8

(5, 2) 6.01× 10−3 2.03× 10−11

(4, 3) 2.94× 10−1 1.94× 10−4

(5, 3) 4.16× 10−2 4.28× 10−8

(5, 4) 6.01× 10−2 9.38× 10−5
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Figure 3.9: Alternative design of a catalytic three-arm junction. (a) Comparison of
macrostate solutions for the alternative (red) system and the system of Figure 3.8. (b)
Representative secondary structures for each macrostate. All inputs to the method are as
in Figure 3.8.

the macrostate solution (a) shows. The macrostates identified are analogous to those of

the unmodified system, though there is an off-pathway interaction between I and B in

macrostate 5.

These two examples suggest the power of the trajectory-based method in rapidly (com-

pared to doing experiments) evaluating systems of sequences for their kinetic properties,

and, in particular, identifying off-pathway traps and rate-limiting steps.
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Chapter 4

Model problem

To better understand how, and under what conditions the trajectory-based method works,

we develop a model problem for which we can explicitly control all of the relevant param-

eters. The model we propose is the random walk on the d-cube, {0, 1}d. To create two

macrostates, we consider two copies of the cube, represented by {0, 1}d and {0,−1}d (by

construction, we do not allow the all-zeros corners to coincide). We introduce a bias, β � 1,

towards vertices with more 1s. The equilibrium distribution within each cube is

π(s) ∝ β(#0′s in s). (4.1)

This model has a combinatorial flavor similar to the nucleic acid system, but all eigenvalues

and transition rates can be written down explicitly. The mixing time within each macrostate

is dictated by the dimension, d, and the bias, β. The transition rate between macrostates

is a parameter, α.

A related model is the Random Energy Model (REM) [12, 13], which exhibits interesting

metastable behavior without the introduction of a second cube. In the REM the energy of

each vertex is an independent Gaussian random variable, and the equilibrium measure on

the cube is

πγ,d(s) =
e−γ
√
dEs

Zγ,d

where γ is the inverse temperature and Z is the partition function. As in our model, moves

are allowed along the edges of the cube. The metastability arises, for large γ, because the

system tends to spend most of its time in the states of lowest energy and little time jumping

from one to another. To capture this behavior, Monthus and Bouchaud [39] developed a
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trap model where the dynamics on the cube is modeled by M traps between which the

system jumps. Recent work has focused on establishing a rigorous connection between the

trap model and the underlying walk on the cube [6].

For our purposes, our two-cube model has the advantage that all mixing and transi-

tion times can be explicitly calculated. The one-dimensional chain in continuous time has

generator

K(1) =

 −1 β

1 −β

 (4.2)

and, thus, eigenvalues, λ = 0,−(1 + β). Thus, the d-dimensional cube has second-largest

eigenvalue, λ1 = −(1 + β). It is more convenient to deal with a discrete-time chain, so we

uniformize the chain, and, to ensure aperiodicity, increase the holding probability in each

state by 1/(d+ 1) at each step. Thus, we define the generator

A(d) =
1

d+ 1
K(d) + I. (4.3)

The second-largest eigenvalue of A(d) is

ν2 =
1

d+ 1
(d− β) + 1 =

d− β
d+ 1

. (4.4)

Our goal is to understand both analytically and numerically for which regions in parame-

ter space the trajectory-based method identifies the correct macrostate dynamics, and what

characterizes the regions where it fails. To begin we apply the trajectory-based method to

the model problem for a range of parameters and construct maps of the parameter regions

for which each step of the method succeeds. Figure 4.1 shows contour plots giving the

probability of success in identifying all transitions, finding the correct clusters, or comput-

ing the correct transition rate for the model problem over a wide range of τ and α; in this

case d = 10 and β = 0.05. (Unless otherwise noted, we use β = 0.05, which corresponds

to an energy difference between levels of approximately 3kBT , and the transition thresh-

old γ = 0.95.) Notice that the success regions for clustering and computing the transition

rate are larger than that for transition identification, suggesting that later steps in the

trajectory-based method are robust in that they can recover from improper identification

or clustering earlier in the algorithm. This robustness of later steps to errors in earlier steps
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Figure 4.1: Numerical success probabilities for transition identification (a), cluster identifi-
cation (b), and rate calculation (c) for the model problem with d = 10 and β = 0.05.

is important in applications where we may not have the control over parameters that we do

here. If we simulate long enough to observe many macrostate transitions, then even if some

are incorrectly identified, the clustering procedure in averaging over non-transition regions

can mitigate the effect of the incorrect transitions.

4.1 Computational and analytic results

To understand the success regions in Figure 4.1, we will address errors encountered in each

step.

4.1.1 Transition identification

Identifying macrostate transitions in a simulation is the cornerstone of the method and its

biggest contribution. There appear to be two situations in Figure 4.1 (a) where the method

fails. One is below a particular value of τ , regardless of α, and the other is when τ > 1/α.

We will see that these regions correspond to Type I (false positive) and Type II (false

negative) errors, respectively, and with some assumptions we can calculate bounds on both.

With these bounds we can provide rigorous statements about the regions in parameter space

for which the method will work with confidence.

4.1.1.1 Type I errors

A Type I error occurs when the method identifies a macrostate transition when there has

been none, that is, when the distance in variation between the occupancy measure over two
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windows [t−τ, t] and [t, t+τ ] is larger than γ even though there is no macrostate transition

near t.

Before presenting a Type I error bound we need to introduce some notation. Denote

the vertex with d 1s by 1(d); denote the partition function within one macrostate by Z; and

denote the partition function restricted to states other than 1(d) by Z ′. Thus, the partition

functions are

Z =
d∑
i=0

(
d

i

)
βi and Z ′ =

d∑
i=1

(
d

i

)
βi. (4.5)

Then define,

µ =
Z ′

Z
, µ̄ = 1− µ, ε = γ − µ. (4.6)

Recall that γ is the threshold for dV above which we say there is a transition. The quantity µ

is the equilibrium measure of all states except 1(d), which is small since β � 1. The following

proposition gives an upper bound on the probability of a Type I error as a function of the

parameters d, β, γ, and T .

Proposition 1 (Type I Error). The probability that the distance in variation is greater

than the transition threshold γ at some time in a simulation of length T with no macrostate

transitions is

P[Type I] ≤ 1− exp
{
−T M

C

}
, (4.7)

where

M =
[

µ+ µ̄ν2

1− 2(µ̄− ε)/(1 +
√

∆)

]τ(µ+ε) [ µ̄+ µν2

1− 2(µ+ ε)/(1 +
√

∆)

]τ(µ̄−ε)
, (4.8)

∆ = 1 +
4ν2(µ+ ε)(µ̄− ε)
µµ̄(1− ν2)2

, (4.9)

and

C =
(

γdβ

(d+ 1)Z ′
− (1− γ)dβ

d+ 1

)−1

. (4.10)

This error estimate comes from the Poisson clumping heuristic [4] whose main insight

is that the expected hitting time of a Markov Chain on a set A of very small measure is

approximately exponentially distributed with mean

E[TA] ≈ C/ζ(A), (4.11)
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where ζ(A) is the measure of A and C is the “clump size,” a measure of how closely grouped

the elements of A are. We will see that a Type I error can be characterized by a set in the

space [0, 1]2
d
, and thus, the time we must simulate to see a Type I error is exponentially

distributed.

For any Markov chain, Xt, the tuples (Xt−τ , Xt−τ+1, . . . , Xt) are also a Markov chain,

and the event dV (µ(X[t−τ,t]), µ(X[t,t+τ ])) > γ represents a set in the space of τ -tuples. Thus,

it makes sense to frame the problem of estimating the Type I error probability in terms of

calculating an expected hitting time for a Markov Chain. To apply this heuristic we need

to calculate C and ζ(A).

Measure of A: To estimate ζ(A), first note the following reformulation of the distance

in variation: Let v and w be probability measures on a state space E. Then [7],

dV (v, w) = 1−
∑
i∈E

min(v(i), w(i)) ≤ 1−min(v(i∗), w(i∗)), ∀i∗ ∈ E. (4.12)

That is, we can bound the distance in variation by monitoring only the empirical measure

of a single state. Since the equilibrium measure on the d-cube is heavily concentrated at

the vertex 1(d), we can choose i∗ = 1(d) to get the best possible upper bound on dV using

(4.12). Using the bound, the set A is

A = {X[t,t+τ ]|µ(X[t,t+τ ])(1
(d)) < 1− γ}. (4.13)

We cannot compute ζ(A) explicitly, but we can bound it from above via a Hoeffding bound

for Markov chains [32]. Given some function, f : E → R, this bound controls the probability

P[Sn ≥ n(µ + ε)], where Sn =
∑n

t=1 f(Xt), µ = E[f ], and ε is a given deviation. In this

case, f(Xt) = 1[Xi = 1(d)]. Then (4.6) and (4.4) directly give (4.8) and (4.9).

Cluster size: To compute the clump size, C, we approximate the process around the set

A by a symmetric random walk on the integers (see Aldous [4], Sections B2 and B10). In

this case the integers represent the number of instances of 1(d) and all other states in the

time slice τ . Then the clump size is,

C = (Pmore 1(d) − Pless 1(d))−1 (4.14)
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To compute these transition probabilities, assume that the visits to 1(d) are uniformly

distributed throughout the interval so that the probability that the first structure is 1(d) and

the last structure is 1(d) are both 0.05. We calculate Pmore 1(d) and Pless 1(d) by conditioning

on the first and last states in the sequence. For ease of notation, label 1(d) as 1 and group

all other states under label 0. Thus, the probabilities are:

P11 =
1 + d(1− β)

d+ 1
, (4.15)

P10 =
dβ

d+ 1
, (4.16)

P01 =
dβ

(d+ 1)Z ′
, (4.17)

P00 =
(

1− dβ

(d+ 1)Z ′

)
. (4.18)

Then,

Pmore 1(d) = P[first is 0] (P[last is 0]P01 + P[last is 1]P11) (4.19)

Pless 1(d) = P[first is 1] (P[last is 0]P00 + P[last is 1]P10) . (4.20)

Substituting (4.15–4.18) into (4.19 and 4.20) and then into (4.14) gives (4.10).

Figure 4.2 compares this estimate with simulated success probabilities. To compare the

bound over a range of d we interpolated to find the τ required for 50% success probability.

For small dimensions the τ required for 50% success is estimated to be too large by a

factor of about 1.5; this factor grows with d, but nevertheless it does provide a lower

bound for choosing τ . A likely source of the error as d grows is the upper bound (4.12),

which becomes less tight since, for fixed β, the equilibrium measure of 1(d) decreases as d

increases. In addition, the Hoeffding bound, being a general bound, is unlikely to be tight,

and the Poisson clumping heuristic is, after all, a heuristic. The mixing time within a cube

also increases with d (this is seen in a larger ν2), and we see this effect in the numerical

simulations, but it is difficult to tease apart the effects of the approximation (4.12) and the

increase in mixing time due to a larger ν2.

Since the approximation (4.12) prevents us from characterizing the contributions from d

and β to the mixing time, the question arises whether it is possible to estimate Type I error

probabilities without this approximation. The problem is that to use the Hoeffding bound
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Figure 4.2: Probability that no Type I errors occur (a), and interpolated value of τ for 50%
success probability (b) from simulation (blue) and calculation (red).

[32], we must have a scalar function of the trajectory X, and keeping track of multiple

components simultaneously requires a vector function. A large deviation principle for the

vector of empirical measures of X exists [11], but the estimate is asymptotic and does not

apply for short τ . To our knowledge there are no similar results that apply for short times,

as the Hoeffding bound does.

4.1.1.2 Type II errors

A Type II error occurs when the distance in variation between the occupancy measure over

the two windows [t− τ, t] and [t, t+ τ ] is lower than the threshold even though a transition

has taken place at t. The following proposition gives an estimate on such an error.

Proposition 2 (Type II Error). In a simulation of time T , with τ chosen to avoid Type I

errors, the probability of a Type II error is

P[Type II] ≤ 1−
bT
τ
c+1∑
i=0

e−αT
αk(T − τ(k − 1))k

k!
. (4.21)

Assuming that τ is chosen so that a Type I error is very unlikely, then a Type II error

will occur when two transitions occur within time less than τ . In that case, one of X[t−τ,t]



50

and X[t,t+τ ] will be an average over both macro states, so dV (µ(X[t−τ,t]), µ(X[t,t+τ ])) < 1.

The transitions must be strictly closer than τ in order to have dV < γ, but by considering

transitions closer than or equal to τ , we get an upper bound. To compute the estimate,

condition on k, the number of transitions in time T . The number of transitions is a Pois-

son random variable and the times between transitions are exponentially distributed with

parameter α. The distribution of inter-transition times conditioned on them being longer

than τ is also exponential with rate α. Thus, the probability of k transitions with no two

closer than τ is the product of the probability of k transitions in time T − τ(k− 1) and the

probability of k − 1 waiting times of length τ , that is,

P[k transitions, none within τ ] = e−α(T−τ(k−1))α
k(T − τ(k − 1))

k!
e−ατ(k−1)

= e−αT
αk(T − τ(k − 1))k

k!
. (4.22)

Sum this over the possible number of transitions k and take the difference from unity

to get (4.21). Figure 4.3 compares this estimate with the actual success probability from

simulations. We expect the Type II error to be independent of d, and Figure 4.3(b) compares

the total range over d of calculated values to the estimate (4.21). The differences are small,

suggesting that this is indeed the mechanism by which Type II errors occur.

4.1.2 Clusters and partition functions

The complexity of the clustering step means that there are too many influencing factors

to permit a detailed analysis of the success of that step, but we can examine the error in

calculating the partition function.

To compute the partition function we run a short simulation to generate a set of visited

structures, A. Then we run additional simulations to determine how much of the macrostate

the set A represents, that is, we estimate πA. Figure 4.4 shows the results from one run each

at different dimensions. The estimate of πA is very close to the actual value, and indeed the

confidence intervals cover the true value in all instances. We can see that as the macrostate

gets larger (d grows), πA decreases and the confidence intervals become correspondingly less

tight. In addition, as τ grows, πA increases – we visit more of the macrostate – and the

confidence interval gets tighter.
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Figure 4.3: Probability that all transitions are identified for a range of d-values (a); prob-
abilities were averaged over 200 trials with τ fixed at 1000. Calculated error probability
(b); the error bars show the total range of simulated probabilities over all d. Blue shows
simulated values and red computed.
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4.1.3 Rate constants

Macrostate transition rates are computed based on first-passage times between macrostates;

however, we must simulate passage times between pairs of microstates. Here we address the

bias this introduces in our estimate. The macrostate transition probability is uniform in the

starting macrostate, so the choice of starting state introduces no bias. After a macrostate

transition, a new microstate is chosen according to the equilibrium distribution within the

new macrostate. Thus, the expected first passage time consists of the time for a macrostate

transition to occur plus the time to reach the representative state in the second macrostate.

Note that the first passage time from a particular microstate to a representative state

depends only on the number of 1s in the state. Thus we have

E[Tfp] = E[Tmacro] + E[Trepr] =
1
α

+
1
Z

d∑
i=0

f repr
i

(
d

i

)
β(d−i). (4.23)

That is, E[Trepr] is the sum over d of the probability at equilibrium of choosing a state with

i 1s multiplied by the first passage time from a state with i 1s to the representative state.

The representative structure is the ensemble average of the number of 1s in the state,

which can be calculated as

srepr =
1
Z

d∑
i=1

i

(
d

i

)
β(d−i). (4.24)

We round srepr to the nearest integer since all microstates have an integral number of 1s.

To compute the first-passage times to srepr from each state in the macrostate, we have the

recurrence

f repr
i = 1 +

1 + (1− β)i
d+ 1

f repr
i +

βi

d+ 1
f repr
i−1 +

d− i
d+ 1

f repr
i+1 , (4.25)

with the boundary condition f repr
repr = 0. This leads to a linear system of size d that is easily

solved. If d = 12 and β = 0.05 then E[Trepr] = 13.0, which is small compared to the mean

transition times of interest (which range from 100 to 10,000 in Figure 4.1, for example).

Though we can calculate E[Trepr] exactly, a simple bound also shows that E[Trepr] will be

small if the local mixing time is faster than the mean time for macrostate transitions. Aldous

and Fill [5, Ch. 3, p. 24] give a bound on the mean hitting time of a state that depends

only on the mixing time of the chain and the equilibrium measure of the state. Denote the

equilibrium probability of the representative structure by πrepr. Then the expected hitting
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time on srepr obeys

E[Trepr] ≤
1− πrepr

(1− ν2)πrepr
. (4.26)

Since the chain is biased towards 1(d), πrepr is not small, and thus the bias due to first

passage sampling is also small compared to the macrostate transition time. This second

approach applies to the nucleic acid case as well, showing that in the typical case where the

centroid structure is at or near a local minimum, the bias due to first passage time sampling

between secondary structures should be small as long as there is a separation of timescales.

4.2 Hierarchical macrostates

We conclude with an example that shows how the choice of τ influences which macrostates

the method finds. We ran the method on the hyper-cube with d = 12 for τ = 1000 and

30000. Here the method was run with four macrostates, A = {0, 1}d, B = {0, i}d, C =

{0,−1}d, and D = {0,−i}d, with fast transitions between the pairs (A,B) and (C,D) with

1/α1 = 10000 and slow transitions between the pairs (A,D) and (B,C) with 1/α2 = 316000

(1.5 orders of magnitude higher). Figure 4.5 shows the results. The blue dots correspond to

representative structures found when τ = 1000 and the red dots correspond to representative

structures found with τ = 30000. As τ becomes longer than the mean time for faster

transitions we see pairs of macrostates merge. This suggests that in some situations τ acts

as a “coarseness” knob and allows us to extract information about macrostates at several

timescales. Of course, for many systems there may only be one timescale at which multiple

macrostates are active. In terms of the eigenvalue analysis of Deuflhard et al. [14] and

others, if the system contains several gaps in the eigenvalues, we can tune τ to fall within

the gap of our choosing.

4.3 Outlook and extensions

Analysis of this relatively simple model problem has allowed us to construct a nearly com-

plete picture of the error behavior of our method. We found that computing macrostate

transition rates via microscopic simulations introduces little bias (Section 4.1.3). Our

method for computing partition functions gives accurate estimates and tight error bounds

for a range of problem sizes and values of τ (Section 4.1.2). The error estimates for the
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identification step (Section 4.1.1) show that the averaging time, τ , must occupy a middle

ground, being longer than the mixing time within a macrostate, but shorter than the mean

time between transitions. Luckily, for a range of interesting nucleic acid problems, such a

τ exists (Section 3.2).

One of the main innovations of the algorithm is the ability to explicitly locate tran-

sitions in the simulation by computing the distance in variation between state occupancy

distributions along sliding windows in the trajectory. The results for the hyper-cube model

problem suggest that this method might apply for many discrete systems that have a sepa-

ration of time-scales. Applying it to systems in continuous space would require developing

an appropriate metric with which to calculate the distance in variation, perhaps discretizing

the state space or deriving a metric from diffusion maps [8]. The next chapter describes in

detail the method by which we obtain representative structures for each macrostate.
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Chapter 5

Centroids in Ensembles of Nucleic
Acid Structures

In this chapter we turn to the problem of choosing the best structure to characterize an

ensemble of secondary structures. The default choice is the minimum free energy (MFE)

structure, which has the lowest free energy and highest probability at equilibrium. That is,

sMFE = argmax
s∈Ω

π(s) = argmin
s∈Ω

∆G(s).

A more complete picture of the equilibrium ensemble is gained by considering the pair

probability matrix, P (π), which shows the probability of each base pair in the ensemble.

This N × (N + 1) matrix has entries Pi,j ∈ [0, 1] which represent, for 1 ≤ j ≤ N , the

probability that bases i and j are paired and, for j = N + 1, the probability that base i

is unpaired. Though providing more information about the ensemble, the pair probability

matrix is not as easy to interpret as a single secondary structure. Since the pair proba-

bility matrix contains complete information about the ensemble, the structure that is, by

an appropriate measure, closest to the pair probability matrix should best represent the

ensemble.

For a single secondary structure, s, we construct an N × (N + 1) structure matrix S(s).

The entries Si,j ∈ {0, 1} are unity when bases i and j are paired, and Si,N+1 = 1 if base i

is unpaired; all other entries are zero. The average nucleotide distance between s and all



56

structures in the ensemble is [20]

n(s) =
∑
σ∈Ω

π(σ)‖S(s)− S(σ)‖1

= ‖S(s)−
∑
σ∈Ω

π(σ)S(σ)‖1

=
1
2

N∑
i=1

N+1∑
j=1

|S(s)i,j − Pi,j |

= N −
N∑
i=1

N+1∑
j=1

Pi,jSi,j(s), (5.1)

where the last step holds because S is composed of zeros and ones.

Thus, the structure that minimizes n(s) is the structure that is closest to the pair

probability matrix and closest, on average, to all structures in the ensemble. Put otherwise,

the structure that satisfies

scent = argmin
s∈Ω

n(s), (5.2)

is the centroid of the ensemble with respect to the nucleotide distance.

Though we have presented the centroid structure in the context of the equilibrium en-

semble, it can be computed for any ensemble once we have the derived pair probability

matrix. For example, in Chapter 3 we computed centroids from pair probability matrices

generated by kinetic simulations. The fact that all we need is the pair probability ma-

trix offers a significant memory savings compared to storing each structure visited in the

simulation. Section 5.2 describes how to calculate exactly and efficiently the centroid for

a single nucleic acid strand and a complex of interacting strands. First, we will compare

the centroid and MFE structures in their ability to effectively characterize the ensemble

and their robustness to uncertainty in the energy parameters. Ding et al. [16] present a

centroid structure computed using a different metric via sampling and examination of the

pair probability matrix. Section 5.1.3 compares this approach with ours.

5.1 Comparing representative structures

In this section we will compare the MFE and centroid structure as a representative of the

equilibrium ensemble of secondary structures by evaluating n(sMFE) and n(scent). Though
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we will be considering averages over many sequences, we note that for some sequences, the

MFE and centroid can be quite different. Figure 5.1 shows such a sequence. The pair

probability matrices have the base pairs making up the MFE (top) and centroid (bottom)

structures circled. The base pairs that make up the centroid structure are of higher prob-

ability than those that make up the MFE, and thus better represent the pair probability

matrix.

5.1.1 How the MFE and centroid characterize the ensemble

In this section we compare how well the MFE and centroid structures characterize the

ensemble as measured by n(s). We consider two sets of 300 sequences 200 nucleotides

long. The first set is comprised of random sequences and the second of sequences that were

designed to assume a particular target secondary structure by optimizing n(starget) [20]. We

compared n(sMFE), n(scent), the improvement of the centroid over the MFE, the degeneracy

of the MFE, and the distance between the MFE and centroid structures. Histograms for

each measurement are shown in Figures 5.2 and 5.3.1

In comparing n(sMFE) and n(scent) for designed sequences (Figure 5.2 (a,b)), we see

similar distributions. Though the MFE has higher maximum values, the means are close.

Indeed, for the vast majority of sequences, the centroid improves little over the MFE (c).

In addition to having similar values of n(s), the MFE and centroid are nearly always close

to each other, suggesting that the ensemble is dominated by a single basin that is well

characterized by a single structure.

The situation for random sequences is quite different. Both n(sMFE) and n(scent) (Fig-

ure 5.3 (a,b)) are much higher—greater than 20% versus less than 5% for designed sequences.

Still, the improvement by the centroid structure is small (c). Unlike for the designed se-

quences, a significant number of the MFE structures are degenerate (d). Most interesting

is that although n(sMFE) and n(scent) are comparable, the structures are themselves quite

different, having on average more than 10% of bases paired differently and as much as

60% (e). These facts taken together argue that for random sequences, no single structure

characterizes the ensemble well. Thus, for either class of sequences the choice of represen-

tative structure is unimportant—for designed sequences because both choices do well and
1When there are multiple MFE structures for a sequence, we use the structure that does best with respect

to the current measure. Averaging over MFE structures does not significantly affect the results. In practice,
there are never multiple centroid structures for a single sequence.
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Figure 5.1: MFE (top) and centroid (bottom) structures for the sequence
AGAGACGUUAUUGGCUUUGGACAGACAUUGGCCUCAGUCGCCAAAUCUUCACAGGUCAAUCUAAGGUCUUGUCU-
ACGUCAGUUC. The color and size of the boxes in the pair probability matrix represent the
probability of the base pairs in the ensemble; the column to the right shows the probability
that the bases are unpaired. The pair probability matrices shown here are identical,
apart from having the base pairs that make up the MFE (top) and centroid (bottom)
structures circled. n(sMFE) = 25.3 and n(scent) = 24.4; ∆G(sMFE) = −16.4 kcal/mol and
∆G(scent) = −14.2 kcal/mol.
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for random sequences because neither does well.

5.1.2 Robustness to uncertainty in the energy parameters

One benefit of the centroid might be that its dependence on the entire ensemble via the

pair probability matrix makes it more robust to uncertainty in the energy model. To

test this hypothesis we generated parameter sets where each parameter was independently

perturbed by a Gaussian random variable with standard deviation 10, 20, 50, or 80 percent

of the original parameter. At each level of perturbation, we generated 100 parameter files

and computed the MFE and centroid structures for 300 designed and 300 random sequences

each of lengths 100 and 200. Finally, for each class of sequence we computed the average over

all sequences of the average distance between all perturbed MFE (or centroid) structures. If

the centroid were more robust then the perturbed centroid structures would be more tightly

clustered. Figure 5.4 shows these results. The top panel shows the average distances for

each sequence class and perturbation level. The MFE structures appear to be less tightly

clustered on average than the centroid structures. To test this hypothesis we performed a

Wilcoxon signed rank test with null hypothesis that the median of

S = avgdist(sMFE)− avgdist(scent)

is zero. This gives us 95% confidence intervals and an estimate for the median of the

distribution S, which are plotted in the lower pane. For all but the designed sequences at

small perturbations the centroid structures are much more tightly clustered.

However, considering only S masks the fact that for large perturbations neither is very

tightly clustered. The random results at low perturbation levels support our intuition

regarding the difference between the MFE and centroid. Since the MFE optimization looks

for the deepest minimum in the free energy landscape, small perturbations might shift the

relative depth of minima that are quite distant from each other. Since the centroid considers

information about all structures in the ensemble, it is more robust to small changes in

the energies of structures in the ensemble. The results for designed sequences at small

perturbations support the use of n(s) as a design criteria and amplify the similar results in

[20]. When a sequence is well designed with a single dominant basin, the MFE and centroid

will be close, and small perturbations to the parameters do not change the location of the
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Figure 5.2: Comparison between the MFE and centroid structures for 300 designed se-
quences 200 nucleotides long. The red line indicates the mean.
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Figure 5.3: Comparison between the MFE and centroid structures for 300 random sequences
200 nucleotides long. The red line indicates the mean.
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Figure 5.4: Average distance among perturbed MFE (centroid) structures with parameters
perturbed by normal distribution with standard deviation shown on the ordinate (averaged
over both structures and perturbations). Top pane shows average distances. Bottom shows
estimated median and 95% confidence intervals for the distance between the MFE and
centroid points in the top pane.

basin very much.

5.1.3 Comparing two centroids

A centroid is defined with respect to a particular metric and Ding et al. [16] present a

centroid with respect to the base pair distance instead of the nucleotide distance. Rather

than considering the entire ensemble, Ding draws a sample of structures from the equilibrium

ensemble, looks for distinct clusters of structures, and computes the centroid for each of

the clusters. For purposes of comparison, we compute the centroid with respect to the

base-pair distance for the entire ensemble. We refer to base-pair distance centroid as the

Ding centroid or sDing. While we use a dynamic program to find the centroid for a variety

of ensembles (Section 5.2), Ding simply chooses all base-pairs in the pair probability matrix

with entries strictly larger than 0.5. Since no pair with probability greater than 0.5 can have

a competing pair of higher probability (the probabilities sum to 1 for each base) and a pair

with probability exactly 0.5 can be omitted without increasing the average distance, this

procedure is guaranteed to give the unique centroid structure with the minimum number of
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base-pairs. This approach cannot, however, be extended to a complex of interacting strands

since the structure formed by only base pairs of probability greater than 50% may not be

connected.

Fortunately, we can evaluate Ding’s notion of closeness to the ensemble, the base-pair

distance from a structure to the ensemble, without sampling structures. Evaluating (1.6)

and noting as Ding did, that the base-pair distance is equivalent to the squared Euclidean

distance between the structure matrices, we find that

nBP (s) =
∑
σ∈Ω

p(σ)‖S(σ)− S(s)‖BP

=
1
2

∑
σ∈Ω

p(σ)
N∑
i=1

N∑
j=1

(S(σ)ij − S(s)ij)
2

=
1
2

∑
σ∈Ω

p(σ)
N∑
i=1

N∑
j=1

[
S(σ)2

ij − 2S(σ)ijS(s)ij + S(s)2
ij

]
=

1
2

N∑
i=1

N∑
j=1

Pij +
1
2

N∑
i=1

N∑
j=1

S(s)ij −
N∑
i=1

N∑
j=1

∑
σ∈Ω

p(σ)S(σ)ijS(s)ij

=
1
2

N∑
i=1

N∑
j=1

Pij +
1
2

N∑
i=1

N∑
j=1

S(s)ij −
N∑
i=1

N∑
j=1

S(s)ij
∑
σ∈Ω

p(σ)S(σ)ij

=
1
2

N∑
i=1

N∑
j=1

Pij +
1
2

N∑
i=1

N∑
j=1

S(s)ij −
N∑
i=1

N∑
j=1

S(s)ijPij

where we have used the fact that Sij ∈ {0, 1}, so S2
ij = Sij . The interpretation is clear: The

first term is the average number of base pairs in the ensemble; the second is the number of

base pairs in the target structure; and the third is twice the average number of base pairs

in common—twice because any pair in common is penalized once in each of the first two

terms.

Figures 5.5 and 5.6 compare the two centroids for designed and random sequences.

There is very little difference between the MFE, centroid, and Ding centroid for designed

sequences, suggesting that they all reside in a single dominant basin in the free energy

landscape. For random sequences (Figure 5.6), the Ding centroid is not much worse than

the centroid at characterizing the ensemble by n(s) (d). Even so, the two centroids can be

quite different, greater than 5%, on average (b). This is closer than the MFE and Ding

centroid (a) or the MFE and centroid (Figure 5.3 (e)). It is interesting that while the
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centroid nearly always improves on the MFE in characterizing the ensemble with respect

to the base-pair distance, the Ding centroid is frequently worse than the MFE with respect

to n(s) (e). This is not surprising since n(s) considers the whole pair probability matrix,

including the unpaired bases, while the base-pair distance considers only paired bases.

5.2 Algorithms

In this section we present algorithms to find centroid structures for a single strand and

an ordered complex of interacting strands. In computing a centroid structure for multiple

strands additional difficulties arise if multiple strands of the same sequence are considered

to be indistinguishable.

5.2.1 A single strand

Like finding the MFE structure and computing the partition function, the problem of finding

the centroid structure is solved by dynamic programming. This is because the contribution

from each base pair to the sum in (5.2) is additive. To make the approach clearer, we will

first review the dynamic program that computes the minimum free energy structure for a

given sequence. We use notation similar to that used to describe the partition function

algorithm [21].2 The main recursion is

Fi,j = min
{

0, min
i≤d<e≤j

{
Fi,d−1 + F bd,e

}}
. (5.3)

The term Fi,j refers to the minimum free energy structure on the subsequence from i to j.

This structure has either no base pairs and thus zero energy, or it has some rightmost base

pair between indices d and e. Once the base pair d · e is fixed, we search for the minimum

free energy structure on the independent segments (i, d − 1) and (d, e). The MFE of the

structure on i, d − 1 is stored in Fi,d−1, while F bd,e stores the MFE of the structure on the

2In particular, the algorithm to compute the MFE can be obtained from the partition function algorithm
by replacing the Boltzmann factors, e−∆G/kBT , by free energies, ∆G, adding instead of multiplying terms
for independent subsequences, and minimizing instead of summing over alternate structures. The reverse is
not true since a MFE algorithm may have redundancies, but a partition function algorithm must recurse
over each structure exactly once.
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Figure 5.5: Comparing the centroid with the Ding centroid for 300 designed sequences 200
nucleotides long. The red line indicates the mean.
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interval from d to e conditional on d base-pairing with e. This is computed via the recursion

F bi,j = min
{
F hairpin
i,j , min

i≤d<e≤j

{
F interior
i,d,e,j + F bd,e

}
, min
i≤d<e≤j

{
Fmi,d−1 + F bd,e + Fmulti

}}
. (5.4)

The structure within the pair d ·e can be empty and have a hairpin energy. Alternatively, it

can contain a single nested pair with an interior loop energy (the base stack that makes up

a helix is a special case of this) or multiple pairs with a multiloop energy. A third recursion,

Fm, contains the minimum free energy of the structure within the multiloop:

Fmi,j = min
{

min
i≤d<e≤j

{
F bd,e + Fmulti

}
, min
i≤d<e≤j

{
Fmi,d−1 + F bd,e + Fmulti

}}
. (5.5)

The multiloop can terminate with a single base pair or can have a pair and an additional

multiloop. The quantity F1,N is the minimum free energy for the entire sequence. Though

these recursive quantities are best understood going from larger to smaller subsequences, in

dynamic programming these recursions are computed from shortest to longest subsequences

so that no quantity need be computed more than once and each value is available when

it is needed to compute a longer subsequence. Algorithm 5.1 shows pseudocode for the

computation of these recursions. The four levels of nested for loops correspond to a time

complexity of O(N4). Once the MFE is known, the structure having that energy can be

found by backtracking through the recursions. That is, starting from F1,N , we note at each

level which recursion (or possibly recursions) gives the optimal energy.

The recursions to compute the centroid structure are similar, but in many ways simpler

than those used to compute the MFE. The Fm and F b recursion are needed to find the MFE

because of the details of the loop-based energy model. In computing the centroid structure,

all information regarding the structures’ energies is contained in the pair probability matrix.

This allows for simpler recursions. However, unlike the MFE where the empty structure

has zero energy, there is a score associated with an empty substructure to account for the

(N + 1)st column of the pair probability matrix. Thus, we have the recursion Ce for empty

substructures. Then, as in the MFE case, the optimal centroid score for a subsequence i, j

is either the empty substructure or a rightmost base pair between d and e. The full set of
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recursions is

Cei,j = Cei+1,j − Pi,N+1 (5.6)

Cbi,j = Ci+1,j−1 − 2Pi,j (5.7)

Ci,j = min
{
Cei,j , min

i≤d<e≤j

{
Ci,d−1 + Cbd,e + Cee+1,j

}}
. (5.8)

The information from the pair probability matrix is captured in the Ce and Cb recursions,

which account for unpaired bases and base pairs, respectively. Algorithm 5.2 shows pseu-

docode for this algorithm. The minimization over indices i, d, e, and j in (5.8) corresponds

to O(N4) time complexity.

The time complexity for the centroid calculation can be reduced to O(N3) by calculating

C using the supplementary recursion Csd,j , which considers all structures with a base pair

between an index d and some other index between d and j. That is, by performing the loop

over the right side of the base pair ahead of time, we remove one level of nested for loops.

The revised set of recursions is

Csi,j = min
i<d≤j

{
Cbi,d + Ced+1,j

}
(5.9)

Ci,j = min
{
Cei,j , min

i≤d<j

{
Ci,d−1 + Csd,j

}}
, (5.10)

where Cb and Ce are as above. Algorithm 5.3 shows pseudocode for this reduced-complexity

approach. The optimal centroid score is n(scent) = N+C1,N and the structure itself is found

by backtracking through the recursions.

5.2.2 A complex of interacting strands

Dirks et al. [19] present algorithms to compute the partition function for complexes of

multiple interacting strands. Following their lead, we present recursions to find the centroid

for an ordered complex of strands and for a box with a finite number of strands.

For a multistranded complex the strands are ordered and drawn from 5′ to 3′ with a

nick at each strand break. By convention, a nick between bases i and i + 1 is given the

index i+ 1
2 . The function η[i+ 1

2 , j−
1
2 ] returns the number of nicks in the interval between

i + 1
2 and j − 1

2 , and η[i + 1
2 ] returns one if there is a nick at i + 1

2 . For a complex of

L strands there are (L − 1)! circular permutations that correspond to different orderings
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Initialize (F, F b, Fm) with all entries set to 0 // O(N2) space
for l = 1, N

for i = 1, N−l + 1
j = i+l−1

// F b recursion
if l ≥ 5

F bi,j = F hairpin
i,j

for d = i, j − 4
for e = d+ 4, j

F bi,j = min
˘
F bi,j , F

interior
i,d,e,j + F bd,e

¯
F bi,j = min

˘
F bi,j , F

m
i+1,d−1 + F bd,e + Fmulti

¯
// F, Fm recursion
for d = i, j − 4

for e = d+ 4, j

Fi,j = min
˘
Fi,j , Fi,d−1 + F bd,e

¯
Fmi,j = min

˘
Fmi,j , F

b
d,e + Fmulti

¯
Fmi,j = min

˘
Fmi,j , F

m
i,d−1 + F bd,e + Fmulti

¯
// n(sMFE) = F1,N ; sMFE is found by back-tracking

Algorithm 5.1: Pseudocode to find the minimum free energy (MFE) structure. This algo-
rithm has time complexity O(N4).

Initialize (C,Cb, Ce) with all entries set to 0 // O(N2) space
Load base-pairing probability matrix P // O(N2) space
for l = 1, N

for i = 1, N−l + 1
j = i+l−1
// Ce recursion
Cei,j = Cei+1,j − Pi,N+1

// Cb recursion
if l ≥ 5

Cbi,j = Ci+1,j−1 − 2Pi,j
// C recursion
Ci,j = Cei,j
for d = i, j − 4

for e = d+ 4, j

Ci,j = min
˘
Ci,j , Ci,d−1 + Cbd,e + Cee+1,j

¯
// n(scent) = N + C1,N ; scent is found by back-tracking

Algorithm 5.2: Pseudocode to find the centroid structure, argminn(s). This algorithm has
time complexity O(N4). The computation proceeds from shortest to longest subsequences.
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of the strands. For example, three strands have two circular permutations, 123 and 213.

The L cyclic permutations, the orderings 123, 231, and 312, are equivalent, since whether

a secondary structure is non-pseudoknotted is invariant under rotation.3 Let Ω̄ be the

set of non-pseudoknotted structures for a complex, and let Ω̄(ψ̄) be those restricted to a

particular circular permutation. Here we consider an ordered complex, that is, a complex

with a particular choice of circular permutation.

The recursions are similar to those presented in the previous section, but the centroid

structure for an ordered complex must be connected. To ensure this, Cei,j is infinite unless

η[i+ 1
2 , j −

1
2 ] is zero. Algorithm 5.4 shows pseudocode that incorporates these nick checks

in an algorithm that requires O(N4) time. As before, we can reduce the time complexity

to O(N3) by storing intermediate results in the matrix Cs (Algorithm 5.5).

5.2.2.1 A box containing a finite number of strands

With the ability to find centroid structures for single strands and multi-stranded complexes,

we can find the centroid structure for a box containing a finite number of distinctly labeled

strands. This is the situation when one performs a kinetic simulation with multiple strands,

as in Chapter 3.

Assume we have the set of strands A = {a1, . . . , ak}. Begin by generating all possible

complexes from A, that is, the power set of A minus the empty set. The centroid for each

complex is found via minimization over the circular permutations, that is, over the ordered

complexes. The centroid for the box is found by choosing the partition of A (into complexes)

that minimizes the sum of n(scomplex) over the complexes. Since the number of complexes

is 2k − 1 and the number of circular permutations for a complex of size L is (L − 1)!, this

procedure is only practical for boxes containing a small number of species.

5.2.2.2 Distinguishability issues

The algorithms for computing the centroid of an ordered complex or for a box assume

that all strands can be distinguished even if they share the same sequence. Experimentally,

strands of the same sequence are indistinguishable, and we would like the centroid structure

to reflect that fact. Dirks et al. [19] present a distinguishability correction to account for
3An alternative way to draw structures is to draw the nucleic acid backbones around the outside of a

circle and base pairs as chords. Then a secondary structure is non-pseudoknotted if there are no crossing
chords.
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Initialize (C,Cs, Cb, Ce) with all entries set to 0 // O(N2) space
Load base-pairing probability matrix P // O(N2) space
for l = 1, N

for i = 1, N−l + 1
j = i+l−1
// Ce recursion
Cei,j = Cei+1,j − Pi,N+1

// Cb recursion
if l ≥ 5

Cbi,j = Ci+1,j−1 − 2Pi,j
// Cs recursion
for d = i+ 4, j

Csi,j = min
˘
Csi,j , C

b
i,d + Ced+1,j

¯
// C recursion
Ci,j = Cei,j
for d = i, j − 4
Ci,j = min

˘
Ci,j , Ci,d−1 + Csd,j

¯
// n(scent) = N + C1,N ; scent is found by back-tracking

Algorithm 5.3: Pseudocode to find the centroid structure, argminn(s), that operates in
time O(N3)

Initialize (C,Cb, Ce) // O(N2) space

Set entries of Cb and Ce to ∞ and entries of C to 0
Set Cei+1,i to 0
Load base-pairing probability matrix P // O(N2) space
for l = 1, N

for i = 1, N−l + 1
j = i+l−1
// Ce recursion
if η[i+ 1

2
, j − 1

2
] == 0

Cei,j = Cei+1,j − Pi,N+1

// Cb recursion
if l ≥ 2

if (l ≥ 5 or η[i+ 1
2
, j − 1

2
] == 0) and (η[i+ 1

2
] == 0 or η[j − 1

2
] == 0 or j == i+ 1)

Cbi,j = Ci+1,j−1 − 2Pi,j
for c ∈ {i, . . . , j − 1} s.t. η[c+ 1

2
] == 1

if (η[i+ 1
2
] == 0 and η[j − 1

2
] == 0) or (c == i+ 1 and η[j − 1

2
] == 0) or (c == j − 1 and η[i+ 1

2
] == 0)

Cbi,j = min{Cbi,j , Ci+1,c + Cc+1,j−1 − 2Pi,j}
// C recursion
Ci,j = Cei,j
for d = i, j − 1

for e = d+ 1, j
if η[e+ 1

2
, j − 1

2
] == 0 and (η[d− 1

2
] == 0 or d == i)

Ci,j = min{Ci,j , Ci,d−1 + Cbd,e + Cee+1,j}
// n(scent) = N + C1,N ; scent is found by back-tracking

Algorithm 5.4: Pseudocode to find the centroid structure of a multistranded complex in
time O(N4)
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Initialize (C,Cs, Cb, Ce) // O(N2) space

Set entries of Cb, Ce, and Cs to ∞ and entries of C to 0
Set Cei+1,i to 0
Load base-pairing probability matrix P // O(N2) space
for l = 1, N

for i = 1, N−l + 1
j = i+l−1
// Ce recursion
if η[i+ 1

2
, j − 1

2
] == 0

Cei,j = Cei+1,j − Pi,N+1

// Cb recursion
if l ≥ 2

if (l ≥ 5 or η[i+ 1
2
, j − 1

2
] == 0) and (η[i+ 1

2
] == 0 or η[j − 1

2
] == 0 or j == i+ 1)

Cbi,j = Ci+1,j−1 − 2Pi,j
for c ∈ {i, . . . , j − 1} s.t. η[c+ 1

2
] == 1

if (η[i+ 1
2
] == 0 and η[j − 1

2
] == 0) or (c == i+ 1 and η[j − 1

2
] == 0) or (c == j − 1 and η[i+ 1

2
] == 0)

Cbi,j = min{Cbi,j , Ci+1,c + Cc+1,j−1 − 2Pi,j}
// Cs recursion
for d = i+ 1, j

if η[d+ 1
2
, j − 1

2
] == 0

Csi,j = min{Csi,j , Cbi,d + Ced+1,j}
// C recursion
Ci,j = Cei,j
for d = i, j − 1

if η[d− 1
2
] == 0 or d == i

Ci,j = min{Ci,j , Ci,d−1 + Csd,j}
// n(scent) = N + C1,N ; scent is found by back-tracking

Algorithm 5.5: Pseudocode to find the centroid structure of a multistranded complex in
time O(N3)
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the indistinguishabiliy of strands of the same sequence in partition function calculations.

This correction is straightforward for partition function calculations, but to find the MFE

structure for indistinguishable strands, one must potentially enumerate an exponentially

large number of structures.

The first issue that we face is that the notion of closeness to the ensemble, n(s), needs

redefinition in the context of indistinguishable strands. For this section only, we denote the

ensemble where strands of like sequence are distinguishable with an over bar. Thus π̄(s̄, ψ̄)

is the equilibrium measure where strands of like sequence can be distinguished and π(s, ψ)

is the measure when strands of like sequence are indistinguishable. In both cases, we have

fixed a particular circular permutation ψ̄ ∈ Ψ̄ or ψ ∈ Ψ.

We can view the state space, Ω(π), as a partitioning of Ω̄(ψ̄), where s ∈ Ω(ψ) is the set

of equivalent structures (with distinguishable strands) that are encountered when recursing

over the set Ω̄(ψ̄). Then,

π(s, ψ) =
∑
s̄∈s

π̄(s̄, ψ̄). (5.11)

For distinguishable strands, n(s̄, ψ̄) is defined by

n(s̄, ψ̄) =
∑
σ̄∈Ω̄

π̄(σ̄, ψ̄)|S(s̄)− S(σ̄)|, (5.12)

and we can compute a centroid structure as shown in the previous section.

In defining n(s) for a structure where strands of the same sequence are indistinguishable,

the first hurdle is defining an appropriate distance. Since structures s ∈ Ω represent disjoint

sets of structures s̄ ∈ Ω̄ we can think of the distance as the distance between two sets of

structures. The average distance between all pairs of elements in the sets is not a metric

because the distance between a non-singleton set and itself under averaging is greater than

zero. However, the minimum distance between pairs of elements, one from each set, is a

metric, and it makes physical sense: By taking the minimum distance we, in essence, line

up the structures so as to change as few base pairs as possible before counting the number

of differing nucleotides.

Unfortunately, the calculation of equation (5.12) when applied to a structure s ∈ Ω

computes the average distance between structures s̄ ∈ Ω̄. What we would like to compute
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is

n(θ, s, π) =
∑
σ∈Ω

p(θ, σ, π)‖s− σ‖1 =
∑
σ∈Ω

p(θ, σ, π) min
σ̄∈σ, s̄∈s

‖s̄− σ̄‖1. (5.13)

Since we must take a minimum for each σ—and there is no reason that the choice for σ̄

would in any way be consistent over all σ—it seems that we cannot avoid enumerating all

structures to compute n(s).

These difficulties in evaluating the objective function n(s) make it unlikely that a poly-

nomial algorithm will be found to compute the centroid for a complex where strands of

like sequence are indistinguishable. In the case of computing the MFE for a complex of

indistinguishable strands, the correction is always positive [19]. One can compute ∆GMFE

assuming distinguishability. By enumerating all secondary structures with energies between

∆GMFE and (∆GMFE + ∆Gcorrection) one can find the true MFE. For the centroid, the cor-

rection to n(s) will be negative. Then, unless one could devise a bound on the size of the

correction, we would potentially have to enumerate all structures in the ensemble to find

the centroid for the complex with indistinguishable strands.

5.3 Summary

The centroid structure of a single-strand or an ordered complex can be efficiently computed

by a dynamic program in time O(N3), where N is the sequence length. In contrast to

similar algorithms for computing the MFE or partition function, all information regarding

the structures’ energies and probabilities is contained in the pair probability matrix. This

makes the recursions themselves simpler. Moreover, we can compute a centroid for any

ensemble for which we can construct a pair probability matrix without any information

about particular secondary structures in the ensemble.

The centroid is the optimal representative of an ensemble of secondary structures in that

it minimizes the average distance to all members of the ensemble. The MFE is universally

used as a representative structure, and though the centroid is optimal, it is not much better

at characterizing the ensemble than the MFE. Thus, its utility will be greatest for non-

equilibrium ensembles, such as in a kinetic simulation, where the MFE cannot be computed

by dynamic programming.
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Chapter 6

Conclusions and Outlook

The three methods presented in this thesis all attempt to devise a concise, easily interpreted,

and physically meaningful representation of a complex nucleic acid system.

The centroid structure is the optimal characterization of an ensemble of secondary struc-

tures in the sense that it minimizes the distance to every structure in the ensemble. Though

optimal, the centroid does not characterize the ensemble much better than the universally

used minimum free energy structure. Ding et al. [16, 17] seek to characterize the ensem-

ble through the combination of an alternate centroid and clustering of sampled structures.

They report impressive gains from their approach. In light of the results of Section 5.1.3 it

would be interesting to tease apart the gains from clustering and from using the centroid in

place of the MFE. Because we see few gains from the centroid as compared with the MFE,

we hypothesize that clustering with the MFE structure would perform as well as clustering

with the centroid, though it is easier to compute the centroid than the MFE from the pair

probability matrices that characterize each cluster.

The ability to compute the centroid structure for a box of labeled strands was critical

for the trajectory-based method of Chapter 3. It would be enormously useful if we could

compute the centroid for a complex of indistinguishable strands efficiently. This could

replace the brute-force method for computing the MFE that is currently used. Given

the difficulties even in evaluating n(s) when strands of like sequence are indistinguishable,

constructing an efficient algorithm will take new insight into the problem.

The trajectory-based method presented in Chapter 3 sought to mimic the landscape-

partitioning approach of Chapter 2 or the eigenvector-based method of Deuflhard et al. [14]

without having to write down the exponentially large rate matrix. Our clustering is distinct

from that of Ding et al. [16] because we are interested in not only the equilibrium ensemble,
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but also any macrostates that are kinetically important as on- or off-pathway intermediates

given a particular starting configuration.

The method is a combination of many elements, several of which deserve mention. The

first is our stopping criterion for clustering, which departs from prior criteria by acknowl-

edging that the objects being clustered are themselves distributions of other objects, and

basing our stopping criterion on how well clustered the underlying objects are.

Though the maximum likelihood estimate and confidence interval procedures that we

use in computing rate constants are well established, we add a key new element: By running

many short simulations, we compute the partition function for each macrostate without enu-

merating secondary structures. This allows us to only estimate “downhill” transition rates

and compute the reverse rates by enforcing detailed balance with respect to the macrostate

equilibrium measure. This is particularly important when the forward rates are essentially

irreversible, as is the case for most NA systems studied in our laboratory.

The transition identification procedure is key to the success of the method, and, to our

knowledge, without precedent in the simulation and model reduction literatures. Voter [51]

addressed the need for a method to detect transitions while running molecular dynamics

simulations. He addresses this issue by periodically halting the simulation and doing an

energy minimization to find which basin the molecule is in. Our identification procedure

would be of great use in such a situation since the search for transitions could be done as

the simulation proceeds.

Two issues would need to be addressed in order to apply the transition identification

procedure to new problems. First, we must be able to simulate the system for a long enough

time to observe some transitions. The distributed approach presented in [47] may not yield

simulations long enough to explicitly average over τ , not to mention observe transitions.

The second issue is developing an appropriate measure on the state space with which to

compute the distance in variation. Secondary structures are a natural choice for nucleic

acids and have proved their usefulness in thermodynamic calculations. For simulations

in continuous space, an approach might be to discretize the trajectory then apply ideas

from diffusion maps [8], where the diffusion timescale would be much shorter than τ , or

set-oriented methods [9]. Alternatively, if one had a reaction coordinate or set of coarse

variables for the system, the transition identification procedure would locate the divisions

between macrostates in those variables.
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