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ABSTRACT

An experimental and theoretical investigation is made of the
application of a molecular beam type sampling device for studying
low density shock tube flows to the case of slowly ionizing argon
behind a reflected shock wave. The flux of charged particles from
a gas heated to ahout 10, 000°K and 20 mm. Hg. through a small
orifice in the shock tube end wall is measured. The processes
determining this flux are the initial stages of ionization in argon
and the diffusion of charged particles to a cold metallic wall.
Providing the diffusion process is understood, the measurements
constitute a direct observation of incipient ionization (& ~ 10-7).

The transient charge diffusion mechanism is studied in
detail theoretically, avoiding the assumption of ambipolar diffusion.
It is concluded that the major problem lies in the understanding of
the wall-gas interaction as represented by boundary conditions at
the wall. An approximate relation for charge effusion is derived.

It is concluded from the experimental results that the
initial ionization can not be due to a single step, electron-atom
collision process but must result from a series of several

atom-atom collisions resulting in the ionization of argon atoms.
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1, Introduction

This paper is a description of a new method for studying low
density high temperature shock tube flows. The motivation for
developing new methods lies not only in the fact that most customary
shock tube instrumentation (e.g. optics) is less sensitive at low
densities but also that there exist well-known techniques in other
fields of physics that are more indigenous to low densities and high
temperatures. Notable among these is the class of "beam techniques'
which utilize low and high energy beams of molecules, atoms, and
electrons for such studies as mass spectroscopy, nuclear resonance,
etc.

The present experiment uses the shock tube as a conventional
""'source' for a molecular beam which is expanded to very low densities
through a small orifice in the wall of the tube. The study of the proper-
ties of the beam downstream of the orifice with conventional molecular
beam techniques can be used to obtain information about the processes
taking place in the shock tube itself. In effect, small samples of gas
are removed from the shock tube and studied.

The removal of gas through the orifice depends on the flux of
mass toward the wall from the shock heated gas. This situation is
analogous to the familiar shock tube heat transfer techniques which

measure flux of heat to the "wall'!, The one measurement invelves

diffusion of mass, the other diffusion of heat. Since both involve
transport processes in the gas it is evident that they will be very

closely coupled. In fact, the measurement of mass diffusion to a wall



or body represents an independent observation of trans.port processes
which may be particularly useful in experiments with multi-component
gases, chemical reactions, etc.

The analogy between heat transfer experiments and this mass
transfer experiment can be used to clarify the point of view taken here.
With both techniques there are two possible uses of the experimental
data; either a) the experiment and a heat or mass transfer theory
are used to obtain information about the nature of the shock tube flow
far away from the wall, or b} the experiment and known conditions
at "infinity'" are used to obtain information about the heat or mass
transfer theory., OQf course both the heat and mass transfer theories
are included in the complete Navier-Stokes equations appropriate to
the experimental configuration.

If the temperature of a thin film heat transfer gauge is very
nearly that of the surrounding wall, then the heat transfer to the film
is the same as to the wall, Similarly, if the amount of mass removed
through the hole is very small {i.e. if the hole is very small), then
the hole does not affect the surroundings, and the flux to the hole is the
same as to the wall., This is classical Knudsen effusion and is the case
considered here.

The purpose of the present experiment is to demonstrate the
utility of the technique by applying it to a well-suited but simple
experimental and theoretical problem. The configuration chosen is
illustrated in figures 1 and 2, The hole is placed in the end wall of the
tube with the result that the relatively stagnant gas heated by the reflected
shock effuses through the orifice. Just as the heat transfer to the end

wall is the simplest shock tube heat transfer problem so is the mass
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transfér to’the end wall, Since the enthalpy behind a réflected shock of
moderate strength is sufficient to partially ionize a monatomic gas

and since .an electric current is one of the easiest things to measure,

it was decided to measure the effusion of electrically charged particles
from shock heated argon by collecting the particles on electrodes
downstream of the hole. The mass transfer process involved in this
measurement is the diffusion of electrons and ions to the wall and the
conditions at "infinity' are determined by the ionization relaxation
process.

In the execution and interpretation of this experiment many of
the problems that arise are interesting in their own right. For this
reason some are treated in greater detail than required for the immediate
purpose of this program. Others are considered only insofar as
necessary to define the experiment, The major problems discussed in
the following sections are summarized below:

1) Shock tube performance at low pressures. It has been found
that the departure of shock tube performance from idealized shock tube
theory increases as the operating pressure decreases. Indications of
the nature of the departure in the region near the end wall are obtained
by conducting calibrating experiments over a large range of conditions
from high pressures where shock tube performance is well under-
stood to pressures typical of the charged particle effusion experiments.

2). The effusion of a neutral gas from a source in which
temperature and density gradients exist. The usual analysis for
Knudsen effusion assumes isothermal equilibrium, while the transient
(non-equilibrium) processes in the shock tube support thermal

gradients. This problem can be handled with an accuracy sufficient



4

for present,purposes by using simple diffusion theory (Sec. 3.1).

3) The diffusion of charged particles from a hot gas to a cold
wall. Problems associated with the interactions of hot gases with cold
bodies are becoming more numerous and important as time goes on.
Shock tube heat transfer experiments in un-ionized gases represent
a phase of this problem already extensively studied. The next step
in difficulty occurs with monatomic gases at temperatures where the
real gas effect is so slight that the non-electrical properties of the
gas are only slightly affected. In this case, the charged particles are
acted upon by electric body forces. The electric fields that appear
are caused by the separation of charge and are therefore intimately
connected with charge diffusion, This is the situation to which
the customary electron and ion binary diffusion equations (usually
written for constant temperature) apply. The coupling of the
diffusion with such processes as flow over a body is so complex
that even the simple continuum probe problefn is not understood.

The present experimental configuration represents the simplest
case for diffusion from a slightly ionized gas to a cold wall (Fig. 3)
and has therefore been studied theoretically in some detail, The
simplifying features are the following: the problem is one dimensional,
convective velocities play a small role, no currents are drawn from gas
to wall, there are no sources or sinks of charge except at the wall or
at "infinity', and well-defined experimental conditions for continuum
diffusion of charged particles exist., These simplifications permit an
analysis in which the major features of the general diffusion process
can be illustrated.

An important limiting case for the understanding of the



transient diffusion process is the steady state case (in particular,
isothermal equilibrum between a wall and an electron atmosphere).
In such a. case, the separation of charge due to physical processes

at the wall produces all the interesting physical effects. On the

other hand, it is customary in more complicated steady state
problems or in the transient case to distort these effects by
assuming electron density everywhere equal to ion density (ambipélar
diffusion). In the present analysis, this assumption is avoided,
thereby illustrating which effects it does or does not distort,

It is concluded that the largest gap in the understanding of
charge diffusion is in the ""boundary conditions'' at the wall. The
physics of the response of the wall to the gas and the interaction at
the interface are crucial to a better understanding of the total
process.

It is also shown that in such a transient process (and
presumably also in steady dissipative proces.ses such as the flat
plate boundary layer or normal shock wave) the characteristic
length for electric field perturbation into the gas is not the Debye

length but a '"boundary layer thickness' for electron diffusion,
&~ /o__ t

4) Ionization relaxation in argon. Table I illustrates the
conditions in the reflected shock region both at "infinity" and at the
interface between wall and gas for a typical experiment. It is
evident from a comparison of the parameters for equilibrium
ionization and the parameters observed in an actual experiment at
20 _M seconds that the experiments take place in the early stages of

ionization. The nature of the reaction mechanism for the early stages
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has been the subject of some speculation recently in the attempt

to explain measurements of the approach to equilibrium (i.e. the late
stages of ionization). The effusion experiment, since it is a direct
observation of the early stages, can give some information on this
problem providing the point of view is taken that the conditions at
"infinity" are unknown and that the charge diffusion theory is su-
ficiently valid to be applied to the experimental data.

The analysis of the reaction kinetics in the initial stages is
easier than in the later stages because the temperature, pressure
and total density of the gas are constant. From a discussion of the
properties of possible chemical reactions, a 'local'’ empirical
relation is derived for describing the observed process in terms of
four constants determined from experiment. These constants fix
the time behavior, pressure behavior, pre-exponential temperature
behavior and total activation energy of the reactions observed. The
experiments indicate that the portion of the process observed is
indeed very slow and is equivalent to a series of six consecutive
reactions. The total activation energy is very near the ionization

energy of argon.

2. Shock Tube Performance at Low Pressures

The details of the shock tube design, instrumentation and
calibration are presented in appendix I and are summarized in this
section. Figure 1 schematically illustrates the apparatus, which is
small and simple to facilitate the attainment of relatively high vacuua.
The entire system has a leak rate of 5 microns per hour (measured
with a McLeod gauge) from an ultimate pr essure of about 1()"5 m.m,

The permanent instrumentation consists of thin platinum heat
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transfer filims, amplifiers, and a microsecond counter -for measuring
shock velocity, and McLeod and Pirani gauges for pressure measure-
ment, This instrumentation was used in preliminary experiments to
determine the performance of the shock tube at the low design pressures,
Measurements at low pressure of shock speed as a function of diaphragm
pressure ratio, and shock attenuation and heat transfer as functions of
Mach number are compared with the same measurements at high
pressures, where the shock tube performance is very nearly ideal.

The two causes of departure from ideal behavior at low pressures
in this shock tube are the relatively long shock formation distance
(Ref. 4) and the shortening of shock wave - contact surface separation
by boundary layer effects (Refs. 5, 6). The former makes itself
evident in the film signals of figures 4 and 5 as a more gradual rise than
the expected step function, in the increasing departure of shock speed
from ideal as pressure decreases (Fig. 6), and in the increasing shock
acceleration over two adjacent intervals with decreasing pressure
{Fig. 7). That the contact surface gets closer to the shock as pressure
decreases is illustrated by the early arrival of the re-reflected wave
at the end wall in figure 4 and the early quenching of the side wall
signals in figure 5.

The heat transfer data obtained from the film signals are
plotted in figures 8 and 9. As can be seen in figures 4 and 5, the
height of the initial step at high pressures is well defined despite
the gradual subsequent rise on the side wall gauges due to their
protrusion into the flow. However, at Py = .1 mm (Fig. 4c, 5c¢)
the '"knee'" at the top of the initial rise has become so pronounced as

to prevent an unambiguous determination of the step height, AE/E.
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The values plotted are taken at the base of the knee anci therefore may
be too low., This rounding at the top of the step is a common effect on
thin film signals even at high pressures (Figs. 4a and 4b, gauge No. 4)
and is not understood, Since it appears to be a function of pressure, it
may indicate a non-ideal behavior of the temperature of the gas. This
possibility is discussed in section 4, 2 with respect to the ionization

experiments,

3. Effusion from the Reflected Shock Region

In this section a detailed description of the mass transfer
process is given in preparation for the discussion of the ionization
sampling experiments. First the heat transfer and effusion process

for a perfect gas is covered and then charge diffusion is added.

3.1 Effusion of a neutral gas. The reflected shock wave

propagates away from the shock tube end wall leaving a hot stagnant
body of gas. Its effect on the gas can be idealized by hypothesizing

the instantaneous heating at time t = 0 of a semi-infinite body of
compressible gas { x > 0 ) in contact with a semi-infinite wall (x £ 0)

at room temperature. The heating by the shock serves as initial
conditions and boundary conditions at x = o0 for the computation

of the response of the gas and wall. This computation has been

carried through in detail by Roshko in reference 7. under the assumptions
that velocities due to mass displacement in the thermal layer can be
neglected (constant pressure) and Kn ~ T where Kn is the local

heat conductivity and T local temperature., With the latter assumption
the Howarth transformation can be used, resulting in a "locally"
incompressible solution i, e. a solution which looks like the

incompressible result but with transport parameters evaluated at



local conditions. At the wall and at x = o0 where the temperature
and pressure are known the solution is given by the well-known

error function evaluated at the appropriate conditions

erf —% (1)

where TW is the temperature at the interface, V the kinematic
viscosity and Pr the constant Prandtl number. The "thermal

layer' given by this result has a thickness

6= —£— [Vt (2)
\J-rrPr

The gas near the wall, where the density is very high (V very small),
""'sees' a thermal layer much thinner than the gas at x = oo,

Effusion from the reflected shock region can be computed using
these results if the perturbation by the hole is small, The nature of
effusion from a region of time dependent gradients is easily illustrated
using the concepts of simple diffusion theory. A fundamental result
from the kinetic theory of gases is that the flux of molecules in one

direction across unit area of any plane in the gas (say, to the left

across a plane perpendicular to the x-axis at x = 0) is

nMx=/\L) ¢ (x=/\.)
F, = - i n (3)
4
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where the aumber density 7 and the mean thermal veiocity c are to
be evaluated at the average point of last collision, i.e. at x = -An ,

the mean free path of neutral atoms. This result is customarily used
to derive a first approximation to the net flux when conditions

at x =+/\, are different than at x = -/\n. A Taylor series

expansion of the net flux leads to the familiar expression for diffusion,

lpEa, D). . AdpE\ _  AF 2 Ay 3z

which constitutes a crude approximation to both ordinary and thermal
diffusion. Thus equation 3 is useful even if gradients exist in the

gas and can just as well be applied to the effusion of a gas through

a small hole from the reflected shock region. If the density downstream
of the hole is much smaller than upstream, the flux is in one direction

and is given by equation 3. A Taylor series expansion for moderate

. . an dc =) «w
gradients (i.e. for A?z(ﬁ /n + % / c) <<1) leads to
F=.2x=20c(x =0 (4)
4

The validity of this approximate result is closely related
to the validity of the representation of the shock reflection process
as the instantaneous heating of a semi-infinite body of gas., The
latter idealization is evidently only valid if the shock is many
shock thicknesses (mean free paths) from the wall, i.e. at times t
such that t> 7,,, where 7, is the collision mean free time for
atoms in the shock heated gas. Substituting this inequality into
equation 2 then gives § >> /\,,‘ which is essentially the same as the

inequality before equation 4. Therefore, the latter equation can be
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used any time the heat transfer model is valid.

The above analysis emphasizes that effusion through a small

hole is indeed a process of mass diffusion. The only distinction made

here between effusion and diffusion is that effusion refers to the flux in
one direction across a plane while diffusion refers to the difference
between fluxes to right and to left, Thus, in general, if a gas is
diffusing to a wall, the effusive flux through a hole is not the same as
the net diffusive flux,

It is important to note that since, by equation 3, the particles
effuse from the region x % /\, and since § » /Y, the mean energy

of the beam is given by the wall temperature, i.e. 1/40 e.v. (Sec. V.2).

3.2 Charge diffusion. If the effect of the ions and electrons

on the non-electrical properties of the gas is small, then their
diffusion and effusion can be superimposed on that of the neutral gas.
This decoupling of charge diffusion from heat transfer for small charge
concentrations is illustrated in appendix II where the equations (II. 28)
are derived in detail from the complete set of Navier Stokes equations
with diffusion and Maxwell's equations. The model representing the
ionizatién by the reflected shock is the same as that used above for the
heat transfer: At time t = O the semi-infinite body of gas (x>* 0)

is heated and ionized to the given ion and electron number density

]

n, {x = o0) = ne(x = 00) n_ (Fig. 3, non-dimensional notation
defined in Eq's. IIL. 19). n, constitutes the initial condition and
boundary condition at x = oo on the degree of ionization and, for the
purposes of analysis, is taken as uniform and constant in time. The

generalization to a charge density changing with time (nm(t)) such as

in the observed relaxation process is carried out later.
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It israssumed that there are no chemical reactioﬁs in the gas
except possibly at the wall or outside the diffusion layer (represented
by noo(t));‘ Equations appropriate to ''frozen reactions' are considered
in which the degree of ionization &  appears explicity as an unknown
(in contrast to equilibrium flow where the law of mass action gives

& (p,» T)). In general, this presents the possibility of transport of

energy by mass diffusion down concentration gradients in the absence
of temperature gradients., However, since for small & heat transfer
and diffusion are uncoupled, this effect does not appear in slightly
ionized gases, A discussion of recombination in the cool thermal
layer appears in Sec., V. 2,

To simplifjr the discussion, t‘he further assumption is made
that the flux of charged particles to the wall can be obtained by solving .
the diffusion equations for constant temperature and density (Eq's, IL.29)
and computing the flux using the temperature and density at x = 0 as
given by the third of equations II. 28, This can be considered as the first

step of an iteration on the complete set of equations II. 28.

3.3 Boundary conditions. The major problem that arises

in the analysis is the nature of the interaction between the wall and

the gas (Appendix III}). In general, the charge concentration and

fields in the gas induce charge concentrations and fields in the wall as
‘determined by the properties of the wall. At the interface appropriate
matching conditions must be established between the responses of the
gas and of the wall. It is possible to represent the response of the wall

and the matching conditions as an effective boundary conditionatx = 0

in the case of a metallic wall, since, by the free electron theory of

metals, the effect of a change of charge distribution in the gas appears
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almost instantaneously as a change of charge -distribution gﬁlﬁ
interface. The wall acts like one plate of a plane condenser on which
there is a charge concentration equal and opposite to the integral
from x = 0 to oo of the gas charge density. For the case of
diffusion to a "cold wall" (Sec. III.3) the charge sheet consists of
electrons. The field jumps from zero in the wall to a negative value
E(0, t) at the interface.

Another boundary condition required for equations II. 29 involves
the flux of charged particles to and from the wall, This is perhaps the
least understood aspect of the diffusion process. A cold metallic wall
is strongly catalytic to recombination in the sense that it acts as a
massive third body and an infinite reservoir of electrons (due to the
electron sheet; section III. 3. 1). Because of this it is usually argued
that there will be no charged particles left in the neighborhood of thé
wall and the boundary condition ne(O, t) = n, 0, t) = 0 (Eq. IV. 1)
is used. In actual fact, the knowledge of the reaction at the wall only
provides direct information on the fluxes to and from the wall and
these can be related to the number densities by simple diffusion theory
only under certain circumstances. A more. accurate statement is
simply that all ions reaching the wall recombine with electrons from
the charge sheet.. Thus in general there is a flux of ions to the wall
but not from the wall, while there is a flux of electrons both to and
from the wall (the latter by thermionic and photoelectric emission).

. On
Using equation 4 it can be said that for ne, = Bxe’ LK1

e,i
(i.e. near equilibrium) the flux in either direction across a plane

approximately defines the number density at the plane (c.f. early

references on equilibrium summarized by Fowler, Ref. 8)
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ng (0 = —S i (5)
o4 .

However, for such small ne : that the inequality doesn't hold, there
b

is no equivalent equation for ne’ i(0). Thus ne(O) = ni(O) s 0
cannot be justified by a recombination argument.

It can furthermore be shown (Sec. IV. 2) that this boundary
condition is necessarily inapplicable for large times since it inevitably
leads to arbitrarily large electric fields. This is because the body
force terms in equations II. 29 do not contribute to the flux to the wall
and the electrons are not inhibited from diffusing to the wall in larger
numbers than ions. By equation II, 27 this causes a continually
negatively growing field.

In section IV, 3 it is shown that for times much larger than T
(the time for an electron to diffuse one Debye length; Eq. II.19) the
electrons are, to a first approximation, in equilibrium anq therefore,
to the same approximation, equation 5 can be used to set the boundary
condition ne(O). The flux Fe(()) is given by thermionic or photoelectric
emission, whichever is appropriate. The resulting matching condition
leads to a finite number density ne(O), a finite field at the wall and a
steady wall potential of about 1 volt. However, for the particular
numerical values appropriate to the present experiments, the

calculated result ne(O) (Sec. IV, 3.1) is smaller than the inaccuracy

in the calculation (i.e. the extent of electron equilibrium). If

ne(O) = ne(O) Ane(o)

calculated

then it turns out
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1Qe(o)calcula,ted <L A ne(O)

Thus the best conclusion that can be made is
£
0 < ne(O) £ A ne(O)
or, in non-dimensional notation
0 < n{0) < O (D) (6)

where D is the square root of the ratio of electron mass to atom mass,

The boundary condition ni(O) is still undetermined but, since
ne(O) # 0 insures reasonable electron diffusion and finite fields, it
seems consistent to retain the approximation ﬁi(O) = 0.

From the equations for large time, the further important and
familiar result is derived in section IV, 3.1 thaf, to a first approximation,
the ion diffusion to the wall is unperturbed by the electric body forces.
Within the accuracy of a first approximation, the ambipolar diffusion
result II.37 or "independent' diffusion result IV.5 give equally valid
results for ion fluxes. This not only provides a means of calculating
n from an observed flux but emphasizes the fact that the non-linearity
of the bodsr force terms in equations II, 29 is weak., The approximate
ambipolar or independent diffusion results are solutions to linear
equations and can be superposed to give a solution for the general
boundary condition n_ (0, t). This is carried out in section V. 2.

For ni(O) = 0 the body force terms in equations IL. 29 do

not contribute to the net diffusive flux at the wall so

Bni )
F(0) = (D S (7)

in 9x
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It is pointed out before equation 5 that since the wall ié a perfect sink of
ions there is no flux of ions from the wall to the gas. The net diffusive
flux is therefore identical to the flux to the wall. If conditions V. 7
are fulfilled, then the hole does not disturb the charge diffusion and

the flux to the wall is the same as through the hole. Therefore the
quantity noo(t) is related to the experimentally measured effusive

flux of ions Fi(O, t) by the approximate result of the superposition,

equation V.6,

3.4 Summary, The conditions exhibited in Table I for a typical

experiment illustrate the general nature of the charge diffusion process
represented by equations II, 29, At t = 20 M seconds the thermal layer
is many mean free paths thick so charged particles suffer many
collisions as they pass through the thermal layer toward the wall., The
characteristic distance from the -wall for & measurable perturbation in
electric field (i.e. a non-dimensional field E* of O (1); c.f. last
paragraph App. IV) is not the Debye length as in the equilibrium case

but is the electron boundary layer thickness ge~ JD_en—E which is

much larger than the thermal layer thickness

It can be said that the large body forces required to set up ambipolar

diffusion are generated by free electron diffusion outside of the main
ion diffusion layer.

The Debye length, which is much smaller than the thermal layer
thickness, represents the decay distance from the wall for the effect on
the field of surface inhomogeneities such as roughness or atomic

adsorption or the presence of a hole causing local field perturbations,
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The mean free path does not enter in the discussion of ;the diffusion
process which is a continuum process but only in the determination
of 1;he effusion through the hole which depends on the familiar simple
kinetic theory argument.l The inequalities V.7 state the conditions
under which the hole will not greatly perturb the body forces or the
effusion process. These conditions are not met in the present
experiments. However, from the discussion of experimental results
in section VI, 2,2 it is concluded that the use of equation V.6 never-
theless represents a valid approximation.

The convenient length for non-dimensionalization in dissipative
and equilibriuﬁ processes is the Debye length since the Poisson equation
enters in both. In the dissipative process the characteristic time 7 is
the time required for an electron to diffuse one Debye length. Compare
this with the period of a plasma oscillation which is the time for an

electron to 'fly" with mean thermal vélocity one Debye length,

~
i
7
8

en’ oo
A
1 . =
w —
P e o

It is evident that the former is characteristic of a process in which the
mean free path is smaller than a typical length (say the dimension of a
container or the thermal layer thickness or the Debye length itself)

while the latter is typical for long mean free paths.
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by

4. Ionization Theory and Experiments

The experimental apparatus for measuring the effusion of charged
particles through a small orifice is illustrated in figure 2 and described
in detail in section VI.1l. The ions are collected on a negatively biased
electrode and the electrons on a positive electrode, both situated just
downstream of the hole. The biases are large enough so that most of the
effusing charged particles are collected but are small enough that
secondary electron production at the ion collector is negligible.
Experiments were carried out measuring ion current as a function of
time with the instrumentation indicated in figure 2 over a small range

of Mach numbers and initial pressures with different "impurities' added.

4.1 Preliminary experiments. In this section the characteristics

of the experimental measurements and the effect of "impurity' addition
are indicated qualitatively. Figure 10 illustrates typical oscilloscope
records at three different pressures in which the upper trace records
the ion current and the lower trace indicates the response from the
end wall gauge. The traces in figure 10a illustrate the whole
process with the initial rise in ion current due to the ionization
process, the subsequent quenching due to recombination in the
growing thermal layer (Sec. VI. 2. 2) and the beginning and end of the
run as indicated by the heat transfer gauge in the reflection of the
wave from the end wall and the arrival of the re-reflected wave,
respectively.

Figure 11 indicates the effect of the addition of "impurities"
into the shock tube. Mercury at about 25 microns pressure was

introduced by heating the tube with heating tapes and heating an
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adjoining test tube of liquid mercury with a candle. A cémparison of
figures lla and 11b indicates that the ionization level is greatly in-
creased by the mercury, Figure llc illustrates the whole process
in the same way as figure 10a but with a sensitivity 1000 times less.
Figure llc shows a degree of ionization much nearer to equilibrium
than that observed in 10a and emphasizes the "slowness' of the
ionization process discussed further below.

Figure 11d illustrates a typical run in which the initial pressure
was 95/a of argon plus 5 M air. Data were taken from such runs in
the same way as described below for pure argon. The ion current at
20 _seconds after shock reflection when plotted with the data of
figure 13 for pure argon falls on the 100 «curve with the same scatter
as shown in the figure. Thus small amounts of added air dq not cause
large effecfs in the ion current. Increasing amounts of added air have
no effect until the effect of the changing ratio of specific heats, ¥
reduces the temperature in the reflected shock region and consequently
in the ionization level. At no time does added air give ion currents

larger than those observed in the purest argon.

4.2 Experimental results. The discussion in section V.3 of

the properties of chemical reactions that will hold in general for the
initial stages of ionization (where only atom-atom forward-going
reactions are important in the production of electrons) suggests a
local empirical representation of the functional dependencies of the
process,

n q r s
w To t exp (-E+IkT00) (8)
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where s * depends on the number of consecutive reactions taking
place at a given time, g deﬁends on the binary nature of the collisions
and the number of consecutive reactions, r represents the pre-
exponential temperature dependence resulting from integrating over
the velocity distribution, and E + in the familiar Boltzmann factor is
the total activation energy for the process at a given time. Using
equation V.6 to relate the charge density n_ with the observed ion

flux gives

ql -rl S(
F, (0) = Mo To ¢ %P (-E+/k Too) (9)

where qf = q-1/2, r' = r-1/2, s' = s - 1/2.

Two bits of information are obtained from each trace such as
figure 10b or 10c¢; the numerical value of ion current at 20/15econds
after shock reflection and the time behavior of the current as obtained
from a replot of the trace on log-log graph paper. From equation 9 the
latter gives

9 In Fi

ot = g (10)
91In t

This result is plotted in figure 12. The pressure and Mach number
dependency is largely due to the effects of recombination in the cool,
dense thermal layer which are larger at high pressure and Mach number.
The effect of recombination is estimated to be 1 per cent at Py = 60/LL

and M = 6.5 (Eq. V.13). Itis concluded that for the conditions of

this experiment s' is 6 and therefore s 1is at least 6. The part of

the process that this experiment records can be represented empirically
as a set of six consecutive reactions. This result emphasizes the

evident complicated nature of the process. The most complicated
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process proposed in detail to date is Weymann's two consecutive
reaction process (Ref, 9). The above result seems to indicate an
even more intricate process,

It is evident that accurate determination of the origin of time
in the process (i.e. time of shock reflection) is very important in
relaxation experiments. In these experiments the time of flight
of the particles from the gas to the collectors is minimized by locating
the collectors just downstream of the hole., The uncertainty in time
origin due to time of flight and shock reflection time can be no more
than 2 M seconds, However, if the rounding of the end wall thin film
signal mentioned in section 2 above and graphically illustrated in
figure 10 where the time scales are greatly enlarged over the usual
case is interpreted as a non-ideal temperature behavior outside the
thermal layer, then an uncertainty is introduced in an effective time
origin of at least a few microseconds.

The only other relaxation experiments in which the shock
location has been illustrated simultaneously with a quantitative
indication of electron density are the interferometric studies of Alpher
and White (Ref. 10) of the region behind a strong incident shock in
argon. Though run under radically different experimental conditions
than the present experiments the occurrence in high purity experiments
(Fig. 3, Ref. 6) of a long distance behind the shock with no observable
relaxation followed by a very sharp rise to equilibrium lends support
to the observation in the present experiments of a very slow process in
the initial stages.

The second bit of information obtained from the traces is the ion

current at 20/( seconds after shock reflection (Fig. 13). Recombination
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in the therial layer at high pressures and Mach numbers depresses
the value of ion current and is evident in this figure in the crowding
together of the data and the decrease of slope as pressure increases,
Since the effect of recombination in the thermal layer is least at

low pressures and is computed to be 1 per cent at 60 microns the
data at this pressure can be used with equation 9. The slope of the

dotted line thrbugh the data is,from equation 9,

8 In F,
— 1 = _(E 4+ kT ) (11)
8 1/Kk T, + 00

and from figure 13 is equal to -12. 6. r' is not known here but is

usually negative, so it is concluded that for the conditions of these

experiments E+ is at least 12.6 electron volts,

An arbitrary generalization of Weymann's two consecutive
reaction process to an s consecutive reaction process (Eq. VI. 2)
and the use of the value s = 6 determined above fixes a local value
of r'=-3, Substitution of this into equation 11 leads to E, 15.6
volts. This value is very close to the argon ionization potential of

15,76 volts. Thus the data in figure 13 indicate that the major

source of electrons and ions in these experiments is argon atoms.
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APPENDIX I

SHOCK TUBE DESIGN, INSTRUMENTATION AND CALIBRATION

I.1 Design

Table I indicates the conditions for which the shock tube was
designed. The primary objective was the attainment of vacua which
would permit experiments in fairly pure argon at initial pressures
less than 100 microns Hg. This was achieved by keeping the system
(Fig. 1) as small and simple as possible. Since Py is always so
low that the final pressure after a run is less than atmospheric,
simple fittings and standard glassware could be used. The shock
tube and driver sections are made of 3 in I.D, x 1/4 wall stainless
steel seamless tubing with welded 3/8 inch flanges grooved for
O-rings, and the beam section is a 1 foot length of 6 in. I.D. Pyrex
Double Tough pipe with standard flanges and grooves to which O-rings
are fitted. The entire system is tied to a foundation by the 1/2 in.
thick stainless steel plate separating the shock tube and beam sections.
As shown in figure 1 a cone is machined from this plate about the
axis of the shock tube tapering from a 4 in. diameter to a 1/16 diameter
hole at the axis. A small ,001 or .002 in, steel diaphragm through
which is drilled the hole that connects the shock tube with the beam
section is fixed over the 1/16 hole with Apiezon black wax,

Connected to the beam section through a CEC two inch
throttling gate valve and a special design stainless steel high con-

ductance liquid nitrogen trap is the VMF 50 oil diffusion pump. The
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limiting factor in pumping the shock tube is the five foét long

piece of 16 mm. glass tubing connecting it to the beam section. The
valves for selecting the mechanical pump function (roughing or backing)
and for closing the 16 mm. connecting tubing are 10 mm. glass stop-
cocks. The lines from the mechanical pump (Cenco Hypervac 20) to
the first stopcock and from the stopf:ock to the diffusion pump

(through a 6 in. dia x 2 ft. long fore volume) are 5/8 inch 1. D,

rubber vacuum tubing. With the forevolume,the system can be pumped
at ultimate pressure without the mechanical pump for more than 1/2
hour before the fore pressure gets so high that the diffusion pump
loses efficiency.

All glass to metal seals are made with quick disconnect
vacuﬁrn fittings of Veeco design, and removable glass to glass seals
are of standard taper interchangeable ground glass joints.

Two types of diaphragm are sufficient to give bursting
press.ures from zero to over 3 atm. abs.; .003 cooper shim stock
(1/4 hard) for pressures of less than 1 atm. abs. and . 006 dead
soft aluminum foil for high pressures. The breaking pressure is
controlled by the depth of a Y-shaped scribe in the diaphragm.

A hand driven puncturing mechanism was provided in the driver
section but was seldom used since the scribing technique was found to
give sufficiently repeatable bursting pressures.

The shock tube and driver sections are clamped together(with
a diaphragm between) by small C-clamps so that the used diaphragm
can be removed and the new inserted with a minimum of delay. After
a run the shock tube is filled to atmospheric pressure with argon, the

diaphragm is changed and the system is rough pumped immediately,
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having been exposed to atmospheric air less than one minute. The time
to pump from atmospheric to 3 microns Hg is 3 minutes, In a typical
run the system is evacuated for about 10 minutes to less than .1 micron,
flushed with argon to a few mm. and then re-evacuated to the experi-
mental pressure of 100 microns or less. The stopcock separating
beam and tube sections is then closed and the beam section becomes
evacuated in a few seconds giving a §ressure ratio across the hole of
about 500, The time required to make a complete cycle from one run
to the next is about 20 minutes.

The leak 1-'ate of the entire system is about 5 microns per
hour. From this a crude estimate of the amount of "impurities" (most
of which is probably air) can be made. For a typical initial pressure
Py of 100 microns the leak rate is 5 per cent per hr. The amount of
time that elapses between the flushing of the tube and breaking of the
diaphragm is usually about 3 minutes, so the amount of air in the argon
is certainly less than 1/4 per cent. The effect of impurities on the

ionization process is discussed in section VI, 2. 3.

I.2 Permanent Instrumentation

The permanent instrumentation consists of 1) pressure gauges,
2) shock speed measuring devices, and 3) an oscilloscope. A mercury
McLeod gauge is used for making absolute measurements of pressures
from .0l to 200 microns while continuous readings in the same range are
made with a temperature compensated Pirani (hot wire) gauge calibrated
from the McLeod gauge, The Pirani tube and dummy compensator form
one side of a ten to one bridge and are heated at 20 ma. by a 6 volt
storage battery. Both tubes are packed in fibre glass in a reflecting

container to further minimize effects of ambient temperature changes.
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C.ustornarilxy the bridge'is balanced at a given pressure (e.g. IOO/u )
as measured by the McLeod gauge and for all subsequent runs at that
pressure the system is merely pumped until the bridge is rebalanced.
For pressures above 200 microns a Wallace and Tiernan absolute
pressure manometer is used.

The transducers for measuring shock velocity are standard
thin platinum resistance films evaporated and baked onto Pyrex
glass backing and mounted in the shock tube in 1/2 in. dia. plugs
10 inches apart as shown in figure 1. The films are roughly
1/2 x 1/16 in. and usually measure between 50 and 100 ohms
resistance after baking. The 1/2 x 1/8 in., backing material is
cut from 2 mm. Pyrex plate. Leads are soldered to silver paint
(du Pont No. 4760) fired to the back of the Pyrex plate and are lead
out of the plugs through Carborundum covar-glass hermetic seals.

The films are heated with D.C. voltages of from 1 to 5 volts
by separate 12 volt dry cell supplies. The films are therefore not
.operated at constant current and the data must be corrected for this.
The signals from both films are fed to a single 3 x 5 x 7 inch unit
consisting of 2 stages of transistor amplification with mercury cell
supply, a ballast Helipot potentiometer, and a milliammeter for each
film. The outputs from this unit go directly to the ""start' and ''stop"
inputs of a Berkeley 7260 microsecond counter.,

The oscilloscope used in the experiments is a Tektronix 551
dual beam with two 53/54 L preamplifiers coupled with two special
1000X gain low noise pre-preamplifiers designed by Mr. Richard
Swartley, and mounted on the same scope mobile complete with

separate power supply.
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I. 3 Calibration

The §urpose of the calibration was to determine the performance
of the shock tube at low pl;essures (py ~ 100 microns). Because of the
low operating pressures and short length of the tube (20 diameters)
two possible deficiencies in performance might be expected; the shock
may not be fully developed and the testing time might be very small,

The former would affect an experiment through the non-uniform
conditions which would inevitably exist in the region behind the shock
wave. This effect is minimized in the ionization experiments since
the convection of these non-uniformities to the end wall is small, A
measure of the departure of the shock from its fully developed state
is obtained by comparing the speed ’of the shock with theoretical pre-
dictions (Section L. 3. 2) and by measuring its attenuation (Section I. 3. 3).

The testi-ng time at a station on the side wall (Fig. 14} is given
either by the time between the shock and contact surface, or the
time between the shock and reflected shock, depending on station
location and conditions in the flow. On the other hand, the end wall
testing time is given by the time between shock reflection and arrival of
the wave (a compression wave for strong shocks) which has been re-
reflected from the contact surface. Both side and end wall testing
times decrease a..s the contact surface gets closer to the shock wave.
With a short tube the testing time obviously is small, Roshko (Ref. 5)
has shown that, in addition, bound'ary layer effects at low pressures.
tend to decrease the distance between shock and contact, thereby
decreasing the testing time. This effect was first reported by Duff

(Ref. 6) and appears in the present experiments (Section L. 3. 1).
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To_‘?-observe these effects, the average Mach nu1;nber over two
adjacent 10 inch sections of tube and the heat transfer to side wall
and end wall thin film resistance gauges were measured, The
instrumentation used was that described in section I. 2 plus two
additional films, another timer and another pre-preamplifier identical
to the ones already mentioned. One of the films (44 ) was mounted
in the same way as the permanent gauges (5772 and 58 /1) on the
side wall 213 inches upstream of the end wall, and the other (90.)
was evaporated onto Scotch splicing tape which was then stuck to the
end wall of the tube. These gauges wiil be referred to below as
numbers 1 to 4 depending on the order in which the shock hits them.

The éignals from the films were amplified by the pre-
preamplifiers and fed to the scope and the timers (the transistor
amplifiers were not used). One timer was started by gauge No. 1
and stopped by No. 2 and the other timer was started by No. 2 and
stopped by No. 3. The gauge signals were recorded by the dual scope
in pairs. The qualitative nature of these signals is illustrated below
and the numerical results of the measurements are presented and
discussed.

I.3.1 Film signals. Figures 4 and 5 illustrate the typical

behavior of side and end wall gauges. At 10 mm. the end gauge gives
the predicted step function in temperature, but at lower pressures the
signal becomes complicated by three effects: 1) The initial rise is
more gradual than a true step, having a rise time of order 10 micro-
seconds which is much longer than the thickness of an ideal normal
shock. It would be expected that, since an incompletely developed

shock wave is actually a train of waves of finite extent, the "thickness''



29

would be large. However, there are probably other facfors that also
contrib;lte to this effect: a) In figure 11b there is shown to be a much
slower rise ;t 60/a' in mercury than in air and argon. Thus the
shorting effect (next paragraph) contributes to the rise time. b) The
nearness of the contact surface to the shock at these pressures also
contributes to the complications at the wave front because it is
possible for the diffusion thickness of the contact surface to be as
large as the shock-contact surface separation. In fact, in the limit
Py 0, the shock and contact surface are one and the same and
diffusion determines the "shock'structure (c.f. Ref. 5).

2) At low pressures and high Mach numbers the ionization
reaches the point where the characteristic resistance of the gas
(defined in appendix VII) causes a significant decrease in the effective
resistance of the film, i.e., a ''shorting'., In j:he most extreme case
the effective resistance falls below the pre-shocked value and the
scope trace falls sharply negative (Fig. 10c end gauge and Fig. 4a wall
gauge). Under other circumstances when the ionization level is lower
the signal change may only be a few per cent. A characteristic of
the shorted signal appearing on practically all traces is its jagged
appearance.

3) The wave that is re-reflected from the contact surface
becomes a prominent part of the signal. At 1l mm. (Fig. 4b) it
appears about 230 microseconds after the first reflection and at 100
microns it has reduced the end wall testing time to 30 microseconds.

The signal from the side wall also shows the gradual initial
rise. All forms of the shorting effect are illustrated after the

reflected wave passes over the film. Itis evident from figure 14
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that the first event after passage of the initial shock ai a given station
on the side wall will be either the passage of the contact surface or
of the reflected wave, depending on the station and proximity of the
contact surface to shock wave. At gauge No. 3 the reflected wave
is seen at high pressures but at low pressures the contact surface
passes first., This is indicated by the evident cooling in figure 4c
not observed at higher pressures. On gauges No. 1 and No. 2
(Fig. 5a) the contact surface passes first even at higher pressures,
Note how the time between the shock and onset of cooling decreases
with decreasing pressure until at 10 microns the contact front quenches
the flow before the initial rise has reached full theoretical value
(Section I. 3. 4).

A further feature of the side wall signal not observed at the
end wall is a gradual rise after the initial step even at 10 mm.
(Fig. 5a). This is due to the fact that the glass backing of the film is
not flush with the side wall, so the boundary layer flow does not
develop parabolically. Since the primary purpose of the gauge was
to record passage of the shock for triggering the timer, no attemptwas
made to correct this situation.

The times observed on the side wall between shock and contact
front do not agree quantitatively with tile theory developed by
Roshko (Ref. 5) because the boundary layer effect is not the only
mechanism determining the distance between shock wave and contact
surface. In fact for pressures less than 10 mm. the most important
factor is probably the slow formation of the shock wave (Fig. 6). At
low pressures the testing time is several times larger than that

predicted from measured Mach numbers by the boundary layer
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1.3.2 Average Mach number between films No. 2 and No, 3 vs,

diaphragm pressure ratio. Figure 6. These results are compared with

the predictions of simple perfect gas shock tube theory and show a very
strong pressure dependence. At high pressures and low Mach numbers

the Mach number M is very nearly the predicted value but the

23
deviation from theory increases with increasing Mach number and
decreasing pressure. The effect of diaphragm opening time on shock
formation distance was discussed qualitatively by White in reference 4
and experimental results were presented showing that formation distance
increased with increasing shock strength and increasing diaphragm
pressure ratio. Thus the experimental results of reference 4 are con-
sistent with figure 6.

However, in the present experiments the additional parameter

p; was controlled so an additional piece of information may be

obtained. Figure 6 illustrates that for a given p 1 the deviation

from theory decreases with increasing Mach number i.e. with
increasing Py This result is consistent with any ideas about the
effect of diaphragm opening time on shock formation, since it is
probable that the opening time decrea‘ses with larger force Py
applied to the diaphragm. On the other hand, that this is not the
only factor contributing to shock formation is indicated by the fact

that for a given Py the deviation from theory decreases with increasing

P
The relatively large experimental scatter at low pressure
indicates the further point that diaphragm opening time and therefore

shock formation distance depend on other parameters than those
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controlled in the experiment. These probably include variations in

diaphragm scribing technique, etc.

'I.3.3. Attenuation between two adjacent 10 inch intervals,

Figure 7. The attenuation results show that the shock wave is
accelerating at the end of the tube, a result consistent with the idea

that the shock is not fully developed. The experimental scatter is

very large for two reasons., The scatter indicated at the left hand end
of each curve in figure 7 is 1 microsecond, the least count of the timer.
However, the scatter observed at higher Mach numbers on each curve

is 6 microseconds or more. It is expected that this is due to the
variations in breakage of the diaphragm which influence the properties
of a shock wave until the shock is fully developed and well away from the

contact surface.

I.3.4. Heat transfer to wall gauges, Figure 8§, These data are

compared with the theory of heat transfer to side walls as developed

by Rott and Hartunian (Ref. 11), A simple minded theory results from
considering a wall placed in contact at time t = 0 with a compressible
stationary gas at a different temperature. This is the theory covered
by Roshko in reference 7 for heat transfer to end walls and involves

the neglect of the displacenent effect (Section II. 1), The result for the

temperature jump at the wall surface is
AT _ %o Thr 1 p h
7= o e (A (5 (1)

where T is temperature, c specific heat, k thermal conductivity,
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h specific:enthalpy and f density. For a constant current gauge

AE _ AR | & AT (1. 2)
where E  is the voltage across a gauge, R its resistance and o
the thermal coefficient of resistivity of the gauge material (platinum).

Combining equations I.1 and I. 2 and rewriting,

4‘—55 :‘/- é("’ﬁ%’—}z,j_— /}1 (1.3).

where ( )s refers to the gas at S.T.P., ( )W refers to
properties of the wall, ( )1 refers to initial conditions,
= k, d 4« is the viscosity.
p pcp van/a e viscosity
The theory of Rott and Hartunian takes into account the motion
of the gas past a side wall gauge by making a boundary layer analysis.

The actual voltage jump (AE/E)' is given by

(%E)' = K(M Pr) —A—E— (L. 4)

where K is plotted in reference 10 and AEIE- is given by
equa,;cion I. 3.

In the experiment, traces of two consecutive wall gauges
(No. 1 and No. 2, or No. 2 and No. 3) are recorded in each run.
The initial jumps in voltage are averaged and are plotted against the

average Mach number over that interval as obtained from the timer

record. These are fitted to the theory at 10 mm. by choice of the
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wall parameter dw//_ﬂ:—, .which in this case is 0.076 c.. g.8. As can
be seen in figures 4 and 5 the height of the initial step at high
pressures is well defined despite the subsequent gradual rise on the
side wall gauges due to their protrusion into the flow. However,
atp; = 0.1 mm. (Figs. 4c, 5c), the "knee'" at the top of the initial
rise has become s0 pronounced as to prevent a definite determination
of AE/E. The values plotted are taken at the base of the knee and
therefore may be too low. On the other hand, the points for
p; = 0.01 mm. represent the maxjmum signal attained in the
initial rise (e.g. Fig. 5d).

It is evident that at the lowest pressure the gradual initial
rise and early quenching combine to prevent the wall temperature
from rea.ching the theoretical value. That this effect depends on the

variations of diaphragm breakage is shown by the large scatter,

I.3.5. Heat transfer to end gauge. Figure 9. The initial

jump in end gauge (No. 4) voltage is plotted against the average
Mach number between gauges No. 2 and No. 3. A best fit between
theory and experiment at high pressures is obtained by taking
X o /Z, = 0.10 c.g.s. This value for platinum on Scotch
splicing tape is very close to the value for platinum on glass.

The same difficulty in obtaining data at Py = 0.1 mm. is
encountered here as in section 1. 3.4. The points indicated represent

minimum values.
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APPENDIX II
THE EQUATIONS FOR DIFFUSION IN AN IONIZED GAS

II.1 Introduction

In this appendix a detailed derivation of the equations for
diffusion in a partially ionized gas is presented. The purpose is
two-fold: a) 'to exhibit the approximations implied by the final
equations and, b) to illustrate the relation between any general
problem of diffusion in an ionized gas and the simplified one
considered in detail here. The complete set of equations des-
cribing a non-reacting ("'frozen') three component gas (ions, electrons
and neutral atoms) acted upon by electromagnetic body forces would
consist of conservation equations for mass, momentum, energy and
each species (Ref. 2, p. 698), equations for the flux of each species,
of heat and of momentum as functions of the gradients of state and
velocity (Ref, 2, p., 517 f.£,), equations for the body forces
( Maxwell's equations, Ref. 12, pp. 18, 19), and equations of state.

The usual technique for simplifying this system is to abstract
diffusion from the other processes covered by the equations, such
as dissipation by viscosity and heat conduction, and convection of
momentum and energy. The relevant equations become the various
continuity equations and the relations between flux of species and
gradients of state. In the present work, a slightly more general
technique will be used. |

The distinctive features of the problem considered hefe

will be the electric body forces and the diffusion of the various
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components, The body forces will appear in all the eqﬁations since
they can effect a transport of mass, momentum or energy. They
appear in the continuity equations (diffusion equations) as a
""restoring' force to 'impedé diffusion, can cause a non-zero
pressure gradient across a boundary layer due to momentum
transport, and can effect a transfer of energy in the absence of
temperature gradients. Similarly, diffusion down a concentration
gradient can transport internal or translational energy in the
absence of thermal gradients.

It is desired to derive a set of equations which describes the
one-dimensional model outlined in section 3.2: At time t¥ =20
a body of gas (x* > 0) adjacent to a wall (x¥ {0) of known properties
is instantaneously heated and ionized to constant uniform temperature
Too’ pressure p . and ion number density n As discussed in
section II1, 3, the temperature of the wallplays an important role in
the boundary conditions. It is therefore natural in this problem to
retain heat transfer for completeness, This aspect of the problem
is precisely that worked out_by Roshko for heat transfer to the end
wall of a shock tube (Ref. 7) and the same scheme of approximation
can be used: To first order the velocity of the mixture is assumed
everywhere zero (higher orders can be computed by iteration on the
full equations). It is immediately seen that for a compressible gas,
where in general 9p /3t # 0, the continuity equation is violated.
From the analog offered by boundary layer theory it can be stated
that the '"displacement effect"”, i.e. the velocity that must be induced
due to changes in density, is neglected. The equations are written

down under this assumption and are then non-dimensionalized and
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discussed in terms of two characteristic parameters, o the degree of
ionization, and D the square rpot of the ratioc of electron mass to atom
mass. Fpr small a the equations are further simplified and discussed.
The problem as stated is initially one dimensional and will
remain so if body forces act only in the =x direction. The restrictions
implied by the one dimensionality are first discussed and then the

equations are written down.

II.1.1 Maxwell's equations. The electromagnetic body force

per unit volume in a fluid is (c.f. eq. IL.9a)

f=wE + jxB (IL. 1)

where W is the volume charge density (W = e(n:.L - ne), and E,
—;and -E; are the electric field, current and magnetic field respectively,
all in MKSQ units. For the class of problems in which there is a
finite component of _; in the —E- direction (taken to be the x-axis),
the body force introduces a two-dimensionality unless E = 0. Thus,
Lorentz forces GXE) are not considered here, This situation arises
without assumption in the particular problem of interest as follows:
Initially E = _ﬁ = 0. The wall at first induces a current and an
electric field in the x-direction only. Thus curl E = 0 initially and,
from Maxwell's induction equation,
-
-aa.g-?’- = - curl E = 0 (I1. 2)

- B
The magnetic field remains zero and f = W E so that the problem

remains one dimensional for all time.

The general expression for the current in an ionized gas is



j = e(F,-F) (I1. 3)
where F is the flux across unit area in unit time. The electric
field is not the only mechanism by which a difference in fluxes
may be induced (we are interested here, for example, in diffusion)
so the simple Ohm's law j = 0" E is not expected to apply
generally in an ionized gas.
Of the remaining Maxwell equations, the ones that are not
satisfied identically for one dimension are
aD _ _
e =W = e (ni - ne) (II. 4)
D = & E (I1. 5)
8D , i = o (IL. 6)
at

where D is the electric displacement, &£, is the permeability
of free space and where quantities without arrows from now on signify
x~component. Equation II.6 is redundant since equations II. 3, II.4

and the continuity equations II. 8 lead to the same result,

II.1.2 Conservation equations. For generality the
equations with zero total velocity are first written for any number
of components and any body force Xj acting on a particle of the
th

J species. They can be specialized to electromagnetic body

forces by substitution

X, = e(E + v. x B)

i i
X, = -e(E + vy X B) (
X =0

II. 7)
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~As Stated above, the total continuity equation is violated.
The conservation of each species for a non-reacting mixture is

expressed by
-5-1—:3- + 3‘;;‘*}‘ = 0 (one-dimension)
The momentum equation in the x direction is
v
op
T = n, X,
ax j=Zl i3

Using equations II, 7 and II. 3, the right hand side becomes the

well-known electromagnetic body force

Zn.X.: WE + jx B
J

Thus, in this problem, though the '""boundary layer' assumption
is made, the pressure gradient does not vanish.

The energy equation written for one dimension is

R
c 2 . .22 L > px
j=1 !

where £ is the energy per unit mass, Q the heat flow per

unit area and time, and Fj Xj is the transport of energy by the jth

species in the x direction. This latter term is a "dissipation'' of
energy ahd, for electromagnetic forces becomes the familiar

joule heat

ZFij = jE

(I1.8)

(11. 9)

(1. 9a)

(II. 10)

(I1.10a)
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For B ="0 this becomes (c.f. eq. IL. 6)

_ 9 AE
ZFjXJ‘"'W >

the rate of change of the energy stored in the electric field ( &, ,

the permeability, not to be confused with &, the energy).

11, 1.3 Equations for mass and heat flux. Usually, to

obtain the equations of mass flux, the flux Fj of the jth species
is defined as an integral over the distribution of molecular

velocities, fj,

where fj is subsequently determined as an approximate solution
to the Boltzmann equation. A similar technique is used to derive
the heat flux equation. This method results in equations in which
the diffusion coefficients and heat conductivity are expressed in
terms of integrals over the potential functions of the particles,
The applicability of the results is restricted by the specific
assumptions which are made in working with the Boltzmann equation;
for example the assumption of binary encounters required for its
derivation (requiring a further discussion in the case of an ionized
gas in which '"long range' forces are present) and the expansion
procedures necessary for obtaining a solution to the equation,

The same equations can be derived by the more general
techniques of irreversible thermodynamics (Ref. 2, p. 704 f.f.)

with fewer restrictive assumptions, indicating that they are much
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more general than would be expected from the above derivation. The
assumptions are simply that all species have the same temperature
T and ,that the various fluxes can be expressed as linear combinations
of the various gradients of state. These assumptions are typical for the
Navier-Stokes equations and are usually interpreted as implying '"small"
departures from equilibrium.

The assumption of equal temperature implies that the body
forces do not give energy preferentially to one particular species,
This means that the kinetic energy gained from the field by the electrons
must be smaller than thermal energy. For an electric field, the energy
gained by an electron in one mean free path must be smaller than the
thermal energy, e E.Am/kT < 1. The coefficients in the linear
relations between the fluxes and gradients of state (diffusion co-
efficients and heat conductivity) remain undetermined and must be
obtained from experiment or, in special simple cases, by resort to
kinetic theory.

The result for a one-dimensional monatomic gas in which the

coefficient of thermal diffusion is much smaller that the usual binary

diffusion coefficient Djk (Djk = ij) is (Ref. 6, p. 517 and 522,

using eq. 1.9)
Y o Fr -y F
> e~ 72 1 = d. 2 o F =0 (I1.11)
*=’ 2 D J ) J=/ J \/
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where

= n.m,

p = 2 nm,
Y = number of components

Xj = body force acting on jth component
Q = heat flux

K = heat conductivity for the mixture

Writing out equation (II, 11), for the fluxes of electrons and ions

in a three-component gas (third component neutral particles) gives

n.[ Oen[_ "—7‘—2 ]”‘é‘[ﬁ‘" ,;m—'g‘fﬂ]
/"7"“ /—Dt‘i el In Din

F=-Din 74, - 3?1[/_ n,.pm]_ _5[/_ e Dim (IL 11a)
/L m, Dec 7 Pa  De.
A D; 77 d D¢—n 7, D:
/- g- N~ [" —] Dec  to Tiom
fo==Den 7 e (IL. 11b)

-5 55-"; -5 %]

It is immediately seen that these equations can be greatly
simplified if it is possible to assume ni/n and ne/n so small

that the complicated fractions on the right hand sides of both
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equations are essentially 1., This is the case for slightly ionized

gases (ne, ni % Q) and equations II. 1l become

]
e

B Din M di
(II. 11c)

Fe = —Dennde

1I.1.4. Equations of state. It is assumed that each species

is thermally and calorically perfect. Summing up the individual

equations of states gives

p = nkT ' (IL. 14)

The energy per unit mass £ appearing in equation I1.9 is the

weighted sum of the individual energies, Ej = % ____fnT
i
f= LT am e = 2 DT _ 3

e iy e P Z p (I1. 15)

II. 2 Parametrization and Non-dimensionalization.

To examine the details of the approximation IL. 11lc the
complete set of equations is now written in terms of two
characteristic paramete;’rs, the ratio of electron mass to atom
mass and the degree of ionization. It is evident that these
parameters will appear explicitly in the equations and implicitly
in Djk and K. Kinetic theory is used to make the latter dependence
explicit as follows:

a) It is assumed that



where the function

electrons diffuse through ions in the same way as they
diffuse through neutrals, etc.). This permits the expression

of the ratios of diffusion coefficients appearing in equations

P + 77,
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f is the same for all

j and k (i.e.

II.10a and IIL. 10b in terms of the single parameter

(= . 0037 for argon atoms);

n

en

in

el

en

w

ei

b) The thermal conductivity K of a mixture of gases

can be written to first order in a,

n
Q0

= where n
00
00
at x = oo),

derived from kinetic theory (Ref. 2, p. 535, eq. 8.2-36).
The thermal conductivity of a pure electron gas K_ is used
as a reference but can be transformed to the more familiar

conductivity for pure atoms K, by a relation analogous to II, 16

Kn=

ZD(1-7 D

1

2

+

ees)

ED(I-Z p? 4+ ...)

D Ke (1 +...). The resultis

the degree of ionization

is the number of electrons per volume

and D by using a rather complicated relation

(IL. 16)

(I1. 17)
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s 2 O(Il
K & g (D+35 (1I.18)

The non-dimensionalization is carried out using
quantities at x = o where conditions are uniform and
equal to the initial conditions (n, = n = n and

i oo e 0o oo

Eoo = 0) and for the case in which the body force is due

to the electric field (eq. II. 7 with B = 0),

i
< ERT )2
xX¥* = 7\— where hoo =[ , the Debye length
00 en
00
X 2
t o0
% = — where ’Z" =
(4 [Den}oo
n n
i e * n
N = —— , N = — , M = ———
n n_. LW (II. 19)
*_ T R pk: P..__
T = ’1?'00 P
noo my
A= g— = D=im
0 n
F* = Fi }\oo , E* = eExoo , Q*zQ KOOT
t (Denjoonoo kT (Kejoo o0

The full set of equations with each term to lowest
order in o or D are written below, In rewriting the
equations for energy a non-dimensional number analogous to the

Lewis number appears and can be evaluated approximately
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from simple kinetic theory;

kq (D )
Le' = ©_enm 5 2 (IL 20)
(Ke)00
Diffusion of Ions
Dq' a/e* D
F* L d% b /—Nd\[z-" 2‘,‘«-(/- E)]-m&//—DZ)
I'4 ¢ /‘NdDz—”d(/*\ré—'D3)
* Bn j2 N N/ 9p* _ %
d 7*(2’,‘)”}; 7*4’ P¥(7# 5757\‘ £ )4] (II. 21}
JEX _ L 2N
dx* 02
Diffusion of Electrons
d” 3 2
pxa T naf[1-Z0 -5 75 D ] - N=D
e - = U
/=~ N«D*~ 2 (1-VZ D?)
* Den [ 2 m " (I1. 22)
d, = »* 22 [ = 2 22_(_'.
? (Den)a: % 7* P 7 - E)
9£™ _ 27
DX"_‘ T g
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Momentum Equation

2. = E#* (N -n) (IL. 23)

Diffusion of Energy

Q"=- <K> (D+2°m)9x  ZL T (0 e fr0))

(IL. 24)

20" [ 3 * * 9 ) 2.
LA 2 2 ke ) 55"

)

Maxwell's Equation

OE*
Dxk

= N-n (1. 25)

Equation of State
p¥ = n¥T* (II. 26)

Note that the equation for the flux of the jth species contains

the generalized gradient d,* of the kP species.

II. 2. 1. Relation between fluxes and field. Combining

the continuity equations for electrons and ions with the electro-



48

static equation (II.25) and integrating over x* using the condition

of uniformity at x¥ = o0 results in the useful relation
OE*
— = * . %
5% Fe Fi (II. 27)

I1. 2.2, Slightly ionized pas. The approximation of

equation II, l1c can now be made for the complete set of
equations by setting a = 0. From equation II.23, the pressure

becomes constant (p* = 1), The equations become (taking Le' = 1/3)

N _ A2 [, *Den (2 N _ *
Je* DQ'X* [7 (Den)m (9"* /7# NE )]

= ] 7 (3 mf)]

* *
9977 2—5 2_ | &n 97’] (IL. 28)
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The ternary diffusion process (in which the flux of electrons,
say, depends on the gradient of ions) has been reduced to two
binary diffusion processes which are coupled by the body force
and effects of heat transfer. T* (and therefore n%*) is deter-
mined by the standard heat transfer problem with appropriate
thermal boundary conditions which can be solved using the
Howarth Transformation. To fix ideas the heat transfer can

be eliminated by considering a simple subcase in which
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T% = const. = 1. Then - n* = 1 and (%m = 1, and we obtain
N, = D(N_ . -(NE%)_)
D T OB T (nE*)X* (I1. 29)
E*ﬁ< = N-n

where subscripts ( )t and ( )x now signify partial differentiation.

Initial conditions:

n(x*, 0) = N{x* 0) = 1 , E*(x* 0) = 0

These equations are discussed in detail in appendix IV,

II.3 Isothermal Equilibrium

A very important subcase of II, 29 for the shock tube
experiments is the steady state case (-g—;c-; = 0, isothermal
equilibrium). The two diffusion equations can be integrated

once with respect to x¥% using the conditions at x¥ = oo,

Using the definition of a potential V¥,

5% = - F*
Vx*" E

the equations can be integrated again

(II.30)
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N (x*) = e V()

(g
n{x¥*) = e V() (I1.31)
Vo = 0
00
Equation II. 31 is the familiar Boltzmann distribution for
equilibrium. Combining with the third equation II. 29 gives,
V*X*X* = sinh V#* (I11.32)
Boundary conditions:
V() = VE (o) = 0, V0) = V¥
The solution to this equation is (Refs. 8 and 13)
Vo )
tanh —2 Vi
: -1 -2x ;
2x% = In ———z 5 V¥ = 4tanh (e tanh 1"_) II. 33)
tanh T

Note that for n(0) >< 1 {(""hot wall" or ''cold wall", as defined in
section III. 3), then N(0) § 1 and V’O‘v’ Z 0. The curves for n
and N for these two cases are plotted in figure 15. Note that for
any boundary condition n(0), the x*-axis is shifted so that the
y-intercept on the appropriate curve is n(0).

It can be seen that the dgparture from neutral distribution
is large only for =x% < 1, This is the well-known result that the

decay distance for the effect of a wall in equilibrium is the Debye

Length.
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II.4 Ambipolar Diffusion

A cuétomary approximation which will be referred to
in appendix IV is known as ambipolar diffusion. From the
steady state results it is argued that charge separation
tends to be slight except near a wall, so that in some region
it is possible to assume =n = N. This over-determines the

equations II. 29. The two diffusion equations give

1-D xH*
¥ 0= —
E 14+D n

2D

L3 =
oy T+ D xexx

and the electrostatic equation serves as a check for the
range of validity of the assumption. If, as is customarily
done, the boundary condition is taken as n(0) = N(0) = 0,

then

¥

: X __
/V(th*/ = 2 (x*2Y)= 6rf2 2D 1.
]+ D

+* /- D e/

EF = -
RaD(1+D) t* opg —2

The electrostatic equation states that the approximation is

valid for Ex* << 1 which is satisfied if

(II.34)

(IL. 35)



52

x* . x*
2D - *
21}—11-[)—1”‘ 2|/2.Dt

A further condition for validity deduced from the solution at large

YA

%
distances (Sec. IV.2) is that —= K 1.
2 ‘} t*

<%

In the region ﬁ—— 4L 1 the field is given by
%
‘ 1+D

Ex = -

-D w
D

1
. o (IL. 36)

The 'infinity at x¥ = 0 is a direct consequence of the boundary
condition n(0) = N{0) = O and is discussed in section IV. 2,

The fluxes are given by

x*2

20D - BD  *

* 2 v
FE 70D My = T[22 e’"?

In particular

F (x*=0) = -—_ 20//#0 (1L 37)
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APPENDIX II

THE ROLE OF THE WALL

III; 1 Introduction

As outlined in section 3.2, the purpose of the theoretical
investigation is to describe the details of a one~dimensional
charge diffusion process represented by the following model:
At time t = 0 a body of gas (x >0) adjacent to a wall (x { 0)
of known properties is instantaneously heated and ionized to
uniform temperature Too’ pressure p__ and ion number density
n_ - No net charge is drawn from the gas by external fields
(zero current in the wall), The presence of the wall affects
the charge distribution as discussed below and a redistribution
of charge in the gas takes place by diffusion. Evidently the
equations for the response of the gas, the initial conditions
(t = 0) and the boundary conditions at x = oo (identical to the initial
conditions) can be written down from a consideration of the physics
of the partially ionized gas alone (Appendix II), However, the
conditions at X = 0 are dependent upon the properties of the wall.

In general, the solution to the problem for x > 0 requires

the solution of a similar problem for x < 0 with suitable matching

of the solutions at x = 0. Thus the '"boundary conditions' at

x = 0 are not prescribed a priori but are actually matching
conditions between two solutions. Because of the complexity of a
complete description {in general requiring quantum mechanical

computations) an inquiry is made to determine under what

circumstances approximate matching conditions can be written
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in the form of a priori boundary conditions. Von Laue,
Schotfcky and others (as summarized by Fowler (Ref. 8) ) have
effected an approximate matching of the thermodynamicé of
the two regions for the case of a plasma in isothermal equilibrium
with a metallic container. This results in an explicit condition
on electron density at x = 0 (cf. below). Langmuir (Ref. 13) has
patched together several subregions in a more detailed analysis
of a neutral two component equilibrium plasma. The (statistical)
equilibrium discussed here is the same as that encountered in
any problem where pressure forces balance other non-dissipative
forces (inertial, gravitational or electrostatic) in an isothermal
enclosure (e.g. an isothermal atmosphere). The temperature
is uniform throughout but not necessarily other properties such
as density and entropy.

For the time dependent (non-equilibrium}) two component
plasma we follow Fowler's point of view, As seen in appendix IV,
thermodynamic equilibrium for the electrons is a very important
limiting case. This is not surprising since the equations for
the gas mixture as written are valid for small fields, i.e.
small departures from equilibrium. However, the non-
equilibrium behavior of the ions distinguishes this problem
from those above, and will be discussed in detail.

From the discussion below, it is apparent that the properties
of a conducting wall (e.g. very narrow induced charge sheets)
lend themselves to representation as explicit boundary conditions
at x = 0. Thus for simplicity the discussion will be restricted

to the particular case of a metallic wall,
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The thermodynamic system representing this problem
(Fig. 3) is divided into two bulk phases (which will be called
the "metal phase' and the '"gas phase'') separated by a ihir_d
phase, the "surface phase'., The gas phase represents the
region occupied by the partially ionized gas (x > 0}, the
metal phase (x { 0) is the wall which bounds the gas phase and
the region in which the properties of the system undergo a
continuous transition from metal to gas phase is the surface
phase.

In this appendix the properties of the metal and surface
phases will be discussed in detail with the idea of fixing boundary

conditions for use in the analysis of the gas phase.

III. 2 The Metal Phase

It is sufficient here to use the elementary free electron
theory of metals in which the metal consists of a crystalline
structure with an average of one electron per atom perfectly
free to move about. The ions are fixed and their positive charge
is assumed constant and uniform (i.e. the crystal is structureless).
The electrons are treated quantum mechanically as an ensemble of
free particles with half integral spin, therefore subject to the
condition that the wave function of the ensemble be antisymmetric
with respect to interchange of space and spin coordinates of any
two electrons (Pauli Exclusion Principle). This results in
Fermi Dirac Statistics., From these statistics the thermo-
dynamic properties of the metal may be derived. For example

the chemical potential M of the electrons is computed to be
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(Ref. 8)

ME e o (I11. 1)

where ¢ is the work function of the metal in volts. This

is different than the chemical potential for electrons comprising
1

2 S
a classical perfect gas (e /4w &, n 3 L kT in formula IIL. 3
below),

nh3
e

= kT | III. 2
M n 2om K 372 ( )

We now make some qualitative arguments to deduce
some of the well-known properties of metals, establishing a
point of view useful for the subsequent discussion of boundary

conditions.

HII.2.1. Electronic emission., The difference in

statistics between the metal phase and gas phase creates a

situation very analogous to evaporation in a system of two phases

in contact (condensed and vapor). The most important characteristic
of the electron ensemble in a metal is its high number density,

n_ n 102'9 M_3. Real gas effects (e.g. condensation) can be
expected in any charged gas when conditions are such that the inter-

particle (coulomb) potential energy is larger than or equal to the

thermal energy,

ez 4w £, kT 3
. Y .
o e A )
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At room temperature nr.g.N 1022 M"3 <« n_. Thus the
electrons in the metal are, classically speaking, a condensed
phase., (On the other hand, a typical electron density inlthe.ﬁ
phase is n, ™ 1015 M"3 (c.f. Table I) therefore constituting
a classical perfect gas.)

For small fields (E (0) £ 108 V/M) the "evaporation
from this condensed phase is thermionic emission. Relations
describing it may be derived by considering the condensed and
vapor phases (the metal and electron atmosphere) in isothermal
équilibrium at a temperature T = Too' However, there are
other components in the system which may not be in equilibrium,
such as the metal ions which are assumed fixed and therefore not

evaporating. Such a partial equilibrium for two bulk phases in

contact is known as contact equilibrium (Ref. 14, p. 338). It

is treated by requiring the free enthalpy (chemical potential) of
each component that is in equilibrium to be the same in both phases.
For the electron atmosphere, where in general the density and
therefore the free enthalpy varies within the gas phase (Eq. III, 2)
the free enthalpy must be continuous at the interface (matching
condition for equilibrium). Equating equations III. 1 and III, 2

at the interface gives

S

e

nooo.
7, @)= 2(212’”'[{7:") e # (equilibrium)  (IIL.4)

|

§d
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Setting e ¢/k Too = ¢* and a, = 4w£,h2/me ez = 5x10-11M.

(the first Bohr radius) and using further definitions from

equations II. 19 results in

hN 3 *
n(0) = 4\2n_ x300 (_:i> e ¢ (equilibrium)  IIL 4a)
0

This is the explicit boundary condition mentioned in section
II1. 1 for the case of‘steady state thermodynamic equilibrium.
The density of the electrons at the wall is a function only of
the temperature and the work function of the wall material.

The thermionic current, defined as the current which
would be measured if the electrons emitted by the wall were
drawn to a collector by an electric field, can be computed from
equilibrium considerations so long as it can be assumed that

the flux from the wall is the same with or without the equilibrium

electron atmosphere. - For equilibrium the flux from the wall
is equal to the flux to the wall. The flux to the wall from the
atmosphere can be computed from the simple free path theory

for diffusion: The flux per unit area from the right across any
plane, say x = 0 in figure 3, is equal to ne(x =A) 38/4
where the density n, is evaluated one electron mean free path
(A) away from the plane. If the plane x = 0 is situated in a bulk
phase there is also a flux from the left equal to ne(x =-A) Ee/‘}.

The net flux to the right is

C

F, (x:O):Te (n, (x=-A) -n_(x =A)) (I1L. 5)
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The right hand side can be expanded in a Taylor series around

2
9 n on
x = 0 and, if A i e {< 1, then
2
ax ox

A_é-e' Bne)
Fe(x=0)=-2 ox x =0

On the other hand, if the plane x = 0 is at the edge of a bulk

phase as with the isothermal electron atmosphere, the flux from

the gas will simply be given by

F (x =10 = -2 ne(X=A)

Once again expanding around x = 0, this expression becomes,

2 n
providing [} —= n <L 1,
ox e

0
I
e
1
1
Mo !
[¢]

5

)
i

e

Note that for n, (x = 0) =0 expression IIl. 6 must be used.

% A

Non-dimensionalizing as above and taking (D__)
en’ oo 3

gives

A
00

3
? Aw

F’é‘g (0) = - n (0) (equilibrium)

The flux from the wall (thermionic emission} is given by

equations III. 6, 6a, 6b.

(IL1. 5a)

(II1. 6)

(IIL. 6a)

(II1. 6b)
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When the temperature of an emitter is very low and
thermionic emission is correspondingly low, excitation of
metal electrons by external energy sources and subsequént .
emission may be the rate determining process. For radiation
impinging on the wall with energy larger than ¢, the work
function, the emission process is the photoelectric effect. If
the flux of such photons to unit area of the surface is much larger
than the thermionic current, photoelectric current will be important.
This process is discussed in reference 8, p. 546 and reference 15.
Another external source of energy is provided when particles collide
with the surface. Particles with energies larger than the work
function can be expected to cause electron emission.

The early investigators (e.g. Ref. 13) were interested in
hot emitting cathodes so the "evaporation' formulas IIL. 4 were
applicable. However, for a cold wall, it is expected that one of

the latter processes might be important (sec. IV. 3).

1I1. 2. 2, Induced charge sheets., It is well known from

Maxweil's equations that an electric field within a uniform

conductor tends to a uniform value E = j/ @ , any perturbations
thereof decaying with a characteristic time T = Ee/d'(Ref. 12, p.23).
Thus, in electrostatics, E = 0 everywhere inside the conductor
and, from equation II.4 also @ = 0, If there is a net charge in the
conductor it must lie on the surface., The integral of equation II,4
across the surface gives the jump in field from zero inside to

E (x = 0) just outside

[E] = E(0) = ?s (II1. 7)
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where Wg is the surface charge per unit area.

The actual (finite)thickness of the layer of charge near
the surface can be estimated by evaluating the characteristic length
of equation II. 4 rewritten in terms of the potential V (8V/8x = - E)
where V is taken equal to the average energy of electrons within
the metal(vm ~ 5 volts). This defines a "Debye length" for a

metal,

e n
m

— \1
N = (__..___f" Vm) ‘ (IIL. 8)
m

L] 2 s -
Taking n = 10 9 leads to )”m = 5x10 H M. Thus the

thickness of the charge sheet and the time required to form this
éheet under any given circumstances (T ~ 10.19 sec.) are much
shorter than any lengths and times characteristic of the processes
in the gaseous phase (from Eqgs. II. 19 and Table I typically

> M, 'Z’ ~ 10”9 S at room temperature).

A o~ 107
o
A test of the consistency of this result is to determine

from equation III. 7 whether the removal, say, of all the electrons

from the volume 1 m2 X Km atx = 0, leaving the ions fixed
with a net charge of W5 = en 7\m, gives reasonable jumps
in fields.,

en X\

E(0) = 2 1 = 10f v/Mm
=]
In the gas phase we expect the absolute value of the non-dimensional
electric field (defined in eq. II. 19) to be no larger than 10 at large

time (c.f. eq. IV.6);



e[E[x
}E*} = O 10 (III. 10)
kT

so that, taking room temperature and km = 2x 10-5 M

.3

4 yviM

/E (0) / ~ 10

The fact that any electrostatic response of the metal
will appear as a charge sheet on the surface (i.e. in the surface
phase) suggests that for the purposes of the analysis of the gas
phase it is sufficient to represent it as a delta function at x = 0.
In other words the electrostatic behavior of the conductor can be
represented as a condition at the boundary. It can be borne in
mind that, for our application, the delta function actually
represents a net volume charge concentration () that is an
extremely small perturbation on the total electron charge density
(enm); w /<-31’1m ~ 10_7. This fact supports the conclusion mentioned
in section IIL. 2. 1 that reasonable fields have little effect on thermionic
emission, the calculation of which assumes uniform electron density
n_ within the metal,

In summary, the metal phase will be considered to consist
of a uniform distribution of free electrons with the properties
deduced above, and the thin charge sheets that are induced by

external fields will be considered as part of the surface phase.
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III.3 The Surface Phase

The two most important features of the surface phase are
charge sheets and recombination of electrons with gas ions,
Recombination dépends to a certain extent on thé nature of the
charge sheet. This point will be illustrated qualitatively in
this section.

The sign of the charge sheet will depend on the relation
between the initial conditions and the ultimate condition of
equilibrium. For example, if the initial electron density (nm)
is larger than the equilibrium density n_ (0) then initially
there will be a larger flux of electrons to the wall than from it.
The surface will take on a negative charge Ws equal and
opposite to the integral over all =x of the net positive charge
remaining in the gas phase (conservation of charge). (The con-
tribution of ion flux to the wall can, to a first approximation, be
neglected (compare eqs. IV.5) unless n (0) Y1 and N (0) <<1.)
This situation can be called the "cold wall" (n (0) {1 as given by
eq. IIl.4a). For the "hot wall" (n (0) > 1) the initial flux of
electrons to the wall is less than from the wall. This leaves a
net negative charge in the gas and a positive sheet of equal

magnitude on the wall.

III.3.1. The cold wall. =n (0) <1 occurs in the shock tube

experiments under consideration. If complete equilibrium were
possible the charge distribution would satisfy equation II. 33 for
n (0) <1 (Fig. 15). In this case v, < 0 and thereforeN (0) > 1.
However, in the actual caée recombination takes place at the wall,

The wall therefore acts as a sink of ions and it necessarily follows
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that N (0) € 1, precluding ionic equilibrium. Recombination is,
for the cold wall, decisively important.

The nature of the ion sink can be seen qualitatively from
the properties of a metal wall outlined in section III. 2, 2. The
surface phase is defined as the region containing the interface
between gas and metal and is shown to contain a total net charge
equal and opposite to the total net charge in the gas. If an ion
enters the surface phase, the gas phase loses and the surface phase
gains one plus charge. Once the ion is part of the surface phase,
the relaxation time for attainment of the equilibrium appropriate to
the new situation is T ~ 10_19 seconds. The ion ''changes its
idenfity” within 10-.19 seconds. For the cold wall (electron sheet)

the ion becomes a loss of one electron from the sheet within this

time, i.e. for all practical purposes it ""recombines'. Stated from
another point of view, the probability that an electron will be at the
point of impact of any ion colliding with the wall is unity (averaged

over time intervals larger than T). It is impossible for there to be

an accumulation of ions on the surface if there is an electron sheet.

Not only does the metal wall comprise a massive third body for
adsorbing the heat of recombination but it acts as an infinite source
of electrons. The rate of recombination can be taken as the small
but finite rate of loss of ions from the gas to the wall. To the extent
that the free electron theory of metals applies to a wall material,

a cold wall is perfectly catalytic to ion electron recombination.

IT1, 3. 2. The hot wall, This is the case originally studied

(e.g. Ref. 13) with reference to the behavior of heated cathodes

(esp. cesiated tungsten) in vacuum tubes. For equilibrium
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n(0) >1 and N (0)< 1. There is a net negati{re charge in the gas
phase (due to large emission from the walls) and an equal positive
sheet at x = 0. The sheet would be expected to consist oif both a
net excess of fixed metal ions and a number of gas ions that have
become part of the surface phase (adsorbed). It is plausible that
the paucity of electrons at x = 0 and the adsorbed ion sheet could
affect recombination or at least negate its effect to the extent that

there could be a finite flux of ions from the wall equal to the flux

to the wall, thus achieving complete isothermal equilibrium
We are not interested in the details of this case but merely
wish to point out how the same model could lead to fundamentally

different results for the cold wall and hot wall. -
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APPENDIX IV

CHARGE DIFFUSION IN A SLIGHTLY IONIZED GAS

IV.1 Introduction

For the purpose of describing the experiments in the shock
tube, the results of the general definitions and discussion in
appendices II and III are now applied to the case of a slightly ionized
gas. The qualitative properties of the equations and boundary
conditions for the gas phase are exhibited. They serve to define
and clarify the approximations implied by some of the common
ideas about the diffusion (e.g. that the ions 'pull along' the electrons,
. L
constituting "ambipolar'' diffusion).

As stated in section IL. 2, 2, the energy equation of equations
II. 28 can be solved immediately (assuming Kn < 'I?; by reducing it to
incompressible form with the Howarth transformation {Ref. 7). This
determines T¥ and n* as functions of x™and t,-x and therefore
also Den (x’,‘ f’i The remaining unknowns are N, n and E_)é as
determined by the three remaining equations. The solution exhibited
in reference 7 is approximately locally incompressible. That is, the
heat transfer at any point is approximately given by the solution to
the simple heat equation with constant diffusivity given for local
conditions. In particular, near the wall or far out in the gas where
the temperature and density are specified by the boundary conditions,
this approximation can be used. Using this idea, the equations for

incompressible diffusion (II. 29) are assumed to be a sufficiently
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accurate description near the wall if local temperature and density
are used. Using the usual shock tube terminology in which ( )5
refers to conditions behind the reflected shock wave, the reference

quantities (eq. II. 19) become

00 1
T
- 5
o © M5 T,
"o = U5
kT \2
X _ 1
oo |7 2
e n
5
TS 3
A . h
((Den)oo based on T1 and g T1 etc,) The order of

magnitude of these quantities is exhibited in Table 1. Note that for
computing, say, the fluxes of charged particles near the wall, one
uses transport parameters evaluated at room temperature. These

quantities are, of course, well known, in contrast to those for
T~ 10, 000°K.
From Table I it is seen that the characteristic time
7Y (eq. 1.19) wv 10_9 seconds. On the other hand, in the shock
tube a typical unit of time is 10/{ secs. Thus our main interest
centers around large time, i.e. t¥=0 (%) or larger. The

equations II. 29 will be discussed first for small time and then for

large.
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IV. 2 Diffusion for time t* = O (1)

The boundary conditions for small time are not known
a priori and the discussion of appendix III is of little use since
it is largely for equilibrium. From section III. 3.1, however, we
do know that for the cold wall n (0), N (0) < 1. Customarily the

approximation is made that

n(0) = N(0 = 0 (IV. 1)

This assumption is used here to illustrate its implications.

A qualitative argument is first made to illustrate the
features of diffusion for small time and then an expansion
procedure is indicated which can be used to make a more
thorough analysis. Equations Il. 29 are non-linear partial
differential equations with a small pargmeter D multiplying
a highest order derivative, so that the expansion procedure will
involve singular perturbations.

‘The small parameter D is the manifestation of the fact
that ions diffuse much more slowly than electrons. The most
important feature of the equations for small time is that initially
E* = 0, and the electrons and ions tend to diffuse independently.
For a cold wall the large electron flux to the wall leaves a net
plus charge in the gas. From equation II, 27 E;:*‘ < 0 so the field
grows negatively. It exerts a force on the electrons away from
the wall and on the ions toward the wall. However, to the extent
that the approximate boundary condition n (0) = N (0) = 0 is correct,

~this force does not affect the fluxes at x* = 0, Thé particles (at
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least approximately) diffuse independently at x* = 0 and the
flux to the wall and the electric field at the wall (E* (0)) are
given by neglecting the body force terms. It is instructive to

write down the relations for these quantities.

Nt* - DNX*X* = 0; N(0) =0, N(oo) = 1
(IV. 2)
XK
N = erf —m———
Z\IDt*
Ny nx*x* 0; n(0) = 0, n{(w) =1
(IV. 3)
%
n = erf X
2 Jt*
E*x* = N-n
(IV.4)
. x¥ . X%
E*¥ = 2 JDt* ierfc ——m—m— - ZJF*? ierfc
2 |Dt* 2 ¥
_ o)
where ierfc x¥ = erfc £ dE , erfc x¥* = 1 - erf x*
1 **

and ieric (0) = J_TF—-——- . Therefore



70

1 |D
F¥ (0) = -DN_,(0) = - FT’J;"‘
PO = () = -t [T
e % = | t% (IV. 5)
& 2 B3
BX(0) & - £ |t

The field at the wall builds up with the square root of time and
will continue to do so if n (0) = N (0) = 0. In particular, for large
time

= 0(—1-D>%E* (0) = -o(d.,lﬁ} ~ o210 (IV. 6)

It is evident that, in fact, the field can not continue to increase

indefinitely. The only way to stop the increase of the field E* (0)

is to relax the boundary condition III. 1, The understanding of the

diffusion process for large time depends on obtaining a more
accurate boundary condition at x* = 0, even though the condition
IV. 1 may be sufficient for small enough time.

A similar discussion applies for the solution at large
distances from the wall. Since E* () = 0 the particles also
diffuse independently out near the edge of the advancing diffusion
layer. Of course, as specified in section IV. 1, the reference
quantities (eq. II. 19) are evaluated at conditions in the hot
shocked gas. The first thing that happens at any large x* is
that the electrons start diffusing at t*w%’i . This serves to
produce the field E *which couples the two diffusion processes,

As seen by equation IV, 4, the field attains a significant value at
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2

t*NL . This point is completely missed in the "ambipolar

4
diffusion" approximation of section II. 4.

IV.2.1.. Expansion procedure for small time. The-

equations II. 29 can be expanded in terms of the small parameter D
fo_r times small enough that IV. 1 is valid. A boundary layer type
solution for the ions will result, The first approximation for the
outer solution is given by equations II. 29 with D = 0,

Nt*=0;N=1

while the first approximation to the inner solution is given by
sk

D

stretching the x-coordinate &= ) in the equations and

then setting D = 0,

N 'Nru = 0

t* XX
This is the same as equation IV, 2 so the ions are, to a first

approximation diffusing independently. From these considerations

we try the composite expansion

. o . * i . ‘
N(x*, t%) = 1 #[D Nj(x*, t¥) +... -erfc ’X 1 +/D Nl1 (x*, t*)+, . .| (IV. 7)
2|Dt*

)o,i

where ( refers to outer and inner respectively., Similarly,

o o x¥ i
n = n +J§ n, + ... - erfc [1+\]—ﬁnl+...;]

2|Dt*
(IV.8)
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Substituting these expansions into equation II. 29 and boundary

conditions IV. 1l and equating terms of equal order gives

1+J5 Nli +]

N = 1+DN2° +... - erfc

2{De*

23 2 i
n=n" + Dn10+...-erfc x D3/ n31+... (IV.9)
°© 2Dt

o o) o X% i
E¥ = E +EE +DE, +... -erfc [—2\’Dt*+DE LT
° 1 2 2|Dtx 2

where

1) Eo"t* - B e EOO (1 E0°X*) = 0; Eoo(oo) = 0, EOOX(O) = 1

2)n % = 1 - E0°X*

3) By By gk T By B - B0 =05 B %(00) = 0 E;°_(0) = 0

9n° = -E°,

5) Ny g = "By N, (0) = 0

6) E,° o= N,° - n,°; E,° (00) =0 (IV. 10)

7 Nlit* = 23—@ E_oo’ N1i (0) = 0

8) EZi = 2 JtF Nli

9) Nzit* = no° - EOOX* - zlﬁ_* (E,° + NliEo +2 Nlix*); NZi(O) = N,(0)
) 3z

10) nt = 2% 0
3 o]
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The solution to the non-linear equation 1) is the key to
the completion of the expansion IV, 9. All subsequent equations
are, at worst, linear with variable coefficients, Equatic;ns 1) and
2) can be called the 'frozen ion approximation' since they are
obtained from equations II. 29 by setting D = 0. The solution is
pursued no further here. It is simply pointed out that a numerical
integration of equations 1) to 10) would of course yield a solution
for small time to whatever accuracy desired,providing the accuracy

of IV.1 were no worse,

IV.3 Diffusion for large time

The properties of equations II. 29 for large time can be
exhibited by shrinking the time coordinate t* by the small
parameter D; T = Dt*, The equations then become

Nrtv = Nx*x* - (NE)X*

Dn{ = D + (nE)X>== (IV.11)
Ex* = N-n

This stretching is non-uniform for large x% since by
equation IV, 2 .f.f. large x* corresponds to small time.

The first striking fact to be noticed is that the small
parameter D now appears in such a way that there is no

singular perturbation. There is no longer a boundary layer

of ion diffusion. Both electron and ion diffusion are of the

same order,
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The zeroth order approximation (D = 0} to these
equations demonstrates the true meaning of the statement

of section III, 1 that the ions ''pull along' the electrons. In

this case the electron equation can be integrated as in section

II. 3 to give

~
%k 5k
n (x*, ’i:/) eV (=%, t)

To a first approximation the electrons are in isothermal

equilibrium at each instant of time. This is the direct result

of the tendency of the electrons to diffuse faster than the ions.
In a coordinate system in which the ion diffusion is of O (1), the
electrox_ls appear to be in equilibrium at every instant. Equation
IV. 12 states that the electrons are ''pulled along' by the field

which, in turn, is caused by both electronic and ionic diffusion.

It is immediately seen that the assumption that n = N in

section II. 4 for ambipolar diffusion is much stronger than this

statement,

The transformed continuity equation for electrons is

~+F* = 0
Dnt exw

so that the zeroth approximation gives F*e = 0. There is
approximate equilibrium between pressure and body forces
resulting in zero net flux, More precisely F*e = O (D)

sk
and n = eV + O (D).

The complete expansion of equations IV, 1l in terms of

(IV.12)

(IV.13)
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D vyields little more information than that exhibited by the first
approximation, because the equations remain non-linear to all

approximations.

IV.3.1, Boundary conditions., Since the electrons are in

equilibrium to order D, boundary conditions derived from
equilibrium considerations, (section III. 2. 1) will be applicable
to order D, If it is assumed that thermionic emission is the
major source of electron flux from the wall, equationlIl. 4a

sets the boundary condition;

. 3 o0 "4)*
= A —
n (0) 4\2 1o ( 2, ) e (IV.14)
or, using equationIV.12
)
VxR - <¢* - In 4y2n N . ) (IV.15)
Using the representative values from Table I and taking ¢ = 4.0V
leads ton (0)v 2 x 1077 4+ o (D) and V¥ %= -130 + O (In D).

Evidently there is some other emission process which will give
larger n(0) and therefore a more realistic boundary condition, but
this extreme case serves to illustrate that practically any process
will give a number density n (0) less than O (D), the inherent
inaccuracy of the method, This leads to a voltage quite
‘insensitive to the error. For example, even in this case where

n (0) is fantastically small, the voltage at the wall is only V (0) =

- 3.4 V. The reason for this insensitivity is easily seen to be
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due to the Boltzmann factor which enters all formulae such as
IV. 14 and IV. 12 and which contains the temperature. For room
temperature this multiplies the voltages in the expon‘entials_ by
39 causing these terms to be the determining factors for orders
of magnitude.

In actual fact, the major source of electrons at the wall is
probably photoemission by radiation from the ionizing gas. In
the initial stages of ionization it will be largely resonance
radiation, The number of excitations per unit volume and time
can be estimated from reference 9, equation 11, The radiation
emitted by these excited atoms must pass through a cold dense
layer of thickness §_ = J_w_—%__r_ \[v—S_t (Eq. 2) in which the

5
radiation decays as exf( 55) where L is the mean free path for

L
radiation. It is assumed that the photons are emitted from a volume of
one unit area cross section and one radiation free path thick.

Thus for Fp, the flux of photons striking unit area of the

wall, we have

2 — [ eb -ef '55
F_= Lng S,¢ ( +1>e'1€T" e L (IV. 16)

p * o kT

where S, is the cross section for excitation, En the mean
thermal velocity of atoms in the hot gas, and 6 the energy

of the first excited state. From Table I and reference 9 we take

My = leOZZ c = 2X103 S, = 10—21, p = 11.5 V.,
] n ] F 3

— = .83 V., 55 = leO“3 and L = 10—4, the value in

the hot gas. This maximum value for L will give a maximum value of

Fp. The result is Fp = 2x 109. If each of these photons produces an
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electron on impact, equilibrium will be established when the Maxwell
Boltzmann flux of electrons to the wall from the gas equals this
photoelectric flux, i.e. when n (0} = 2 x 10—16. The x}olta,ge Vo*
appropriate to this is .Vg = -360r V(0) = -, 93 volts,

Both processes discussed here have resulted in n (0) <K O(D)
and V (0) = O (l). Thus, to a first approximation (and, in fact for

all approximations up to at least O (D6) } there is little to choose

from between these boundary conditions. In essence, the boundary

condition n (0) = 0 has been relaxed only so far as required to

maintain V (0)

O (1), but may still be used to a good approximation

when computing fluxes,

It still remains to determine the boundary condition N (0)
which in section IIL. 3. 1 was established to be N (0) € 1. Itis
evident that, because of the large ion mass, the ion diffusion is
not greatly perturbed at large time though electron diffusion is
(compare eq. II. 35 for ambipolar diffusion with eq. IV, 2 for free
diffusion). Thus it seems that a valid approximation would still be
N (0) = 0. With this boundary condition, free diffusion occurs

near the wall just as for small time, From equation IV.5

Fai(o):-:__i_ D

N e
T
so that for t¥ = 5 F’i {(0) = O (D), the same order as F’g.
The electron flux has been reduced from O (1) for small time
to O (D) for large time while the ion flux has reduced naturally

from O (\rﬁ) to O (D).

Since Fg (0) ~Ff‘(0) = O (D) then, from equation II, 27,
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Et* (0) = O (D), a result consistent with equations IV. 14 and IV. 15
which are independent of time, The value of the electric field is
given by equation IV.6. .

There is, in principle, a composite expansion equivalent
to equation IV.9 which would match the "inner' solution of equation
'II. 29 for small time with the ''outer' solution of equation IV.11 for
large time. However, a set of boundary conditions applicable for all
time must be expanded and used to obtain the composite solution
as was done in section IV, 2,1, It is the main point of section
III. 1 that these complete boundary conditions are not known a priori
and that, in fact, they have only been estimated for equilibrium
with a metallic wall. Thus, it is felt that the approximate results
exhibited in 1v!:his section go as far as current knowledge allows and
that the next step lies in a better understanding of general matching
conditions at the interface between the wall and partially ionized gas.

It goes without saying that this limitation will arise any
time there is an ionized gas in the neighborhood of a hot or cold
wall whether or not there are other body forces or convective
velocities to further complicate the equations.

The following conclusions about the diffusion process for
large times can be made: 1) From the result II. 33 for equilibrium
and the demonstration in section IV. 2 that the field near the wall
is very sensitive to the boundary condition, it is concluded that
the space charge effects for x*¥ {1 (x <)\OO) are largely due
to the presence and properties of the wall. The ambipolar diffusion
approximation misses this point by maintaining the boundary

conditions IV.1 thus causing the field to become arbitrarily large
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near x = 0 to maintain finite fluxes (eq. IL.36). On the other hand,

the ambipolar diffusion result for the fluxes is consistent with the

order of magnitude result of this section. However, it c;an not be
established that equation II, 37 is a better approximation than the
even simpler computation IV.5 (F’i‘3 (0} rv F";’ (0) = \}———:;_— E’,;)-

2) The free diffusion result for large =x*and the approximation
in this section for boundary conditions at large time indicate that
the conditions IV.1 can be used in an approximate description of
the space charge field for x* >> 1 resulting from the difference in
fluxes between electrons and ions, For x* >>1 the space charge
effects are quite independent of the properties of the wall material,
This is the idea behind the ambipolar diffusion approximation, but
its strong assumption masks the "precursor' signal due to free
electron diffusion (eq. IV.3) which causes a field of order 1 at

xX¥ X% . .
= 1 rather than at ————— = 1 as predicted by

2{t* 2 |2 Do*

equation II. 35,
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APPENDIX V

THE ROLE OF DIFFUSION AND IONIZATION IN THE SAMPLING

EXPERIMENT

V.1l Introduction

In this appendix the experiments which were carried out to
determine the utility of a molecular beam sampling device in the
study of low density shock tube flows are described. The sampling
consists of the extraction of a beam of particles from the shock tube
through a small hole, similar to the way a standard molecular beam
is drawn from a gaseous source, In the case of a steady molecular
beam, if the process by which the beam is extracted is understood
(i. e. Knudsen flow) then measured properties of the beam (e.g.
velocity distribution) provide information on the properties of the
gas in the source. The same is true in the case of the shock tube
sampling device where the conditions in the ''source' are functions
of time.

The large amount of information that can be obtained from the
study of directed beams of particles (as contrasted to material in bulk)
has been proven by the many beam techniques used today in physics
such as mass spectroscopy, nuclea‘r resonance studies, etc. A
particularly alluring property of directed beams for shock tube
studies is that the molecules in the beam do not collide with one
another after passing through the hole, Thus, any chemical reaction
which takes place upstream of the hole is frozen into the beam and can

be studied at leisure downstream. {This statement must be modified
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for effusing charged particles where long range forces act and
"collisions' do, in fact, occur.)

A most important point arises with the shock heated molecular
beam source concerning the actual nature of the "sour\ce”. For the
case in which the hole diameter is much smaller than the mean free
path of gas particles just upstream of the hole (Knudsen flow), the
sampling is, on the average, from a region about one mean free path
away from the hole. This fact becomes important if the properties of
the gas are functions of distance from the hole as, for example, in
any isothermal atmosphere where body forces (i.e.gravitational or
centrifugal) are applied or in the shock tube where the wall is much
colder than the shock heated gas.

In the latter case a thermal layer grows parabolically in time
after the shock reflects from the end wall (secs. II. 1 and VI.1). The
gas is cooler and more dense near the wall than far away. The
thermal layer grows to one mean free path thickness in one mean
molecular collision time after reflection. (The collision time is also
the characteristic time for the shock reflection process, so for times

less than the mean collision time the shock reflection and the thermal

layer growth are intermingled.) For times much larger than the mean
collision time (the case for the present experiments) the reflected
shock is far away from the wall and the thermal layer has a well-
defined thickness of many mean free paths. Since a molecular beam
effusing through a hole which is much smaller than the mean free path
near the hole effectively samples the gas from a region one free path

from the hole, the "source' of the beam in the shock tube experiments

is necessarily inside the cool, dense thermal layer. The thermal
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layer therefore plays an important role in the interpretation of the
properties of the effusing beam. This was first pointed out to the
author by Dr. A. Thomson and is discussed in section V., 2.

The main experimental difficulty lies in the detection of the
particles and the measurement of the desired properties, Since
the measurement of an electric current is one of the easiest and
most flexible measurements possible, it was decided that the
experiment to test the utility of the sampling device should simply
consist of the measurement of the flux of charged particles through
the hole, By this choice the experiment becomes a study of a
chemical reaction; namely, the ionization of argon behind a
reflected shock wave. Actually, the flux of ions and electrons
through the hole depends on two processes: 1) their rate of pro-
duction behind the shock wave, and 2) the manner in which they
diffuse through the growing thermal layer. Neither of these
processes is well understood at this time, so unambiguous con-
clusions from the experiment regarding one of them are impossible.
Howevér, as a result of the detailed investigation of the diffusion
of charged particles in appendices II, III and IV, a reasonably sound
model for the manner in which the particles get from the shock
heated gas to the collecting electrodes downstream of the hole can
be formulated and used to provide information about the ionization
process. This model and the ionization process are discussed in

the next two sections,

V.2 The Effusion of Charged Particles from a Shock Heated Gas

We are concerned here with the case in which the amount of
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material withdrawn from the source is so small that none of the gas
upstream of the orifice is disturbed. The thermal layer forms as if
there were no hole. In the case of a very large orifice or nozzle such
as the customary shock tunnel in which continuum flow exists, the
region near the nozzle is of course greatly affected by its presence.

In this section the model for the small orifice is discussed and com-
pared with the large orifice case when the flow in both is expanded to
zero density, i.e. to a directed beam in which particles do not collide.
Finally, the nature of the actual experiments, which fall between the
two limiting cases, is discussed.

Appendices 1I, III and IV outline the details of the diffusion of
charged particles from a region in which the number density of electrons
and ions is a prescribed constant n to a cold wall, It is éoncluded
that the flux of the particles to the wall can be approximated by the
result of the ambipolar diffusion assumption (Sec. II.4) which written

in dimensional notation is

n. =n =n_ erf ————— (V.1)
i e 00 r‘ )
2 5
ZDint
ZDin
F(x=0) = -n (V.2)
O\ axt

where Din is the ionic diffusion coefficient evaluated at wall
conditions (Sec. IV.1). Since in this approximation the equations
are linear, the solution V.1l can be used as the fundamental solution
to a small impulsive jump dnco(;) in the number density at infinity

at time t = t with boundary conditions n, (0) = n, {0y = o,
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X
2,[2 D, (t - %)

and the general solution can be obtained by summing up all funda-

+-
= dnoo(t) erf (V.3)

% Fund.

mental solutions,

It

(x, t) td({t* f %
n, (x, Onm)er——

22 D, [t - E)

dt

t dnoo < +
+ erf “———‘—-——:
o dt z\IZD. (t - t)
in

For the purpose of evaluating the integral we assume that the number

density noo(t) obeys the law (eq. V. 15),
n (t) =a(n T) t°
ot =21

so that

t
n, = asf -l oy X att (V. 4)
[s]

22 D, (t - )

and that the error function can be apprxomated by

2 o
= £ ; 0<KE 5
erf £ = T 2

1 ; ‘rgéﬁ(oo

- . . . t
Then,defining a new variable of integration 5 = 1o
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X2
VDmt |
il [ ]
= "= 7 Dint
Yoo (2) ,‘7&; v1

(v. 5)

S e () W L 2(:,?, (ﬁf,:'f)'; Y [ / '&%7;;)21)*}1*3;[ /‘/ ’17%}&)5}]

1l

N eo(%)

For the solution near the wall, x /\/Dint 4L 1 and,

7. (x,¢) = 72, e
(x.t) = /)1/2 Dint 2u+/ G-rIlvr 0 = <<
Finally
F 8= D‘ (2’”_‘. = 7 ZD‘" (’) S—‘I
7 (68 = D 9")'_“0 70 @) 2u+1 T (V.6)

Equation V.6 gives the net flux of ions or electrons through
a thermal layer to the cool wall containing an ionizing gas. The
approximate boundary condition ne(x = 0) = ni(x = 0) = O implies

that there is no flux from the wall to the gas (i.e. the contribution

discussed in section IV. 3.1 is negligible), so the wall is a perfect
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sink to charged particles. Thus equation V.6 also gives the flux to
the wall. A hole in the wall will not perturb the fluxes because it, too,
is a perfect sink, providing it is small enough that a) the flux of
neutral particleé is so small that the thermal layer is not perturbed
(diameter of the hole much smaller than the mean free path in the

gas near the hole) and b) the perturbation of electric fields in the
plasma due to the removal of a portion of the constant potential wall

is small (diameter of the hole much smaller than the Debye length

in the gas near the hole);

dia. << /\-n
(V.7)

dia. << Mo

where /\,is the mean free path for neutrals and )\oo is the
Debye length (Eq. IL. 19) and where both are based on conditions
near the wall (Sec. IV, 1). Thus equation V.6 gives the flux of
ions through a small hole.
The flux of neutral particles through the hole is given by the
familiar Knudsen effusion formula based on conditions one mean free

path from the wall

F_(0) = 1 (Aa) &, (A

4
For A"?_"l n 441, which is the case for reasonable times, then
on

a Taylor series expansion leads to (cf. Egs. III. 6 and III 6a)
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1 (0) c_ (0)
F (0) = — O {V.8)
n 4

It is evident from V. 8 that all particles that effuse through
a small hole in the shock tube are first cooled to room temperature
in the thermal layer. As a result, the effusing beam has a mean
kinetic energy of about 1/40 e.v. This situation can be compared
with the case in which a nozzle is used to expand to a free molecular
beam, where the throat diameter d* is much larger than the mean

free path in the stagnation chamber Ano ,

ax >> A, (V.9)

The flow in the nozzle is accelerated to much higher energies (of
the order of the thermal energy in the stagnation chamber) before
dissipative effects start to convert this kinetic energy back into
thermal energy. The point at which most of the kinetic energy of the
flow has been thermalized can be characterized in boundary layer
terminology as the point at which the boundary layer has ''filled" the
nozzle. (For a cool conducting nozzle, as in the shock tube, this is
also the point at which a significant fraction of the energy of the

gas has been transferred to the wall.) A comparison of the point
xg at which the boundary layer thickness 8§ equals d, the
diameter of the nozzle, with the point x, at which the mean free
path A = d will give a crude idea of whether or not a high energy
free molecular beam can be generated in a nozzle. This is, of

course, far over-stressing the boundary layer concept but should
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give results of order of magnitude accuracy. It also neglects the
thermalizing effect of any shocks that may exist in the flow.

For simplicity consider a power law nozzle, altﬁough the
same general results apply for any duct. Then d/d* =1 + (x/d=€<)n
where d¥* is the diameter at x = 0, the throat. Now the boundary
layer thickness is given by §~ J-}—;_/—-‘f: and the mean free path is
A~ —{—a_—_— .. The properties of state will be evaluated, for order
of maﬁgrfitude accuracy, at the wall where for a conducting wall the

temperature Tw is constant and the density

¥y Y+1
T 2Y ¥/2 Zy-1
_p _ o (d* ¥- 1 2
P = RT = P T :T) (—z——> (W)
W w

The isentropic area~-pressure relationship has been used in the last
term with the assumption that the static pressure p/po <41, An

equilvalent simplifying assumption that the velocity u has reached

its limiting value leads to
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Setting & = d gives

%(%) - /f:( > (Yﬁ) (y,»,j ’(4(‘,_> (V. 10)

and A = d leads to

v T+l

2%-1 +4 %/2 z -l
A J* 7\ (w) ( 2 >" ’
d* = A 7 2 ~+1 (V.11)

For x/d* >> 1 then -g—* = (E ) and

a=
(%) _ /- /. wy
<XA>" (2v-) T T LD (V. 12)

d
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If the nozzle is conical (n = 1) and ¥= 5/3, then for a typical

shock tube temperature ratio of To/Tw ~ 30, ¢ /%, ~8, For

A
nozzles with n <1 it will probably not be possible to get free
molecule flow before dissipative effects have become significant,
For n > 1, Xe /XA gets large, but in practice this advantage
would be offset by such effects as separation and shock formation.
In fact, in the limit n-—»o0 (a sharp edged orifice), most of the
entropy increase is due to shock waves.

In summary, in the expansion through a small orifice to a
free molecular beam, the gas is first cooled in the thermal layer and

then sampled from a region one mean free path from the wall, while

with a large nozzle the sample is drawn from the hot gas far away
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from the wall and later ''cooled' in the nozzle.

It can be seen from Table I that a typical experiment satisfies
neither conditions V.7 nor V.9, but lies somewhere between., In
this fact lies the major uncertainty in the interpretation of the
experiments. The interior of the thermal layer is evidently very
greatly perturbed by the mass flux through the hole, while toward
its outer edge the effect is quite small. This fact is further
discussed in section V.5, 2,

A process which has been neglected above is recombination
of electrons and ions within the thermal layer since no sink term
was included in the original continuity equations of appendix II.
(Recombination outside the thermal layer and at the wall can be
accounted for in the boundary conditions n and ni(O) respectively.)
An estimate of the relative importance of recombination rate is given
by comparing (Bnlat)R = k nm2 for recombination with Bnoo/8t

R

from equation V. 20,

(9n/8t) R _ SR %"
“Bn 0T T T 5 (V.13)
0
where kR, the recombination coefficient, is evaluated near the
wall, For the typical case in Table I, kp = 3x 10"13 (Ref. 16,
1 -
p. 141), n_ = 3.4x105andt =2x10530
(dn/9t)R ~ 10—2

on t
o0

For high pressures, say 150/4 » where n_ is as much as 15 times

larger and kR is larger, then recombination can have a large effect
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on the flux through the layer. This is in fact the case and is discussed
in section VI. 3.
As mentioned in section V.1l above, the flow of the electrons and

ions downstream of the orifice is not '""free molecular' because of

long range electrostatic forces. In fact, recombination will also occur
in this region because of the attractive forces. The low densities
insure that there will be no three body collisions, so the recombination
energy will be released radiatively. The possibility of this process

is eliminated in the present experiments by separating the charges

immediately after they effuse through the hole.

V.3 The Initial Stages of Ionization in Shock Heated Argon

The development of the ion density noo(t) upstream of the
hole is comprised of the initial stages of ionization in the shock heated
argon. This is indicated by comparing the expected equilibrium degree
of ionization of .0l for a typical run (Table I, item 16) with the observed
value of 10_7 at 20 microseconds as computed from equation V.6 using
figure 13 (Table I, item 20). Thus the experimental measurement of
ion current consists of a direct observation of a small portion of the
early stages of the relaxation process.

Previous investigators agree that the important ionizing reaction
in the approach to equilibrium results from inelastic collisions of
energetic electrons with atoms. The reaction rate is therefore
proportional to noMy the product of the electron density and atom
density (Eq. V.15). Since the initial conditions in the shock heated gas
are n_ = .0, some other reaction not involving electrons must initiate

the ionization process, P’etschek and Byron (Ref. 3) conclude that the
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electron-atom reaction is dominant for degrees of ionization o > 10—3
but that some atom-atom reaction which they can not specify must
account for the initial ionization,

A qualitative argument based on the properties of an electron-
atom reaction serves to confirm that the present experiments do not,
in fact, observe such a process, If it is agreed that the unit of time
t (20 « se.conds) for the present experiments is much smaller than

the time to reach equilibrium ionization t (.01 sec., Table I,

equil
item 18)J the exponential solution to equation V.15 can be approximated
n
as —I%o_ = 1 + t where n is some effective initial condition

o equil

resulting from the initiating process. Thus in an electron-atom
reaction the degree of ionization should increase linearly with time
with a very small slope. As described below, the observed noo(t)

is by no means linear. It is therefore concluded that an electron-atom
reaction is not observed and that the present experiments observe

a portion of the relaxation process in which only forward-going
atom-atom reactions are important,

There are two general points of view as to the nature of
these reactions. The one attributes the initial source of electrons
to the ionization of "impurities' and the other invokes a series of
argon-argon collisions, The term "impurity' here refers to a
substance which would ionize faster due to collisions with argon
atoms than argon itself, since otherwise the impurity process
would not be observable. Therefore an impurity is a substance
which has an ionization potential so much lower than argon's that,

despite the low impurity concentration, more impurity ions are
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produced than argon ions.

The first point of view receives its support from the result
reported by Petschek and Byron (Ref. 3, Fig. 15) that tile onset of
total illumination behind a shock as indicated by a drum camera
photograph is a function of impurity level. A somewhat more direct
means reported by Alpher and White (Ref. 10) also gave qualitative
dependence of relaxation time on impurity. (In both cases "Impurity"
is not defined as above, but refers to all non-argon gases.} It has
been inferred that impurity ionization is rate determining even though
it may contribute a small fraction of the total equilibrium ionization.
Thus the impurity reaction must be much slower than the final stage
electron-atom ionization process but much faster than any alternative
argon-argon initial ionization process.

The main proponent of the second point of view is Weymann
(Ref. 9) who proposes a two step argon-argon process. Though
this proposal does not account for the supposed dependence on impurity
level and is probably an over-simplification of the actual process, it
helps to fix ideas about some of the functional dependencies. For
example, the two step process consisting of the excitation of an argon
atom to the resonance state and the subsequent ionization of the excited

atom gives the result (Ref. 9, Eq. 14)

E E -E E
_ 3 _ 2.2 2(F« +~ B r(V.14)
o = 1/41100 Co S t(kT ' +1>(kT t1 St S v
00 00 0

— 2
where % is the mean atomic thermal velocity in the shock
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heated gas, S a mean cross section for the total process, E, the
energy of the excited state (11.5 volts) and E the ionization energy
(15. 76 volts).

Some general considerations in chemical kinetics illustrate
the significance of the functional dependencies in this equation. The
processes considered above such as impurity ionization, electron-

atom ionization and recombination are simultaneous reactions (i.e.

proceed simultaneously; c.f. Ref. 17, p. 1069). The initial stage

of ionization is defined as the part of the total process in which only

atom-atom forward-going reactions are important in the production
of electrons. The electrons are produced in either one reaction or a

series of consecutive reactions (Ref. 17, p. 1075). Any reaction

which depends on the collision of two particles is a second order

reaction since the rate depends on the product of two densities.
The rate equation portrays the nature of a process as follows:
Consider a single second order reaction between species o

and P producing ionized 4 . Then

o(-i—ﬁ—-—lf—— AT +pte

and the rate equation is

-2 K1 (V. 15)
TlC.D

where n_ and nﬁ are the number densities of the reacting
components, k is the rate constant and "o the initial total

number density. The inequality states that equation V. 15 is valid
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for the initial stages where m_ is essentially constant. The main
feature of the rate constant is its familiar Arrhenius temperature

behavior exp - Ea/k T where Ea is the activation energy for the

reaction. Multiplying this Boltzmann factor is a weaker function
of temperature often expressed in terms of a mean velocity and a

reaction cross-section. If A& is an argon atom then Ea = E+.

For a consecutive series of first order reactions, say,

k k

A —> p —> ¥+

it can easily be shown that in the initial stages (Ref. 17, p. 1075)

dnoo
=t ° kl kZ n t (V.16)

where, as before, k1~exp - El/kT and kZ

Therefore klk2 N exp - (E1 + EZ) kT and the total activation

~exp EZ/kT.

energy is the sum of the individual energies, Ea = E1 + EZ' For

= E as above,
argon Ea + ve

Finally, for a consecutive series of second order reactions

the integrated rate equation is similar to V.14, From these three

examples it can be seen that in general the density dependence in a

rate equation comes from the order of the reactions, the time

dependence comes from the number of consecutive reactions, while

the activation energy is always the total energy for all steps.

The result is now applied to three possible ionizing reactions

in argon. Weymann proposes the reaction
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A+A—>A*+ A—~AT + A+ e (V.17)

As stated above El = E, = 11.5, EZ = E+—E* = 4.3,
Ea = E+ = 15,76. If, on the other hand, an impurity I as defined

above is present, then the reaction

A+I—>I +A+e (V. 18)

can proceed in any number of steps with the same result that the
activation energy is the impurity ionization potential. In order to
produce more electrons than an alternative argon reaction the
impurity ionization potential must be so low that the increased
Boltzmann factor more than accounts for the low impurity density
in the rate equation. The most obvious substance with such a
property is one of the alkali metals (e.g. sodium) whose ionization
energies are about 5 volts; but the concentrations of alkali metal
vapors in shock tubes must be extremely small,

“Air is the major impurity in most shock tube experiments.
The ionizing process in air that is thought to be most important is

the consecutive series of reactions
0, + N,—=No" 4+ & + NO (V. 19a)

with a total activation energy of 11,11 volts to produce one electron,

or

0, + N, —* 2N0T 4+ 2e (V. 19b)

with a total activation energy of 20. 36 volts to produce two electrons.

It does not appear from these energies that air is a particularly
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ionizable substance. For air impurity to contribute substantially to
the argon ionization process, it must be present in amounts much
larger than exp (11.11 - 15,76) ~ 1 per cent. In these amounts it
reduces the gas temperature behind a given strength shock
sufficiently that the increased ionization rate is never observed for
constant shock strength (c.f. Sec. IV.2.3). This is apparently

in contradiction to the enhancement of the approach to equilibrium
by air impurity observed by Petschek and Byron and Alpher and

White.

V.3.1 Interpretation of experiments. For the interpretation

of experiments the dependence discussed above can at least approxi-

mately be expressed as

n_ = 7 T " % exp (- E,/kT_) (V. 20)

The constants q, r, s and E+, determined from experiment, give
information on the nature of the ionization process., The flux
¥ of charged particles through an orifice depends on n_ and can

be written

_ ql rl S'
F = n T tT exp --E+/1<T00 (V.21

If equation V.6 describes the flux as a function of upstream
conditions then q' = q-1/2, r' = r - 1/2, s' = s - 1/2,
The derivative of the logarithm of the flux with respect to the

inverse temperature gives the activation energy

i

-(E, + 'k T_) (V.22)
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where usually, as indicated by V.14, r' £ 0. The second term

on the right hand side, if r' is unknown, introduces an ambiguity

in the experimental determination of E+ which for the two step
process V.14 at the temperature considered here is less than 1 volt.

The slope of the flux vs, time on a log-log plot yields the

"speed" of the reaction,

9In F
9Int

= s' (V.23)

As indicated by V.14, the more steps in the reaction the slower the

speed {the higher s'), For an n step process in the early stages

Froth,
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APPENDIX VI

EXPERIMENTAL RESULTS

V1.1 Experimental Apparatus

The purpose of the apparatus is to measure the time history
of the electric flux through the hole, Two electrodes, one biased
positive for collecting electrons and the other biased negative for
collecting ions, are placed immediately downstream of the hole as
indicated schematically in figure 4. The electrons are duPont
No. 4760 silver paint painted, baked, and polished on the top and
bottom halves of the inside of a piece of 6 mm. glass tubing
(3.6 mm. 1.D.) 3.8 mm. long, A wire is connected to each half
by soldering to baked silver paint on the outside diameter of the
tubing and is lead out of the beam section through Amphenol hermetic
seals. The electrodes subtend a solid angle of 43 degrees from the
hole center line and therefore do not greatly block the flow of neutral
particles. However, they are close enough to the hole that the time
of flight from the hole to the downstream end of the electrodes for a
beam of about 400m. /sec mean velocity (room temperature) is less
than 1 microsecond. Therefore, the uncertainty introduced by this
time of flight in the time history of the shock heated gas is negligible.
The leads from the electrodes are connected to mercury cell
batteries E1 and E2 as shown in figure 2. The other pole of each
cell is grounded either directly or across the .5 megohm input
resistor of the pre-preamplifiers described in section 1.2, In the

latter case, the signal from the amplifier, as recorded by the scope
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comprises a time history of the current to the electrode.

The time origin, i.e. shock reflection time, can be determined
by recording the output of the end wall thin film, heat tfansfer gauge
(platinum on Scotch splicing tape, gauge No. 4, section I.3 f.f,) with
one beam of the dual beam oscilloscope.

Other instrumentation for measuring shock strength and
pressures is described in section I. 2.

In all runs measuring electric flux, the following procedure is
followed: After evacuation, the tube is flushed with argon and re-
evacuated to the desired experimental pressure ( ~100 microns Hg.).
The valve separating the beam and tube sections is then closed.
Thereupon, the beam section pressure decreases rapidly until an
équilibrium pressure ratio across the hole of about 500 (for a .32 mm.
dia. hole) is established. The driver section is then pressurized with
helium until the diaphragm breaks. As can be seen from Table I, the
pressure in the shock tube rises by a factor of about 300 when the
shock reflects from the end wall. Thus the total pressure ratio
across the hole is about 105 during a run. The pressure rise in the
beam section due to the additional mass flow during a run of 20 micro-
seconds duration is Ap/p ~3 x 10_5, a negligible amount. The mean
free path in the beam section during a shock tube run at P = 100
microns is about 10 inches. so true free molecule flow exists

downstream of the hole.

VI. 2 Preliminary Experiments

VI.2.1 Electrode bias. The mercury cells were chosen so

that most of the charged particles that flowed through the hole were

collected. This was accomplished experimentally by increasing the
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the bias voltages E1 and E2 (FFig. 2) until the current to each electrode
at a given shock strength and initial pressure was independent of bias.
The result for the electron electrode was E1 = 2.6 volts and for the
ion electrode E, = -5.4 volts. Increasing both E1 and E2 by a factor
of 3 caused no noticeable change in the current under given conditions.
The average ion passes in collision free flight from the hole
along the axis between the electrodes with a kinetic energy of about

1/40 e.v. In order to trap this ion on an electrode, the voltage E,

applied to the electrode must be such that (parabolic path)

2
%2 < (E) (VI. 1)
where £ is the kinetic energy of the particle, _{ the length of the
electrodes along the axis and d the electrode separation. For the
electrodes described above, P/d ~ 1 so relation VI.1 is satisfied by
the EZ. chosen.

The same argument applies to electrons. Since the mean
velocity of the electrons is close to that of the ions (no charge
separation), the mean electron kinetic energy is very much smaller,
Equation VI.1 therefore predicts E, <L Ez.

The electron and ion currents were observed to be nearly
equal at all times during the runs with El and EZ set as above. This
result is consistent with the conclusion that there is little separation of

charge for charged particles flowing through an orifice.

VI. 2.2 Oscilloscope records of ion current and end wall gauge

response. Figure 10 illustrates typical runs at three pressures in

argon in which the current to the ion collector (upper trace) and the
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end wall gauge response (lower trace) are recorded simultaneously.
Figure 10a was recorded with compressed vertical and horizontal
scales to illustrate the complete process, The increasikng ion current
is attributed to the growth of ionization in the shock heated gas while
the subsequent decrease is due to quenching of this ionization.

The quenching can be due to cooling of the heated gas by, say
an expansion wave or by the insulation of the heated gas from the hole
by the gro.wing thermal layer. The end wall gauge traces in figures 4
and 10 indicate the expected behavior for reflectedand re-reflected
shock waves in the absence of expansion waves, so the first possibility
is ruled out. It is concluded that the cool, dense thermal layer
provides a medium for recombination of electrons and ions as they
migrate toward the wall., This conclusion indicates that even though
the hole in these experiments is much larger than the mean free path
at the wall and therefore greatly perturbs the interior of the cool layer,
nevertheless the layer remains the major feature of the effusion
process. As indicated in section V, 2 this result is expected for
cases in which the hole diameter is smaller than or equal to the

mean free path in the hot gas, d * éAon' Compare with condition

V.9 for continuum flow, On the strength of these indications, it is
concluded that equé.tion V.6 is useable as an approximate repre-
sentation of the flux of charged particles in the experiments con-
sidered here,

The end wall gauge identifies the beginning and end of a run
by recording the shock reflection and the arrival of the re-reflected
wave respectively. In figure 10a, which is merely an expanded

version of figure 4c, the re-reflected shock arrives ZO/useconds
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after shock reflection. Thus most of the ion current trace in figure
10a occurs after the run is over. In runs from which numerical data
were obtained (e.g. Figs. 10 b and c) the current and time sensitivity

were increased for better resolution of the increasing current.

VI. 2.3 Introduction of impurities. Figure 11 compares a

typical run in argon with three runs in which impurities were intro-
duced. In figures 11lb and c the tube was wrapped with heating tape
and warmed to approximately 55°C. A test tube containing a few
drops of mercury was attached to the shock tube at the flange
for gauge No. 1 (Sec. I.3) and was heated with a candle. The mercury
partial pressure was probably more than 25/a in addition to a measured
argon initial pressure of 60/u . Though the Mach number, computed
for pure argon, has little significance, these traces exhibit graphically
the ease with which mercury ionizes. Figure 1lb shows a run with the
same current and time sensitivity as in figure lla, while trace ¢
illustrates a similar run with the current scale reduced 1000 times!
This large change in sensitivity with a flick of a switch emphasizes
the ﬂe#ibility of this simple experimental technique.

Several runs were made at an initial pressure of 95/4( of
argon plus 5 « of air to get a more quantitative indication of the
effect of the largest source of impurity in these experiments. The
amount of air added, however, was not sufficient to radically change
the temperature in the reflected shock region. The ion current at
ZO/u seconds fell on the experimental curve for P; = 100/4( in
figure 13 with a scatter similar to that shown in the figure. Thus
the introduction of a few per cent of air does not affect the results

of these experiments. This is consistent with the fact mentioned in
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section V.3 that there is no known reaction in air that can be shown

to be important in ionization. Of course, if there were some

extremely effective reaction such that all of the ions observed were
.air-produced even in the highest purity runs, then the addition of
air also would not give any significant change. The first alternative
is cerfainly more realistic at the present time.

Addition of such large amounts of air that the reflected shock
temperature decreased due to the change in % and the total ionization
potential increased because of reaction V.19, resulted in decreases of

ion current as expected. At no time was air impurity observed to

increase the ion current over the values observed in the experiments

with the purest argon.

VI.3 Experimental Results

A determination of the time behavior of the ion current(s' in
Eq." V.21) immediately gives some useful results about the effect
of recombination in the cool layer on these experiments. It was
found that replots of the oscilloscope traces on log log paper were
straight lines for the first ZO/aseconds or so and then became
concave downward’. The slope of the straight portion of the line is
s' and is plotted in figure 12 as a function of Mach number and
initial pressure. If recombination is important even in the first
ZO/u seconds its effect will be to reduce s'. It is believed that this
effect is observed in figure 12 at high pressure and Mach number.
Under these conditions the density at the wall is higher and therefore
kR (Eq. V.13) is higher. >Simi1ar1y n_ increases very strongly
(factors of 50 in these exéerirnents) with Mach number and pressure,

Therefore equation V.13 indicates that recombination will be very
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much more important {at a given time} at high temperature and pressure,.
Thus the maximum s' observed in these experiments can be considered

a lower bound for the actual s' with no recombination. It is concluded

that for this experiment s is atleast 6.

The value of ion current on each trace at ZO/u seconds is
plotted in figure 13 against the inverse temperature of the reflected
shock region as computed from the measured Mach number assuming
a perfect monatomic gas. The scatter in the data corresponds to, at
worst, a scatter in temperature of 7 per cent. The slope of the dotted
lines that have been fitted fo the experimental data should give E+ by
equation V, 22, The decreasing slope with increasing pressure
portrays the increasing effect of recombination in the thermal layer.
The effect on ion current is larger at high Mach number so gives
too small a slope; this effect gets larger with pressure. The effect
of the term in r' in equation V. 22 tends to give a larger E+ than the
observed slope. In this experiment,where s' is so large,r' may also
be large, say roughly -3, so E+ may be a few volts larger than

the observed slope. Forp; = 60'/u the experimental result is

9 InF

g -12.6; p, =60
8 L/k T 1 =%

Thus E+ is at least 13 volts.

Finally, from figure 13 it is evident that the sensitivity to
pressure (q') at a given Mach number and time decreases with
increasing pressure. This effect would necessarily result if

recombination were responsible for the behavior of s' and E,



106

as proposed above., At M = 6.5 for the step between 60/ and
100 &« , q' = 4.5 and, for 100 « - 150 « , q' = 1.6 so, extrapolating

to Py = 60, it can be concluded that for this experiment

q' v 6 atp; = 60.

These results indicate that the ionization process in the
reflected shock region for p; = 60 at 20/ seconds (i.e. for degree

of ionization d / A 10'_5) is a very slow process. A crude

equil
attempt to investigai:e this result further using the "local’ reaction
observed in the experiment can be made by arbitrarily generalizing
Weymann's two step reaction to an s-step reaction. Then the

unknown exponent r in equation V.20 is fixed and a more definite

determination of E+ results. In its generalized form equation V., 14

is

7, = ~ St (Cw Z"J') e 77— _ﬁj’-a&d (VI. 2)

where Eij is the activation energy for the reaction from state i

to state j. If, from the experimental results, s is taken as 6, then
equation VL.2 pi‘edicts g = s+ 1=7and therefore q' = 63 in

fair agreement with experiment. At kT = 1 volt the product =

in VI.2 gives r = -2-;— (assuming 6 equal steps in energy) and
the;refore r'~ -3, Using this in equation V., 22 gives

E+ ~ 12,6 + 3.0 N 15,6 volts in agreement with the expected

15. 76 volts. This information can be used to finally solve equation
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VIi.2 for S, the mean cr.oss section for all 6 steps for the typical
run of Table I. This leads to § & 10°°F M%= 10717 cm?, a
reasonable number. This generalization is entirely arbitra»ry and
has no physical justification aside from the very high experimental
values of é' and Q'. However it emphasizes the general conclusion

that the reactions in the initial stages are much slower than

previously vsuspected.
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APPENDIX VII

SHORTING OF THIN FILM GAUGES

The shorting of thin film resistance gauges used for measufing
heat t:r4ansfer in shock tubes is now a familiar occurrence. It is well
illustrated for a side wall gauge in figure 4a and for an end wall gauge
in figure 10c. If the conductivity of the gas is such that a characteristic
parallel resistance through the gas from one end of the gauge to the
gther changes the effective resistance of the gauge by an observable
amount, then a "shorting effect' is observed. This effect would be a

direct measure of the conductivity of the shock heated gas if conditions

were uniform in the region near the gauge. However the analysis of
charge diffusion to a cold wall in appendix IV indicates that the
conductivity is by no means uniform near the wall. In fact from
figure 3 it is obvious that the major contribution to the gas resistance
will be very near the wall where the charge density is low. In fact for
the boundary condition VI, 1 (ne(O) = ni(O) = 0), the conductivity from the
hot gas to the wall is zero and no shorting is expected. A closer analysis
of the shorting effect gives some information about the actual nature of
the condition n, i(O). A crude analysis is made in this appendix of the
shorting of an end wall gauge.

The path of current inrthe shorting effect can be idealized as
from one end of the thin film gauge through the thermal layer to the gas,
through the gas (which is represented as a perfect conductor) parallel

to the gauge and then back through the layer to the other end of the

gauge. The effective resistance paralleling the thin film is 2r where
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r is the resistance through the layer of a column of gas of cross

sectional area, A/2 where A is the surface area of the film. Now

———

rA / 8t 4x | ' (VIL 1)
2 o 0= 1)

where @ (x, t) is the local conductivity in mhos/m.

2
D e ne(x, t)

o (x, t) = =2 (VIL. 2)
kT
From Table I it can be seen that the electron mobility © Den
kT
is nearly constant throughout the thermal layer (= 60 near wall and
e D
= 90 in shock heated gas). We pick €2 = 75 and let
kT
’ ne (x, t)

where therefore 6“00‘ is independent of x. The integration of
VII. 1 depends on the solution to the diffusion equations ne(x, t).
We take in this crude argument the ambipolar diffusion result

IL. 35 but write it with non-zero boundary condition ne(O)

(t) - n_(0)
ne(X: t) = ne(o) [1 + i e erf -———}i—-—-—-]

n (V) z‘}z D, t

The integral in VII. 1 is evaluated approximately by representing the

error function as in section V. 2. For n_ (0) & noo(t)

ne(x? t) . ne(O) x
W: E;‘(‘ET + o x 4L % (VII, 4)

= 1 : x »8
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Substitution of VII. 4 and VIL. 3 into VIIL. 1 leads to

- Ara _ :
n(0) - . 25 ; (VIIL. 5)
noo(ti
The experimentally observed effect is a loss of signal
AE/E as in figure 10c which, for a constant current gauge is AR/R,
where R is the resistance of the thin film gauge. This is related

to the parallel resistance Z2r by

R

2r —
AR/R

H

Finally, substituting this into VIL, 5 gives

-AR ¢ _(t)
n (0) X%
Zm e 48(t) - (VIL 6)
0

As a numerical example data are taken from a typical
runat M = 6.5andp; = 60 (Run No. 747) giving E = 2.35 v,,

R = 230, A=1.5 x 10-5. and AE at 20/useconds = ,006. From

Table I, (7, = 4.1x107% and §(t) = 10—4, SO

n (0) 33, -
T . z @ = 3x10

0

15

This simple crude calculation has provided a graphic experimental

verifica,ti-on of the theoretical conclusion in section IV. 3.1 that the
n (0)
boundary condition ’ne = n (0) <L O (D). It illustrates the
) , o
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important conclusion that to make the diffusion process physically
realistic the incorrect boundary condition ne(O) = 0 neted be
- relaxed only slightly. It also emphasizes that a "conductivity"
measured in such a flow with cold probes is by‘no means the
conductivity of the hot gas but is largely determined by the
properties of the probe material (i.e. by the boundary condition
ne(O))i The conductivity that is in fact measu.red is that of the
part of the cool thermal layer immediately adjacent to the wall.
This analysis is of course only valid if the external measuring
fields are smaller than the natural fields set up within the diffusion
la)-rer. In the case quoted above the field is E/§ ~10% v/m. and

the estimated natural field in equation IIL, 10 is ~/ 104.
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1) p,
2) T
3) m,
4)y M

i

|

114 -

TABLE I

CONDITIONS BEHIND A REFLECTED SHOCK FOR

A TYPICAL EXPERIMENT IN ARGON

MKSQ wunits unless otherwise specified

60 microns Hg = .79x 1074

300°

1.9 x 102'1

6.5

atm. abs.

Thermodynamic and transport parameters:

5) T
6) p
N m
8) p
9 4
10) v
‘ 11) Dm

in shocked gas

perfect gas
9, 600
17.3 mm

1.7x 1022

1.1x 10>
3.1x 10‘4(2)
.28

.40 (2)

12) D__(5) 77

(1)

real gas
8,100

17,0 mm

22

2,.0x 10
1.3x 10
27 x 10~
.21

.31 (2)
59

By assumption (section II. 2. 2)
Ref.1l, Table 2, beam experiments
Ref. 2, p. 562 .
Ref. 2, p. 581

{5) Item 11 and Eq. II. 17

3
4

(2)

near wall

perfect gas
300

17.3 mm (1)

5.6 x 1023

3.7x 10’2

2.2 x 10'5(3)

6.0 x 104

4

8.1x 10 “(4)

1.5

real gas

300

17.0 mm (1)

2
5.4 x 10 3

3.6 x 10"2

>(3)

4

2.2x 10"

6.1x 10"

4

8.2x 10 "(4)

1.6
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TABLE I (Con't)

in shocked gas near wall
perfect gas real gas perfect gas real gas
13) K_ 1.76 x 10°(6) 1.76 x 10° (6)
19 A zexi07t 3.1x10°°
15) hole dia. 3.2x10™%
Parameters for equilibrium ionization:
16) A ¢ quil. .012
17) n_=n, 2.4 x 10%°
' e i
18) tequﬂ(relaxatmn time)(7) .015
Parameters of experiment att = 2 x 10“5 sec:
15

19) noo(S) 3.4x 10
20) o 2x107"

' -4 -5
21) )\00(9) 1.2x 10 2.1x10
22) ¥ (9) 1.8x 10710 2.8x 1077
23) § (10) 2.2x 1072 1074

(6) Ref. 2, p. 573 -

(7) Ref. 3, Fig. 15 converted for reflected shock region
(8) Figure 13 and Eq. V.6

(9) Eq. III. 19

(10) Eq. 2
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MeTaLLic WaLL ParTiaLLy loN1ZED Gas
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Fig. P, M23 gauge sensitivity heating
(mm) (volts/div.) ~voltage
3 0.04 3.1
4a 10 4,22
4 0, 04 1,05 / | —
|
643
3 0.04 3.1 7
4b 1 5.8 f ‘l
4 0,04 1.05 a—
648
i
3 0.02 3.1
4c¢ 0.1 6,55 /\,..._,f
4 0,02 1,05
654
Figure 4. --= Side Wall (No. 3} and End Wall (No. 4 Film Signals

Time plotted along abscissa (100 pseconds/division).



Fig, Py
(mm)
5a 10
5b 1
5¢ 0.1
5d 0.0
Figure 5.

23

4.38

5,75

6,75

1 7.30

gauge

120

sensitivity

(volts /div.)

0,02

0,02

0.004

0.004

0,001

0,001

== Side Wall Film Signals

heating

voltage

1.25

1,25

1.25

1.25

1.25

1.25

2,25

2,25

504

532

Time plotted along abscissa (100 pseconds/division}.
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p‘ﬂom/m/ ) // o

| mm
[e]
o]
o g o (o]
/
0.1 mm /BEST FitT oF Ea. 1.4
° aw/ / By =0.076
|O_4 0.0l mm PLratinum oN PyRrex
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M
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0.1

0.0l

0.001

FIGURE 9
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1 /
[e)
e}
/o
/L /T
[o]
/
p, =10mm Best Fit ofF Ea. 1.3
aw/ﬂ/ BW = 0.10
I mm O.lmm PLatinum oN ScotcH  Tape
2 6 8 o]
M3
-- HEAT TRANSFER To EnNp WaLL Fim:
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Fig, P, M time ion current
(1) (psec. /div,) (amps /div.)
A
10 60 6,65 20 4x1077 -
—
/]
666
10b 100 6,55 10 2x1077 L _
/1
718
-9
10c 150 6.55 10 2x10 -
722
Figure 10 ~- Simultaneous Ion Current (Upper Trace) and End

Wall Gauge (Lower Trace) Signals
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Fig. P, M  impurity time ion current
() (usec. /div.) (amps/div.)
lla 60 7.0 argon 10 2x1077 J/
—
4
684
1l 60 6.9  Hg 10 2x107°7
'\‘
695
llc 60 6.7 Hg 20 2x10~° (\ |
||
N
707
] /
11d 100 6.8 5% air 10 2x1077 »
763
Figure 11 -- Effect of Impurities on Simultaneous Ion Current

and End Wall Gauge Signals
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o]
e p = 60 73
°© p, = I00p
o p =150p
8
6 -o—
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o
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o
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O -
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lon \ \ ) e p = 60u
CURRENT L3 d\ g o p = 100w
O

(Amps) N

WL A\

10 La ‘
7.0 6. 6.0
S M
0.9 1.0 {1 .2 1.3 .4
-
(kTs) (e.v.)
Fisure |3 —— loNn Current at 20 ,u.Secowos AFTER SHOCK

RerFLecTtion vs. I/kT CompPuTED FOR PERFecT Gas



129

Eno WaLL TesTing TlME——\

Sibe WaLL TesTiNG TIME\
COoNTACT SURFACE -
: -
SHock WavE —__ @

\ <A

\®

Fieure 14 ScHemaTic REPRESENT
of TesTiné TIME FOR STRONG SH

ATION
OCKS
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n Hor WaLL

CowLp WaLL

————

N Hot
n CoLbp WaLL

WaLL

X

B OUNDARY

y - INTERCEPT

Axis SHiFTs T0 GIVE

CONDITION AT

{SOTHERMAL

[ x* 2

EquiLiBRIUM (Ea. II.33)



