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ABSTRACT

PART I:

Electron spin resonance spectra of polycrystalline radicals
are complicated by the anisotropic dipolar magnetic interactions
between the unpaired electron and the nuclear spins, Although general
expressions in the form of multiple integrals can be derived for the
polycrystalline line shapes, their complicated nature makes closed
form evaluations very difficult to do except in certain limiting cases,

We derive a theorem which enables us to calculate the poly~
crystalline line shape of an arbitrary polynuclear radical when the
external magnetic field is larger than the internal dipolar fields, Our
results are applied to polyconjugated hydrocarbonradicals. Wefind.that we
can explain a fact heretofore not well understood: namely, the poly-
crystalline spectra of such radicals can be remarkably similar to
those c;bt'a,ined {rom the liquid state, despite the fact that significant
anisotropic dipolar interactions are present in the solid state but not

in the liquid.

PART II:
The possibility of using electron spin resonance to study para-
magnetic excited electronic states of aromatic crystals is explored,

Two limiting cases are considered: On the one hand, the excitation



energy moves from molecule to molecule by a diffusion process; on

the other, the triplet excitation is described by a Frenkel wave exciton,
In either case intermolecular propagation éf the triplet excitation is
assumed to proceed through virtual triplet ionization states.,

A, The theory of the spin resonance of triplet wave excitons is
developed in some detail, Itis shown that large Davydov splittings
between the exciton bands require that there be only a weak dependence
of the ESR spéctra on the ﬁ vector of the exciton wave, except when
R 1is near regions of band degeneracies, Band degeneracies arise from
time-reversal sym’metfy in benzene, naphthalene, and coronene crystals
and occur on bound;ry planes of the first Brillouin zone., A spin Hamil-
tonian is calculated for these three aromatic crystals for most /l\c vec -
tors which are far removed from regions of band degeneracy, Two-line
spectra (with no hyperfine structure), representing an average over the
molecular sites in the unit cell, are obtained. Scattering of the exciton
wave by lattice perturbations can be a mechanism for spin lattice relax-
afion. ‘

B, The ESR line shape is correlated with the characteristic
time, 7, for a diffusing triplet exciton to undergo a random walk between
thg nontranslatory neighbors of a two site unit cell, A general.expression
for the line shape is derived by time dependent perturbation treatment,

-1

This expression is valid for {1) sufficiently large transfer rates T ;
(2) for all transfer rates provided that significant differences between

the spin Hamiltonians of the nontranslatory neighbors only occur to first

and second order. Wave and diffusional triplet exciton spectra are com-

pared,
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*
PART1I

ELECTRON SPIN RESONANCE LINE SHAPE OF A

POLYCRYSTALLINE RADICAL

INTRODUCTION

The electron spin resonance (ESR) spectra of an oriented
radical are generally more complex than the solution’spectra of the same
radical, The rapid tumbling of fhe radical when in a liquid of low vis«
cosity results in isotropic, sharp line spectra, Furthermore, the
nuclear hyperfine structure pi‘es.ent can be interpreted in terms of the
isgtropic Fermi contact interaction between the unpaired electron spin
distribution and the nuclei with nonzero spin {2). When the radical is
oriented, as in a crystal lattice, tﬁe ESR spectra are complicated by
the additional presence of (electron spin) -{nuclear spin) dipolar inter~-
action terms {3-6), which average out to zero in the liquid case, The
selection rules are somewhat altered; in addition, the resonance spectra,
while still fairly sharp, are now anisotropic~-the orientation of the
internal dipolar magnetic fields relative to the externally applied mag-
netic fi_eld must be taken into account, A detailed study of the aniso~

tropic spectra can provide much information concerning the molecular

*Most of the contents of Part I have appeared in an earlier paper
by the author {1),



structure of the radical, and for this reason considerable experimental
and theoretical attention has been given to oriented radicals,

Often it is not convenient or possible to prepare single crystals
containing oriented radicals, Under such circumstances work must
be done on polycrystalline (or amorphous) samples, despite the fact that
the resonance lines are now dipolar broadened, and that much of the
hyperfine structure may be obscured, Clearly, it is desirable to know
what information can be extracted from polycrystalline samples.

If the unpaired electron interacts magnetically with only one
nucleus of spin %,* the spin Hamiltonian of the radical can be written
(3) as

(1)

= -hV -|-A°: .
hve,S\H n,I\H i -rJ-?

Y=

V. and 7/ are the electron and nuclear spin Zeeman frequencies,
e n

respectively, where

-nlg |8l H;
Ve e ﬁ, J )

-1
Un=h &n BnH'

H is the magnitude of the exterﬁally applied magnetic field, H; lﬁl is
the absolute value of the electronic Bohr magneton; ﬂn is the nuclear

Bohr magneton; g is the electronic g factor; and g, is the nuclear

*For simplic.ity, we only consider spin 1/2 nuclei in this sec-
tion. The treatment can be readily extended to include higher spins,



g factor. SH and IH are the respective spin components (in units of %)

~

of the electron and nucleus along H., g « T o E is the hyperfine inter-
action term. T is a symmetric dyadic and includes the cor;nbined
{electron spin)~{nuclear spin) Fermi contact interaction, and the
(electron spin) -{nuclear spin) dipolar interaction, It is assumed that the
(electron orbit)-(nuclear spin) and (ele.ctron orbit)~{electron spin) mag-
netic interactions are negligible. {This is generally true_for organic
radicals.)

T can be derived in the following manner as shown by McConnell
and Strathdee (6). Let & S p (x,v,2) denote the vector density of
electron spin angular momentum at a point x,v, z in the radical. The

spin density function can be expressed in terms of a density matrix,
Py
Ayt

p(x,v,2) = =
Ap

% N 3
Pru 5 & (3)
¢ , ¢»)L can be taken as the one-electron atomic orbitals from which
I

the exact many electron molecular wave function y can be constructed.

T can be expressed as:

T=hal -g g V-?I}gn ZPX <¢ [D|o, > (4a)
X L i P
where

D= (=) [U-3E) 2 ], (4b)

~

Uis the unit dyadic and r'is the vector from the nucleus to the position



of the electron; h a U denotes the Fermi contact interaction contri-
bution,
T can be written in diagonal form for a suitably chosen set of

cartesian axes, X, y, z:

~ A ~ A ~ o~

T=hARk+ hBii + hCjj. (5a)

i, j» k are unit vectors in the direction of the positive x, vy, z axes,
respectively, and will coincide with magnetic symmetry axes. The
hyperfine interaction term becomes

E~'§_-£=7f\(hf=hA§Z£Z+hB§ 1 _+hCs 1 . (5b)

Experiments are most commonly done at X -band, where H is
approximately 3,500 gauss; 'Ue', approximately 9,500 Mc, SH and IH
will be good quantum numbers provided IAI s |B| s |C| << Ve’ Vn .
If we assume that SH is a good quantum number and do not commit

our_éelves as to the magnitude of Vn relative to |A| ’ IB, s lCl s the

spin Hamiltonian (eq. 1) becomes {3):

ﬂ ) hVeEH'hVEu' | (6)

* In the case of "simple'' 7-~electron hydrocarbon radicals like
malonic acid, where most of the electron épin:density'is confined.on a
single carbon atom, experiments have shown that 30 Mc < |A\ , Bl ,
ICl <100 Mc {2-4), At X-band the Zeeman frequency, |/ , of the
oroton spin is approximately 15 Mc.; consequently only S Bsa good
quantum number, (A m-electron radical is defined as '"a paramagnetic
molecule containing a number of co-planar atoms such that the spin
paramagnetism is largely distributed in atomic orbitals having a node
in the molecular plane' (6).)



>~

I is the nuclear spin component along the unit vector u. Both}/ and
u

u depend on SH as shown:

‘v‘u:VneH-SH[kAcosé)+iB sin 6 cos ¢+ jC sin B sin ¢ ] o {7)

~

ey is a unit vector in the direction of the externally appligd field f—\l;
cos 0, sin 0 cos ¢, sin 6 sin ¢ denote the direction cosines of the
external field relative to the z, x, y axes respectively, Equations 6 and
7 express the fact that thé nuclear spin is quantized along the direction
of the total magnetic field at the nucleus_—_«-the total magnetic field being
the sum of the external field and the dipolar field, If we let V‘; Y V”\I”

designate the vector -vyu when SH = 1/2 and -1/2, respectively, we

obtain the following four transition frequencies from the oriented

radicals
V1 ] +1/2 {v' =~ v")
(82)
v, & - —l/Z(V'-—V")
2
4v3= +1/2 (v' + v")
(61
vy E ~1/2{v'"+ ") .

{The origin of all transition frequencies are taken at -Ve in this paper.)

v', v'" are functions of the orientation of the radical with respect

to the exterﬁal field, H:



1 2 2 1 2 2 2
- d e = ' - — :
vt = [ (Vn > A) cos 6+ (vn > B) sin 6 cos ¢
+ (-\Jn - %C)Z sinZG sinz‘.:;)]l/2
£9)

1 2 2 1 2 2 2
"oz ; —_ ; —B i
vt [('Vn+2A) cos 9+(-Vn+2 )" sin" 0 cos &
1 .2 2 2 .1/2
+fw +=C)" sin 0 sin ¢]/ .
n 2

The magnitude of the external field is contained in V.- Ry (6,9), the
relative intensity (or transition probability) of the resonance line of the
A transition is given by (3):

R, (6,9) = RZEG,cl)) = cosz'S/Z =1/2 (1 + @ . 1:")

10)

R3(9,¢) = R3(9,¢) = Sin2 $/2 =1/2(1._ 1:‘ . 1:”) ,

where
vt 2
ul » gt = (1/4V'v") (ZV)
‘ n
S22 2 2 2.2, .2 _
~[Acos 6+B sin“fcos ¢ + C sin Osin ¢] . (11)
’ ~
The resonance spectrum consists of a symmetrical quartet
centered ony . The odter doublet with splitting v'+ v'" has relative
e .
.2 ‘s
intensity sin” §/2 ; the inner doublet with splitting v' - v" has
. ) L 2, 2 2 2 2 )
relative intensity cos §/2. When A , B , C > (ZVn) » the outer lines

. 2 2 2 2
are more intense; when A , B , C < CZVH) ; the inner lines will always

be more intense. CEXperimental work on the "simple'" hydrocarbon
T-electron radicals {3-5) has shown that at X-band the outer lines are
five to ten times more intense than the inner lines, When the external
field is > 12,000 gauss, the inner lines are generally more intense, and

also insensitive to the magnitude of the field,)



THE POLYCRYSTALLINE LINE SHAPE FORMULA

The extension of the above discussion to . polycrystalline samples
is as follows: We regard the polycrystalline sample as an énsemble of
minute grystallites each having one radical, The probability, g}\(;*) dv,
that a particular transition,* v., will occur between v and v + dv is

A

then pr opoftional to

Z R ) sin 0. 40 dé

A (GK, K,
The above represents a statistical averaging of the random orientation
of the crystallites, Only those increments of solid angle, sin QKdGqu)K
are added up such that OK, c])K corresponds to a Yy between v and

v + dv . Since the transition probabi.lity is a function of 6, ¢, each
increment of solid angle must be multiplied by R?L(QK' ¢K). It is more

convenient to expres s v} dv in the following manner:
P gh -0 124

2r 1 |
gk(\.;) d.v aj dJ §[ v - V)L(O,q)) 1 Rh(9’¢) dcos § pdv ., (12)
o -1

(o is the proportionality symbol;)

6(v - VA) is a delta function; & (V -V ) dv assures that only those values
of 6 and ¢ are con31dered such that their substitutioninto VA(G $) gives

a transition between v and v + dv. Equation 12 can also be written as:

We shall attach a Greek letter subscript to v when v refers
to a transition frequency; Roman letter subscripts will be used when v
refers to a nuclear Zeeman frequency,



oo 1 21

gh(\;) a —21; exp{_iw[;—vh_(@,q))]} dw IA(G,q?)d cos 0 do .

-00 ' -1 . O
(13)

The polycrystalline line shape, g(x-r), is clearly proportional to the sum
of the gl(x_f) terms:

T\ oo 1 2T

g(v) = N/ 27 Z exp {_iw [;—vk(ﬂ,cb)]}dm RA(G,cl))d cos 6]  dds
Asl S0 -1 o

(04)

N is a normalization factor so that

‘J'g(\-f) dv =1,

We easily see from equations 8 and 9 that g(\_f) is symmetric
about v =Ve. g(\_r) is also a function of H because of the H dependence
of v, and R)t (0,d). |

We have only taken the dipolar broadening' into: account.
Relaxation, field inhomogeneities, saturation, spin exchange effects,

for example, can also alter the line shape. The actual line shape can

be represented more appropriately by
actual ~ Jﬁ(v B v)g(v) v (15)

where f(v - x_/) is a function taking into account all line broadening factors

other than the anisotropic interaction above. Usually £f{v - \7‘) can be taken



as a normalized gaussian:

(- ) =y (2t  exp [-2(v - 9240 . (16)

v is the width between the points of maximum and minimum slope,

g (v) is given by

: 2 1
1/2
g-a_ctual(v) = (1/87y) (2/m) /// dq)/ d cos 0
o -1

(17)
\ ) |
=< COSZ£ §/ 2) {_exp [ -ng -vl)zlyzl + expl -Z(V-VZ)ZIYZ]}

actual

+ sinZ{S /2) {exp[ -2‘{v-v3)2/vz] + exp| -Z(V"V4)2/Y2]} -

—

A closed form evaluation of equations 14 or 17 in terms of v
A, B, C appears to be very difficult to do, and we have succeeded in
doing it only for a number of limiting cases, (_If necessary, an evalu=-
ation of equations 14 or 17 can be done an an electronic computer (7).)

The above discussion can be extended in a straightforward manner
to the cases wherg {1) more than one nucleus interacts with the unpaired
electron; (2) the nuclear spins, I, are greater thanlz-. Although multiple
integral expressions for the polycrystalline line shape are readily
derived, closed form evaluations of the integrals again are difficult to
do.

We shall primarily concern ourselves in this thesis with solving
equation 14 and its I > —12— analogue, when I _ is a good quantum number

(IH =I, I-1, ... -I +1, -I}; The foilowing theorem will be shown to

be true:
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Theorem I
A transition frequency, vy oo having the form
~ ~ A ~ A H ~ A -~
=1 ctAkk+Bii+Cjj)-
v e+ 11+CJj) e ey

IH H

gives ris.e to a polycrystalline resonance peak at IH times

N
the middle value of A, B, C (e. g, IHC if A< C < B), The
width of the resonance line g {v) is L. times the magnitude
of the differenlce between the }l-largest and smallest of the

A, B, C terms,

This theorem will enable us to construct the pochrystalline line shape
of polynuclear radicals.

IH is a good gquantum number if: {a) the external magnetic field
is sufficiently large; (b) the electron spins ’d:ensity':{ atany.one atormn-of the
radical is small, as would occur in polyconjugated radicals, for example;
or {c) the hyperfine interaction is reduced by some dynamic process,
such as a short electron spin relaxation time, or by eiectron exchange

as in solid DPPH and TPPAP (8). (Condition {c) can best be exploited

. *
by nuclear magnetic resonance {8).)

“McConnell and Chesnut (9) have shown that a sufficiently short
electron spin relaxation time, or significant electron exchange effects
cause the hyperfine interaction {eqs:, 5b and 6) to become

Hne = Sp” 8" L%
where <S__> is the average value of the electron spin component in the
external Eeld direction:

' | 'F is the temperature;
<§ > = H 4 + . b '
" . g,e |6l /4K é K is the Boltzmann factml

In the case of hydrocarbon w-electron radicals, the modified hyperfine
- term can cause shifts in the proton resonance spectra of the order of
40 gauss, The hyperfine term is clearly a small perturbation, andI
is a good quantum number at X -band; consequently, Theorem I can be
used for proton resonance lines.,
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There are a number of ''simple' hydrocarbon radicals like
malonic acid whose hyperfine interaction dyadics are very accurately
app.roximated by the CH fragment model {3). - The IH compoﬁent of the
single interacting proton is not a goqd quantum number at X -band,
However, at J-band {~ 12,000 gauss) the dominant contribution to the

spectrum comes from the inner transitions, vy v., which now are

2
relatively field insensitive (see above), This implies that for purposes
of determining the dominant features of the polycrystalline spectrum
when H > 12, 000 gauss, we can téke IH to be a good quantum number
and apply our theorem. (Le,feb.vx:e(?) has r.ecently evaluated equation
17 at both X~and J-;band frequencies for a CH radical fragment' by using
an IBM 704 éomputer. He finds that when H > 12,000 gauss, the most
intense peaks do indeed conform to the above theorem.,)

The more realistic assumption that the nuclear Zeeman term
is negligible at X -band for radicals like malonic acid still leads to

serious mathematical difficulties, The nuclear spin is quantized along

and v, ,

the internal magnetic field at the nucleus; the outer doublet, Vs 4

corresponding to M_ =1/2, -1/2, respectively, dominate (MI is the spin

I
component along the internal field produced by the electron), The

resonance frequencies of the oriented radical, relative to the origin,

v :Ve, are now given by:

V.o (Azcosz'Q + stinzecosz¢ + CzsinZGSinzd))l/Z M [18)
MI ,



12

We can readily determine the polycrystalline line shapes if (l)
the dipolar interaction shows axial symmetry (B = C); if (2) the anisotropy
L 2 L2 .2 : : .
is small so that A”, B, C~ are approximately equal, If B = C, equation

18 becomes:

v, = [B2 + (AZ - BZ) cosZG]ll2 (19)
MI I
The corresponding line shapes, &M ( \7),are given by
- ) i - dcos 8 |
g3 (v}dv a sin0de; gMI (v} = ;
() @ i (20)
g v) a —_— 172 20
M ]A _Bz’ 1/2 I(V/MI)Z'B2‘ /

nance is ;|.('}3 -A) MIL (Equation 20 is also valid whenI > 12 ; now
M; =1, I-1, cee, -I+ 1, -L.)

When the anisotropy is small, make the following substitutions:

1/3 (Az + B+ CZ) ;

[N
1]

b=1/6 (BZ + c? -Az) ; (21)
i=1/2(c*-BY.

Equation 18 becomes:
e - 2 - 2 2 1/2
= b{l - + ! - H .
VL [2+b(T-3cos 6)+14 cos ¢{cos 0x1)] M, (22)
Loz ey 2. . - 2
~ Aa) [1+5/2a (1 -~ 3cos 0) + £/2a cos 2¢{cos6 - 1)]MI.

‘We have used the fact that. 'b/al R Ii/a, << 1 for sufficiently small
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anisotropies. If one now uses the evaluation procedure given in the
next section (see equations 22 ' ff,), one can show that the polycrystalline
spectrum resulting from equation 22 conforms to Theorem I,

Although we have not been able to rigorously evaluate the poly~

2 2
crystalline line shape expressions for arbitrary AZ, B, C, the above

cases (1) and (2) strongly suggest that Theorem I may also be valid when
b

)

the hyperfine term dominates the Zeeman term, (MI now replaces IH,

*Blinder (10) has also considered the case of an axially sym-
metric interaction having a negligible nuclear Zeeman term, In addition,
he asserts in a footnote that Wheél thezai(}%l symmetry is removed (B ¥ C),
the resonance peaks occur at (B +CY) M. e (The reader is cautioned
not to confuse our notation with Blinder's nofation,) This result clearly
‘cannot be right since it is not invariant to a relabelling of the principal
axes of the hyperfine dyadice Lefebvre {7) has carried out a computer
evaluation of equation 17 for a CH fragment when H ~ 850 gauss, SH
is still a good quantum number, but the nuclear Zeeman term is now
negligible. The observed resonance peaks conform very well to Theorem
I, (Actually somewhat better results are obtained if one adds the small
Zéeman term, - M, to the peak positions given by Theorem I,)
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I._. A GOOD QUANTUM NUMBER

We now proceed to examine the consequences of assuming IH

to be a good quantum number. The following substitutions

Ly .
S, =Sycosf; I, =L, cos6; a=§\(A+B+C)J
Sx = SH sin 6 cos ¢; IX = IH sin @ cos ¢
b =}6- (B +C - 2A); (21)!
Sy. = SH sin 0 sin ¢; Iy = II—I sin 0 sin ¢

1
== -B
-3(c-B)
permit equation 5b to be written as

_ 2
hv® S =hS_I_[a+Db{(l~3cos §)+1cos 2¢(cos26 - 1] .(22)"
I, H H'H

The isotropic term, a, in equations 21' and 22' arises from the Fermi
contact interactions We easily see from equation 22! that the spectrum

will be symmetric about v :'l/e ; consequently, once gI (\';) is known,
. H
- L1 =\ . .
g'IH(V) is also known, If Ly=:3 gl/z(v) is given by:

oo

gllz(x-z) = -2177_ exp(i m{;—I/Z[a+b(1—3 cosZB)+£ cos Zc{)(cosze-l)]} Ydw

-0 1 27 (23)
x/ d cos@j do .
-1 o

The evaluation of equation 23 proceeds as follows:

2m
eXP[i [—%L(cosz'e-l) c052¢} d¢ = 2773 [ %l(cosze—-l)], {24)
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where .]'0 is a Bessel function of zero order. Equation 23 now becomes

1 foe)

gl/Z(;) = | exp(iof v - }2—[a+b(1—3 COSZO) ]} }
-1 =00

(25)

x T, ["-’-—;-(cosze—l)] dwdcos 6.

Set
M = (£/2) ﬁcosze—l), p=v -13 [a2+D(1-3 cosze)] .

The expression within the large brackets of equation 25 is one of Weber's

2 2
discontinuous integrals (11), and evaluates either to zeroif M < p ,

2. 1/2 2

or to ‘?./(M2 -p) s MM > pz. Equation 25 reduces to the following

elliptic integral:

g ./ (v) = 4 4= = z/ | dx
1/2 y .
R [Mz-pz] ¢ R [(.02/4:)(:(2.-1)2— [ - %(a+b)+—“§—bx2]2}1/2
(26)

x = cos 0. R denotes the range of values of x between 0 and 1 such that

I\/[Z > pz, Setting M2 = pz, we obtain the boundary points, x and x

' 1/2 ’ 1/2
_ | v = (atb-p)/2 _ {v-B/2 5
7 | Tg-30)/2 T |A72-B72
(27)
1/2 1/2
_ |-v + (atbte)/2 _|va-C/2
A I TECTS VI " |Ajz-C/2 .
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The integrand of equation 26 becomes infinite at x, and x ; nevere

theless, the integral behaves properly except when v =B/2, A/2, C/2.
- £ .

IfA<B<Cand A/2< v < B/2, Ris givenbyx_l_f_xix ; if

B/2< v < C/2, Ris given by 0 < x<x . The integral, equation 26,

can be shown to diverge at v = B/2. The integral would also diverge
at v = A/2, C/2 if the ranges of integration were not zero. (When

v=Af2,x =x ®1; when v =C/2, x &%

LR = 0.)

(A/2) and

+ 81/2

gl/Z(B/Z), although . finite, must be obtained by a limiting process.
The peak, therefore, occurs at B/2 when A<B<C.

If we assume that B < C < A, we obtain the following ranges of
integration:

0

IA

x<x+ when B/ZS_ v <C/2;
(28)
x

A

x<x_|_ when C/2< V< A/2.

The peak now occurs at C/2, gl/éA/Z)J gl/Z(B /2) must be obtained by
a limiting process. |
If C< A % B, the following ranges of integration are obtained:

0<x <x when c/z_<_§ < A2

(29)

0<% <x_  when Al2<v <Bf2 ,

The peak now occurs at v = A/2; gUZCC/Z) and gl/Z(B/Z) must be
~obtained by a limiting process.,
Other inequalities can be examined, The result is always the

same: the maximum peak of gl/z(;) always occurs at the middle value

- C
< < -,
=V _—-2

*A<B<C implies that >
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of Af2, B/2, C/2., The width of the gl/Z(G) resonance is given by 1/2
times the magnitude of the difference between the largest and smallest

of the A, B, C terms. We have thus proven Theorem I wheﬁ I =+ 1/ 2.

H
(The extension of the proof to L,> 1/2 is trivial,)

We note further, if two of thé three terms A, B, C are equal,
as occurs when the interaction has cylindrical symmetry, the line shape
contribution of g1/2\(§) is the same as that arising from the interaction

of two~point dipoles.q‘ If A =B =C, there is only the Fermi contact

term, and gl/z(\';) gives a delta function at A/2.

“When B is equal to C, £ is equal to 0; equation 22 reduces to
the sum of a Fermi term, haSH IH, and a term hS II—I b’(l - 3C0529 )s

which looks like the interaction of two-point dipoles. The Fermi term

clearly gives no line broadening; the dipolar term gives the well-known
line shape G(v) a coset -1 (E. R. Andrew, ""Nuclear Magnetic Reson-
V=V

ance," p. 155 ff,, Cambridge Press), Our equation 26 also gives the
same result:
When £ is equal to 0, M is equal to 0; consequently, gl/Z({;) is

zero whenever p> 0, When p = 0, the integrand is 1/0, and is infinite,
This defines a delta function, 6 (p) = & [v - 1/2 (a + b) + 3/2 bx?]

. gllz(;f.)a j& (p} dxa ,XI L

-1

cos @

VeV

vev ot
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A GENERAL POLYNUCLEAR RADICAL

We now examine the polycrystalline spectrum of a radical
consisting of n nuclei interacting with an unpaired electron; We again
assume that the spins of all n nuclei are quantized along the external
field direction, The experimental spectrum is symmetrical about
v =Ve » and is a linear superposition of the "allowed'" resonances,
gk(v). {The number of "allowed" resonances if all nuclei had I = 1/2
spin, for example, would be Zn.) If n is large, the resonances super-
impose to form '""composite'' resonances; the number of dominant com~
posite resonances that need be considered in practice are generally -
smaller than the number of "allowed' transition .

We assert that any "allowed' resonance, gk(v), can be calculated

from a single T dyadic T

Iy - The proof is as follows: The spin Hamil-

tonian for the polynuclear problem is:

n n
1 - h - a e e = .
}! =PV S 4 2_ vl AH'; °n" Ly %yly
m=l m =1 m

(30)

The transition frequencies of the oriented radical are :

= [Z IH (A COSZG + B sin29 cos2 $+ C sinZQ sinz¢)m] (31)
m m A

v

A

The subscript, A , denotes a particular assignment of nuclear spin

components, IH s to the n nuclei, The direction cosines in equation
m

31 are taken relative to the principal vectors of the corresponding Zm

~ dyadics.
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A~ -~ -~

. Choose a convenient axes system k', i', j'; and express the

direction cosines (eq. 31) in terms of the direction cosings, xi, x!, xé s

2

A -~ ~

relative to k', i', j', respectively, Qx]f = cos §_ ; x'z

1 = sin Qlcos 4;1;

x'3 = sin lein ¢1). Equation 31 now has the general quadratic form:

3

- 1 e | x|
vy | sz — A _S’t()t) x, X ¢ (32)

A'(X) denotes a symmetric matrix whose elements are functions of

the geometry of the molecule, the magnitudes of the nuclear inter-

~ -~ A

actions with the electron, and the particular choice of axes, k', if, j'a

We now diagonalize the A' matrix and obtain the principal values
A B _C
As Ay A

ized matrix defines the TA dyadic, T>L ={A k

relative to the principal vectors, k3 3 . Our diagonal-

Equation 31 can be written as

v, = 1/2 8 _ T, * &._ . (33)

The results are independent of our initial choice of axes, Theorem I
tells us that the resonance peak of gk(v) will occur at 1/2 times the
middie value of {A, f’;, C}l , and that the width of the resonance will be
given by 1/2 times the difference between the maximum and‘minimurn
values of the set {A, ]%, 'C-J}A_. We can calculate the line shape from
the elliptic integral, equation 26 @K, Bh,jh replaces a, b, ).

As an illustration we consider the special case of 7~electron

-~ -~

radicals. We choose an axes system, k, i', j', fixed in the radical
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system, The k axis is taken perpendicular to the molecular plane;

all nuclei have a principal vector parallel to lt. We sublstitute
cos 0 1 0 0 cos.Q |

sin 6 cos ¢ =} O0cos gm sin ’ém sin ' cos o' (34)

sin 0 sin ¢ 0 -sin i::,mcos gm sin 6' sin ¢'

m
into equation 31, and obtain:
a B )
A A 2 A 2
A (}— cos 0) +——-2—{cos 6-1)cos(2,g>'-w>t) R (352)
where
B n
5 = {A B CoY/3 = :
a, (Ah+BK+Ck)/ 2 E I (Am +Bm+Cm)/3 ;
: m=l m ) A
by = (B>L tC, - ZAk)/é =23 L (Bm +C_ - ZAm)/é B
e X
1/2
P e -Byizeae? 122)
A A A ax B ’
(35Db)
cCOos wW_ = ___ﬂu.h P sin W =-—-———£Bl ;
h‘ - 2 h‘ - ?
A

>

£

=
11

- {;IHIE(CH“ - Bm)/Z]c_os (2 gm)} N ;

b
1

o " izm' IHrE {c_ - Bm)/z]sin (2 gm)})t .

If one rotates the k, i', j' axes system through an angle mk/Z

~
about the k axis, one can replace cos (24)'—03}) in equation 35a Dby
cos 2<1>>L . (Thenew axes 1;, ih 37& are the principal axes of the T

. 2 -
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dyadic,.) The principal values A?«. E?L 6)L are readily obtained from
* b4 3

equation 35b; the line shape, gh(;'), from the appropriately modified

eqﬁation 26 (a, b, £ rgplaced by ah, EA, ﬂl)°
In the above sections we have concerned ourselves with calculating
the polycrystalline line shape in detail, Gross features of the spectra
are incorporated in the second and higher moment expressions, Moment
measurements can be particularly useful when n is large so thata
detailed line shape study may be impractical, They can also be used
as a check on the conclusions reached from a detailed line shape study,
The 2p'th moment of a polycrystalline spectrum is defined as

v)“P = v*26,4) R (6,6)/ 3R (0, . 6
< (av) D04 (L: RULENCR) = N .¢)>M (36)

< .denotes an averaging over all angles 6, ¢,

>
0,9
The sum is over all possible transitions, v tzzn in the case of n,
&
I =1/2, nuclear spins); R is the corresponding intensity, Hanna and
‘ B
McConnell (12) have shown that the polycrystalline second moment of

%
an arbitrary polynuclear radical consisting of n, I =1/2, nuclei inter-

acting magnetically with the unpaired electron is:

%* 2
Our moment definition (eq. 36) gives values that are 2°¥ smaller

than that used by Hanna and McConnell, We shall not consider the
moments of radicals having 1> 1/2 nuclei, If desired, they can be readily
derived, and are expected to be similar in content to equations 37 ff,
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n (A2+ B2 CZ)
<(Av)2> = : <(Av)in> =Z = m
) masl B0 m . | (37)

2 2 2 2 2 2 .2
(Av)fn = 1/4 (AZ cos 8+ B sin 0 cos 8 + C sin fsin ¢)m

The second moment is simply the sum of the second moment contribu-
tions of the individual nuclei, and is independent of the magnitudes of
the nuclear Zeeman terms.

The fourth moment can be shown to be:

<(Av)§%¢ = Z <(Av)fn> +6) <{Av . (Av P 0,6 (382)

m m>F

where

<(Av)fn> = 1/30[ (a% B% cH-(aB + AC + Bc)] v (38b)

8,0

+ [1/80 (A +BYC )+ 1/120(A B% +a%

C +BZC Z)] m

The relative orientations of the principal axes of the Imdyadics now
appear in the last term of equation 38a, We note that the fourth moment
is field dependent since it involves the nuclear Zeeman frequencies;
consequently, for sufficiently large external field it may be necessary
to truncate the sum in equation 36, {The field dependence comes from
the weak outer frequencies, which, with increasing H, become cor-

respondingly smaller in intensity, and further removed from the strong,

field insensitive, inner frequencies.)
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SPECTRA OF POLYCONJUGATED HYDROCARBON.RADICALS

We now apply the results of the above sections to'pol_yconjugated
hydrocarbon radicals, The spins of all the protons are assumed
quantized along the external fielde (This is the case at X-band if the
unpaired electron spin is distributed more or less equally over four or
more carbon atoms.)

The dotted curves in Figure I illustrate the polycrystalline
line shape (eq. 26) that would be obtained from a CH radical fragment
when I__is a good quantum number, The unpaired electron is assumed

H

to be essentially localized in a sz orbital centered on the carbon

atom; the x-axis coincides with the CH bond direction, The values for

A, B, C are -61,5, -30, -92,5 Mc, respectively, and were obtained

from the experimental work on the oriented malonic acid radical (3).
Two broad peaks separated by IAI S 6le5 Mc are obtained;

the end point frequencies of each peak are ‘B/Zl =15 Mc, and

IC/Z' = 46 Mc, The asymmetry of the shoulders of the peaks is

negligible since |JA - Bl is approximately l C ~ A}l , Nooverlap
of the two resonance peaks occurs bécause A, B, C all have the same
sign,

The solid curves in Figure I have been included to illustrate

how a different set of values of A, B, C, which we have arbitrarily

chosen to be .5, 78,5, and 111,5 Mc, would have altered the line shape.
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The significant feature of the polycrystalline spectrum of the

CH fragment is its remarkable similarity to the liquid solution spectrum,
In a liquid solution the dipolar interactions of the CH fragment average
out to zero, leaving only the isotropic Fermi term (1). The latter

term gives two sharp hyperfine lines, separated by an amount

]a[ = ,(A+B+C)/3l = lBl = 60 Mc .

Polyconjugated hydrocarbon radicals can generally be regarded
as m-electron radicals, McConnell and Chesnut have shown that the
Fermi contact interac.tion term, am, of the m'th proton of a m=electron
hydrocarbon radical is approximately ~60 P, Mec. P is the electron
spin density on the carbon atom to which the proton is bonded, The
corresponding Im dyadic is - (60‘1\5( + 3011 + 9033)m P Mc, Using
this fact, and equation 35b, one can show that the polycrystalline line
shapes of polyconjugated hydrocarbon radicals should be very similar
to those obtained from the liquid state,

This similarity was observed experimentally by Brown, Ander-
son, and Gutowsky in connection with their proton resonance studies of
polycrystalline samples of DPPH and TPPAP (8), They found that the

hyperfine term <SH> G T I could be replaced by’

H =m “H O
m

* If the hydrocarbon contains C13 atoms, the polycrystalline and
ligquid resonance spectra would be different, The C ~ nucleus can inter-
act magnetically with the unpaired electron; the middle value of its T
dyadic does not equal its Fermi contact term (13), -
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h am< SH> IH for purposes of determining resonance positions (see
m
an earlier footnote); i.e,, the anisotropic interaction could be effectively

ignored. The extent of the resonance broadening and the shape of the

lines obtained conform very well with the conclusions of this section,

CONCLUSION

We have shown how the polycrystalline spectra of an arbitrary
polynuclear radical can be correlated with the magnetic dipolar inter-
actions between the electron and nuclei, The theorem that enables us
to do so was derived for a large extdrnal field relative to the internal
dipolar fields; however, we suspect that this theorem, possibly in
slightly modified form, may be applicable when the internal fields at
the nuclei dominate the external field, When the internal and external
fields are comparable, itis necessary to evaluate rather complicated
integrai expressions,

Polycrystalline spectra analysis can potentially give (1) the
magnitudes and relative signs of the principal terms, [A, B, C]m;

~ ~ ~ *
and{Z) the relative orientations of the diagonalizing vectors, [k, i, j] o

In practice, one usually knows, either from theoretical con-
siderations or previous experiments, the absolute orientations and signs
of the principal vectors and principal values of some T, dyadic ; con-
sequently, the ambiguity in the signs of = . [A,B,C]r; and the orienta-
tions of " . | k,1,] m 2Tre resolved, There is still the unresolved
ambiguity in the assignment of the principal values to the corresponding
principal vectors, For example, we see from equation 35b that the

line shape is invariant to an interchange of B+ Cx in the case of
m-electron radicals,
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We have shown how this information can be extracted when the external
field is sufficiently large. In practice, the determination of the T
dyédic from the polycrystalline spectra may be rendered difficult for

a number of reasons:

(1) If n is large, hand calculation would be impractical, and
an electronic computer would be needed, Large n require very
accurate spectra measurements if all the unknowns are to be determined.
It is questionable whether such accuracy can be achieved;

{2) Significant line broadening mechanisms other than the
dipolar can seriously qualify the conclusions we have reached, A large
y (eq. 16), for example, can shift resonance positions {7,10}; an
anisotropic g factor can destroy the symmetry of the line shape, g(;‘),

about v =Ve and also shift resonance positions (14).
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PART IT¥

PARAMAGNETIC EXCITONS IN MOLECULAR CRYSTALS

INTRODUCTION

Within the past several years a number of successful para-
magnetic resonance experiments have been performed on phospho-
rescent aromatic hydrocarbons, Hutchison and Mangum (2) observed

. . 3.t
electron spin resonance from triplet state naphthalene ("B- upon

Z.u.)
irradiating a single crystai of a solid solution of naphthalene in durene
with ultraviolet light. Van der Waals and de Groot (3) obtained ESR
spectra from rigid glass solutions of phosphorescing naphthalene,
coronene, triphenylene, and 1,3, 5-tri§henylene. Efforts to obtain
resonance spectra from pure phosphorescing aromatic crystals have,

to the best of the author's knowledge, not yet been successful.

The ESR spectﬁ:a '6f the pure crystals are of particular interest;
it 1'.5'; possible that they may reveal the pi‘esence of triplet excitons,
Both triplet (4,5) and singlet {6) excitation energy transfer processes
are known to occur in aromatic systems in the solid state, Whereas
the singlet-exciton concept has proved very useful in explaining energy
transfer processes in molecular crystals (e. ge, seunsitized fluorescene,
Davydov splittings), the nature and role of the triplet exciton in energy
transfer processes involvihg triplet state molecules has yet to be

clarified.

¥Most of the contents of Part II (Chapter A) have appeared in
an earlier paper (1.
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A crystal consists of identical elementary units which may be
molecules, atoms, or groups of molecules, atoms, or groups of
moiecules, atoms and ions. Upon exciting the crystal, say-by optical
means, the excitation quantum need not remain localized in any of
these units. Because of interactions between the molecules, and the
resonance caused by the translatory equivalence of the elementary units,
a propagation or transfer of excitation energy occurs between the
elementary units. Stationary states of the crystal, in fact, are char-
acterized by having the excitation quantum distributed over a larger
number of molecules,

Consider a crystal having one molecule per unit cell (7, 8).

Let |r> represent a state of a crystal in which molecule r is in
the excited state ¢‘r , and all ofher N—l molecules® are in their ground
states, ¢ « The crystal energies are solutions of the NXN secular

determinant:
<r‘HO|r‘>—<rtr'>E =0, -(1)

The stationary states are the corresponding N linear combinations

of the one-molecule excited state functions [r >, Here No is

¥For convenience of mathematical treatment, it is customary
to impose cyclic boundary conditions on the crystal, A sufficient num-
ber of translations of the crystal along any of the unit vectors eventu-
ally causes the crystal to repeat on itself, If N, the number of unit
cells in this cyclic boundary, crystal, is taken to be very large, the
physics of the problem is clearly unaffected,
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the complete exact kinetic and electrostatic Hamiltonian for the problem:

H():Ehr +1/2_ZV1_ . (2)

S
r+s

hr- denotes the Hamiltonian of the isolated molecule, r ; Vrs’ the
interaction of molecule r with molecule s, The sum is over all
molecules of the crystal,

Since the crystal has translé.tional symmetry, ’HO is left
invariant when the crystal is translated by a vector g connecting two
lattice points. Furthermore, the various eigenstates of 7:/0 serve
as a basis for the unidimensional irreducible representation of the
translation group., These considerations lead to the following expression

for the eigenstates of 7{0 :

»

ik>: 1—\1-:—11—/—22 In>exp (i 2 i;‘]?{n] . (3)
n

A translation by an arbitrary lattice vector, g, causes |R > to be mul~
tiplied by exp|i 27 ke é] . Rn denotes the position of the molecule n.

The cyclic crystal boundary conditions define a band or spectrum

of permissible values for k 7 We note that

*The concept of the reciprocal lattice has been found to be very
useful for denumerating the exciton states, and studying their sym-
properties '(9,10). Denote the primitive translation vectors (i. eoy; the
unit cell vectors) of the crystal by t, t_, t, ; then the primitive trans~
lation vectors, bl’ bZ’ b_, of the reciprocae'l lattice are given by

3 .
b, «t, = &, .
1 J o 1)

The permissible values of ‘k lie within the parallelopiped unit cell
defined by bl', bz, bsgo) :
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<£|’HO|}2‘>i0, (4)

when k% 1;', since k and k' belong to different irreducible repre-
sentations of the translation group. The energy, §E= E# , of the

k

lz'th state is

0
S+ZMn£e n’ (5)

where Mn is the "transfer' integral

£

M, =< 6|V A o >, (6)
n £ nf n

¢_3 denotes an excited state function located on molecule j; ¢., the
J
unexcited wave function. A is the well known antisymmetrization
' P . . .
operator, Z (-1 P { . The sum is over all possible permutations,

P
P, of pairs of electrons between molecules n and £. S is independent

of k.,

If one had a free particle of mass m, and momentum $ =H k,

its.energy.would be

. . . -N, -N N, -1
k = Kibi ; Ki_Pi/Ni ; Pi- “i, itl ,...0..., i .

2 2 2

The cyclic boundary condition requires that the crystal lattice repeats
itself after N, primitive translations, "c\i . If k lies outside the
parallelopiped, no new irreducible representation, hence no new state,
is introduced. This follows by noting that

exp[iZﬂ?&'é]. = exp[iZfd:"é] exp[iZ’?ﬂ'Kq'g] = exp[i2mk'-g] ,

where F:" lies within the parallelopiped and K is a vector joining
two reciprocal lattice points. 1
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2
“+ 2 2 2
— k- k-
Zm(x+ky+kz), (1

N
When k is small, equation 5 reduces to

S+I.k.2+1k:2+1k2, (8)
X X )

For a crystal having cubic symmetry, IX =1 = IZ = 'h'Z/Zm*
m* defines an effective mass., Thus, kK can be regarded as a pseudo-
momentum, and S5 would then be the self energy or zero point energy
of this pseudo-particle, For non~cubic crystals, the effective mass
will be anisotropiq and depend upon the direction 0f propagation, An

effective mass tensor is, therefore, introduced,

. (9)

Equation 9 also defines the effective mass tensor when 12 is large.
(For large 12, the anisotropic effective mass will also depend on
velocity (i.e., upon kj).

The above discussion points out that excitation waves behave
very much like matter waves, By taking a linear combination of the
various k states that differ slightly in the direction and magnitude of
12, we can form a wave packet having a group velocity, ;g’ in the k'th

direction given by
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éx, €y, éz are vectors of magnitude 1 in the %, v, 2z directions.
The pséudo-particle having an effective mass, momentum and velocity,
{;g, is referred to as a Frenkel exciton,

The concept of excitation waves and the associated Frenkel
exciton breaks down if there are either (1) pronounced self-trapping
effects; or (2) pronounced scattering by lattice vibrations, crystal
defects, and/or impurities, A diffusional model would be more appro-
priate for the energy transfer processes,

Self~trapping effects correspond to a nuclear deformation
accompanying a propagating exciton wave packet, thus increasing its
effective mass, The self-trapping effects may be intermolecular and/or
intramolecular in origin (11,12). In the event of significant self-trapping,
the excitation may be highly localized. The major mechanism for the
transfer of energy might then be the thermal vibrations of the lattice
which brings the '"'trapped exciton' into a new configuration more favor -
able for transfer to occur, Under such circumstances, we are dealing
with a diffusional process involving thermai activation.

In the event of pronounced scattering by the lattice (case (2} above),
the propagation of energy is again diffusional but now no thermal

activation is required,
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If the excited state, ¢', is paramagnetic with spin multiplicity
greater than one, ESR experiments can, under appropriate conditions,
distinguish between wavelike and diffusionlike energy.propa'gation
modes. In Chapter A we examine the consequence of triplet {wave)
exciton motion on the ESR spectra of molecular crystals*; in Chapter B
we examine the consequence of fhe diffusional motion of a '"trapped"
exciton, Our treatment ignores interactions between excitons, and is
valid only at low concentrations for which spin exchange effects are
negligible,

Aromatic molecules in the triplet state are characterized by a
.z'ero—field splitting ‘o'f the spin states. The removal of the threefold
spin degeneracy may be complete or partial, the extent depending upon
the symmetry of the molecule and the nature of the triplet state molecular
wave function, In these molecules the interaction responsible for this
behavior is primarily the (electron spin)-(electron spin) dipolar inter-
action (13,14) .

ED’ - gi h Z [(f%i'éj) rij—s- 3{;13',’%1)(;13"53) rij—S] . (11)

1<)
The sum is over the electrons of the molecule; g is the {assumed iso~-
tropic) electron g factor; ﬂ is the electronic Bohr magneton; s i

Pa it

is the spin operator of electron i in units of #r; fij is the distance

*We explicitly consider crystalline benzene, naphthalene, and
coronene,
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vector directed from i to j. Itis possible to put equation 11 in the

following form

2

. (12

2 .2 2
N, = (s) -s“/3)+E(s -8

D, E are constants; Ez’ Ex’ ,S~y are the z, x, y spin component operators
{in units of #) for a "S" =1 system, (A simple derivation of equation 12
is given in the Appendix.) In the case of the aromatic molecules con~
sidered, Z, §, ¥ refekr to the molecular axes of symmetry; Z coudd

be téken as the norrﬁal to the molecular plane,

In the presence of an external magnetic field, H , the electron

spin Hamiltonian of the aromatic molecule can be represented as

2 2 o 2 . ~ A
H=ls,-s7rm e B3, -3 e B 500 3

t) 3. T, 1.

i,] .

gelﬁl Zi§i~1§ is the Zeeman interaction term, EZ; S’:‘*;l' Tij‘ij “is

the nuciear hyperfine term (15), The Zeeman term b;lf’thself would

give a-one line resonance at a frequency Vo 5 8 |ﬂl h"1 Ho (ESR
experiments are usually carried out at X~band where v, 9,500 Mc/sec.
and H0 ~ 3,500 gauss). The nuclear hyperfine interaction terms cause
the appearanee.df a number of additional lines essentially symmetrically
distributed about HO and having an overall extension of ~30 gauss, The

inclusion of the spin-spin interaction term (i, es , the ""fine'' field),

however, alters the spectrum radically, Because 74 S is large
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(~0.1 émfl, or, equivalently, ~1000 gauss), the orientation of the
external field relative to the molecular axes of symmetry becomes
important, and the ESR spectrum is highly anisotropic, In -addition,
instead of obtaining a single resonance with nuclear hyperfine structure,
one now obtains a two line resonance with hyperfine structure.* The
separation between these two lines can be as large as 1,000 gauss

for certain magnetic field orientations.,

The above conclusions were first corroborated by Hutchison and
Mangum ( 2) who obtained four ESR lines from their solid solution of
naphthalene molecules in durene, One pair of lines could be assigned
to each of the two differently oriented sites of naphthalene molecules
in durene, (For some special orientations of the external field, the
four lines merge to give two lines, This occurs when‘the external field
is along a symmetry element of the crystal,)

It is possible that low lying triplet excited states of pure aro-
matic single crystals will give ESR spectra that are qualitatively
different from that expected for the isolated molecules that make up
the crystal, Differences in the spectra will be shown to be most pro-
nounced if (a) there are two or more molecules per unit cell that are

not related by a center of symmetry, and if (b) the Davydov splitting

*Actually, a third resonance can be present. For large ex-
ternal fields along the =z axis, H * 3,000 gauss, this line has low
intensity and corresponds to a semi~-forbidden transition between states
having spin components, SZ =1, -1. We neglect this transition for
simplicity of discussion,
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of- the triplet exciton states is large compared to !Dl and IEr . %
Unfortunately, the triplet Davydov splittings have not as yet been
observed experimentally. If the magnitude of the splitting is such
that condition (b) is satisfied, the paramagnetic resonance of a triplet
exciton wave can consist of essentially only two lines, due to the dipole
interaction of equation 12, for all orientations of the external magnetic
field, Furthermore, since the triplet exciton is distributed over many
molecules, the nuclear hyperfine structure is washed out in contrast to
the nuclear hyperfine structure that is observed for isolated molecules.

A two line spectrum representing an average over the molecular
sites in the unit cell does not necessarily prove the existence of co~
herent exciton waves, For example, if the excitation is highly local-
ized requiring thermal activation for transfer to occur, we have a
"random walk" or diffusional process, A two line spectrum will occur
if

-1
T >>‘D, E

Here T represents the characteristic time for the random walk
between nontranslatory neighbors of the unit cells In general, we
anticipate that {(barring any pronounced chemical dimerization of excited
. e -1
molecules in the crystal) the excitation transfer rate, 7 , will be

large if the nontranslatory neighbor interactions are large.

*The Davydov splitting is a concept that has been most useful
in understanding the optical spectra arising from singlet excitons
molecular crystals,. The exciton lines are sharp, and the separations
between them are called Davydov splittings, The magnitude of the
splittings is related to the resonance interactions between the non-
translatory equivalent molecules in the unit cell,
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If the excitation wave undergoes pronounced scattering by lat-
tice vibrations or impurities, the excitation motion is again best regarded
as Being diffusional. The wave packet width of such a "diffﬁsional”
exciton may still be large in the sense that the excitation quantum is
distributed ovér é number of molecules, translatory and nontranslatory,
In that event, itis meaningleés to assign a characteristic time, 7, for
the random walk between nontranslatory neighbors; nevertheless, we
again expect a two line spectrum corresponding to an average over all

molecular sites when the interaction between nontranslatory neighbors

g.

is much larger than IDland
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A, WAVE EXCITONS

AN EFFECTIVE HAMIETONIAN

The tﬁeor.y of singlet Frenkel excitons in aromatic molecular
crystal‘s has been the subject of extensive theoretical study by Davydov,
Fox and Schnepp; McClure; Simpson; Craig; and Winston, A compre-
hensive review and bibliography have been given by McClure (6). As
pointed out earlier, singiet Frenkel excitons in aromatic crystals are
usually treated by elementary degenerate perturbation theory {egs.
2-6), The matrix elements Mnﬂ can often be approximated by simple
multipole expanéions ‘(6). Overlap of the electronic parts of the wave
functions centered on different molecules does not appear in the evalu-
ation of Mnﬂe

The problem of triplet exciton states in molecular crystals
appears to be a little less straightforward, This is because, at first
sight, one would expect the triplet exciton bandwidths to be extremely
narrow. (If we now let [t> represent a crystal state having molecule
t in the lowest triplet excited state, then all matrix elements of the
type <tl Ho lt'> in equation 1 reduce to two-electron exchange integrals
between orbitals on different molecules, and these are expected to be
very small (16). Our order of magnitude estimates using Slater type
functions bear this out.) However, it is likely that intermolecular
charge transfer .triplet excited states make significant contributions

toward broadening the lowest ''neutral' triplet exciton bands. Recent
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work by Lyons (13) has pointed out the possible importance of inter~
molecular charge-transfer effects in molecular crystals in connection
with photoconductivity, It may well be that triplet exciton intermolecular
charge transfer states make an appreciable (~1%) contribution to the
lowest triplet exciton wave functions, and therefore play an important
role in determining the triplet exciton bandwidthe* We hesitate to

offer any detailed numerical calculations in support of this contention

in view of the great uncertainties in molecular electronic wave functions
at large distances, and in molecular wave functions of ionized states

in crystals. Our main purpose here is to show that the problem of
triplet exciton band can be handled by a secular determinant analogous
to that-given above in equation 1 for singlet excitons by replacing the
exact spin independent Hamiltonian, 'H o ? by an effective spin inde=
pendent Hamiltonian, w X that includes the effects of the charge~
transfer states on the triplet exciton bandwidths,

Let |\?.,Q> represent an intermolecular charge«transfer
ionization wave with wave vector &k and band index Qe The lﬁ, Q>
are to be regarded as variational functions to be used to improve the
triplet exciton functions based on the neutral one molecule triplet
states [t> having energy EO. Second~order perturbation theory

for degenerate systems leads to the following effective Hamiltonian

*A. Zmerli (18) has recently claimed to have obtained phospho-
rescence spectra from single crystals of acenaphthene which show a
Davydov splitting of 30 cm=~l, If this is correct, and not a spurious
result arising possibly from impurities, or molecules in lattice defect
sites, the 30 cm-l splitting may well be due to charge transfer effects.
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ty t'
) 5 O, =1 . .
Rip ® - Z (E_k‘Q - E) Viger Vikp (15)
K, Q
- 4 -4' . ! ' {
Viqt! 2k, 0l 7;/,0 lt>f (16)

To second order the triplet exciton energies, & s are given by the

following N X N secular determinant:
|< t!Hflt'>-<t-]t'>f =0, k)

The assumption that the triplet exciton band is dominated by contribu=
tions from the ionization states is then equivalent to the following in-

equality for neighboring molecular pairs:
lRtt‘ l> ‘(Wo)tt" . (18)

‘The ionization waves, [%,Q> s can be formally approximated

by
k,0>= 2_ a@®,9) IKR.Q>; (192)
=
L . 123zr}2-Rm
K.R,2>5 —5 ) e {Qﬁ R_+RY ., (19v)
N m m, m

(ﬁ held constant)
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IQﬁ ﬁ >denotes an antisymmetrized state of the crystal in which an
a, b -

electron has been removed from the molecule at Ra and added to the

molecule at f{b. For the sake of simplicity we have only éonsidered

one site per unit cell, The site index, 6, has been suppressed in Q

for convenience of notation. The exact ionized wave would be a linear

combination of the one site ionized waves,

We shall assume in the present work that only nearest-neighbor
terms are important in the effective Hamiltonian, This implies that
ionized waves having lﬁ' >|?:l , where f is the largest of the primitive
translaﬁons of the crystal (see below), make negligible contributions
to £ . This approximation appears to be reasonable because (1) the
lowest lying ionized waves presumable are those having If{ l < l ?:] ;

and (2) overlap considerations reduce further the coupling effectiveness

of those states having |R| > I%l .

EXCITON BAND DEGENERACIES

Let us now consider a crystal of N molecules, where the unit
cells are numbered, n 21, 2, 3, ..., and where the molecular sites
in the unit cell are specified by 8, Every molecule in the crystal is
then completely identified by the pair of numbers n, 6, Let |n 8 M >
represent an antisymmetrical crystal wave function in which molecule
nf is excited to its lowest triplet electronic state, with spin component
M, and all other 'molecule‘s are in their ground states. If one temporarily

neglects matrix elements of Hf connecting different sites {esgeo,
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%nGMIHf In'9M>), then the functions that diagonalize the secular

determinant) equation 17/ are the one site exciton functions,
129M>—'——1——§ In 6 M > e n0 (20)
ol

When matrix elements that connect different sites (6 ¥ 0') are included
in the secular determinant}equation 17 , then this determinant is

diagonalized by the crystal exciton wave functions

122 M>=Zc6£ lkomM> . {21)
)

Here subscript £ is a triplet exciton band index, {The number of bands
is the same as the number of molecular sites in the unit cell,) For
convenience of notation the nuclear vibrational functions corresponding
to polaron or self-trapping effects are not included explicitly in the
above equations, This can be‘done in a relatively simple way by using
a variational procedure; thg net effect is to reduce the exciton band~
widths by a factor depending on the overlap of nuclear vibrational func~
tions,.

In order to calculate the resonance spectra of the aromatic
crystals considered in this chapter, it is necessary to determine the
regions of band degeneracies or near band degeneracies., To the extent

that we are in a regibn of the BZ¥ sufficiently far from those values

*Intan earlier section  we introduced the reciprocal lattice parallel-
opiped unit cell. This unit cell does not show the symmetry of the
crystal; consequently, it is usually redefined, The new symmetric unit
cell, which has the same volume as the original parallelopiped, is called
the Brillouin Zone {BZ). Itis constructed by putting a reciprocal lattice
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of k for which there is a degeneracy between the bands (thus énsuring
us that the energy separation between the bands is large compared with
the spin-spin interaction), we can use the following 3X3 determinant

to obtain the spin energies of the crystal:

n
o

<k, M A +H ke M!'>-E8 - (2%)

D =z

.E/D is given in equation 11, and the sum ~is ove’r all the electrons in
the crystal. Since .Z/D+ —-Hz belongs to the totally symmetric repre-
sentation of the translation operator, we need only consider elements

between states having the same I(. In regions of degeneracy, or near

degeneracy where the separation between the bands is comparable to

the spin-spin interactions, it is necessary to replace equation 22 by

<k, M|, +_7jD +2/Z |k£ M'>-ES 8, = | {23)

1]
[en]

where £ now ranges over the degenerate or near degenerate bands,
Divide the BZ into two regions, A and I , whose spin energies

are to be calculated by equations 22 and 23 , respectively. The relative

volumes ofi the A and T regions are determined by the relative magni=-

tudes of the Davydov splittings of the band and the spin~spin interaction. *

point at the origin of the zone and then drawing-the perpendicular bi~
secting planes of the lines joining the origin to each of the near lattice
points {9}, The smallest closed volume bounded by these planes is the
"first'' BZ., (In this paper we need only concern ourselves with this
"first" BZ.)

*We take the magnitude of the spin-spin interactions (relative to
the isolated molecule) to be {3):

2/3 (D2 + 3E° 172 .
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The Davydov splitting between two bands corresponds to the difference
in energy between the k = 0 states of the two bands. Large Davydov
splittings relative to the spin-spin interaction imply that the volume of
the A region is large relative to the I region. The A region gives
triplet resonance spectra that are essentially independent of 12 (as will
be shown below), while the I' region gives spectra that are highly
dependent on 1;. Furthermore, the A region spectra will represent an
average over sites ., {In the case of naphthalene, for example, two line
spectra would be obtained for all magnetic field orientations.)

If the Davydov splittings are small compared with the spin-spin
interaction, the T° region will occupy all of the BZ, However, now
the spectra will be independent of ];, and will correspond to that expected
from an oriented gas for which there is no averaging over sites, (In the
case of naphthalene, four line spectra would be obtained for a general
external field orientation. )

The physical reason for the strong dependence of the ESR spectra
on the magnitude of the Davydov splitting is briefly the following: The
Davydov splitting is a measure of the resonance interaction between
different site molecules. If we assign the set of spin states IMG >, |M6'>
to sites O and 6', the resonance interaction and the resonance integrals,

<n9Me]7=/f In'G'M >, are maximized if the sets |M9>, |M9:§' are the same,

9!

The resonance interaction is responsible for defining a common, albeit

arbitrary, axis of spin quantization for the two sites, and spin orientation
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is preserved during the excitation transfer process. The spin-spin
interaction, on the other hand, defines certain preferred directions
for the spin relative to the molecular symmetry axes, If we imagine
that the excitation is transferring back and forth between two different
site molecules, which have different orientations, the spin-spin inter-

action, HD’ competes with the resonance interaction, 2/ The former

°
picks out preferred directions relative to the molecular axes of the site
molecule on which the excitation is temporarily confined; whereas the
latter ''strives' to quantize the spin along a common axis for the two
sites. When the resonance interaction between the site molecules is
larger than the spin-spin interaction, a common axes system is defined
for the unit cell, and two line ESR spectra are obtained. If the spinespin
interaction dominates, the individual site molecular axes retain their
importance, and oriented gas spectra with no site averaging are
obtained,

vKuation 23 expresses the fact that the spin and resonance inter-
actions of our system can be strongly coupled, That is, the resonance
interaction between sites can depend strongly on the spin dipolar inter-
action of the unpaired electrons, The eigenstates of such a system
might be referred to as '"'spinonic'' states to emphasize this coupling.

In the balance of this chapter we explore the consequence of

large Davydov splittings relative to the spin-spin interaction, The

volume of I space will be determined by the extent that band
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degeneracies occur. Band degeneracies can be classified as to whether
they are required by symmetry or are accidental. The Hamiltonian of
the crystal ‘,L,/o or Hf is invariant to time reversal and the space
group operations, Itis easily shown that in the case of the aromatic
crystals treated here there can only be symmetry degeneracies arising
from time reversal, Furthermore, one can show that accidental
degeneracies can occur for benzene while they do not occur for naph-
thalene and corone'ne.. The matter of accidental degeneracies will be
discussed later,

The effect of time-reversal symmetry on the energy bands of
spinless states has been examined by Herring {20), {The extension of
Herring's arguments to spin 1 states is straightforward, and leads to
no new conclusions that cannot be derived from his original paper
assuming spinless states.,) Using Herrjng's method one can show that
time reversal requires that energy bands stick together in pairs for all
reciprécal lattice wave vectors, Eb (Eb is any wave vector that
terminates on the boundary plane of the BZ that is perpendicular to a
twofold -screw axis of the reciprocal lattice).

Benzene belongs to the orthorhombic crystal system (21) and
the D;f‘ (Pbca) space group which has three mutually perpendicular screw
axes, and three mutually perpendicular glide planes. The three primi-
tive translations, ?:i, of the crystal are all mutually perpendicular; the

three primitive translations, Gi’ of the reciprocal lattice space are all
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mutually perpendicular, One encounters degeneracies at all boundary
points of the BZ. Naphthalene {22) and coronene (23) belong to the

. L 1 . ‘
simple monoclinic system and the CZiSt (le/a) space group, which has

a twofold screw axis. The primitive translations that define the unit

cell of the crystal are:

?1=€:csinﬁ§1+ccosﬁ€2;

tz'—'a:aez; (24)
f =b=be_.

3 3

1 éz, é3 are three mutually perpendicular unit vectors. The b axis
is parallel to the screw axis,

Figure II-1 shows a cross section of the BZ for the simple mono~
clinic system. It extends a distance 63/2 above and below the plane
of the paper. The distinct values of K {see earlier footnotes) are given
by:

t= Kb 3 b
k= xb +K6 +Kb,

; _1/251{1, K., K3<1/2 . (25)
There is a degeneracy for all points on the BZ boundary plane perpen-
dicular to the screw axis in Kk space {i.e., a degeneracy occurs for all
points on the planes K3 = _-I;l/Z). In addition, it is possible to show

that there are degeneracies in the naphthalene and coronene systems

along the lines

(These lines lie in boundary planes.)
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The simplest way to demonstrate the above time reversal
degeneracies without recourse to any elaborate symmetry arguments
. . : ~b [£Pg g
is to expand the exciton matrix elements, <k GMlﬁf K oM >,
. e |
<12(1)6M‘1 ﬁf 112(1 )_0'M'> [6# 0"}, in terms of the molecular matrix elements

<r19M|'Hf |n'6'M'™>, If one makes use of the fact that N is real,

~f
then one can show that when 6 and 0' are related by a twofold screw
axis qpefation, the exciton matrix elements (6 ¥ 0') are zero.* For
the benefit of the interested reader, however, the time reversal sym=~
metry proofs are given in the Appendix.

If the spin-spin interactions, ]‘;/ s are included, the above band

D

degeneracies still occur because H is also invariant to time reversal,
-~

The band degeneracies can be removed, however, by an external mag-

netic field. {bur system no longer shows time reversal symmetry~-

the new symmetry element is the product of time reversal and inversion

of the magnetic field direction,)

One can show that there are no degeneracies required by the
spatial symmetries of these aromatic crystals. To do this it is nec~
essary to introduce the concept of the group of the wave vector 12'.

This group comprises all those symmetry operations of the space group
which leaves k' invariant., It can be shown (24) that a nonaccidental
degeneracy of the band at certain values of 1}:(12 = ‘l'(‘) can only occur if

k' is left invariant by some symmetry operation. k' must therefore

be either parallel to a rotation {or screw) axis or in the plane of a

*In an analogous manner we can show that the diagonal matrix elements

(Eq. 23) of the 0,0' sites are equal. As a result, we are led to a de-
generacy that is essentially the same as that discussed by Herring (20).




reflection {or glide) plane. lf{'ﬂ‘M> will denote a crystal exciton function
where Kk'is along a symmetry element.

A rnembex; of the group of the wave vector £ can be denoted by
{E}§} » B being a rotation, proper or improper; § anycombination of

* .

1att§ce translations and translations between sites. The various B's
of this grodp are isomorphous with a point group., The irreducible
representation of this point group determines the transformation
behavior of IE‘£M> . If there is a two~-dimensional irreducible repre-

sentation of this point group, there must be two wave functions \kl‘ M>

and ﬁ(‘z M> of the same energy and k value, K' (10).

|121' M> ) IEl' M>
{B 15l = exp (i2mk'3) R (B) [ _ (27)
~ lk'z M> ~ k! M>

Here E(B) is a two~dimensional irreducible matrix of the group of ’1;'.

If the point group has an n~dimensional representation, then there must
be n functions of the same k' {but from n different bands) that have

the same energy, and which form a basis for the n-dimensional irreduc-
ible representation,

The crystal systems treated in this paper are either monoclinic

or orthorhombic. For these systems all irreducible representations

of the g‘roup of the wave vector k' are unidimensional. This follows

most quickly by noting that the point groups, (D , underlying the

2h* Can)

crystal space groups we are considering all have unidimensional repre-~

sentations., The point groups associated with the group of the wave
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vector for the orthorhombic and monoclinic systems must either be

alsoD_. and CZh’ or subgroups of D2

>h and CZh’ respectlively; hence

h
they too are unidimensional. Overlap of the bands is, of course, per-
missible.

A's pointed out by several authors (25, 26), it is possible to
determine the coefficients c@ﬁ‘ {eqs 21) when Q = 0, and determine
relationships among the coefficients when R is along a symmetry ele-~
ment of the crystal by applying group theoretical arguments. When
% =0 the crystal wave functions I%ENI> serve as a basis for an ir-
reducible representation of the factor group, We have for naphthalene
(or coi‘onene)

Ik, M> = [ IR1m> H-! 1RUM>] 7 N2, (28)
2=1,2

and for benzene

N Iv{4) R
k M>= 2 ]é S sin{me/2 +wW/4) |kem> . (29)
. 6=1{1) "
(,@ =1,2,3, 4:)

(Benzene has four molecular sites per unit cell.)

When k is not zero but is along a2 symmetry element, say para-

~

llel to the screw axis in the direction of b, we again find simple relation~

ships, For naphthalene (or coronene) we have

C.,=+C

ig (302)

11e °

and for benzene
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C. =+C ; C =+C

0 S Z%me ¢ “my (30D)

ive ®

(The sites have been labeled so that site I is transformeci into site III

and site II. into éite IV by the sérew axis operation.,) Symmetry argu-
ments cannot be used as a means to determine the coefficients for a
general 1;._ Any linear combination of the one~site functions will have

the same transformation properties as any other combination, It is then
necessary to solve a secular determinant for the eoefficients, If one
assumes, however, that only nearest neighbor interactions are important,

the coefficients, C_, , are the same as for the k = 0 states, With naph-

64

thalene as an example, equation 14 leads to the following secular

determinant;

. [A\; . Py
Hy, (&) -¢ Hy 1K)
=0, (31)
HII,I(k) Hn,n@{) -€
where

~

k) = 1) = 1‘;‘“ flf‘ub
HI’I(k) HH’H( )) 2A cos 2kea + 2B cos 2k
+ 2C cos 2 ke C (32)

Hy () = Hpy (k) = 4P cos (ik=a) cos™f keb); Cpp= £ Cpp,

The above expression (eq. 32) suggests that the two bands stick

togethér on the planes KZ, =+ 1/2, K3 =+ 1/2, since HI I is zero there,
. - - 3
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Time reversal only required a degeneracy on the planes K3 =+ 1/2
and along the lines defined by equation 26, Taking into account non=
nearest neighbor iﬁteractions, we fina that the bands seplarate for all
points exceptthose dictated by time-reversal symmetry,

The Davydov splitting is is 8P, P consists of a sum of two
terms: the "direct” term, <¢' _ ¢HHI7Q/O ldp& ¢_ &' >, and the
"indirect'' term arising from the ionization state contributions, The
'"direct' term involves an exchange interaction and is presumably
small, If only those ionization states characterized by an electron-
hole separation = &/2 + E/Z _ need be taken into account, then the
"indirect'" term can be approximated by -2 AE -1 flfz. AE
denotées the energy difference between the ionized state and the lowest

neutral triplet. fl’ fZ are defined by

) + -
= < &' A >
fl ¢ nl ¢nﬂ‘ VI,II I‘“’¢ nl ¢ nll

(33)
+

f < o' Ad~ >
2 ¢ nl ¢nH| VI,II L’”q) nl ¢ nll

¢! 0 is the neutral triplet wave function of molecule nf . VI II denotes
n 3
. . + -
the interaction between sitesI andII of the unit cell, ¢n9 ¢n9‘
represents an ionized triplet state; an electron is promoted from the

highest filled bonding orbital of molecule nf to the lowest antibonding

orbital of molecule n@',
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In the case of naphthalene {or coronene) one easily sees that
there can be no accidental degeneracies. In the case of benzene itis
poséible to establish that accidental degeneracies can occur within the
BZ. Taking into account nonnearest neighbor contributions to the band
energies, and noting that time-reversal requires pairwise degeneracy
on the surfaces of the BZ, we find that there can be {1) curves of degen~

eracies in the K, = 0 and/or K, = 0 and/or K_ = 0 planes, and{2) points

3
of degeneracy on the symmetry axes. The ordering of the band degen«~
eracies and the symmetry of the corresponding wave functions at k=0
determine the planes in which the degeneracy curves lie. If, however,
one omits nonnearest neighbor interactions, one finds surfaces of
"accidental" degeneracies, These surfaces extend throughout the BZ
and intersect the boundary planes along the boundary edges. If the non-
nearest neighbor interé.ctions exceed the spin-spin dipolar interactions,
the regions of ""accidental'' degeneracies are conf’ined only to the neigh~
borhoods of the aforement._ioned curves and points. (The reader is referred
to the Appendix for a proof of the above remarks.)

Clearly, if the Da;v'ydov splittings are large, the total region of
the BZ occupied by those values of K that are sufficiently close to the
curves or points of accidental degeneracies, so that equation 23 is
required to calculate the spin energies, is quite small, It is small in

A
fact in comparison to the region occupied by those k's that are sufficiently

near the boundaries of the BZ where time reversal degeneracies occur,
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RESONANCE SPECTRA

In using equation 22 to calculate the spin energies in the A

region of the BZ, we encounter matrix elements of the form

- I 2
<k£MI-HD|k£M'> -ZQICM' <n9M|};/-D|n(9M'> G

£Y_F(k 0MM') + > G{k 60'MM) ,
6 . <o’ £

where
Pk oMM = Ic |2<n9M| N jtem™
2 pgl €V A
t{tFn) T
A A A .
x exp | 2mk. (R_t'é)_ RnQ)] s

G(k,60'MM") =Zt‘£°ze*'cw' <noM| Y oM '> (35)

X exp[Z']ﬂ/;. (f{ —ﬁne)] + C *<t0‘M|:,é/D |nomM >

t6! EOCEG'

~ U -~
x exp [ 2%k, (RnONRtG')D .

26'2 = 1/2 for the aromatic crystals

discussed in this chapter. The terms F(kEQMM'), G(kﬂOO'MM‘)

As pointed out above, IC

arise from the spin dipolar interactions between triplet molecules, and
they are éxpected to be small, If one ignores the F and G terms, it
becomes a simple matter to calculate the matrix elements

<12£M’| _H_D_'l‘;ﬂMb . (An estimate of F and G will be made later on.)
With naphthalene as a r.epr’esentative example, we integrate over the

space coordinates and obtain a matrix element involving only spin
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functions and spin operators,
N N
kM k Mt>
< £ | ND I iM

~1/2{<M [D(SZZ}- 1/352) + E(SXZ- syz)]I M"> (36)

2

. 2 2 .2 ‘
+ <M [D(SX -1/387) + E(SX -SY )]II M >} .

Here D = 40,1006 cm ; E = -0, 0138 cm ™.
The x axis corresponds to the long axis of the molecule; the y axis
corresponds to the short axis of.the molecule, The sﬁbscripts Iand Il
indicate that the x, vy, z axes coincide with the molecular axes at sites
I and II, respectively, To facilitate the computation the spin functions
were taken as qua\ntized along the b axis (screw axis) with unit vectors
gz’ Aey, %x in the direction of g, 4, and ¢! (8! being perpendicular to 3
and ’l\:t). It is a simple matter to transform the spin operators from their

~
e

respective molecular axis systems (x,y,z)I or (x,vy,2) ,

11 to the éx, E ,

Cartesian system and calculate the matrix elements.
The following spin Hamiltonian was found to be equivalent to the

yD operator (ﬁs expressed in cm-l):

}./S:(NS) + (HS) = -0, 00588(822— 1/352)-0. 0345(sXZ-SY2)
I I ‘

® e : ' 7
+0 03.32,(sXsY + sysx) (37)

~ .
€ , e , e Cartesian system).
z

This spin Hamiltonian can be further simplified by rotating

through an angle 6 = 68°, counterclockwise about the b axis, thus
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transforming the Cartesian system frome , € , € to e ,% s € s
z° Xy z X v
7::/ becomes
5]
- . 2 2 2 2
;L/S = -0.00588(82 -1/387) + 0.0478 (SX, -sy, Yo (38)
For coronene we have
o 2 2 2 2
7~‘/s = o.oz73(sZ -1/35% -0.0229 (sX -sY , (39)

N
where the x, y, z axes are taken as coinciding with '(\:', 2, b, respectively,
For benzene the following spin Hamiltonian is obtained:*

2 2

HS = D[0.168(S_“-1/3 sz) -o.z.zs(sxz-sy ). (40)

Here x, y, z axes coincide with ,’t\), 3., ?:, respectively (21). Figure II-2
gives the exciton spin energies relative to those of the free molecules
and summarizes the above results,

We now estimate the F and G terms (eq. 35) for naphthalene,
the results being qualitatively the same for the other systems, F(kEQMM')
involveé terms of the‘type <n6M] HD [tOM'>, which can, after slight
manipulation, be approximated by the following equation, when M = M!' = 1,

<n6l A b |to1>

t¥Fn

2 2, -3
~1/2g ~ B '*s.mnel(l) ute(z)[ P une(l) “te'(z) >

-3 % p <un9,<1) o, ,(2) o(1)8(2)] (41

X (32 ) (8,807, a0 wy, (2BWa(2)> «

2 2
*The spin Harniltonian of benzene molecule is D(S -1/387), =
being normal to the molecular plane. Hameka (28) calculated D to be

0.15 cm -1 for a 3B1 - state,
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}:fE+ (0.0471)
E+ (0.0458) £ ¢ ¢
. E+, E+, E- — E+, E-{0.333)
{0.032) — E+ (0.284)
SN (0.0195)
— E (0.0039
~of B ) _ i
§ L. E-(0.0138) - E (-0.112)
~ — E (-0.018) T - (-0,172)
K
E~ (~0.0499)
£ _f £
| E {~0,0671) E (~0.064) | E (-0, 667)
Naphthalene Coronene Benzene

Fig, II-2, Zero-field energies of the triplet exciton states of crystal-

: ' f. f .
line naphthalene, coronene and benzene, E, Ei denote the zero=field
energies of the isolated molecules; E, E4 denote the triplet exciton
spin energies, fE, E refer to the energies of the M = 0 states.

-1
Energies are in cm = except for benzene where the units are D {see

text)s
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u o denotes the "'excited' orbital of molecule n6 (the lowest
n

unfilled molecular orbital of the unexcited molecule); u ,, the highest

no
filled orbital of the unexcited molecule, An estimate can bé made of the

- 2 -1
value of the terms in equation 41 by replacing ﬁfi‘lz) 3 by (Rnt rlz) and

-5 -2

Lo -~ ~ -~ -~ A -~ -~ -l hd
(3 rlZ) (s‘2 rlz)rl2 by (sl' ent) (52- ent) R . 1, @and then using

the Davydov-type dipole approximation, ént 'is a unit vector connecting

-~

the centers of molecules nf and t0; ARnt = P‘:na— Rt@ o

This approximation is good when the distance between centers of
molecules is several times larger {say 8 to 10 times larger)}-than the
dimensions of the molecule, Unfortunately this is not true for nearest
neighbors, and only roughly true for next-nearest neighbors, Itis
expected, however, that the above substitution will be within an order of
magnitude of the correct value. {This technique cannot be used in the
case of benzene because the dipole transition matrix vanishes and an
octapole matrix is nécessary (26). The conclusions based on the naph-
thalene. crystal should be qualitatively applicable to the benzene crystal,)
The six nearest naphthalene neighbors need only be considered, and the
dipole transition matrix element can be obtained from the experimental
oscillator strength for the transition 1A1g_——a~ 1B2u+ (28. (The lowest
triplet of naphthalene is the 3B 2u+ state.) We obtain the maximum value
of 4.8 x ].0'-4 cm™L for |Z6 F(kﬂ 61 l)l when k = 0, The other matrix

elemerts, F(kﬂ OMM'), are of the same order of magnitude, The

term
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Z G(kzee'l 1)’

6<0'

can be evaluated in a similar manner as above and gives a maximum
-6 -1 ~
value of about 5 x10 cm for k = 0,
: ) . -4 -1
One therefore obtains about 0 to 4,8 x10 cm as the range of

values for

ZF(kﬂGMM‘)-l— ZG(kﬁGO'MM') .

0 0<6'!

It is most probable that the approximations used underestimate the actual
range., It may well be that the true maximum value is a factor 5 to 10

) ' -4 ~1

times larger than 4.8 x10 cm

A ~b . .
We note that when k = k', a vector terminating on the boundary
of the BZ, where time-reversal symmetry requires that the bands stick
together in pairs in the absence of an external magnetic field, the spin-
Hamiltonian (eqe. 12) is significantly different from that of the A region.
One expects in the cases of naphthalene and coronene that the spectra
. ~b
obtained from the k states to be very nearly the same as those from an
"oriented gas'' of isolated molecules except for the absence of hyperfine
b

structure, In the case of benzene, the spectra from the k states are

not approximately the same as those from an "oriented gas'' of isolated
benzene molecules, although they are different from that of the interior
(A region), The spectra from the '"oriented gas'' would show no averaging

over sites. Its fine structure would consist of {a) eight lines for an

A : - AN
arbitrary H, and (b) two lines when H is along Q’ b, or G. The spectra



64

from the Eb states on the other hand should consist of four lines for

an arbitrary I:i{, except when ﬁ is along g, %, or /c\, whereupon two line
spectra should be obtained. In general, the ESR spectra are highly
dependent on k in thev I region.

We have proceeded above on the assumption that the Davydov
splittings are large, and have calculated the‘ spin energies to first order,
It is worthwhile pointing out the qualitative changes in the ESR spectra
that are introduced by the second order corrections to the spin energies,
Again using the two site naphthalene {coronene) as an example, we denote

the eigenstates ‘as }Eﬂ ¥. >+ The spin functions Iyi> diagonalize the
- . i :

"averaged'" spin Hamiltonian,

Uz (N +(H )1+ A,
Second order corrections to the spin energy of the |12£ -yi> state arise

from the lkﬁ 'Yj> states (£ '>c£). We have as the corresponding energy

correction:
. . 2 l 2
S Wot By e e vivg

i Ely,) - Bl y) i Ekyy,) - Bk v)

where V =1/2 [(/Z/S)I-( #S)II] « Since the Davydov splitting is assumed
large, the denominator can be approximated by

+| 8P cosnkea cos 7 keb | = AE{I?) for alli, j. The 4+ holds if the #

state is higher in energy, the - otherwise,)

The observed resonances correspond to intraband transitions;
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resonance occurs for the lyi > —hlyj > transition to first order;
however, to second order two lines will be present, displaced an

amount

AE(ﬁ) '12{ |<Vs| v Wi >|2- KVSI Vtyj >|2 ]

to the right and left of the position calculated to first order, This will
be generally true for all external field orientations. If we take AE
to be ~5 c:rn'-1 and the bracketed term to be ~0,05-0,1 cm_l, we
have two lines displaced ~5 to 10 gauss to the right and left of the
first ordér resonance position, (The overall resonance line shape is

'y

obtained, of course, by averaging over the density of k states,)

The AsI Scattering Process

An exciton having a wave vector Kk can interact with the lattice
and be "scattered! into a state of a different k value, The most
important perturbing sources are presumably those which destroy the
transiatory symmetry of the crystal: i, e, , lattice crystal defects,
impurities, (One would have to include any excited singlet state
molecules present as impurities.) Collisions between excitons may be
another scattering factor, Although the above scattering mechanisms
are most probably‘spin independent, they, nevertheless, can cause spin

relaxation. For example, we noted earlier that the stationary spin
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states of the A region of the BZ are in general different from those of
the I region. If an exciton is scattered so that its k vector moves
from the ‘A region to the I' ’ and back to the A region, this scattering
process can clearly be a spin relaxation mechanism, Below we make an
estima‘?e of the potency of this relaxation meéhanism. We assume that
the energy minimum of the exciton bands occurs in the A region, and
that the voiurne of the A region is large compared with the I region.
Thus, even at low temperatures, the ESR lines can be essentially
regarded as arising from A exciton states,

The spin Hamiltonian of a particular k state, say Er, in the

absence of any interactions with the lattice would be

v

H - elplas « ip(s 83 +ms 5%,

A-elplocs +§ 7, (42)

(The eigenspin states are |ry > )

We now assume that a perturbation term, r\i (t), can be added to

equation 42 to take into account the scattering caused by the lattice.

The scattering process is regarded as one which takes our k* exciton
ap$

: R -
and randomly ''carries it" through the other k states, k , as a result

of which it experiences the corresponding zero-field Hamiltonians,

H
\ S-

-~> )

i ’ !
of the k  state,

If our k  exciton is initially in spin state |r\,l>, R

the transition rate from | y'> to | v> ,is
T r )



1 _irww' t 2
R = 1 —_— v t : 4
royy' o~ hmT-—boo _HZ.T r W'() © de ( 3)
o.
vy
by first order pe.rturbation theory, - wYY' = Erv' - Erv and
A% '(t) = < y| v(t) | y' >. Applying the Wiener-Khinchine theorem
r Yy ' - r

(29), we have that

2 ® * -lrQ) IT
R ,= 1 <V (0) VvV (1) e YW o4r (44)
Toyy royy T OYY ave /
where
m lim 1 T/2 %
<V (00 VvV (r)> =Tooo T v () Vv (ttr)at ,
oy Ty ave royy"royy
-T/2
(45)
*
We preferably obtain < V. (0) Vv [(7)> by averaging over a
' oYY Ty ave

representative statistical ensemble,

LetP oo (t) denote the probability of finding the '"wandering"
exciton in state o' (1«{0") at time t + to when it was in state ¢ at
time to. Let P(c) denote the a priori probability of finding the
exciton in state o . (P} = P . (t+o0) . We expect the distribution
of the P{o)'s to be essentially the same as the Boltzmann distribution:_)
Let r"YO‘ denote the spin perturbation when the exciton is scattered

into the o .state.
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V. - Hs.cr "B T . . (46)

* .
Then < _V | (0) Vv ,(t) > is given by the following expression:
: T ¥y : r ¥Y ave .
2 (v (v BeE -z HF O EHT) PR L
grrof o et oot st rts . oot * 7
Ta0 YY YY T2 @ YY YY

(vF v (47)

where
o o .
= -
YY
Furthermore,
1-P  (s) P, (s)
oo oo .
s _'-C(r ! -—__;_“ - Co-kcr(r' * (48)

(s —0)

Here 7L0_U, can be inte;‘-preted as the condiltiona.l probability that, if

a change occurs from state o during a time interval, s, this change
takes the system from state o to o' . Ccr denotes the probability
for a change to occur from state o during the time interval, s.

The P o (t)'s are obtained by solving the Chapman-Kolmogorov equa-

tions (31)

aP__, (9
T dt i} -Co"Pcrcr‘ (t)+ ?pcr ,(Z(t) Cﬂkﬂo" ) (49)

( ¢ held fixed)



69

We thus obtain the following expression for R ,:

r Yy
Q0 .
2 ok ) 0—. —lrw YY'T
AN RN SV WUE ar
- Q0

(50)

qti oo
1
27

Popt (1) = 0 ] g a5

q-i ao

g > 0, and all singularites occur to the left of q. ﬂ is the unit matrix,

0 is the inverse of the matrix 0 (s), a typical element of which is

[o (S)]jz = (Cg + s) 6j.€ —C'jkjl , (51)

The overall transition rate from level ¥'s R , is obtained by summing

over all states y(y # y') and doing a Boltzmann average over all states

-~

k' inthe A region,
The results so far are strictly formal since we do not know the

C.'s and }Lj 's. We approximate the above in the following way, Ignore
J .

2

the small dependence of ?3/5 on k in region A, Designate Ws in

~

this region as NSA « Use an average HIS for region T , Our

~A—

perturbation V(t) is now [Nsr- HSA ] £#(t). £(t) is a random function

capable of taking on two values, 1 and 0, We denote the probability per

-1
unit time for the I' ~——> A transition as CI‘ =T T s and that for
’ -1
A—+ T as CA = Th o QOur spin transition rate is now approximated

as:
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00

2
I :
(y ) I/ <f(0) f('T )> cosw ,TdrT
s vy ave vw oo/

R =2%h

_ -2
le .

(o]

_ | (52)
i
GANERN NS

<£(0) f(~ )>ave can be evaluated using equations 47 .’

'TC 2 ’TCZ
<f(0) f( T)>ave H — +texp| - -.7_.7_-__ 1 (53)
A C Tr'A)
We h:ave set{r )_1 + (r )-1 = T —1. R becomes
2 T 3 2 2 -1
R = 3 .
SRERL S (TSN I Al [ N TCWRE SRt DR I EY
. YY :
When 7~ >7 .,  and lmw,"rc>1, we have TCNTf and that
-2 T 2 2 -1
R = 2% @ T ). 55
- 3,5 | ma (55)
YY
We expect T > T since T /T ~ volume I’ region <1
A r v T A volume A region *

11

AtY¥-band Iw l‘ ~ 1x10"" rad/sec. The inequality [w . I T .>1
| YY _ YV c

-11
implies that T . >1x10 secs, This inequality is consistent with
our assumption that we have a wave exciton system, ‘COn physical
grounds, one does not expect the scattering rate to exceed the interaction
between molecules which gives rise to the excitation propagation, If
. . ' . -1
the resonance interaction between molecules is ~ 5-10 cm (or

~ 8 x .10-lI secs in reciprocal frequency units), T h is expected to be
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-1% -11
greater thanB8x10 secs. If 7_~hx10 sec , the lattice perturba-

T
tion becomes comparable to the resonance interaction between
mol.ecules, and a significant departure from the wave excito.n model
is to be expected, A diffusion model would be more appropriate; our
first order time dependent perturbation treatment is no longer valid,)

We see from equation 55 that (1) R decreases as T

vy' A
increases (i.e., as the Davydov splitting increases); {2) RY’ , decreases
with increasing wW' (i.e., with increasing external fields). In addition
RYYI is a minimum along symm‘e-try elements of the crystal, We
conclude that the relaxation rate can best be reduced by applying a
sufficiently strong external fieid along a symmetry element of a crystal
having large Davydov splittings. This is precisely what one expects on
int;litive grounds without recourse to the methods of this section,

We apply equation 55 to the naphthalene crystal.. The external
field is taken as ~ 3,000 gauss and is directed along the b axis.

We do not know what value to assign T If we set its range to be

A -
-4 -6 . . . .
such that 1 x 10 > TA >1x 10 sec , we obtain a spin relaxation time,
- -4 -1 -2 . . .
R ", where 1x10 "sec<R <1x10 " sec,., This gives negligible
line broadening but does give a spin relaxation rate that compares
favorably with the low temperature spin lattice relaxation times of

organic free radicals, *

At this point a few words concerning the validity of this section

*The spin-laftice relaxation time of malonic acid, for example,
is ~0.1 secs at helium temperatures.
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is in order. We have reduced the effect of the scattering process to

‘a perturbation, l/:(t)_, which we add to eqilation 42, That a re&uction of
this nature is pos_sible,’ and that it can be approximated by-fhe perturba -
tion model we have used, clearly requires justification, This is beyond
the scope of this paper. We justify ourselves by saying that (1) our
choice of V(t) makes the relaxation problem tractable, and (2) we are
only interested for the éime being in an order of magnitude estimate,
which our V(t) probably gives. We await experimental clarification
before proceeding further 1n rigor, Our method does suggest that
observable spin relaxation effects may occur from the A - T

scattering process,



73

CONCLUSION

We have calculated the ESR spectra to be expected for triplet
(wa&e) exciton states of benzene, naphthalene, and coroﬁené. (The
exciton concentration is assumed low. At high exciton concentrations
one expects an exéhanged narrowed spin resonance line centered at
,ﬁe= 2,) The Davydov splittings between the bands play an important
role in determining the nature of the spectra., If the splittings are small
compared to the spin-spin interactions, the spectra are expected to be
essentially the same as that obtained from an "oriented gas'' of isolated
molecules, In the exciton case, however, no nuclear hyperfine structure
would be present, If the splitting,s are comparable to the spin-spin
interaction, the spectra are highly dependent on the exciton wave vector
12 , and characterized, therefore, by very broad line resonances, If
the Davydov splittings are large, we now find that the spectra are
essentially .iﬁdependent of the wave vector E, except for small regions
of time reversal and accidental degeneracies and certain small terms
(F, G). Two-~line spectra (with no hyperfine structure), .rbepresenting
an average over the molecular sites in the unit cell, are obtained to first
order, If the energy minimum occurs for a k vector, k s On a
boundary plaﬁe of the BZ where there are time reversal degeneracies,
a significant change in spectra would occur by lowering the temperature
sufficiently so that the k states near Eb are preferentially populated,

. b
The spectra would now be highly dependent on k near k and would not

show the full averaging over the molecular sites in the unit cell.
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Beécause of possible lattice perturbations, one must consider
two time~ dependen’.cr exciton-lattice interactions that can lead to spin
1attice relaxation, First, an exciton can be scattered so that its Kk
vector moves from the A region of the BZ to the I region, and back
to the A region. Since the stationary spin states in the two regions are
in general different, this excifon scattering is clearly a relaxation mech~
anism. We note that in certain special cases this relaxation mechanism
ceases to be effective, If, for example, in the case of naphthalene, the
steady appliéd field is along the twofold screw axis (or perpendicular to it),
and if the applied field is so strong that the Zeeman energy is large
relative to the zero-field splittings, then the stationary spin states in the
A and T regions are essentially the same, and the A to I scattering
does not lead to relaxation. |

A second type of relaxation mechanism arises when the electronic
excitation density on the various molecules of the unit cell varies with
time, This may be achieved by mixing eiciton states With the same k
vector, This mixing clearly‘can be brought about by intermolecular and
intramolecular lattice vibrations that make various molecules in the unit
;ell nonequivalent to one another, Certain degenerate intermolecular
vibrations may be particularly effective in this respect, But here again
this relaxation mechanism can be made relatively ineffective in certain
cases by thé application of a strong, steady external field in special

crystal directions.
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In the case that an exciton diffusion model is more appropriate,
it is again the jumping of excitation between the various molecules of
the unit cell that is doubtless the most important sourée of épin-lattice
relaxation and line broadening. Itis cpmparatively eassr to make orderm

of -magnitude estimates of resonance linewidths A » due to this effect
2
A ~ZT T, (56)

Here Z is of the order of the zero~field splitting and 7 is the char-
acteristic time for random walk between nontranslatory neighbors in the
unit cell, If the triplet exciton Davydov spliftings are of the order of

)

will be at least as large as this. Thus, tolerable resonance linewidths

-1 -1
1-10 cm 7, then we may reasonably expect that the diffusion rate (7

: -1
are expected from equation 56 when Z is in the range 0,01-0,1 cm
Agaiﬁ, for strong external fields and special crystal orientations, the
present relaxation mechanism can be almost completely eliminated for

some crystal systems.,
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ADDENDUM

Although we have based our discussion on a particular set of
aromatic molecular crystals, our conclusions are expected to be valid
for other systerﬂs. The recent wor.k of D, B, Chesnut and W. D,
Phillips {31), and D. B, Chesnut and J. P, Arthur (32) suggests that
triplet excitons are present in the crystalline tetracyanoquinodimethane
(TCNQ) ion-radical salts, These salts have thermally accessible trip-
letss At low concentration (i. e., low temperatures) triplet resonance
spectra showing ''fine' field structure are obtained, No nuclear hyper~
fine structure is present,s The '"fine'" field in each case is believed to
arise from the spin dipolar interaction between two unpaired electrons
distributed over many ‘T,(.INQ mglecules (33). Increasing the temperature
results in an exchanged narrowed resonance near g, = 2, The crystal

.structure of these salts is not known in detail, but the majority are
believed to be triclinic,

The crystal structure of the {C S+)Z (.TCNQ); salt {32} is
believed to be monoclinic with two sites per unit cells The Cs+ ions
separate the nontranslatory TCNQ neighbor‘s. The ESR spectra show
no averaging over siteé. Two lines are obtained for each of the two
differently oriented TCNQ groups. This suggests that the interaction
between the nontranslatory neighbors is quite small (2 0.001 cm-l)j;.
The Cs+ ions most likely ""insulate'' the nontranslatory TCNQ molecules,

causing a reduced resonance interaction between them.,
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B. DIFFUSING EXCITONS

INTRODUCTION

In this chapter we shall enlarge on the earlier, somewhat limited
discussion of diffﬁsing excitons. In particular, we are interested in
the resonance line shape as a function of the characteristic time, 7 ,
for the random walk between nontranslatory neighbors of the unit cell,
A solutlbn of this problem is important for a number of reasons., In
the first pla,c.e, the diffusing triplet exciton may be frequently encountered
experimentally. For example, in the event of significant self-trapping
effects, thermal activation may be required for the energy propagation,
If there are important differences between the diffusing and wave triplet
exciton ESR spectra, one should know what they are. In the second
place, all previous calculations of the line shape of a resonating unit
transferring randomly between different sites have, to the best of the
author's knowledge, been done only for large external magnetic fields
and negligibly small 'fine'' fields, Consequently, it is of interest to
extend the calculations to the triplet state case, where the fine field,
the spin-spin dipolar fields of the unpaired electrons, cat be comparable
to, or larger. than, the external field, Furthermore, the solution of our

triplet state problem would give us insight into handling other problems,

*We treat only the case where the excitation quantum is confined
to one or more translatory molecules at any instant of time, If the
excitation is simultaneously distributed over a number of translatory and
nontranslatory neighbors, the problem is in general more formidable.
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For example, the problem of the exchange narrowing of resonance lines
when the "fine'' fields are comparable to the Zeeman energy most likely
caﬁ be treated by an extension of the techniques‘ presented hére.

The triplet state ESR behavior ’for small or intermediate external
magnetic fields differs from the high field {Zeeman) cases previously
considered in the literature in an important respect, In the latter case,
transfer between equivalent magnetic sites, which may or may not be
translatory equivalent, does not affect the resonance spectra-lines
are not broadened, narrowed or shifteds In the former.case, transfer
of excitation between two equivalent magnetic (but translatory non-
equivalent) sites can result in significant changes in spectra, as pointed
out earlier, As a result, the well-known rules (_37,38) which correlate
the line shape and transfer rates for the Zeeman case, need not hold
necessarily for the triplet case.

One of our aims in the forthcoming pages will be to obtain a
better under s.tanding of the above point of difference. (A clarification
of the above will, as we shall see, enable us to distinguish experimentally
between diffusing and wave excitons provided certain criteria are ful-
filled,) Another of our aims will be to obtain a qualitative under~
standing of the line shape when the non-translatory sites cease to be
magnetically equivalent. (This occurs when the external magnetic field
is neither parallel to a screw nor rotation axis, not in the plane of a

glide or mirror plane,)
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A detailed quantitative analysis of line shape turns out to be
impractical because of the number of variables that are important:
namely, (1) the relative orientation of the non-translatory equivalent
molecules of the ﬁnit cell; (2) the values of D ;and E, the spinespin
interaction parameters of the isolated molecule; (3) the orientation
and strength of the external magnetic field; (4) the transfer rates,
What we shall therefore do is calculate the *esonance line shape as
function of transfer rate for a simple but realistic model, A number of
general conclusions will then be deduced. Calculations will be done

using both the density matrix and "frequency modulation' methods,.

Density Matrix Method: Calculation Procedure

If an oscillatory field, H. coswt, is applied, say, in the y-

1

direction, the power, P{w), absorbed per unit volume by the spin system

is given by the well-known expression

ey
A dH NH @2 [27/e

P(w) = -1—\T—- <M(t)>- 1

— = 5% </‘{y(t)> sinwt dt [(56)

o

</( (t)> is the expectation value for the y-component of the magnetiza~-
y

tion vector operator as a function of time. }( is defined as
y

B

/‘/(y = —ge‘BL%y * 657)

~

N/V is the number of triplet molecules per unit volume; "S"y is the

y component of spin in units of I ["S" =1 ], <}(y(t)> is given by
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<Al = -Trpg |Bls e (87 (58a)

p{t),' is the density matrix evaluated at time t. Tr dendtes_ the trace of
. ) ¥
the matrix product of Sy and pft)s If the N triplet resonating units are

distributed among a number of sites, A, B,..., we set
< /{ty(t) > = ZjTr (g, 1P S, pj(t)] ; = A, B,... (58b)

In the absence of any transfer or relaxation processes, the

density matrices for the various sites satisfy the well-known commutator

relationships,
dp
h i .
T oI —[pj)yj—l‘gelﬁlsy chosmt]. (59)

Hj is the Schrodinger spin Hamiltonian of the j'th site. It consists of
‘ . . . . * % .

the Zeeman term and the electron spin dipolar interactions,. Equation
59 must now be modified to include relaxation terms. The interaction

with the lattice requires adding a term to equation 59 that we formally

dp,
h
represent as T (-—d-jcl> L ° If there is transfer between the non-

%*The interested reader is referred to a review article by U.
Fano (34) for a detailed discussion of the properties of the density matrix.

al.

“For the sake of simplicity, we do not include the hyperfine
interactions caused by the nuclear spins interacting with the unpaired
electron spins., This omission is consistent with the assumption that
the transfer rates to be subsequently considered are much greater than
the hyperfine splittings, This results in a washing out of the hyperfine
structure. Actually the omission of the hyperfine interaction terms
would still be justified even if transfer rates between non~translatory
neighbors are less than the hyperfine splitting, provided that the trans-
fer rate between translatory neighbors is much greater than the hyper-
fine splitting. (The physical picture would then be that diffusion occurs
primarily between translatory neighbors with an occasional random
walk between non~-translatory neighbor s.)
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translatory sites we replace equation 59  with a set of coupled matrix
equations, (For simplicity we consider only transfer between two sites,

A and B.) Our modified equations are

dp P P dp
hel A _ *+ "A k B  h A
- — = H c——— = =t = =)
(60a)
de P P dp
ir B . B A | & B
—_— ———— = -— m— — e J = | —— .
T dt [pB,HB+ gelﬂlsychos“’t] ity T1 N (dt L
(60b)
'TA, T B represent the characteristic times for the random walk from

A to B and B to A respectively.

Equations 60a and 60b are regarded as being phenomenologically
correct; no effort will bg made to rigorously justify the equations, We
note that they are consistent with the propagation model presented in
the previous chapter; that is, we expect the mechanism responsible for
and the rate of excitation propagation to be independent of the spin
orientation of the triplet molecule and to proceed through virtual triplet
ionization states. This requires that the orientation of the ''transferring"
spins be preserved. (The spin orientation immediately before transfer
must be precisely that immediately after transfer.)

.Equations analogous to equations 60a,b have appeared else-
where in the literature (38). These analogous equations have all been
expressed in a coordinate system rotating with the Larmor frequency

about an axis parallel to' . the external field, Such a procedure
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facilitates the solution of the coupled equations, but is only legitimate
when the spin-spin interaction is sufficiently small so that resonance
occurs virtually at the Larmor frequency. We, therefore, must look for
a solution of equations 60a,b in a fixed laboratory system because of
the large spin-spin interaction.

In order to solve fhe coupléd matrix equations, we expand p

A

and PR in powers of H

I ()] (1)
PaA™ Py THP, T FH

Pp* PB@ ¥ HlpB(l) ¥ lepB(Z) Toee o (61b)

1 the magnitude of the oscillatory field,

ZpA(Z) Faue s  (6la)

We assume that the oscillatory field is sufficiently small so that the

system's response is linear in Hl' (That is, the system is far from

saturation.) Equations 60a,b can be decomposed into the following set:

{0) (0) (0) (0)
dp 4 P P dp
iE th =0=[PA(O)’HA]'E%" z 2 h( = )L ;

1 oF T\ (62a)

2 O 2 ()
B A

*;dfﬁ(l) = 1o, A1+ e Bl e, 5 Tcosut- T :{DJf? :{) (620

? ;E)E?’l: [PB(I):WBH ge |B] [F>]3(0):Sy]coswt-i?T :“]i(‘l)* 1‘3 'i‘fl) . (629)

The terms ——A and ———Bi - were dropped from equations
R NP T § at /L PP ;1(1)
A

62c and 62d , respectively, since the relaxation terms, and

T A
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)

P

B » will dominate the lattice terms for reasonably large transfer

7B ‘ 1 1

rates. Unique solutions can be found for Pa ) and pB() when the lattice

{0
terms are dropped, provided pA( ) Bi())

and p can be defined unambigu-

, 27T fw
. . . (1) (3 .
ously, The line shape is proportional to Tr(ﬂypA + ypB sinwt dt
o

There is, however, some ambiguity in what we mean by pA(O)

(0) : e :
and PR when the eigenstates of HA and HB are significantly dife

ferent from each other, and the transfer rates are neither sufficiently

large nor sufficiently small, The difficulty can be ascribed to not

| dp ° deg ) 1 1
knowing — and \ —— as a function of T ~ and T._ o
dt L dt L A B

Offhand, it would seem that a knowledge of these terms need not be

© (0
important, since, again, the transfer terms pA s pB

Ta ™

expected to dominate the lattice relaxation terms, A little reflection

are

shows that they cannot be ignored, If one drops the lattice terms, one

finds that no unique solutions for pA(O) (o)

and Py can be found, For

example, one set of solutions that would satisfy equations 62a,b is
(o) . : (0) .
Pa = a1 Pp = TBﬂ . (63)

( 'ﬂ is the 3x3 unit matrix,)

The form that the lattice interaction terms take is a difficult

(0)

one to answer. For very long transfer times we expect Pa

(0) E E

E
approach and P to approach prB s Py s+ pPg are the

fAPa

canonical ensemble matrices defined by the well-known expressions
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-Z/A/KT -ﬂB/KT
E_e ) -E _ e (64)
Pa ~ A KT ¢ B T J_IRT
B
Tr e Tr e

f , f_ are the fraction of triplet molecules found at sites A, B,

if_é'. = .._.__TA' (65)
ip B

When the transfer rates are very large, A and B are a strongly coupled
system. The lattice undoubtedly relaxes A and B to a suitably averaged
canonical ensemble, Equations 62a,b must be solved subject to the

above boundary conditions for the lattice interaction terms,

(0) (0)
A

Although it may be difficult to define p and Py accur-

ately under some circumstances, an approximate determination of

0 0
pA( ) and pB( ) probably suffices for a reasonably accurate calculation

of the line shape, The argument is as follows:

(0) (0)

h - t b
The térms [pA s Sy] cos wt and [pB . Sy]cosw can be

regarded as driving forces; the resonance response behavior of pA(l)

1) . L 6 ()
and pB( are determined primarily by [pA ,HA], [pB ,}/B] and

, . The line shape will therefore be rather sensitive to

) -1 -1 s .
changes in /'L/A, 'ZIB’ TA @ 'TB but not as sensitive to changes in
the driving force. (The calculations can always be checked by seeing

whether the calculated line shape is correct in the limits of fast and

slow transfer rates.)
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We now proceed to do some illustrative calculations.

Density Matrix Method: Model

Equations 62c,d represent a set of 18 simultaneous differential
equations., Clearly some simplifications are in order to make the
problem more tractable, The model we use is sketched in Figure II-3.
I,:Io’ the external magnetic field, is directed along a two-fold rotation
(or screw) axis, The molecular planes of A and B make angles of
6 = n/4 with the symmetry axis, {The results obtained for angles other
than 7/4 are discussed in a later section.) ;{A’ X come out of plane of
paper; ;\(B goes into plane of paper. In the absence of an external field
or any transfer processes, we shall assume that the spin-spin inter -
action aligns the triplet spins of the individual molecules along their
respective normals, Sites A and B are magnetically equivalent for all

values of the external magnetic field., The spin Hamiltonians of sites

A and B are

Ha

;33

(s ° -5%/3) + g8 H .S, ;
A (66)

~

SB.

1

D(s, B- $7/3) + ge‘ﬁl. H .

Casel: H =0
_— fo}

. ) ~ A .
A common axis system, x, y, %, is chosen to represent the
spin Hamiltonians of A and B, In this common coordinate system we

have



¥5a

Figure Ii-3. Two molecular sites per unit cell. The
external field, H , is directed along the symmetry axis of
the crystal. The “molecdar planes of A and B are perpendicular to
the plane of the paper.
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2 .2 2 2 DN?2
D/4 {(s t-s /3) - (S,X'S y)} = (sysZ + sty) ;

Ha
Ho

We reexpress equation 67 in a matrix representation diagonal in S ;
Z

2 2 2 .2 D2
D/4 {(s S /3) - (s X-s y)} - (sysZ + sty) .

[i.e., S, = ( 1 0-1)]

1/12 0 -1/4 0 -1 0
o
= 0 - 0 =
N, =D 1/8 +DN2 (1 0 1 HO+v;
1/4 0 1/12 N0 a o
(68)
1/12 0 -1/4 0 -1 0
o
}/B-D 0 -1/6 0 -DN2. f1 0 1= N -V.
-1/4 0 /12 4 0 -1 0
Weset 7, = 7, = T., The energy spectra in the limits of infinites~

A B

mally slow and infinitely fast transfer are

D/3 D/3—
s (69)
. y
SY SX '-D/6 ) L4
-2D/3 -
T—= 00 T—=0

The upper level is two-fold The groundstate level is
degenerate two~-fold degenerate

An oscillatory field in the y direction is the only transition inducing
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field for all values of T , The resonance energies are D for the
slow transfer (monomer) case, and D/2 for the rapid transfer {dimer)
case.

The solution of the density matrix equations 62a-d are obtained
with the help of symmetry arguments., A rotation of 7 radians about
the z~axis changes molecule A into molecule B, Similarly, a reflection
through the z-x plane converts A into B, These symmetry properties

lead to the following set of relationships:

Rotation Symmetry

(0) C—l i eiwsz 0 {0) e-iﬁsz . (o)

© Py A g (70a)

R o, ) S S (70b)
Reflection Symmetry

6 pA(O)6 1 eiﬂsY pA(O) e—iﬂSy _ pB(O) : (70¢)

6 pA(l)é _i _ ei7rsy PA(I) d-iwsy _ pB(l) . (704)

The (-) sign in equation 70b arises from the fact thatS_ in
y
equations 62c,d changes sign upon rotating the system 7 radians about

the z axis. The implication of equations 70b and 70d is that

ik o~ -k k -ik
kl ko t 3 1 o * 3
(1) * * (v * *
= k - 5 = k -k 71
pA o 0 ko pB o 0 o ( )
- - - ' : sk  k .
1k3 ko kl ik 3 o 1
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(0)

For convenience Pa was set equal to p

{0)

B \(This is consistent

with the symmetry relationships and is approximately true for all transfer

rates.)
-(;./A+}/B) /12 O -1/4
(0) () 0.5 Z2XT 71'A+}/B o 1/6 o
P =p = ; =D
A B (H + )2 KT g /4 0 112 /.
Tr e '
- (72)

This approximation is only valid for sufficiently fast transfer rates,
and does not hold in the intermediate or slow transfer limit, The error

introduced by the use of equation 72 was estimated from equations

62a,b to be of the order
0 -1 0
VT, DN 2 1 0 1 . (73)
24 KT
2/t + l/T2 0 1 0

T. is a relaxation time associated with the lattice integration. Since

we are interested in values of T such that T /T2 <<l our approxima-

tion appears to be a good one.

Using the above expressions, we obtain that the rate of energy

absorption is given by
N 2 2 -1
Plo) = ¢ 28 0gl B P (&)™ (0. (74)

where
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=4 . 2
Wi = - (D ) (00 + 20/
12 \ 7 2 =2 2
4 2 m2 2
[w -(4/T +D)m+DZ] +(ZD“’ 3
'TZ ! T

- (75)
D = D/ +

Figure II-4 is a plot of)_(i-orvarious values of T _1. We note that when
T -1 ; 5 we obtain a resonance peak at the dimer position, w =D/2 .
When 7 - = 0.3 D the line shape is rather broad and extends both to
the right and left of D/2 . The broad resonance arises from the fact
that the ground state level is no longer degenerate and fairly sharply
defined, but rather has split and broadened,

. . -1 .
Referring to equation 75 we see thatas 7 — o0 we obtain

a sharp lorentzian line located at w = f)/Z and having a width,(ﬁZ/S)T .

K_"(—ﬁ'} T (76)

24 > N 2
(w-D/2) +[( D /8)]?
-1 -
(When 7 > 10 D we find that the resonance line is virtually lorentzian )

-1
When 7 —0 we obtain a sharp lorentzian line located at the
monomer position, w = D, and having a width, 1/7 ., The intensity,

however, is off by a factor of two. The reason is, of course; that we

0., O

have set p B

and used an "averaged'" canonical ensemble,
When D>>1/7r ~ 0 » the lattice interaction dominates and it would be

more appropriate to use the isolated molecule canonical ensemble (that
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(0)

Pa

is,

E 0 E
=1/2p, ;pB(?'UZPB ).

Case II: Intermediate Field, gelﬁl Ho = 3D

. o
%/Aand %/B now include the Zeeman term gerﬁl HOSZ = 3D( 0 ]}

The equations we solve are the density matrix equations (equations 62a-d)
with one slight modification: an oscillatory field along the x~direction
rather than the y ~direction was chosen for convenience of calculation,
. . . +» 3D
(One can show that for sufficiently high fields, H > =— , an
° &P
oscillatory field in either the x or y directiongives essentially the

same spectra.) An external magnetic field modifies the symmetry

properties of our system, We now have

pB(O) ; (77a)

10

Py ;

C pA(O) kc’:L

1) -1

-C p, (77b)

I O PA(O)é e PB(O) ; (77¢)

15,0 PA(l)é " pB(l) . (774)

IH reverses the direction of the external field, and needs to be intro-
-]

duced because S , appearing in the Zeeman term, changes sign upon
z

reflection through the z~-x plane. We again set

~(H +A)/2KkT
.(O)_ (O) € A % (78)
PA *Pp = - FHIKT -
Tr e
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This appears to be a justifiable substitution for sufficiently large
transfer rates,

An effective use of the symmetry conditions expressed by

{1).

equations 77a~-d would require some sort of expansion of Pa and

(1)

PR in powers of D/ge[(B[ HO. Unfortunately no convenient expansion

series could be devised. As a result only equations 17&,b were used.

We obtain
k k - 'k wk
kl'l' 12 13 kll 12 13
(1) (1)
= k k ; k -k
A ka1 %22 fa3 [P ¢ 21 22 %23 (79)
k k - k -k .
k31 32 33 k31 32 33
The results of the calculation are displayed in Figures II-5 and
11-6 for the |I>-—-0> transition, The expression for the cor-

responding line shape is given in the Appendix, The computation was
very laborious de.spite the use of the rotation symmetry condition, If
no convenient expansion series in D/gelﬁl H0 can be devised, a com-~
puter would have to be used for the general case where Ho is not along
a symmetry element,

The density matrix equations yielded the monomer and dimer
resonance positions correct to within 0.05% for all transitions; the

corresponding intensities, to within an accuracy of ~ 96%., Again

P w) = g- 21—112 mgz B ZA(KT)-lK@a)o

The separation between the monomer and dimer resonance peaks for
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the |1 >—*|0 > transitionis 0.062 D, The line widths for this
transition in the monomer and dimer limits are~0,088T ~  and

= 2 . .
0,192 D 7 respectively ‘(see Appendlx).

Comparing Figures II-4 and II-5,6 , we see thata larger
transfer rate is required to displace the resonance from the monomer
to the dimer side for the present case II than for case I, In addition
the case II line width in the dimer limit is almost twice that of case I,
This is surprising because the monomer~dimer resonance peak separ-
ation of the former is ~ 1/10 that of the latter,

The results of the above calculations suggest that if Ho is
increased; the system's response would become more lethargic; i, ea,

-1
a larger transfer rate, T s would be required to effect a displacew
ment from the monomer to the dimer side, Thus, when HO ~ 10D,
-l = .
one suspects that when 7 is ~D, the resonance peak might now occur

at the monomer position, (This indeed turns out to be true, as will

be proven in the next sections)
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The "Frequency Modulation!' Method

The probability amplitude that the small oscillatory field,
H (1) = 2H

jc08 wt e , will induce a transition from the spin state
y

Ji > ~—1j> at time T is given by

T T
1/ # <ji /‘(H (1) li>H e Bt TR, % /‘(?1 (’c)Hle'i‘”t dt . (80)
[0 0] =00

H
)((t) is the ﬂ operator in the Heisenberg representation, and is
y

defined as
t t
o) o

;/ s is the Schrodinger spin Hamiltonian.
The physical meaning of equation 80 is that the wave function
is |i> att = 0, whereupon it evolves, or propagates, to time t with
: | :
the propagation factor exp [-i/h 77’3 dt'] ; it interacts with the
0

""potential, " }(y exp [ -iwt], at time t and then propagates to time

T
T with the propagation factor exp | -i/'h] %/s dt'] « The matrix
t
element is then taken between this state and the evolved state [j > ;L€,
exp [ -i/%r ;/s dt'] {j > . Since the system can interact with the
(o

oscillatory field at any time -0 < t < T, we take the time integral of

the resulting matrix element to obtain the probability amplitude.
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When ?/s is independent of time, the rate of energy absorption,

P(w), is given by the well-known expression

T/2 y 2
=-iwt
ji(t) H1 e dt
N E E 2 -T/2 X
Plw ==t w(p,.-p..,) lim I/*& T/ ) (82)
v il ) T
Ta o0
2
) 2 N E E l(}(\j)ji_
= 2TH,T & 'hm(pii— pjj) —5 es(hmﬂzi - Ej)\.

§ is the delta function.

Conservation of energy assures a very sharp resonance when Ir w = Ej-Ei o
We are interested in the case where a random walk of the triplet
excitation occurs between sites A and B, As a result, %/s is a time
dependent Hamiltonian in the sense that it stochastically takes on the
values, HA and %/B' We can talk about transitions between fairly
well defined states provided that the time dependent part of %/ g can
be regarded as a sufficiently small perturbation. If the eigenstates of
/Z/A. are considerably different from those of ﬁB’ we require that
the transfer rate be either sufficiently fast or slow in order to avoid
ambiguity. In the former case, we define |i>, |j > to be cigen-

states of a suitably average Hamiltonian; in the latter case, we take

i >, [j> to be eigenstates of NA’ and [i'>, |j'> to be eigenstates

of ﬂB.
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If the time dependent part of NS is small for the entire range
of transfer rates, we simply define |i >, |j > to be eigenstates of the
time independent part of ﬂ < I(w), the line shape for the absorption

in the presence of the stochastic transfer of excitation is taken as

T/2 2

I(w) = ?inoo (T)—l ji(t) o Ttwt dt (83)*

-T/2 :

I(w) is still not in its most convenient form. Using a well-known
transformation Cthe Wiener -Khinchine formula (29)), we reexpress

I(w) as equation 84

(x) ‘>:< 77, :
o) = <(f) )’(“(t)> e gy, (84)
ji ji ave

~ Q00

£ H
<(/1 ) /{ (t)> is referred to as the correlation function, K_ (1),
v .. /v ji
i ave

and is defined as
T/2
1 H H
= Li — t +t) dt, 85
Kji(t) Lim = /( jLJ,(1) /‘{ji (tl t) dt, (85)
T 0O -T/2

(In practice, the time average is replaced by an ensemble average.)

Further manipulation of equation 84  is required., We set

*The above statements are consistent with the conclusions of
Bloom and Margenau { 39) who have shown that the proper criteria for
the use of equation 83 1is that the density matrix be essentially
diagonal in the (i >, |i > representation,
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’HS = _?léz_?z/é_ (Z/é_____ f(t) = HO + V £(t), (86)

£(t) is a stochastic variable that takes on the values + 1. (When £(t)
10, W ois A (Hp))

. . . . o . .
|i >and [j > are chosen as eigenfunctions of N A (t) is rewritten

. . . o ..
in the interaction representation, with 2;/ diagonal.

A.H(t) = UYt) exp [i/h Hot]}'{y exp [-i/'h'y ot] U"1 (t) . (87)

U(t) and U_l(t) are time ordered operators defined by

ift v (t") £(t") dat’ t

u(t) = =1+i \"r(tl) f(t)) at,
t t
+ (i)zf dtJ \'/'(tz) v (t) f(tz) ﬂ(tl) dt2+ e (88a)
_ t t t
()" dt [ dt, ... v (tn)’\_/'(tn_l). .. v(\ltl)f(tn). .o

and
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t
_i] V(t")£(t")dtt - . ; ¢
E CE -1 j %(t1>dt1+<~i>7 dt, / R(ONCLORLCATS

(88h)

n t tl tn—l - = -
+.,;..-s=(-i)j dt1/ dtz..f' V(tl)V(tZ)...V(tn)f(tn)...f(tl)dtn t...

F(tY) = exp [i/7 Ho'] ;_li esp [-i/ 0l %0

Using the above, we can rewrite the correlation function as

K.(t) = /{ f<u Ul (@> e
SCEN (S IRLRCRSICERS
L 4 it (89)
+ =7 )(/'f) <U, () U @ e
y' .y jt Tri
m,r ji mz ave
A, =E .- E°
ji j i

m=j, r =i are omitted from the primed sum. The latter sum arises
from the fact that the transfer process mixes the eigenfunctions of 2/0.
We note that, in general, the primed sum can be ignored if V 1is
diagonal, or if the external field, HO, is large enough, If V is
diagonal, U, U“l are diagonal, If V is not diagonal, but Ho is large,
we separate V into a diagonal part, Vl’ and an off diagonal part, VZ.

- The V_ part contributes a rapidly oscillating term. For example, U

2

would 'have the form
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t

i/h WO -i/5H %

e V. e £(t") dt'] . (90)

U(t) = exp [i Vlf(t')dt' + i 5

The integral involving V, cannot exceed i(VZ/ge B Ho)t, whereas
the integral involv‘ihg V1 cannot exceed iV. t., Consequently, for large

1

Ho’ the Vl integral dominates, and they off diagonal terms of U(t) and
U'l(t) will be quite small, *

Equation 89 can be evalﬁated by a number of different techniques.
One useful method, for example, involves multiplying the appropriate
matrix elements of U(t) and U_l(t) together and incorporating the
"average'' brackets into the resulting integrals, The subsequent
evaluation would require knowing the correlation functions of the f(t)'s.
That is, we shall need <f(t)>ave, <f(ti)f(tj)§ave, <f(ti)f(tj)f(tk)f(t£)>r, .
etc. The £(t)'s define a - Stothastic process having a characteristic

time T (TA is assumed equal to ™R for convenience), It is generally

well known (29) that

<f(t)>ave =0 ; <f(t1)f(t 2)>av‘e = exp [we(tl—tz)] . (91)

-1
=2 - <
we T tl t2

The higher order correlation functions can be derived easily enough.

We have

*The primed sum was not examined critically in this thesis since
it gives a negligible correction to the line shape for those cases studied.
Offhand it does appear that the |i>*[j> transition might make a
contribution to the line shape in the neighborhood of A (the predom-
inant contribution to the line shape comes from the |r>—*|m > trans-
ition) if the extermnal field is not large.
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<f(tl)f(ta)f(t 3)£(t4)>ave = exp[we(tl—tz)] exp {we(t3-t )]s t<t_<t.<t

172734
(92)
<f{t )f(t.}... f(t = e
(e)fey)e ity e, 0>, = expla (6t )] explw (¢, -t )]
<t .so <
0t "an1tan
< f(t))...flt = 0,
J{(tl) ( 2) ( Zn- 1) ave
Zero Field Case
We now repeat the calculations for the model presented in the
. . . o . .
Density Matrix section, ﬂ and V in the Sz representation are
given by equation 68 ., The eigenstates of Z/O
1>+ T > > - |T
+ lo] . - ]
N2 N2
0 .
We reexpress 77/ and V in the X+, Xo’ X representation
x, X X
x, [ -D/6 O o 0 S
B = x | 0 -D/6 O ); Vv=iD/2z{ 4+ 0 0 (94)
x O ¢Q DJ/3 0 0 0

The only allowed transition caused by the oscillatory field in the vy
direction is the ]XO > —]x > transition, Our expression for the

correlation function for the induced absorption is, by equation 89
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2 2 -1 iDt/2 -1
K_(1) =ge B <u_(u__ (1) >ave o DY/ -<U_[0 U (>
a

e-1Dt/ 2

ve

(95)

(For convenience of notation, we have set U-o(t) etc., equal to
<x ‘U ]Xo > etc. This notation convention is used throughout the re-
mainder of this chapter.)

- We note from equation 94 that V has no diagonal matrix
elements., Furthermore, V _ = 0, =+, 0, -, The consequence of
this is that U_'O(t) = U_—;(t) = 0 and that U_ {t} =1 for all times, t,
Therefore,

iD/2t
K_O(t) = gé B 2 < Uo-;(t) > e i - (96)
ave
Using equations 88a and 94  we find that

t
iﬁ/zj £(t') dt'
o

<U(;(1)-(t) >z <e > . (97)
ave

This expression is prec:,isely that which one would have found if one
considered the case of a single electron transferring between two sites
that differ by an. amount D in their Zeeman energies, (The orientation
of the effective magnetic fields at the two sites is the same.) The
equivalence of our triplet system, in which there is no external field,
and the above transferring electron case is accidental, It arises from

the model we have used for our calculations; i.e., it is caused by the
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fact that the y,z directions in the laboratory system are magnetically
equivalent when 6 = 7/4, (We shall discuss briefly the general case
in a latter section.)

Equation 97  has been studied by Anderson (37), and the
interested reader can refer to the appropriate sections in his paper,.
The consequence of a correlation function of the form of equation
. . . — . . . =2 \-
is that in the dimer limit a lorentzian line of width (D /8T occurs at

- s . . . . -1
w = D/ 2; while in the monomer limit,lorentzian lines of width 7 are

obtained at w =D and w =0,

The last résonance at w=0is ﬁnobservable for the following
reason, It arises because the oscillatory field in the y direction con-
nects the two upper degenerate states in the monomer limit., Since the
population of these states is the same, there clearly is no net absorp-~
tion of energy fl;:om the radiation field, (Our calculation only concerned |
itself with the induced absorption and neglects the induced emission
contribution.) The line shape that results from using equation 97
is also essentially that calculated by the density matrix method.

The Hamiltonians ?YA and Z/ B differ significantly from each
other. In the light of what was earlier said in connection with equation
83 , one might suspect the validity of using equations 94-97

over the entire range of 7. Itis a simple matter to repeat the line shape

calculation in the limit of 7 —~o0 , using eigenstates of ;Z/A and //%/B°
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Our results werc the same as those calculated above-=because of this

and equation 73 we feel confident in the applicability of equations
94 to 97  to the entire T range.for this example (thé Ho= 0, 0=n/4
case).

Intermediate Field, ge‘ﬁl Ho = 3D

o
The eigenstates of H are now

3
4
A\
tl

0.999 |1> -0.041 [T > ; ]xo>= [0>; (98)

-0.041|1> - 0,999|T >.

E3
A\
n

and V have the following forms in the X2 X s X representation
. e) -

\ X+ XO X—
x, |3.094D 0 0 0 0,958 0
o iDN2
- =, 0 -D/6 @ ;V=——-= [-0.958 0  -l.04
X_ O o —2.927D 0 1; 04:]. O ”
(99)
The correlation funcfion is
z 1 i2,76Dt
K (1= ‘(}(X) J <u_ (9 U_ (1> e
O~ ave
(100)
% -1 i3,26Dt
. ( }( DI /{X) <u_()Ule> e ]
o~ +o ave

(The oscillatory field is in the x~direction to be consistent with the
earlier density matrix calculation )
. . -1
As pointed out above, the off diagonal elements of U and U

are expected to make a small, negligible contribution to KO (t) when
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the Zeeman energy, ge]ﬁl HO, is large compared with V. (A calculation

oy -l
of < Ut)(_f) U, (t) > indeed shows that it is negligible.) We have
) ave

2 8 2 1
KO_(t) ~ -g—e—z——— < UOO(_t) U (y>

Clko

{i2.76Dt
e

ave J (101)

2 2 2
~ B
gez J

Setting

]
1
>
1
w
)
o~
W]

7&0..7- —)t_0=2.76D; A+o o+- 3

5 m_o(ti-tj)
e +

(102)

G(ti - tj) = o

-1
We obtain the following expressions for Uoo(t) and U (t)

2 [ Y
Uoo(t) =1-(—11_-[)J dtlj G:‘j(tl—1&2)f(t1)£(t2)dt2

(103a)

torty ty
__“ dtlj dt .. f G(t1~t2)G(t3 —t4)f(t1). .. f(¢4)c1t4 toon
o] o] (o}

i 2n 1 th—l
pe. t ('ﬁ) dt dt_... G(tl-tZ)G(t3 -t4). . G(tzn_l—tzn)f(tl)
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in (t t.)
U’ (L) =1-{ ’ﬁ )f / 2 ()5t )dt,
-~ (103Db)
¢ g 3 ix (t.-t)
Vo_,Z/ dtl] dtz..;{ e o1 4G(t3—t2)f(tl)...f(t4)dc
zm 2/t Y Yanal in O‘(tl-tz)
+ooo H{-1/7) ’Vo_‘ dt) | dt,... e " (3 2.,.G(tzm Cn-2)

X 'f(tl)i-'(tz)° .o f(th) dt2

n
+Q.9

-1 :
<Uoo(t) U (t) > is evaluated using equations 91 and 92 ,

ave

Upon ignoring small correction terms, we find that

2 2 .
- PR
Koh(t) = E&Zﬁ___ T e y (104)
where
2 oy 2. 2
-1 _}_ [ 2 IV l +,Vo+‘ ]w til ’V +l Om -2 'Vo-' A’+o]
oy “Ea a +i(h =) .
we o- "to o- "o we *_
(105)
(@ =27 7)

The above holds for all values of we o (The above also defines the cor -

relation function for the [0 >—v'+ > transition provided we interchange

the +, - subscripts. )
*Equation 105 can beZ expressed sfmewhat more compactly as

AL 2V ] lv ] >
r = - o+
h? ( Sy s (G- eq. 1090).

e o=~ e o+
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-1
The line width is given by the real part of T '; the line shift from

5
the dimer position, )\o ;s by the imaginary parts

When w >>g ,;3] H , we obtain:
' 5] e o}
line width ~ [2 {VO_,Z + [VO+{2] K (106a)
. 2
n we

c 2 2
resonance peak at ~ ko— + [Z{VO_[ A - " Vo+ ! )y to ] (106b)
ia) 2 w 2
e

Our earlier density matrix calculations suggested that the reso-~
nance peak at a fixed w o tends toward the monomer position with
increasing Ho. We indeed see that this is true.* When

g lﬁl H >> w , we obtain:
e o e

line width ~ [ 2 ]Vo-, 2 + !VO_I_ [ z ] @ . (107a)
2 J
\(Ao—‘ K-i-o) h
resonance peak ~ A L+Q/‘2 2|v | 2. !V JZ ' (107b)
' O - W l: Ow ot ]
A A
0- +o

We note that equation 107b gives the monomer position correct

“-

to second order, Equations 104 ff, are valid over the entire range of

w , 0<w < o, whenever V represents a perturbation on H that
e - e o}

need.only be taken into account up to second order,

% This lethargic behavior is associated with the fact that V has
no diagonal elements, When V does have diagonal elements, the line
shape behavior is somewhat different {cf, eqs. 109-~113),
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Presumably the higher order terms are contained in those correction
terms ignored to“obtain equétions 104 and 105 .

We now compare the results obtained from the above with those
previously obtained using the density matrix method,

When gelﬁ' H = 3D; w_=20 D, we find that the line width
is 0.018 D, and that the resonance peak is shifted 0,001 D away from
the dimer position toward the monomer position.

When we—+0 we obtain that the line width is 0,084 T - and that
the resonance is shifted 0.062 D toward the monomer position,

When @, = 2D we use the complete expression (eq. 105)
and find that the line width is 0,060 D, and that the resonance occufs
at 2.8 D. These results are in excellent agreement with the values
previously calculated using the density matrix method:}<

-1 -1
We note that when D~ 0,1l cm , gelﬁl Ho ~ 0.3 cm

;@ line

width of 20 gauss is obtained when the transfer rate, w s is 2 cmnl.
These are values that one might very likely encounter experimentally
when working with aromatic systems.

Upon evaluating Ko-—’ we found the following interesting behavior:
there is verv little correlation between Uoo(t) and U:l-(t) permitting
< Uoo(t) U:l-(t)>ave to be expressed approximately as

-1 . . . ; .

<UO;'(t) >ave <U__(t) >ave « This decomposition is apparently associated

with the fact that V contains no diagonal terms, If there were diagonal

terms, V. and V , as does occur when H is no longer along a
00 -~ o

als

*We expect good agreement. The density matrix method represents a
differential equation approach to the line shape; the frequency modulation
method an integral equation approach.
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symmetry axis or plane, there is correlation between Uoo(t) and U ,(t).

General Case

We now present an expression for the correlation function,

N
K ('t)) valid for all orientations and magnitudes of H , and for all
o- o
o

values of @, pro{fided V represents a perturbation on (HA+ ﬁB)/ 2 = //2’/

that need only be taken into account up to second order. V can have

o~

diagonal terms; the "isolated' molecule dipolar spin Hamiltonian can
. 2 2 2 2 *
be of the more general form D(S . $7/3)+ E(S < S ; ) .

The derivation is straightforward, We find that the effect of the

diagonal terms of V can be separated from the off-diagonal terms,

o~

The correlation function is

K (1) =(x ) (x, ) (108)
diag off-diag J
where :
, 2 ~t/T {%.L
(x,) = ’ (/( 9 1 e e ; (1092)
off -diag o=
: (i 2%, Y, z)
2 2 2
2 -1 Zlvo-r ,Vo+' IV+-I
wr o 2 = (109b)
WA W tx W_tin

(K )

di is precisely the same correlation function one would have
o-'diag

obtained if one considered the case of a single electron transferring

: 00  m=
*We remind the reader that the subscripts, o, -, +, now refer to the

eigenstates, |XO>., X >, !x+> of the general Hamiltonian, }/O.

——

between two sites that differ by an amount 2 |jV -V in their
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Zeeman energies, We can express (Ko-) diag as
t
- T . Ny - - A e " .

(Ko_)d.a = ¢.exp {[1(VOO—V__)A + w]t} -1,- <eXp.71 (VOO-V__) f(t’)dt‘]>

ag - Fm o ave

(110)

cT) ,K ’ T s 1 denote matrices in Markoffian Space |
- - 1 0 - -1,-1 1 = 1
p=@/21/2); A=Ay ) m=7 (7] 1)1 =(]) (111)

The interested reader is again referred to the paper by Anderson for a

detailed discussion of the properties of {K ) . For large transfer
| °7 diag
rates, we have that

v, v )%

w

e : —t/y
(k,) = e : .

diag

The line width of the x >—»=|x > transition is then
o

| 2 2 2 2
- +
TP (v .-V )+ lvo_} + IVOJJ JV+_{
v ) 2 ‘ 11
e (113)
e
(The above equations are expressed assuming that EO>L < th ; it
' - o}
EOK > EO)\O , the -,0 subscripts must be interchanged.)

Equation 113 holds even if V is large compared with )i[ O, provided

w 1is large compared with the differences between the eigenstate
e

0 et s : :
energies of }f + V. We observed this in our earlier calculations

for the Zero Field case., The diagonal terms of V were all zero, and,



109

in addition, V , =V _ = X, =0, By equation 113 our line width in
-t ot ot ,V l 2 5
the limit of fast transfer should be —2-.2‘:——— = ]28__7: , which it was,
7T w
A © ’
As Ho is moved off the symmetry axis {(Figo II-3 )} the line widths
A
tend to become large, Maximum broadening would occur when H is
o)

directed along the normal of either molecule A or B, When
g, [Pl Ho = 3D we find for the |x->~—+lxo> transition that ‘;he line
width approaches 0.33 f)Z'T as we—s W, (The off diagonal terms of
:\I contributed about 10%, so that in the limit of infinitely large Ho the
line width would be ™ 0,30 D°r o)

If the molecular planes of A and B make an angle of 20 with
each other, instead of 7 /2, we find that the line widths need to be

2
multiplied by ~ sin 26,

Comparison of Wave and Diffusional Exciton Spectra

.In Table I we compare the line widths expected from a wave
exciton with that f.or a diffusing exciton having a narrow wave packet,
The calculations are based on the methods outlined in this and the pre-
vious chapter,. and refer to the model illustrated in Figure 1I-3.
The x;>—*—|x0> transition is expiicitly considered., The magnitude
of the spin-spin interaction, D, was set equal to 0,1 cm-l. 20 was
set equal to 7 /2 so as to give maximum broadening for a fixed T )

T stands for both the transfer rate of the diffusing exciton and the

- :
Davydov splitting between the K bands in the case of the wave exciton.
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In addition we assume (1) a low concentration of excitons so that there
are no significant exchange effects, and (2) that there are no important
non-nearest neighbor interactions., Contributions from regions of
time reversal and accidental degeneracies are neglected for wave
excitons,

We note that a pronounced qualitative difference between wave
and diffusional excitons occurs when the transfer rate, T - =T Eé) 2
is an order of magnitude larger than the spin-spin interaction. In the
wave exciton case, two line spectra, somewhat displaced from the
dimer position, are obtained. (Second order corrections cause a slight
difference in the spin energies of the two Q bands-(see previous chap-
ter).) In the diffusion exciton case we see that a single resonance line
is obtained at the dimer position. {Upon increasing Ho along the sym-
metry axis, we note that lines broaden and then start to narrow only at
very high magnetic fields,)

An experirﬁental demonstration of the above is beset by numer-
ous difficulties over which one has so little control. The spin-~spin
interaction cannot be too small; the orientation of the molecules in the
unit cell relative to each other must be within an appropriate range;
the transfer rate cannot be too large or too small,

- -

If T (1) or 7(4) represents the correct order of magnitude of

i

the transfer rate, one most likely would have to resort to additional

experiments to distinguish between the two types of excitons., An
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investigation of relaxation rates, or a study of the exchange narrowing
that should occur with increasing exciton concentration might lead to
useful distinguishing criteria., In addition, resonance experiments

cartied out at very low temperatures might be helpful.
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APPENDIX

a. The Simplified 5pin-Spin Operator

We assume that the multiplicity of the triplet state is well
defined; that is, there is negligible mixing with states of different
multiplicity, Denote the antisymmetrized wavefunction of the 2n
electron system by NJm > . M}m > is a function of cartesian and
spin variables and is the exact eigenstate of the ''spin'' free Hamiltonian,
The spin, '"S", of ij >is 1, its spin component is M. We let

m > designate a spin function having ""S'"" = 1 and spin component M.

7:/ g and #D are said to be''equivalent' operators if the eigencnergies

of the two operators are the same. Thatis, the same set of E's satisfies

equation a. 1 .

v<l.|Jm|;/D’LIJmI'>-E5 ,1=0= <m|}/5]m‘>-E‘6m

mm

(1) , an

(I) and (II) are 3X 3 determinants. Determinant (I) can be derived

o (a.l)

from a sum of 9 linearly independent spin operators, (’I‘he number of
linear independent operators {matrices) equivalent to an arbitrary
operator (a NX N hermitian matrix) is NZ. The reader is referred to
a review article by U, Fano (34) for further details concerning such
operators.)

The eigenenergies of ?,/D can be derived from the following

sum of 9 linearly independent hermitian spin operators:

(ND) TGS rC,5, 658,
equiv
#[ry(s.8. 58 S )+r,(58 5,%5,5)+r (88 +8.5 ) (2. 2)
2 2 2
+r4§Z jl-r5§y +r6§x
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The coefficients are all constants. Sx, Sy’ SZ denote the x, vy, =

spin component operators of the "S'" =1 system, The sum in brackets
A

L o -
defines a symmetrix tensor. By redefining the x, y, z axes system;,

it can be diagonalized,

2 2 2
(}/D) _csx+czsy+c3sz+AsZ +BSY +CS5 . (243)

. 1 Z
equiv

We further note that g/D is invariant to time inversion., Inverting

time causes the spin angular momentum of electron i, Si s to go into

~§. . Since #D involves products of spin angular momentum itis
i

time invariant, Consequently, (Z/D) equiv must also be time invariant,
This requires Cl' CZ, C3 to be all zero since EX, «S\y’ Ez change sign

upon time inversion. Using the further fact that #D is a traceless

operator we can put

2 2 e 2 2
(B = Hg=n(s,-s"3)+m(s -5 ") (. 4)
equiv
We can demonstrate the above assertions in a somewhat more formal

manner, Let 0O denote the time inversion operator, Since 0 com-~

mutes with HD )
oN, = WN,o 67/D9= }/D . {a.5)

=1 :
We use the fact that 8 = 6 for a 2n electron system {35)s The

equivalent operator (,Z/D) must also satisfy the relationship

equiv :
equation a,5, We examine the transformation properties of one of the
9 linear operators appearing in equation as 2; remaining operators can
be handled in an analogous manner,

The time inversion operator, 6, can be written as (35):

2n
9=’_7£ 6ij : - (2. 6)
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K is an operator complexing all terms to its right, ¢ denotes the
y component Pauli spin matrix of electron je d‘,y = ( 0 —i) o
We have Loy
> 2 o
0s “o={TTo VW2 =e, ) (o ) (as7)
z fo gy Lz my’ -
J y/ m
. 2 . 2 _
Since Gﬁz = ( 1 0) commutes with 8, and § =1, we need only
i 1
examine termsgike 1/2 & o o, . We obtain
fz kz
>k
9529-1/42 24128 o o o, o o o
= o
z g Lz 1> 4y ky 4z kz ly ky ; (a.8)

2 <
/426 "+1/22 (o, o o #*) (o
g t? o>k LYtz by

2
1/4 = +1/2%2 o, oo = S
] Lz 1>k 1z kz z

Proceeding in this fashion, we find that /%/D is "equivalent' to %/s.
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b. Time~Reversal Degeneracies

) .
We use here a theorem proved by Herring l(20); namelyj
the condition for a time-reversal band degeneracy to occur when

k=K' is that

z X(Q 2) =oor -g. (be1)
~ 0O
Q
o
A

90 i1s a space group symmetry operator that takes 121 into :’1;' + Rq 3 Kq.
is an arbitrary lattice vector in reciprocal lattice space, (Kq may
be zero, of course.) {C\)_ozA is consequently an operator belonging to the
group of the k' vector, le « (In the text we denoted such an operator
by {Ei €}/ equation/\;?.?.) X(goz) is the trace of 902 tn the irreducible
representation of G . The sum is over all distinct 90 Se '(Only one
distinct 90, 90, is assigned to the set of operators obtained by multi-
plying :90 by all arbitrary lattice translation symmetry operators
despite the fact that ail members of this set take k' into -k' or its
equivalent,) The trace must be o or ~g for a degeneracy to occur., g
is the order of the irredﬁcible representation of le.
Let us now consider the lines i;(l) and '12(2) (eqe 26 Do
Take '
w0y bt Kb, {b.2)

3

~{1 ~{1
The only space group operators that take k( ) into -k() or its equiv~
alent are the glide plane operator {d‘n‘ 3/2} and the inversion

operator {Il O} ° [ _E.s.)reﬂect k through the glide plane to give

o e 8V 2ol ares, s = 00 K3

(The glide plane is perpendicular to 1‘53). I:\<q is BZ' ]
Setting {0"n|£/2! = Qol and {Il O} = QoZ , We have
2 ~ 2 ~ 2 2
Qo7 (1@ T@ 5 gy {rlo” = T . (o)
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~
T(R ) belongs to the translation group and represents a translation of

A
the crystal lattice through a vector, R_. Furthermore

‘ - i27 (v . ja;
(9, )-x\{;(an =t T R (5. 5)
X0 ) <x(T(0)]=1; = x{@ =0,
Qo Q. E.D,

A similar proof applies to the equ.lvalont line =1/2 b + K3b3 , and to

+(2)

the planes K3 =+ /2.

. The only other degenerate lines in the monocl,lmc system lie in

We now proceed to show that there are time-reversal degeneracies
: t ~b
at all points of K3 = (—) 1/2 ., Consider the arbitrary vector, k that
terminates in the boundary plane, K3 =1/2:

Jsb -~ -~ ~
- b + b b o .
k™ = Kb + Kb+ 3/2 {b, 6)

~b . ~b . .
The only operators that take k into -k~ or its equivalent are the
screw axis operator {CZI b/ 23 = Q . ; and the inversion operator

ol
{yo} =Q .. We have °

~ Ab _ Ab - ~ A ~ = A A -
{c,IB/2}&” =c K = -k -K,b,+5 /2 i (K, =85 (b.7)
{10} £° = -
and

iank’b

S () )—X[T(b)] = = -1
x{Q )-X[T(O)] | {b.8)
= X(QO ) =0,
QO

Q‘E‘ Dﬁ

The above proof holds for any crystal system having a screw axis

and an inversion operation,
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c. Accidental Degeneracies

We designate'the three basic primitive translations of the

benzene orthorhombic crystal as

t1:c=cex= {c,o,o}}
tﬁZ Z=a=ae = {b,a,o} 5 (ca 1)
t3=b=beZ: {o,o,b'SJ' )
and the three basic primitive translations in k space as
5 = b = b = . o2
j=¢ e b,=a eY i by=c e, (c.2)

There are four molecular sites, I, II, III, IV, per unit cell at the

positions o,0,0 3 <c/2,a/2,0 c/2,0,b/2 o,a/2,b/2 ,
respectively., Let us assume only nearest neighbor interactions, The
eigenstates, |1:an >, are given by equation 29. The corresponding

energies, E,(Z , are

€, =5 +fl(fi) +f2(ﬁ) +f3(ﬁ:) ;
£, =8 +i(H) - £.(1) - £ (k) ;
£, =5 - £(H) - £ (H) +£ (R) ;
€4=5 - () +£,(1) - £.(0) .

{c.3)

S is a constant and the fl(ﬁ)'s are defined as

fl(ﬁ) =1{ cos THe C cosThea ;
fz(ﬁ) = f,cos e C coswhe b ; (c.4)
fs(ﬁ) =f,cos i 2 cosaReb
where
fl= <ol ml ?'lfloIIm>;
f2=<olml }/f|oIIIm>; (c.5)

f,= <ol m| ‘}/f]oIVm>.
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Let us assume for the sake of specificity that the ordering of the
Itiand eriergies*at K =0is 81 < 64 < 62 < 63 » Comsider ‘the vector
k = Klbl + KZbZ which lies in the xy symmetry plane. Se’c_Kz/Kl = & ,
a constant less than 1, Allow K1 to take on all values between 0 and ¥ 1/2,
We thus proceed along a ray, i.e., a straight line that terminates on
the boundary planes Kl = i’l/Z where time-reversal symmetry requires
a pairwise degeneracy of the bands, Using equations c,3, c.4, we see

that

. ’ 6 |
E (x, =+1/2)= € (R=+1/2) =5+ cos (T5)J

Ac.6)

' 7o
éz(Kl +1/2) 3cos(—2—).

Furthermore, the ordering at k = 0 requires that gl( 1/2) < 62( 1/2) .

QjKl=iua£s-f

We present below a schematic plot of energy vs. K1 for an arbitrary

ray in the xy plane.

K0 5 Ke/K,2{ ¢

€3

€1
: &6y .7

5., : ) (ce?)
: : €u£3

(f, T :

Kz=0 _ P AN :

Accidental degeneracies occur at K1 = ﬁ, Fz' If one considers other
values of 6 , other planes, and other points of the BZ one ‘finds curves
and surfaces of accidental degeneracies.

What happens when we take into account non-nearest neighbor
interactioris between sites? The eigenstates [E m > , and eigenenergies

)4
¢ , take on a more complicated form, Pairwise degeneracies still
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occur at K, = + 1/2 where € - E and EZ_ Since one

1 - 1 3 €y~
expects the nearest neighbor interactions to dominate over the non-
nearest neighbor interactions, the ordering at K=0is aésumed un-
changed. YIf the ordering is changed our arguments below would have to
be modified, This can be done in a straightforward manner.) There is
now, however, Vno crossing of bands 2 and 3 (eq. ce7)e This occurs
because bands 2 and 3 have the same symmetry,; and, consequently,
by the well-known ''non~crossing' rule/(36) we cannot make them cross
by varying only one parameter, namely, Kl *, Our new energy diagram

becomes

Kb‘:o ) KZ/an g<|

(c.8)

|
K|=0 ' : FL K N I/Z

If one considers other energy orderings at k = 0, other values of & ,
other planes and points in the BZ, one can show by arguments analogous
to the above that the overall effect of the nonneighbor interactions is to

decrease the number of crossing points leaving only crossing points on

The xy symmetry plane is left invariant by the C point group
which consists of the 1dent1ty operatlon and the reflection operatlon
through the xy plane, The k. m>'s serve as a basis for an irreducible
" representation of this group., We find that if (1) the lowest triplet
is taken as a 3B1 state (i.e., changes sign upon inversion through
the benzene molecule center of symmetry), and {2) the site functions
are defined so that when Kk = 0, joI m >~—~JoIIl m > and
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axes of symmetry and crossing curves in planes of symmetry. How-
ever, if the magnitude of the non-nearest neighbor interactions is small
compared with the spin-spin interactions, we have further curves and

surfaces of "effective' degeneracies that extend through the BZ,

JjoIIl m > 1—;—-!-]0 IV m > upon a screw axis rotation {CZ(Z) | 6/23
parallel to b, then [k m >, IE m > gointo - IK.m'> - |K.m >

respectively upon reflecgf:ion through the xy plane, (Tﬁe states
|k1rn >, [k4m > are invariant to the reflection operation,)



125

d. Diffusing Excitons : Intermediate Field Case

(%e 1P1H,

3D

)

The oscillatory field, chos wt, is applied in the x-direction.

The rate of energy absorption by the sample is

N 2 2 -1
Plo) =5 2H, ‘wg, B~ (KT) K, (d.1)
}((m) is unitless and is plotted in Figures
6, +6.0
Hiw = %% % 2% @2
2 2 ¢ d.2
(6,) + (6)
B 4 -8 4 6, -6
1,217 x 10" ® - (4,056 x 10 4 1.391x 10 ) @
- +(1.217x104<:)4+1793x16 2-2.7z3x108)<34
9, = 5 -4 8 - 2 10, - 2
- (5.475 x 10 ~ 1,808 x 10 -2,262%x10 w
-{2.395 x 10' & 4+ 6.849 x 10° & eZ)
- -1 - -
@, = {expressed in units of D N2/4) (d. 3)
® = w -~ 1 rn oot " .
B -1 -2 4
-169X102w0+(2.535x103w + 4,462 x 107) w 58
- - 6
-(2.535X103w4+3.870X105w 2-5451x10) 20
2 -%6 5. % -2 |
+(1.69"x10% & "+ 2.873x 107 & - 1,245 x 10 [d.4)
93:5 - 1.284X109) )
' 4- - 4
- {2,467 x 10 o e(’ ~ 1,109 x 10° w_ - 3.807 x 109 2
- 5,090 x 100§ 22
5 - 8 - 11 - 2
+{8,761x 10" w 6-—5.131x10 o F-1313x10 3 )
— e e e ]
— 3-8 4 - 7]
2,028 x 107 w =~ (3,042 x 10 +3.569x10)w
+ (3. 042 x 10° & 4+z 142;;1066 62-9.141x10 )w4 (d.5)
= & = - 8 -2 |
0, =0 - (2,028 x 10° °°e6+ 1,087 x 10° w:‘-3 041x 10" & |
- 7,899 x 10) 52
+ (1,460 x 10° J)eé - 8,156 x 10" & e4 - 2,157 x 1010 “’ez)
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300 . (3.380 x 1025 %+ 2,021 x 105)}58

c
3 1 4.191%x10° 8 % 1,430 x 10)5°
6 -°2 ‘ 9, - 4
- 4,195 x 107 §_% - 3,712 x 10')5
. 11, .
S 1,748 x 107 & ° - 1,417 x 10" &2
10° 2
+4,055x 1000 & 9
e

5 e

N

w
e

c o
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In the limit of infinitely fast transfer we need keep only the highest

power terms in
e

that appear in the 91,- expressions; in the limit of

infinitesimally slow transfer, we keep only the lowest power terms,

The resonance peak positions in the monomer and dimer limits are

obtained by setting the dominant terms of 63 equal to zero.and solving

for w.

(.6)
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PROPOSITION I

The lowest excited electronic states of many N-heterocyclic
molecules are believed to be n, 'ﬂ'*states (1)s These states are
obtained by exciting one of the ''lone~pair'' electrons from a non~-bonding
{n) orbital centered on the nitrogen atom to the lowest unfilled anti-
bonding orbital (’lee) of the polyatomic molecule, The n orbital is thought
to be a sp2 hybridized orbital, and is symmetric with respect to reflec~
tion in the molecular plane, while the T  orbital is antisymmetric
with respect to the reflection. The azines and diazines are examples

of such compounds:

.
-

\
-
/ \

J
o

s

pyridine pyrazine
(ortho-~diazine)

Two somewhat different descriptions of the n, I states have been
advanced. We refer to the first description, ﬁroposéd by El-Sayed

and Robinson after a detailed examination of the diazines spectra (2),

a.s the '"localized' model, and we refer to the second as the '"delocalized"
model (3,4). In the "localized" model the excited electron is tightly
bound to thelpositive hole it leaves behind, The 11 orbital is regarded

primarily as a sz orbital perpendicular to the molecular plane and
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centered on the nitrogen atom. In the '""delocalized' model, the excited
electron is distributed over a number of atoms: the T*prbital is
mad.e up of a‘linear combination of a number of carbon and nitrogen
sz orbitals, (These "delocalized" orbitals can be calculated by the
method of Coulson and Longuet-Higgins (5)o] The experimental data
appear to favor the '"delocalized'' model {4}. |

We propose that electron spin resonance (ESR) studies of para-
magnetic triplet states of the N-heterocyclic molecules would be par -
ticularly useful.'“r An analysis of the fine and hyperfine structure would
give detailed information about the triplet state wave functions. The
extent of délocalization of the excited electron, and the degree of
hybridization of the n orbital could be determined, Experiments can
be performed by "doping'' a host crystal with an N-heterocyclic com-
pound and exciting the guest molecules to the triplet state. A detect-
able concentration of triplets is expected for most of the mixed crystal
systems,

In the diazines there are two nondegenerate n, ’Tr# triplet states:
the antisymmetric and symmetric states.*®* Theoretical calculations
(2) suggest that the energy separation between the symmetric and

. . -1
antisymmetric triplets are ~~ 25, 275, 5,500 cm  for the para-,

* An electron can be promoted to the "n’* orbital from either
one of the two nitrogen atoms, giving two degenerate n, a#*  states.
Electron-~electron interactions, however, remove the degeneracies and
give a symmetric and an antisymmetric states In general, the number
of low-lying n, ¥ states is equal to the number of nitrogen atoms,

t Mr. A, Dubin of the California Institute of Technology has begun
a number of preliminary experiments.
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meta-, ortho-diazines, respectively, {The uncertainty in these values
may be as large as a factor of two.) If a detectable concentration of
tripléts can be prqduced by illumination, both the symmetric- and anti-
symmetric states of the para-, meta~diazines should be populated at
room temperature, Itis not generally possible to detect both these
states by optical means, Optical transitions fr01;n the antisymmetric
triplet state to the ground singlet state is expected to be weak because
it is doubly ''forbidden': it is '"forbidden'' spatially, and is 'forbidden"
because of spin multiplicity differences., In ESR different selection
rules hold, and resonance absorptions are possible for both these
triplet stdtes. A st\idy of spectra intensity as a function of temperature
would give an estimate of the splitting between the symmetric and anti-
symmetric triplet states of the para=~, meta-diazines.

If the '"localized" model is correct, one can expect very large
fine fields arising from the spin dipolar interaction of the two unpaired
electrons centered mainly on the nitrogen atom-{one in an n orbital;
the other in a ZpZ orbital). If the ''delocalization'' model is correct,
the fine fields are now expected to be somewhat smaller since one of
the unpaired electrons is distributed over a number of atoms. Below

we carry out an estimation of the fine field of pyrazine.
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ILLUSTRATION

The triplet n, % states can be approximated as

|+ M) = Iéna’ﬂ'*'M> + [AnaT M
-) H BT

(2)

JZ

[+ M) is a symmetric (antisymmetric) triplet state of spin com=
pcgr:)ent M=1, 0, -1, A is the antisymmetrization operator;

|é ‘na’nj= M> denotes a triplet state of spin component M obtained
by exciting an electron from an n orbital on nitrogen a into the v
orbital, For specificity, consider the para-diazine, pyrazine, Its
spin-spin interaction can be represented as D(SZZ-Si:;) + E(SXZ-SYZ) .
(The cartesian axes are shown in equation l.) As a first approximation
to D and E we assume that the predominant spin-spin interaction comes
from the unpaired electron in the n orbitals interacting with the unpaired
spin density, P/Z, centered on each of the two nitrogen atoms. This
is a very good approximation for the '"localized" model and is reason-
ably adequate for the '"delocalized'' model, provided f > 0,2, We

obtain the following expressions (6) for D and E for both the symmetric

and antisymmetric cases.

—71—2— g

(incm ) 4 hc 12 i,

E = 3g PP <V‘ Vlzl\y> . (3)

4 he rlZ
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V ~n{D) p A2 -p (1) n(2)
=

Both the n orbital and the sz orbital are centered on the same nitrogen

atoms, nfi) can be expressed as:
n (i) = a s(i) +b P, (i) . (4)
(b = 1 - az )
s (1) denotes a 2s orbital; px(i) ;a pr orbital,
(If slp2 hybridization is assumed, a = 1/3. Equation 3 can be evaluated

by the method of Hameka (7). We use Slater atomic orbitals, The

calculation is fairly laborious, and we only quote our results.

3,2 :
—-3ge(3 P 73.‘3

-1
D= 13 (a2+b2/2) cm
4 he 1,920 a
_ o
L q {5)
. 3
—3ge@ /0 72 1 > -1
E= —— 1920 —5 (v /2) cm .
4 hc ! a_

72 is the effective charge of the Slater 2s and 2p orbitals, and is

' -8
approximately 3. 9. a, is the Bohr radius, 0,528X 10  cm, We
note that E is independent of the 2s orbital, (.E is a measure of the

asymmetry about the z axis, Clearly the 2s state does not contribute
1+ a,2

to this asymmetry.) The ratio D/E = —3 determines the degree
l1-a

of hyrbidization of the n orbital,
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2
For sp hybridization we obtain the following values for D and E:

vl
I

= -1,275 f cmhl;

(6)

E

1]

D/2 = -0.6375 p cm'l .

A Ia
Figure I is a plot of energy vs. external field, HO. H0 is taken parallel

to the =z é,xis. We have set )9 = 1; i, es, wWe assﬁmed tight bonding.
Experiments are generally performed at X~band { ~9,500 Mc), We note
from Figure I that the tight bonding approximation gives only one reso-
nance at ~7, 800 gauss, These results contrast strongly with those
from aromatic molecules like naphthalene, There D and K are approx~
¢ -1 -1
imately 0,1 ¢cm and -0,01l cm , respectively; three resonances can
be detected (8).

If the "localized' model is correct, we expect our values for D
and E to be correct to within 1 or 2%.1. The symmetric and antisymmetric
states will have fine fields that differ also by a percent or two; con~
sequently their spectra can be reéolved. If the '""delocalized' model
is more appropriate, it may be necessary to modify our treatment in
order to obtain greater accuracy. If the excited electron in the ¥
orbital is ’rnore or less evenly distributed on all atoms of the ring,
our estimate of D and E{eq. 5) are correct to within 10%1: Again the
antisymmetric and symmetric triplet states will have fine fields that .

differ by the same amount,

fOur estimates of accuracy are somewhat optimistic. We have assumed
that Slater orbitals can be used with little error, and that n (1) is

accurately given by equation (k).
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PROPOSITION 1I

Numerous efforts, all unsuccessful, have been made to obtain
phosphorescence spectra from pure molecular crystalss The phos~
phorescence spectra that have been obtained are generally due to
impurities in their triplet state. We propose tha.j: triplet-triplet self
annihilation is a significant non-radiative depopulation mechanisma,

The most plausible annihilation route being:#¥

2T —s T.+8S (1)
(0] . 1 o]

]

To denotes the lowest lying triplet state; Ti’ an excited triplet;
S , the ground singlets
o
Fluorescence emission generally occurs with an exponential decay

from the first excited singlet, S The fluorescence lifetime is between

1.’
~10 -7

1X 10 and 1 X 10~ secs., Blake and McClure (1) have observed a

nonexponential delayed fluorescence {emission occurs 3 lO"3 Secse

from the time of excitation) in molecular crystals of naphthalene and

phenanthrene, We propose that triplet annihilation may be responsible

for the delayed fluorescence, The decay scheme being:
2T —a T, +5 ;
o i o

¥ T, —X sJ_ ; (2)

*We use the phrase annihilation somewhat loosely, Itis perhaps more

appropriate to regard the triplet~triplet quenching as a modified Auger
processa
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Sj is an excited singlet, Y is a constant less than one, and denotes
the fraction of the Ti state that gndergo a radiationless transition to
Sj. The balance of the Ti states return to the lowest triplet, To, by
a series of nonradiative transitionse

The arguments in support of this two part proposal briefly are
as follows: The triplet state is believed to be populated indirectly by
an intersystem radiationless crossing over from the singlet system
to the triplet system (2). Experiments are generally conducted so that
most of the radiationless transitions occur from the first excited singlet
Sl to the triplet system, Conceivably, this intersystem crossing may
be reduced in the pure crystal to the extent that no significant triplet
state population is built up. We know of no mechanism that could be
responsible for such a situations Arguments have been advanced that
there may be a /ll-selection rule because of crystal exciton bands (3).

A closer examination of this suggestion fails, however, to reveal any
such selection rule.

Although there is no unambiguous experimental evidence that
rules out a reduced intersystem crossiﬁg in the pure crystal, we feel
fairly confident that the explanation lies elsewhere. Recently excitation
migration has been studied in C, Dy crystals doped with C, Hg (4),

107 8

and C6D6 doped with C6H {5)e* These experiments strongly suggest

that (1) the intersystem crossings are relatively unaffected by the

* The undeuterated compound acts as an ""impurity' trape
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crystalline state; (2) very rapid triplet excitation transfer occurs in

-10 -11
or 10 SECSe)e

the pure crystal (transfer times of the order of 10
Since the radiative lifetime for the Ta-»so transition is of the order of
10 secss, a triplet transfer time of the order of 10” secsa provides
ample opportunity for the triplet excitation to (l) fall into impurity or
lattice defect traps; {2) ''collide' with other triplet excitations if the
trap depths or concentrations are sufficiently small. The decrease in
phosphorescent yield with increasing crystal purity can be explained

in two ways:

(1} When the impurity concentration is low relative to the defect
concentration, the excitation migrates to defect sites., If the molecules
at these defect sites are strongly coupled to the lattice, non-radiative
transitions can occur directly from TO to So. Since the noneradiative
lifetime for triplet state aromatic molecules in the crystalline state
(e« ge, naphthalene in durene) are normally of the order of several
seconds, these defect sites must give non~radiative TO/WW* SO life=
times of the order of ¢ 10“3 secs, to explain the virtual absence of
any detectable phosphorescence or triplét state paramagnetism in pure
aromatic crystals,* It is not clear why such strong coupling should
occur, Recent experiments (5) indicate that the Tofww» So process
at defect sites is most probably not the reason for the absence of phos-

phorescence (we discuss this further below(). (If the defect site

¥ We assume radiative lifetimes of the order of 10 secs. or
larger,
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mechanism is important one would also expect it to be more important
in polycrystalline or fractured crystals, The author is not aware of
any significant differ ences in phosphorescence yields between single
crystal and polycrystalline samples. If the defect mechanism is
important, it may be possible to raise the temperature sufficiently so
that the excitation escapes the trap. This would be possible to do for
some aromatic crystals if the trap depth is not much greater than 200
cm™ )

\(2) The reduced phosphorescence may be due to self~quenching;
le€e, inter;ctions between triplet state molecules may be responsible
for an Auger-like annihilations We indeed find this to be highly prob-
able.

Consider a double excitation system consisting of two triplets,
TO. This system is degenerate with a large number of other vibronic
states into which it can decay. In Figure I we illustrate two possible
annihilation schemes, For the sake of specificity we have used the
energy diagram of benzene,* All levels refer to the approximate posi-
tion of the lowest vibrational level of the excited states relative to the
lowest vibrational level of the ground singlet, So. The dotted levels
correspond to states that have not been observed experimentally. We

have used the theoretical values of Pariser (6). The positions of the

* The energy diagram does not include excited states obtained
by promoting an electron from the & system to the 7T system; nor
does it include ionization states,.
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excited triplets relative to To may well be underestimated by 5,000
crn—l. The higher vibrational levels are not shown explicitlys, At

~ 4,000 cm-1 above the lowest vibrational level, we have essentially
a continuum of excited vibrational levels,

The annihilation process conserves energy. We easily see

from Figure I that there are a large number of other final vibronic

levels into which our double excitation system could decay. Below we
show that the 2 T(;—»—- Ti + S0 mode dominates the 2 TO—»' Si + S0
mode,

Our initial double excitation state has an energy ZE(TOL We
denote this state as |07 » and a possible final state as '—}) o
The energy level of the final state is not well defined because of
vibrational relaxation, Itis broadened by an amount h /"(f where
Tf is a vibrational relaxation time; consequently we introduce the
probability distribution function gf(E) such that gf(E) dE denotes
the probability of finding the energy of the final state between E and
E + dE, First order perturbation theory gives as the average transition

rate, Rof:

R .= — gf(E) Pf(E) dE . (3)

Pf(E) is the spectral distribution function:

vol® $lE-em(r)] (4
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V denotes the interaction between the two triplet molecules; Sis the

delta function. The transition probability is

2T 2 ~ 27T . 2
Rof - IV'Of’ & &ZE (To)] hZ Tf ,Vof' ’ (5)
The overall transition rate is
R = 2T s7 IV [ 2, (6)
o n 2 ¢ f] of

The sum is over all final vibronic states having energy ZE(TO).
We give equations 3«5 the following physical justification: We

imagine that at time t = 0 only one excitation exists at, say, position

A

. + . s
Rn in the crystal, At timet =0 a second triplet excitation can
1

A
now be found at position Rn o This second excitation may have resulted
2
from an intersystem singlet to triplet crossing from an excited singlet
A - - . - »
state molecule at R o This double excitation system is now in a
n
2
nonstationary state; the interaction, V, between the triplet excitations
induces transitions to other vibronic states, f, whose energy levels
are broadened by interactions with the lattice.

We apply the Born-Oppenheimer approximation and write our

states as a product of electronic and nuclear wave functions,

0> =la Tonl Tonz X, (Tonl) Xo (Tonz‘%>;
£ =aA T s X, (T, }X. 4s ; (7)
i in, “on, 3y { 1n1) Jy On2)>

r £ =la s, s s. YX (s .

I edh s, S, X, (5,0%, (55,0
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A 1is the antisymrrietrization operatore TO denotes the
n
1
lowest triplet electronic wave function at lattice site position R ;

n
1
XO(TCJn ) denotes the o'th {ground) nuclear wave function associated
] .
with Ton « The remaining symbols have analogous interpretationse
1

Ro can now be represented as:

_ 27T | 2
Ro~ ——2- Tave 2 ’<A Ton Ton lVl A Tin Son »l G (Ti)
o L 1 2 1 2

x (8)
Zi_KATmlngVWAsm %myf G(s,) fe
¢ 1 "2 ) /

We shall use an average vibrational relaxation time, T ave’ of the
v
-11
order of 10 secs. G(Ti) s G(Si) are sums of nuclear overlap

factors:

2
G(Ti) - Z ]<X0(Ton ) Xj (Tin )> <Xo(Ton ) Xj (Son )>I ;
Jad, 1 1 1 2 2 2
<Xo(Ton ) Xr (Sin )><X0£Ton ) Xr (Son )>’ ‘
1 1 1 2 2 2

G(S)* =

L)

Because of the nuclear overlap factors, transitions will occur

mainly to those states Ti and Si having electronic energies somewhat
"1 "1

less than ZE(TO) relative to S_.* In the case of benzene (Fig. I),

* If the difference in electronic energy between an excited state
and S is 2E{T,) - & where & is less than 4,000 ecm~!l, we are in
a region where the excited vibrational levels can no longer be regarded
as giving a continuum, Under such conditions it may be difficult for a
decay to this state to occur without phonon participation. The triplet
guenching process is now a second order process requiring that a phonon
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+ 1+ :
T =E." andS, = E, . We estimate that G{T. )~ G{s. ),
i 2g i) lu i i
- -6
and has a value between 10 3 and 10 ~, {These values are consistent

with the rates of radiationless transitions for the T ~w» S process
o o
that have been observed for aromatic molecules in inert matrices.)
. -1
R  has a value in sec. given by
o

on

-2
R _=3x10 GQ(ATODITOHZ]VIATiHIS 2>| + ](AToanonJv[Asinlson? )

(10)

(V is measured in cm ).

We now examine the ZTO——b— Si +S process. The spin angular
1
momentum of the two triplet molecules can be added to form a state of

total spin 0., We assume that 'A Ton Ton > is such a state,

n on

1
spin component hav1ng the values 1, 0, -1, For the sake of simplicity

1 M+1 M -M —~M
On = f.( 1) lA, T Ton D T' denotes the

we replace the many electron wave functions by two electron wave

1
functions (i. €., we only consider the two optical electrons)s T is
on

1

be created or destroyed during the process in order to conserve energye.

If Tfn is such a state,the assumption that only single phonons are

1nvolved requires that the final vibronic state, \ATfn SOnz XJ (Tfn XJ (s
[-f-} ) have an energy that differs from the initial state |°0) a most

by“a:n amount B V.. 1 1is less than the Debye cutoff frequency. We

have examined these second order processes, and find that if they can

occur they give somewhat larger transition rates R, than equation 7,

In the balance of this proposal we explicitly exclude these second order

transitions,; although the reader should bear in mind that if they can

occur they appear to be the most probable annihilation route,.

0'”1\ >
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approximated by ' l) u (2) o (1) DK(Z) l and 8. by

Ju. (@] (2)(;((1),9 (2)] - l {)u’ (2) p(l)a(z), and u'
" 1

denote exmted molecular orbltals, X and ﬂ are the usual spin

functions. <AT T [ V|AS, S > reduces to an algebraic
on, on, in, on,

sum of terms like

<un1(1)uh2</2), Vlunl(l)un2(2)> <unll un27 <ulnll un2>.

<u lu 7 , " , u 7 are electronic overlap factors, and are
n.] n n n
2 1 2
expected to be quite small, When n, and n, correspond to neighboring
sites, the overlap factors are estimated to be 2’ 1X 10-4.

<uo u , v \ u  ul > can be evaluated by the usual multipole ex~
n, n n. n

-1
pansion method. One expects values between 10 and 1,000 cm .

2
I<AT T | V1]Aas, S 7’ will be proportional to the electronic
on. on in, on
1 2 1 2
overlap integral to the fourth power,
Intramolecular spin-orbit coupling mixes singlet and triplet

states,* The lowest triplet can be represented more appropriately as
+ .
To ? )’,2 Sﬁ

11 denotes the amount of singlet character, The ZTO—» S, + So can
i

proceed via the singlet contributions, We obtain transition rates pro-
1

4 .
portional to ) ;le sy
AN

- 2 2
KAt Ton2[ v|AsinlsonZ71~ [ z,imlf 1m<s£nlsmn UENE >!

on in, on

2 1 2

1

1

*We ignore intermolecular spin-orbit coupling perturbations as
these are expected to be small,
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')\2 can be evaluated from the work of Clementi (7), A. C. Albrecht
(8), and the experimental oscillator strengths for the To—t— SO, and
Sk_v S.0 radiative transitions. We find that the 1[ 's have values
between 1 X 10-4 and 1 X 10-5 in the case of benzene.

The above treatment can be extended to the ZTO———V T +S
i o

on

1
total spin angular momentum of 1, The net result of the calculation is

process, We understand [AT Ton 7 to now be a state having a
2

.S

.11’11 OI‘?

to give results similar to the above except thatl<A.To T ‘V]A.T
: n. on
1 2
2
is proportional to >\ » or to the electronic overlap factor to the

. . . 2 .
second power, The contribution proportional to ) , for example, is

approximately
l% li _(Tonlsﬂnz' V| Tinlson;, 2
Barring certain pathological cases where
< Ton Stn |V Tin Son )] << <0 Stn 1V]50n Sen |

because of symmetry considerations, the above discussion suggests that
the 2T_—% T, +S_ mode will dominate the 2T —~ S, +S_mode, In

: o i 0
the case of benzene we find that the annihilation via the singlet character

present in the triplet wave function gives a transition rate R )of the
o

7 — ”»
order of 1 X 10 G/sece* If G has a value between 10 6 and 10 3, we

*We have only considered interactions between neighboring trip-
let pairs {comparable rates are expected for other simple aromatic sys=-
tems), If the annihilation occurs via electron overlap, approximately

the same or possibly smaller rates,Ro) aye obtained,
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4 -1 }
obtain a transition rate between 10 and 10 sec  per pair.
The above estimate has been made on the basis of a pair of
excitations localized on single molecules. The experimental transition

rate per pair, k , should be set equal to S Ro. O is a constant

1
taking into account the nature of the collision pi'ocess, ie e.; excitations
distributed over large numbers of molecules will give transition rates
different from that of a '"gas'' of diffusing narrow wave packet excita -
tions. (Impurities in the crystal can also affect the transition pro=-
cesses.)

The delayed fluorescence that has been observed (1) may arise
from a crossing over from Ti . Earlier we pointed out the crossing

A | 7 1

over rate from S1 to To is of the order of 1 X 10 sec = for benzene,

In the case of the Ti level, one expects non-radiative transitions

1
10
from Ti back to To to occur at a rate, kz, of the order of 1 X 10
"1
11 -1
to 1 X 10 sec . The intersystem crossing from Ti to the singlets

1
must be of the same order of magnitude, or approximately 1 X 10

3
faster than the S1 to TO. Recent work by M, F. O'Dwyer et al, (9)
suggests that this may well be the case, -

In the above we have ignored the effects of ionization states
because of uncertainties as to their location, Possible significant
effects can occur by decay to an ionization state., Photoconductivity
in aromatics may be related to the triplet-triplet annihilation process,

Below we determine a lower bound on k, and ¢ . Our decay

1

scheme
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o k o
o
—_—) + .
ZTO kl Ti S0 ; (11)
Tl k To ’
2
T g S. 3
i Ykz J

leads to the following rate equations:

dTO~ >
= =k - '
T 5 To 2 kl(To) + kz Ti +L
dTi , (12)
n = =(1+7%) k, T, +k, (TO) v

L denotes the rate at which triplets are produced by intense illumination.
If we assume that the intersystem crossing from the singlets to the

triplets is approximately the same in the crystal as in "inert" solvents,

16 -1 -
L has the approximate value of 1 X 10 ~ triplets sec ~ cm 3. ESR

experiments are generally conducted under conditions where a steady

12

1
state triplet concentration of the order of 1 X 10 " to 1 X 10 3 triplets

-3 . . .
cm would be detectable, Assuming no potent spin-relaxation or other
line broadening mechanisms, the failure to detect triplets in aromatic
systems implies that the steady state concentration (To)s must be less

12 . 3
than 1 X 10"~ triplets/cm~, From the above rate equations we conclude

~ 8

- -]
that kl £ 1X 10 " sec . This implies that (J has a value between

-1 - -
1X 10 2a.nlelO ? ifkl ~1X 10 8.
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Recent experiments carried out by G, W. Robinson on mixed
crystals of C6D6 and CéHé (5) have been very illuminating. At low
temperatures ( {70°K) phosphorescence emission was observed
only from the C6H6 isotope. traps. As the C()Hé concentration increased
from 2% to ~ 5%, the phosphorescence lifetime decreaseg at a rate
approxirﬁately proportional to the concentration squared, In addition,
a delayed fluorescence was observed with a lifetime related to the
phosphorescence lifetime. Further experiments are being conducted
to determine whether this is a linear relationship, kl from these
experiments have a value less than 10-8. The fact that the delayed
fluorescence lifetime appears to be related to the phosphorescence
lifetime and that the phosphorescence lifetime goes approximately as
the concentration squared, strongly suggests that there may be no
significant non-radiative transitions induced by lattice defect sites of
the type discussed earlier,

We now briefly consider distributed excitations. We find that
annihilations are particularly rapid from "bound' double excitation

states, (The double excitation propagate.s as a pair,) In the limit of

strong binding, a possible bound state would be:

1 Z exp (izwﬁﬂef{n) AT, 2 T R s 7 (13)
N n n '"n Ta .
A double excitation exists at positions R s and/l\{ + ﬁ « N =NN_N
: n n a 1723

{cyclic boundary conditions are imposed along the three directions
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A4 A
parallel to the primitive lattice translations, tl, t_, t3). This bound

2

state can undergo a transition to the state
1 7. A N

\W)= = Zexp(i2TK R [AT, .S o .00 > (14)
N n n ?"n Ta

(The nuclear wave functions are included in the above, although for
simplicity purposes we have not shown this explicitly.)
A A A ) )
If Rn and Rn + Ra define nearest neighbors, we find that the

transition rate is approximately RO_. Our kinetic scheme is now

k
£)
2T (T)y —— T +5 (15)
o] -— o] 1 (o) v
k_ 2k

1 2
(T )Z denotes the ""bound' dimer., If we assume equilibrium is reached
o

between T0 and (To)z’ we obtain thatk, = k. k. /k and can solve

1 f2 fl --f1

-8
for the concentration of (TO)Z. If k., is approximately 1 X 10 , then

1
- /\’ lZ . 3 0 »
a steady state concentration for TO 1X 10 triplets/cm”™ implies
| . 12 15
a steady state concentration for (TO)Z between 1 X 10"~ and 1 X 10
4
(if R is between 1 X 10" and 10), The lower value for (TO)2 is more
o
reasonable, and is consistent with our earlier estimate that G is near
10-3 rather than 10~6.
We have examined the possibility of the existence of bound states
using the methods of Merrifield (10), and find that such states may well

exist, Blake and McClure (1 ) observed an activation energy of the

-1 .
order of 40 cm in rate of delayed fluorescence emission, Concé€ivably
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this may be associated with the above bound pairs,
If bound exciton pairs do not exist, we find that the transition

. A A R A A

rate per pair is approximately B(KI’KZ) O . O«¢ B(Kl,K

N
A A
Kl-,K2 are wave vectors and cannot both be zero. We have assumed

£ 1
) <

that transitions take place from the initial unbound state

: 1 A
= C(Rnl an) | A T, r  Tor > ‘ {16)
Dpafp2 0y ’ oy ™

to \Vf> above., The coefficients CJ(Rn Rn ) can be obtained by
1, "2 A A
the methods of Merrifield (10), and these determine B(KI’KZ)' The
A
unbound double excitation state has an "'average' K value of

A A
(Kl + KZ)/Z. We clearly see that if N is very large, negligible transitions

will occur from the unbound states.
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PROPOSITION III

A number of experiments have been conducted in recent years
to determine the extent of spin correlation in biradical molecular
compounds., Jarrett et al. (1), Reitz and Weissman (2) have used

paramagnetic resonance to study biradicals of the form:

/ /
Q' /—\X/ -c>/—>

/ \ \—_/_ i (1)

X is a group bridging the two triphenylmethyl monomer radicals. The

X groups used were polymethylene (—CHZ-)n, polyphenylene ( —@— )

-

n

and ether (—O-)n. Most of the electron spin density is on the central
carbon atoms of the triphenylmethyls (TPM),

Bijl et ale {3), Matsunaga and McDowell (4) have used para-
magnetic resonance to study charge transfer compounds in the solid
state, The ground state of these compounds is presumed to be
symbolically representable as ID+A”> « An electron is '"donated"
by D and "accepted' by A, If A and D are molecules having completely
filled electron shells, A” and D+ each have an odd electron, The
charge transfer compounds investigated were chloranil, bromanil,
jodanil, and tetrabromo o-quinone complexed with p-phenylene~diamine,

and/or tetramethyl p~phenylene-~diamine. The diamines are the electron
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donors. The p-phenylene~diamine + chloranil complex, for example,

has the following form:

N, _\__ -
=
(2)
AN

0

If the spin correlation, i.e., the exchange interaction term

A
J gl. SZ, is sufficiently small, the biradical compounds will behave

1
2
like two independent doublets, The magnetic susceptibility will show
the usual 1/T dependence of a doublet, (T is the absolute temperature, )
Any hyperfine structure present in the ESR spectra will correspond to

a linear superposition of the hyperfine structure of two nearly inde=-
pendent doublet systems. If [J| is sufficiently large, the ground state
of the biradical will .Jook likea diamagnetic singlet or a paramagnetic

triplete The magnetic susceptibility, X , will now show a more com-=

plicated temperature dependence (3):

1 1 1 1
Ad 3 3+ exp |J| /KT X 3+ exp-|J| /KT + (3)

(ground singlet) (ground triplet)

All the above experiments indicate that the [J, 's are suf-
ficiently small so that the biradical compounds can be considered as
made up of two independent doublets, |J] was estimated to be less

-1 -1
than 4 cm  in the Bijl experiment, and to be less than 0,003 cm  in

the Reitz experiment .
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These small |J| values are perplexing. McConnell (5), for
example, estimated theoretically the value of |J| for radicals made up
of two TPM groups {eq. 1), and found them to be several orders of
magnitude larger than the ""experimental' values. No extensive theo-
retical work has been done on the J values of the diamine complexes
because of the complexity of the problem and the lack of experimental
data as to crystal structure; nevertheless, the small values of|J|reported
appear to be at variance with other experimental facts (see below).

About a year and a half ago the author proposed a possible
explanation for the small [J| values of the diamine complexes. A
number of recent experiments (6,7) lend support to his original proposal.
The arguments are briefly repeated.

The orientation of the donor and acceptor molecules relative to

each other is not known. Consider the following two cases:

D A D A

4-—ZO——- XI ;| ———————— 7 — —————— (4)

{a) (b)

One might expect - Structure (a) to be most probable because
it maximizes overlap of the T orbitals {8). Virtually complete charge
transfer from D to A is believed to occur; consequently, overlap is
relatively unimportant for purposes of stabilizing the complex (the

major source of bonding comes from the coulombic interaction between
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the charged components of the complex), We consider {b) as an alternate
Structure,

The odd electrons of A and D can interact magnetically with
each other, and anisotropic spectra should generally be obtained, This
is true whether 'JI is small and the system can be regarded as doublets,
or whether IJI is relatively large and the paramagnetic species is a
triplet state molecule, If a thermally accessible triplet exists, or if
the ground state of the complex is a triplet, one expects a spin dipolar
interaction term of the form (9, 10):

= 2 L2 e 2 2
- + - .
D(s, -8 7/, E(S_ sy ) s

2
D=3/4 giﬁ <D+Kl 13 (1 -3Z§Z)ID*A7, (5)
- iz
T12
gzﬁz NI
E=-3/4 = — <DA[12 512 ’Df\?.
hc T,

It is a relatively simple matter to estimated D and E, We assume that

i+
z ~ 3"A, and that the odd electrons are in molecular orbitals made

o

up of highly localized atomic orbitals, We take the charge distribution
to be uniform over all carbon atoms. Strvetuve (a) gives

D ~ 0.04 cm"1 or 400 gauss™(E is negligible in comparison).
Strvciure. (b) gives D ~ 0,015 cm  or 150 gauss., The assumption

of highly localized atomic orbitals most likely overestimated D ,

The true values may be 300 gauss and 100 gauss for structures (a)
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and {b) respectively. (Similar conclusions as to the magnitude of the
electron spin dipolar interaction hold if the complex can be regarded
as two independent doublets.)

The experiments have been performed on polycrystalline samples;
as a result, one might expect broad resonance lines.{ > 100 gauss)s The
observed resonances are fairly narrow ( € 30 gauss)s p-Phenylene-
diamine + chloranil, for example, gives a resonance lihe having a width
of ~10 gauss under low resolution {3). Under high resolution this
line is observed to consist of two lines, approximately 2 to 5 gauss
wide (4). Intermolecular spin exchange, p‘bossibly intramolecular spin
exchange if the complex can be regarded as two nearly independent
doublets, might be responsible for the fairly narrow, apparently iso-
tropic lines.

Spin exchange narrowing would be expected if the concentration
of paramagnetic species were large. This would be the case if a
ground triplet exi'sts or if IJI is sufficiéntly small so that (1) one could
regard the complex as two independent doublets, or (2) a thermally
accessible triplet state existsa IJI is esﬁmated to be much less than
4 cmhl,' and spin exchange narrowing might well occur.

There are, however, a number of disturbing experimental points:
(I) the resonance line shape depends somewhat on the method of prepar -
ation (4); (II) the radical concentration of the diamine complexes differs

by as much as a factor of 200 (3). If IJI is small compared with kT,
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and if the ground state is a charge transfer state, it is indeed difficult
to understand the reason for such large differences in radical concen-
tratione One cannot attribute it to differences in electronegativity between
the components of the complex since ,JI is supposed to be much less
than 4 cm--l for all complexes studied,

A possible explanation is the following: ILet us assume that a
thermally accessible triplet exists, and that ‘Jl is large compared
with kT for some of the complexes, Assume J ™~ 0.1 ev, or ~ 800

cm .« The concentration of triplets for that complex would be

- J /
3 e kT

X 100% ~. 3%.

- J /
l1+3e kT

A polycrystalline sample of the complex would give a resonance ap-
proximately 100-300 gauss wide, if we assume no significant spin
exchange narrowing. Any impurity doublet of ™~ 0,3% concentration
would dominate the spectra.* Organic doublets generally have a width
of ~ 30 gauss. Spin exchange of the impurity doublet with triplet
neighbors may be responsible for the fairly narrow resonance observed.
E. E. Schneider (\footnote reference~{3) ) is reported to have
determined the radical concentration in p-phenylenediamine + chloranil
(PPC) tobe ~ 0.4%. The tetramethyl p-phenylenediamine + tetra-

bromo o-quinone give a resonance thatis 200 times more intense than

¥Impurities would explain the dependence of line shape on the
method of preparation (4).
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PPC, implying a radical concentration of approximately 80%-{3).

Clearly, if Schneider 's determination is correct, impurities cannot be

responsible for the large radical concentration in the tetrabromo o-

quinone complex. The IJI value of this complex must be < 4 cmul,

or approximately 1000 times smaller than that of the PPC complex.

This difference is surprising but may be due to differences in Z or

differences in electronegativity between the components in Lthe complex,

Other possible explanations for this discrepancy between J 's might

be that the triplet lies lowest in the tetrabromo o-quinone complex, or

that the basic unit of this complex is not D+ A~ but rather D+ A._(DmA.n),

where m and n are integers, If the latter structure is correct, the odd

electrons may be distributed over a number.of D and A's resulting in

a smaller J . Experiments performed on pure single crystals at

various temperatures would verify or disprove the above explanations.
Chesnut and Phillips have recently examined the phosphonium

and arsonium TCNQ charge transfer complexes (6) and found a thermally

accessible triplet with J ~ 0,06 eve, and a zero field term,

D ~ 100 gauss. (These authors also raise the question of the pos-
sibility of impurities masking the resonance of any triplet molecules
present in the phenylenediamine complexe s.) Bell and McConnell
have suggested that triplet excitons 'ex'lst in TCNQ salts, Single crystal

experiments on the above phenylenediamine complexes might also reveal

triplet excitons. {In addition, other phenylelediamine complexes like
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phenylelediamine + halogen derivatives of naphthaquinone and anthra-
quinone could be synthesized and studied.,)

The above analysis indicates the importance of working with
pure single crystals. It is quite possible that the Jarrett and Reitz
experiments performed on solution samples failed to reveal any sig-
nificant singlet triplet separation because of spin dipolar interactions.
If the TPM groups are directly linked, one can expect a spin dipolar
interaction of the order of "~ 65 gauss.* McConnell estimated that
a thermally accessible triplet exists, with J ~ 100-~500 cm-.l depending
upon the planarity of the radicals Doublet impurities of the order of 1
or 2% would now dominate the spectra. (The above explanation may
not be the complete answer, however., If X corresponds to (—CHZ-)Z,
the spin dipolar interactions are negligible. McConnell estimates J
to now be 0,3 to 3 cm-l, whereas the experimental J is less than 0,003
cm-l. If McConnell's estimate is correct, and the experiment was
done correctly, the explanation for the discrepancy between the experi-
mental and theoretical values must be sought elsewhere for this particular

biradical.)

*We assume that the spin density distribution in the TPM mono~-
mers are not perturbed significantly by the bonding. The spin density
at positions 1 and 2 is 0,18 (5) D and E of the triplet state of
ethylene are 0.2 and 0,23, respectively (10)¢ The spln dipolar teyms

D , E of the biradical ¢re approximately (O 18) X 02cm ,
or apnroximately 65 gauss.
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PROPOSITION 1V

Numerous investigators have sought to derive the vibrational
frequency or electronic energy spectra of disordered lattiCeSo* A
solution of this problem would enable one to calculate the thermo-
dynamic properties of alloys, isotopic systems, and glasslike sub-
stances., Particular attention has been given one dimensional chains,
Dyson {1) and Schmidt {2} have obtained exact formal solutions for the
frequency spectra of disordered linear chains, Their methods of sclu~
tion, unfortunately, do not enable one to carry out calculations of the
spectra, Other investigators (3) using less rigorous methods have
obtained semiquantitative expressions for the frequency distributions.
Numerical methods have also been devised by Dean (4) and Domb (5).
Disordered two and three dimensional lattices are even less understood.
The frequency spectra of these lattices have been approximately deter-
mined for low concentrations of impurities (3)e There is at present,
to the best of the author's knowledge, no adequate method for determin-
ing the energy spectra of a two or three dimensional lattice when the
concentrations of A and B are both 1arge. and comparable, Below we
explore a method that might be successfully applied to such cases.
The arguments we give are nonrigorous. We desire only to point out
future avenues of research, For simplicity purposes we only consider

simple cubic lattices.

% The disorder is introduced by choosing fixed concentrations of
two components, A and B, and distributing them randomly through the
lattice, {Multicomponent systems are, of course, even more difficult
to tr eat.)
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The concept of the propagation vector, k, has been very useful
for determining the frequency spectra of ordered lattices. If we denote
a particular 1attice position of an ordered monoatomic lattice by Rn’
the x component of the displacement of the atom at that position is {3):

@ "
Xp @ exp (int+ k- Rn) ,
n

N T
k=.21'fS1 g + ?.1'rS2 /e\ 27 S /é

Na Na y Na

o (1)

w is the fregquency; N3 is the total number of atoms in the crystal.
Cyclic boundary conditions have been imposed; a denotes the inter=
atomic spacing; e is a unit vector along the i axis.,

If fixed boundary conditions are used, equation 1 becomes:

. ) ms s 5
x @ -expiot sin " "171  sin M2 Sin 530 (2)

R N N N

4 A A A
We have setR =n.ae +nae +n.ae; n
n 1 = 2 vy .3 z i

Xp is zero when n, or mn, and/or n3 are 0 or N, Equations analog~
ou;:l to equations 1 and 2 can be readily derived for ordered lattices
having more than one kind of atom. The frequencies w(sl’SZ’SB) and
frequency distributions G{w) can be determined (3, 6).

What happens when A and B are now distributed randomly through

the lattice? 1Is it possible to talk about a '"propagation vector''? If so,

can it be used as a basis for calculating the frequencies and frequency
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distributions? Rosenstock and McGill (7) have recently examined the
vibrational modes of a disordered linear chain, The chains consist
of two masses m, and m, distributed randomly., The displacement

u, of atom i satisfy Newton's equation of motion:
1

k(o muw)tk (b )-o )= mou (3)

(i=1,2,... N)

_1_(1 is the restoring force constant between atoms i and i~1l, Only near~

. . . . iwt /At
est neighbor interactions are considered, ui(t) =u,e =u.e / o
. 1 1

Figure I is a plot of u, Vs. i when N = 10, 16. Fixed boundary conditions

are imposed: u = 0, 0c The k'th normal mode as exactly k-1

UNHL
nodes. (This relationship is presumed to hold independent of the size
. . . . LU ST
of the chain,) We note a remarkable similarity to the modes, sin ( 1)
N
of an ordered monoatomic linear chain, These results suggest that
one might be able to talk about a pseudopropagation vector,

The optical spectra of pure molecular crystals often show
Davydov splittings<{8)e The splittings are related to the resonance
interaction between different site molecules of the unit cell, In pure
crystals the electronic excitation is distributed coherently over large
numbers of molecules, Optical absorption and emission only occur to
and from eigenstates having k = 0; consequently sharp lines are obtained.

Naphthalene crystals have two molecules per unit cell; the absorption

to the first excited singlet shows a Davydov splitting of ~ 150 cm
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located symmetrically about v = 31,550 cm .

Experiments have been recently performed on equimolecular
mixtures of perdeutero (C ) and protonated naphthalene (Clo 8) (9).
These isotopic species are expected to be distributed randomly through

the crystal lattices The energy level of C is approximately 100 cm

108

lower than that of the C10D8 Fluorescence emission generally occurs
from the lowest excited state, Sl’ and also from higher states that are

thermally accessible from S The fluorescence spectra of the mixed

1°
crystal show a Davydov splitting of ~ 35 crn“1 located symmetrically
about v = 31,545 crn—l. The lower line is sharp, whereas the upper line
is uncertainty broadened. The splittings increase continliously as the
céncentration of naphthalene is increased continuously (10). These
results strongly suggest{l) that exciton~like band structure exists in

A
the mixed crystal; (2) that a pseudopropagation vector k  exists and

that a "IQ" = 0 selection rule is operative,*

Let us consiaer the following problem: We desire the energy
spectra of an electron distributed over N3 atoms A and B arranged
randomly in a three dimensional array. (If this problem can be solved,
analogous problems like the vibrational spectra of the lattice can also

be solved.) We assume only nearest neighbor interactions and make

the tight bonding approximation,

* The above experiment may not be a good example of the validity
of the pseudopropagation vector for three—-dirnensional/\crystals,
Experiments are required to determine whether the '""k' = 0 states are
really crystal states in the sense that the excitation is distributed over

large numbers of C, Hg and C molecules, or whether the exicita -
tion is confined ma_n:&y to chalnfl(l’(e clusters of C].OH 8 * The fact that
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Eigenfunctions can be designated as

v = ) Clayamyem;) N (4)
A
U Ay either be an orbital of A or of B, We impose the
123

boundary conditions C(nl,nz,n3) = 0 whenever n a0 defines a

2* M3

boundary plane, Decompose the three dimensional lattice into a set
of planes of atoms, the planes into linear chains, The system is now
a collection of parallel chains, Ignore the interaction between chains,

The eigenenergies of the truncated Hamiltonian ﬂo are € n (s.);
n,, i

2°°3
the eigenstates are

N
5)= Z, Dinsn_n_ s.)u ;8. 8 1,25600 N, 5
cpnz,n?’( 1) , ( 172, 3, 1) nln2n3 i P ( )

B

We know from the work of Rosenstock and McGill that each eigenenergy
and eigenvector can be associated with a particular S., where Si is the
1 ]

number of modes obtained by plotting D vse n Unfortunately, the

1°
eigenenergies and eigenvectors must be obtained numerically, The
formal solutions that do exist (1, 2) are not readily accessible, The
energies, the energy distributions, and the eigenvectors can be obtained
numerically using the methods of references (4) and (7) from an NXN

Jacobian secular determinant, .

We now turn on the interaction, V, between the chains in the

the splittings are displaced about the 0~0 line of the CIOHS crystal
suggests the latter,
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plane. The eigenfunctions, equations 4 and 5, define a complete set,

The eigenfunctions are

N
P = z‘ B (1’1 S n ) © (S) ° (6)
o3 n_ S 2 13 nz’n3 '
2y 1

The eigenenergies of Ho + V can be obtained from the NZX N2 secular
determinant obtained from equation 6. This is a formidable task and

does not appear practical to do. Instead we approximate equation 6 by

L6 (7)

f{n_;n
2 2, 3

S. s
3,7 j)“)

L4

N::ﬁ I~ d

cpn3 (Si,Sj) =

and obtain the energies ¢ n (SI'SZ) numerically from the corresponding
3
NX N Jacobian secular determinant (4, 7).

We now turn on the interaction between the planes and approximate

the "eigenstates'' of the lattice Hamiltonian, %/ s as

¥ (Si’sj’sz) =

S I~z

r (n3; Si'sj Sg) ? . (Si,Sj) . (8)
3 3

Again an NX N Jacobian determinant is solved to give the ""eigen~
energies, "

Since the above procedure (equations 7 and 8) are not really
correct, we must carry out a transformation of the ¢ (Sl,Sz,Sa)‘so
Let o, = Si/N. We rewrite 6(81,52,53) as € (01,02,63) . The actual

eigenvalues of the lattice, E(c 1’ o 2,0‘ are given by

5)
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11 1

E(GI,GZ,G3)= .(J; :[ £ 'T(Gl,o

(9)
A 1 to 1 correspondence between E and ¢ is expected. If we denote

the energy distribution function derived from the ¢(o }'s by

o, O
1,2, 3

g(e), the true distribution function is given by

G(E) = YOO R[E,e Jg(e) de . (10)

[

[ dee]

3. . s . .
When N~ is large, a numerical determination of g(¢) is more practical

than a numerical determination of the e{(c . o 0 _)'s. Dean's method

1, 2, 3)

(4) permits one to determine the distribution functions, gl(e n n )

2, 3
gz(e n ) and g(e ). A computer program can be readily devised to

3 9

obtain these distribution functions. Values of the order of 1 X 10° for
N° can be handled (11).

If the lattice was ordered so that atoms A and B were in alternate
positions, the above procedure (eqs. 4-8) would give the exact eigen-
functions and eigenenergies. The matrix elements ( HO-I- V)i,i' =
=9 n\(Si)lﬂo—l-V‘an +1,n (Sil)>’<c5n (Si,sj)‘y\é

n

s.,s!
:':l(-, . -
2, 3 2 3 3 n i)

3
(H )i i3, are zero because of the translatory symmetry of the lat-
~r 2 J

tice whenever Si F Si' s Sj #S.'. The functions T and R of equations
: : J

9 and 10 are given by:

e ‘,03') e(cl',GZ',03)dcl'ch'do'3'

”
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3
T= "J7 a(o_w’i') ; R=6(E-e). (11)
i=1 1 ;
5is the delta function. Inh the case of a disordered lattice T and R are

no longer delta functions since the above matrix elements no longer are

zero, We do expect that (V%) , (;/) . . <<| when |s,-8.'] or
o' i 1,135 ] i1
L2
| Sj—S,,] >>| because of destructive interference between the eigen~-
J

vectors; consequently, T and R are expected to be decreasing functions
of {éi-Si' [, | E=e |, respectively, We do not know the functional
form of T and R,

If the concept of the pseudo~propagation vector is meaningful,

it is plausible to assume that T and R are gaussian and peaked about

the ¢.'s and ¢, respectively:
i ,

T = (2/”|'r)3/2 ﬁ 1 exp.\i-Z(ci—O'i')Z/y iZ _\;
i=l Vi T ‘

(12)

R=(2/ﬂ)1/2 'exp{}:Z (E-—e)z/ ({"21,*

~

<1}

The above discussion can be easily modified to handle the vibra-

tional spectira of a disordered cubic lattice. It would be of some interest

* The terms vy ,Yy. most likely are not ¢cnstantse We note from
the work of Rosenstock and McGill (7) that the sinusoidal character of
the modes of the random chain is lost with increasing 0., This implies
that departures from the propagation vector concept prolbably arise pre=
dominantly because of these modes; consequently v and the v.'s may be
(slowly?} increasing functions of E, ¢ and 0,0 ,' respectively. Equa-
tion 12 in that case would have to be modified to take these points into
account,



169

to carry out a calculation using the aboveideas.and compareitwith experi-
ment, One system that might be studied is a mixed crystal of H‘2 and
DZ. The crystal structure is cubic, the force constants of the mixed

crystal are expected to be essentially the same as that of the pure Crys~

tals, and the masses are sufficiently different.
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PROPOSITION V

Within the past few years considerable progress has been
made in determining the structure of DNA (deoxyribonuclic acid),

It is believed to be a double helix resembling a twisted ladder. The
sides of the ladder are alternating sugar ‘(deoxyribose) and phosphate
units. The rungs of the ladder are paired nitrogenous bases of four |
types: adenine (A), guanine (G), cytosine (C), and thymine (T).
Ad\énine is paired only with thymine, and cytosine only with guanine
(1). In this proposition we show how, under suitable conditions, one
can determine the degree of pairing between bases* along the axis

of the double helix by means of NMR, This is of interest because
the genetic code is determined by the sequence of bases along the
axis of the double helix,

Our method can be used as an analytical tool. It can also be
used in structural proble‘ms. Fibrous crystals of DNA salts can be
prepared Showing a high degree of orienfation (2). These fibers give
several distinct types of x-ray diffraction patterns because of several
possible configurations of the nucleic acid (3,4)s The relative con=
centration of a particular configuration is determined by the water
content of the fiber, which, in turn, is a function of the relative

humidity of the atmosphere surrounding the crystals, Presumably

* We shall refer to such pairs as axial neighbors,
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®

Diagram to show the main differences between the
proposed models of the A and B {orms of sodium deoxypentose
nucleate

{G. B. B. M. Sutherland and M. Tsubol: Proc. Roy. Soc. 4 1957,
239, p. 459)

The helical structure of
sodium deoxypentose nucleate as
proposed by Watson and Crick

(J. D. Watson and F. H. C. Crick:
Natuye, Lond. 1953, 171, p. 737)

»o
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changes in the hydrogen bonding between neighboring chains are
responsible for the different configurations. In FigureI we display
two possible configurations, A and B. One cannot be sure as to
which of the configurations, if either, corresponds most closely to
the DNA molecule in the living cell, Configuration B conforms very
well to the Watson and Crick model {1). In the case of the sodium
salt (2) the A configuration is obtained at 75 percent relative
humidity; the B configuration at high humidities (~ 90%). The A
configuration apparently results in fibers showing a high degree of
crystallinity; the B configuration leads to a somewhat reduced crys~
tallinity, A and B are believed to interconvert reversibly; the B
configuration pérsists over a wide range of humidity. We propose
that the interconversion process can be studied by means of NMR.,
The degree of axial pairing between bases can be inferred
from solid state samples by measuring the nuclear dipolar inter=-
actions, We find that the interactions between axial neighbors can
be most readily determined if one works with isotopic samples. It
is desirable to have the DNA sample virtually completely deuterated
so as to reduce background dipolar contributions. If one wishes to
study a.synthetic DNA this poses no problem; if one wishes to study
the DNA from a living organism that organism must be capable of
thriving on a deuterium diet, We find that the relative orientation of

the axial molecules favors the use of H3 (tritium) isotopes. This
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3,
necessitates replacing one of the protons by H ™ in one of the base
pairs, No difficulty is anticipated in obtaining the tritiated base,
*
As an example, we consider the problem of determining the

percent axial pairing of adenine with thymine in a polycrystalline

sample, We assume configuration B,

0
_ — C H '
O 3 )
L (1)
/ o
H
b
thymine adenine

An examination of the DNA structure reveals that there are four
distinct ways that the pairing can occur. Both helices are right (?)

handed helices,Tbut differ in the sequence of atoms in the sugar

phosphate chain, Helix I may have the following sequence down the

axis, starting with the sugar:

*All base pairs can be handled by the same method.

TFor convenience we assume the helices are right-handed

as suggested by Watson and Cyick. This does not affect
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Helix IT has the reverse sequence: e
R I O
4 J—.\‘\’
P/
Ho -~y =0
/ (3)
w
/
Y
nA R

The nitrogenous bases are parallel to each other., Let Rl be base A;
R, be base T for helix I (eqs 2). We find that proton (a) {(eq. 1) is
above the methyl group and about 4 A away from the center of gravity
of the methyl protons, We replace this proton with tritium; i. e., we
either synthesize the DNA from adenine bases having tritium in
position (a) or we feed the organism such bases, (Proton (b)is lost

when the base is joined to the sugar.,) If R. were T and R‘2 were A,

1
we find the methyl group and the tritium atom too far apart to result
in any measurable dipolar contribution, We now examine helix II,

If Rl were T and R were A, the tritium and the center of gravity

-
or the methyl protons are again 4 A away. If T and A are inter-
changed, again the tritium and methyl group are too far apart to
interact appreciably.,

Our isotopic DNA has all the hydrogens of the sugar -phosphate

units along the helices replaced by deuterium, All the hydrogens of

all the bases other than T and A are replaced by deuterium. Proton
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(2) of A is replaced by tritium. (It would be desirable to deuterate
the amino group, but this is not absolutely essentials) The T's are
left undeuterated. (Some exchange of the ring protons might occur in
DZO' This does not affect our treatment. We are mainly interested
in having hydrogens on the methyl carbon, )

We now do an NMR experiment on tritium,., Van Vleck (5} has
derived the following expression for the second moment of the reso-

nance line for a polycrystalline sample:

2 -6

2 4 2
Ep— 3 + 1
(A1) = B J‘;I:E(If_; )gf re (4)

B is the Bohr nuclear magneton; g is the g factor of nucleus f; If is
the corresponding spin in units of h; T denotes the distance of
nucleus f from the tritium atom; {A H)2 is the second moment in
units of (gauss)z, Using equation 4 we find a second moment of the
order of 0,25 gaussZ. The contribution of the methyl group is between
20-40%.

The observed spectra will be a superposition of two resonances:
one from the tritiums of the AT pairs, land one from the tritiums of
the unpaired A's, The latter will be somewhat sharper. In the case
of polycrystalline samples one expects that the two resonances will

merge making resolution of the two resonances difficult. It we assume

that the second moment can be measured with an accuracy of 5%, the



176

concentration CA of the unpaired A cannot be much larger than the

concentration, C s, of the AG pairs:

AG

CA
CAG

< 4, (5)

The above inequality restricts the kind of DNA polycrystalline samples
that can be studied by the above technique. One expects the ratio to
increase with increasing crystallinity, By studying the absorption
intensity and determining the an moment, the percent pairing can
be ascertained,

The DNA molecules are very large; consequently we encounter
a concentration problem, We estimate that tbe minimum concentration
at room temperature of TA pairs relative to the total base concentration
that can be detected by highly sensitive laboratory instruments is
betweex; 1 and 10%. Significant improvement in the sensitivity is
expected Witi‘l decreasing temperature provided the spin lattice relaxa=-
tion rate does not significantly decrease causing saturation broadening.

We now return to the problem qf studying the interconversion
between the A and B configuration in fibrous crystals. Poly AT,
prepared with the above isotopic requirements, can be used as a probe,

Poly AT is a synthetic DNA that consists of A and T in alternating

sequence. We schematically sketch poly AT below for configuration B,
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Helice 11

- — -

—> (6)

>
—H P

S
— 1 >

> =

Helix T

Dipolar interaction need only be considered between AT axial neigh~
bors for helix I; dipolar interactions need only be considered between
TA pairs in helix IL. (The helices "advance' in the direction indicated.,)
Dipolar interactions between paired bases of the rung can be neglected,
If configuration B fibers can be regarded to be almost crystalline,
which they appear to be, then the structural aspects of the intercon=~
version between A and B can be studied at room temperature using

the above sensitive instruments, otherwise less precise information
can be obtained, Buqdles of reasonably parallel fibers can be pre-~
pared. Direct I/—\Io, the external field, along the chain axis of the
configuration B ﬂber se The second moment of crystalline samples

is given by (5):

2 2

(AH)Z =18

2 -6 2 ..
z I (If+ 1) g T, (3 cos ef-l) A7)

£

A

A
Gf is the angle between T and the external field, HO. We estimate

2
that the second moment is ~ 0.4 gauss , and that the interaction of the

methyl group contributes at least 40% in the case of configuration B.
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The second moment for configuration A is more difficult to obtain,
It is expected to be measurably different. By determining the second
moment as a function of humidity, one can follow the interconversion

process and study it in detail,®*
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* The objection could be raised that our Poly AT sample is
highly radioactive., The curie content of : 0.1 grams of
Poly AT is ~10 curies, however only low energy beta rays
are emitted (~10 KeV), Shielding would be easy. Experiments
have been done on tritium samples having approximately the
above curie content, [D. Pooley, C.I.T., private
communication].
We have also ascertained that our IH® concentration is
compatible with biological synthesis,



