EXPERIMENTAL INVESTIGATION OF WAKES BEHIND TWO-DIMENSIONAL SLENDER BODIES
 AT MACH NUMBER SIX

Thesis by
Richard George Batt

In Partial Fulfillment of the Requirements
For the Degree of
Doctor of Philosophy

California Institute of Technology
Pasadena, California
1967
(Submitted May 12, 1967)

ACKNOWLEDGMENTS

The author wishes to express his sincere appreciation to Professor Toshi Kubota for his interest, patient guidance, and valuable assistance during the course of this research program. The enthusiasm and helpful suggestions of Professor Lester Lees, for which the author is deeply grateful, contributed greatly to the investigation in many ways. The author is also grateful to Messrs. S. Roman, J. Van Dijk, G. Van Halewyn, and H. Mazurowski for their assistance in conducting the wind tunnel tests; to Mr. P. Baloga under whose guidance the wind tunnel operations were performed; to Mr. G. Carlson and the staff of the GALCIT Aeronautics Shop for their skill in constructing the experimental equipment; to Mrs. Truus van Harreveld for her conscientious and proficient computational assistance; to G. Van Halewyn for his skill in preparing the illustrations and to Mrs. E. Fox for an excellent typing of the manuscript.

A special note of appreciation goes to Professor Ernest Sechler for his initial and continued encouragement of the author's graduate career.

This thesis is dedicated to the author's wife Kay, whose inspiration and encouragement truly made it possible.

The work discussed in this thesis was carried out under the sponsorship and with the financial support of the U. S. Army Research Office and the Advanced Research Projects Agency, Contract No. DA 31124 ARO(D) 33. This research is a part of Project DEFENDER sponsored by the Advanced Research Projects Agency.

ABSTRACT

An experimental investigation has been conducted to determine mean flow properties for both near and far wakes behind several twodimensional slender bodies at $M_{\infty}=6$. Three adiabatic wall models consisting of a flat plate model and two 20° included angle wedge models $\left(H=.15^{\prime \prime}, H=.3^{\prime \prime}\right)$ were tested. The effect of wall temperature on wake properties was examined by cooling the larger of these two wedge models with the internal flow of liquid nitrogen $\left(\mathrm{T}_{\mathrm{W}} / \mathrm{T}_{\mathrm{o}}=.19\right)$. Free stream Reynolds numbers were varied from $\mathrm{Re}_{\infty} / \mathrm{in} .=.5 \times 10^{5}$ to 2×10^{5} for each of the se four configurations. In the far wake, measurements of total temperature, as determined with hot wire probes, and Pitot and static pressures were used to derive all other mean flow properties. The effect of transition on these far wake data was determined. Near wake flows were laminar for all adiabatic wall tests and at least for the two lowest test Reynolds numbers of the cold wall wedge. Base region flow field mappings and shear layer profiles were obtained for the $.3^{\prime \prime} \mathrm{H}$ wedge model by combining Pitot pressure data with hot wire measurements of total temperature and mass flux. These results illustrated that for slender bodies with flat bases, the basic structure for laminar near wakes is appreciably more complex for hypersonic than for supersonic flow primarily because, in hypersonic flow, the corner expansion fan extends into the separated shear layers and base region shocks now become imbedded within the viscous portion of the shear layerso

TABLE OF CONTENTS

SECTION TITLE PAGE
ACKNOWLEDGMENTS ii
ABSTRACT iii
TABLE OF CONTENTS iv
LIST OF FIGURES v
LIST OF TABLES xiii
LIST OF SYMBOLS xiv
I. INTRODUCTION 1
II. TEST APPARATUS AND EXPERIMENTAL 5 TECHNIQUES
II. 1 Wind Tunnel 5
II. 2 Wind Tunnel Models 6
II. 3 Probe Design and Instrumentation 9
III. DATA REDUCTION AND ACCURACY ESTIMATES 13
III. 1 Corrections to Measured Data 13
III. 2 Mean Flow Calculations 17
III. 3 Accuracy Estimates 20
IV. RESULTS AND DISCUSSION 30
IV. 1 Far Wake 30
IV. 2 Near Wake 47
V. SUMMARY OF RESULTS 71
REFERENCES 76
Appendix A. Hot Wire Anemometry Techniques 81 for Mean Flow Measurements
Appendix B. Data Reduction Programs 89
Appendix C. Tabulated Mean Flow Data 151

LIST OF FIGURES

FIGURETITLEPAGE
1 Schlieren Photograph of Wake behind 20°, Adia- 179batic Wall Wedge $(H=.3)$ at $M_{\infty}=6$ and Re $e_{\infty H}=$
5.2×10^{4}2 Variation of Free Stream Mach Number and180Temperature of Tunnel Sidewall with FreeStream Stagnation Pressure-Third PortCenterline
3 Variation of Free Stream Conditions along 181
Tunnel Centerline
4 Variation of Free Stream Pitot Pressure in 182 Vertical Centerplane of Tunnel
5a Flat Plate Model (FP) 183
5b 20° Wedge Model-H $=.15^{\prime \prime}(.15 \mathrm{~W})$ 184
5c 20° Wedge Model $-\mathrm{H}=.3^{1 \prime}(.3 \mathrm{~W}-1)$ 185
$5 \mathrm{~d} \quad 20^{\circ}$ Wedge Model $-\mathrm{H}=.3^{11}(.3 \mathrm{~W}-2)$ 186
6 Liquid Nitrogen Cooling System 187
$7 \quad$ Static and Pitot Pressure Probes 188
8 Calibration of Statham Pressure Transducer 189
9 Base Region Stagnation Point Probe 190
10 Hot Wire Probe 191
11 Simplified Schematic for Hot Wire Recording 192 System
12 Probe Flow Regimes in the M-RE Plane 193
13 Nusselt Number End Loss Correction Factor 194
14 Correlation of Cylinder Heat Transfer Data 195
15a Variation of Static Pressure along Wake Center- 196 line at $M_{\infty}=6-$ Flat Plate
15b Variation of Static Pressure along Wake Center- 197line at $\mathrm{M}_{\infty}=6-20^{\circ}$ Wedge $-H=.15$

LIST OF FIGURES (Continued)

FIGURE
TITLE
PAGE

$15 c-1$	Variation of Static Pressure along Wake	198
	Centerline at $M_{\infty}=6-20^{\circ}$ Wedge $-H=.3-$	

$15 c-2$	Variation of Static Pressure along Wake	199
	Centerline at $M_{\infty}=6-20^{\circ}$ Wedge $-H=.3-$	
	Adiabatic Wall	

15d-1 Variation of Static Pressure along Wake
Centerline at $M_{\infty}=6-20^{\circ}$ Wedge $-\mathrm{H}=.3$ Cold Wall

$15 \mathrm{~d}-2$	Variation of Static Pressure along Wake
	Centerline at $\mathrm{M}_{\infty}=6-20^{\circ}$ Wedge $-\mathrm{H}=.3-$
Cold Wall	

$16 \mathrm{a} \quad$| Variation of Centerline Mach Number with |
| :--- |
| Axial Distance at $M_{\infty}=6-$ Flat Plate |

16b	Variation of Centerline and Edge Mach Number
with Axial Distance at $M_{\infty}=6-20^{\circ}$ Wedge -	
$H=.15$	

16c \quad| Variation of Centerline and Edge Mach Number |
| :--- |
| with Axial Distance at $M_{\infty}=6-20^{\circ}$ Wedge |
| Model $-H=.3$ - Adiabatic Wall |$\quad . \quad 404$

16d \quad Variation of Centerline and Edge Mach Number
with Axial Distance at $M_{\infty}=6-205$ Wedge Model -
$H=.3-$ Cold Wall

17 | Correlation of Centerline Mach Number for |
| :--- |
| 20° Adiabatic Wall Wedge at $M_{\infty}=6$ |

$18 \mathrm{a} \quad$| Variation of Centerline Total Temperature with 207 |
| :--- |
| |
| Axial Distance at $M_{\infty}=6-$ Flat Plate |

18b Variation of Centerline Total Temperature with 208
Axial Distance at $M_{\infty}=6-20^{\circ}$ Wedge $-H=.3$
19a Variation of Centerline Velocity with Axial 209 Distance at $M_{\infty}=6$ - Flat Plate

19b Variation of Centerline Velocity with Axial

LIST OF FIGURES (Continued)

FIGURE

TITLE
PAGE

19c	Variation of Centerline Velocity with Axial Distance at $\mathrm{M}_{\infty}=6-20^{\circ}$ Wedge $-\mathrm{H}=.3$ Adiabatic Wall	211
19d	Variation of Centerline Velocity with Axial Distance at $\mathrm{M}_{\infty}=6-20^{\circ}$ Wedge $-\mathrm{H}=.3$ Cold Wall	212
20a	Variation of Centerline Enthalpy with Axial Distance at $M_{\infty}=6$ - Flat Plate	213
203	Variation of Centerline Enthalpy with Axial Distance at $\mathrm{M}_{\infty}=6-20^{\circ}$ Wedge $-\mathrm{H}=.15$	214
20c	Variation of Centerline Enthalpy with Axial Distance at $M_{\infty}=6-20^{\circ}$ Wedge $-H=.3-$ Adiabatic Wall	215
20d	Variation of Centerline Enthalpy with Axial Distance at $M_{\infty}=6-20^{\circ}$ Wedge $-\mathrm{H}=.3-$ Cold Wall	216
21 a	Variation of Integral Wake Thicknesses with Axial Distance at $\mathrm{M}_{\infty}=6$ - Flat Plate	217
21 b	Variation of Integral Wake Thicknesses with Axial Distance at $M_{\infty}=6-20^{\circ}$ Wedge $H=.15$	218
21 c	Variation of Integral Wake Thicknesses with Axial Distance at $M_{\infty}=6-20^{\circ}$ Wedge $H=.3$ - Adiabatic Wall	219
21 d	Variation of Integral Wake Thicknesses with Axial Distance at $M_{\infty}=6-20^{\circ}$ Wedge $H=.3$ - Cold Wall	220
22a	Variation of Wake Thickness and Wake Shock Position with Axial Distance at $M_{\infty}=6$ Flat Plate	221
22 b	Variation of Wake Thickness and Wake Shock Position with Axial Distance at $\mathrm{M}_{\infty}=6$ 20° Wedge $-H=.15$	222

LIST OF FIGURES (Continued)

TITLE

PAGE

22c	Variation of Wake Thickness and Wake Shock Position with Axial Distance at $M_{\infty}=6$ 20° Wedge $-\mathrm{H}=.3$ - Adiabatic Wall	223
22d	Variation of Wake Thickness and Wake Shock Position with Axial Distance at $\mathrm{M}_{\infty}=6$ 20° Wedge - $\mathrm{H}=.3$ - Adiabatic Wall	224
23	Wake Transition Correlation at $\mathrm{M}_{\infty}=6$	225
24a	Comparison of Velocity Defect Data with Linear Theory for $M_{\infty}=6$ and $\operatorname{Re}_{\infty}=$ 4.7×10^{4} - Flat Plate	226
24 b	Comparison of Velocity Defect Data with Linear Theory for $M_{\infty}=6$ and $\operatorname{Re}_{\infty}=$ $1.4 \times 10^{4}-20^{\circ}$ Wedge $-\mathrm{H}=.15^{\infty} \mathrm{H}$	227
24c	Comparison of Velocity Defect Data with Linear Theory for $M_{\infty}=6$ and $R e \infty_{H}=$ $1.4 \times 10^{4}-20^{\circ}$ Wedge $-\mathrm{H}=.3-$ Adiabatic Wall	228
25a	Comparison of Enthalpy Excess Data with Linear Theory for $M_{\infty}=6$ and $\operatorname{Re}_{\infty} \mathrm{L}=$ 4.7×10^{4} - Flat Plate	229
25b	Comparison of Enthalpy Excess Data with Linear Theory for $M_{\infty}=6$ and $\operatorname{Re}_{\infty_{H}}=$ $1.4 \times 10^{4}-20^{\circ}$ Wedge $-\mathrm{H}=.3-$ Adiabatic Wall	230
26	Correlation of Centerline Velocity Data with Linear Theory $\mathrm{Re}_{\infty} / \mathrm{in} \mathrm{n}_{0}=4.7 \times 10^{4}$	231
27	Flow Field Mapping of Near Wake Behind Flat Plate at $M_{\infty}=6$	232
28	Correlation of Near Wake Thickness Behind Flat Plate at $M_{\infty}=6$	233
29	Variation of Trailing Edge and Neck Thickness with Free Stream Reynolds Number at $M_{\infty}=6$	234
30	Correlation of Neck Thickness for 20° Wedges at $M_{\infty}=6$	235

LIST OF FIGURES (Continued)

FIGURE
31 Surface Pressure Distribution Near Trailing Edge of 20°, Adiabatic Wall Wedge at $M_{\infty}=6$

Wedge Base Pressure at $M_{\infty}=6$ 237

32

33
Correlation of Wedge Base Pressure Data at $\mathrm{M}_{\infty}=6$
$34 \quad$ Correlation of Base Pressure Data for 239 Adiabatic Wall Wedges

35a Rear Stagnation Point Location for Near Wake behind 20° Wedge at $M_{\infty}=6(H=.3)$ -
Adiabatic Wall
TITLE
PAGE

Rear Stagnation Point Location for Near Wake behind 20° Wedge at $M_{\infty}=6(H=.3)-$ Cold Wall

Variation of Rear Stagnation Point Tempera- 242
ture with Wall Temperature
Typical Shear Layer Profiles for Near Wake 243 behind 20°, Adiabatic Wall Wedge at $M_{\infty}=6$ and $\mathrm{Re}_{\infty}{ }_{\mathrm{H}}=1.4 \times 10^{4}(\mathrm{H}=.3)$-Pitot Pressure Profiles

Typical Shear Layer Profiles for Near Wake behind 20°, Adiabatic Wall Wedge at $M_{\infty}=6$ and $\operatorname{Re}_{\mathrm{H}_{\mathrm{H}}}=1.4 \times 10^{4}(\mathrm{H}=.3)-$ Total Temperature Profiles

Typical Shear Layer Profiles for Near Wake behind 20°, Adiabatic Wall Wedge at $M_{\infty}=6$ and $\operatorname{Re}_{\infty} \mathrm{H}=1.4 \times 10^{4}(\mathrm{H}=.3)-$ Mach Number Profile

Typical Shear Layer Profiles for Near Wake behind 20°, Adiabatic Wall Wedge at $M_{\infty}=6$ and $\operatorname{Re}_{\infty} \mathrm{H}=1.4 \times 10^{4}(\mathrm{H}=.3)$-Static Pressure Profiles

Typical Shear Layer Profiles for Near Wake behind 20°, Adiabatic Wall Wedge at $M_{\infty}=6$ $\underset{\text { Profiles }}{\text { and } \operatorname{Re}_{\infty}}=1.4 \times 10^{4}(\mathrm{H}=.3)$-Velocity

LIST OF FIGURES (Continued)

37 T Typical Shear Layer Profiles for Near Wake

Adiabatic Wall Wedge at $\mathrm{M}_{\infty}=6(\mathrm{H}=.3)$ -
$\operatorname{Re}_{\infty}{ }_{\mathrm{H}}=4.1 \times 10^{4}$
38d-1 Flow Field Mapping of Near Wake behind 20°,
Adiabatic Wall Wedge at $\mathrm{M}_{\infty}=6(\mathrm{H}=.3)$ -
$R e_{\infty_{H}}=5.5 \times 10^{4}$
38d-2 Near Wake behind 20°, Adiabatic Wall Wedge
at $M_{\infty}=6(\mathrm{H}=.3)$ - Superpositign of Flow
Field Mapping ($\operatorname{Re}_{\infty_{H}}=5.5 \times 10^{4}$) and
Schlieren Photograph $\left(\mathrm{Re}_{\infty_{\mathrm{H}}}=5.2 \times 10^{4}\right)$
39a-1 Flow Field Mapping of Near Wake behind 20°,
Cold Wall Wedge at $M_{\infty}=6\left(H=.3, T_{W} / T_{o}=.19\right)-$ $\left.\operatorname{Re}_{\infty_{H}}=1.4 \times 10^{4}-p_{t} p_{p_{o}}\right)_{c}$
39a-2 Flow Field Mapping of Near Wake behind 20°,
Cold Wall Wedge at $\mathrm{M}_{\propto}=6\left(\mathrm{H}=.3, \mathrm{~T}_{\mathrm{W}} / \mathrm{T}_{\mathrm{o}}=.19\right)-$ $\left.\operatorname{Re}_{\infty_{H}}=1.4 \times 10^{4}-T_{t} T_{\mathrm{o}}\right)_{\mathrm{C}}$
39b-1 Flow Field Mapping of Near Wake behind 20°,
Cold Wall Wedge at $\mathrm{M}_{\infty}=6\left(\mathrm{H}=.3, \mathrm{~T}_{\mathrm{W}} / \mathrm{T}_{\mathrm{o}}=.19\right)-$ $\operatorname{Re}^{\infty}{ }_{H}=2.8 \times 10^{4}-p_{t} P_{p_{o}}{ }_{c}$
39b-2 Flow Field Mapping of Near Wake behind 20°,
Cold Wall Wedge at $M_{\infty}=6\left(H=.3, T_{W} / T_{0}=.19\right)-$
$\left.\operatorname{Re}_{\infty_{H}}=2.8 \times 10^{4}-T_{t} \int_{\mathrm{T}}^{\mathrm{o}}\right)_{\mathrm{c}}$
39c-1 Flow Field Mapping of Near Wake behind 20°,
Cold Wall Wedge at $M_{o g}=6\left(H=.3, T_{W} / T_{o}=.19\right)-$
$\operatorname{Re}_{\infty_{H}}=4.1 \times 10^{4}-p_{t}^{\circ} p_{\mathrm{o}}{ }_{c}$

LIST OF FIGURES (Continued)

Cold Wall Wedge at $M_{\infty}=6\left(H=j^{3}, T_{W} / T_{o}=\right.$.19) $\left.-\operatorname{Re}_{\infty_{H}}=4.1 \times 10^{4}-T_{t} / T_{o}\right)_{c}$
39d-1 Flow Field Mapping of Near Wake behind 20°,
Cold Wall Wedge at $M_{\infty}=6\left(H=.3, T_{W} / T_{0}=\right.$.19) $\left.-\operatorname{Re}_{\infty_{H}}=5.5 \times 10^{4}-p_{t} / p_{o}\right)_{c}$
39d-2 Flow Field Mapping of Near Wake behind 20°,
Cold Wall Wedge at $\mathrm{M}_{\infty_{0}}=6\left(\mathrm{H}=, 3, \mathrm{~T}_{\mathrm{W}} / \mathrm{T}_{\mathrm{o}}=\right.$.19) $-\operatorname{Re}_{\infty_{H}}=5.5 \times 10^{4}-T_{t} / T_{o}{ }_{c}$
40 Typical Static Enthalpy Profiles for Near Wake behind 20°, Cold Wall Wedge at $M_{\infty}=6$ and $\mathrm{Re}_{\infty_{\mathrm{H}}}=5.5 \times 10^{4}\left(\mathrm{H}=.3, \mathrm{~T}_{\mathrm{W}} / \mathrm{T}_{\mathrm{o}} \stackrel{\infty}{=} .19\right.$)
Static Enthalpy Profiles - 20° Wedge Model -$\mathrm{H}=.3$ - Cold Wall

41b Static Enthalpy Profiles - 20° Wedge Model $\mathrm{H}=.3$ - Cold Wall

42a Shear Layer Static Pressure Profiles 20°Wedge $-\mathrm{H}=.3$ - Adiabatic Wall
$42 \mathrm{~b} \quad$ Shear Layer Static Pressure Profiles 20°266Wedge - H = . 3 - Cold Wall

43a Shear Layer Velocity Profiles - 20° Wedge 267 $\mathrm{H}=.3$ - Adiabatic Wall

43b \quad Shear Layer Velocity Profiles - 20° Wedge 268 H = . 3 - Cold Wall

44a Pitot Pressure Profiles - Flat Plate269
44b Pitot Pressure Profiles - 20° Wedge $-H=.15$ 270
44c-1 Pitot Pressure Profiles - 20° Wedge - $\mathrm{H}=.3-$ 271 Adiabatic Wall

44c-2 Pitot Pressure Profiles - 20° Wedge - H = . $3-$272Adiabatic Wall

44d-1 Pitot Pressure Profiles - 20° Wedge - H = . 3 273 Cold Wall

LIST OF FIGURES (Continued)

FIGURE	TITLE	PAGE
44d-2	Pitot Pressure Profiles - 20° Wedge Model $\mathrm{H}=.3$ - Cold Wall	274
45a	Total Temperature Profiles - Flat Plate	275
45b	Total Temperature Profiles - 20° Wedge $\mathrm{H}=.3$ - Adiabatic Wall	276
45 c	Total Temperature Profiles - 20° Wedge Model $\mathrm{H}=.3$ - Cold Wall	277

-xiii-

LIST OF TABLES

TABLE TITLE PAGE
I Test Summary 177
II Accuracy Summary 178
-xiv-

LIST OF SYMBOLS

b
c
C
d
D
E
g
$g\left(s_{1}\right) \quad$ molecular speed ratio function
h
\bar{h}
H total base height
I
hot wire current
k conductivity
$\ell \quad$ hot wire length
ℓ_{p}
L. flat plate chord length

M Mach number
$\bar{M} \quad$ mass of gas in given volume
$\mathrm{Nu} \quad$ Nusselt number ($=\mathrm{h} d / \mathrm{k}$)
p
p_{t}
$p_{o} \equiv p_{t_{\infty}}$
Pr
q. heat transfer rate per unit area

Q throughput
\mathbf{r}
spanwise length
flat plate chord length
Chapman-Rubesin factor ($=\rho \mu / \rho_{e} \mu_{e}$)
hot wire diameter
reference length
wake energy thickness $\left(=\int_{0}^{\infty} \frac{\rho u}{\rho_{e^{u}} u_{e}}\left(1-\frac{T_{t}}{T_{t_{c}}}\right) d y\right)$
normalized enthalpy excess $\left[=\left(h-h e^{0}\right) / h e^{1}\right.$
static enthalpy
wire length
length of pressure tubing

Nusselt number ($\quad \mathrm{ha} / \mathrm{k}$)
pressure
Pitot pressure
freestream total pressure
Prandtl number
Q
r
convective heat transfer coefficient $\left(=q /\left(T_{w}-T_{a w}\right)\right)$

R wire resistance
$R \quad$ gas constant
Re Reynolds number
$R_{r} \quad$ reference wire resistance for zero current and zero ${ }^{\circ} \mathrm{C}$
s
resistance parameter $\left(=\frac{\alpha_{r} T_{t}}{1+\alpha_{r}\left(\mathrm{~T}_{\mathrm{awm}}{ }^{-\mathrm{T}_{r}}\right)^{\prime}}\right)$
$\mathrm{s}_{1} \quad$ molecular speed ratio $(=\sqrt{\gamma / 2} \mathrm{M})$
St Stanton number
t time
T temperature
$T_{o} \equiv T_{t_{\infty}} \equiv T_{t_{e}}$ free stream total temperature
u. velocity
$\bar{u}_{*} \quad$ limiting velocity ratio along dividing streamline $(=.587)$
U pipe flow resistance
V volume of system
w normalized velocity defect ($=\frac{u_{e^{-u}}}{u_{e}}$)
$x \quad$ axial distance from model base
y lateral distance from wake centerline
$\bar{y} \quad$ transformed lateral distance from wake centerline
$\left(=\frac{\rho_{e}{ }^{u} e^{\prime}}{\rho_{\infty} u_{\infty}} \sqrt{R e{ }_{\infty} H^{C}} \int_{0}^{y} \frac{\rho}{\rho_{e}} d y\right)$
$\alpha \quad$ accommodation coefficient
$\alpha_{r} \quad$ slope of wire calibration curve $\left(R_{w m} \sim T_{w m}\right)$ for zero current
$\gamma \quad$ specific heat ratio
δ
$\Delta \mathrm{x}$ axial distance between a zero intercept transition distance, obtained by extrapolating transition location data to infinite Reynolds number, and a transition location
η_{c}
η_{f}
$\eta_{*} \quad$ recovery ratio for infinite length wire ($=T_{a w *} / T_{t}$)
$\bar{\eta}_{*} \quad$ normalized recovery ratio for infinite length wire $\left(\left(\eta_{*}-\eta_{c}\right) /\left(\eta_{f}-\eta_{c}\right)\right)$
$\theta \quad$ wedge included angle
$\bar{\theta}$ wake momentum thickness $\left(=\int_{0}^{\infty} \frac{p u}{\rho_{e} u_{e}}\left(1-\frac{u}{u_{e}}\right) d y\right)$,
$\bar{\theta}_{\text {avg }}$ average wake momentum thickness
$\mu \quad$ viscosity
$v_{0} \quad$ dimensionless quantity $\left(=\frac{\ell}{d} \sqrt{\frac{k_{t}}{k_{w}}} N u_{t}\right)$
ρ density
τ plate thickness
$\begin{array}{ll}\bar{X} & \text { hypersonic viscous interaction parameter }\left(=\frac{M^{3} \sqrt{C}}{\sqrt{R_{e}}}\right) \\ \psi & \text { streamline }\left(=\int_{0}^{y} \text { pudy }\right)\end{array}$
$\psi_{N} \quad$ Nusselt number end loss correction factor $\left(=\frac{N u_{t}}{N u_{m}}\right)$
$\psi_{r} \quad$ recovery temperature end loss correction factor ($=\frac{\mathrm{Taw}}{\mathrm{T}_{\mathrm{awm}}}$)
ω_{0} dimensionless quantity $\left(=\frac{\tanh \nu}{v}\right)$

Subscripts

aw zero heat transfer (adiabatic wall)
b base
BL boundary layer edge

c	continuum flow
C	constant
\&	centerline
e	edge
f	free molecule flow
H	total base height
m	measured
NW	near wake edge
o	initial condition
r	evaluated at reference temperature ($=273{ }^{\circ} \mathrm{K}$)
s	support
sp	rear stagnation point
S	shock wave
t	local stagnation quantity
TE	trailing edge
TR	transition
w	wire
ws	wedge surface
W	wall
1	upstream of shock
2	downstream of shock
∞	free stream conditions
*	refers to infinitely long wire

I. INTRODUCTION

The wake of a body moving at high speeds through air (figure 1) has intrigued investigators for many years. Originally, because of the interest in base drag estimates, this problem was looked upon primarily as a "'base pressure problem.'" However, with the advent of hypersonic vehicles and the necessity to understand and evaluate wake observable phenomena, attention has more recently been focused on not only the near but also the far wake regimes. To date, reasonable progress has been made in analytically treating the laminar and turbulent far wake, including the effects of transition, once initial profile data have been provided (1-7). As a result, current studies are now concentrating on the near wake (that portion of the wake upstream of and including the wake neck) with the intent of suitably evaluating the complex coupling processes that occur within the base regions of hypersonic wakes. In these regions separated shear layers, which initially may often be considered as constant pressure mixing regions, enclose a low speed, recirculating flow which extends downstream to the location where the shear layers coalesce to form the wake's rear stagnation point. In the vicinity of this point the flow recompresses as the shear layers turn parallel to the wake axis. This turning process generates the wake shock observed experimentally in hypersonic wake investigations. The wake thickness beyond the stagnation point continues to thin down because of the acceleration of the wake flow until the neck or minimum thickness location is reached. In many cases, the separated shear layers for low supersonic flows and even for hypersonic flows behind blunt
bodies, experience negligible lateral pressure gradients.(8). This is not the case however for high speed flow in the base regions of slender bodies with flat bases. The rapid expansion of the boundary layer at the body's trailing edge gives rise to inviscid rotational flow phenomena with lip shocks becoming deeply imbedded within the vortical flow of the shear layer $(9,10)$. The Chapman dividing streamline model based on conservation of mass within the recirculating flow region (11), and the significance of base region mixing due to momentum transport as outlined in the Crocco-Lees Theory (12) are indeed still applicable for the slender body near wake. However, the outer flow is highly complicated in this latter case and at the present time the complete matching procedure which joins the base region flow to the pre-separated boundary layer is not satisfactorily understood. Furthermore this coupling process is dependent on the upstream influence of the corner expansion and the pronounced profile distortion that takes place in the vicinity of the trailing edge. Thus a current need exists for experimentally investigating the near wake with emphasis on flow field mappings and shear layer profiles. The far wake investigation reported herein has been carried out because it was realized early in the present investigation that not only did there appear to be a scarcity of such data for slender bodies with which to verify existing theory, but the effect of transition on mean flow properties, the approach of laminar wake flow to classical linear theory and the effect of model cooling on the far wake properties seemed to merit further study. In addition it was well known that the onset of transition and its proximity to the near
wake could appreciably alter the base region properties. For example, as Crocco and Lees have shown (12), the significant increase in base region mixing associated with the onset of turbulence in the separated shear layers of the base region, results in a substantial increase in the amount of recompression the flow is able to sustain. In fact, even for transitional flow a significant rise in base region mixing may occur, if the most forward location of the wake's "transition zone" is in the vicinity of the wake's "critical point". This characteristic wake location (the point where the wake goes supersonic on the "average") is located just upstream of the centerline sonic point. Since the downstream pressure appears dominated by the inviscid flow and is relatively insensitive to Reynolds number effects, the increased recompression capability results in a lowering of the base pressure with a correspondingly greater expansion of the separated shear layers. It is therefore important to determine the most forward location of the wake transition region, so that an experimental investigation of the laminar near wake can be undertaken with confidence that the flow corresponds to only laminar conditions, and does not include the additional effects of turbulent mixing phenomena. Thus the far wake results reported in Section VI.I were obtained prior to initiating the near wake investigation discussed in Section IV. 2.

It is with these ideas in mind that the present study has been undertaken. It is a study which examines experimentally the effects of free stream Reynolds number, wall temperature ratio and model geometry on the flow properties of hypersonic wakes behind two
dimensional slender bodies. Taken together the complete set of results serves not only as a means for verifying existing theory but also provides additional insight into those hypersonic wake regions which are not yet amenable to analytical treatment.

II. TEST APPARATUS AND EXPERIMENTAL TECHNIQUES

II. 1 Wind Tunnel

Leg I of the GALCIT Hypersonic Wind Tunnel (13) with a nominal Mach number of 6 was used to obtain the present set of wake measurements. This tunnel is a continuous flow, closed return device with a $5^{\prime \prime} \times 5^{\prime \prime}$ test section. A usable test rhombus extends from $23^{\prime \prime}$ (model position) to approximately $33^{\prime \prime}$ downstream of the nozzle throat. Tests were made for stagnation pressures of $p_{0}=10,35$, 60 and 85 psig corresponding to free stream Reynolds numbers of $\mathrm{Re}_{\infty} /$ in. $=.465, .94,1.42$, and $1.9 \times 10^{5} / \mathrm{in}$. A reservoir stagnation temperature of $275^{\circ} \mathrm{F}$ and a dew point of $-40^{\circ} \mathrm{F}$ was maintained for all tests which satisfactorily eliminated condensation effects. Table I summarizes the various test conditions covered during the current experimental investigation.

Because of the boundary layer along the tunnel wall the Mach number in the test section varies slightly with stagnation pressure and with axial position. Pitot and static pressure surveys both in the axial and vertical centerplanes were made without a model in the tunnel ('Ired' tunnel) to determine the magnitude of such variations and to establish suitable corrections to measured data. The results of these surveys, which compare favorably with similar data of Dewey (8), Herzog (14), and Behrens (7), are shown in figures 2, 3 and 4. Since flow conditions were sensitive to wall boundary layer effects, the tunnel was always warmed up for approximately 2 hours before any data were taken. This provided sufficient time for the temperature of the tunnel wall (figure 2) to reach its equilibrium level.

In comparing free stream stagnation temperatures, as measured with hot wire probes, with the reservoir temperature of $408^{\circ} \mathrm{K}$, a consistent deficiency of 1 to 2% was observed. Such a result was similarly found by Behrens (7). A calibration check using an iron constantan thermocouple located 1 inch upstream of the nozzle throat confirmed the accuracy of the automatic regulator which set the reservoir temperature. However some energy loss takes place as the low speed air accelerates through the nozzle and it is tentatively concluded that this is the primary cause for the noted deficiency. In any event, all results cited in this report have been suitably normalized so that this effect is relatively unimportant to final results.

II. 2 Wind Tunnel Models

For the present investigation four separate models consisting of a flat plate model and three wedge models of 20° included angle, were fabricated from Ketos steel. The geometry of these models and the manner in which they were installed in the tunnel are shown in figure 5. The leading edges of all models were carefully machined to thicknesses less than . $002^{\prime \prime}$. Alignment with the free stream flow was established either by checking the symmetry of Pitot pressure traces in the wake or by comparing the lower and upper surface pressures, as was the case for the one wedge model which had surface pressure taps (.3w-1, Table I). To minimize the interference effects from the boundary layer on the tunnel wall, fences were designed for the wedge models. These fences were triangular in shape, $1 / 16^{\prime \prime}$ in thickness, and attached perpendicular to the base. They were
located $3 / 4^{\prime \prime}$ from the tunnel wall and extended two base heights downstream.

The first model tested was a flat plate with a $l^{\prime \prime}$ chord and $.0156^{\prime \prime}$ thickness. Both the leading and trailing edges of the plate were tapered to a 4° included angle with an edge thickness of approximately $.0017^{\prime \prime}$. The plate was tested while under tension to eliminate vibration.

The smallest of the wedge models, one with a base height of . $15^{\prime \prime}$, was the next configuration investigated. Two base taps, $.0135^{\prime \prime}$ in diameter, were installed on the model centerline and a base pressure lead, . $042^{\prime \prime}$ stainless steel tubing, was flush mounted in a groove on the base and brought out of the tunnel through one of the side ports.

In order to extend the base pressure results of this small wedge model and also to obtain surface pressure data near the trailing edge of a 20° wedge, another model with the same included angle but with a base height of $.3^{\prime \prime}$, was machined from a solid piece of Ketos steel. Surface and base pressure taps were installed as noted in figure 5 c with the pressure leads, . $042^{\prime \prime}$ stainless steel tubing, being flush mounted in surface grooves and led out one of the side ports.

The design of the final 20° wedge was determined by the need to test a $.3^{\prime \prime}$ base height model, which could be cooled by the internal flow of liquid nitrogen. This model was constructed in a rib and skin configuration by first machining the upper, lower, and base surfaces and then soldering them together in the manner shown
in figure 5d. The thicknesses of the three surfaces were initially somewhat oversize so that the assembled model could be machined to the specified dimensions. Four copper constantan "Ceramo" thermocouples, each enclosed within ceramic insulation and a . 040'' stainless steel shroud, were spot welded to internal surfaces at locations specified in figure 5d. Cylindrical model supports, containing nitrogen coolant lines and the thermocouple leads, were soft-soldered to each end of the model. Leak free mounting was insured by soft soldering metal bellows to these supports after the model was installed in thermally insulating micarta inserts and aligned in the tunnel. These bellows proved satisfactory in not only sealing the model in its mountings under extremely cold temperature conditions, but also in allowing for the contraction and expansion of the tunnel side walls during the start and shut down operation of the tunnel. Although this model was designed primarily for cold wall testing, it was also used as an adiabatic wall model, and a complete set of wake measurements were obtained for both cold and adiabatic wall conditions. This proved important to final results since the effects of cooling on wake properties were readily discernible.

A schematic diagram of the nitrogen cooling system developed during the current investigation is presented in figure 6. The system's inlet side consisted of one nitrogen pressurizing bottle with gauge, a pressurized storage tank, and a cooling bath, all in series with the model. Similarly, a cooling bath and storage tank, vented to atmosphere, were attached in series on the outlet side. This
arrangement made it possible to cycle the nitrogen from one tank to the other with relative ease while achieving spanwise uniformity in model temperature $\left(77^{\circ} \mathrm{K}\right)$ with only approximately 1 psig inlet pressure. Some frost buildup was observed on the model, approximately $.002^{\prime \prime}$ after about two minutes of operation at this low temperature level. However most transverse traces took less than two minutes duration so that the effect of frost buildup would seem to be relatively unimportant. After each trace, the nitrogen flow was shut off and the subsequent heating of the model rapidly "'burned'' off any accumulated frost. Unfortunately some temperature gradient always existed in the chordwise direction since the leading edge could never be sufficiently cooled due to its lack of direct contact with the liquid nitrogen. This was evident in that the frost buildup always began about $\mathbf{1}^{11}$ downstream of the leading edge. Such a gradient will influence the initial boundary layer and subsequent interaction effects.

II. 3 Probe Design and Instrumentation

A) Pitot Pressure Probe

Pitot pressure surveys were made for the present set of wake measurements with a $.042^{\prime \prime}$ diameter probe flattened at the forward end to $a .004^{\prime \prime}$ by $.035^{\prime \prime}$ opening, figure 7. The probe positioning mechanism of the tunnel activated a Helipot potentiometer which in turn converted probe positions to linear electric signals for , use in a Moseley XY recorder. A 5 psi Statham pressure transducer was used for most measurements to convert pressures to
electrical signals which were recorded, after suitable amplification, on the XY recorder. The transducer was calibrated against a mercury manometer and the results are shown in figure 8. Near the base of the various models, where measured pressures fell below the lower limit of the transducer's range of linearity, Pitot pressures on the centerline were more accurately measured by means of a silicon micromanometer. A vacuum reference pressure for this manometer was maintained at less than a .5 microns by combining a diffusion pump in series with a mechanical vacuum pump. The precision gauge on the manometer permitted reading pressure levels to within .5 mm of silicon.
B) Static Pressure Probes

Static pressures along the wake centerline were measured with the above-mentioned silicon micromanometer using pressure probes fabricated from $.042^{\prime \prime}$ stainless steel tubing. The conical tipped probe shown in figure 7 was identical to that designed and calibrated by Behrens (15). On this probe three pressure orifices were located ten diameters behind the shoulder of a 20° cone tip. Although this probe was used for the majority of the static pressure measurements, its tip to orifice length prevented taking measurements near the base of a model, and additional probes were used to obtain near wake data for the largest wedge model tested. These probes, three in number, consisted of $2^{\prime \prime}$ lengths of $.042^{\prime \prime}$ tubing with one end capped off. For each probe two orifices were located at a prescribed distance from the capped tip and the open end was soft-soldered to a pressure lead holder. In practice the sealed tip
of the probe was placed in contact with the base of the model on the wake centerline and the subsequent pressure recorded by the precision micromanometer. Since tip to orifice lengths were different for each of the three probes, it was then possible to obtain a distribution of static pressure on the wake centerline. Great care was exercised to maintain all probes at zero angle of attack because of the pronounced sensitivity of static pressure probes to angle of attack effects (16).
C) Stagnation Point Probe

Because of the significance in near wake studies of the rear stagnation point, a special probe (figure 9) was fabricated to aid in determining the location of this point. This probe was made from $.032^{\prime \prime}$ stainless steel tubing and actually consisted of two pressure leads. A spanwise section of the tubing, sealed at the centerline location, was joined at each end to these leads. Pressure taps, one facing upstream and the other downstream, were located on alternate sides of the center cap. When in use the pressure leads were brought out of the tunnel through the probe strut system and attached to opposite sides of a silicon " U " tube. The probe was then maneuvered along the wake centerline in the base region until the pressure levels were equal. In principle, as the probe moved into and out of the recirculating region, the pressure levels would be unequal at every position except the rear stagnation point since, except for that location, one tap would either be experiencing 'base type' flow while the other would be under impact pressure conditions, or vice versa. In this manner the location where the pressures just balanced each
other, namely the rear stagnation point, was determined.
D) Hot Wire Anemometer

The hot wire probes used for the current set of measurements were similar to those designed by Dewey (17) and modified by Herzog (14). Each probe consisted of a platinum-10\% rhodium wire approximately. $030^{\prime \prime}$ in length, soft-soldered to two needle supports, figure 10. Chromel Alumel thermocouple wires (.001 ${ }^{11}$) were spot welded to within. $005^{\prime \prime}$ of one support tip for each of the probes. All wires were annealed and calibrated in the manner outlined by Dewey (17). From these calibration measurements wire resistivity coefficients $\left(\alpha_{r}\right)$ and reference resistances (R_{r}) for zero current were determined. Manufacturer specified resistance values for $68^{\circ} \mathrm{F}$ were checked against these calibration results and slight variations, less than 1% were observed.

For the actual flow measurements, the instrumentation system (figure 11) developed by Herzog (14) was used with considerable success. This system not only automatically positioned the probe in the tunnel but was also capable of measuring and recording on IBM cards the probe position, support temperature, and wire voltages corresponding to five known currents. A comprehensive description of this system is furnished by Herzog (14) and a discussion of the manner in which the measured data were reduced to furnish adiabatic wire temperatures and measured Nusselt numbers is given in Appendix A.

III. DATA REDUCTION AND ACCURACY ESTIMATES

III. 1 Corrections to Measured Data

All Pitot and static pressure measurements have been adjusted so as to account for the tunnel axial gradients discussed in Section II. This was accomplished by dividing the measured pressure at a given axial location by the ratio of the pressure at the same location to the pressure at the location corresponding to the model's leading edge under 'free"' tunnel conditions, figure 3. Since lateral gradients in Pitot pressures under "free" tunnel conditions (figure 4) were relatively minor no corrections have been made to the measured data for these effects.

Virtual leak corrections were also made for Pitot and static pressure measurements as well as base pressure data. Because all high vacuum systems experience some outgassing or even small in-leaks, a pretest calibration of each probe was carried out using the silicon micromanometer to determine, if necessary, suitable corrections for these effects. As discussed in reference 21 , such corrections are determined for a sealed system with a given volume by first measuring the change of pressure per unit time for that system. The product of the volume and this rate of pressure change can be shown to be proportional to the mass inflow rate for a sealed system. Using the perfect gas law and assuming small volume changes this follows from:

$$
\mathrm{V} \frac{\mathrm{dp}}{\mathrm{dt}}=\frac{\mathrm{d} \overline{\mathrm{M}}}{\mathrm{dt}} R_{\mathrm{T}}
$$

The noted product is often termed the throughput in vacuum technology and given the designation Q. Under actual test conditions this mass flow is exhausted out the probe opening and, as a result, a certain pressure drop occurs along the length of pressure lead between the micromanometer and the probe orifice. Since the pressure levels for the present measurements corresponded to viscous rather than free molecular flow, it can be shown from Hagen-Poiseuille pipe flow theory that the resistance to such a mass flow is given by:

$$
U=\frac{\pi D^{4}}{128 \mu \ell} \bar{p}
$$

and the resultant pressure drop is then determined from:

$$
\Delta \mathrm{p}=\frac{\mathrm{Q}}{\mathrm{U}}
$$

For many pressure measurements this virtual leak correction is relatively unindportant and can often be disregarded. On the other hand, in regions where very low pressures exist, such as base recirculation regions behind slender two dimensional bodies, this pressure loss can prove significant to final results and should be accounted for where applicable. Thus all low pressure data herein have been corrected for this effect whenever the estimated pressure drop was greater than 1% of the measured data.
A) Pitot Pressure Probes

Additional corrections to Pitot pressure data, such as those associated with angle of attack, streamline displacement and viscous effects were also investigated. Probe angles of attack were maintained within $\pm 1^{\circ}$ to the local flow direction for all measurements
except the separated shear layer and outer flow regimes of the near wake. For these cited exceptions the angle of attack varied by as much as $\pm 10^{\circ}$. Since the data of Matthews (22), McCarthy (16) and also Dewey (8) indicate that even for these angles, corrections to Pitot pressure data are negligible, no corrections for angle of attack effects have been applied to any of the Pitot pressure data presented herein.

Similarly, streamline displacement effects for those shear flows investigated herein were also found to be unimportant. Dewey (8) indicates that these effects become negligible when the ratio of free shear layer thickness to probe size is greater than 2. For the present set of experiments this ratio was greater than 25.

The final correction, that of viscous effects, was examined with the aid of figure 12. In this figure the different flow regimes covered during the present tests are easily discernible. Although the Reynolds numbers for those measurements in supersonic flow were sufficiently high, according to Matthews' results so as not to make necessary any viscous corrections for the supersonic data ($<1 \%$), such is not the case for the subsonic measurements. Using the data of Sherman (23) which describes the variation of the normalized viscous correction
$\frac{p_{\text {impact }}-p_{\text {impact }} w / 0 \text { viscous effects }}{\frac{1}{2} \rho u^{2}}$
as a function of Reynolds number, this correction has been applied to all subsonic Pitot pressure data measured during the current
investigation. For some of the low Reynolds number results herein this correction reduced measured data by as much as 20%.
B) Static Pressure Measurements

Since the conical probe shown in figure 7 was identical to the probe calibrated by Behrens (15), all corrections for viscous interaction effects have been carried out using the results of reference 15. In that reference Behrens indicates that the increase in pressure associated with viscous interaction phenomena is given by

$$
\frac{\mathrm{p}_{\mathrm{m}}}{\mathrm{p}}-1=.065 \bar{\chi}+.040 \bar{\chi}^{2}, \bar{\chi}=\frac{\mathrm{M}^{3} \sqrt{C}}{\sqrt{R e_{\mathrm{x}}}}
$$

For the present measurements the noted corrections were always less than 2%. Figure 12 indicates the various flow regions covered by this probe during the present tests and illustrates the range of applicability for the Behrens' data.

Those data taken with the base region probes have been left uncorrected for low Reynolds number effects. From the Behrens' results such corrections to probes of this diameter appear to be less than 1%. If any corrections are in order it would seem that interaction effects resulting from the probe's interference with the base recirculation region should be considered. Because of the difficulty in obtaining a quantitative measure of this correction, such an effect has not been accounted for, and there exists greater uncertainty in the resulting data (Section III.3.)
C) Rear Stagnation Point Probe

During a pretest checkout of the virtual leak effects associated with the stagnation point probe it was determined that the
required corrections to each of the two measured pressures were identical. Therefore the uncertainty in the measured location of the rear stagnation point was caused primarily by the base interference effects. No corrections were made to the data for this effect and the resultant uncertainty is discussed in Section III. 3.
D) Hot Wire Probe

The hot wire probe, with the availability of suitable calibration data, has been shown to be an effective tool in carrying out mean flow measurements (17,24). By direct measurement it determines recovery temperature and heat transfer rate for a wire (cylinder) immersed normal to a fluid stream. These measurements, when corrected for end-loss effects and coupled with established calibration results, can then provide stagnation temperature and mass flux data for the flow in question. A detailed discussion of the manner in which the raw data measurements have been reduced, corrected and finally combined with recovery temperature and Nusselt number calibration data is presented in Appendix A.

III. 2 Mean Flow Calculations

By suitably combining the corrected data discussed in the previous section, with the compressible flow relations (25), final mean flow calculations have been carried out for the present investigation. Because of the characteristics peculiar to the various wake regions examined, several different computation procedures were necessary. All these calculations were made on an IBM 7094 using semiprofile traces of Pitot pressure and total temperature
along with a third independently measured quantity. For the majority of the present results this third quantity was the static pressure which was assumed constant across the wake and equal to its value at the centerline. This procedure was followed not only for all far wake results herein but also for those neck and base regions within the wake shock boundaries. For comparison purposes flow field results for these latter regions were also calculated by using semiprofile traces of the mass flux data in place of static pressures. All other shear layer data were computed by similarly combining mass flux data with Pitot pressure and total temperature results. For those regions of inviscid flow located between the nose shock and the shear layer edge, as determined from total temperature profile traces, total temperatures and stagnation pressures remained constant throughout since it was assumed that all streamlines suffered the same total head loss in passing through the leading edge shock. As a result, the calculation procedure adopted herein for determining mean flow properties for these isentropic, inviscid regions combined total pressures, as calculated from the nose shock orientation and free stream conditions, with free stream total temperatures and measured Pitot pressures. Admittedly, curvature of the nose shock wave near the model's leading edge invalidates the assumption that all streamlines within such inviscid regions experience the same total head losses. In fact it is estimated that stagnation pressures along streamlines closest to shear layer edges may in some cases be 10 to 20% less than stagnation pressures based on the "straight" portion of the nose shock. However, even
with this uncertainty in stagnation pressure, derived mean flow results are still within the accuracy limits of hot wire data (Section III.3) and thus the assumption that stagnation pressures remained invariant for these outer inviscid regions was considered reasonable. For one model, the smallest wedge configuration (.15w), total temperature distributions were not measured, and calculations in this case were made by assuming that all stagnation temperatures remained constant and equal to the free stream value. Streamline calculations for the base region were performed by integrating mass flux data from the nose shock toward the wake centerline. Since near the wake centerline such a procedure results in appreciable errors, additional streamline data were obtained by integrating from the centerline out to the wake shock. For these calculations the first computation procedure described above was used wherein static pressure was assumed constant across the integration region.

All profile results for the present investigation have been normalized with respect to edge conditions. Althrough the definition of edge location is often somewhat nebulous, depending on whether total temperature or velocity traces are used, the values for edge properties can be established with some degree of consistency. For example, most transverse traces of Pitot pressure in the far wake exhibit the existence of a maximum value outside the viscous
wake and within the wake shock boundaries. Such a value, when present, has been used to compute edge properties. For several of the most aft locations of the smallest wedge model investigated (.15w) the "inviscid" Pitot pressure traces, instead of displaying a peak, exhibit initially a plateau followed by a gradual rise until the wake shock position is reached (Appendix C). The slight rise in Pitot pressure between the plateau region and the wake shock is believed caused by the weakening of the leading edge shock by the expansion fan generated at the base of the model. Thus streamlines in the far wake at increasing lateral distances from the centerline of the wake will exhibit lower total head losses with corresponding Pitot pressure variations. As a result the edge property data for these traces has been based on the plateau pressure level in lieu of the maximum "inviscid" value. In the near wake all edge results correspond to mean flow data as measured at the actual edge location determined from total temperature traces.

III. 3 Accuracy Estimates

A) Free Stream Mach Number

The free stream Mach numbers herein were determined under " free " tunnel conditions from the ratio of measured Pitot pressures to the tunnel's reservoir pressure (25). Because the magnitudes of reservoir and free stream Pitot pressures were relatively high and thus could be measured very precisely, Mach numbers so computed were correspondingly quite accurate. However some repeatability difficulties existed due to wall boundary layer
effects, which caused the flow in the test section for a given set of measurements to deviate somewhat from that for the tunnel survey results. This effect was most pronounced at $p_{0}=35$ psig since transition of the wall boundary layer occurred at this pressure. By combining measurement accuracies with repeatability difficulties it is estimated that values of the free stream Mach number, which have been used herein for flow field calculations, are accurate to within . 5%. B) Positioning and Alignment

From repeatability checks and by examining the reliability of position indicators it is estimated that probe position uncertainty was within $\pm .002^{\prime \prime}$. In order to eliminate the mechanical backlash effects, all vertical and axial positionings of a probe were carried out by moving the probe upward and forward respectively. It is interesting to note that the semiprofile results herein are perhaps even more accurate from a position standpoint than the cited $\pm .002^{\prime \prime}$, since final results were established by averaging full profile data and thus any systematic offset would be compensated for in the reduction procedure.

Alignment of the pressure probes with the free stream direction was accomplished through use of a precision level. Because the tunnel used for the present investigation was designed with the flow parallel to the horizontal, this level was capable of aligning the pressure probe to within . 5° of the axial flow direction. C) Pitot Pressure Measurements

In Section III. 1 it was indicated that all Pitot pressure results herein have been corrected for axial tunnel gradients,
subsonic viscous effects and even virtual leak phenomena. Presumably, therefore, the uncertainties in Pitot pressures due to these effects have been all but eliminated. On the other hand, the effects of streamline displacement, angle of attack, lateral tunnel gradients, and viscous interaction in supersonic flow have been examined and are believed to have a cumulative error amounting to less than $\pm 1 \%$. Since extreme care was exercised to minimize errors caused by electronic circuitry, transducer calibration, and Moseley recording uncertainties, only an additional $\pm 1 \%$ uncertainty is expected from all these effects. Admittedly, for the large pressures measured outside the viscous wake regions, the percentage error arising from recording uncertainties is much smaller than for the centerline data, and thus this latter error estimate probably should be only about $\pm .5 \%$ for such data. By taking into consideration all the se effects the overall error for Pitot pressure measurements is believed to be within 2% 。
D) Static Pressure Measurements

As mentioned above for Pitot pressure data, corrections for low Reynolds number effects, axial tunnel gradients and virtual leak phenomena have also been made to static pressure measurements, and thus any uncertainties caused by these effects should be of negligible importance to final results. In addition the use of a precision micromanometer for measuring these pressures reduced considerably possible recording errors. Thus the primary cause for error with these data appeared to be angle of attack effects and the assumption that the static pressure was constant across the wake. Several
lateral surveys were made to check this latter assumption and slight dips in the pressure traces were observed near the wake edges for laminar flow conditions. However, since static pressure probes are exceptionally sensitive to angle of attack as brought out by McCarthy (16), it is tentatively concluded that the noted 'dips"' are caused by probe alignment difficulties that occur near the wake edge. As a result, static pressures across the wake have been assumed constant and equal to the value at the wake centerline for all the far wake computations herein. Since centerline data are accurate to within 2% when all uncertainty factors are considered, it is estimated that the assumption of zero lateral pressure gradient causes an error in the value used for the pressure at the wake's edge to be approximately $\pm 5 \%$. Because those static pressure probes, used to measure recirculation region pressures, caused some base interference effects the resulting measured data are uncertain at the lower pressures by as much as $+7 \%$.

E) Stagnation Point Measurements

Since the accuracy of the stagnation point probe in measuring the location of the rear stagnation point is dependent to a great extent on probe diameter, the smallest tubing size, . $032^{\prime \prime} \mathrm{OD}$, consistent with structural requirements was used for its construction. Possible virtual leak effects for this small probe, though of importance in quantitative pressure measurements, were not significant to final comparative results because, as discussed in Section III. 2, any such effects tended to be self-compensating. Therefore, recognizing the interference effects which exist when the probe is situated just
at the rear stagnation point, it is estimated that measured values of $(\mathrm{x} / \mathrm{H})_{\mathrm{sp}}$ are accurate to within one probe diameter, namely $\pm .032^{\prime \prime}$. For the $.3^{\prime \prime}$ wedge model, the only configuration for which rear stagnation point locations were measured, this amounts to an uncertainty of within one-tenth of a base height.
F) Base and Surface Pressure Measurements

The lowest pressures measured during the present investigation were the base pressures and great care was exercised in obtaining the se data. Not only were measurements made by the already mentioned precision micromanometer and virtual leak effects accounted for, but spanwise three dimensional effects were minimized, if not eliminated altogether, by use of base fences. Pronounced base pressure increases were observed at the higher tunnel pressures for the $.3^{\prime \prime}$ wedge models when the models were tested without fences as compared to similar data with fences. Apparently the boundary layer on the tunnel sidewall, turbulent at these high pressures, caused a significant cross flow to occur because of turbulent mixing effects and the pressure differential which existed between the sidewall boundary layer and the recirculation region. Dewey (8), on the other hand, observed no difference between the base pressures with and without fences. However, the included angles of Dewey's models (45° and 30°) were larger than the present 20° case. For the $.15^{\prime \prime}$ wedge model, with its higher aspect ratio, no indication of cross flow effects was evident since the data with and without fences were nearly identical.

In determining the suitable fence configuration for these models, it was considered necessary not only to position the fences near the edges of the sidewall boundary layers, but also to extend their length downstream to at least the wake's centerline sonic point. To determine the final spanwise separation distance of the fences ($b=3.5^{\prime \prime}$) measurements of base pressures and Pitot pressure profiles in the far wake were carried out for separation distances of both 2.5 and 3.5 inches. Since both sets of data were virtually identical, the 3.5 inch separation distance, with its correspondingly larger aspect ratio, was selected for the final design. Taking all the above factors into consideration it is estimated that base pressure uncertainties vary from $\pm 5 \%$ at the lowest pressure level tested, $p_{o}=10$ psig, to $\pm 3 \%$ at $p_{o}=100$ psig. These noted uncertainty estimates correspond to those data measured by base pressure taps. Since the wedge model designed for the cold wall tests (. $3 w-2$) was fabricated without such base taps, all base pressure data for this model were taken with the Pitot pressure probe positioned within $.001^{\prime \prime}$ to $.002^{\prime \prime}$ of the base on the wake centerline. Comparison of base pressure data obtained in this manner with "tap" data for the adiabatic wall model (. $3 w-1$) indicated that these Pitot probe data were high at the lowest pressure investigated by $+7 \%$ due to base interference effects. Thus the uncertainty factors for cold wall base pressure data range from $+7 \%$ for $p_{0}=10 \mathrm{psig}$ to $\pm 5 \%$ at $\mathrm{p}_{\mathrm{o}}=85 \mathrm{psig}$.

Since surface pressures measured with the $.3^{\prime \prime}$ wedge model, (. $3 \mathrm{w}-1$) were relatively high, it was possible to obtain data with good
accuracy. For example the small pressure error that occurred due to virtual leak effects was essentially negligible when compared to the magnitude of the measured pressure. Similarly the slight reading uncertainty that existed with the precision micromanometer was relatively unimportant in determining the overall uncertainty for the surface pressure data. Thus, based primarily on repeatability results, it is estimated that the surface pressure data herein are accurate to within $\pm 2 \%$ 。

G) Hot Wire Anemometer Measurements

In making uncertainty estimates for hot wire data, consideration must be given to such factors as the reliability of the tempera-ture-resistivity data for a given probe, measurement and recording procedures, probe end loss corrections, and finally wire calibration results for determining stagnation temperature and mass flux data from a wire's recovery temperature and Nusselt number. One advantage in evaluating the first of these factors is that often post-test calibrations are possible which enable a redetermination of a probe's temperature-resistivity curve. As Dewey has indicated (17), starting loads and exposure of these annealed hot wires for long periods of time at high temperature levels sometimes cause slight shifting of calibration curves. Thus post-test results offer a method for estimating any resulting uncertainties. Several wires used for the present results were therefore recalibrated after testing and changes in reference resistance due to tunnel exposure effects of less than $\pm .02 \mathrm{ohms}\left(\pm 1 / 2^{\circ} \mathrm{K}\right)$ were observed. No variations in resistivity coefficient $\left(\alpha_{r}\right)$ were evident however. Although on occasion some
wire calibration curves exhibited slight deviation from linearity, only those wires which had a variation of less than .02 ohms for the temperature range considered were used to obtain the results herein. Thus the overall uncertainty arising from wire calibration effects is estimated at being about $\pm .04$ ohms, i.e., $\pm 1^{\circ} \mathrm{K}$.

The actual hot wire data were obtained with the system designed and used by Herzog (14). Hot wire resistances as measured by this system are accurate to within $\pm .02$ ohms. An additional uncertainty in adiabatic wire resistance of $\pm .02$ ohms exists because of slight errors that arise when reducing the measured data (Appendix B.1). The curve fitting technique discussed in Appendix B. 1 although reasonably accurate in determining the zero power intercept (adiabatic wire resistance), is however somewhat poorer when evaluating the zero current slope of the resistance power curve because of the high sensitivity of this slope to the measured data. Since measured Nusselt numbers are proportional to these slopes it is estimated that these data are thus only accurate to within $+2 \%$.

The end loss corrections to measured hot wire data herein varied between 1.05 and 1.2 for adiabatic wire temperatures and ranged from .13 to .85 for measured Nusselt numbers. Any estimate of the uncertainty associated with these corrections has to take into consideration not only the analysis of Dewey but the dependence of such corrections on other measured quantities with their own accuracy limitations. By using these accuracy estimates with an analysis of the dependence of derived parameters on measured data, uncertainties in stagnation temperatures arising from end loss
corrections have been made. These uncertainties vary from $\pm 2^{\circ} \mathrm{K}$ for edge data to as much as $\pm 10^{\circ} \mathrm{K}$ for those centerline measurements corresponding to cold wall, low Nusselt number conditions. In a similar manner it is estimated that uncertainties in final Nusselt numbers due to end loss corrections alone are approximately $\pm 3 \%$ 。 The final factor of importance in evaluating hot wire accuracies is the recovery factor and Nusselt number calibration data. Dewey (17) indicates that recovery factors as determined from his correlation results have a maximum uncertainty of less than $\pm 1.5 \%$ for all values of Mach number and Reynolds number. On the other hand, for the Reynolds numbers covered during the present investigation and using the Nusselt-Reynolds number correlation of Kubota (Appendix A), the uncertainty in mass flux data (Reynolds number) for given values of Mach number and Nusselt number is less than $\pm 5 \%$ 。

In determining overall accuracies for stagnation temperatures and mass flux data some improvement over the accumulated uncertainties mentioned above is possible. This was accomplished by reducing the effects of data scatter with proper curve fairing, by averaging full profile data into semiprofile results, and finally by compensating for possible systematic errors through suitably normalized final results. Several repeatability checks confirmed the acceptability of this procedure. When all these effects are considered together with the specified uncertainty factors the overall accuracies for stagnation temperature and mass flux data
are as shown in Table II. This table also summarizes uncertainty estimates for all other measurements and those derived results which are of interest to the study herein.

IV. RESULTS AND DISCUSSION

IV. 1 Far Wake

A) Mean Flow Results

To initiate a discussion on the results from the present set of far wake measurements, it seems appropriate to begin by first examining data along the wake's centerline and edge for each of the four configurations under investigation. These data are indicated in figures 15 through 22, and the trends exhibited by a given flow variable are observed to be quite similar for all four cases. The one pronounced exception, as might be expected, occurs for the total temperature and enthalpy data for the highly cooled model (figures 18 b and 20 d) and these results will be discussed shortly. i) Centerline Static Pressure

In figures 15a through 15d-2 static pressure data along the wake centerline are presented. Except for the flat plate results, these data illustrate the degree of recompression the flow experiences in rising from the low pressures in the base region to the downstream pressure levels. It was not possible to determine the amount of recompression for the flat plate model, since any attempt to measure centerline pressures near the model's trailing edge would result in appreciable flow disturbance (figure 15a). In any event, all pressure data indicate an initial overshoot followed by a gradual decay back to free stream conditions. A slight oscillatory feature to this decay is observed, especially downstream of the cold wall model (figure 15d-1). This type of behavior has been observed by other investigators such as Martellucci et al. (26) and

Badrinarayanan (27) and as of now there still does not exist a satisfactory explanation. It is interesting to note that the decay of the centerline pressure from its 'overshoot'' value seems to commence at locations closer to the base as the Reynolds number increases. As will be shown shortly, these initial decay locations, in general, coincide with the onset of the wake transition region, which likewise moves forward with increasing Reynolds number. It is not surprising then that the flow will attempt to readjust itself to free stream levels at a faster rate, once turbulent diffusion effects begin to play a more dominant role.

For the wedge data, rough estimates have been made of maximum pressures at the overshoot location and these are labeled "Inviscid Estimate" in figure 15. To obtain the se approximations, inviscid flow along the wedge face was expanded to measured base pressure values and then turned through an oblique shock which would bring the flow parallel to the wake's axis. All the calculated values are seen to be within 5% of the overshoot pressures. Such a finding, in spite of the fact that base pressures vary as much as 25\% for the Reynolds numbers considered, illustrates that the inviscid flow plays a significant role in downstream pressure levels.

One final observation appears worthy of comment at this time and that is the noticeable inflection in the centerline pressure curves near the bases of the adiabatic and cold wall wedges (figures 15c-2 and 15d-2). Such a trend has been similarly observed by Hama (28) in his experiments with wedges in supersonic flows. For his results Hama points out that this effect is caused by an expansion
fan emanating from the region of interaction of the base's lip shock with the wake shock. For the present set of measurements the lip shock and wake shock, as determined from transverse Pitot pressure surveys, appear to form a continuous shock structure (Section IV.2). This was found also by Hama in his experiments at high Mach numbers and occurs because the lip shock turns more toward the wake axis as the Mach number increases until eventually it appears to coalesce with the wake shock. The fact that the noted change in centerline pressure gradient occurs for Hama's high Mach number data and for the present results, suggests that some shock interaction phenomena may be taking place for these cases even though, with the current measurement resolutions, two distinct shocks are not discernible in the base regions.
ii) Centerline Mach Number

Mach numbers along the wake centerline and edge have been computed using Pitot and static pressure measurements, and these results are shown in figure 16. As discussed in Section III, static pressures at the edge have been assumed equivalent to static pressures measured on the wake's centerline. The centerline data of figure 16 illustrate a tendency to break away from the curve corresponding to the lowest Reynolds number at progressively moreforward locations as the Reynolds number is increased. Such an upstream movement of the "'break away" point with increasing Reynolds number reflects the influence of transition on the centerline flow. This trend has also been observed in other wake investigations.

Behrens (7) in his experiments on hypersonic wakes behind cylinders and also Sato and Kuriki (29) in their investigation of incompressible flow behind a flat plate, have compared such growth increases in centerline mean flow data with fluctuation measurements. Both investigations have shown that these pronounced centerline deviations are not necessarily indicative of fully developed turbulent flow but only of the termination of a linear growth region characterized by linear stability theory, and the initiation of a region of non-linear instabilities. The absence of any "break away' phenomena for the lowest Reynolds number data suggests that these data correspond to completely laminar flow, even to the most aft location at which measurements were made. Additional discussion of the laminar nature of these lower Reynolds number results will be made in Section IV. 1-B.

Except for the cold wall model, all centerline Mach number data illustrate that the onset of the transition region is well downstream of the centerline sonic point. Since disturbances in supersonic flow cannot propagate upstream, the near wake for the adiabatic wall 20° wedge (. $3 \mathrm{w}-2 \mathrm{~A}$) is experiencing steady, laminar flow for the present set of measurements, even for the highest Reynolds number under investigation. This result is not necessarily true for the near wake of the cold wall wedge especially at $\mathrm{Re}_{\infty} \mathrm{H}=$ $5.5 \times 10^{4}(.3 \mathrm{w}-2 \mathrm{C})$. The proximity of the "break away' location to the centerline sonic point is obvious from the data of figure 16 and the possible effect of fluctuations on the base region should be kept in mind when examining the near wake results for this case.

The trend of transition to move closer to the base with cooling, however, is an effect predicted by linear stability theory (6).

In an attempt to verify the consistency of the Mach number results in figure 16, a comparison was made using the data for the two adiabatic wall wedges. Since free stream Reynolds numbers were equal for two test conditions for each model, even though base heights differed by a factor of two, it would be expected that axial Mach numbers should be in agreement. Figure 17 presents the results of this correlation and the comparison is seen to be quite favorable.
iii) Centerline Total Temperature

Corrected total temperatures along the wake centerline for both the flat plate and the large 20° wedge models are shown in figure 18. Similar data for $.15^{\prime \prime}$ base height wedge were not measured and all results specified herein for this 20° wedge model correspond to the assumption of isoenergetic flow, namely $T_{t}=T_{t_{\infty}}$ 。 Figure 18 again illustrates the increase in centerline growth rate as the flow experiences the onset of transition. The upstream movement of the most forward location of the transition region with increasing Reynolds number, is again clearly evident, and offers another illustration of the effect of turbulent diffusion on the wake's mean flow properties. Total temperature data were obtained only up to 6 inches downstream of the wedge bases because of probe support limitations. The absence of data forward of $x / H=1.5$ for the 20° wedge data (excluding the wall temperature measurement) was caused by the ineffectiveness of the hot wire probe in very low
density, low speed flow. Convective heat losses from the wire were so small that the wire temperature became dominated by probe support effects resulting in unacceptably inaccurate total temperatures. The variation of total temperature with Reynolds number and the distribution of total tempe rature within such a near wake region are of considerable importance to development of the wake downstream. The inability to obtain such information from the present investigation points out the necessity of other techniques for obtaining total temperature data in base flow regions. For example, several investigators have succeeded in measuring near wake temperatures behind slender bodies in both shock tubes and shock tunnels taking advantage of transient phenomena.

Examining the total temperature data of figure 18 clearly illustrates the pronounced effect which model cooling has on centerline total temperatures. Since wall temperature ratios $\left\langle T_{W} / T_{t_{\infty}}=\right.$ $.03 \rightarrow$. 12) associated with high speed entry into the atmosphere correspond to cold wall conditions, the cold wall data $\left(T_{W} / T_{t_{\infty}}=.19\right)$ would seem to be of more practical interest than the adiabatic wall results $\left(T_{W} / T_{t_{\infty}}=.87\right)$. The measured wall temperature, incidentally, for the adiabatic wall model agrees favorably with that predicted by theory for laminar flow $\left(\mathbf{r}=.85\right.$) at $\mathrm{M}_{\infty}=6$. iv) Centerline Velocity

Centerline velocity data for all four models used in the current investigation are presented in figure 19. Since the Mach number and total temperature data used to generate these results have already been discussed, little comment seems necessary at
this time. The typical growth increases associated with the onset of transition are again clearly evident. The comparison between linear wake theory (5) and the lowest Reynolds number data for the adiabatic wall models is seen to be quite reasonable. The results for the larger wedge model (. $3 \mathrm{w}-2 \mathrm{~A}$) are the least favorable and this is primarily the result of applying the theory not far enough downstream where the velocity defect has become sufficiently small ($1-\frac{u}{u_{e}} \ll 1$) as required by linear theory. Additional discussion of the validity of using linear theory for the present results will be presented shortly.
v) Centerline Enthalpy

Another quantity which is of interest in any study of far wakes, especially with the extreme temperatures associated with high speed reentry, is that of the distribution of enthalpy along the wake centerline. Figure 20 presents the results from the current investigation and, as might be expected, an appreciable difference between the adiabatic and cold wall data is evident. All three adiabatic wall cases are quite similar in their decay characteristics, even to displaying the upstream movement of transition with increasing Reynolds number. Results of linear theory calculations are also shown on figures 20a, 20b and 20c illustrating the effects of Prandtl number and initial conditions on the computations. The cold wall results indicate a maximum centerline temperature of almost triple free stream values and in addition, for the low Reynolds number data, these relatively high temperatures persist for some distance downstream, a factor of great importance in evaluating wake observable
phenomena. The sharp temperature rise taking place in the vicinity of the base occurs primarily within the recirculating zone of the base region. This result and the fact that a maximum temperature occurs somewhat downstream of the rear stagnation point can be explained by examining the balance between thermal and kinetic energy along the wake centerline. Since the flow velocities within the recirculating zone are small, the total energy of the centerline flow initially consists primarily of thermal energy. The axial distribution of enthalpy along the centerline thus follows closely the total enthalpy variation (figure 18). However once downstream of the rear stagnation point the flow velocities increase rapidly with the result that the centerline enthalpy attains a maximum followed by a gradual decay as the kinetic energy of the flow increases and begins to account for a greater share of the centerline total enthalpy. This latter effect is clearly in evidence in the adiabatic wall cases wherein, because the total enthalpy is nearly constant in the far wake, the enthalpy decay along the centerline is just matched by the kinetic energy increase.
vi) Integral Thicknesses

Integral wake thicknesses for the present results are presented in figure 21. Integration of the boundary layer equations indicates that the expected variation for these thickness data should be as follows:

$$
\begin{aligned}
& \frac{d}{d(x / H)}\left[\frac{\rho_{e} u_{e}^{2}}{\rho_{e} u_{e_{\infty}}^{2}} \frac{\bar{\theta}}{H}\right]=-\frac{\rho_{e} u_{e}}{\rho_{\infty} u_{\infty}^{2}} \frac{d u_{e}}{d(x / H)} \frac{\delta^{*}}{H}=\frac{1}{\rho_{\infty} u_{\infty}^{2}} d(x / H) \frac{d p}{H} \\
& \frac{d}{d(x / H)}\left[\frac{\rho_{e} u_{e}}{\rho_{\infty} u_{\infty}} \frac{E}{H}\right]=0 \\
& \text { where } \frac{\delta^{*}}{H}=\int_{0}^{\infty}\left(1-\frac{\rho u}{\rho_{e}^{u}}\right) d(y / H) \\
& \frac{\bar{\theta}}{\bar{H}}=\int_{0}^{\infty} \frac{p u}{\rho_{e} u_{e}}\left(1-\frac{u}{u_{e}}\right) d(y / H) \\
& \frac{E}{H}=\int_{0}^{\infty} \frac{p u}{\rho_{e} u_{e}}\left(1-\frac{T_{t}}{T_{t e}}\right) d(y / H)
\end{aligned}
$$

The slight increases in momentum thickness with axial distance are partially caused by the small axial pressure gradients depicted in figure 15 and the transverse entropy gradient characteristic of some viscous wakes. This latter effect is brought about because some of the streamlines passing through the stronger portions of the curved bow shock first enter the viscous far wake at varying distances downstream. The additional "drag" associated with these streamlines is similar to the outer wake drag typical of blunt bodies which experience extensive normal shock pressure losses. Some growth of momentum thickness (drag) with axial distance is thus not surprising.

Similar explanations based on fluid mechanical phenomena cannot be made to account for the slight increase in energy thickness of the cold wall data. Since these data should remain constant with axial distance, the small growth rate experienced by the energy
thickness in figure $21 d$ represents a measure of the cumulative error occurring for the present results. Considering the various corrections and calibrations associated with the current measuring techniques such a result, however, is not unexpected.
vii) Wake Thickness

Figure 22 presents results of wake thickness and wake shock position for the four models used in the current investigation. The rapid change in Pitot pressure at the wake shock (figure 44) clearly determines the location of this shock. The midpoint of this sharp Pitot pressure change has been used as the wake shock position. The wake edge data of figure 22 were obtained by determining those locations where the tangent to the maximum transverse gradient in Pitot pressure intersected the edge value of Pitot pressure. This definition coincides, within the accuracy of the present results, with the total-temperature edge (figure 45). From the data in figure 22 estimates of wake neck position are possible by noting the location of the minimum thickness point. Further, these results indicate that all the wakes initially grow almost linearly with downstream distance until, except for the low Reynolds number data, some point is reached where a sudden growth rate change takes place. The new growth rate again is nearly constant. Since fluctuations bring about increases in wake growth rates, these data are good indicators of the breakdown of the steady laminar flow condition. The upstream movement of this "transition" point with increasing Reynolds number is very noticeable. Similar results for wake thickness were obtained by Demetriades (30) in his experiments on hypersonic flows behind
20° wedges using hot wire probes to measure turbulent fluctuations. B) Analysis of Transition

Wake transition distance is defined as the axial distance downstream from the base of a body to a location where the effects of transition produce a pronounced change in flow characteristics. In Demetriades' measurements behind 20° wedges (30) and also Sato and Kuriki's data for incompressible flow behind a flat plate (29), the onset of increased turbulent fluctuations was designated as the beginning of transition. A similar approach has been used by Behrens for flow behind cylinders in hypersonic flow (7). The present results correspond to a transition location based on the axial distance from the model base to the position in the wake where the wake thickness growth rate shows a sudden change. These transition locations are specified in figure 22 and are replotted in figure 23 as a function of reciprocal of Reynolds number. The results therein illustrate that a linear variation exists not only when free stream Reynolds numbers are used but also when the Reynolds number is based on edge conditions. This linear variation in turn can be used to define a transition Reynolds number since the slope of the curves, for each of the models, corresponds to a Reynolds number based on the axial distance between a zero intercept distance, obtained by extrapolating the measured data to infinite Reynolds number, and the transition location. As explained by Lees (31), the noted linear variation of transition distance cannot continue indefinitely as the Reynolds number is decreased. In fact a minimum critical Reynolds number is reached below which viscous dissipation
prevents the existence of wake turbulence. Thus all curves in figure 23 would eventually curve upward if lower Reynolds number meas urements had been made. Demetriades illustrates this effect in his measurements (30).

From the results of figure 23 the following transition Reynolds numbers seem appropriate:

Model	$\mathrm{Re}_{\infty \Delta x}$	$\left.\frac{x}{\bar{H}}\right)_{T R}$	$\mathrm{Re}_{\mathrm{e}} \mathrm{Ax}$	$\left.\frac{\mathbf{x}}{\mathrm{H}}\right)_{\mathrm{TR}}$
Flat Plate	50,000	35	---	
20° Wedge, adiabatic wall	3.5×10^{5}	8.5	2. 8×10^{5}	8.5
20° Wedge, cold wall	3.3×10^{5}	2.0	2. 5×10^{5}	2.0

Although the flat plate value corresponds closely to the result which Demetriades obtained by extrapolating his wedge data to the 0° included angle case (flat plate) $\left[\operatorname{Re}_{\infty \Delta x}=56,000\right]$, the zero intercept distance found herein $\left.[\mathrm{x} / \mathrm{H})_{\mathrm{TR}_{\mathrm{o}}}=35\right]$ differs substantially from his data $[x / H) \operatorname{TR}_{0}^{=15]} . H_{0}$ as used both for the present correlation and Demetriades ${ }^{2}$ results, represents the sum of the total boundary layer displacement thickness, as calculated, and the plate thickness. A satisfactory explanation for the noted discrepancy is not known at the present time.

On the other hand, present transition results for the adiabatic wall 20° wedge data not only show agreement between the two different sized models, but are seen to compare favorably with those data measured by Demetriades in his turbulent fluctuation experiments. This agreement occurs both in terms of free stream transition Reynolds number $\left(\operatorname{Re}_{\infty \Delta x}=3 . \times 10^{5}\right.$, Demetriades) and the zero intercept
distance. In addition, transition data for flow behind sharp nosed cones at $M_{\infty}=6$ indicate that a transition Reynolds number based on edge conditions ($\operatorname{Re}_{e \Delta x}=2.3 \times 10^{5}$), compares favorably with the present data. Such findings verify the use of the present mean flow technique for locating the approximate location of transition in lieu of detailed flow turbulence measurements.

It should be pointed out, however, that centerline properties apparently "sense" the onset of transition a short distance upstream. of those locations of transition as defined from wake thickness results. This is evident from figure 16 by comparing these transition locations with the initial deviation of the centerline Mach number data from the low Reynolds number results. These centerline deviations become important when evaluating the forward extent of the transition zone and its relevancy to the laminar nature of the near wake. For example, from figure 16, it is questionable whether or not the near wake for the cold wall wedge at $\operatorname{Re}_{\infty} \mathrm{H}=5.5 \times 10^{4}$ is indeed completely laminar, since the centerline Mach number data therein commence deviating as far upstream as $\mathrm{x} / \mathrm{H}=3$.

Figure 23 illustrates the pronounced effect which cooling has on wake transition. The significant upstream movement of transition distance for a given Reynolds number with cooling indicates the increased flow instabilities associated with cold wall bodies.

As a final comment on these transition results, it is appropriate to reexamine the low Reynolds number data of figures 15 through 22. Since now transition Reynolds numbers are available,
it is possible to make estimates of transition distances for these cases. The results are:

Model

Flat Plate, $L=1$ inch
20° Wedge, adiabatic wall, $\mathrm{H}=.15$ inch
20° Wedge, adiabatic wall, $\mathrm{H}=.3$ inch
20° Wedge, cold wall, $\mathrm{H}=.3$ inch
x) ${ }_{T R}$
7. 5L
, 58.5 H
33.5H
27. 5 H

These results additionally substantiate the earlier claim that the low Reynolds number data were representative of laminar flow for large downstream distances. Furthermore, the absence of the ''break away'" phenomena in the centerline measurements also verifies that such data correspond to laminar flow even to the farthest downstream station at which measurements were made.
C) Comparison of Present Results with Linear Wake Theory

The two-dimensional linear wake theory, as derived by Kubota (4) for compressible flow and arbitrary streamwise pressure gradient, incorporates the Oseen type approximation along with the assumption that the initial velocity and enthalpy distributions correspond to delta functions. A modified version of this theory has been developed by Gold wherein arbitrary initial profiles are acceptable (5). Basically the theory requires, in addition to the necessity for the boundary layer equations to remain valid, that the velocity defect be small ($1-\frac{u}{u_{e}} \ll 1$), and that both the Prandtl number and Chap-man-Rubesin factor ($C=\frac{\rho_{e^{\mu}}}{\rho^{\mu}}$) be constant. Under the se assumptions and with the additional approximation of negligible axial pressure gradient, which would seem appropriate from the far wake results
of figure 15, the linear wake theory gives the following results:

$$
\begin{aligned}
& w \equiv \frac{u_{e}-u}{u}=\frac{1}{\sqrt{4 \pi \bar{x} / H}} \int_{-\infty}^{\infty} w_{o}(\xi / H) \exp \left[-\frac{(\bar{\xi} / H-\bar{y} / H)^{2}}{4 \bar{x} / H}\right] d(\xi / H) \\
& g \equiv \frac{h-h e}{h_{e}}=\sqrt{\frac{\operatorname{Pr}}{4 \pi \bar{x} / H}} \int_{-\infty}^{\infty} g_{o}(\xi / H) \exp \left[-\frac{\operatorname{Pr}(\bar{\xi} / H-\bar{y} / H)^{2}}{4 \bar{x} / H}\right] d(\xi / H) \\
& \text { where } \bar{y}=\frac{\rho_{e} u_{e}}{\rho_{\infty} u_{\infty}} \sqrt{R e_{\infty} H} \mathbf{C} \int_{0}^{y} \frac{\rho}{\rho_{e}} d y \\
& \xi=\frac{\rho_{e}{ }^{u} e}{\rho_{\infty} u_{\infty}} \sqrt{R e_{\infty} H^{C}} \int_{0}^{\xi} \frac{\rho}{\rho_{e}} d \xi \\
& \overline{\mathbf{x}}=\int_{0}^{\mathbf{x}} \frac{\rho_{e^{u}} e^{\mu} e}{\rho_{\infty} u_{\infty} \mu_{\infty}} d x \\
& w_{o}(\xi / H)=\frac{u_{e^{-u}}}{u_{e}} \text { at initial wake station where } x=x_{o} \\
& g_{0}(\xi / H)=\frac{h-h_{e}}{h_{e}} \text { at initial wake station where } \mathbf{x}=\mathbf{x}_{0}
\end{aligned}
$$

This formulation of the linear wake solution has been programmed on the IBM 7094^{*} and various calculations have been carried out to examine the effect of initial conditions and Prandtl number on the computations. Several results of these calculations are shown in figures 19 and 20, where centerline distributions of velocity and enthalpy for the low Reynolds number cases are compared with meas ured adiabatic wall data. In general, the flat plate calculations of

[^0]both velocity and enthalpy are in favorable agreement with the data. The velocity results, for the small base height 20° wedge (. 15 w), similarly agree with the data. However such agreement is not as satisfactory for the large wedge model (. 3w-2A) for both velocity and enthalpy results due apparently to the use of initial conditions $\left.\left(\frac{x}{H}\right)_{0}=10\right)$ not sufficiently far downstream where velocity defects are small enough to justify using linear theory.

The relatively large deviation between theory $(\operatorname{Pr}=.75)$ and data for the enthalpy results of the small wedge, figure 20 b , are perhaps due mainly to the lack of measured total temperature data. The noted variations therefore should not be taken too seriously. Shown also on this figure is the effect of varying Prandtl number from. 75 to 1. The $P_{r}=1$ case, which compares quite favorably with the data, may be more realistic here since it too corresponds to constant total enthalpy.

Velocity and enthalpy profile distributions have also been calculated and these resuits are presented in figures 24 and 25 as functions of the transformed y coordinate. For the flat plate and small wedge models, the comparisons between predicted and measured velocities appear to be quite good. A better correlation in the case of the large wedge data (. $3 \mathrm{H}-2 \mathrm{~A}$) for both velocity and enthalpy results would be possible if the initial stations were chosen further downstream say at $x / H)_{0}=15$ instead of $\left.x / H\right)_{0}=10$. The flat plate enthalpy profiles, as predicted, are not in very satisfactory agreement with the measured data even though centerline results agree quite favorably. Again this indicated deviation would improve
considerably by making use of an initial station further downstream.
From linear theory it can also be shown that velocity defect results for all models should correlate well with the normalized axial distance

$$
\overline{\mathrm{x}} / \operatorname{Re}_{\bar{\theta}_{\text {avg }}} \bar{\theta}_{\text {avg }}
$$

The results of such a correlation are presented in figure 26 and the collapsing of the data for all three adiabatic wall models investigated verifies the use of this normalized distance.

In general, the low Reynolds number far wake data obtained during the present investigation under adiabatic wall conditions show very satisfactory agreement with linear theory. Such a finding further substantiates the laminar, steady nature of these data and illustrates the value of this theory as an effective method of analysis for the laminar far wake behind two-dimensional slender bodies.
IV. 2 Near Wake
A) Near Wake Geometry for a Flat Plate in Hypersonic Flow

The flow in the vicinity of the trailing edge of a flat plate represents a problem in fluid mechanics which has been of interest to investigators for many years. Since some near wake measurements were made during the present investigation of the flat plate hypersonic wake, it was considered desirable to report on available data even though, because of inherent measurement limitations, results were limited primarily to near wake geometries. Figure 27 presents these geometry data for each of the four Reynolds numbers investigated. Shear layer and wake thicknesses were determined from total temperature distributions (figure 45) whereas both the wake and leading edge shocks were located from pilot pressure traces (figure 44). Those boundary layer edge locations indicated on the figure were calculated from the weak interaction theory (36) and the finding of Kendall (32), from his flat plate study, that $\delta^{*} / \delta \doteq$.75. The existence of the wake shock illustrates that the flow recompresses as it turns back to the free stream direction from its trailing edge orientation. The two degree reverse taper to the trailing edge, and the thin but finite thickness of the plate are clearly not in keeping with the infinitesimally thin flat plate assumption of analytical studies. Also shown in figure 27 are centerline sonic point locations $(x / L \doteq .2)$ as determined by extrapolating the Mach number data of figure $16 a$.

Correlation of the wake thickness data with predicted boundary layer thicknesses are shown in figure 28. The favorable correlation indicated in figure 28 illustrates the dependence of the near wake thickness on the plate boundary layer thickness. The fact that the initial wake thickness is somewhat larger than what would be predicted from boundary layer theory can be accounted for by analyzing the mass flow balance between the boundary layer and near wake. This analysis indicates that

$$
\begin{gathered}
{\left[\rho u \delta\left(1-\frac{\delta^{*}}{\delta}\right)\right]_{\mathrm{BL}}=\left[\rho u \delta\left(1-\frac{\delta^{*}}{\delta}\right)\right]_{\mathrm{NW}}} \\
\delta^{*}=\int_{0}^{\delta}\left(1-\frac{\rho u}{\rho_{\mathrm{e}} \mathrm{u} e}\right) \mathrm{dy}
\end{gathered}
$$

where

Since

$$
\left(\frac{\delta^{*}}{\delta}\right)_{B L} \doteq\left(\frac{\delta^{*}}{\delta}\right)_{N W}
$$

and

$$
u_{\mathrm{BL}} \stackrel{\stackrel{u}{N W}}{ }
$$

the mass balance equation reduces to

$$
(\rho \delta)_{\mathrm{BL}} \stackrel{(\rho \delta)_{\mathrm{NW}}}{ }
$$

However, assuming isentropic flow, it follows that

$$
\delta_{N W} \doteq\left(\frac{p_{B L}}{p_{N W}}\right)^{1 / \gamma} \delta_{B L}
$$

Thus, because the near wake pressures are lower than the plate pressures (figure 15a), some increase in wake thickness over that
predicted by boundary layer theory is expected.
Another wake feature that can be determined with reasonable accuracy from the present results is the wake neck thickness. From the wake growth results of figure 22 a it is estimated that the neck occurs at or near $x / L=.5$. The resulting thicknesses are presented in figure 29 as a function of free stream Reynolds numbers and a square root variation with Reynolds number is evident. The variation of the neck thickness with Reynolds number in this manner can be de-. duced from a mass balance analysis, similar to that described above for the initial near wake thickness, and on the dependence, according to boundary layer theory, of the thickness of the trailing edge boundary layer on the square root of Reynolds number.
B) Near Wake Behind 20° Wedge

The near wake behind slender bodies has been the subject of many experimental investigations for the past several years. Both shock tunnel facilities and continuous flow wind tunnels have been used for these investigations. Mach numbers ranging from low supersonic to hypersonic values and flow regimes from all laminar through transitional to fully turbulent flow have been examined. The primary aim has been to define a physically realistic model for the flow which will be amenable to analytical study. Since many of the se investigations were somewhat limited in the amount and type of measurements that could be obtained, it was felt early in the current experimental program that a reasonably detailed study of the near wake with hot wire and Pitot probes would prove meaningful even though some accuracy difficulties would be experienced. Such data, although able to provide only limited information on the base recirculation region, because of previously mentioned hot wire uncertainties in subsonic flows, would furnish an interesting supplement to the near wake data already available.
i) Neck Thickness

By examining the wake growth results of figure 22 the minimum wake thickness values have been determined for all three of the 20° wedges used in the present investigation. These neck thickness results are presented in figure 29 as a function of Reynolds number and a square root variation is apparent. The mass balance analysis discussed above for the flat plate results (Section IV. 2A), and which provided an explanation for the dependence of the flat plate neck
thickness on the square root of Reynolds number, is similarly applicable for these wedge data. Consistency of the adiabatic wall results is evident in that the data for both the $H=.15^{\prime \prime}$ and $H=.3^{\prime \prime}$ wedges coincide in a favorable manner. Also shown on the figure are trailing edge boundary layer thicknesses as measured from total temperature profiles for the three tenths base height wedge under adiabatic and cold wall conditions. From boundary layer theory these data should vary with the square root of Reynolds number and the results of figure 29 satisfactorily indicate this trend.

In conducting an investigation of this type it is of interest to determine the significant scaling parameters which play a dominant role in establishing the flow field. Although the neck thickness data in figure 29 illustrate that a correlation with Reynolds number exists, it is also indicated therein that, when presenting the data in this manner, the results for the adiabatic and cold wall wedges correspond to two separate curves. However, if the data are replotted in terms of the thickness of the trailing edge boundary layer, both the adiabatic and cold wall data collapse to one curve (figure 30). This result additionally verifies Chapman's (37) finding that the noted thickness represents an important length scale for near wake flows. Figure 30 also indicates that for flow approaching zero boundary layer thickness the neck thickness behaves properly for this inviscid limit and becomes negligibly small.
ii) Wedge Surface Pressure

The upstream influence of the low base pressure and the corner expansion on wedge surface pressures is illustrated in figure
31. These adiabatic wall data were obtained with the solid wedge model (. 3w-1A) discussed in Section II and indicate that the flow first "senses" low base pressures roughly two to three boundary layer thicknesses upstream of the base. Also shown on the figure for comparison purposes are calculated trailing edge pressures as determined using Kendall's results from his investigation of hypersonic flow over a flat plate (32).

Unfortunately, the small size of the model used in the present investigation prevented making pressure distribution measurements along the model base. Hama's results for such base pressure data on 12° wedges (28), clearly demonstrate that an undershoot in pressure first occurs on the base after which the flow undergoes a rise in pressure to the base pressure value. Such a trend is indicative of flow which remains attached to a surface so long as a favorable (decreasing) pressure gradient exists but then tends to separate once it senses an unfavorable (increasing) pressure gradient. Thus separation of the flow from the body does not necessarily occur just at the corner but in fact occurs some distance below the corner and only when a sufficient overexpansion takes place such that the surface pressure falls below the final base pressure level. This off-corner separation result is further substantiated from the flow field mapping results to be discussed in detail shortly. These data illustrate that zero velocity and sonic line extrapolations upstream to the base, intercept the base line below the corner in the manner depicted by Hama. This finding supports the conclusion of Hama that the lip shock in the near wake is caused by a separating boundary layer and thus
is similar to the separation shock generated in the near wake of a cylinder.
iii) Wedge Base Pressure

The results of base pressure measurements for the three wedge models are presented in figure 32. These data show the variation of base to free stream pressure ratio with trailing edge Reynolds number as determined from inviscid flow theory. Also shown in figure 32 for comparison purposes, are the adiabatic wall data of Dewey for both 30° and 45° wedges (8). General agreement in both trend and magnitude is seen to exist for all adiabatic wall results. The significant decrease in base pressure with increasing Reynolds number is again emphasized by the present results. Consistency of the present adiabatic wall data is illustrated by the correlation of results from both the small (.15w) and large (. $3 w-2 \mathrm{~A}$) 20° wedges. Figure 32 also indicates that a drop in base pressure is associated with model cooling.

Since Chapman (37) as well as others have pointed out the dependence of base pressure on the thickness of the trailing edge boundary layer, and further, because a successful correlation of both adiabatic and cold wall neck thickness data has also been achieved herein with this scaling parameter, a correlation of the base pressure data has also been made with the trailing edge thickness and the results are shown in figure 33. For the adiabatic wall data the weak interaction theory modified per Kendall's results has been used to determine $(\delta / H)_{T E_{T h e o r y}}$. On the other hand, the cold wall trailing
edge thickness is based on Chapman-Rubesin boundary layer theory for arbitrary wall temperature (38). Base pressure estimates using Chapman's dividing streamline model (11) have been made and results for $\theta=45^{\circ}$ and $\theta=20^{\circ}$ are shown on figure 33. According to the idealized version of this model, the flow along the dividing streamline separating the base's recirculating flow from the outer flow, attains a maximum velocity of $u_{*} / u_{e}=\bar{u}_{*}=.587$ and then recompresses isentropically and instantaneously to the downstream pressure level. Thus

$$
\frac{p_{b}}{p_{\infty}}=\left(\frac{p_{s p}}{p^{1}} \frac{1}{\eta}\right)\left(\frac{1+\frac{\gamma-1}{2} M^{\prime 2}}{1+\frac{\gamma-1}{2} \frac{M^{\prime 2}}{1-\bar{u}_{*}^{2}}}\right)^{\gamma / \gamma-1}
$$

Here, ()'refers to downstream conditions determined by expanding inviscid wedge flow isentropically back to the free stream direction. Such a computation method has been found to give essentially the same results, as one where inviscid wedge flow is first overexpanded, then recompressed through a weak oblique shock back to the free stream direction. The factor, $\frac{p_{s p}}{p^{\prime}} \frac{1}{\eta}$, represents a "recompression efficiency factor ${ }^{\prime \prime}$ and accounts for the uncertainties in the analysis. Although the estimates on figure 33 are invariant with Reynolds num bers, the overall levels seem to compare favorably with the measured data for an "efficiency factor" of one. This favorable magnitude result occurs even though the isentropic recompression assumption of the Chapman analysis is seen not to be realistic for the present results (figure 15).

Although the method of correlation used in figure 33 still retains the wedge angle as an important variable in the base pressure determination, it is clear that the data for each wedge scales favorably with the trailing edge thickness. Admittedly, for the adiabatic wall data, this is an expected result since it has already been shown that the base pressure varies with trailing edge Reynolds number (figure 32). However, as was found in correlating the neck thickness data discussed above, the important finding indicated by the figure 33 results is the collapsing of both the adiabatic wall and cold wall base pressure data for the present investigation to a single curve. This result further substantiates the significance of the trailing edge thickness as a suitable length scale for the base flow problem.

In an effort to determine additional characteristic parameters for the base pressure data several other combinations of variables have been attempted. One finding is that all adiabatic wall data from both Dewey's and the present studies collapse to one curve with only $\pm 7 \%$ scatter by presenting p_{b} / p_{∞} as a function of free stream Reynolds number based on the base height (figure 34). This result, indicating only minor dependence on wedge angle, was similarly found by Cheng et al. (39) in their experimental investigation of wakes behind wedges in low density flow.
iv) Rear Stagnation Point

The rear stagnation point location is the position on the wake axis where the flow stagnates and separates the reverse flow in the base region from the downstream wake. Most initial conditions for near wake calculations make use of profile data corresponding to the
location of the rear stagnation point. In addition, relatively high temperatures exist at this point, as discussed in Section IV.1, and thus electron densities can be correspondingly large in actual atmospheric entry. For the present set of measurements with the three-tenths base height wedge and for both adiabatic and cold wall conditions, the position of the rear stagnation point has been located at $x / H=.75$. These results are evident from the data of figure 35 wherein centerline static and Pitot pressure data were plotted as a function of axial distance. Although the location of the point where the curves coalesce (rear stagnation point) may be somewhat uncertain because of the small cross angles involved, the resulting locations of the rear stagnation points are believed to be accurate to within $\pm .1 H$ at least for all the adiabatic wall data and for those results corresponding to the two lowest Reynolds numbers of the cold wall model. An uncertainty estimate somewhat larger may seem more realistic for the two highest Reynolds number cold wall data because of the greater difficulty in accurately determining the crossover point. The $x / H)_{s p}=.75$ result was also confirmed, for the adiabatic wall condition, by use of the differential pressure probe discussed in Section II. Both of these methods for determining the rear stagnation point position have been used by Martellucci, et al. (26) in their experiments on the turbulent near wake of a cone at $M=6$ and similar agreement between the two techniques was obtained. The values of $\mathrm{x} / \mathrm{H})_{\mathrm{sp}}=.75$ for the present results are in good agreement with the summary curve of reference 26 showing the variation of rear stagnation point location with trailing edge Reynolds
number. The data used by Martellucci et al. for this summary comprise measurements from not only wedges but also cones and cylinders as well under cold and adiabatic wall temperatures and even both laminar and turbulent flow conditions. A satisfactory correlation of most data and a general trend indicating a slight aft movement of the rear stagnation point with trailing edge Reynolds numbers (trailing edge boundary layer thickness) are evident. The movement aft of $x / H)_{s p}$ for the high Reynolds number cold wall data in the present investigation may appear to have occurred (figure 35b) but the noted data uncertainty prevents concluding such a trend. If such were the case however, it would be in agreement with the summary data of reference 26 for decreasing trailing edge boundary layer thickness. v) Wall Temperature Ratio

Of interest in an experimental investigation of this nature is the comparison between already existing data and current results. One such comparison, in the case of the cold wall model, is the relationship of the temperature at the wake's rear stagnation point to the model's wall temperature. Figure 36 presents a summary of results from other investigations along with the present data showing this relationship in terms of normalized temperature ratios. The free stream stagnation temperature has been used as a normalizing parameter for the data. It is evident from figure 36 that the present cold wall results compare favorably with previous data.
vi) Typical Shear Layer Profiles

Before analyzing flow field mappings of the near wake behind the three-tenths base height wedge, it seems appropriate to discuss
briefly several typical profiles for the near wake shear layers. These profiles, all for the low Reynolds number adiabatic wall case, are plotted in figure 37 in overlap fashion with the base geometry, so as to illustrate the manner in which characteristic lines and/or regions are distinguishable. For example, figure 37a, showing transverse Pitot pressure traces, indicates that the leading edge and wake shock positions were determined from the Pitot pressure gradients occurring at these respective locations. The relatively slight change in Pitot pressure gradient indicated near the axis for the $x / H=.5$ trace is more suggestive of compression Mach waves, and thus has been associated with the lip shock arising from the flow separation at the base. From these data, and also the profile resuits of figure 44 , showing all the Pitot pressure data taken during the current investigation, it can be seen that both the wake and lip shocks have substantial width $\left.\left(\Delta \frac{\mathrm{y}}{\mathrm{H}}\right)_{\mathrm{S}} \doteq .10 \mathrm{H}\right)$. This was similarly observed by Dewey (8) in his studies of the near wake behind a cylinder. A computation was made of the orientation of the leading edge shock wave based on the assumption of weak shock-boundary-layer interaction and the existence of simple wave flow between the boundary layer edge and the shock wave. The calculated result was within. 5° of the measured shock wave angle at the model's trailing edge. The $u=0$ line indicated in figure 37 a corresponds to those transverse locations where the static pressure, as measured on the wake's centerline, and Pitot pressure are equal. This line terminates at the rear stagnation point location which has been determined in a similar manner.

One near wake characteristic, which has not been determined to any great extent by existing near wake investigations, is the location of the shear layer edge. Figure 37 b presents total temperature profiles for the near wake shear layer, and the temperature overshoot, typical of adiabatic wall boundary layer profiles, is evident. The locations where the overshoot decreases to zero, namely where the total temperature achieves equilibrium with the free stream total temperature, represents the shear layer edge. This edge, in essence, corresponds to the boundary between that portion of the flow unaffected by the temperature of the wall and that part of the flow which has been affected by the wall through the action of viscosity and heat conductivity. It will be recalled that in the far wake either Pitot pressure or total temperature results could be used to determine the wake edge. In the near wake region, downstream of the base, such use of the Pitot pressure data is not possible because of the Pitot pressure gradients associated with the expansion fan outside the shear layer. At the trailing edge, where the effect of the expansion fan on Pitot pressure is quite small, values of the boundary layer thickness based on the Pitot pressure profile compare favorably with edge data derived from total temperature traces. The one open symbol indicated in figure 37 b on the model surface at $x / H=-.5$ corresponds to a calculated boundary layer thickness based on the Chapman-Rubesin compressible boundary layer theory (38) for arbitrary wall temperatures. The thickness so noted agrees favorably with similar thickness estimates based on the weak interaction theory. An interesting result of figure 37 b is the location and
variation of the shear layer's edge with axial distance. Not only is the wake neck, defined as the wake's minimum thickness location, not located near the wake's rear stagnation point, but it even occurs downstream of the centerline sonic point as will be shown shortly. The tendency of the shear layer to avoid turning sharply downstream of the model base indicates that extremely low densities exist within the immediate vicinity of the base. This result is of significance to the development of the viscous sublayer postulated in many of the analytical techniques currently under investigation. Complete total temperature profile data for the current investigation are presented in figure 45 and the above comments, regarding the shear layer edge, are seen to hold true for all cases.

The Mach number distributions of figure 37c illustrate that rather high Mach numbers $(M \geq 6)$ are experienced by the separated shear layers in the present near wake investigation. This constitutes a major distinction between near wakes behind slender bodies with flat bases, and near wakes behind blunt nosed bodies with rounded bases such as spheres and cylinders where shear layer Mach numbers are usually less than three (8). From figure 37c the location of the sonic line and the manner in which it fairs smoothly into the centerline sonic point is clearly apparent. Such a line is also arrived at directly by locating the position where the ratio of static pressure, assumed equal to the pressure on the centerline, to Pitot pressure corresponds to the value at Mach number unity, namely, $\left.p / p_{t_{2}}\right)_{M=1}=.5283$. This represents a satisfactory method for determining the sonic line since the static
pressure, as will be shown shortly, is nearly constant across the base region up to the wake (or lip) shock. Between the wake shock and shear layer edge, the accuracy with which certain flow data, such as Mach number, static pressure, and static tempe rature, have been determined is rather poor as discussed in Section III. The present method for determining these data using hot wire measurements was shown to have inherent uncertainties that limit data accuracy at high Mach numbers. This point should be kept in mind when evaluating certain trends and even data scatter. On the other hand, those data within the wake shock boundaries correspond to low Mach numbers $(M<3)$ and thus should be reasonably accurate。

Several interesting results from the present investigation have been obtained from static pressure profiles such as those shown in figures 37 d and 42. All the data in figure 37 d , represented by open symbols and below the shear layer edge, are the values of static pressure arrived at by combining Pitot pressures with total temperatures and mass flux data from hot-wire measurement. Within the accuracy limits specified in Table II, the results indicate that, not only is the static pressure constant from the centerline out to the wake shock and equal to the value measured at the centerline with a static pressure probe, but also that the static pressure, at least for $\mathrm{x} / \mathrm{H}=1,5$, from the wake shock out to the shear layer edge is, in addition to being constant, equal to the base pressure. The data near the corner show that the effects of the corner expansion become progressively more dominant within the shear layer, until at the trailing edge, the entire shear layer
from the edge down to the zero velocity line is experiencing large lateral pressure gradients. Thus, clearly the shear layer cannot be considered as a region of constant transverse pressure until several boundary layer thicknesses downstream of the base. Such a pressure gradient exists also in the case of attached flow negotiating an expansion corner. Because these data show that the static pressure is roughly constant from the wake axis out to the base region shocks, a simplified data reduction procedure was carried out, in which all the wake profiles and the flow field mappings within the base region shock boundaries have been derived by calculations based on a zero pressure gradient assumption in a manner similar to all far wake results. Figure 37 d also shows the locations of the leading and trailing rays of the corner expansion fan defined by the method of tangents indicated on the figure. Admittedly the determination of these limiting rays for the corner expansion is somewhat arbitrary. In fact it may even seem more appropriate to select the round off points experienced by the se curves as more representative of the location for the leading and trailing rays. If such a technique were used, the leading and trailing rays would be displaced outward and inward respectively from the location indicated in figure 37d. However, the difficulty in consistently locating the round off points resulted in appreciable uncertainty in the final orientation of the limiting rays. Thus the present technique, based on the tangent to the maximum static pressure slope, has been adopted for determining the leading and trailing ray positions. The leading ray orientation, incidentally, as
determined in this manner agrees very well with the Mach wave angle for the inviscid wedge flow of the present investigation. Normally, since the total pressure is constant within the outer inviscid region, the leading ray can be determined from the Pitot pressure data directly. However the trailing ray, since it becomes immersed in the shear layer, cannot be located by Pitot pressure data alone, and thus the present results, using hot wire measurements, provide another characteristic line which has not been determined in most near wake measurements to date. Because the Mach number decreases in the shear layer as the trailing ray approaches the base, a slight curvature of this line is observed. The Mach wave angles for the local flow along a trailing ray have been compared with the orientation of the trailing ray itself and a satisfactory agreement was obtained. The forward extension of the leading ray of the expansion fan shows the approximate region of upstream influence to which the body boundary layer is subjected. Recognizing the fact that some outward adjustment of this estimate of the leading ray position is warranted because of the above-mentioned uncertainty in locating this line, the extent of upstream influence agrees in general with the results of the surface pressure measurements discussed earlier.

The final set of shear layer profiles, which merit some attention, are the velocity and static enthalpy results of figures $37 e$ and $37 f$ respectively. Results such as these are often used as initial profiles for analytical studies of the near wake. The data of figure 37 e and also the complete profile results of figure 43 illustrate that
the velocity profiles experience a noticeable gradient change in the vicinity of the wake shock. The small velocity variation that occurs in the shear layer outside the wake shock, at least for the downstream stations, is not entirely unexpected since the velocity is relatively insensitive to the variations in the high Mach numbers which exist in this region of the shear layer. The enthalpy data of figure 37 f point out that peak enthalpies for the near wake of an adiabatic wall model occur on the wake axis. Shortly, similar data will be presented for the near wake behind the cold wall wedge and a pronounced difference in enthalpy distribution will be in evidence. vii) Near Wake Flow Field Mappings

Perhaps the most important set of results, from the present near wake investigation, are the flow field mappings for both the adiabatic and cold wall models shown in figures 38 and 39. The data presented in these figures not only indicate the location of the characteristic lines discussed in the previous section, but also illustrate the relative orientation of base region streamlines, constant total pressure lines and, as in the case of the cold wall wedge, lines of constant total temperature. Position accuracy for the se lines is estimated to vary from $\pm .01 \mathrm{H}$ at the base station to about $\pm .02 \mathrm{H}$ at stations further downstream. The streamlines were obtained by integrating profile data from the leading edge shock down to the wake shocks, at which location they were then matched with calculated streamline values arrived at by integrating from the wake centerline using the assumption of zero pressure gradient. In an effort to verify the streamline orientation for the adiabatic case, additional
calculations of flow direction were made by combining Pitot pressure data, both upstream and downstream of the wake shock, with centerline pressure data. The resulting flow orientation angles are indicated by the short lines drawn to the shock location symbols. The comparison between the streamlines and these flow direction lines is seen to be very favorable. The tendency of the flow to be disinclined to negotiate the sharp turn at the base is clearly obvious in all the figures. Further, the small mass flow present within the lower portions of the shear layer is now well pointed out. The resulting low Reynolds numbers then suggest that any viscous layer which is developing within the shear layer will experience an appre- . ciable growth rate. This follows by noting that, as a first approximation, the viscous layer will grow according to the flat plate boundary layer theory:

$$
\begin{aligned}
& \frac{\delta_{e}}{H} \approx 5 \sqrt{x / H} / \sqrt{R e_{e_{H}}} \\
& \frac{d(\delta e / H)}{d(x / H)} \sim \frac{2.5}{\sqrt{x / H} \sqrt{R^{R e} e_{H}}}
\end{aligned}
$$

At station $\mathrm{x} / \mathrm{H}=0.1$, which is just downstream of the base separation point, the Reynolds number is of the order of 200 for the data corresponding to figure 38a. A thickness of about $\delta_{e} / H=0.1$ and a growth rate $\left(d\left(\delta_{e} / H\right) / d(x / H)\right)$ corresponding to approximately 30° are thus calculated for this station. By making a rough estimate of the location and orientation of the inner edge of the viscous layer from the position of the sonic and $u=0$ lines in figure $38 a$, it is
seen that such a viscous layer edge is in only fair agreement with the so-labeled line indicated in the figure. This line has been determined as the locus of points where the total pressure lines begin to diverge from the streamlines. However, considering the uncertainties associated with both measured and calculated results, such a discrepancy, which represents a rough estimate of the orientation and location accuracy for the viscous layer's measured edge, does not seem unreasonable. The fact that the total pressure remains almost invariant along streamlines within the shear layer and for some distance downstream of the corner, as indicated in the figure, illustrates that such a flow corresponds to an isentropic turn, so often postulated in analytical studies. Although the various data uncertainties discussed in Section III are inherent in the flow field mapping results, the consistent trends exhibited by both cold and adiabatic wall data for all Reynolds numbers investigated offer substantial verification for the noted findings. The complexity of the base region problem is now quite obvious. At one time it had been speculated that the viscous layer was contained within the wake shock boundaries and that inviscid rotational characteristic methods could then be utilized for the flow between the wake shock and shear layer edge. It is seen that this analytic model is open to question since the wake shock now appears to be imbedded within the viscous layer itself. Admittedly the viscous layer edge tends to move toward the wake shock with increasing Reynolds number and cooling, but even at the highest Reynolds number cold wall results, figure $39 \mathrm{~d}-1$, it still is observed to be distinctly above the wake shock itself. The
cold wall total temperature lines exhibited in figure 39-2 indicate only minor variations of total temperature along streamlines outside the base region shock boundaries. Apparently the effects of thermal diffusion and viscous dissipation compensate each other in such a manner that total temperature variations along streamlines within this viscous region are negligible.

Various other results can be deduced from the data of figures 38 and 39. For example the projection upstream of the lip shock, sonic line and zero velocity line all indicate that flow separation is apparently occurring, not at the base corner, but actually some distance below the corner, as experiments of Hama have indicated. In addition, these figures show that the shear layer edge and location of wake shocks move toward the centerline with increasing Reynolds number and model cooling. Also, with cooling, the lip shock exhibits a tendency to "originate" farther upstream than for the low Reynolds number adiabatic wall cases. This result is evident from the Pitot pressure profile data of figure 44. With regard to the lip shock strength, it has been found that at $x / H=1.0$, the farthest downstream position where the lip shock may be estimated to exist and where it appears to be the strongest, a variation of p_{2} / p_{1} from 1.75 to 2 exists for all the near wake results of figures 38 and 39. These values of shock strength agree very well with Hama's correlation of wedge data (28) and further substantiate his claim that the lip shocks found in near wakes behind slender bodies are not necessarily negligible but, indeed, may be quite strong. The noted shock strengths, it should be pointed out, were
obtained by ratioing centerline static pressures at $x / H=1.0$ to base pressure data, since the static pressure profiles already discussed, indicated that pressures "upstream' of the lip and wake shocks were essentially equal in magnitude to base pressures, and that the pressures downstream were constant and equal to centerline values of static pressure.

Since detailed flow field mappings, such as presented in figures 38 and 39, provide a "picture" of the base region flow, a comparison can be made between such a "picture" and a Schlieren photograph of a given flow. This type of comparison is shown in figure 38d-2, where the base region mapping results for the high Reynolds number, adiabatic wall case (figure 38d-1), have been superimposed on a Schlieren photograph of the near wake behind a 20° wedge under virtually the same free stream conditions. The locations of the nose and wake shocks and the leading ray of the expansion fan as determined by the detailed flow field mapping and those as shown by the Schlieren photograph are seen to be in very favorable agreement. A similar comparison regarding the wedge boundary layer was not possible because light reflection effects due to model misalignment, obscured the boundary layer along the wedge surface in the Schlieren photograph (figure 1). The large density gradients which exist in the expansion fan and which extend into the shear layer itself, as results herein have indicated, are clearly shown by the "white shading" of the Schlieren portion of figure 38d-2. The inability of Schlieren photography to locate shear layer edges in these high speed wake flows, is thus well illustrated by this figure. At lower supersonic
speeds and even for hypersonic flows behind blunt bodies where density gradients in the vicinity of and outside the shear layer edge become negligibly small, the edge of the shear layer is easily dis cernible. For these latter flows the corner expansion fan does not extend into the separated shear layer in the manner shown by the present flow field mappings. For slender bodies with flat bases, this result represents another major distinction between supersonic and hypersonic near wake flows.
viii) Static Enthalpy Profiles for Near Wake of Cold Wall Wedge Of current interest to wake investigators is the temperature distribution within separated shear layers of near wakes behind high speed vehicles. It is well known that in boundary layers on a cold wall a local temperature peak, or "hot spot," exists within the boundary layer. The possible existence of similar off-axis hot spots has also been postulated in the case of near wakes behind cold wall bodies. The behavior of the static enthalpy as shown in figure 37 f is quite typical of adiabatic wall boundary layer flow with the peak in enthalpy occurring on the wake centerline. Similar data for the highest Reynolds number investigated for the cold wall wedge are presented in figure 40. Not only is the off-axis peak evident in this latter figure but its initial magnitude $\left(\frac{h}{h_{\infty}}=2.8\right)$, compares quite favorably with the maximum value as calculated by the theory of reference 38 for a laminar boundary layer with heat transfer. In addition, it appears that the location of this peak at each axial station corresponds approximately to the same streamline indicating that such 'hot spots' follow along streamlines. These data also point
out the rapid rise of centerline temperature with axial distance such that the enthalpy distribution downstream of the base exhibits both two "hot spots" of approximately equal peak temperature as well as two "cold spots." Additional static enthalpy data for the other Reynolds numbers are presented in figure 41, and similar trends are indicated. These results not only confirm the existence of off axis "hot spots", but also illustrate that the peak temperatures existing within the shear layer downstream of the base are comparable to the temperatures of the flow on the wake centerline. The data of figure 41 further illustrate that the noted hot spots coalesce with centerline temperature peaks within two base heights downstream from the model base.

V. SUMMARY OF RESULTS

An experimental investigation has been conducted to determine mean flow properties for both near and far wakes behind several twodimensional slender bodies at $\mathrm{M}_{\infty}=6$. Three adiabatic wall models, consisting of a flat plate model $\left(\mathrm{c}=1^{\prime \prime}, \tau=.0156^{\prime \prime}\right)$ and two 20° included angle wedge models ($\mathrm{H}=.15^{\prime \prime}, \mathrm{H}=.3^{\prime \prime}$) were tested. The effect of wall temperature on wake properties was examined by cooling the larger of these two wedge models with the internal flow of liquid nitrogen. Free stream Reynolds number per inch were varied from. 5×10^{5} to 2×10^{5} for each of the se four configurations. V. 1 Far Wake

The main results which have been obtained from the far wake investigation are as follows:

1. Wake transition distances based on wake thickness data agreed favorably with results from hot wire fluctuation measurements. Mean flow properties along the wake centerline, however, first deviated from laminar steady conditions somewhat upstream of "wake thickness" transition locations.
2. Transition in the far wake moved upstream with increasing Reynolds number and decreasing wall temperature.
3. Satisfactory agreement between experimental data for all low Reynolds number, adiabatic wall cases and linear wake theory confirmed that the flow in the far wake for these cases was laminar to the farthest downstream stations at which measurements were obtained.
4. Base region flows for the three adiabatic wall
configurations were laminar for all test Reynolds numbers. For the cold wall wedge, the flow in the base region was laminar at least for the two lowest test Reynolds numbers.
5. Maximum centerline pressures in the far wake for all four configurations were generally 10% higher than the free stream pressure. These "overshoot' pressures depended primarily on the inviscid flow field and, because they occurred at locations relatively far downstream, illustrated that the wake recompression process was spread out over a considerable axial distance.
6. For the cold wall wedge ($\mathrm{T}_{\mathrm{W}} / \mathrm{T}_{\mathrm{o}}=.19$) the maximum enthalpy along the wake centerline for all test Reynolds numbers occurred about two base heights downstream of the model base and was approximately triple the magnitude of the free stream enthalpy. When the far wake was laminar, the decay rate of enthalpy was extremely small.
V. 2 Near Wake

The main results which were obtained from the present investigation of near wakes behind a 20° wedge model ($\mathrm{H}=.3^{\prime \prime}$) under adiabatic and cold wall $\left(\mathrm{T}_{\mathrm{W}} / \mathrm{T}_{\mathrm{o}}=.19\right)$ conditions are as follows:

1. Collapsing of adiabatic and cold wall data was accomplished by correlating both base pressure and wake neck thickness measurements with trailing edge boundary layer thickness. This successful correlation, which illustrated that base pressures increased with increasing trailing edge thickness, further substantiated that the thickness of the trailing edge boundary layer represents a significant length scale for the near wake problem.
2. The flow along the wake centerline became supersonic for all cases within an axial distance of two base heights.
3. Base region rear stagnation points were located at approximately three quarters of a base height downstream of the model base for all cases.
4. The temperature ratio at the rear stagnation point for the cold wall wedge for all test Reynolds numbers was approximately $\mathrm{T}_{\mathrm{sp}} / \mathrm{T}_{\mathrm{o}}=.34$.
5. For the cold wall wedge, peaks in static temperatures occurred in the shear layers outside the wake shock structure. Initial magnitudes of these peak temperatures agreed favorably with estimates from laminar boundary layer theory. These "hot spots' followed along streamlines and coalesced with centerline temperature peaks within two base heights downstream from the model base.
6. Wake shocks, shear layer edges, base region sonic lines, and even "viscous layer edges" moved closer to the wake centerline with increasing Reynolds number and decreasing wall temperature.
7. The boundary layer on the wedge surface was influenced by the low base pressure two to three boundary layer thicknesses upstream of the base. Separation of this boundary layer appeared to occur on the model base slightly below the corner. A "separation ${ }^{\text {" }}$ shock, similar to that appearing in the near wakes of bodies with rounded bases, was generated during the separation process.
8. In this Mach number six study, the base separation shock, which "rotates" toward the wake axis with increasing Mach numbers, coalesced with the wake recompression shock to form a
single shock structure.
9. Most of the outer flow of the separated boundary layer turned very slowly in the vicinity of the base with the result that the amount of mass flow contained within the base region proper corresponded to a small fraction of the total boundary layer flow. The structures of the base regions behind the present slender bodies were thus established by flows of very low densities.
10. The supersonic turning of the separated boundary layer, though gradual, caused appreciable lateral pressure gradients in the near wake shear layers. These gradients became negligible once the flow had progressed several boundary layer thicknesses downstream of the base. The downstream boundary of this pressure gradient zone was represented, approximately, by a Mach wave originating from the vicinity of the corner. Downstream of this boundary and above the wake shock, static pressures were constant and equivalent to the base pressures. For Mach numbers appreciably higher than the present case, this region of constant pressure should decrease in extent because the noted Mach wave boundary rotates toward the wake axis with increasing Mach number.
11. Inside the wake shocks, lateral gradients in pressure were negligible.
12. Initially, during the corner turning process, the variation of total pressure along streamlines was negligible. This "isentropic turn" extended downstream to where constant total
pressure lines began diverging from streamlines. The locus of the se points of divergence separated the inviscid rotational flow from the viscous flow of the shear layer. These 'viscous layer edges' ${ }^{\prime}$ were positioned in the outer portions of the shear layers indicating that wake shocks were imbedded within viscous regions of the shear layers.

REFERENCES

1. Feldman, S.: "Trails of Axi-Symmetric Hypersonic Blunt Bodies Flying Through the Atmosphere," AVCO-Everett, Research Report 82, Dec. 1959; also J. Aero. Sci. 28, 433-448 (1961).
2. Lykoudis, P. S.: "Theory of Ionized Trails for Bodies at Hypersonic Speeds," Rand RM-2682-1-PR, May 1961, revised Oct. 1961.
3. Lees, L. and Hromas, L..: "Turbulent Diffusion in the Wake of a Blunt-Nosed Body at Hypersonic Speeds," J. Aero. Sci., 29, 976-993 (1962).
4. Kubota, T.: "Laminar Wake with Streamwise Pressure Gradient II, " GALCIT Internal Memorandum No. 9 (April 1962).
5. Gold, H.: "Laminar Wake with Arbitrary Initial Profiles," AIAA J. 2:5, 948-949 (1964).
6. Lees, L. and Gold, H.: "Stability of Laminar Boundary Layers and Wakes at Hypersonic Speeds. Part I. Stability of Laminar Wakes," Fundamental Phenomena in Hypersonic Flow, ed. by J. Gordon Hall, Cornell Univ. Press, 310-342 (1966).
7. Behrens, W.: "Flow Field and Stability of the Far Wake behind Cylinders at Hypersonic Speeds," Ph.D. Thesis, Calif. Inst. of Tech., Pasadena, Calif. (1966).
8. Dewey, C. F., Jr.: "Near Wake of a Blunt Body at Hypersonic Speeds," AIAA J. 3:6, 1001-1010 (19651.

Also Dewey, C. F., Jra: "Measurements in Highly Dissipative Regions of Hypersonic Flows. Part II. The Near Wake of a Blunt Body at Hypersonic Speeds," Ph.D. Thesis, Calif.

Inst. of Tech., Pasadena, Calif. (1963).
9. Weinbaum, S.: "Rapid Expansion of a Supersonic Boundary Layer and Its Application to the Near Wake," AIAA J. 4:2, 217-226 (1966).
10. Weiss, R. F. and Weinbaum, S.: "Hypersonic Boundary Layer Separation and Base Flow Problem," AIAA J. 4:8, 1321 1330 (1966).
11. Chapman, D. R., Kuehn, D. M. and Larson, H. K.: "Investigation of Separated Flows in Supersonic and Subsonic Streams with Emphasis on the Effect of Transition," NACA Report 1356 (1958).
12. Crocco, L. and Lees, L.: "A Mixing Theory for the Interaction Between Dissipative Flows and Nearly Isentropic Streams," JAS 19:10, 649-676 (1952).
13. Baloga, P. E. and Nagamatsu, H. T.: "Instrumentation of GALCIT Hypersonic Wind Tunnels," GALCIT Memorandum No. 29 (July 31, 1955).
14. Herzog, R. R.: "Nitrogen Injection into the Base Region of a Hypersonic Body," GALCIT Hypersonic Research Project, Memorandum No. 71 (August 1964).
15. Behrens, W.: "Viscous Interaction Effects on a Static Pressure Probe at $M=6,{ }^{11}$ AIAA J. 1:12, 2364-2366 (1963)。
16. McCarthy, J. F., Jr.: "Hypersonic Wakes," GALCIT Hypersonic Research Project, Memorandum No. 67 (July 1962).
17. Dewey, C.F., Jr.: "Hot Wire Measurements in Low Reynolds Number Hypersonic Flows, "ARS J., 1709-1718 (Dec. 1961).

Also Dewey, C. F., Jr., "A Correlation of Convective Heat Transfer and Recovery Temperature Data for Cylinders in Compressible Flow, "Int. J. Heat Transfer, 8, 245-252 (1965).

Also Dewey, C. F., Jr.: "Hot: Wire Measurements in Low Reynolds Number Hypersonic Flows," GALCIT Hypersonic Research Project, Memorandum No. 63 (September 1961).
18. Vrebalovich, T.: "Heat Loss from Hot Wires in Transonic Flow, "JPL Research Summary No. 36-14 (May 1, 1962).
19. Christiansen, W. H.: "Development and Calibration of a Cold Wire Probe for Use in Shock Tubes," GALCIT Memorandum No. 62 (1961).
20. Sherman, F.S.: "A Survey of Experimental Results and Methods for the Transition Regime of Rarefied Gas Dynamics," International Symposium on Rarefied Gas Dynamics, Vol. II, Academic Press, New York (1963).
21. Guthrie, A.: "Vacuum Technology," John Wiley and Sons, Inc., (1963).
22. Mathews, M. L.: "An Experimental Investigation of Viscous Effects on Static and Impact Pressure Probes in Hypersonic Flow," GALCIT Hypersonic Research Project, Memorandum No. 44 (June 1958).
23. Sherman, F.S.: "New Experiments on Impact-Pressure Inter pretation in Supersonic and Subsonic Rarefied Air Streams, ${ }^{18}$ NACA TN 2995 (1953).
24. Laufer, J. and McClellan, R.: "Measurements of Heat Transfer from Fine Wires in Supersonic Flows," JFM 1:3, 276289, (September 1956).
25. Ames Research Staff: "Equations, Tables and Charts for Compressible Flow," NACA Report 1135 (1953).
26. Martellucci, A., Trucco, H. and Agnone, A.: "Measurements of the Turbulent Near Wake of a Cone at Mach 6," AIAA J. 4:3, 385-391 (1966).
27. Badrinarayanan, M. A., "An Experimental Investigation of Base Flows at Supersonic Speeds," J. Roy. Aeronaut. Soc. 65, 475-482 (July 1961).
28. Hama, F. R.: "Experimental Investigations of Wedge Base Pressure and Lip Shock, "Jet Propulsion Laboratory, TR No. 32-1033 (Dec. 1966).
29. Sato, H. and Kuriki, K.: "The Mechanism of Transition in the Wake of a Thin Flat Plate Placed Parallel to a Uniform Flow, "JFM II:3, 321-352 (November 1961).
30. Demetriades, A.: "Hot Wire Measurements in the Hypersonic Wakes of Slender Bodies," AIAA J. 2:2, 245-250 (1964).
31. Lees, L.: "Hypersonic Wakes and Trails," AIAA J. 2:3, 417-428 (1964).
32. Kendall, J. M., Jr.: "An Experimental Investigation of Leading-Edge Shock-Wave Boundary Layer Interaction at $M_{\infty}=5.8,{ }^{11}$ JAS 24, 47-56 (1957).
33. Muntz, E. P. and Softley, E. J.: "A Study of Laminar Near Wakes," AIAA. J. 4:6, 961-968 (1966).
34. Cresci, R.J. and Zakkay, V.: "An Experimental Investigation of the Near Wake of a Slender Cone at $M=8$ and 12," Aerospace Research Laboratories 65-87 (May 1965).
35. Todisco, A. and Pallone, A.: "Near Wake Flow Field Meas urements," AIAA Paper 65-53 (Jan. 1965).
36. Hayes, W. D. and Probstein, R. F.: "Hypersonic Flow Theory," Academic Press, New York and London (1959).
37. Chapman, D. R.: "An Analysis of Base Pressure at Supersonic Velocities and Comparison with Experiment," NACA Report 1051 (May 1950).
38. Chapman, D. R. and Rubesin, M. W.: "Temperature and Velocity Profiles in the Compressible Laminar Boundary Layer with Arbitrary Distribution of Surface Temperature," JAS 16:9, 547-565 (1949).
39. Cheng, R., Schaaf, S. A. and Hurlbut, F. C.: "The Measurement of Base Pressure as Wedges in Supersonic Low Density Flow," Institute of Engineering Research, University of California (Berkeley) Report No. AS-64 17 (Nov. 1964).

APPENDIX A

HOT WIRE ANEMOMETRY TECHNIQUES

FOR MEAN FLOW MEASUREMENTS

A. 1 Raw Data Measurements

Hot wire raw data are obtained by exposing a short, small diameter wire to a given flow condition, and measuring the wire resistance corresponding to each of several heating currents. By extrapolating the variation of resistance with wire power ($I^{2} R$), i.e., wire heat loss, to zero power, the adiabatic wire resistance is obtained. A pretest calibration giving the correlation between wire resistance and temperature then enables the determination of the adiabatic wire temperature. Measured Nusselt number is also determined from the resistance-power curve since it is proportional to the slope of this curve at zero power (17). Appendix B. 1 describes the computer program by which both the zero-power resistance and slope were determined for the present results. A. 2 End Loss Analysis

In using hot wire probes it is often necessary to carry out end loss corrections to account for the conduction of heat from the wire to the probe supports so that results correspond to infinite wire data. These corrections were formulated by Dewey (17) from his analysis of the conduction of heat from a finite length wire to two end supports at a temperature, T_{s}. The wire was assumed to be in uniform flow with uniform temperature existing at each crosssection. Additionally it was assumed that the thermal conductivity
of the wire remained constant and that the electrical resistance varied linearly with temperature. His results are

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{aw}}=\psi_{\mathrm{r}} \mathrm{~T}_{\mathrm{awm}} \\
& N u_{\mathrm{t}}=\Psi_{\mathrm{N}} N u_{\mathrm{m}}
\end{aligned}
$$

where ψ_{r} and ψ_{N}, recovery ratio and Nusselt number end loss correction factors respectively, are given by:

$$
\begin{aligned}
& \psi_{r}=\frac{1-\frac{T_{s}}{T_{\mathrm{awm}}} \omega_{0}}{1-\omega_{0}} \\
& \psi_{N}=\left(1-\omega_{\rho}\right)\left[1+\frac{s t_{s}}{2} \frac{\left\{\left(2 \omega_{0}-1\right) \omega_{0}-\frac{1}{\cosh ^{2} v_{0}}\right\}}{\left(1-\omega_{0}\right)^{2}}\right]
\end{aligned}
$$

The Nusselt number end loss correction factor stated here is that derived by Behrens (7) as a corrected version to the one formulated by Dewey. Examination of these formulae indicates that an iterative scheme using infinite wire calibration results, to be discussed shortly, is necessary for solution since the Nusselt number itself is a required input to both correction factors.

In many experiments both static and Pitot pressure measurements are carried out jointly, and only one of the two measurements provided by the hot wire probe is necessary since three independently measured quantities are sufficient to define completely the flow at a given location. This redundancy in measured data makes it possible to compare the Nusselt number correction factor, as measured, with that derived through Dewey's end loss analysis.

From measured values of static pressure, Pitot pressure and adiabatic wire temperature and using the iterative calculation procedure described in Appendix B. 3 the complete flow field was determined for various transverse traces across the wake behind a slender body at $M_{\infty}=6$. Values of Nusselt numbers obtained with these data were then ratioed to measured Nusselt numbers to determine measured end loss correction factors. When these factors, for a given wire, were plotted as a function of the dimensionless quantity ω_{0} : plots such as shown in figure 13 resulted. Here ω_{ρ} is given by

$$
\omega_{0}=\frac{\tanh v_{0}}{\nu_{0}}
$$

where

$$
v_{o}=\sqrt{\left(\frac{\ell}{d}\right)^{2} \frac{k_{t}}{k_{w}} N u_{t}}
$$

The functional form shown in figure 13 was considered appropriate for comparing measured with predicted values of Nusselt number end loss correction factors because the formula for ψ_{N} indicated that ψ_{N} depended more strongly on ω_{o} than on the resistance parameter s, or the nondimensional support temperature t_{s}. In general, noticeable differences were observed to exist between measured and predicted results. The tendency of all the data for one wire to describe a single curve (within $\pm 5 \%$), suggested possible systematic errors were involved. Replotting the correction factor data as a function of ν_{0}; instead of ω_{0}, illustrated that these measured results appeared to be consistently offset from the Behrens' curve
by a nearly constant percentage of ν_{0}. This offset can perhaps best be explained by noting that inaccuracies in wire conductivity and wire aspect ratio exist because of measurement difficulties. For example the function v_{0}, being directly proportional to the aspect ratio, is thus subject to question and would be off by a constant percentage amount for a given percentage error in aspect ratio. In any event, the measured results demonstrate that a calibration curve, showing the variation of Nusselt number correction factor with the function ω_{0}, can be established for each wire in lieu of the Behrens' formula. Such curves were obtained for all the wires used in the present investigation. To check the suitability of using the se calibration curves in conjunction with measured Nusselt numbers to determine mean flow data, comparison calculations were made for representative profile results. Both stagnation temperature and Nusselt number were calculated using Pitot pressure, adiabatic wire temperature and either static pressure or measured Nusselt number with a corresponding wire calibration curve for the Nusselt number correction factor. The results indicated that stagnation temperatures compared to within 1% whereas Nusselt number results differed by at most 5%. Such a favorable comparison confirmed the acceptability of this calibration procedure for determining Nusselt number data in regions of the flow whe re static pressure measurements were unavailable. All shear layer data presented herein were obtained in this manner since the large pressure gradients for the se layers prevented making static pressure measurements.

It should be pointed out that this method of calibrating Nusselt number correction factors in a known flow is similar, in certain respects, to the flow calibration technique proposed by Demetriades* for flows where $M \geq 3$. This latter procedure is based on establishing, for each hot wire, a calibration curve showing the variation of measured Nusselt number with Reynolds number. Such a correlation is obtained by carrying out hot wire measurements in free stream flow under varying Reynolds number conditions. For small changes in support temperature and local stagnation temperature this approach was shown to be quite accurate in determining Reynolds number. For many of the present results for $M>3$ the Nusselt number correction factor shows only minor dependence on Mach number and support temperature. Furthermore when air and wire conductivity undergo only slight changes, the correlation results shown in figure 13, which indicate that

$$
\left.\begin{array}{rl}
\psi_{\mathrm{N}}=\frac{N u_{\mathrm{t}}}{N u_{m}} & =\psi_{\mathrm{N}}\left(\omega_{\mathrm{o}}=\frac{\tanh \nu_{0}}{v_{\mathrm{o}}}\right) \\
& =\psi_{\mathrm{N}}\left(\nu_{0}=\sqrt{\left(\frac{\ell}{\mathrm{d}}\right)^{2 k_{t}}} \frac{\mathrm{k}_{\mathrm{w}}}{} N\right.
\end{array}\right)
$$

also suggest the following simplified relationship

$$
N u_{m}=N u_{m}\left(N u_{t}\right)
$$

[^1]Thus, since it has been shown $(7,24)$ that for $M \geqslant 2$ the NusseltReynolds number correlation is independent of Mach number, it follows that, as in Demetriades' case for $M \geqslant 3$,

$$
N u_{m}=N u_{m}\left(R e_{t}\right)
$$

It should be emphasized, however, that for this calibration technique to be applicable, the above noted assumptions should be valid. For those flows where appreciable stagnation and support temperature gradients exist and especially for $M<2$, the present method (figure 13) would seem more appropriate.
A. 3 Infinite Wire Calibrations

In using the hot wire probe to conduct mean flow measurements the investigator relies on established calibration data for a perfectly conducting cylinder (wire) infinite in extent. Such data, consisting of recovery factor ($\mathrm{T}_{\mathrm{aw}}^{*}{ }_{*} / \mathrm{T}_{\mathrm{t}}$) and Nusselt number given as functions of Mach number and Reynolds number, in combination with end-loss corrections, permit the determination of local stagnation temperatures and mass flow rates from hot-wire measurements. Many experimental and theoretical studies have been made to determine such calibration data, and a comprehensive review is given by Dewey (17). Figure 12 shows the range of test conditions for the hot-wire probes used in the present investigation and it is evident that most of the measurements fell within the transitional regime. Furthermore, many measurements occurred at low supersonic speeds and thus the recovery factor and heat transfer correlation of Behrens (7) were not applicable, since his data were not only
independent of Mach number but also were valid only for $M \geq 2$.
i) Normalized Recovery Factor

Dewey, by combining the data of several investigators with his own measurements (17), found that a single curve ($\pm .1$ in $\bar{\eta}_{*}$) could satisfactorily describe the variation of a normalized recovery factor with Knudsen number from continuum flow to free molecule flow for all Mach numbers greater than approximately . 7. This normalized recovery factor has been used herein and is given by:

$$
\bar{\eta}_{*}=\frac{\eta_{*}-\eta_{c}}{\eta_{f}-\eta_{c}}
$$

where η_{c} and η_{f} are the continuum and free molecule recovery factors respectiyely.
ii) Nusselt-Reynolds Number Correlation

Sherman (20), in examining heat transfer data for spheres in subsonic flow, found that a single curve of the form

correlated data from continuum flow through free-molecule flow. Such a result suggested that perhaps a similar correlation may exist even for higher Mach numbers. Kubota* in re-examining the data used by Dewey for his heat transfer correlation found that, indeed, such a correlation existed. By normalizing Nusselt number with the Nusselt number for free molecular flow ($\alpha=1$)

[^2]$$
\mathrm{Nu}_{\mathrm{f}}=\frac{\overline{\mathrm{h}} \mathrm{~d}}{\mathrm{k}_{\mathrm{t}}}=\frac{\gamma-1}{2(\pi)^{3 / 2} \gamma} \alpha \operatorname{Re}_{\mathrm{t}} \operatorname{Pr}_{\mathrm{t}}\left(\frac{\mathrm{~g}\left(\mathrm{~s}_{1}\right)}{\mathrm{s}_{1}}\right)^{*}
$$
and plotting the result as a function of the normalized Nusselt number for incompressible continuum flow ($\mathrm{Nu}_{\mathrm{c}} / \mathrm{Nu}_{\mathrm{f}}$) (the $\mathrm{M}=0$ curve in Dewey's correlation), Kubota found the results shown in figure 14. Not only did a single curve seem appropriate for correlating the data but one form which appeared reasonable for correlation purposes
$$
\frac{N u_{t}}{N u_{f}}=\frac{1}{1+\frac{N u_{f}}{N u_{c}}}
$$
was identical to that of Sherman. Although this correlated curve did show noticeable deviation ($+15 \%$) from the Dewey measurements as the continuum flow regime is approached ($N u_{c} / N u_{f}<1, R e_{t}>10$) it seemed satisfactory for the present calculations since it was always within 5% of Dewey's results for the range of Reynolds numbers covered in the present tests ($\mathrm{Re}_{\mathrm{t}}<4, \mathrm{Nu}_{\mathrm{c}} / \mathrm{Nu}_{\mathrm{f}}>1.91$). This form for the Nusselt-Reynolds number correlation also was much simpler than that established by Dewey and thus proved easier to check out and use in machine computations. For Mach numbers greater than 1 these results are believed within -5% of measured data. For lower Mach numbers and for Reynolds numbers greater than 4.0 the correlation results of Dewey would seem more appropriate.

[^3]
APPENDIX B

DATA REDUCTION PROGRAMS

B.1) Raw Data Program

Although some modifications have been made in the hot wire raw data program as established by Herzog (14), the basic purpose, input requirements and output data for this program remain the same. The input data to this program consist of punched IBM cards representing initial hot wire measurements as recorded by the Automatic Hot Wire Recording System. The data for a given input card lists hot wire position, probe support temperature, and attenuated hot wire voltages corresponding to each of 5 currents and 5 bucking voltages. In the raw data program the se hot wire voltages are transformed from their digitized form to mv readings using system calibration data, and the known wire currents and bucking voltages. Conversion of these data in turn to hot wire resistance $\left(R_{m}\right)$ and power ($I^{2} R$) results is straightforward. Once in this form the wire resistance ($R_{\text {awm }}$) and curve slope ($\frac{d R_{m}}{d I^{2} R}$) corresponding to zero power are determined by fitting a parabolic curve to the data with a least squares procedure. Often more accurate and consistent results were possible if only those data corresponding to the lowest four currents were used to obtain this fit. After completing several additional calculations, the program, as output for each probe position, lists and punches out on IBM cards such results as normalized probe position, adiabatic wire resistance and temperature, zero power slope of the resistance power curve, and probe support temperature. These cards are then used directly as input data to the plotting and end loss programs.

NPT	NPT	number of data points to be used in calculation of slope ($\mathrm{dR} / \mathrm{dI}^{2} \mathrm{R}$) and R awm
IARRAY	IARRAY	code name (hot wire, or Run No)
ID	ID	identification number
ALPHA		slope of calibration curve of $\mathrm{R}_{\mathrm{wm}}(\Omega)$ versus $\left.\mathrm{T}_{\mathrm{wm}}{ }^{(\circ} \mathrm{C}\right)$ for zero current, $\left(1 /{ }^{\circ} \mathrm{K}\right)$
RR	R_{r}	reference resistance as calibrated for zero current and zero ${ }^{\circ} \mathrm{C}, \Omega$
L	ℓ / d	wire aspect ratio
$\mathrm{CO}(\mathrm{I})$,	$\mathrm{I}=11,15$	voltage calibration factors for each of five currents
$\mathrm{CO}(\mathrm{I})$,	$\mathrm{I}=16,20$	bucking voltages for each of five currents, mv
$\mathrm{CO}(\mathrm{I})$,	$\mathrm{I}=21,25$	constant current values (five), mv
PCI	\%	\% injection
XD	\mathbf{x} / D	probe tip position in axial direction
$\mathrm{CO}(1)$	y_{0}	centerline probe position in transverse direction relative to a standard position, in.
Q1	y	probe position in transverse direction relative to a standard position, in.
$A(J), J=$, $5 \mathrm{C}\left(\Delta \mathrm{E}_{H W}\right)$	attenuated hot wire voltage decrement, mv
Q7	T_{s}	support temperature, ${ }^{\circ} \mathrm{C}$
CORN	CORN	card number
VC	V_{c}	support temperature correction factor
SC	S_{c}	support temperature correction decrement, ${ }^{\circ} \mathrm{C}$
DR	D	reference diameter, in.
$B(J), J=$, $5 \Delta E_{H W}$	hot wire voltage decrement for each of five currents, mv
$C(J), J=$	1,5 Em	measured hot wire voltage for each of five currents, Mv

- B. 1b) Typical mput Data for Raw Data Program $\because 5$

B. 1d) Fortran Listing of Raw Data Program

SIBFIC MAIN DECK
C FIRST CARD MUST HAVE IN COL 1 3.4. OR5 FOR NO OF POINTS REAL L, NUKO, NUKMIN, NUKMAX DATA NAME / GHHOT WI/. NRUN / GHRUN NO/ INTEGER CORNO
DIMENSION A(5), B(5), C(5),D(5),E(5),CO(30).IARRAY(13).TITLE(10).
$1 \times(200)$, TM(200), NUKO(200)
DIMENSION DIF(5)
DIMENSION SLOPE (5)
DIMENSION COEF(3)
$\operatorname{READ}(5.610) \mathrm{NPT}$
610 FORMAT (11)
10 READ $(5,502)$ IARRAY
WRITE $(6,516)$ IARRAY
516 FORMAT (1H1 $20 \times 13 A 61$
IF (IARRAY(1).EQ.NAME) GO TO 16
15 IF (IARRAY(1).NE.NRUN) GO TO 17
GO TO 19
16. READ 503. IARRAY, ID,ALPHA,RR,L, $(C O 11), 1=11,151$
$\operatorname{READ}(5,504)(C O 11) 1=16,25)$
READ $(5,507)$ VC, SC \& DR
CO(3) F ALPHA *.001
$\operatorname{co(2)}=R R$
$C O(6)=L$
READ $(5,502)$ IARRAY
GO TO 15
17 CONTLNUE
C ERROR RETURN - PACK MUST START WITH NEW PCI. XD: COI 11
WRITE $(6,510)$
STOP
C BEGLUNING OF PACK - READ PER CENT INJECIION, X/D. COP.
C
12 CONLINUE
READ 505,IARRAY, PCI, XD, COIII
PRES $=0_{8}$
$K=0$
20 READ (5.500) 01 e (A(J) $J=1$ e 5) e Q7eCORNO
IF(O1.EQ.0.0) GO TO 60
DO $30 \mathrm{~N}=125$
$B(J)=A(J) * C O(J+10)$
$C(1)=B(J)+C O(J+15)$
$D(J)=C(J) / C O(J+20)$
$E(\mu)=C(1) * \operatorname{CO}(1+20)$
30 CONTINUE
CALL LSTSQ(E,D,NPT,SLOPE, X 1, COEF)
IN = 6-NPT
DO 35 」 $=1 N, 5$
DEVAL $=\operatorname{COEF}(1)+\operatorname{COEF}(2) * E(J)+\operatorname{COEF}(3) * E(J) * E(J)$
DIF $(J)=D(J)-$ DEVAL
35 CONTINUE
DIEMAX = DIFIIN)
$I J=I N+1$
DO $36 J=1 J, 5$
IF(ABS(DIFMAX) •GT•ABSIDIF(J)I) GO TO 36
DIFMAX $=\operatorname{DIF}(1)$
36 CONTINUE
Z1 = (01-CO(1))/DR
$22=X 1$
$23=$ SLOPE (1)
$24=273.2+(22-\operatorname{CO}(21) /(\operatorname{CO}(2) * \operatorname{CO}(3))$
$25=\operatorname{co}(2) \cdot \operatorname{co}(3) /(3,14159265 *(0(6) \cdot 23)$

```
        Z6=07*(1,-VC1-SC+273,2,
        515 FORMAIU1X3HPC1 2XF3.1, 2X2HXD2XF5.2, 2X10HZ1 THRU 26 2X6F12.6.
        1
        2\times2HIDEX13,2X4HC.N.
        PUNCH 600, PGI, XD, 21, 22, 23, 24, 25, 26, ID, 
    1 CORNO
        WRITE (6,520) (D(J): J=1,5)
        WRITE (6,520) (E(J),J=1,5)
        520 FORMAT (5E20.8)
    GO TO 20
500 FORMAT(F4.3.5F4.3,F5.1.48\times13)
    502 FORMAT(13AG)
503 FORMAT (7X13,2XF8.7.58.6,F8,8,5F8.6)
    504 FORMAT(4X5F7.4.5F7.6)
    510 FORMAIC//10X47HERROR RETURN - PACK MUST STARI WITH PCLE XD&GP// /
    505 FORMAT(15X F5.2.3XF5.3,F5.4)
    507 FORMAT (F4.3.1XF4.1, 1XF4.3)
    600 FORMAT(F3.1, F5.2.1XF6.3,1XF5.2.1XF8.6.1X
        F5.1,1XE11.5.
            11XF5,1% 18X 1X13,1\times13)
        60 CONTINUE
            GO IO }1
        END
```


SIBFTC LST DECK

SUBROUTINE LSTSQ(X,Y,N:SLOPE,YINCEP,B)
DIMENSION $X(5), Y(5)$, C(10) : $A(50,3): B(50,1)$
DIMENSION SLOPE(5)
$\mathrm{NO}=3$
IF $(N \cdot E Q \cdot 2) \quad N O=2$
DO $101=1,10$
$10 \mathrm{C}(1)=0$.
$I N=6-N$
DO $20 \mathrm{I}=\mathrm{IN}, 5$
$\times 2=x(1) * x(1)$
$C(1)=C(1)+X(I)$
$C(2)=C(2)+X 2$
$c(3)=c(3)+x 2 * \times(1)$
$C(4)=C(4)+X 2 * X 2$
$C(5)=C(5)+Y(1)$
$C(6)=C(6)+X(1) * Y(1)$
$C(7)=C(7)+X 2 * Y(1)$
20 conilnue
$A(1,1)=N$
$A(1,2)=C(1)$
$A(1,3)=C(2)$
$A(2,1)=C(1)$
$A(2,2)=C(2)$
$A(2,3)=C(3)$
$A(3,1)=C(2)$
$A(3,2)=C(3)$
$A(3,3)=C(4)$
$B(1,1)=C(5)$
$B(2.1)=C(6)$
$B(3,1)=C(7)$
CALL MATINV(A,NO,B,I\&DET)
YINCEP $=\mathrm{B}(1,1)$
SLOPE(2) $=\mathrm{B}(2,1)$
RETURN
END

B. 2 Raw Data Plotting Program

Currently this program has the capability of plotting, as a function of y / H, adiabatic wire temperature, probe support temperature, and zero power slope of the resistance-power curve. Punched output from the raw data program are used directly as input to this program. Some flexibility is possible in the plotting routines since three different models or variable ranges in y / H and $T_{a w m}$ are made available. These were necessary in order to scrutinize the raw data not only for both the adiabatic and cold wall wedge models but also for the flat plate configuration.
B. 2a) Plot Program ID Listing

NUK $\mathrm{Nu}_{\mathrm{m}} \mathrm{k}_{\mathrm{t}}$ product of measured Nusselt number and air conductivity, $\Omega(\mathrm{ma})^{2} /\left({ }^{\circ} \mathrm{K}\right.$ in)

PCI \% \% injection
YD y / D normalized transverse distance
TM $\mathrm{T}_{\text {áwm }}$ wire temperature for zero current, ${ }^{\circ} \mathrm{K}$
TS $\quad T_{s} \quad$ support temperature,${ }^{\circ} \mathrm{K}$
XD X/D normalized axial distance
ID ID identification number
SLP $\left[d R / d I^{2} R\right]_{I=0} \begin{aligned} & \text { slope of resistance-power curve at zero } \\ & \text { power, }(m a)^{-2}\end{aligned}$
MODEL
PR plotting format, 1, 2 or 3
plot request - PR > 2 implies only "SLP" data will be plotted
B. 2b) Fortran Listing of Hot Wire Plot Program

B. 3 Hot Wire End Loss Program--Static Pressure Version

The purpose of this program is to determine total temperatures by making suitable end loss corrections to measured adiabatic wire temperatures using the end loss analysis developed by Dewey (17). The present program is actually an updated version of Dewey's original end loss program as modified by Herzog (14). Current input requirements consist of adiabatic wire resistance, probe support temperature, wire calibration data, tabulated semiprofiles of Pitot pressure, and centerline static pressures which have been corrected for viscous and tunnel gradient effects. An interpolation procedure determines the Pitot pressure corresponding to each probe position. IBM punched cards from the raw data program are used directly to furnish probe position, adiabatic wire resistance, and probe support temperature data. Since Mach number is readily determined from the Pitot and static pressures, all other flow quantities involved in the end loss analysis can be computed once an initial trial value of stagnation temperature is selected. The end loss correction factor corresponding to this initial estimate then determines a revised stagnation temperature value. The computation is cycled until a specified convergence criterion is met. In general, convergence based on a differential between trial and calculated stagnation temperatures of $.04^{\circ} \mathrm{K}$ is possible within 5 iterations.
B.3a) $\frac{\text { End Loss Program ID Listing }}{\text { (Static and Nusselt number version) }}$

Q1 \% \% injection
Q2 x / D. normalized axial distance
Q3 y/D normalized transverse distance
Q4 $\quad \mathrm{Nu}_{\mathrm{m}} \mathrm{k}_{\mathrm{t}} \quad$ product of measured Nusselt number and air conductivity (based on local total temperature), $\Omega(\mathrm{ma})^{2} /{ }^{\circ} \mathrm{K}$ in
open
Q6 $\quad \mathrm{p}_{\mathrm{t}_{2}} \quad$ local measured Pitot pressure, mmHg
Q7 $\quad \mathrm{T}_{\mathrm{S}} \quad$ support temperature, ${ }^{\mathrm{o}_{\mathrm{K}}}$
Q8 $\quad\left(p_{t_{2}} / p_{o}\right) \times 10^{2}$ measured local Pitot pressure, normalized
Q9 $\left(\mathrm{p} / \mathrm{p}_{\mathrm{o}}\right)_{\mathrm{c}} \times 10^{2}$ corrected local static pressure, as normalized to free stream total pressure

$$
\left(\frac{p}{p_{o}}\right)_{m}\left(\frac{p}{p_{m}}\right)_{v}\left(\frac{p_{L E}}{p_{x}}\right)_{\infty}\left(\frac{p_{t_{2}}}{p_{t_{2}}}\right)_{L E}
$$

Q10 $p_{0}=p_{t_{\infty}} \quad$ free stream total pressure, $m m H g$
Q11 $\quad \eta_{s}=T_{s} / T_{t}$ support temperature ratio
Q12 ID hot wire identification number
Q13 $R_{r} \quad$ reference resistance as calibrated for zero current and zero ${ }^{\circ} \mathrm{C}$,

Q14 \quad / $\mathrm{d} \quad$ wire aspect ratio
Q15 d wire diameter, cm
Q16 $\quad \alpha_{r} \quad$ slope of wire calibration curve, $1 / \rho_{K}$
Z18 $\quad \mathrm{Nu}_{\mathrm{t}} \quad$ Nusselt number for wire of infinite length
Z19 $\quad \bar{\eta}_{*}=\frac{\left\langle\eta_{*}-\eta_{c}\right\rangle}{\eta_{f}-\eta_{c}}$ normalized recovery ratio for infinite wire
Z20 M Mach number
Z21 $\quad \mathrm{T}_{\mathrm{t}}$ corrected local total temperature, ${ }^{\mathrm{O}} \mathrm{K}$

Z22	pu.	local mass flow, $\mathrm{gmm} / \mathrm{cm}^{2} \mathrm{sec}$
Z23	u	local velocity, $\mathrm{cm} / \mathrm{sec}$
Z24	T_{∞}	free stream static temperature, ${ }^{\circ} \mathrm{K}$
Z25	$\mathrm{Re}_{\mathrm{td}}$	Reynolds number based on local total temperature and wire diameter
Z26	Re_{d}	Reynolds number based on local static tem perature and wire diameter
Z27	T_{*}	recovery temperature for infinite wire, ${ }^{\circ} \mathrm{K}$
Z28	$\mathrm{Kn}=\sqrt{\frac{\pi \gamma}{2}} \mathrm{M} / \mathrm{Re}$	local Knudsen number
Z29		open
Z30	$\psi_{r}=\frac{\eta_{*}}{\eta}=\frac{T_{*}}{T_{m}}$	recovery ratio end loss correction factor
Z31	$\bar{\psi}_{\mathrm{r}}=\bar{\eta}_{*} / \eta_{\mathrm{m}}$	normalized form of recovery ratio end loss correction factor
Z32	$\psi_{N}=N u_{t} / \mathrm{Nu}_{\mathrm{m}}$	Nusselt number end loss correction factor
Z33	$\left(\mathrm{p} / \mathrm{p}_{\mathrm{t} 2}\right)_{\mathrm{c}}$	Rayleigh-Pitot ratio (w/correction)
Z34	$\mathrm{T}_{\text {awm }}$	measured adiabatic wall temperature for finite length wire, ${ }^{{ }^{\circ}} \mathbf{K}$
Z35	Z35	number of iterations
Z37	Z37	convergence code
Z98	$\mathrm{p}_{\mathrm{t}} / \mathrm{p}_{0}$	ratio of local total to free stream total pressure
Z99	$\mathrm{p} / \mathrm{p}_{0}$	ratio of local static to free stream total pressure
Cl	C_{1}	constant in wire conductivity relation
C 2	C_{2}	constant in wire conductivity relation
C5	$\eta_{m_{i}}$	initial value for η_{m}
C40	R	gas constant, $\mathrm{cm}^{2} / \mathrm{sec}^{0} \mathrm{~K}$
C41	γ	specific heat ratio

C42 $\mathrm{T}_{\mathrm{R}} \quad$ reference temperature $\left(273^{\circ} \mathrm{K}\right),{ }^{\circ} \mathrm{K}$
EPS $\quad \epsilon=\eta_{*}-\eta_{m} \quad$ generated
ETAS $\quad \eta_{*}=T_{*} / T_{0}$ recovery ratio for infinite wire
FKO $k_{t} \quad$ conductivity of air based on local total temperature

FKW $\mathrm{k}_{\mathrm{w}} \quad$ wire conductivity, cal/sec $\mathrm{cm}^{\mathrm{o}} \mathrm{K}$
FMUN $\eta_{m}=T_{\text {awm }} / T_{t}$ measured recovery ratio
FMUO $\mu_{t} \quad$ viscosity of air based on local total temperature, $\mathrm{gmm} / \mathrm{cm} \mathrm{sec}$
FNBR $\quad \bar{\eta}_{m}=\frac{\eta_{m}-\eta_{c}}{\eta_{f}-\eta_{c}}$ normalized recovery ratio for finite length wire FNU $\quad v=\frac{l}{d} \sqrt{\frac{k_{t}}{k_{w}} N u_{t}}$

FNUC $\eta_{c} \quad$ experimental recovery ratio for continuum flow
FNUF $\eta_{f} \quad$ theoretical recovery ratio for free molecule flow
$S \quad \alpha_{r} T_{t} /\left[1+\alpha_{r}\left(T_{a w m}-T_{R}\right)\right]$
generated
SS $\sqrt{\gamma / 2} \mathrm{M}$ generated
TAW $f_{1}(s s)$ table
$\operatorname{TSBZ} g_{1}(s s) \quad$ table
TS $\quad T_{s}=\eta_{S}-\eta_{m} \quad$ generated
VISIN μ_{∞} viscosity based on local static temperature, $\mathrm{gm} / \mathrm{cm} \mathrm{sec}$

WO $\quad \omega_{0}=\tanh \nu_{0} / \nu_{0}$
generated
$\operatorname{SLP} \quad\left[\mathrm{dR}_{\mathrm{Wm}} / \mathrm{dI} \mathrm{R}_{\mathrm{Wm}}\right]_{\mathrm{I}=0}$
slope of resistance-power curve at $I=0,(m a)^{-2}$

DYD DYD

RAWM R ${ }_{\text {awm }}$
D
F17
Y 1
Y 1

Y2
Y 2
Y3 Y3
Y6
NX35 NX35
$\mathrm{NUCO} \quad \mathrm{Nu}_{\mathrm{c}}$
IDXX IDXX

NOP NOP

IQ12 12
Q20
NUFM $\quad \mathrm{Nu}_{\mathrm{f}}$
Q1 7
Q1 8
Q19 $\quad R e_{t} \mu_{t} \gamma T_{t} / p_{t_{2}}$
FNUM $\quad \mathrm{Nu}_{\mathrm{m}}$
NZ35 NZ35
NY35 NY35
Q8V $\quad\left(\mathrm{p}_{\mathrm{t}_{2}} / \mathrm{p}_{\mathrm{o}}\right)_{\mathrm{m}} \times 10^{2}$
correction constant for transverse coordinate
wire resistance for zero current, Ω
open
open
storage for η_{m}
storage for Nu_{t}
storage for M
open
iteration number for PRLCM subroutine Nusselt number for continuum flow
input integer code (1 or 2) to indicate input location of $\left(p_{t}^{\prime} / p_{o_{\infty}}\right)_{m} \times 10^{2}$
number of entires in table of $\left(\mathrm{p}_{2} / \mathrm{P}_{\mathrm{o}}\right) \times 10^{2}$
versus y / D
hot wire number
open
Nusselt number for free molecule flow
open
open
Mach number function
measured Nusselt number
iteration number for main program
iteration number for Mach number program
measured local Pitot pressure, normalized to free stream total pressure (table)
B. 3b) Typical mput Data for Hot Wire End Loss Program-Static Pressure Version

Sempina
E. 3e) Typical Output Data for Hot Wire End Los: Program-Static Pressure Version
\longrightarrow - - -

-108-

HETASO=ETASG-ETASE
FMUN $=2.0$
$20 \quad 221=234 / F M U N$
CALL PRLCM
ETASG=ETAS
ETASF=FMUN*230
HETAS $1=E$ TASG-ETASF
FMUN1 = FMUN+((FMUN1-*95)/(HETASO-HETAS1))*HETAS1
$N 235=N 235+1$
IF (ABS(IFMUN-FMUN1)/FMUN1)-,0001) $25,25,30$
25 FMUN=FMUNL
$221=234 /$ FMUN
CALL PRLCM
GO TO 200
30_1F $1 N 235-20140,2002200$
40 IF (FMUN1-3.5) 41,200,200
41 FMUN $=$ FMUN1
GO TO 20
200 CALL OUTPUT
GO TO 1310,101. 10XX
END

1

SIBFTC OUT DECK SUBROUTINE OUTPUT
DIMENSION TBL $1(46)$, TBLIP (46), TBL $3(46), T B L 3 P(46), T B L 4(13)$,
1 TBL4P(13),TBL5(43), TBL5P(43),TBL6(45),TBL6P(45),TBL6PP(45).
2 TBL 7 (91).TBLTP(91), TBL8(40),TBLBP(40) DIMENSION 237(3)

1233,234,235,237,C1,C2,C5,C40,C41,C42,01,02,03,04,05,06,07,08,
$2010,011,012,013,014,015,016,017,018,019,020,09, D, E P S, E T A S, F K O$, 3FKW, FMUN, FMUO, FNBR, FNU, FNUC, FNUF, FNUM,FI7,NZ35,SO,SS, TAW, TS, 4TSBZ,VISIN,WO,Y1,Y2,Y3,Y6,NX35,NUCO,RAWM,SLP,DYD COMMON /CONST/TBL1,TBLIP,TBL3,TBL3P,TBL4*TBL4P,TBL5,TBL6*TBL6P: 1 TBL $6 P P$, TBL5P, TBL7, TBLTP, TBL 8, TBL8P
223=220*SQRT(C41*(40*224)
$222=225 *$ FMUO / Q15
$226=225 *$ FMUO/VISIN
$227=221 *($ FNUC + (FNUF-FNUC)*219)
$230=(160-W O *(011 / F M U N)) /(1.0-W O)$
$299=09$
FNUM $=($ Q4/(FKO*4.187*2.54)) * 1.0E-6
$232=218 / F N U M$ FNBR $=219 / 231$ IF $(220-1.0) 31,31,32$
$31298=08$
60 TO 40
$32298=08 /(16 \cdot 0 * 220 * 220 /(220 * 220+5 \cdot 0)) *(36 \cdot 0 * 220 * 220 /(1220 * 220$
$1+5.0) *(7.0 * 220 * 220-1.0) 1) * * 2.5$ \&
40 ID $=012+.01$.
WRITE 16,5001 : $D, 02,03, N 235, \quad N \times 35,220,223,222$,
$1224,221,299,298,225,226,230,227,218,08,219,228,231, F N U, F N B R$,
2 FNUC, FNUF, 232, FNUM, WO,FMUN, $234,011,07, \quad$ Q13,O16,ETAS,DYD

$12 \times 4 \mathrm{HM}$ Ell. $4.1 \times 4 \mathrm{HU}$ E11.4.1 1 K4RHOUE $11.4,1 \times 4 \mathrm{HTI} . \mathrm{YFE} 11.4 / \mathrm{m}$
24 HTO E11.4.1X4HPINFE11.4.1×4HPO E11.4.1X4HREO E11.4.
$31 \times 4 \mathrm{HRINFE} 11.4,1 \times 4 \mathrm{HPSIRE} 11.4,1 \times 4 \mathrm{HT}$ E E11.4. $1 \times 4 \mathrm{HNUO}$ E 11.41 ,
44HPT E11.4.1X4HN*BRE11.4.1X4HKINFE11.4,1X4HPSIBE11.49 $51 \times 4 \mathrm{HNU}$ E $11.4,1 \times 4 \mathrm{HNMBRE} 11.4 .1 \times 4 \mathrm{HNC}$ E $11.4 .1 \times 4 \mathrm{HNF}$ E $11.4 /$, 64HPSINE11.4.1X4HNUM E11.4.1×4HWO E11.4.1X4HNM E11.4. 71×4 H.TM E $11.4 .1 \times 4 \mathrm{HNS}$ E11.4. $1 \times 4 \mathrm{HTS}$ E $11.4,1 \times 4$ HRR E11.4 . 84HALPAE11.4.1×4HN* E11.4.1X4HDYD E11.4//1
RETURN

- END

SIBEIC BLO DECK dLOCK DATA
UIMLNSION TBG1(46),TBLIP(46),TBL3(46),TBL3P(46),TBL4(13),
1 TBL4P(13),TBL5(43),TBL5P(43),TBL6(45),TBL6P(45),TBL6PP(45).
2 TBL7(91). TBL7P(91).TBL8(40):TBL8P(40)
DIMENSION 237(3)
COMFON /CONST/TBL , TBLIP,TBL3,TBL $3 P$,TBL4,TBL4P,TBL5,TBL6,TBL6P,
1 TBL6PP, TBL5P, TBL7, TBL7P, TBL8, TBL8P

$3,380 ., 390 ., 400 \cdot .410 ., 420 \cdot 9430 \cdot 1$
DAIA TELIUN: $=42,46) / 440$ e. 450.1460 .8470 .8480 .1
DATA (TBLIP(1).1 $=1,41) / 0.7039,0.9117 .1 .131,1.350 .1 .558 .1 .784$
1 2 2. $996,2,210,2,425,2,640,2.855,3.068,3.281,3.492,3.703,3.912,4.11$
2 9.4.324,4.527,4.729,4.929,5.127,5.323,5.517,5.709,5.897,6.087,6.2
$3,72,6.457,6.641,6,820,6.999,7.178,7.357,7.530,7.703,7.876,8.043,8$.
4 211.8.378.8.545/
DATA IIBLIPNLEL $=42.46) / 8.706,8.868,9.030,9.192 .9 .347 /$

$3,380,1390,2400,1410 ., 420.1430 .1440 .1450 ., 460 ., 470 ., 480.1$
DATA (TBL3P(I). $=1,46$) $215.7,281.1,347.3,416.3,485.6,555.1,6$

 $4, \ldots, 2366,2406 \cdot, 2445$ e, 2485., 2520., 2560., 2595./
DATA CTBL4 $11.1=1,131 / \quad 0.0 .2,0.4,0.6 .0 .8,1.0 .1 .2 .1 .4 .1 .6 .10$
$18,2 \cdot 0,2 \cdot 2,8.01$
DATA (TBL4P/1).1 $=1.131 / \quad 1.0 .0 .998 .0 .995 .0 .991 .0 .985 .0 .977 .0 .9$
1 70,0.964,0.959,0.955,0.952,0.950,0.950/
DATA CTBLE(1)1 $=1,43) / \quad 0.05,0.06,0.07,0.08,0.09,0.10,0.11,0$.
1 12,0.14,0.15,0.17,0.19,0.20,0.23,0.25,0. 30,0. $35,0.40,0.50,0.60,0$.
$270.0 .80,0.90,1,0,1,1,1,2,1,3,1,4,1,5,1 \cdot 7,1.9,2 \cdot 0,2.5,3.0,3.5,4.0$.
$35 \cdot 0,6 \cdot 0,7 \cdot 0,8.0,10 \cdot 0,12 \cdot 0,20.1$
DAIA IIBL5PML. $=1,431 / \quad 0.02,0.03,0.042,0.054,0.068,0.082 .0 .0$
$197,0.112,0.144,0.158,0.188,0.218,0.232,0.272,0.294,0.350,0.397,0$.
$2437,0.50500 .558,0.603,0.640,0.67200 .700,0.724,0.744,0.765,0.783,0$.
$3.800,0.826,0.849,0.858,0.895,0.916,0.932,0.944,0.960,0.970,0.977$,
$4.0 .982 .0 .990 .1 \cdot 0.1 .0 /$
UATA (TBL6(I). I = 1,45) $\quad 0.2,0.4,0.6,0.8 .1 .0 .1 .2,1.4,1.6,1.8,2$
$1,0,2,2,2,4,2,6,2,8,3,0,3,2,3,4,3,6,3.8,400,4,2,4,4,406,408,5,0,50$
$22,5 \cdot 4,5 \cdot 6,5 \cdot 8,6 \cdot 0,6.2,6.4,6.6,6.8,7 \cdot 0,7.2,7.4,7 \cdot 6,7 \cdot 8,8 \cdot 0,8.2$,

JATA (TBLGP(1). $1=1,45) /$ 9.80271.10.94784.12.89399.15.69746.19 $1.43609 .24 .20781,30.12863,37.32923 .45,95230,56.14932,68.07771,81.8$ 2 9947.97.77902.115.88287.136.37821,159.43361,185.21769,213.89927,2 $3-45.64801,280.63340,318.02474,360.29204,406,70528,456.333640510 .04$ 4 756,568.01730,630.41182.697.40229,769.31,845.89,927.630

$61920.4,2062.2,2210.9,2367.0,2530.2,2700.71$
 $1.63288,15.22758,16.96063,18.79408,20.69872,22.65358,24.64392,26.6$ $25990.28 .69470 \cdot 30.74382 \cdot 32 \cdot 80398 \cdot 34.87300 .36 .94914,39.03112041 .118$ $300,43.20904,45 \cdot 30354,47.40108,49.50126,51.60366,53 \cdot 70808,55 \cdot 81428$
 5 74.802.76.910,79.025.81.130.83.242.85.352.87.461,89.561.91.6769 $6.93 .782 .95 \cdot 886 /$
DATA(TBL7P(1).1 $=1.91) / 8.0 .7 .95 .7090 .7 .85 .7 .80 .7075 .7 .70 .7 .650$

 4 , $, 0,2,2,9,2,8,2,7,2,6,2,5,2,4,2,3,2,2,2,1,200,1,9,1,8,1,7,1,6,1,5$,

$6.03 \cdot 00 /$
DATA (TBL7(1).1 = 1.91)/.01207. .01222.01237.01253.01269.
$1.01285,01302,01319,013362.013541,01372,001409,01448,01488$,

$3.02002, .02067,002136,002208,002284,002364, .02449,00<537,02631 \%$

$5.03938,0.04120,0.04314,04523,004747, .04987,05247, .05526,05829$,
$6.06157,06513,06900,07323,007785,008291,008848,009461,01014$,

1.9994 .1601

END
-113-

B. 4 Hot Wire End Loss Program--Nusselt Number Version

As Dewey (17) and Herzog (14) have already indicated, considerable difficulty was experienced in the initial set up and check out of this extensive end loss program. This difficulty arose because the method of successive substitution was used to compute local Mach numbers from Pitot pressures and Reynolds numbers, and this computation procedure did not always converge. It was therefore necessary to establish a double iteration procedure based on Newton's method to calculate simultaneously end loss corrections both for adiabatic wire temperature and Nusselt number. The input data for this program consist of Pitot pressures, adiabatic wire resistances, probe support temperatures, measured slopes of wire resistance-power curve corresponding to zero power ($\mathrm{dR} / \mathrm{dI}^{2} \mathrm{R}$), and wire calibration data including Nusselt number correction factors (Appendix A) determined with the aid of the previous program. Input values of $R{ }_{\text {awm }}, T_{s}$ and $d R / d I^{2} R$ are obtained directly from the punched card output of the raw data program. Pitot pressure input data at a given axial location consist of tabulated semiprofiles of pressures, and values corresponding to specific probe positions are determined by interpolation. Starting with initial trial values for stagnation temperature and Nusselt number, the computation is cycled until a convergence criterion is met. In most cases satisfactory convergence takes place within 5 to 6 iterations.
-115~
B. 4a) Typical Input Data for Hot Wire End Lose Program-Nusselt Number Version
 C --
B. 4c) Fortran Listing of Hot Wire End Loss Program--Nusselt Number Version

SIBETC MAI DECK
DIMENSION TBL1(46),TBLIP(46),TBL3(46),TSL3P(46),TBL4(13),TBL4P(13)上,TBL5(43),TBL5P(43),TBL6(45),TBL6P(45),TBL6PP(45),TBL7(19),TBL7P 2(19),YD(100),QBV(100)
DIMENSION 237(3)
COMMON Z18,219,220,221,222,223,224,225,226,227,223,2,0,231,232,
$1233,234,235,237, C 1, C 2, C 5, C 40, C 41, C 42,01,02,03,04,05,06,07,08$, 2010,011,012,013,014,015,016,017,018,019,020,09,D,EPS,ETAS,FKO, 3FKW, FMUN, FMUO, FNBR, FNU, FNUC, FNUF, FNUM, FIT,NZ35,SO,SS, TAW, TS, 4 TSBZ,VISIN,WO,Y1,Y2,Y3,Y6,NY35,NUCO,RAWM,SLP,DYD COMMON /CONST/TBL1,TBLIP,TBL3,TBL3P,TBL4,TBL4P,TBL5,TBL6,TBL6P, 1 TEL6PP,TBL5P,TBL7,TBL7P
c
MAIN PROGRAM
50 READ $(5,51)$ IDXX,Q10,O14, Q16,013,Q9,DYD,NOP
51 FORNAI (14.6×6 F10, $0,3 \times 13)$
REAC 15,5001 TBL7P
500 FORMAT $116 F 5.21$
GO TO $1310,3201,10 \times x$
320 READ 15.131 (YD(Hel $=1$ NOP)
13 FORMAT (16F5.5)
READ (5, 14) (Q8V(11, $1=1, N O P)$
14 FORMAT (16F5.4)
10 READ 15,121 Q1,Q2, Q3,RAWM,SLP,07, 1012
12 FORMAT(F3.1,1XF4.2,1XF6.3,1XF5.2,1XF8.6.19XF5.1,19X131)
$Y D 1=Q 3+D Y D$
YD12=YD1*YD1
$Y 01=S O R T(Y D 12)$
CALL TBLKP (YDI,YD,OB,QBV,NOP)
GO TO 330

11 FORMATIF3.1,1XF4.2,1XF6.3,1XF5.2,1XFB.6.19XF5.1, 1XF5.4.1XF4.4, 18×131
330 IF (RAVMEEOEN GO TO 50
Q12 = 1012
$N 235=1$
20 CALL FSTCM
30 CALL PRLCM
CALL M22
BO_LF (ABS $(1220-Y 3) /(220)-01) 150.150 .100$
100 IF (NZ35-20) 120,200,200
120 N $235=N 235+1$
CALL ADDCM
GO TO 30
150 IF (ABS(IFMUN-Y1)/FMUN)-.0005) 170.100,100
170 IF (ABS ($1 / 718-Y 21 / 218)-000051200.200 .100$
200 Q19 $=225 *$ FMUO*SQRT(221)/Q6
IF 1019-000008551 201.201.202
$201019=.0000855$
$220 \equiv 700$
SS $=$ 220*SQRT(0.5*(41)
$N O=45$
CALL TBLKP (SS,TBL6,TAW,TBL6P,NO)
CALL TBLKP ISS.TBLGETSBZ IBLGPP,NOI
NO1 $=40$
CALI TBLKP (220 OTBL 4 FENUC TBL $4 P, N O 1)$
FNUF $=(T A W / T S B Z) /(1.0+5 *(220 * * 2) *.(C 41-1.0)\}$
C сомритғ

ETASG=ETAS
ETASF = (FMUN) *230
HETASO =ETASG-ETASF
FMUN $=2.0$
$220221=234 / F M U N$
CALL PRLCM
ETASG=ETAS
ETASF=FMUN*Z30
HETASI=ETASG-ETASF
FMUN1 = FMUN+((FMUN1-.95)/(HETASO-HETAS1))*HETASI
$N \geq 35=N 235+1$
IF (ABS(IFMUN-FMUNI)/FMUN1)-.0001) 225:225.230
225 FMUN=FMUNI
$221=234 /$ FMUN
CALL PRLCM
GO TO 202
230 IF $(N 235-20) \quad 240,202.202$
240 IF (FMUN1-3.5) 241.202.202
241 FMUN $=$ FMUN1
GO TO 220
202 CALI OUTPUT
GO TO $(310,10)$. IDXX
END

SIBEIC FST DECK

SUBROUTINE FSTCM
DIMENSION TBL1(46), TBL1P(46),TBL $3(46)$, TBL3P(46),TBL4(13),TBL4P(13) 1.TBL5(43),TBL5P(43).TBL6(45),TBL6P(45),TBL6PP(45),TBL7(19),TBL7P 21191
DIMENSION 237(3)
COMMON $218,219,220,221,222,223,224,225,226,227,228,230,231,232$,
$1233,234,235,237, \mathrm{C1}, \mathrm{C} 2, \mathrm{C} 5, \mathrm{C} 40, \mathrm{C} 41, \mathrm{C} 42, \mathrm{Q1}, 02,03,04,05,06,07,08$, $2010,011,012,013,014,015,016,017,018,019,020,09, D, E P S, E T A S, F K O$, 3FKW, FMUN, FMUO, FNBR , FNU, FNUC, FNUF, FNUM, FI7,NZ35,SO,SS, TAW, TS, 4 ISBZEVISIN,WO, Y $1, Y 2, Y 3, Y 6, N Y 35, N U C O, R A W M, S L P$
COMMON /CONST/TBL1,TBLIP.TBL3,TBL3P,TBL4,TBL4P,TBL5,TBL6,TBL6P,
1 TBL6PP,TBL5P,TRL7,TBL7P
REAL NUCO
$\mathrm{Cl}=0.072$
$C 2=0.0000077$
$\mathrm{C} 5=1.025$
$\mathrm{C} 40=2871000.0$
$C 41=1.4$
$C 42=273.0$
Q15 $=.000254$
C
SEI INITIAL VALUES
$E P S=0.06$
FNU $=1.5$
FMUN $=1.025$
$\mathrm{Y} 235=1$
$Y 1=C 5$
$S O=0.5$
$Y 3=2$.
$220=2$.
NUCO $=.5$
$012=0$
C
$234=273 \cdot 2+($ RAWM $-0131 / 1016 * 013)$
(14 = (Q13* Q 16)/(3.14159265*Q14*SLP*.0001)
$F K W=C 1+(234-C 42) * C 2$
$221=234 /$ FMUN
$N O=46$
CALL TBLKP(Z21,TBL1,FKO,TBL1P,NO)
$F K O=F K O * 10.000011$
FNUM $=(Q 4 /(F K O * 4.187 * 2.54) 1$ (OE-6
$06=010 * 08 / 100$.
Q11 = 07/221
$I S=107-7341 / 221$
CALL BSIT
NO1 $=46$
CALL TBLKP (Z21,TBL3,FMUO,TBL3P,NO1)
FMUO=FMUO* 1000000011
RETURN
ENO.

1(12.-NUCO)**3.)*ALOG(NUCO))
NUC 1 = NUCO-FRNU/DFRN
$N \times 35=N \times 35+1$
IF (ABSI(NUCI-NUCO)/NUC1)-.0001) 30.30 .20
20 NUCO=NUC1
GO TO 13
30 NUCO = NUC 1
NUFM $=.01796 *(T S B Z / 55) * 225$
$218=$ NUCO/(1.+(NUCO/NUFM))
$F N U=\operatorname{SORT}(1014 * * 2 e) *(F K O / F K W) * 2181$
WO $=(\operatorname{EXP}(2.0 * F N U)-1.0) /($ FNU* $(E X P(F N U * 2.0)+1.0))$
NO1 $=43$
CALL TBLKP (Z28,TBL5,Z19,TBL5P,NO1)
$231=1.0$ + WO * $11.0+(F N U C-011) /$ (FMUN-FNUC) $) /(1 .-$ WO)
ETAS $=219 *(F N U F-F N U C)+$ FNUC
230) $=(1-(07 * W 0 / 234) /(11 e-W 0)$
50 RETURN
END

SIBEIC OUT DECK
SUBROUTINE OUTPUT
DIMENS 10 N TBL $1(46$), TBL1P(46), TBL3(46),TBL3P(46),TBL4(13),TBL4P(13) 1.TBL5(43), TBL5P(43), TBL6(45),TBL6P(45),TBL6PP(45),TBL7(19),TBL7P 21121
DIMENSION 237(3)
GOMMON 218,219,220,221,222,223,224,225,226,227,228,730,231,232,
$1233,234,235,237, C 1, C 2, C 5, C 40, C 41, C 42,01,02,03,04,05,06,07,68$,
$2010,011,012,013,014,015,016,017,018,019,020,09, D, E P S, E T A S, F K O$: $3 F K W, F M U N, F M U O, F N B R, F N U, F N U C, F N U F, F N U M, F I 7, N Z 35, S O, S 5, T A W$, IS, 4 ISBZEVISINEWO,Y1,Y2,Y3,YG,NY35,NUCO,RAWM,SLP, DYD
COMA.ON /CONST/TBL1,TBLIP,TBL3,TBL3P,TBL4,TBL4P,TBL5,TBL6,TBL6P. 1. TBLGPP,TBL5P,TBLI.TBLTP

If (ABSI(Q19-.0000855)/.0000855)-.000001) 10,10.20
20 CALL ADDCM
CALL PRLCM
CALL M22
$10221=234 / F M U N$
$Z 22=225 *$ FMUQ $/$ Q15
Q20 $=06 *((17 . * 220 * 220-1 *) /(6 * * 220 * 220)$)*2.5)*491.67
$223=2 a * 020<222$
$226=225 *$ FMUO/VISIN
$227=221 *($ FNUC $+($ ENUF-FNUC) $* 2121$
$230=(1.0$-WO* (Q11/FMUN) $) /(1.0$-WO)
40 IF $(220-1.0141 e 41,42$
$41299=(06 / 010) /$
1 (1e $0+5 *(641-1,0) * 220 * 220) * *(64) /(641-1.0))$
$298=06 / 010^{\circ}$.
GO IO 50
$42299=(1: 5 *(641+1.0) * 220 * 220) * *(C 41 /((4) 1-1 * 0)) *\left((C 41+1 \cdot 0) /(2 * 0 * 64)^{* 2}\right.$
$120 * 220-641+1,0) 1 * *(1,0 /(641-1.0) 1) * *(-1 \cdot 0) * 06 / 010$
Q8 $=08 / 100 \cdot 0$
$Z 98=Q 8 /(16.0 * Z 20 * Z 20 /(220 * 220+5.0)) *(36.0 * 220 * 220 /(1220 * Z 20$ $1+5.0) *(7 \cdot 0 * 220 * 220-1.011) * * 2.5)$
$5010=012+.01$
WRITE (6,500) ID,Q2,Q3, N235, NY35,220,223,222,
$1224,221,299,298,225,226,230,227,218,08,219,228,231$, FNU,FNBR\&
2 FNUC,FNUF, 232,FNUM,WO,FMUN, 234,Q11,Q7, Q13,Q16,ETAS,DYD, 3RAWMESLP
500 FORMAT(2HHW13.11X4HXD E11.4.1X4HYD E11.4.1X4HZ35 12,2X4HY35 12. $12 \times 4 \mathrm{HM}$ E11.04.1×4HU E11.4.1 1×4 HRHOUE11.4. $1 \times 4 \mathrm{HTINFE11.4/9}$ 24HTO EII.4.1X4HPINFE11.4.1X4HPO EII.4.1X4HREO EII.49
 44HPT E11.4.1X4HN*BRE11.4.1X4HKINFE11.491X4HPSIBE11.4:
 64HPSINEI1.4.1X4HNUM E11.4.1X4HWO E11.401X4HNM E11.40
 84HALPAE11.4.1×4HN* E1..4.1X4HDYD E11.4.1X4HRAWME11.4.

- $91 \times 4 \mathrm{HSLP}$ E11e4/Cl

RETURN
END
\qquad
\qquad
\qquad
\qquad
\qquad

SIBFIC ADD DECK
SUBROUTINE ADOCM
DIMENSION TBL $1(46)$, TBLIP (46), TBL $3(46)$, TBL $3 P(46), T B L 4(13), T B L 4 P(13)$ 1,TBL5(43),TBL5P(43),TBL6(45),TBL6P(45),TBL6PP(45),TBL7619),TBL7P 2119)

DIMENSION 237(3)
COMMON Z18, 219,220,221,222,223,224,225,226,227,228,230,231,232.
$1233,234,235,237, C 1, C 2, C 5, C 40, C 41, C 42,01,02,03,04,05,06,07,08$, $2010,011,012,013,014,015,016,017,018,019,020,09, D, E P S, E T A S, F K O$, $3 F K W, F M U N, F M U O, F N B R, F N U, F N U C, F N U F, F N U M, F I 7, N Z 35, S O, S 5, T A W, T S$, 4TSBZQVISINOWO, Y , Y $2, Y 3, Y 6, N Y 35$, NUCO, RAWM, SLP
COMMON /CONST/TBLI,TBL1P,TBL3,TBL3P,TBL4;TBL4P.TBL5.TBL6,TBL6P. 1 TBL6PP,T日L5P,TBLTETBLTP
$221=234 /$ FMUN
$\mathrm{N} \mathrm{Q}=46$
CALL TBLKP(Z21,TBLI,FKO,TBLIP,NO)
FKO=FKO* (0.00001)
FNUM $=(04 /($ FKO*4.187*2.54))* $1.0 \mathrm{EE}-6$
$227=221 *($ FNUC $+($ FNUF $-F N U C) * 219)$
Q11 = Q7/221
$230=(160-W O *(Q 11 / F M U N))(1,0-W O)$
ETAS=227/221
$E P S=E T A S-F M U N$
$F N U=S Q R T(014 * Q 14 * 218 * F K O / F K W)$
$Y 3=220$.
$Y 3=220$
$Y 1=F M U N$
$Y 2=218$
RETURN
END
(

SIBFTC M22 DECK
SUBROUTINE MZ2
DIMENSION TBL1(46), TBL1P(46), TBL $3(46), T B L 3 P(46), T B L 4(13), T B L 4 P(13)$ 1.TBL5(43),TBL5P(43),TBL6(45),TBL6P(45),TBL6PP(45),TBL.7(19),TBL7P 2119)

DIMENSION 237(3)
COMMON 218,219,220,221,222,223,224,225,226,227,228,230.231,232.
1233,234,235,237,C1,C2,C5,C40,C41,C42,01,02,03,04,05,06,07,08,
$2010,011,012,013,014,015,016,017,018,019,020,09, D, E P S, E T A S, F K O_{2}$ 3FKW, FMUN, FMUO, FNBR, FNU, FNUC, FNUF, FNUM, FIT,NZ35,SO,SS, TAW,TS, 4TSRZ,VISIN,WO,Y1,Y2,Y3,Y8,NY35,NUCO,RAWM,SLP
COMMON /CONST/TBL1,TBLIP,TBL3,TBL3P,TBL4,TBL4P,TBLS.TBL6.TBL6P.
1 TBL6PR,TBL5P,TBL7,TBL7P
NY35 $=1$
IF $(N 235-1) 13,13,10$
$13 Y 4=1.0$
$Y 5=2.0$
10 IF (NY35-20) 11.200.200
$11220=Y 4$
CALL NUQREO
G4 = ($(225 * F$ MUO*SQRT $(C 40 * 221 *(C 41+1.0) /(2.0 *(41))) /(0.3386 * 06)) * * 2$
IF (220-1.) 14.14,15
$14 \mathrm{~F} 4=1.5 *((4)+1 \cdot) * 220 * 220) *(1 .+.5 *(C 41-1) * 220 * 220) * *.(-(C 41+1 *) /(C 41$ 1-1.01)
GO TO 16

$16220=Y 5$
CALL NUOREO
G5 = ((225*FMUO*SQRT(C40*221*(C41+1.0)/(2.0*(41)))/(0.3386*06) ${ }^{* * * 2}$
If $(220-1)$.
$17 \mathrm{~F} 5=1.5 *(\mathrm{C} 41+1 \cdot) * 220 * 220) *(1 \cdot+.5 *(\mathrm{C41-1}) * 220 * 220) * *(-(\mathrm{C4} 1+1 *) /(\mathrm{C41}$ 1-1e611
GO TO 19
$18 \mathrm{~F} 5=(1++.5 *((4)-1 \cdot) *(220 * * 2)) *(.5 *(C 41+1 \cdot) *(220 * * 2)) * *(-((4)+1 *) /$ 1(C41-1.))*((2**(41*220*220-C41+1.)/(C41+10))**(2./(C41-1*))
$19220=Y 5-(G 5-F 5) *(Y 5-Y 4) /(G 5-F 5-G 4+F 4)$
IF (ABS $(Z 20-Y 5)-.005) 40,40 \cdot 20$;
20 IF $(Z 20-Y 5) \quad 30,40,50$
30 IF (ABS(220-Y4)-.005) 60,60.70
70 IF $(Z 20-Y 4) \quad 80,60,90$
80. NY35 = NY35+1
if $1220-1.1 \quad 69.72 .73$
69 IF (220-.21 71.71.502
$71 . Y 5=10$
$220=Y 5$
CALL NUOREO
G5=(1225*FMUO*SQRT(C40*Z21*(C41+1.0)/(2.0*(41)1)/(0.3386*06))**2 $F 5=(.5 *(C 4)+10) * 220 * 220) *\left(1+{ }^{2}+5 *(C 41-1 *) * 220 * 220\right) * *(-(C 41+1 \cdot 1 /(C 41$ 1-1.11
$220=.3$
703 CALL NUOREO
$\mathrm{Y} 4=220$

1-1.1)
IF $(G 4-F 4), 503,60,706$
706 IF (220-1.0) 709,200.200
$709220=220+020$
GO 10703
$502 Y 4=220$
call nuoreo
G4=($225 *$ FMUO*SORT(C40*221*(C41+1.0)/(2.0*(41)1)/10.3386*06))**2
$\mathrm{F}_{4}=(.5 *((4)+1) * 220 * 220) *.(1 .+.5 *((4)-1 *) * 220 * 220) * *(-1(41+1 *) /(\mathrm{C} 41$
1-1.1)
$Y 5=1.0$
$\angle 20=Y 5$
CALL NUOREO
G5 = (1225*FMUO*SORTIC40*221*(C41+1.01/12.0*(41)1)/(10.3386*06))**2
F5=1.5*(C41+1*)*220*220)*(1.+.5*(C41-1*)*220*220)**(-1C41+1.)/(C41
1-1.11
IF $(04-F 4) 503,60,71$
503 IF (G5-F5) 200.72.504
$504 Z 20=Y 5-(G 5-F 5) *(Y 5-Y 4) /(G 5-F 5-G 4+F 4)$
IF (NY35-12) 505,505.200
505_IF (AB5 (Z20-Y4)-0002) 990,990, 506
$506 \quad Y 4=220$
CALL NUOREO
G4 = ($(225 *$ FMUO*SQRT(C40*221*(C41+1.0)/(2.0*(41)))/(0.3386*06))**2
 1-1.) 1
$N Y 35=N Y 3.5+1$
GO TO 504
$72220=1.0$
GO TO 990
$73 Y 5=Y 4$
$Y 4=220$
$60 \quad 10 \quad 10$
$60220=Y 4$
GO TO 990
$90 \mathrm{Y4}=220$
NY35 $=\mathrm{NY} 35+1$
GO TO 10
$40 \quad 220=Y 5$
GO TO 990
$50 Y 4=Y 5$ $Y 5=220$
$N Y 35=N Y 35+1$
IF (220-10.) 10.990.990
200 N235 $=20$
GO TO 990
990_1F (220-10.) $292.992,293$
$993.220=10.0$
$Y 4=2$.
$Y 5=10$.
992 29 294
994 CALL NUOREO REIURN
END

SLBEICBSI DECK
SUBROUTINE BSIT
QLMENSION IBL1(46) TBLIP(46),TBL $3(46), T B L 3 P(46), T B L 4(13), T B L 4 P(13)$ 1.TBL5 (43), TBL5P(43), TBL6(45), TBL6P(45),TBL6PP(45),TBL7(19),TBL7P 21181
DIMENSION $237(3)$
COMMON 218,219.220,221,222,223,224,225,226,227.228,230.231.232.
$1233,234,235,237, C 1, C 2, C 5, C 40, C 41, C 42,01,02,03,04,05,06,07,08$, $2010,01,012,013,014,015,016,017,018,019,020,09, D, E T S, E T A S, F K O$, 3FKW, FMUN, FMUO, FNBR, FNU, FNUC, FNUF, FNUM, FI7,NZ35,SO, SS, TAW , TS, 4TSBZEVISINEWO,Y1EY $2, Y 3, Y 6, N Y 35$ NUCORRAWMESLP
COMMON /CONST/TBL1,TBLIP,TBL3,TBL3P,TBL4,TBL4P,TBL5,TBL6.TBLGP,
2 TBLGPP,TBL5P,IBL7.IBL7P
c
20 IF IFNU-BeOl 402402850
40 IF (0.8-FNU) 60.60 .960
$60.10=(1 \operatorname{EXP}(2,0 * F N U)-1.0) /(E X P(2.0 * F N U)+1.01) / F N U$
CON $=($ FKO/FKW)*FNUM* ($(Q 14) * * 2 * 1$
$N O 1=19$
CALL TBLKP(WO,TBL7,232,TBL7P,NO1)
FIN: $=1 F N U * * 2 * / \angle 732$
X1=ABS (FTN-CON!
IF $(X 1-00002) 990.990 .80$
80 IF IFTN-CON) $100.990,200$.
100 TOP =8.0
BOTT $=F N U$
GO TO 300
200 TOP $=F \mathrm{FNU}$
BOIT $=0.8$
GO TO 300
$300 \quad V=5 *(T O P+B O T T)$
301 1F (V-7.995) 302.302.950
302 IF $(V-0,805) 960,303,303$
303 FWO $=(\operatorname{EXP}(2 \cdot 0 * V)-1.0) /(\operatorname{EXP}(2.0 * V)+1.0) / / \mathrm{V}$
$N O 1=19$
CALL TBLKP(FWO,TBL7,232,TBL7P,NO1)
$F V=(V * * 2 \operatorname{lo}) / 232$
$X 2=A B S(F V-C O N)$
لF (X2-a0002) 200,900,310.
310 IF (FV-CON) 400.900.500
400 BOTT $=V$ GO TO 300
500 TOP $=V$
GO TO 300
900 ENUEV
GO TO 990
950 WRITE 6.2511
951 FORMAT (15H NU EXCEEDS B.0)
$F N U=7.29$
GO TO 990
960 WRITE (69.961)
961 FORMAT $(13 H$ NU BELOW 0.81
ENU $=-81$ $\checkmark 10990$
S9O RETUKN
END

```
SIBFIC NUR DECK
            SUBROUTINE NUOREO
            DIMENSION TBL1(46),TBL1P(46),TBL3(46),TBL3P(46),TBL4(13),TBL4P(13)
            1,TBL5(43),TBL5P(43),TBL6(45),TBL6P(45),TBL6PP(45),TBL7(19),TBL7P
            2(19)
            DIMENSION 237(3)
            COMMON Z18,Z19,Z20,Z21,Z22,223,224,Z25,226,Z27,Z28,230,231,232,
            1233,234,235,237,C1,C2,C5,C40,C41,C42,01,02,03,04,05,06,07,08,
                2010,011,012,013,014,015,016,017,018,019,020,09,O,EPS,ETAS,FKO,
                3FKW,FMUN, FMUO,FNBR,FNU,FNUC,FNUF,FNUM,FI7,NZ35,SO,SS,TAW,TS,
                4TSBZ,VISIN,WO,Y1,Y2,Y3,Y6,NY35,NUCO,RAWM,SLP
            COMMON /CONST/TBL1,TBL1P,TBL3,TBL3P,TBL4,TBL4P,TBL5,TBL6,TBL6P.
            1 TBL6PP,TBL5P,TBL7,TBL7P
            REAL NUCO
            REAL NUC1
            REAL NUFM
            IF(218-.01) 950.950.5
        5 IF (218-5. ) 6,6,960
        6SS = 220*SORT(e5*(41)
            NO = 45
            CALL TBLKPP (SSETBLG&ISBZ,IBLGPP,NO)
            1\times35=1
    10.IF (N\times35-20) 11,11,12
    11 NUFM=(.02604)*(TSBZ/SS)*NUCO**(.128*(12.-NUCO)**4.)+2.67)
                FNUS =-218+NUCO/(1e+(NUCO/NUFM))
                DNUS=((1.+(NUCO/NUFM))**(-2.))*(1.+(NUCO/NUFM)*(.128*(120-NUCO)
            1**4e)+2.67-.512*NUCO*(12.-NUCO)**3.)*ALOG(NUCO)1)
                NUC1 = NUCO -FNUS/DNUS
                N}\times35=N\times35+
                IF {ABS{(NUCO-NUC1)/NUC1)-.0001) 30.30.20
    20 NUCO = NUC1
        GO TO 10
    12N235=20
        GO TO 990
    950 WRITE (6,951)
    951 FORMAT (19H NUO LESS THAN 0.01)
        225=.05
        GO TO }99
    960 WRIIE (6,961)
    961 FORMAT 116H NUO EXCEEDS 5.0)
        225=20.0
        GO TO 990
    30.NUCO = NUC1
        Z25 = 1.45*NUCO**(.128*((20-NUCO)**4.)+2.67)
    290_RETURN
        END
```

SIBEIC BLO DECK
BLOCK DATA
DIMENSLON TBL $1(46), T B L 1 P(46), T B L 3(46), T B L 3 P(46), T B L 4(13), T B L 4 P(13)$ 1,TBL5(43),TBL5P(43),TBL6(45),TBL6P(45),TBL6PP(45),TBL7(19),TBL7P
21191
DIMENSION 237(3)
COMMON /CONST/TBL1,TBL1P,TBL3,TBL 3P,TBL4,TBL4P,TBL5,TBL6,TBL6P.
1 TBL6PP,TBL5P,TBL7,TBL7P
DATA (TBLI(I), $1=1,46) / \quad 30 ., 40 ., 50 ., 60 \ldots, 70 ., 80 ., 90 ., 100 \ldots 110$.

$2,250,260,, 270,, 280,, 290,, 300,310,, 320,1330,, 340,, 350,, 360,1370$.
$3,380 ., 390 ., 400 \ldots, 410,420 ., 430 ., 440 \cdot, 450,460 ., 470 \ldots 480.1$
DATA (IBLIP(1), $1=1,46) / \quad 0.7039,0.9117,1.131,1.350,1.558,1.784$ $1,1.996,2.210,2 \cdot 425,2.640,2 \cdot 855,3.068,3.281,3.492,3 \cdot 703,3 \cdot 912,4.11$
$2,9,4,324,4,527,4.729,4,929,5.127,5,323,5.517,5.709,5 \cdot 897,6.087,6.2$
$272,6.457,6.641,6.820,6.999,7.178,7.357,7.530,7.703,7.876,8.043,8$.
$4211,8.378,8.545,8,706,8.868,9.030,9.192,9.3471$
DATA (TBL $3(1), I=1,46) / \quad 30 ., 40 ., 50 ., 60 ., 70 ., 80 ., 90 ., 100 ., 110$. $1,120 ., 130 ., 140 \ldots 150,160,2170 ., 180 \ldots 190 ., 200 ., 210 ., 220 ., 230,240$.

DATA (TBL3P(I)., $=1,46$) $/$ 215.7,281.1.347.3.416.3.485.6.555.1.6 $122,9,692.9,763.3,831,9,899.0,964,6,1029 ., 10910,1152,, 12120,12710$, 2 1329., 1385., 1440., 1494., 154.7.,1599.,1650.,1700.,1750.,1798..1846. $3,1893 ., 1939 ., 1985,, 2030 ., 2075 ., 2118 \cdot, 2160 ., 2202 ., 2245,12286 ., 2327$ $4, \ldots 2366 ., 2406 ., 2445 ., 2485 ., 2520 ., 2560.92595 \cdot 1$
DAIA (I3L4(1), $1=1,13) / \quad 0.0 .2,0.4,0.6,0.8,1.0,1.2,1.4,1.6,10$
$18,2 \cdot 0,2 \cdot 2,10.1$
DATA CTBL4P(1).1 $\equiv 1,131 / \quad 1.0,0.998,0.995,0.991,0.985,0.977 .0 .9$
$170,0.964,0.959,0.955,0.952,0.950 .0 .9501$
DATA (TBLE(I).1 $=1,43) 1 \quad 0.05,0.06,0.07,0.08,0.09,0.10 .0 .11,0$. $112,0.14,0.15,0.17,0.19,0.20,0.23,0.25,0.30,0.35,0.40 .0 .50,0.60,0$.
$2,70,0,80,0.90,1,0,1,1,1,2,1,3,1,4,1,5,1,7,1,9,2,0,2,5,3.0,3.5,4,0$,
$35.0,6.0,7 \cdot 0,8 \cdot 0,10.0,12.0,25 \cdot 01$
DATA (TBLSP(1), $1=1,43) / \quad 0.02,0.03,0.042,0.054,0.068,0.082,0.0$ $197,0.112,0.144,0.158,0.188,0.218,0.232,0.272,0.294,0.350,0.397,0$. $2437,0.505,0.558,0.603,0.640,0.672,0.700,0.724,0.744,0.765,0.783,0$ $3.800,0.826,0.849,0.858,0.895,0.916,0.932,0.944,0.960 .0 .970,0.977$, $40.982,0.990,1,0,1,01$
DATA (TBL6(I), $=1,45) / \quad 0.2,0.4,0.6,0.8,1.0,1.2,1.4,1.6,1.8,2$
$1.0,2,2,2,4,2 \cdot 6,2 \cdot 8,3,0,3 \cdot 2,3,4,3 \cdot 6,3 \cdot 8,4 \cdot 0,4,2,4,4,4,6,4,8,5 \cdot 0,5 \cdot$
$2,2,5.4,5.6,5.8,6.0,6.2,6.4,6.6,6,8,7.0,7.2,7.4,7.6,7.8,8.0 .8 .2$,
$38.4,8.6,8.8,9.01$
DATA (TBL6P(I), I = 1,45)/ 9.80271,10.94784,12.89399,15.69746,19 $1.43602 .24,20781.30,12863,37.32923,45.95230,56.14932,68.07771,81.8$ $29947,97.77902,115.88287,136.37821,159.43361,185.21769,213.89927,2$
$3,45,64801.280 .63340,319,02474,360.99204,406,70528,456,33364,510.04$ 4 756,568.01730,630.41182,697.40229,769.31,845.89,927.63,
$5.1014 .61 .1107 .11 .1205 \cdot 2 \cdot 1302 \cdot 1,1418 \cdot 8,1534.7$, 1656.7.1785.2, $61920.4,2062.2,2210.9,2367 \cdot 0,2530.2,2700.71$
 $1.63288,15.22758,16 \cdot 96068,18.79408,20.69872,22.65358,24 \cdot 64392,26.6$ $25990.28 \cdot 69470,30.74382 \cdot 32 \cdot 80398,34 \cdot 87300 \cdot 36 \cdot 94914,39 \cdot 03112.41,118$ $300,43 \cdot 20904,45 \cdot 30354,47,40108,49.50126,51.60366,53 \cdot 70808,55 \cdot 81428$ $4 . .57 .92200 .60 .03114 .62 .141,64.248,66,359,68,467,70.580,72.692 \mathrm{e}$ $574.802,76 \cdot 910,79.025,81 \cdot 130,83.242,85.352,87.461,89.561,91.676$, $6 \quad 93.782 .05 .886 /$
DATA (TBL7(I),1 = 1.919)/ 001..150.20.250.30.0350.40.450

END

SLBETC TBL DECK
SUBROUTINE TBLKPIVO,VAR,FO,FCN,NOI
DIMENSION VAR (100) FFCN(100)
THIS SUBROUTINE PERFORMS TABLE LOOK-UP.OPERATIONS.
DO $100 \quad 1=1, N O$
$\operatorname{VARI}=\operatorname{VAR}(1)$
IF (VO-VAR1) $200,150,100$
100 CONTINUE
WRIIE $(6,200) V O, N O$
900 FORMAT 134 H VARIABLE EXCEEDS TABLE FOR VALUE EII.4.13H TABLE SIZE $1=151$
FO $=$ FCN(NO)
GO TO 300
$150 \quad F O=F C N I I I$
(1) $70 \quad 300$

200 IF (1-1) 210,290.210
210 11 $=1-1$
TEMP = VO-VAR (III)
TEMI=VARLI-VARCII)
RATIO =TEMP/TEMI
FO=RATIO* (FCN(1)-FCN(111) + FCN(11)
GO TO 300
290 KO=FCNII
300 RETURN
END

B. 5 Mean Flow Program

This program calculates the local flow properties in a fluid stream from three independent flow properties using the compressible flow relations (25). Either one of three sets of input data may be used in the program. All sets use Pitot pressure and total temperature data, and the distinction between input types exists because the third input property might be centerline static pressure, total pressure downstream of the nose shock, or mass flux data. As mentioned in Section II, this variation in input data was necessary because the static pressures could not be measured directly in the vicinity of the base. Therefore, the third independent measurement in those base regions was either mass flux data in the base shear layers or the total pressure in the inviscid isentropic region outside the shear layer. Unfortunately, double roots difficulty in solving for Mach number from the measured data requires that the mass flux version of the mean flow program be used only for $M \geq 1$.

UE

$$
u_{e} / u_{\infty}
$$

$D E$	ρ_{e} / ρ_{∞}
$T E$	T_{e} / T_{∞}

TTOE $\quad T_{t_{e}} \equiv T_{t_{\infty}} \equiv T_{o}$ RET $\quad \operatorname{Re}_{\mathrm{tD}}$

W UDEL
H TDEL
MUE $\quad \mu_{e}$

MU $\quad \mu$
$\operatorname{MUT} \quad \mu_{t}$
$C \quad \quad \rho^{\mu} / \rho_{e} e_{e}$

PTM $\quad p_{t} / p_{o}$
$\operatorname{PPPT} \quad p_{t_{2}} / p_{t}$
$P P P \quad p / p_{t}$
$\operatorname{PPC} \quad\left(p_{t} / p_{0}\right)_{c}$
$F M \quad R e_{t} \mu \sqrt{T_{t}} / p_{t_{2}}$
MDEF $\frac{\rho_{u}}{\rho_{e} u_{e}}\left(\frac{u_{e}-u}{u_{e}}\right)$
EDEF $\quad\left(\frac{T_{t_{e}}-T_{t}}{T_{t_{e}}}\right) \frac{\rho u}{\rho_{e} u_{e}}$
ratio of edge velocity to free stream velocity
ratio of edge density to free stream density ratio of edge static temperature to free stream static temperature
edge total temperature, ${ }^{o_{K}}$
local Reynolds number based on reference length and total temperature
viscosity based on edge static temperature, $\mathrm{gmm} / \mathrm{sec} \mathrm{cm}$
viscosity based on local static temperature, $\mathrm{gmm} / \mathrm{sec} \mathrm{cm}$
viscosity based on local total temperature, $\mathrm{gmm} / \mathrm{sec} \mathrm{cm}$
ratio of local density-viscosity product to edge density-viscosity product
ratio of local total pressure to free stream total pressure for region between shear layer edge and leading edge shock
ratio of local Pitot pressure to local total pressure
ratio of local static pressure to local Pitot pressure
ratio, as corrected for tunnel gradient, of local Pitot pressure to free stream total pressure

Mach number function
generated
generated

RE	$\underline{R}{ }_{D}$	local Reynolds number based on reference length and static temperature
UDEF	$\left(u-u_{t}\right) /\left(u_{e}-u_{t}\right)$	ratio of local-centerline velocity defect to edge-centerline velocity defect
DDEF	$\left(p-p_{\phi}\right) /\left(p_{e}-p_{\phi}\right)$	ratio of local-centerline density defect to edge-centerline defect
TDEF	$\left(T_{\Phi}-T\right) /\left\langle T_{\Phi}-T_{e}\right)$	ratio of centerline-local static temperature excess to centerline-edge static temperature excess
TTDEF	$\left(T_{t}-T_{t_{\phi}}\right) /\left(T_{o}-T_{t_{\phi}}\right.$) ratio of local-centerline total temperature \notin defect to edge-centerline total temperature defect
UDIF	$\left(u_{e}{ }^{-u}\right) /\left(u_{e}{ }^{-u_{t}}\right)$	ratio of edge-local velocity difference to edge-centerline density difference
DDIF	$\left(p_{e}-p\right) /\left(p_{e}-p_{t}\right)$	ratio of edge-local density difference to edge-centerline density difference
TDIF	$\left(T-T_{e}\right) /\left(T_{4}-T_{e}\right)$	ratio of local-edge static temperature difference to centerline-edge static temperature difference
TTDIF	$\left(T_{t_{e}}-T_{t}\right) /\left(T_{o}-T\right.$	ratio of edge-local total temperature difference to edge-centerline total temperature difference
UDEL	$\left(u_{e}-u\right) / u_{e}$	ratio of edge-local velocity defect to edge velocity
DDEL	$\left(p_{e}-p\right) / p_{e}$	ratio of edge-local density defect to edge density
TDEL	$\left(T-T e^{\prime / T} e\right.$	ratio of local-edge static temperature excess to edge static temperature
TTFS	T / T_{∞}	ratio of local static temperature to free stream static temperature
UUFS	u / u_{∞}	ratio of local velocity to free stream velocity
DDFS	p / P_{∞}	ratio of local density to free stream density
DUDU	$p u / \rho_{\infty} u_{\infty}$	ratio of local mass flux to free stream mass flux

DIST $\quad \int_{0}^{\infty}\left(1-\frac{\rho u}{\rho_{e} u_{e}}\right) d\left(\frac{y}{D}\right) \begin{aligned} & \text { ratio of displacement thickness to refer - } \\ & \text { ence length, } \delta^{*} / D\end{aligned}$
MOMT $\int_{0}^{\infty} \frac{\rho_{u}}{\rho_{e} u_{e}}\left(1-\frac{u}{u_{e}}\right) d\left(\frac{y}{D}\right)$ ratio of momentum thickness to reference length, $\bar{\theta} / D$

EMT

$$
\int_{0}^{\infty}\left(1-\frac{T_{t}}{T_{t e}}\right) \frac{\rho u}{\rho_{e} u_{e}} d\left(\frac{y}{D}\right)
$$

ratio of energy thickness to reference length, E/D

DMUDMU pu $/ \rho_{\infty} \mathbf{u}_{\infty} \mu_{\infty}$
ratio of local mass flux-viscosity product to free stream mass flux-viscosity

$$
\frac{\bar{y}}{D}=\frac{\rho_{e} e_{e}}{\rho_{\infty} u_{\infty}} \sqrt{R e_{\infty}} \int_{0}^{D_{D}} \frac{\rho}{\rho_{e}} d\left(\frac{y}{D}\right)
$$

ratio of transformed y coordinate to reference length

DELI

δ_{e} / D

DEL2 $\quad\left(\frac{\bar{x}}{\bar{D}}+\frac{\bar{x}_{o}}{D}\right)_{u}^{1 / 2}$
$\operatorname{DEL} 3 \quad\left(\frac{\bar{x}}{\bar{D}}+\frac{\bar{x}_{o}}{D}\right)_{h}^{1 / 2}$

DEL4

$$
\left.\frac{\bar{y}}{\bar{D}}\right)_{U D I F}=.5
$$

DEL5

$$
\left.\frac{\bar{y}}{\bar{D}}\right)_{T D I F}=.5
$$

YDELI $\quad y / \delta_{e}$
ratio of wake total temperature semithickness ($\ddagger-e$) to reference length
square root of ratio of transformed axial distance (based on Kubota's linear wake theory) plus 'effective origin' of wake from centerline velocity extrapolation, to reference length
square root of ratio of transformed axial distance (based on Kubota's linear wake theory) plus "effective origin" of wake from centerline static temperature extrapolation, to reference length
ratio of wake semi-thickness in terms of transformed lateral distance and based on UDIF $=.5$ location, to reference length
ratio of wake semi-thickness in terms of transformed lateral distance and based on TDIF $=.5$ location, to reference length
ratio of lateral distance to wake semithickness

YBDEL1		
YBDEL2		
YBDEL3	y/DEL $1 \rightarrow 5$	generated
YBDEL 4		
YBDEL5		
XOU	$\left(\frac{x^{x}}{}+\frac{\bar{x}_{o}}{D}\right)_{u}-x / D$	generated
XOT	$\left(\frac{\bar{x}}{D}+\frac{\bar{x}_{0}}{D}\right)_{x}-x / D$	generated
SF	SF	code number 0,2 , or 101 for use in base region (NTYPE $=1$) describing calculation procedure for streamline determination (mass flux integration from leading edge shock 2, 101 or centerline 0) and method of calculating mean flow (use of Reynolds number 2 or total pressure behind leading edge shock 101)
REOO	Re_{∞}	Reynolds number code which instructs program to calculate mean flow quantities from total pressure behind leading edge shock when measured Reynolds number is both greater than REOO and exceeds edge Reynolds number
YBC	YBC	for $\mathrm{NTYPE}=1, \mathrm{SF}>1$ implies lateral position of data point from centerline in terms of y / D; for NTYPE $=2$, and NTYPE $=1, \mathrm{SF}<1.0$ implies $Y B / \bar{C}$
UCL	u_{Φ} / u_{∞}	ratio of centerline velocity to free stream velocity
DCL	$\mathrm{P}_{\underline{¢}} / \mathrm{P}_{\infty}$	ratio of centerline density to free stream density
TCL	$\mathrm{T}_{\underline{1}} / \mathrm{T}_{\infty}$	ratio of centerline static temperature to free stream static temperature
TTCL	$\mathrm{T}_{t \pm}$	centerline total temperature, ${ }^{\circ} \mathrm{K}$
RW2	$\left(1-\frac{u_{t}}{u_{e}}\right)^{-2}$	square of ratio of edge velocity to edgecenterline velocity defect
RH2	$\left(\frac{T_{ \pm}}{T_{e}}-1\right)^{-2}$	square of ratio of edge static temperature to centerline-edge static temperature excess

QMOMT $\frac{\rho_{e} u_{e}^{2}}{\rho_{\infty} u_{\infty}^{2}} \frac{\bar{\theta}}{\bar{D}}$
product of ratio of momentum thickness to reference length with ratio of edge dynamic pressure to free stream dynamic pressure
EMTM $\frac{\rho_{e} e^{u}}{\rho_{\infty} u_{\infty}} \frac{E}{D} \quad$ product of ratio of energy thickness to reference length with ratio of edge mass flux to free stream mass flux
PSIl $\frac{\psi}{\rho_{\infty} u_{\infty} \bar{D}}=\int_{0}^{y} \frac{\rho u}{\rho_{\infty} u_{\infty}} d\left(\frac{y}{D}\right)$
integrated mass flux from centerline to data point location as ratioed to free stream

PSI

$$
\begin{aligned}
& \text { mass flux } \\
& \frac{\psi}{P_{\infty} u_{\infty} D}=\frac{y_{S}}{D}+\int_{y_{S}}^{y} \frac{\rho_{0}}{P_{\infty} u_{\infty}} d\left(\frac{y}{D}\right)
\end{aligned}
$$

$\dot{\mathbf{y}}_{\mathrm{S}}$ integrated mass flux from centerline to data point as ratioed to free stream mass flux; for this case integration starts at leading edge shock, i.e., SF >1

x．

$x \subset 1=-6$	$6^{\text {SECO}}=0$	p	PT	Itrie
RE	PET	LDEF	CCEF	tifs
MCEF	ecef	cist	MEM	Ef
CELS	YBCEL 3	TDEF	UCEL	CCEL
ceta	chloml	Y8DEL4	YBCELS	CEL2
PS1	CMEM	EMTP	C	YBC
C．4917E 01	$0.1839 \mathrm{EC3}$	C．2823E 01	$0.7446 E$ OC	g．lcoor al
C．7C2te 05	$0.1464 E 05$	－c．3534E－16	－0．3534E－16	0.1403 E O1
C．	c．	C．	0.	0.
c．lcece 01	－C． $3534 \mathrm{E}-16$	－C． $.3534 E-16$	－0．3534E－16	－0．3534E－16
colcces ol	C．2723E OI	－0．3534E－16	－0．3534E－16	0．3162E－00
－$-3534 E-16$	－C．3534E－16	－C．3534E－16	－C． $3534 \mathrm{E}-16$	－0．3534E－16

C．4E73E 01 C．2226E O3 C．3782E CL $0.7448 E 00$ C．1COCE OI

 $\begin{array}{ll}C_{0} & 0.3102 E-00 \\ 0.2266 E & 0.31023 \\ 6.1 C C O E & 01 \\ 0.6300 E O O\end{array}$

 ： $\begin{array}{rrrr}C .3913 E & 01 & C .8182 E & C 2 \\ C .2262 E & C .1984 E G 1 \\ C .152 E E-01 & 0.6748 E & -C .4621 E-02 & -C .2675 E O 1 \\ C .8727 E-01\end{array}$

 －C．3534E－16

 $-0.3534 E-16$
$c .1221 E ~ C l$

 $-C .3534 \mathrm{E}-1 \mathrm{E}$
$0.4644 \mathrm{E}-\mathrm{C} \mathrm{C}$ $0.6 C 85 E-01$
$.1265 E O 1$
$.2340 E O 1$
$.2294 E-C 3$
$.5031 E \mathrm{CO}$
$.4357 E \mathrm{C}$ $0.5940 E-01$
$C .1233 E O 1$
 $.4900 \mathrm{E}-01$
.1600 CI
.1869 Cl
$.2294 \mathrm{E}-03$ C． $2294 E-03$
$0.01166 E ~ C 3$ 0
0
0
0
0
0
0

is $39391^{\circ} 9$
$1930031^{\circ} 0$
$09-39 \angle 91^{\circ} 0$
$1537542^{\circ} 0$
$1935911^{\circ} 0$
EJ $3924^{\circ} 0$

 －

 －}

ぶすご$0.4 C 2 C E$
$.1 C C C E$
$.1525 E$
$.558 \in E$
$.1 C C C E$
 $0.9600 E$
$C .1924 E$
$C .8711 E-01$

吅ご
 C． $45 E C E-C C$
$C . S 585 E ~ C C$
$C .52 E 6 E ~ C C$

B. 5e) Typical Output Data for Mean Flow Program (NTYPE 2)

B．5f）Fortran Listing of Mean Flow Program

```
S18FIC MAI DECK
DIMENSION TV（200），MUV（200），YO（50），PPM（50），TT（50）．REOM（50）－
1FV（200），MFV（200），PPPV（200），MV（200），PPV（200），MPV（200）
COMMON／TABLE／TV，MUV，PPPV，MV，MFV，FV，PPV，MPV
REAL MFS，MUFS，MUO，M，MU，MV，MS，MUT，MUV，KN，MDEF，MOMT，MDEFS ，MFV，M1，M2
1 MPV
\(C 1=1.36 * 980 . / 2.871 E 06\)
\(\mathrm{C} 2=\operatorname{SORT}(1.4 * 2.871) * 1000\) ．
C \(3=1\) e \(36 *\) ． \(7 / 1,2 * * 3.5\)
C4 \(=\) SQRT（3．1416＊•7）
1000 READ（5，1）NOSP，NTYPE，PO，TO，MFS，DIA，SF，PTM
1 FORMAT（215，6F10．0）
WRITE（6．6）NOSP，NTYPE，PO，TO，MFS，DIA，SF，PTM
6 FORMAT \(11 \mathrm{H} 1,1 \times 5 \mathrm{HNOSP}=, 12,2 \times 6 \mathrm{HNTYPE}=, 12,2 \times 3 \mathrm{HPO}=, \mathrm{E} 12.4,4 \times 3 \mathrm{HTO}=9\)
```



``` TEMP \(=1 .+\) MFS＊＊2／5．
IEMP7＝LEMP＊＊3． 5
TFS＝TO／TEMP
DO＝ 1 I＊PO／TO
DFS \(=\) DO／TEMP＊＊2．5
UFS \(=S Q R I(I E S) * M E S * C 2\)
OFS＝DFS＊UFS＊＊2／1960．
DUFS \(=\) DES＊UFS．
CALL TBLKP（TFS，TV，MUFS，MUV•44）
MUFS \(=\) MUFS \({ }^{2}\) 1eOE－7
CALL TBLKP（TO：TV，MUO，MUV，44）
\(M \cup O=M U Q * 1 ع O E-7\)
REFS＝DFS＊UFS＊DIA／MUFS
REQFS \(=\) REFS＊MUFS／MUO
PFS＝PO／TEMP 7
WRITE \((6,7)\) REOFS，REFS，TFS，DO，PFS，OFS，DFS，UFS ODUFS）
7 FORMAT \(11 \times 6\) HREOFS \(=9 E 12.4,2 \times 5 H R E F S=9 E 12.4,2 \times 4 H T F S=9 E 12.4,2 \times 3 H D O=\) ，
\(1 E 12.4,3 \times 4 \mathrm{HPFS}=, E 12.4,2 \times 4 \mathrm{HQFS}=, \mathrm{E} 12.4,2 \times 4 \mathrm{HDFS}=, \mathrm{E} 12.4 /\)
\(21 \times 4\) HUFS \(=\), E12．4．4X5HDUFS \(=, E 12.41\)
C PROFILE DATA CALCULATION
```


NOS＝1

```
GO TO 110,201 ．NTYPE
10 REAL \((5,2)\) XD．PPG：NPTS，XOU，XOT，REOO
2 FORMAT（2F10．4．110，3F10．4）
NRITE（6．16）XD，PPG，NPTS；XOU，XOT，REOO
16 FORMAT 1 HO． \(1 \times 3 \mathrm{HXD}=, \mathrm{E} 12.4,2 \times 4 \mathrm{HPPG}=, \mathrm{E} 12.4,2 \times 5 \mathrm{HNPTS}=, 15\) ，
\(12 \times 4 \mathrm{HXOU}=, \mathrm{E} 12.4,2 \times 4 \mathrm{HXOT}=, \mathrm{E} 12.4,2 \times 5 \mathrm{HREOO}=, \mathrm{E} 12.4 / 5 \times 2 \mathrm{HYD}\) 。
\(211 \times 2 \mathrm{HTT} ,11 \times 3 \mathrm{HPPM} 10 \times 4 \mathrm{HP} 1 \mathrm{BM} 9 \times 4 \mathrm{HREOM}, 9 \times 1 \mathrm{HM}, 12 \times 1 \mathrm{HQ}, 12 \times 1 \mathrm{HP}, 12 \times 2 \mathrm{HP} \mathrm{T}_{0}\)
```



``` \(411 \times 3\) HRET， \(10 \times 4\) HUDEF \(9 \times 4\) HDDEF， \(9 \times 4\) HTTFS \(/ 5 \times 4\) HUUFS， \(9 \times 4 \mathrm{HDDFS} 99 \times 6 \mathrm{HDUDUFS}\) \(57 \times 3 \mathrm{HPPP}, 10 \times 3 \mathrm{HPPC}, 10 \times 4 \mathrm{HMDEF}\) • \(9 \times 4 \mathrm{HEDEF}, 9 \times 4 \mathrm{HD} 15 \mathrm{~S}, 9 \times 4 \mathrm{HMOMT} 9 \times 3 \mathrm{HEMT} /\) \(65 \times 2 \mathrm{HYB}, 11 \times 4 \mathrm{HPS} 11.9 \times 3\) HMUT \(10 \times 2 \mathrm{HFME} 11 \times 5 \mathrm{HYDEL}, 8 \times 4 \mathrm{HDEL} 5\) ． \(9 \times 6\) HYBDEL3． 77X4HTDEF， \(9 \times 4\) HUDEL \(9 \times 4\) HCDEL／5X4HTDEL， \(9 \times 4\) HUDIF \(9 \times 4\) HDDIF． \(9 \times 4\) HTDIF． \(89 \times 4 \mathrm{HDEL} 3,2 \times 4 \mathrm{HDEL} 4,9 \times 6 \mathrm{HDMUDMU} \mathrm{\_} 7 \times 6 \mathrm{HYBDEL} 4,7 \times 6 \mathrm{HYBDEL5}, 7 \times 4 \mathrm{HDEL} 21\) \(95 \times 5 \mathrm{HTTDEF}, 8 \times 5 \mathrm{HTTDIF} 8 \times 6 \mathrm{HYBDEL} 2,7 \times 3 \mathrm{HRW} 2,10 \times 3 \mathrm{HRH} 2,10 \times 3 \mathrm{HPSI}\) ． \(110 \times 5 \mathrm{HQMOML} 8 \times 4 \mathrm{HEMIMe} 2 \times 1 \mathrm{HCe} 12 \times 3 \mathrm{HYBC}\)
READ \((5,3)\)（YD（1） \(1=1\) NPTS）
READ \((5,3)\)（PPM（ 1 ） \(1=1\) NPPTS）
READ（5．3）（TT（I）， \(1=1\), NPTS）
READ \((5,3)\)（REOM（1）\(I=1\) eNPTS）
3 FORMAT（16F5．0）
GO IO 30
20 READ（5，2）XD：PPGO NPTS\＆PIBMヵXOUQXOT
PIBM＝P1BM昔。OO1
WRITE（6，8）XD，PPG，PIBM，NPTSOXOU，XOT
```


CALL TBLKP(ITIULE TVEMUTEMUV 44)
MUT $=$ MUT*1.0E-7
$60 \mathrm{MS}=\mathrm{M}=\mathrm{H}^{2}$
TEMP1 $=$ MS/5.
TEMP $2=5 . /(6, * M S)$
PPC = PPMII / PPG
IF $(M-2) 164,64,65$
$640=07 * 1.36 * P O * P P(*(M * * 2) *.(5 . /(50+M * * 2 \cdot)) * * 3.5$ 60 IO 66
65 TEMP5 $=(17 * * M S-1) /.(6 * * M S))^{* * 2.5}$ TEMPG $=(17 . * M S-1 * 1 / 6 *) * 2.5$ Q=C3*PO*PPC*TEMPS
66 TTFS $=$ TT(1) / TFS/(10+TEMP1)
GO TO (61,62), NTYPE
61 IF (SF-1.0) $71.62,62$
71 DUDUFS $=$ (REOM(1)*MUT)/(.000254*DUFS)
UUFS $=0 /$ (QFS*DUDUFSI
GO TO 63
62 UUFS $=M / M F S * S Q R T(T T F S)$ DUOUFS $=Q /$ QFS $/$ UUFS
63 UDES $=$ DUDUES $/$ UUES
CALL TBLKP(TTFS*TFS,TV,MU,MUV.44)
$M U=M U * 2 C E-7$
DMUDMU =DUDUFS*MU/MUFS
REI = DUDUFS*DFS*UFS*DIAIMUT
RE $=$ RETHMUT ! MU
IF (M-10) 67.67068
67 P=PPC*TEMP7*(5./(5.+M**2.) 1)**3.5 PI $=P P C$
60 TO 69
$6 . \mathrm{P}=\mathrm{PPC} *$ TEMP 7*(TEMP2)**3.5*TEMP6
PT $=$ PPC* (1.16*+TEMP2)**3.5*TEMP6
69 PPP $=P$ / PPPC/IEMP7
$K N=C 4 * M * \cdot 762 /(R E *+000254)$
AFIL NE 11 GO TO 70
UE $=$ UUFS
TE $=$ IIFS
$D E=$ DDFS
FMUE $=$ MU
TTOE = TTII
GO 10.90
70 IFII -NE 21 GO TO 80
UCL $=$ UUFS
DCL $=$ DDFS
ICLEIIES
TTCL=TT(I)

RH2 $=1 * /((T C L / T E)-10) * * 20$
BO UUE = UUFS / UE
DOE $=$ DOFS $/$ DE
DUDUE $=$ DUDUFS / DE / UE
C=DDE*MU/FMUE
MDEF $=$ DUDUE $(10-$ UUE $)$
TTTTE = TTII / TTOE
IIE $=$ ITES/IE
EDEF = DUDUE*(1.-TTTTE)
UDEF = UUFS-UCL) , (UE-UCL
DDEF = (DDFS-DCL) / (DE-DCL)
TUEF $=(T C L-I T F S) /(T C L-T E)$
TTUEF=(TTII)-TTCL)/(TTOE-TTCL)
UDELEUE-UUESI/UE

MDEFS $=$ MDEF
TTTES = TTTTE
DOES = ODE
OMOMT = MOMT*UE*UE*DE
EMTM $=E M T * D E * U E$
$Y B C=Y B * S Q R T(C)$
PSII=UE*DE*(YD(1)-DIST)
IF ISF-1.01 90,89,89
89 PSI = (DEL $1+$ UE*DE* (DLSI-YDUH)

$Y B C=D E L I-Y D I$

90 WRITE $(6,9)$ YD(1),TT(I),PPM(1),PIBM,REQM(I), M, Q,P,PT,TTTTE 1, UUE, TTE, DDE, DUDUE, KN, RE, RET, UDEF, DDEF \& TF S, UUF S, 2 DDES,DUDUES,PPP\&PPC\&MDEFEEDEF,DIST,MOML,EMT,YB, PSIL,MUT, FME 3YDELI,DEL5 ,YBDEL 3,TDEF,UDEL,DDEL,TDEL,UDIF,DDIF,TDIF,DEL3,DEL4, 4DMUDMU, YBDEL4,YBDEL5,DEL2,TTDEF, TTDIF,YBDELZ,RW2,RH2,PSI,OMOMT, 5EMTM.C.YBC
9 FORMAT (1HO $10 E 13.4 /(1 X+10 E 13.4))$
$5 \quad 1=1+1$
NI $=1-1$
IF (NI .NE. NPTS) GO TO 29
MOS $=$ NOS +1
IF INOS •GT• NOSP , GO TO 1000
GO TO 11022018 NTYPE
END

BLOCK DATA REAL MV, MUV,MFV,MPV		
DIMENSION TV(200), MUV(200), PPPPV(200), MV(200), MFV(200),FV(200), 1PPV(200) MPV(200)		
COMMON /TABLE/TV,MUV,PPPV,MV,MFV,FV,PPV,MPV C TABLE 1-- MU=F(T)		
DATA $\{$ MUV(I), $=1,441 / 0.0,215.7,281.1,347.3,416.3,485.6,555.10$$1622.9,692.9,763.3,831.9,899.0,964 \cdot 6,1029 ., 10910.1152 ., 1212 ., 1271 \mathrm{~g}$		
$\begin{aligned} & 4 \quad . \quad 23660.2406 \cdot 24450,2485.1 \\ & C \quad \text { TABLE } 2-\cdots M=F(P / P F S) \end{aligned}$		
DATA (PPPV (1), $I=1,111) / .007739,007896,008057,000824,0008394$, $1.008572, .008754, .008943, .009138, .009338, .009546, .009761, .009983$,		
$1.01021, .01045,001070, .01095,01122, .01149, .01177$, 2 .01207, .01222,.01237,.01253,.01269.		
$\begin{aligned} & 1.01285, .01302, .01319, .01336, .01354, .01372, .01409, .01448, .01488, \\ & 2.01530,01574, .01619, .01667, .01716, .01768, .01823, .01880, .01939, \end{aligned}$		
$\begin{aligned} & 3.02002, .02067, .02136, .02208, .02284, .02364, .02449, .02537, .02631, \\ & 4 \\ & \hline \end{aligned}$		
$5.03938, .04120, .04314, .04523, .04747, .04987, .05247, .05526,0058290$$6,06157,06513, .06900,0.07323, .07785, .08291, .08848, .09461,01014$,		
$\begin{aligned} & 9.7840, .8430,08956.09183, \cdot 9395, \cdot 9575 \cdot .9725,+9844.09930 .099830 \\ & 1.9994,1.0 / \end{aligned}$		
$\begin{aligned} & \text { DATA } \operatorname{MV}(11,1=1,1111 / 10.9 .9 .9 .8,9.7,9.6,9.5,9.4,9.3,9.2,9.1,9.00 \\ & 18,9,8.8,8,7,8.6,8.5,8,4,8.3,8.2,8.1, \end{aligned}$		
$\begin{array}{r} 1 \\ 1.7 .60,7.55,7.5,7,4,7.3,7.2,7,1,7.0,6,9,7.85,7.80,7.75,7,70,7.659 \\ \hline \end{array}$		
$26.2,6.1,6.0,5 \cdot 9,5.8,5 \cdot 7,5.6,5.5,5,4,5 \cdot 3,5.2,5.1,5,0,4.9,408,4.7$, $3,4,6,4,5,4,4,4,3,4,2,4 \cdot 1,4 \cdot 0,3.9,3 \cdot 8,3.7,3 \cdot 6,3.5,3.4,3.3,3.2,3.1$,		
$\begin{aligned} & 6.03 \cdot 001 \\ & T A B L E 3--M=F(F M) \end{aligned}$		
DATA (FV(I), I=1.101)/.8385..8388..8392..8397.88399..84049.08406.$1.8409, .8414, .8418, .8423, .8427, .8431, .8436, .8443, .8452, .8457, .84629$		
$\begin{aligned} & 2.8467, .8473, .8480, .8485, .8491, .8497, .8504, .8513, .8521, .8530, .85390 \\ & 3.8548, .8557, .8565, .8575, .8589, .8600, .8613, .8621, .8631, .8649, .8662 \% \end{aligned}$		
$\begin{aligned} & 4.8676, .8691, .8706, .8721, .8742, .8762, .8780, .8798, .8819, .8843, .8865, \\ & 5.8894, .8918, .8944, .8975, .9009, .9042, .9077,09114, .9155, .9196, .9247 \end{aligned}$		
$\begin{aligned} & 6.9299, .9343, .9403, .9464, .9523,09596, .9667, .9753, .9837, .9933, \\ & 71.0035,1.0149,1.0265,1.0403,1.0536,1.0695,1.0864,1.1046,1.1248, \end{aligned}$		
$\begin{aligned} & 81 \cdot 1357,1 \cdot 1463,1,1583,1 \cdot 1702,1 \cdot 1830,1 \cdot 1956,1+2090,1 \cdot 2221,1 \cdot 2371, \\ & 21.2510,1.2663,1.2809,1,2961,1.3104,1.3244,1.3380,1.3494,1.3585, \end{aligned}$		
```11.3664.1.3680/ DATA (MFV (I),I=1,1011/10.,9.9,9.8,9.7.9.6.9.5,9.4,9.3,9.2,9.1.9.0.```		
$\begin{aligned} & 11.05,1.01 \\ & \text { IABLE } 4-- \text { M } \end{aligned}$		



$2.005799, .006114, .006449, .006806, .007187, .007592, .008025, .008488$, $1.008982, .009510, .01008, .01068, .01133, .01202, .01277, .01357$,
$1.01443, .01535, .01634, .01741, .01857, .01981, .02115, .02259, .02416$, $1.02584, .02767, .02965, .03180$..03412,.03654,.03938,.04236,.04560, $1.04913, .05297, .05715, .06172, .08670, .07214, .07809, .08459, .09170$, $1.09948, .1080, .1173, .1276, .1388, .1510, .1645,01792, .1953, .2129$,
 1.5401,.5833,.6281,.6742,.7209,.7442,.7674,.7902,.8127,.8346,
 1.9967..9989..9999.1.00001

DATA (MPVIII, $1=1,1011 / 10 ., 9.9,9.8,9.7,9.6,9.5,9.4,9.3,9.2,9.1,9.0$, $18.9,8.8,8.7,8.6,8.5,8.4,8.3,8.2,8.1, \quad 8.0,7.9,7.8,7.7,7.64$
$7,5,7,4,7,3,7,2,7,1,7,0,6,9,6,8,6,7,6,6,6,5,6,4,6,3,1$ $26 \cdot 2,6 \cdot 1,6 \cdot 0,5,9,5,8,5 \cdot 7,5 \cdot 6,5 \cdot 5,5 \cdot 4,5 \cdot 3,5 \cdot 2,5 \cdot 1,5 \cdot 0,4 \cdot 9,4 \cdot 8,4 \cdot 7$, $34,6,4,5,4,4,4,3,4,2,4,1,4,0,3,9,3,8,3,7,3,6,3,5,3,4,3,3,3,2,3,1$,
 $11.75,1,7,1,65,1,6,1,55,1,5,1,45,1,4,1,35,1,3,1.25,1,2,1,15,1,1$, 11.05 .1 .01 END

```
 SLBEIC TBL DECK
 SUBROUTINE TBLKP(VO,VAR,FO,FCN,NO)
 ~IMLNSION VAR(100),FCN(100)
 C THIS SUBROUTINE PERFORMS TABLE LOOK-UP OPERATIONS-
 DQ 10Q }\quad=1=N
 VARI=VAR(I)
 IF (VO-VAR1) 200.150.100
 100 CONTINUE
 WRIIE (6,900)YO.NO
 900 FORMAT (34H VARIABLE EXCEEDS TABLE FOR VALUE EI1.4,13H TABLE SIZE
 l=151
 FO =FCN(NO)
 GO TO }30
 150 FO=FCN(1)
 GO TO 300
 200 IF (I-1) 210,290.210
 210 11=1-1
 TEMP =VO-VAR(II)
 TEML=VAR(11-VARLINI
 RATIO=TEMP /TEM1
 FQ=RALIO*(FSN(U)-FCN(11)L+FCN(111)
 GO TO 300
 290 FQ =FCN(1)
 300 RETURN
 END
 I
```


## C.1) ID Listing for Tabulated Mean Flow Data

D D reference length, inches
MFS $\quad M_{\infty}$ free stream Mach number
$\mathrm{P} \quad \mathrm{p} / \mathrm{p}_{\infty} \quad$ ratio of local static pressure to free stream static pressure
PITO $\quad \frac{\mathrm{p}_{\mathrm{t}}}{\mathrm{p}_{\mathrm{o}}} \times 10^{3}$ ratio $\left(\times 10^{3}\right)$, as corrected for tunnel gradient, PO $p_{o} \quad$ free stream total pressure, $m m \mathrm{Hg}$
PPCE $\quad \frac{\mathrm{P}_{\mathrm{t}_{2 e}}}{\mathrm{P}_{\mathrm{o}}} \quad \begin{aligned} & \text { ratio, as corrected for tunnel gradient, of edge } \\ & \text { Pitot pressure to free stream total pressure }\end{aligned}$
PTM $\quad \frac{p_{t}}{p_{0}} \quad$ ratio of local total pressure to free stream total pressure for region between shear layer edge and leading edge shock

REFS $\quad \mathrm{Re}_{\infty}$ free stream Reynolds number based on reference length

TO $\quad T_{0} \quad$ free stream total temperature, ${ }^{\circ}{ }_{K}$
TT $\quad \mathrm{T}_{\mathrm{t}} \quad$ local total temperature, ${ }^{\mathrm{O}_{\mathrm{K}}}$
$\operatorname{TTTTE} \quad \mathrm{T}_{\mathrm{t}_{\mathrm{e}}} / \mathrm{T}_{\mathrm{o}}$ ratio of local total temperature to free stream
TW $\quad \mathrm{T}_{\mathrm{W}}$ wall temperature, ${ }^{\circ} \mathrm{K}$
UUE $u / u_{e}$ ratio of local velocity to edge velocity
$\mathrm{XD} \quad \mathrm{X} / \mathrm{D}$ axial distance from base ratioed to reference length

YD $\quad y / D \quad$ lateral distance from centerline ratioed to refer ence length


.	$\begin{aligned} & X D= \\ & 0000 \end{aligned}$	$\begin{gathered} 30 \\ 4.51 \end{gathered}$	. 926	. 000	$\begin{gathered} 40 \\ 4.99 \end{gathered}$	. 933	0000	$\begin{gathered} 50 \\ 5048 \end{gathered}$	- 936	.000	$\begin{aligned} & 7 . \\ & 6 \cdot 34 \end{aligned}$	.938	. 000	$\begin{aligned} & 9 . \\ & 7.46 \end{aligned}$	$.940$
	-010	4.70	. 928	-010	5.09	. 936	0010	5.48	. 938	. 010	6.34	.940	. 010	7.46	. 943
	-020	4.90	.936	. 020	5.28	. 945	- 020	5.76	-948	. 020	6.52	. 950	-020	7.64	-950
	- 040	5.88	. 968	-040	6.24	. 973	-040	6.61	. 973	. 040	7.27	.975	. 040	8.20	. 975
	. 060	8.33	. 998	.060	8.16	. 998	. 060	8.03	1.00	. 060	8.57	1.00	. 060	9.32	1.00
	- 080	13.2	1.02	. 080	12.4	1.02	-087	11.8	1.01	-080	11.7	1.01	. 080	11.2	1.01
	. 085	15.0	1.02	. 083	13.2	1.02	. 087	13.9	1.02	. 100	17.7	1.01	. 100	14.0	1.01
	0100	2106	1.01	-100	20.1	1.01	- 100	18.9	1.01	-120	23.1	1.00	-120	19.4	1.00
	0122	26.3	1.00	. 120	24.5	1.00	. 120	24.4	1000	. 150	26.8	1.00	-150	26.6	1.00
	. 150	27.7	1.00	- 128	25.2	1.00	-135	26.4	1.00	- 200	27.7	1.00	- 200	28.0	1.00
	.200	28.4	1.00	. 150	26.7	1.00	. 150	27.2	1.00	. 500	28.7	1.00	.500	28.7	1.00
	- 300	28.7	1.00	- 200	28.3	1.00	- 200	28.1	$1 \cdot 00$						
				0400	28.8	1.00	.500	29.1	1.00						
0041 CARDS															

17026.21 .00
018024.31 .00

$$
\begin{aligned}
& 8 * .001 \\
& 2 .
\end{aligned}
$$

$$
20 \text { PITO TTTE }
$$

$$
\begin{aligned}
& \text { TTTTE } \\
& .911 \\
& \hline .916 \\
& .938 \\
& .963 \\
& .985 \\
& 1.01 \\
& 1.00 \\
& 1.00 \\
& 1.00 \\
& 1.00 \\
& 1.00 \\
& 1.00 \\
& 1.00 \\
&
\end{aligned}
$$


-155-

C.3) TABULATED MEAN FLOW DATA FOR 20 DEGREE WEDGE ( $H=$. 15 )


$M F S=6.07, P O=2557 ., T O=T T=4 n 2 ., R E F S=14010 ., D=.15$


-158-

$10.15020 . \quad 20$

170	$Y 0$	$P I T O$
.16	000	6.62
.36	100	7.60
.96	200	9.93
.95	.300	13.6
.64	400	17.8
.9 .4	.600	24.0

 26.5


-161-




[^4]-0\& •52 •0 saur 6.500 $M F S=6.12$, PO $=3855.0$ TO $=4020$. REFS $=41340.00=.3$
$$
4.8 * .001
$$


	$\begin{aligned} & X D= \\ & 0000 \end{aligned}$	$\begin{array}{r} 150 \\ 5.31 \end{array}$	0933	- 000	$\begin{array}{r} 200 \\ 9.27 \end{array}$	- 940	$\bigcirc 000$	$\begin{array}{r} 250 \\ 12.7 \end{array}$	. 948	-000	$\begin{array}{r} 300 \\ 14.6 \end{array}$	. 950
	-050	5.84	.938	- 050	9.46	. 943	.050	12.8	. 950	.050	14.7	. 953
	-100	6.95	. 948	-100	10.2	. 950	-100	13.1	. 953	.100	14.7	. 955
	. 150	9.21	. 965	. 150	11.4	. 960	-150	13.5	-958	-150	14.9	-958
	-200	12.0	.983	- 200	12.9	. 970	. 200	14.2	. 965	- 200	15.3	.963
	-250	15.0	0995	. 250	14.7	- 980	-250	15.1	. 975	- 250	15.7	. 970
	0300	18.2	1.00	. 300	16.5	. 990	-300	16.1	. 983	- 300	$16 \cdot 2$	. 978
	.330	19.7	1.00	- 350	18.3	-998	- 350	17.1	-990	- 350	16.8	-985
	- 410	$22 \cdot 5$	1.00	-400	19.9	1.00	- 400	18.3	- 995	- 400	17.6	. 990
	- 500	23.7	1.00	- 450	21.3	1.00	- 500	20.5	1.00	- 500	19.1	1.00
	. 600	24.1	1.00	. 530	22.8	1.00	. 600	22.3	1.00	. 600	20.8	1.00
	-800	24.6	1.00	. 600	23.4	1.00	. 690	23.3	1.00	- 700	22.1	1.00
	1.00	24.8	1.00	-800	24.2	1.00	-800	$24 \cdot 1$	1.00	-840	23.4	1.00
	1.20	25.1	1.00	$\begin{aligned} & 1.00 \\ & 1.20 \end{aligned}$	$\begin{aligned} & 24.6 \\ & 24.9 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.20 \end{aligned}$	$\begin{aligned} & 24.7 \\ & 25.1 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.20 \end{aligned}$	$\begin{aligned} & 24 \cdot 2 \\ & 24 \cdot 8 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.00 \end{aligned}$
0049 CARDS												

-163-


-164-

$M F S=6 \cdot 11 \cdot P O=2556 \cdot T \cap=4 \cap 2 \cdot R E F S=27530 \cdot D=0, P T M=-7255$

MFS $=6.12, P O=38550, T O=402$, REFS $=413400, D=0, P$ PM $=07488$

$M F S=6.14, P O=5153, \cdot T O=402$, REFS $=54800,0 D=\cdot 3, P T M=.7442$


0049 CARDS
MF $S=6.11, P O=2556, T O=402, R E F S=27530,0=03$




$$
M F S=6,12, P O=3854 \cdot+T O=403 \cdot, R E F S=41190 \cdot D=03
$$



$\begin{aligned} & X D= \\ & Y O \\ & .000 \end{aligned}$	$\begin{gathered} 9 \\ \hline 170 \\ .123 \end{gathered}$	$\begin{aligned} & \text { TYTE } \\ & .216 \\ & \hline \end{aligned}$	$\begin{aligned} & Y 0 \\ & .000 \end{aligned}$	$\begin{array}{r} \bullet 25 \\ P 1 T 0 \\ -123 \end{array}$	$\begin{aligned} & \text { PTTTE } \\ & .248 \\ & \hline \end{aligned}$	$\begin{aligned} & Y 0 \\ & .000 \\ & \hline \end{aligned}$	PITO   .155	$\begin{aligned} & \text { TTTE } \\ & .303 \\ & \hline \end{aligned}$	$\begin{aligned} & Y 0 \\ & .000 \\ & \hline \end{aligned}$	$\begin{array}{r} 10 \\ p!40 \\ 292 \\ \hline \end{array}$	$\begin{aligned} & \text { TTTTE } \\ & .372 \\ & \hline \end{aligned}$	$\begin{aligned} & Y D \\ & .000 \\ & \hline \end{aligned}$	$\begin{array}{r} 1.5 \\ \text { PIT0 } \\ .524 \\ \hline \end{array}$	$\begin{aligned} & \text { TTTTE } \\ & .434 \\ & \hline \end{aligned}$
- 320	-123	-216	.230	-123	- 248	- 100	. 155	. 303	-025	- 328	- 385	. 025	. 675	-447
-325	-154	-223	. 250	. 199	- 335	-125	. 269	- 335	.050	. 497	- 434	- 050	1.24	- 484
- 350	- 319	- 360	. 275	. 398	. 397	-150	-428	. 372	2075	.954	-496	. 075	2.11	- 546
0375	. 618	. 422	-300	. 796	. 447	-175	. 687	. 429	-100	1.73	- 558	. 100	3.02	-633
-400	. 697	. 484	- 325	. 946	- 509	- 200	-965	. 484	-125	2.49	. 620	-125	3.97	. 769
						-225	1.17	. 546	. 140	2.64	.663	-150	4.92	. 794
						. 250	1.22	. 593				-175	5.31	-836




-173-

$M F S=6.11, P \cap=2556 \cdot, T \cap=402 \cdot, R E F S=2753 \cap \cdot, D=\cdot 3, P T M=\cdot 7488$

-174-

$M F S=6.12, P O=3854, T O=403 ., R E F S=41190 ., D=.3, P T M=.7674$

	$X D=$		0.0				1				. 25	
	YD	PITO	TTTTE	UUE	YD	PITO	TTTTE	UUE	YD	PITO	TTTTE	UUE
	.9950	61.75	1.000	. 9934	1.030	61.75	1.000	- 916	1.075	61.72	1.000	. 9854
	-9000	61.55	1.000	. 9935	1.000	61.55	1.000	. 9918	1.00\%	ćl.42	1.000	. 9856
	.8000	60.96	1.000	. 9940	. 9000	61.25	1.000	. 9920	.9000	60.93	1.000	. 9860
	. 7000	59.96	1.000	-9948	. 8000	60.56	1.000	. 9926	.8000	60.23	1.000	. 9866
	.6500	59.06	1.000	. 9955	.7000	59.16	1.000	. 9937	. 7000	58.34	1.000	. 9881
	-6000	56.77	1.000	. 9975	.6500	55.78	1.000	.9966	.6750	55.75	1.000	. 9903
	. 5850	53.78	1.000	1.000	.6100	51.79	1.000	1.000	. 6500	48.78	1.000	. 9964
	. 5750	49.80	. 9926	. 9773	.5900	41.83	1.005	.9794	. 6400	44.80	1.000	1.000
	. 5500	23.90	. 8685	.9133	.5750	31.87	. 9677	. 9672	. 6250	36.83	1.002	. 9856
	- 5250	9.163	. 7444	. 7078	. 5500	17.93	.8511	. 9684	- 5900	20.91	1.017	-9420
	.5000	3.187	. 6203	. 5267	. 5250	9.163	. 7816	. 9125	. 5500	10.45	. 9429	. 8794
	-4750	1.195	.4963	. 3938	. 5000	3.586	. 7196	. 7572	- 5000	4.480	. 8313	-8043
					.4750	2.141	. 6700	. 6629	. 4500	2.041	. 7395	. 7699
					. 4500	1.295	.6005	. 5745	. 4000	1.145	. 6576	. 7061
					. 4250	. 8566	. 5459	. 4454	.3500	.8960	. 5583	. 6515
					-4000	.6972	. 4839	.5170	.3250	.9457	. 5087	.6021
					. 3750	.6175	. 4218	.6117	.3000	.7984	. 4467	. 5887






TABLE I
Test Summary

Model	$\begin{array}{r} \mathrm{p}_{\mathrm{o}} \\ \text { psig } \end{array}$	$\mathrm{Re}_{\infty} / \mathrm{in}$	$\mathrm{M}_{\infty}$	$\begin{aligned} & \mathrm{T}_{\mathrm{t}_{\mathrm{o}}} \\ & \mathrm{o}_{\mathrm{K}_{1}} \end{aligned}$	$\mathrm{T}_{\substack{\text { model } \\ \mathrm{O}_{\mathrm{K}}}}$	Measured data	立
Flat Plate $\begin{aligned} & c=1.0 \text { in. } \\ & \tau=.016 \text { in. } \\ & \text { (FP) } \end{aligned}$	$\begin{aligned} & 10 \\ & 35 \\ & 60 \\ & 85 \end{aligned}$	$\begin{array}{\|l\|} \hline .47 \times 10^{5} \\ .94 \\ 1.40 \\ 1.90 \times 10^{5} \end{array}$	$\left\lvert\, \begin{aligned} & 6.04 \\ & 6.07 \\ & 6.08 \\ & 6.10 \end{aligned}\right.$	$\begin{aligned} & 403 \\ & 404 \\ & 404 \\ & 404 \end{aligned}$	Ad. Wall	$\frac{p_{t_{2}}}{p_{0}}, p_{t^{\prime}} T_{t}$	$\begin{aligned} & .1 \rightarrow 9 \\ & \left(\frac{x}{L}\right) \end{aligned}$
$20^{\circ}$ Wedge   $\mathrm{H}=.15 \mathrm{in}$.   (.15w)	$\begin{aligned} & 10 \\ & 35 \\ & 60 \\ & 85 \end{aligned}$	$\begin{array}{\|l\|} \hline .47 \times 10^{5} \\ .94 \\ 1.40 \\ 1.90 \times 10^{5} \end{array}$	$\begin{aligned} & 6.04 \\ & 6.07 \\ & 6.08 \\ & 6.10 \end{aligned}$	$\begin{aligned} & 402 \\ & 402 \\ & 402 \\ & 402 \end{aligned}$	Ad. Wall	$\frac{p_{t_{2}}}{p_{0}}, p_{t}$	$5 \rightarrow 60$
$\begin{aligned} & 20^{\circ} \text { Wedge } \\ & H=.15 \mathrm{in} . \\ & (.15 \mathrm{w}) \end{aligned}$	$10^{*}$ 20 $35^{*}$ 50	$\begin{aligned} & .47 \times 10^{5} \\ & .67 \\ & .94 \\ & .22 \end{aligned}$	$\left\lvert\, \begin{aligned} & 6.05 \\ & 6.10 \\ & 6.11 \\ & 6.11 \end{aligned}\right.$	$\begin{aligned} & 400 \\ & 402 \\ & 402 \\ & 402 \end{aligned}$	Ad. Wall	$\mathrm{P}_{\mathrm{b}}$	0
$\begin{aligned} & 20^{\circ} \text { Wedge } \\ & H=.3 \mathrm{in} . \\ & (3 \mathrm{w}-1) \end{aligned}$	$\begin{gathered} 60^{*} \\ 70 \\ 85^{*} \\ 100 \end{gathered}$	$\begin{aligned} & 1.42 \\ & 1.60 \\ & 1.90 \\ & 2.18 \times 10^{5} \end{aligned}$	$\left\lvert\, \begin{aligned} & 6.12 \\ & 6.13 \\ & 6.14 \\ & 6.15 \end{aligned}\right.$	$\begin{aligned} & 402 \\ & 402 \\ & 402 \\ & 402 \end{aligned}$		$\begin{aligned} & p_{\mathrm{b}} \\ & \mathrm{p}_{\mathrm{ws}}^{*} \end{aligned}$	$\left\{\begin{array}{c} 0 \\ -.15 \\ -.45 \\ -.65 \end{array}\right.$
$\begin{aligned} & 20^{\circ} \text { Wedge } \\ & \mathrm{H}=.3 \mathrm{in} . \\ & (.3 \mathrm{w}-2 \mathrm{~A}) \end{aligned}$	$\begin{aligned} & 10 \\ & 35 \\ & 60 \\ & 85 \end{aligned}$	$\begin{array}{\|l\|} \hline .47 \times 10^{5} \\ .94 \\ .40 \\ .90 \times 10^{5} \end{array}$	$\left\lvert\, \begin{aligned} & 6.05 \\ & 6.11 \\ & 6.12 \\ & 6.14 \end{aligned}\right.$	$\begin{aligned} & 400 \\ & 402 \\ & 402 \\ & 402 \end{aligned}$	$\begin{aligned} & 348 \\ & 350 \\ & 351 \\ & 351 \end{aligned}$	$\frac{p_{t_{2}}}{p_{o}}, p_{t}, T_{t}, N u_{t}$	$0 \rightarrow 30$
$\begin{aligned} & 20^{\circ} \text { Wedge } \\ & H=.3 \mathrm{in} . \\ & (.3 \mathrm{w}-2 \mathrm{C}) \end{aligned}$	$\begin{aligned} & 10 \\ & 35 \\ & 60 \\ & 85 \end{aligned}$	$.47 \times 10^{5}$ .94 .40 $.90 \times 10^{5}$	6.04	$\left(\left.\begin{array}{l} 402 \\ 402 \\ 403 \\ 403 \end{array} \right\rvert\,\right.$	$\begin{aligned} & 77 \\ & 77 \\ & 77 \\ & 77 \end{aligned}$	$\frac{\mathrm{P}_{t_{2}}}{\mathrm{P}_{\mathrm{o}}}, \mathrm{p}_{\frac{1}{}}, \mathrm{~T}_{t}, N \mathrm{Nu}_{t}$	$0 \rightarrow 30$

TABLE II

## Accuracy Summary



Fig. I Schlieren Photograph of Wake behind $20^{\circ}$, Adiabatic Wall Wedge
$(H=.3)$ at $M_{\infty}=6$ and $\mathrm{Re}_{\infty \mathrm{H}}=5.2 \times 10^{4}$,




$$
x=0
$$

(THIRD PORT CENTERLINE)


FIG. 4 VARIATION OF FREE STREAM PITOT PRESSURE IN VERTICAL CENTERPLANE OF TUNNEL


FIG. 5 a. FLAT PLATE MODEL (FP)


FIG. 5 b. $20^{\circ}$ WEDGE MODEL - H-. $15^{\circ}(.15 \mathrm{~W})$


FIG. 5 c. $20^{\circ}$ WEDGE MODEL-H. 3 ( 3 ( $3 \mathrm{~W}-1$ )

FIG. 5 d . $20^{\circ}$ WEDGE MODEL $-H \cdot 3^{*}(3 \mathrm{~W}-2)$



FRONT VIEW
SCALE; $20: 1$


## PITOT PRESSURE PROBE

SCALE: FULL
DIMENSIONS: INCHES
FIG. 7 STATIC AND PITOT PRESSURE PROBES


FIG. 8 CALIBRATION OF STATHAM PRESSURE TRANSDUCER

FIG. 9 BASE REGION STAGNATION POINT PROBE


SCALE: FULL
DIMENSIONS: INCHES
FIG.IO HOT WIRE PROBE


- io-turn precision potentiometers
switching relays shown in high current position

Fig. 11. Simplified Schematic for Hot Wire Recording System

FIG. 12 PROBE FLOW REGIMES IN THE M-RE PLANE


FIG. 13 NUSSELT NUMBER END LOSS CORRECTION FACTOR CORRELATION OF MEASURED RESULTS FOR FLAT PLATE WITH THEORETICAL VARIATION FROM DEWEY'S END LOSS ANALYSIS

FIG. 14 CORRELATION OF CYLINDER HEAT TRANSFER DATA




FIG. $15 \mathrm{c}-2$ Variation of static pressure along wake centerline at $M_{\infty}=6$



FIG. 16a VARIATION OF CENTERLINE MACH NUMBER WITH AXIAL DISTANCE AT $M_{\infty}=6$



FIG.16c VARIATION OF CENTERLINE AND EDGE MACH NUMBER WITH AXIAL DISTANCE AT $M_{\infty}=6$ $20^{\circ}$ WEDGE MODEL-H $=3$-ADIABATIC WALL

$$
-205-
$$



Fig. i6d Variation of centerline and edge mach number with axial. distance at ma $=6$ $20^{\circ}$ WEDGE MODEL-H2. 3 COLD WALL



FIG.IT CORRELATION OF CENTERLINE MACH NUMBER FOR 20; ADIABATIC WALL WEDGE AT $M_{\infty}=6$




FIG.I9b VARIATION OF CENTERLINE VELOCITY WITH AXIAL DISTANCE AT $M_{\infty}=6$
s゙1ァ
-212-



$M_{\infty}=6$

FIG. 20 c VARIATION OF CENTERLINE ENTHALPY WITH AXIAL DISTANCE AT $M_{\infty}=6$

FIG. 20d VARIATION OF CENTERLINE ENTHALPY WITH AXIAL DISTANCE AT $M_{\infty}=6$


$20^{\circ}$ WEDGE-H $=.3$-ADIABATIC WALL

$\frac{\rho_{e} u_{e}^{2}}{\rho_{\infty} u_{\infty}^{2}}$







FIG. 23 WAKE TRANSITION CORRELATION AT $M_{m}=6$


FIG.240 COMPARISON OF VELOCITY DEFECT DATA WITH LINEAR THEORY FOR $M_{\infty}=6$ AND $\operatorname{Re}_{\infty} \mathrm{L}=4.7 \times 10^{4}$



FIG.24c COMPARISON OF VELOCITY DEFECT DATA WITH LINEAR THEORY FOR $M_{\infty}=6$ AND Re $\operatorname{cOH}^{=1.4 \times 10^{4}}$


FIG.25a COMPARISON OF ENTHALPY EXCESS DATA WITH LINEAR THEORY FOR $M_{\infty}=6$ AND $\mathrm{Re}_{\infty}=4.7 \times 10^{4}$


FIG.25b COMPARISON OF ENTHALPY EXCESS DATA WITH LINEAR THEORY FOR $M_{\infty}=6$ AND $\mathrm{Re}_{\infty} \mathrm{CH}^{2}=1.4 \times 10^{4}$
-231 -

$R e_{\infty} / I N=4.7 \times 10^{4}$


FIG. 27 FLOW FIELD MAPPING OF NEAR WAKE BEHIND FLAT PLATE AT $M_{\infty}=6$


-235-


FIG. 30 CORRELATION OF NECK THICKNESS FOR $20^{\circ}$ WEDGES AT $M_{\infty}=6$.


FIG. 3 I SURFACE PRESSURE DISTRIBUTION NEAR TRAILING EDGE OF 20; ADIABATIC WALL WEDGE AT $M_{\infty}=6$




## ADIABATIC WALL




FIG. 35a REAR STAGNATION POINT LOCATION FOR. NEAR WAKE BEHIND $20^{\circ}$ WEDGE AT $M_{\infty}=6(\mathrm{H}=.3)$

COLD WALL


FIG. 35 b REAR STAGNATION POINT LOCATION FOR NEAR WAKE BEHIND $20^{\circ}$ WEDGE AT $M_{\infty}=6(H=3)$

fig. 36 variation of rear stagnation point temperature with wall temperature ratio


FIG. 37a TYPICAL SHEAR LAYER PROFILES FOR NEAR WAKE BEHIND $20^{\circ}$, ADIABATIC WALL WEDGE AT $M_{\infty}=6$ AND Re $\operatorname{mH}=1.4 \times 10^{4}(H=3)$

FIG. 37b TYPICAL SHEAR LAYER PROFILES FOR NEAR WAKE BEHIND $20^{\circ}$, ADIABATIC WALL WEDGE AT $M_{\infty}=6 \& R e_{\infty H}=1.4 \times 10^{4}(\mathrm{H}=.3)$



FIG. 37 d TYPICAL SHEAR LAYER PROFILES FOR NEAR WAKE BEHIND $20^{\circ}$, ADIABATIC WALL WEDGE AT $M_{\infty}=68 \mathrm{Re}_{\infty 0 \mathrm{H}}=1.4 \times 10^{4}(\mathrm{H}=3)$


FIG. 37 f TYPICAL SHEAR LAYER PROFILES FOR NEAR WAKE BEHIND $20^{\circ}$, ADIABATIC WALL WEDGE AT $M_{\infty}=6 \& R e_{\infty H}=1.4 \times 10^{4}(H=.3)$

$x / H$
ADIABATIC WALL WEDGE AT $M_{\infty}=6(H=.3)$

FIG.38b FLOW FIELD MAPPING OF NEAR WAKE BEHIND $20^{\circ}$; ADIABATIC WALL WEDGE AT $M_{\infty}=6(H=3)$

$x / H$
$M_{\infty}=6(H=.3)$

$\begin{array}{cccc}-.5 & 0+ & .5 & 1.0 \\ \text { FIG.38d-1 FLOW FIELD MAPPING OF NEAR WAKE BEHIND } 20^{\circ} ; & \text { ADIABATIC } \text { WALL WEDGE AT } M_{\infty}=6(H=.3)\end{array}$

Figure 38d-2. Near Wake behind $20^{\circ}$, Adiabatic Wall Wedge at $\mathrm{M}_{\infty}=6(\mathrm{H}=.3)$ - Superposition
of Flow Field Mapping ( $R e_{\infty H}=5.5 \times 10^{4}$ ) and Schlieren Photograph $\left(\mathrm{Re}_{\infty} \mathrm{H}=5.2 \times 10^{4}\right.$ )

FIG. 39a-1 FLOW FIELD MAPPING OF NEAR WAKE BEHIND $20 \circ$ COLD WALL WEDGE AT $M_{\Phi}=6\left(H=3, T_{W} / T_{0}=.19\right)$

x/H

$$
\text { FIG. 39a-2 FLOW FIELD MAPPING OF NEAR WAKE BEHIND } 20^{\circ} \text {, COLD WALL WEDGE AT } M_{\infty}=6\left(H=3, T_{W} / T_{0}=.19\right)
$$




FIG. $39 \mathrm{c}-\mathrm{I}$ fLOW FIELD MAPPING OF NEAR WAKE BEHIND 20 ; COLD WALL WEDGE AT $\mathrm{M}_{\infty}=6\left(\mathrm{H}=3, \mathrm{~T}_{\mathrm{w}} / \mathrm{T}_{0}=.19\right)$


-261 -

-262-

-263 -


 $\begin{array}{ll}0 & .4 \\ & \text { FIG. } 41 \mathrm{~b} \text { STATIC ENT } \\ & 20^{\circ} \text { WEDGE MODEL-H }\end{array}$

-265-





FIG. 43 a SHEAR LAYER VELOCITY PROFILES
$20^{\circ}$ WEDGE-HR. 3 - ADIABATIC WALL
-268-

-269-



-272-













[^0]:    *Behrens, private communication

[^1]:    Private communication

[^2]:    * Private communication

[^3]:    *This formula was misquoted in reference (17).

[^4]:    SO甘Y) ESOO
    XD= 15. 20. 25. 30.
    

