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Abstract

Optimization theory and game theory provide a suite of tools that are flexible in

modelling various network systems, and a rich series of equilibrium solution concepts

and convergent algorithms. In this thesis, we view network protocols as distributed

algorithms achieving the corresponding network equilibria, and study wireless network

design and control in optimization and game-theoretic frameworks.

Specifically, we first take a holistic approach and design an overall framework for

the protocol architecture in ad hoc wireless networks. The goal is to integrate various

protocol layers into a unified framework, by regarding them as distributed compu-

tations over the network to solve some optimization problem. Our current theory

integrates three functions—congestion control, routing and scheduling—in transport,

network and link layers into a coherent framework. These three functions interact

through and are regulated by congestion price so as to achieve a global optimality,

even in a time-varying environment. This framework is promising to be extended to

provide a mathematical theory for network architecture, and to allow us to system-

atically carry out cross-layer design.

We then develop a general game-theoretic framework for contention control. We

define a general game-theoretic model, called random access game, to study the con-

tention/interaction among wireless nodes, and propose a novel medium access method

derived from carrier sensing multiple access with collision avoidance in which each

node estimates its conditional collision probability and adjusts its persistence prob-

ability or contention window, according to a distributed strategy update mechanism

achieving the Nash equilibrium of random access game. This results in simple dynam-

ics, controllable performance objectives, good short-term fairness, low collision, and
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high throughput. As wireless nodes can estimate conditional collision probabilities by

observing consecutive idle slots between transmissions, we can decouple contention

control from handling failed transmissions. This also opens up other opportunities

such as rate adaptation to channel variations. In addition to providing a general and

systematic design methodology for medium access control, the random access game

model also provides an analytical framework to understand the equilibrium properties

such as throughput, loss and fairness, and dynamic properties of different medium

access protocols and their interactions.

Finally, we conclude this work with some suggestions for future research.
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Chapter 1

Introduction

Networked computer systems such as the Internet and wireless networks have become

an inseparable and vital part of daily life of human being. They are continuing to

grow in several dimensions – the scale of these networks, the heterogeneity at vari-

ous layers, emerging network technologies and new business models. Accompanying

this increasing complexity are the existing network architecture and protocols being

stressed and even working adversely in face of new environments. Significantly and

even radically new designs are hence necessary to efficiently utilize network resources,

to support new applications and to meet current and future demands on these net-

works.

Many network designs are based on intuition and heuristics, and then validated

by simulations and experiments. If problems are found or the performance is not

satisfactory, the same design cycle is repeated. Design based on intuition and heuris-

tics, we argue, is not going to meet emerging requirements for network architecture

and protocols, as it is usually limited in the scope of the system features that will be

taken into account, can easily underestimate the importance of certain factors and

lead to suboptimal performance or even worse, cannot foresee potentially adversarial

interactions and lead to disastrous implementations. Instead, network design and

control should be based on mathematically rigorous and systematic methodologies.

This thesis examines two analytical frameworks, optimization theory and game

theory, that hold promise for providing such systematic methodologies for network de-

sign. Optimization theory and game theory provide a suite of tools that are flexible in
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modelling various network systems, and a rich series of equilibrium solution concepts

and convergent algorithms. In this thesis, we view network protocols as distributed al-

gorithms achieving the corresponding network equilibria, and study wireless network

design and control in optimization and game-theoretic frameworks.

1.1 Computational and Informational Constraints

in Network Design and Control

Several features of networks make their design and control very challenging – of

predominance are the large scale and the distributed nature of the system. These

two features impose strong constraints on the system designer, as individual agents

(e.g., end users such as transmission control protocol (TCP) sources and network

components such as links or autonomous systems) must make local decisions based

on local information. These constraints roughly fall into two tangled categories:

computational and informational.

Computational constraint refers to the necessity of distributed computing with

low complexity in a network setting. It also refers to bounded computing capability,

or bounded rationality in the language of game theory, of individual agents. In-

formational constraint is concerned with the communication complexity of network

algorithms and protocols. Due to the large scale of the network and the scarcity

of the network resources, low communication complexity is required. Informational

constraint also refers to the informational structure of the system, which specifies

what kind and what amount of information is available at each time. For example,

in the utility maximization framework of congestion control [48] [60], the utility of

each source is not available to other sources and the network, either because it is

impractical to communicate this information to other sources and the network or

because the source wants to keep it as private information. Taken together, compu-

tational and informational constraints determine what kind of equilibrium, or stable

operating point, the system can achieve, and what kind of convergent algorithm to
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the equilibrium is feasible.

There is actually another kind of constraint – incentive. Rather than following

specifications of the system designer, the end users or the network components are

self-interested and may strategize to manipulate the system to their advantage. For

example, a TCP source may choose not to respond to congestion signal, in order to

obtain higher throughput. Though it is not a direct concern of this thesis, to include

incentive constraint and design systems that are robust to the self-interest of agents

will be a future research direction.

1.2 Design Desiderata, Equilibria and Dynamics

In network design we usually associate a utility function, a cost function or any other

objective function to each agent. The goal of network design and control is to design

a system in which individual agents interact in a way that achieves an equilibrium (or

stable operating point) with some desired systemwide properties. The most widely

adopted property or design desiderata is probably the social optimality, where the

system optimizes some global objective function such as the aggregate user utility

or the aggregate cost. Indeed, optimization theory permeates all engineering disci-

plines. From the classical network flow problems that are often formulated as linear

programs, to the recent and more general network utility maximization problems that

are nonlinear programs, the optimization theory has played a major role both in de-

signing new systems and protocols, and in analyzing and understanding the existing

systems and protocols.

Two reasons contribute to the prevalence of optimization framework in network

design. First, many performance metrics are “natural” objectives to be optimized.

For example, in maximum flow problem [11], it is natural to ask what is the maxi-

mum throughput that the network can support; in optimal routing problem [10], we

would like to route the traffic in a way that minimizes the aggregate cost such as

the aggregate delay. The other reason is that many network equilibrium models can

be reverse engineered as optimality conditions for some appropriately defined opti-
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mization problems. A classic example is the Wardrop equilibrium [87], which can be

mathematically expressed as the Karush-Kuhn-Tucker (KKT) optimality condition

for some optimization problem, known as the Beckmann transform [8]. Another out-

standing example is the duality model of TCP congestion control, where again the

network equilibrium can be seen as the KKT optimality condition for some network

utility maximization problem [62], which we will discuss in detail in chapter 2. Based

on the insights obtained from reverse engineering, we can conversely achieve desired

network equilibrium and systematically improve the protocol through carefully speci-

fying the objective functions or designing better algorithms to achieve the equilibrium

(forward engineering).

The underlying mathematical structure responsible for the majority of these re-

sults is convexity and strong duality, i.e., the optimal value of an optimization problem

equals that of its Lagrangian dual, see, e.g., [12] [17]. When convexity and strong

duality hold, many desirable properties follow. First, the problem is computationally

tractable and efficient algorithms such as gradient-based, primal-dual algorithms ex-

ist. Second, the additivity structure in the primal and the linearity of the constraints

translate into decomposition structure in the dual, which leads to distributed algo-

rithms across distributed agents and across different network layers. Third, the dual

variables have a physical interpretation and especially, the Lagrangian multipliers can

be viewed as the “equilibrium prices.” Thus, these simple iterative (e.g., gradient-

based) algorithms applied to the primal or the dual are implementable in the network,

which describe or specify the network dynamics achieving the network equilibrium

that is specified by the optimality condition. In words, in optimization based network

design and control, we view the network as an optimization solver and design network

protocols according to distributed algorithms solving the corresponding optimization

problems and their duals.

However, optimization framework is not universal and has its limitations. First,

the optimization problems may be very difficult nonlinear, nonconvex optimization

with integral constraints, for which in general no efficient, distributed algorithms

exist. Second, informational constraint may prevent the system from achieving global
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optimality, as extensive message passing is usually required to align the behaviors

of individual agents to achieve the global optimality. For example, in wireless ad

hoc networks, extensive message passing may be impractical, due to the scarcity

of wireless spectrum and the interference incurred in simultaneous transmissions.

Third, some design problems intrinsically do not fit in an optimization paradigm,

because of informational structure or incentive issue of the problems. For example,

network equilibria such as Wardrop equilibrium that involve several classes of users

with different cost functions cannot be described in an optimization framework; the

stable path problem in interdomain routing [36] cannot be cast into an optimization

problem. So, we need to look for other modelling frameworks that involve seeking an

equilibrium of the system.

A more general modelling framework is (noncooperative) game theory. Game-

theoretic models are inherently distributed, since the agents are independent decision

makers. So, they are flexible in modelling various situations. Game theory provides

a series of equilibrium solution concepts, such as the Nash equilibrium and the dom-

inant strategy equilibrium, that differ in assumptions about agents’ computational

(rationality) and informational constraints and thus are suitable for different situa-

tions. For example, in interdomain routing, complete autonomy is a desired property

of autonomous systems. Thus, the dominant strategy equilibrium is the right solution

concept, since it makes no assumptions about the rationality and information available

to agents about each other. Indeed, the stable path problem for interdomain routing

can be viewed as seeking a dominant strategy equilibrium. Game-theoretic analysis

also provides a basis for designing systems to achieve the given desired goals (such as

to maximize the aggregate utility), which is the scope of mechanism design [64] [31].

For example, TCP congestion control algorithms can also be interpreted from this

perspective – each TCP source maximizes its own payoff, i.e., the utility gain minus

the congestion cost, and active queue management (AQM) provides a pricing scheme

that induces the maximization of the aggregate utility. Game theory is also closely

related to optimization theory. On the one hand, as we just saw, social optimality can

be the goal of a game design. On the other hand, optimization theory provides valu-
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able tools to characterize equilibria and derive distributed convergent algorithms of

games. For example, for potential games [66], distributed convergent algorithms fol-

low naturally from the greedy or gradient-based algorithms solving the corresponding

optimization problems.

In game-theoretic framework, we design network protocols according to distributed

algorithms (strategy update mechanisms) achieving various kinds of equilibria. Differ-

ent equilibrium solution concepts impose different computational and informational

requirements for the convergent algorithms, as they have different assumptions about

agents’ computational and informational constraints. For some solution concepts,

these computational and informational requirements are usually satisfied and gen-

eral distributed convergent algorithms exist. For example, iterated elimination of

dominated strategies is a distributed algorithm to achieve the dominant strategy

equilibrium, and indeed, in the example of interdomain routing, routing protocols

such as border gateway protocol (BGP) implement such an algorithm. For other so-

lution concepts such as the Nash equilibrium, while in general distributed convergent

algorithms do not exist, there are convergent algorithms for several general classes

of games. For example, greedy or gradient-based algorithms are general convergent

algorithms for the potential games.

Traditionally, game theory has been predominantly focusing on equilibrium solu-

tion concepts, but often neglected the dynamic aspect of game, i.e., how interacting

agents could converge to an equilibrium. The dynamics of game is important for

network design in game-theoretic framework. To identify those key mathematical

structures (e.g., the properties of the objective functions and the information struc-

ture of the system) that guarantee distributed convergence of different equilibria will

be a future research direction.

1.3 Outline and Contributions

While the techniques are general, this thesis applies optimization theory and game

theory to two important design problems in wireless networks, respectively. Besides
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their practical importance, each design problem is intended to demonstrate the ratio-

nale, merit and power of the corresponding model and design framework. The outline

and contributions are as follows.

In chapter 2, we provide some background material that are required by this thesis.

We review the utility maximization framework of congestion control, especially the

duality model of TCP/AQM. We also introduce basic equilibrium solution concepts

and dynamics in game theory.

In chapter 3, we take a holistic approach and design an overall framework for the

protocol architecture in ad hoc wireless networks. The goal is to integrate various pro-

tocol layers into a unified framework, by regarding them as distributed computations

over the network to solve some optimization problem. Our current theory integrates

three functions—congestion control, routing and scheduling—in transport, network

and link layers into a coherent framework. These three functions interact through

and are regulated by congestion price so as to achieve a global optimality, even in a

time-varying environment. This framework is promising to be extended to provide a

mathematical theory for network architecture, and to allow us to systematically carry

out cross-layer design. Also, we present a general technique and results regarding the

stability and optimality of dual algorithms in face of time-varying parameters. As

the dynamics of many systems can be modelled as a dual algorithm and dual de-

composition has motivated many cross-layer design schemes, these results provide an

avenue to establish the stability and study the performance of these systems in a

time-varying environment.

In chapter 4, we develop a game-theoretic framework for contention control. We

define a general game-theoretic model, called random access game, to capture the

contention/interaction among wireless nodes in wireless networks with contention-

based medium access, and propose a novel medium access method derived from car-

rier sensing multiple access with collision avoidance (CSMA/CA) in which each node

estimates its conditional collision probability and adjusts its persistence probability

or contention window, according to distributed strategy update mechanism achiev-

ing the Nash equilibrium of random access game. This results in simple dynamics,
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controllable performance objectives, good short-term fairness, low collision and high

throughput. As wireless nodes can estimate conditional collision probabilities by

observing consecutive idle slots between transmissions, we can decouple contention

control from handling failed transmissions. This also opens up other opportunities

such as rate adaptation to channel variations. As a case study of medium access

control design in game-theoretic framework, we present a concrete medium access

method and show that it achieves superior performance over the standard 802.11

distributed coordination function (DCF), and can provide flexible service differentia-

tions among wireless nodes. In addition to providing a general and systematic design

methodology for medium access control, the random access game model also provides

an analytical framework to understand equilibrium properties such as throughput,

loss and fairness, and dynamics property of different medium access protocols and

their interactions.

We conclude the thesis in chapter 5 with some discussions and suggestions for

future research.
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Chapter 2

Background Material

In this chapter, we provide an overview of the network utility maximization framework

of TCP congestion control and basic game-theoretic concepts required by this thesis.

This chapter is not intended to be a complete introduction or summary of the topics.

For more details, see, e.g., [48] [60] [62] [53] for the utility maximization framework

of TCP congestion control, and see, e.g., [70] [34] for game theory.

2.1 The Network Utility Maximization Framework

of Congestion Control

2.1.1 Congestion Control

Congestion control is a distributed adaptive algorithm to share network resources

(e.g., link bandwidth) among competing users so as to avoid congestion while ensuring

high utilization and fair allocation of available resources. There are two components

in a congestion control algorithm: a source algorithm that dynamically adjusts the

sending rate based on congestion along its path, and a link algorithm that updates

a congestion measure and sends it back to the sources. On the current Internet,

the source algorithm is implemented in TCP such as TCP Reno [46], and the link

algorithm is carried out by AQM scheme such as DropTail or RED [33] at the routers.

The source controls its sending rate usually through controlling its congestion window

size. The congestion measure can be loss probability, as used in, e.g., TCP Reno and
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its variants, or queueing delay, as used in TCP Vegas [18] and FAST TCP [89]. They

are fed back to the sources in the form of packet loss, marking, or delay. In the next

subsection, we will review a duality model of TCP/AQM [62] in the network utility

maximization framework.

2.1.2 Duality Model of TCP/AQM

A network is modelled as a set L of links with finite capacities c = {cl, l ∈ L}. These

links are shared by a set S of sources indexed by s. Each source s uses a subset

Ls ⊆ L of links. The sets Ls define an |L| × |S| routing matrix with Rls = 1 if l ∈ Ls

and Rls = 0 otherwise. Each source attains a utility Us(xs) when it transmits at rate

xs bits per second. We assume Us(·) is continuously differentiable, increasing, and

strictly concave. It has been shown that, if bandwidth is allocated in such a way that

maximizes the aggregate source utility, then there is a natural decomposition that

allows distributed allocation algorithms [48] [60] [53].

Specifically, consider the following network utility maximization problem [48] [60],

max
x

∑
s

Us(xs) (2.1)

subject to Rx ≤ c, (2.2)

where the constraint says that the aggregate flow rate through a link should not

exceed its capacity. To obtain a distributed algorithm, we consider the equivalent

Lagrangian dual problem

min
p≥0

D(p) :=
∑

s

max
xs

(Us(xs)− xs

∑

l

Rlspl)− pT c. (2.3)

The Lagrangian dual function decomposes into subproblems that can be optimized

separately by individual sources based on pl along their paths

xs = U ′−1
s (

∑

l

Rlsxs). (2.4)
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There exist other algorithms to solve the problems, and as we shall see, different

congestion control algorithms can be interpreted as distributed primal-dual algorithms

to solve the utility maximization problem and its dual [62].

Let yl(t) =
∑

s Rlsxs(t) be the aggregate source rate through link l at time t. Each

link l is associated with a congestion price pl(t) at time t, and let qs(t) =
∑

l Rlspl(t)

be the end-to-end congestion price for source s. Source s can observe only its own

rate xs(t) and the end-to-end congestion price qs(t) along its path, and link l can

observe only local congestion pl(t) and aggregate flow rate yl(t). Since sources adjust

their rates and links update their congestion prices based on local information, we

can model the dynamics of TCP and AQM by a general model

xs(t + 1) = Fs(xs(t), qs(t)), (2.5)

pl(t + 1) = Gl(pl(t), yl(t)), (2.6)

where the exact forms of the functions Fs(·) and Gl(·) are determined by specific

TCP/AQM protocols we consider. Take, for example, TCP Vegas/DropTail [18]. It

is shown in [61] that Vegas uses queueing delay as congestion measure, and the update

rules for source rate and congestion price are given by

xs(t + 1) = xs(t) +
1

D2
s(t)

1(
αsds

qs(t)
− xs(t)), (2.7)

pl(t + 1) = [pl(t) +
yl(t)

cl

− 1]+, (2.8)

where αs is a parameter of Vegas, ds is the round trip propagation delay and Ds(t) =

ds + qs(t) is the round trip delay of source s, and the step function 1(z) = 1 if z > 0,

−1 if z < 0 and 0 if z = 0.

Suppose that the system (2.5)–(2.6) has an equilibrium (x∗, p∗). Under some

mild conditions, the fixed point equation x∗s = Fs(x
∗
s, q

∗
s) implicitly defines a relation

between equilibrium congestion prices and source rates

q∗s = fs(x
∗
s) > 0. (2.9)
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Define a utility function for each source s as

Us(xs) =

∫
fs(xs)dxs, xs ≥ 0. (2.10)

Since the source decreases its sending rate with increasing congestion, it is reasonable

to assume that fs(·) is a strictly decreasing function. So, Us(·) is a continuous,

increasing and strictly concave function. For example, derived from equation (2.7),

the utility functions for TCP Vegas are given by Us(xs) = αsds log xs.

With the above defined utility functions, we can formulate a utility maximization

problem as (2.1)–(2.2). Now we interpret the source rate x as primal variables of

the primal problem (2.1)–(2.2), and the congestion price p as dual variables of the

corresponding dual (2.3). Note that, given the equilibrium prices p∗l , the equilibrium

source rates x∗s solve

max
xs

Us(xs)− xsq
∗
s . (2.11)

By strong duality of convex optimization [12] [17], if the equilibrium congestion price

p∗ is a dual optimum, the corresponding equilibrium source rate x∗ is the primal

optimum, i.e., the solution to the primal problem (2.1)–(2.2). Indeed, it has been

shown in [62] that, under some reasonable assumptions, the equilibrium (x∗, p∗) of

the system (2.5)–(2.6) satisfies the KKT condition

y∗l ≤ cl, (2.12)

p∗l (y
∗
l − cl) = 0, (2.13)

p∗l ≥ 0, (2.14)

U ′
s(x

∗
s)− q∗s = 0, (2.15)

and thus solves the primal and dual problems. The condition (2.15) follows from

the way we define the utility function. The complementary slackness condition

(2.12)–(2.14) is satisfied by any AQM that stabilizes the queues [62]. Hence, var-
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ious TCP/AQM protocols can be interpreted as different distributed primal-dual

algorithms (F, G) to solve the global optimization problem (2.1)–(2.2) and its dual

(2.3), with different utility functions Us.

Besides as an analytical tool of reverse engineering TCP congestion control, the

network utility maximization and the approach of protocol as distributed solution to

some global optimization problem through dual decomposition has recently been used

to guide the systematic design of new congestion control algorithms such as FAST

TCP [89]. It can also be extended to provide a mathematical theory for network

architecture and a general approach to cross-layer design, as we will discuss in chapter

3.

2.2 Basic Game Theory Concepts

Game theory is the study of mathematical models of strategic interaction between

rational agents. It provides general techniques for analyzing situations where agents’

decisions will influence one another’s decisions and payoffs. Game theory has been

primarily studied in economics, and is applied to other areas such as politics and

recently to networking.

A game is a strategic interaction between multiple independent agents or players.

A game in strategic form has three elements: the set N of agents (players), the (pure)

strategy space Si which specifies the set of permissible actions for each agent i ∈ N ,

and payoff function ui : S1×S2×· · ·×S|N | 7−→ R which assigns a payoff to agent i for

each combined choice (profile) s = (s1, s2, . . . , s|N |) of strategies. The payoff function,

ui(·), of agent i describes its preference over its own strategy and the strategies of

other agents. The basic model of agent rationality in game theory is that of a payoff

maximizer. An agent will select a strategy that maximizes its (expected) payoff, given

its beliefs about the strategies of other agents and the structure of the game.

Consider, for example, the classic example of the prisoner’s dilemma game. In this

game, we have two players P1 and P2. The strategy of each player is either cooperate

(C) or defect (D). The players move simultaneously, and based on their strategies,
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Table 2.1: Payoffs for the prisoner’s dilemma game

P1\P2 C D

C (1,1) (-1,2)
D (2,-1) (0,0)

each player receives a payoff as given by the matrix in Table 2.2. In this matrix, each

cell represents the payoff of a particular strategy profile. For example, if the strategies

of the players are C and D respectively, player P1 receives payoff u1(C, D) = −1 and

player P2 receives payoff u2(C, D) = 2.

2.2.1 Equilibrium Solution Concepts

Game theory provides a number of equilibrium solution concepts to compute the out-

come of a game, given assumptions about agent rationality (computational constraint)

and information available to agents about each other.

The predominant solution concept is the Nash equilibrium, where each agent will

select a payoff-maximizing strategy given the strategies of other agents. Denote by

s−i = (s1, s2, . . . , si−1, si+1, . . . , s|N |) the strategy profile of all agents other than i. A

strategy profile s∗ = (s∗1, s
∗
2, . . . , s

∗
|N |) is a Nash equilibrium if, for all agent i ∈ N ,

ui(s
∗
i , s

∗
−i) ≥ ui(si, s

∗
−i), (2.16)

for all si ∈ Si. We see that at the Nash equilibrium, no agent has unilateral incentive

to change. For example, for the prisoner’s dilemma game, the strategy profile (D, D)

is the Nash equilibrium.

A stronger solution concept is the dominant strategy equilibrium, where each

agent has the same payoff-maximizing strategy no matter what strategies of other

agents. A strategy profile s∗ = (s∗1, s
∗
2, . . . , s

∗
|N |) is a dominant strategy equilibrium if,

for all agent i ∈ N ,

ui(s
∗
i , s−i) ≥ ui(si, s−i), (2.17)
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for all si and s−i. In the example of the prisoner’s dilemma game, the strategy

profile (D, D) is also a dominant strategy equilibrium. Indeed, the dominant strategy

equilibrium is a subset of the Nash equilibrium.

Nash equilibrium makes very strong assumptions about agents’ rationality and

knowledge. To play a equilibrium strategy in a one-shot game, each agent must have

perfect information about all agents’ strategy spaces and the corresponding payoffs,

and agent rationality must also be common knowledge. In contrast, the dominant

strategy equilibrium is a very robust solution concept. It makes no assumptions about

other agents’ rationality and the information available to agents about each other.

There exist other solution concepts such as correlated equilibrium. Most of them

are the refinements or extensions of the Nash equilibrium, under different assumptions

about agent rationality and information. Since they are not essential to this thesis,

we will not further elaborate on them.

2.2.2 Dynamics

These equilibrium solution concepts are usually very strong concepts. For example,

as mentioned above, the Nash equilibrium assumes that agent strategies, payoffs and

rationality are common knowledge. This assumption usually does not hold in reality,

and as pointed out in [34], game theory lacks a general and convincing argument that

a Nash outcome will occur. One justification is that equilibria arise as a result of

adaptation or learning. In this context, we consider repeated play of the game, and

assume that the agents are myopic and adjust their strategies based on the strategies

of other players in previous rounds.

This justification of equilibrium is particularly legitimate in network design and

control, as the network consists of distributed entities having limit information and

almost all network algorithms and protocols are repeated (or iterative) and adaptive.

We can design network algorithms and protocols according to distributed strategy

update mechanisms achieving various equilibria. In chapter 4, we apply this general

design methodology to contention control, and design medium access protocols ac-
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cording to distributed strategy update algorithms achieving the Nash equilibria of

random access games.
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Chapter 3

Cross-Layer Design in Ad Hoc
Wireless Networks

In this chapter, we take a holistic approach and design an overall framework for the

protocol architecture in ad hoc wireless networks. Our goal is to integrate various

protocol layers into a unified framework, by regarding them as distributed computa-

tions over the network to solve some optimization problem. Different layers carry out

distributed computation on different subsets of the decision variables using local infor-

mation to achieve individual optimality. Taken together, these local algorithms (with

respect to different layers) achieve a global optimality. Our current theory integrates

three functions—congestion control, routing and scheduling—in transport, network

and link layers into a coherent framework. These three functions interact through

and are regulated by congestion price so as to achieve a global optimality, even in a

time-varying environment. This framework is promising to be extended to provide a

mathematical theory for network architecture, and to allow us to systematically carry

out cross-layer design.

3.1 Introduction

The success of communication network has largely been a result of adopting a lay-

ered architecture. With this architecture, its design and implementation is divided

into simpler modules that are separately designed and implemented and then inter-

connected. As a result, protocol stack for the network has five layers, application,
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transport (TCP), network (IP), data link (include MAC) and physical layer. Each

layer controls a subset of the decision variables, hides the complexity of the layer

below and provides well-defined services to the layer above. Together, they control

and allocate networked resources to provide a reliable and usually best-effort commu-

nication service to a large pool of competing users.

However, the layered structure addresses only abstract and high-level aspects of

the whole network protocol design. Various layers of the network are put together

often in an ad hoc manner, and the add-up of these layers might not be optimal as a

whole. In order to improve the performance and achieve efficient resource allocation,

we need to understand interactions across layers and carry out cross-layer design.

Moreover, in wireless networks, as there does not exist a good interface between the

physical and network layers, cross-layer design seems a must. Wireless links are unre-

liable and wireless nodes usually rely on random access mechanism to access wireless

channel. Thus, the performance of link layer is not guaranteed, which will result in

performance problems for the whole network such as degraded TCP performance. So,

we need cross-layer design, i.e., to exchange information between physical/link layer

with higher layers in order to provide better performance.

Motivated by the duality model of TCP congestion control [48] [60] [62], one ap-

proach to understand interactions across layers and carry out cross-layer design is to

view the network as an optimization solver and various protocol layers as distributed

algorithms solving an optimization problem. This approach and the associated utility

maximization problem, as reviewed in chapter 2, were originally proposed as an ana-

lytical tool for reverse engineering TCP congestion control where a network with fixed

link capacities and prespecified routes is implicitly assumed. A natural framework for

cross-layer design is then to extend the basic utility maximization problem to include

decision variables of other layers, and seek a decomposition such that different lay-

ers carry out distributed computation on different subsets of decision variables using

local information to achieve individual optimality, and taken together, these local

algorithms achieve the global optimality.

We apply this approach to design an overall framework for the protocol architec-
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ture in ad hoc wireless networks, with the goal of achieving efficient resource alloca-

tion through cross-layer design. We first consider the network with fixed channel or

single-rate devices, and formulate network resource allocation as a utility maximiza-

tion problem with rate constraints at the network layer and schedulability constraints

at the link layer. We then apply duality theory to decompose the system problem

vertically into congestion control, routing and scheduling subproblems that interact

through congestion prices. Based on this decomposition, a distributed subgradient

algorithm for joint congestion control, routing and scheduling is obtained, and proved

to approach arbitrarily close to the optimum of the system problem. We next extend

the dual subgradient algorithm to wireless ad hoc networks with time-varying chan-

nels and adaptive multi-rate devices. The stability of the resulting system is proved,

and its performance is characterized with respect to an ideal reference system. We

finally apply the general algorithm to the joint congestion control and medium ac-

cess control design over the network with single-path routing and to the cross-layer

congestion control, routing and scheduling design in the network without prespecified

paths.

Our current theory integrates three functions— congestion control, routing and

scheduling—in transport, network and link layers into a coherent framework. This

framework is promising to be extended to provide a mathematical theory for network

architecture, and allow us to systematically carry out cross-layer design. We also

present a general technique and results regarding the stability and optimality of dual

algorithm in face of time-varying parameters. As the flow contention graph that

will be used to characterize feasible rate regions of the networks is a rather general

construction and can be used to capture the interdependence or contention among

parallel servers of any queueing networks, these results are applicable to any systems

that can be modelled by a general model of queueing network that is served by a set

of interdependent parallel servers with time-varying service capabilities.

The remainder of this chapter is organized as follows. The next section briefly

discusses related work. Section 3.3 presents details of the system model for the net-

work with fixed channel or single-rate devices, and section 3.4 presents a distributed
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algorithm for joint congestion control, routing and scheduling via dual decomposi-

tion. Section 3.5 extends the dual algorithm to handle the network with time-varying

channel and adaptive multi-rate devices. Section 3.6 discusses joint congestion con-

trol and medium access control design in ad hoc wireless networks with single-path

routing. Section 3.7 discusses cross-layer congestion control, routing and scheduling

design in the network without prespecified paths. Section 3.8 concludes the chapter

with a brief discussion of “layering as dual decomposition” as a general theory for

network architecture and a systematic approach to cross-layer design.

3.2 Related Work

The utility maximization framework [48] [60] on TCP congestion control has been

extensively applied and extended to study resource allocations, especially congestion

control (see, e.g., [95] [96]), fair channel access (see, e.g., [67] [84] [54] [30] [79] [29] [25]),

and cross-layer design (see, e.g., [91] [26] [58] [21] [22]), in wireless networks. Xue et

al. [95] and Yi et al. [96] are among the first to formulate schedulability constraints

at link layer for congestion control over ad hoc wireless networks. Xiao et al. [91]

study joint routing and resource allocation, and are among the first to apply dual

decomposition to cross-layer design in ad hoc wireless networks. Chiang [26] is among

the first to study joint congestion and power control. Lin et al. [58] and Chen et al. [21]

are among the first to study joint congestion control and scheduling. Chen et al. [21]

and Wang at al. [86] are among the first to study cross-layer design in the network

with contention-based medium access.

The work presented in section 3.6 (see also [21]) is originally motivated to solve

TCP unfairness problem over ad hoc wireless networks, see, e.g., [35], [81], [92], [93],

[94]. The model used in section 3.7 (see also [22]) is motivated by Neely et al. [68] that

studies dynamic power control and routing for time-varying wireless networks and by

Hajeck et al. [37] and Kodialam at al. [49] that study the problem of jointly routing

the flows and scheduling the transmissions to determine the achievable rates in multi-

hop wireless networks; and similar decomposition for the network with deterministic
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wireless channel has also been revealed in [58] and the journal version of [68].

The utility maximization in time-varying networks is first studied in the context

of fair scheduling. It has been shown that a family of primal scheduling algorithms

maximize the sum of the utilities of the long-run average data rates provided to

the users, see, e.g., [84] [54] [79]. In contrast, the result presented in section 3.5

(see also [22]) is for the dual algorithms. An earlier result for the dual scheduling

algorithm is by Eryilmaz et al. [29] that studies fair resource allocation using queue-

length based scheduling and congestion control. Another similar result is by Neely et

al. [69] that studies fairness and optimal stochastic control for heterogeneous networks.

All these three work use stochastic Lyapunov method to establish the stability, but

the technical details are somewhat different. Especially, the stability and optimality

result presented in section 3.5 is based only on general properties of convexity and

the definition of subgradients, and can be directly applied to a variety of time-varying

systems that can be solved or modelled by the dual algorithms. Another comparable

result is by Stolyar [80] that proposes greedy primal-dual algorithm to maximize

network utility. It uses a very different technique to establish the optimality result.

We have been focused on dual decomposition, which leads to a natural “vertical”

decomposition into separate designs of different layers that interact through conges-

tion price. There are many different ways to decompose a given problem, each of

which corresponds to a different layering scheme. See the survey article [27] and

the references therein for various recent work on cross-layer design or layering as

optimization decomposition.

3.3 System Model

Consider an ad hoc wireless network with a set N of nodes and a set L of directed

logical links. We assume a static topology and each link l ∈ L has a fixed finite

capacity cl bits per second when active, i.e., we implicitly assume that the wireless

channel is fixed or some underlying mechanism is used to mask the channel variation

so that the wireless channel appears to have a fixed rate. This assumption will be
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relaxed in section 3.5. Wireless channel is a shared medium and interference limited,

where links contend with each other for exclusive access to the channel. We will

use the flow contention graph to capture the contention relations among links. The

feasible rate region at link layer is then a convex hull of the corresponding rate

vectors of independent sets of the flow contention graph. We will further describe

rate constraints at the network layer by linear inequalities in terms of user service

requirements and allocated link capacities. The resource allocation of the network is

then formulated as a utility maximization problem with the schedulability and rate

constraints.

3.3.1 Flow Contention Graph and Schedulability Constraint

The interference among wireless links is usually specified by some interference model

that describes physical constraints regarding wireless transmissions and successful

receptions. For example, in a network with primary interference, links that share

a common node cannot transmit or received simultaneously but links that do not

share nodes can do so. It models a wireless network with multiple channels where

simultaneous communications in a neighborhood are enabled by using orthogonal

CDMA or FDMA channels. In a network with secondary interference, links mutually

interfere with each other whenever either the sender or the receiver of one is within the

interference range of the sender or receiver of the other. Given an interference model,

we can construct a flow contention graph that captures the contention relations among

the links, see, e.g., [67]. In the contention graph, each vertex represents a link, and

an edge between two vertices denotes the contention between the corresponding links:

two links interfere with each other and cannot transmit at the same time. Figure 3.1

shows an example of a simple ad hoc wireless network with primary interference and

the corresponding flow contention graph.

Given a flow contention graph, we can identify all its independent sets of vertices.

An independent set is a set of vertices that have no edges between each other [28].

The links in an independent set can transmit simultaneously. Let E denote the set
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Figure 3.1: Example of an ad hoc wireless network with 4 nodes and 6 logical links
and the corresponding flow contention graph.

of all independent sets with each independent set indexed by e. We represent an

independent set e as a |L|-dimensional rate vector re, where the lth entry is

re
l :=





cl if l ∈ e,

0 otherwise.

The feasible rate region Π at the link layer is then defined as the convex hull of these

rate vectors

Π :=

{
r : r =

∑
e

aer
e, ae ≥ 0,

∑
e

ae = 1

}
. (3.1)

Thus, given a link flow vector y, the schedulability constraint says that y should

satisfy y ∈ Π.

The contention graph is a rather general construction, and can be used to capture

the interdependence or contention among parallel servers of any queueing networks.

For example, it includes wireline networks as a special case where the contention graph

is just a set of vertices with no edges, since there is no interference among the links.

It can be used to characterize the interference relations among wireless and wired

links in hybrid wireline-wireless networks. It can also be modified to characterize the

contention relations in the network where wireless nodes are equipped with multiple

radios or communicate through multiple channels. Also, note that in some references
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the conflict graph is used to capture the contention relations among the links, see,

e.g., [43]. The conflict graph is almost the same as the flow contention graph. We do

not distinguish between them in this thesis.

3.3.2 Rate Constraint

Let fl ≥ 0 denote the amount of capacity allocated to link l. From the schedulability

constraint, f should satisfy

f ∈ Π. (3.2)

Assume that the network is shared by a set S of sources, with each source s ∈ S

transmitting at rate xs bits per second. In the following, we will formulate rate

constraints for networks with different kinds of routing respectively.

The Network with Single-Path Routing

Each source s uses a path consisting of a set Ls ⊂ L of links. The sets Ls define an

|L| × |S| routing matrix

Rls =





1 if l ∈ Ls,

0 otherwise.

Thus, the aggregate rate over link l is
∑

s∈S Rlsxs. The rate constraint is written as

Rx ≤ f, (3.3)

i.e., the aggregate link rate should not exceed the link capacity.

The Network with Multipath Routing

Each source s can send traffic along a set Ts of given paths. Each path r ∈ Ts contains

a set of Ls
r ⊂ L of links, which defines a |L| × |Ts| routing matrix Hs whose (l, r)th
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entry is given by

Hs
lr =





1 if l ∈ Ls
r,

0 otherwise.

Denote by xr
s the rate at which source s sends along path r. Thus, the source rate

xs =
∑

r∈Ts
xr

s. The rate constraint is written as

∑
s, r∈Ts

Hs
lrx

r
s ≤ fl, l ∈ L. (3.4)

The Network without Prespecified Paths

Since no end-to-end path is given, we will use multicommodity flow model for routing.

Let D denote the set of destination nodes of network layer flows. Let fk
i,j ≥ 0 denote

the amount of capacity of link (i, j) allocated to the flows to destination k. Then

the aggregate capacity on link (i, j) is fi,j :=
∑

k∈D fk
i,j. Let xk

i ≥ 0 denote the

flow generated at node i towards destination k. Then the aggregate capacity for

its incoming flows and generated flow to the destination k should not exceed the

summation of the capacities for its outgoing flows to k

xk
i ≤

∑

j:(i,j)∈L

fk
i,j −

∑

j:(j,i)∈L

fk
j,i, i ∈ N, k ∈ D, i 6= k. (3.5)

Equation (3.5) is the rate constraint for resource allocation. For simplicity of presen-

tation, we assume that there is at most one flow between any node and destination

pair [i, k] ∈ S ×D. Thus, xk
i = xs if i is the source node of flow s = [i, k], and xk

i = 0

otherwise.

3.3.3 Problem Formulation

We see from the last subsection that all three kinds of rate constraints are expressed as

linear inequalities. If we represent the “routing” of the user (source) service require-

ment by a linear function H(x) of the source rates x, and represent the “allocation” of
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the service capacity by a linear function A(f) of the link capacities f , since the service

requirement should not exceed the allocated service capacity, we have the following

inequality constraint

H(x) ≤ A(f). (3.6)

The linear constraint (3.6) is a very general relation. The rate constraints (3.3), (3.4)

and (3.5) are just its different concrete representations.

Following [48] [60], assume each source s attains a utility Us(xs) when it transmits

at a rate xs. We assume Us(·) is continuously differentiable, increasing, and strictly

concave. Our objective is to choose source rates x and allocated capacities f so as to

solve the following global problem

max
x,f

∑
s

Us(xs) (3.7)

subject to H(x) ≤ A(f), (3.8)

f ∈ Π. (3.9)

The system problem (3.7)–(3.9) is convex optimization problem, and is polyno-

mially solvable if all the utility and constraint information is provided, but this is

impractical in real networks. Since it is convex optimization problem with strong du-

ality, distributed algorithm can be derived by formulating and solving corresponding

Lagrange dual problem, as we will show in the next section.
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3.4 Distributed Algorithm via Dual Decomposi-

tion

3.4.1 Distributed Algorithm

Consider the Lagrangian of the problem (3.7)–(3.9) with respect to the rate constraint

L(p, x, f) =
∑

s

Us(xs)− pT (H(x)− A(f)).

Given p, the above Lagrangian has a nice decomposition structure: it is the summa-

tion of two independent terms, in terms of source rates and link capacities respectively.

Interpreting p as the “congestion price” and maximizing the Lagrangian over x and f

for fixed p, we obtain the following joint congestion control and scheduling algorithm:

Congestion control: At time t, given congestion price p(t), the sources adjust flow

rates x according to the congestion price

x(t) = x(p(t)) = arg max
x

∑
s

Us(xs)− pT (t)H(x). (3.10)

Scheduling: Over link l, send an amount of data for each flow according to the

rates f such that

f(t) = f(p(t)) ∈ arg max
f∈Π

pT (t)A(f). (3.11)

Note that there does not exist an explicit routing component in the dual decom-

position. Instead, the routing is implicitly solved in (3.10) if the set of paths from

which a source can choose is given, and solved in (3.11) if no path is prespecified

for the source. We see that, by dual decomposition, the flow optimization problem

decomposes into separate “local” optimization problems of transport, network and

link layers respectively, and they interact through congestion prices.

Defining dual function D(p) = maxx,f∈Π L(p, x, f), by duality we have (see, e.g.,
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Chapter 5 in [12])

max
x,f

∑
s

Us(xs) = min
p≥0

D(p) = min
p≥0

max
x,f∈Π

L(p, x, f).

The dual problem minp D(p) can be solved by using the subgradient method [76]

[12], where the Lagrangian multipliers are adjusted in the opposite direction to the

subgradient of the dual function

g(p) = A(f(p))−H(x(p)). (3.12)

Congestion price update: The network (links or nodes) updates the congestion

price, according to

p(t + 1) = [p(t) + γt(H(x(p(t)))− A(f(p(t))))]+, (3.13)

where γt is a positive scalar stepsize, and “+” denotes the projection onto the set

<+ of nonnegative real numbers. The algorithm has a nice interpretation in terms of

law of supply and demand and their regulation through pricing. Equation (3.13) says

that, if the demand H(x(p(t))) for service capacity exceeds the supply A(f(p(t))),

the price p will rise, which will in turn decrease the demand (see equation (3.10)) and

increase the supply (see equation (3.11)).

Before proceeding, we explain the notation used in this chapter. We denote a link

either by a single index l or by the directed pair (i, j) of nodes it connects. We use s

or alternatively node pair [i, k] to denote a network layer flow. We overload the use

of the source rate x, the link capacity f and the congestion price p throughout this

chapter, depending on different kinds of routing involved. For example, x refers to

the source rate xs or the source rate xk
i at node i towards destination k, depending

on the specific contexts. Similarly, f refers to both the link capacity {fi,j} and the

capacity {fk
i,j} over link (i, j) that is allocated to destination k.
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3.4.2 Convergence Analysis

Subgradient may not be a direction of descent, but makes an angle less than 90 degrees

with all descent directions. Thus, the new iteration may not improve the dual cost

for all values of the stepsize. Using results on the convergence of the subgradient

method [76] [12], we show that, for constant stepsize, the algorithm is guaranteed to

converge to within a neighborhood of the optimal value. For diminishing stepsize, the

algorithm is guaranteed to converge to the optimal value. We would like a distributed

implementation of the subgradient algorithm, and thus a constant stepsize γt = γ is

more convenient. Note that the dual cost usually will not monotonically approach

the optimal value, but wander around it under the subgradient algorithm. The usual

criterion for stability and convergence is not applicable. Here we define convergence

in a statistical sense [21]. Let p(t) := 1
t

∑t
τ=1 p(τ) be the average price by time t.

Definition 3.1 Let p∗ denote an optimal value of the dual variable. Algorithm

(3.10)–(3.13) with constant stepsize is said to converge statistically to p∗, if for any

δ > 0 there exists a stepsize γ such that lim supt→∞ D(p(t))−D(p∗) ≤ δ.

Clearly, an optimal value p∗ exists. The following theorem guarantees the statis-

tical convergence of the subgradient method.

Theorem 3.2 Let p∗ be an optimal price. If the norm of the subgradients is uniformly

bounded, i.e., there exists G such that ||g(p)||2 ≤ G for all p, then

D(p∗) ≤ lim sup
t→∞

D(p(t)) ≤ D(p∗) + γG2/2, (3.14)

i.e., the algorithm (3.10)–(3.13) converges statistically to p∗.

Proof. The first inequality D(p∗) ≤ lim supt→∞ D(p(t)) always holds, since D(p∗)

is the minimum of the dual function D(p). Now we prove the second inequality. By
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equation (3.13), we have

||p(t + 1)− p∗||22 = ||[p(t)− γg(p(t))]+ − p∗||22
≤ ||p(t)− γg(p(t))− p∗||22
= ||p(t)− p∗||22 − 2γg(p(t))T (p(t)− p∗) + γ2||g(p(t))||22
≤ ||p(t)− p∗||22 − 2γ(D(p(t))−D(p∗)) + γ2||g(p(t))||22,

where the last inequality follows from the definition of subgradient. Applying the

inequalities recursively, we obtain

||p(t + 1)− p∗||22 ≤ ||p(1)− p∗||22 − 2γ
t∑

τ=1

(D(p(τ))−D(p∗)) + γ2

t∑
τ=1

||g(p(τ))||22.

Since ||p(t + 1)− p∗||22 ≥ 0, we have

2γ
t∑

τ=1

(D(p(τ))−D(p∗)) ≤ ||p(1)− p∗||22 + γ2

t∑
τ=1

||g(p(τ))||22

≤ ||p(1)− p∗||22 + tγ2G2.

From this inequality we obtain

1

t

t∑
τ=1

D(p(τ))−D(p∗) ≤ ||p(1)− p∗||22
2tγ

+
γG2

2
.

Since D is a convex function, by Jensen’s inequality,

D(p(t))−D(p∗) ≤ ||p(1)− p∗||22
2tγ

+
γG2

2
.

Thus, lim supt→∞ D(p(t)) ≤ D(p∗) + γG2

2
, i.e., the algorithm converges converges

statistically to p∗.

The assumption of bounded norm for subgradient g(p) is reasonable, since f is

finite and we always have an upper bound on x in practice. Theorem 3.2 implies that

the congestion price p approaches p∗ statistically when the stepsize γ is small enough.



31

Let the primal function be P (x) :=
∑

s Us(xs) and achieve its optimum at x∗.

Define x(t) := 1
t

∑t
τ=1 x(τ), the average data rate up to time t. As time goes to

infinity, x(t) must be in the feasible rate region (determined by equations (3.8)–

(3.9)), otherwise p(t) will go unbounded as time goes to infinity, which contradicts

Theorem 3.2.

Theorem 3.3 Let x∗ be the optimal source rates. Under the same assumption of

Theorem 3.2, the algorithm (3.10)–(3.13) converges statistically to within a small

neighborhood of the optimal values P (x∗), i.e.,

P (x∗) ≥ lim inf
t→∞

P (x(t)) ≥ P (x∗)− γG2

2
. (3.15)

Proof. The first inequality P (x∗) ≥ lim inft→∞ P (x(t)) holds, since x(t) is in the

feasible rate region as t goes to infinity. Now we prove the second inequality. By

equation (3.13), we have

||p(t + 1)||22 ≤ ||p(t)− γg(p(t))||22
= ||p(t)||22 − 2γg(p(t))T p(t) + γ2||g(p(t))||22
= ||p(t)||22 + 2γ

∑
s

Us(xs(t))− 2γ(
∑

s

Us(xs(t))− pT (t)H(x(t)))

−2γpT (t)A(f(t)) + γ2||g(p(t))||22
≤ ||p(t)||22 + 2γ

∑
s

Us(xs(t))− 2γ(
∑

s

Us(x
∗
s)− pT (t)H(x∗))

−2γpT (t)A(f(t)) + γ2||g(p(t))||22
= ||p(t)||22 + 2γP (x(t))− 2γP (x∗) + γ2||g(p(t))||22

−2γpT (t)(A(f(t))−H(x∗))

≤ ||p(t)||22 + 2γP (x(t))− 2γP (x∗) + γ2||g(p(t))||22,

where the second inequality follows from the fact that x(t) is the maximizer in the

problem (3.10), and the third inequality follows from the fact that f(t) is the maxi-
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mizer in problem (3.11). Applying the inequalities recursively, we obtain

||p(t + 1)||22 ≤ ||p(1)||22 + 2γ
t∑

τ=1

(P (x(τ))− P (x∗)) + γ2

t∑
τ=1

||g(p(τ))||22.

Since ||p(t + 1)||22 ≥ 0, we have

2γ
t∑

τ=1

(P (x(τ))− P (x∗)) ≥ −||p(1)||22 − γ2

t∑
τ=1

||g(p(τ))||22

≥ −||p(1)||22 − tγ2G2.

From this inequality we obtain

1

t

t∑
τ=1

P (x(τ))− P (x∗) ≥ −||p(1)||22 − tγ2G2

2tγ
.

Since P is a concave function, by Jensen’s inequality,

P (x(t))− P (x∗) ≥ −||p(1)||22 − tγ2G2

2tγ
.

Thus, lim inft→∞ P (x(t)) ≥ P (x∗) − γG2

2
, i.e., the algorithm (3.10)–(3.13) converges

statistically to within a small neighborhood of the optimal values P (x∗).

Since P (x) is continuous, Theorem 3.3 implies that the average source rate ap-

proaches the optimal x∗ when γ is small enough.

3.5 Extension to the Networks with Time-Varying

Channels

In the last section, we consider wireless ad hoc networks with fixed channels or single-

rate devices, i.e., the capacity cl is a constant when link l is active. However, recent

years have seen the growing popularity and demand of multi-rate wireless network

devices (e.g., 802.11a cards) that can adjust transmission rate according to the time-

varying channel state and improve overall network utilization. Here, we consider the
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networks with time-varying channels and adaptive multi-rate devices.

3.5.1 Distributed Algorithm

We assume that time is slotted, and the channel is fixed within a time slot but

independently changes between different slots.1 Let h(t) denote the channel state

in time slot t. Corresponding to the channel state h, the capacity of link l is cl(h)

when active and the feasible rate region at the link layer is Π(h), which is defined

in a similar way as in (3.1). We further assume that the channel state is a finite

state process with identical distribution q(h) in each time slot,2 and define the mean

feasible rate region as

Π := {r : r =
∑

h

q(h)r(h), r(h) ∈ Π(h)}. (3.16)

Ideally, we would like to have a distributed algorithm that solves the following utility

maximization problem

max
x,f

∑
s

Us(xs) (3.17)

subject to H(x) ≤ A(f), (3.18)

f ∈ Π. (3.19)

However, if we solve the above problem via dual decomposition, we may get a link

rate assignment which is infeasible for the channel state at a given time slot. Instead

we directly extend the algorithm (3.10)–(3.13) with a modification to handle time-

varying channel. For convenience, we describe the algorithm in detail in the following:

1It is straightforward to extend our results to the network where the channel state process is
modulated by a hidden Markov chain.

2Even if the channel state is a continuous process, we only have finite choices of modulation
schemes. The corresponding capacities take discrete values.
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Congestion control: At time t, given congestion price p(t), the sources adjust flow

rates x according to the congestion price

x(t) = x(p(t)) = arg max
x

∑
s

Us(xs)− pT (t)H(x). (3.20)

Scheduling: In the beginning of period t, each node monitors the channel state

h(t), and over link l send an amount of data for each flow according to the rates f

such that

f(t) = f(p(t)) ∈ arg max
f∈Π(h(t))

pT (t)A(f). (3.21)

Congestion price update: The network (links or nodes) updates the congestion

price, according to

p(t + 1) = b[p(t) + γ(H(x(p(t)))− A(f(p(t))))]+c. (3.22)

Here “b c” denotes the integer function floor, and for the simplicity of the presentation

we let congestion price take integer values with appropriate unit.

The above algorithm cannot be derived from the dual decomposition of the prob-

lem (3.17)–(3.19). However, we will use the problem (3.17)–(3.19) as a reference

system, and characterize the performance of the above algorithm with respect to it.

3.5.2 Stochastic Stability

Note that congestion price p(t) is proportional to the queue lengths in the networks

(at links or nodes). It takes discrete values, i.e., the queue lengths scaled by γ.

Thus, congestion price p(t) evolves according to a discrete-time, discrete-space Markov

chain. We need to show that this markov chain is stable, i.e., the congestion price

process reaches a steady state and does not become unbounded. It is easy to check

that the Markov chain has a countable state space, but is not necessarily irreducible.

In such a general case, the state space is partitioned in transient set T and different
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recurrent classes Ri. We define the system to be stable if all recurrent states are

positive recurrent and the Markov process hits the recurrent states with probability

one [83]. This will guarantee that the Markov chain will be absorbed/reduced into

some recurrent class, and the positive recurrence ensures the ergodicity of the Markov

chain over this class. We have the following result.

Theorem 3.4 The Markov chain described by equation (3.22) is stable.

Proof. Denote the dual function of the problem (3.17)–(3.19) by D(p) with an

optimal price p∗ and subgradient g(p), i.e., g(p) = A(f(p)) − H(x(p)) with f(p) ∈
arg maxf∈Π pT A(f). Consider the the Lyapunov function V (p) = ‖p− p∗‖2

2, we have

E[∆Vt(p)|p] = E[V (p(t + 1))− V (p(t)) | p(t) = p]

= E[V (b[p(t)− γg(p(t))]+c)− V (p(t)) | p(t) = p]

≤ E[V (p(t)− γg(p(t)))− V (p(t)) | p(t) = p]

= E[−γg(p(t))T (2(p(t)− p∗)− γg(p(t))) | p(t) = p]

= 2γg(p)T (p∗ − p) + γ2E[‖g(p(t))‖2
2 | p(t) = p]

≤ 2γg(p)T (p∗ − p) + γ2G2,

where we again use the assumption that the norm of g(p(t)) is bounded above by G.

By the definition of subgradient, we further get

E[∆Vt(p)|p] ≤ 2γ(D(p∗)−D(p)) + γ2G2.

Let

δ = max
D(p)−D(p∗)≤γG2

‖p− p∗‖2

and define A = {p : ‖p− p∗‖2 ≤ δ}. We obtain

E[∆Vt(p)|p] ≤ −γ2G2Ip∈Ac + γ2G2Ip∈A,
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where I is the index function. Thus, by Theorem 3.1 in [83], which is an extension

of Foster’s criterion [7], the Markov chain p(t) is stable.

The above proof shows that the distance to the optimal p∗ has negative conditional

mean drift for all prices that have sufficiently large distance to p∗, and implies that

the congestion price will stay near p∗ when γ is small enough.

3.5.3 Performance Evaluation

We now characterize the performance of the algorithm (3.20)–(3.22) in terms of the

dual and primal objective functions of the reference system problem (3.17)–(3.19).

Theorem 3.5 The algorithm (3.20)–(3.22) converges statistically to within a small

neighborhood of the optimal value D(p∗), i.e.,

D(p∗) ≤ D(E[p(∞)]) ≤ D(p∗) + γG2/2, (3.23)

where p(∞) denotes the state of the Markov chain p(t) in the steady state.

Proof. The first inequality D(p∗) ≤ D(E[p(∞)]) always holds, since D(p∗) is the

minimum of the dual function D(p). Now we prove the second inequality. From the

proof of Theorem 3.4, we have

E[∆Vt(p)|p] = E[V (p(t + 1))− V (p(t)) | p(t) = p]

≤ 2γ(D(p∗)−D(p)) + γ2G2.

Taking expectation over p, we get

E[∆Vt(p)] = E[V (p(t + 1))− V (p(t))]

≤ 2γ(D(p∗)− E[D(p)]) + γ2G2.
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Taking summation from τ = 0 to τ = t− 1, we obtain

E[V (p(t))] ≤ E[V (p(0))]− 2γ
t−1∑
τ=0

E[D(p(τ))] + 2γtD(p∗) + tγ2G2.

Since E[V (p(t))] ≥ 0, we have

2γ
t−1∑
τ=0

E[D(p(τ))]− 2γtD(p∗) ≤ E[V (p(0))] + tγ2G2.

From this inequality we obtain

1

t

t−1∑
τ=0

E[D(p(τ))]−D(p∗) ≤ E[V (p(0))] + tγ2G2

2tγ
.

Note that p(t) is stationary and ergodic in some steady state by Theorem 3.4, and so

is D(p(t)). Thus,

lim
t→∞

1

t

t−1∑
τ=0

E[D(p(τ))] = E[D(p(∞))].

So,

E[D(p(∞))]−D(p∗) ≤ γG2/2.

Since D(p) is a convex function, by Jensen’s inequality,

D(E[p(∞)])−D(p∗) ≤ γG2/2,

i.e., the algorithm converges statistically to within γG2/2 of the optimal value D(p∗).

Since D(p) is a continuous function, Theorem 3.5 implies that the congestion price

p approaches p∗ statistically when γ is small enough.

Corollary 3.6 x(t) is a stable Markov chain. Moreover, the average arrival rates
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E[x(∞)] ∈ Π, where x(∞) denotes the state of the process x(t) in the steady state.

Proof. x(t) is a deterministic, finite-value function of p(t). x(t) is a stable Markov

chain, since p(t) is. E[x(∞)] ∈ Π, otherwise the average congetsion price E[p(∞)]

will go unbounded, which contradicts Theorem 3.4.

Theorem 3.7 Let P (x) be the primal function and x∗ be the optimal source rates of

the reference system problem (3.17)–(3.19). The algorithm (3.20)–(3.22) converges

statistically to within a small neighborhood of the optimal value P (x∗), i.e.,

P (x∗) ≥ P (E[x(∞)]) ≥ P (x∗)− γG2

2
. (3.24)

Proof. The proof for the theorem is a straightforward extension of the proof of

Theorem 3.3, following similar procedure as in the proof of Theorem 3.5. We skip the

detail here.

Since P (x) is a continuous function, Theorem 3.7 implies that the average source

rate approaches the optimal of the ideal reference system (3.17)–(3.19) when stepsize

γ is small enough. Theorems 3.5 and 3.7 show that, surprisingly, the algorithm (3.20)–

(3.22) can be seen as a distributed algorithm to approximately solve the ideal reference

system problem that is not readily solvable due to stochastic channel variations.

Our proofs for stability and performance bounds are rather general. They only

use general properties of convexity and Markovity and the definition of subgradients.

We thus have presented a general technique and results regarding the stability and

optimality of dual algorithm for convex optimization in face of time-varying param-

eters. As the flow contention graph is a rather general construction and can be used

to capture the interdependence or contention among parallel servers of any queue-

ing networks, the aforementioned results are applicable to any systems that can be

modelled by a general model of queueing network that is served by a set of interdepen-

dent parallel servers with time-varying service capabilities. In the next two sections,

we will discuss two such applications. Other examples include fair scheduling in a

generalized switch [78] [23], and TCP [60] with time-varying capacity as in last-hop
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wireless networks. It can include power control as well [26], as power does not change

convexity of the feasible rate region.

3.6 Joint Congestion Control and Media Access

Control Design

TCP was originally designed for wireline networks, where links are assumed to have

fixed capacities. However, as wireless channel is a shared medium and interference-

limited, wireless links are “elastic” and the capacities they obtain depend on the

bandwidth sharing mechanism used at the link layer. This may result in various

TCP performance problems in wireless networks.

One such problem is TCP unfairness over ad hoc wireless networks. Many existing

wireless MAC protocols, such as DCF specified in IEEE 802.11 standard [41], are

traffic independent and do not consider the actual requirements of the flows competing

for the channel. These MAC protocols suffer from the unfairness problem, caused

by the location dependency of the contentions, and exacerbated by the contention

resolution mechanisms such as the binary exponential backoff algorithm adopted in

DCF. When they interact with TCP, TCP will further penalize these flows with

more contention. This will result in significant TCP unfairness in ad hoc wireless

networks [35] [81] [92] [93] [94]. To illustrate this, consider the example in Figure 3.2,

and assume there are four network-layer flows A→B, C→D, E→F and G→H. The

flow C→D experiences more contention and will build up queue faster than the other

three flows. TCP will further penalize it by reducing the congestion window more

aggressively, and the resulting throughput of flow C→D will be much less than that

of other flows.

In addition to the location dependency of contentions, correlation among links

is also the key to understand the interaction between transport and MAC layers.

In wireline networks, link bandwidth is well defined and links are disjoint resources.

But in wireless networks, as we mentioned above, links are correlated due to the
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A D B  E  FC

G H

Figure 3.2: An example of a simple ad hoc wireless network.

interference with each other, and network-layer flows, which do not transverse a

common link, may still compete with each other. Thus, congestion is located at

some spatial contention region [94]. Consider again the example in Figure 3.2, and

assume there are two network-layer flows A→F and G→H. Link-layer flows BC,

CD, DE and GH contend with each other, and congestion is located in the spatial

contention region denoted by the rectangle. So, unlike wireline networks where link

capacities provide constraints for resource allocation, in ad hoc wireless networks

the contention relations between link-layer flows provide fundamental constraints for

resource allocation. We need to exploit the interaction between transport and link

(MAC) layers, in order to improve the performance.

The equations (3.2)–(3.3) capture the constraints that arise from channel con-

tention among wireless links. We model the resource allocation for ad hoc wireless

networks as a utility maximization problem with these constraints,

max
x,f

∑
s

Us(xs) (3.25)

subject to Rx ≤ f, (3.26)

f ∈ Π. (3.27)

With this formulation, we can explicitly exploit the interaction between transport

and MAC layers, and systematically carry out joint design of congestion and media

access control. In the next subsection, a dual algorithm is derived by solving the

dual problem of the system problem (3.25)–(3.27). The solution to the dual problem

motivates a scheme for media access control in which link-layer flows are scheduled

according to congestion prices.
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3.6.1 Distributed Algorithm

Consider the Lagrangian of the problem (3.25)–(3.27) with respect to the rate con-

straint

L(p, x, f) =
∑

s

Us(xs)− pT (Rx− f) . (3.28)

Interpret pl as the congestion price at link l, we can use the algorithm (3.10)–(3.13)

to solve the problem (3.25)–(3.27) and its dual.

Rate control: At time t, given congestion price p(t), source s adjusts its sending

rate xs according to the aggregate congestion price
∑

l Rlspl along its path

xs(t) = U ′−1
s (

∑

l

Rlspl(t)). (3.29)

Scheduling: Over link l, send an amount of data for each flow according to the

rate f such that

f(t) = f(p(t)) ∈ arg max
f∈Π

pT f. (3.30)

If the network with time-varying channel is considered, each node monitors channel

state h(t) and over link l sends an amount of data for each flow according to the rate

f such that

f(t) = f(p(t)) ∈ arg max
f∈Π(h(t))

pT f. (3.31)

Congestion price update: Each link l updates its price, according to

pl(t + 1) = [pl(t) + γt(
∑

s

Rlsxs(p(t))− fl(p(t)))]+. (3.32)

The above algorithm motivates a joint design scheme where the link layer flows are

scheduled according to congestion prices of the links. Also, note that equations (3.29)

and (3.32) are completely distributed and can be implemented at individual sources
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and links using only local information. We will discuss the distributed solution to

scheduling problem (3.30) in the next subsection.

3.6.2 Scheduling over Ad Hoc Networks

We now come to the scheduling problem (3.30), which will also show out in the

next section. Scheduling over ad hoc networks is a difficult problem and in general

NP-hard. To see this, note that problem (3.30) is equivalent to a maximum weight

independent set problem over the flow contention graph, which is NP-hard for gen-

eral graphs. It is easy to design some heuristic algorithm but is hard to bound its

performance.

With the primary interference model, the scheduling problem (3.30) is equivalent

to the maximum weighted matching problem3 over the connectivity graph {N, L} of

the network. Maximum weighted matching problem can be computed in polynomial

time (see, e.g., [71]), but this requires centralized implementation. If implemented

over an ad hoc network, each node needs to notify the central node of its weight and

local connectivity information such that the central node can reconstruct the network

topology as a weighted graph. This will lead to an immense communication overhead

which is expensive in time and resources. There also exist simpler greedy sequential

algorithms to compute a weighted matching at most a factor of 2 away from the

maximum, see, e.g., [73]. But they also require centralized implementation. We seek

a distributed algorithm where each node participates in the computation itself using

only local information.

A few distributed approximation algorithms exist for maximum weighted match-

ing problem, see, e.g., [85] [88] [39]. In [39], the author presents a simple distributed

algorithm to compute a weighted matching at most a factor of 2 away from the max-

imum in linear running time O(|L|). This algorithm is a distributed variant of the

sequential greedy algorithm presented in [73]. We have utilized this algorithm to solve

3A matching in a graph is a subset of links, no two of which share a common node. The weight
of a matching is the total weight of all its links. A maximum weighted matching in a graph is a
matching whose weight is maximized over all matchings of the graph.
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the scheduling problem (3.30) distributedly, see [22] for details. The resulting schedul-

ing algorithm for ad hoc wireless networks is one of the best distributed algorithms

in terms of computational complexity and performance bound. It has a linear com-

plexity O(|L|). Such a low complexity is important for the scalability and efficiency

of ad hoc wireless networks. It achieves a performance of 1/2 of the maximum weight

in the worst case, and in practice, numerical simulations show it typically achieves

a performance within about 4/5 of the maximum weight. There also exist few other

distributed approximation algorithms, see, e.g., [59] [90] [65]. Especially, in [65] the

authors present a distributed randomized algorithm with comparable complexity that

achieves nearly 100% throughput.

As for the overall performance of our cross-layer design with our approximate

scheduling, we can extend the result in [59] to show that the performance is no worse

than that achieved by an exact design with a feasible rate region 1
2
Π (and in practice,

4
5
Π) at the link layer. Moreover, in [22] we also see that this distributed scheduling

algorithm only results in a very small degradation in the performance of the cross-

layer design for the network with time-varying channel, since in this situation the

exact solution of the scheduling is not as important and reasonable approximations

work well.

3.6.3 Numerical Examples

In this subsection, we provide numerical examples to complement the analysis in

previous subsections. We consider a simple network with secondary interference as

shown in Figure 3.2, and assume that there are three network layer flows G→H,

A→F and D→F with the same utility function Us(xs) = log xs. We have chosen

such a small, simple topology to facilitate the detailed discussion of the results.

The Networks with Fixed Channel and Single-Rate Devices

We first consider the network with fixed link capacities. For simplicity, we assume

that all the links have one unit of capacity when active. Figure 3.3 shows the evo-
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lution of source rates and their averages with the joint algorithm (3.29), (3.30) and

(3.32) with stepsize γ = 0.2. We see that the source rates converge quickly to a

neighborhood of the optimal and oscillate around the optimal. This oscillating be-

havior mathematically results from the non-differentiability of the dual function and

physically can be interpreted as due to the scheduling process. However, the average

source rates are smooth and approach the optimum monotonically. Figure 3.4 shows

the evolution of the corresponding end-to-end congestion prices and their averages of

the three flows. Similarly, the congestion prices approach the optimal quickly. We

also note that the performance of the algorithm is much better than the bound of

γG2/2 specified in Theorems 3.2 and 3.3.
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Figure 3.3: The evolution of source rates in the network with fixed link capacities.

The choice of the stepsize γ is important. It characterizes the “optimality” of the

algorithm, as shown in Theorems 3.2 and 3.3 (and also in Theorems 3.5 and 3.7). It

also affects the convergence speed. In oder to study the impact of different choices

of the stepsize on the performance of the algorithm, we have run simulations with

different stepsizes. We found that the smaller the stepsize, the slower the convergence

and the closer to the optimal, which is a general characteristic of any gradient based

algorithm. So, there is a tradeoff between convergence speed and optimality. In
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Figure 3.4: The evolution of congestion prices in the network with fixed link capacities.

practice, the end user can first choose large stepsizes to ensure fast convergence,

and subsequently, the stepsizes can be reduced once the source rate starts oscillating

around some mean value.

The Networks with Time-Varying Channel and Multirate Devices

We now consider the network with time-varying link capacities. For simplicity, we

assume that the capacities of all links are identically, uniformly distributed over 0.5,

1 and 1.5 units. Thus, the average capacity for each link when active is the same as

that in the example with fixed link capacities.

Figures 3.5 and 3.6 show the evolution of source rates, congestion prices and their

averages with the same stepsize γ = 0.2. The source rates and congestion prices have

much larger variations than those with fixed channel, due to the channel variations.

But the average source rates and congestion prices are still smooth, and converge

quickly and monotonically to optimal values. Our simulation results have confirmed

the conclusions from Theorems 3.5 and 3.7, which say that the average source rates

and congestion prices approach the optimum of an ideal system with the best feasible

rate region at the link layer, and that algorithm (3.29), (3.31) and (3.32) can been
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seen as a distributed algorithm to solve this ideal system problem. Also note that,

although the average link capacities when active are the same as those in fixed channel,

each flow achieves larger sending rate. This is due to the multi-user diversity that

we exploit when doing scheduling. Our “optimal” scheduling (3.31) has implicitly

considered multi-user diversity.
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Figure 3.5: The evolution of source rates in the network with time-varying link ca-
pacities.

3.6.4 Summary

We have presented a model for the joint design of congestion control and media access

control for ad hoc wireless networks, where the resulting dual algorithm is to solve

a utility maximization problem with constraints that arise from contention for the

wireless channel. This algorithm motivates a joint design where link-layer flows are

scheduled according to the congestion prices of the links.

There exist other ways to solve the resource allocation problem (3.25)–(3.27).

In [21], we also derive a primal algorithm by solving the relaxation of the system prob-

lem (3.25)–(3.27). Based on the algorithm, we propose a traffic-dependent scheme for

contention-based medium access control and generate congestion price directly from
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Figure 3.6: The evolution of congestion prices in the network with time-varying link
capacities.

the MAC layer. As scheduling in ad hoc wireless networks is an intrinsically hard

problem, contention-based medium access seems a must. To further integrate conges-

tion control and contention-based medium access in utility maximization framework

will be a future research step.

3.7 Joint Congestion Control, Routing and Schedul-

ing Design

In the last section, we have discussed the resource allocation in ad hoc wireless net-

works where the path for each network layer flow is given. However, as wireless

spectrum is a scarce resource, it may be costly to maintain end-to-end paths, and

congestion control based on end-to-end feedback may consume too much bandwidth

in signalling. Moreover, most routing schemes for ad hoc networks select paths that

minimize hop count, see, e.g., [47] [74]. This implicitly predefines a path for any

source-destination pair, independent of the pattern of traffic demand and interfer-

ence/contention among links. This may result in congestion at some region while
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other regions are underutilized. In order to achieve high end-to-end throughput and

efficient resource allocation, the paths should not be decided exogenously but jointly

optimized with congestion control and scheduling.

Since the actual paths that will be used are not specified a priori, we will use

multicommodity flow model for routing and model the resource allocation as a utility

maximization problem with the constraints (3.2) and (3.5),

max
x,f

∑
s

Us(xs) (3.33)

subject to xk
i ≤

∑

j:(i,j)∈L

fk
i,j −

∑

j:(j,i)∈L

fk
j,i, (3.34)

f ∈ Π, (3.35)

where i ∈ N , k ∈ D, i 6= k, and xk
i = 0 if [i, k] 6∈ S ×D. In the next subsection, we

apply duality theory to obtain a distributed subgradient algorithm for joint congestion

control, routing and scheduling. This algorithm motivates a joint design where the

source adjusts its sending rate according to the congestion price generated locally at

the source node, and backpressure from the differential price of neighboring nodes is

used for optimal scheduling and routing.

3.7.1 Distributed Algorithm

Consider the Lagrangian of the problem (3.33)–(3.35) with respect to the rate con-

straint

L(p, x, f) =
∑

s

Us(xs)−
∑

i∈N,k∈D,i6=k

pk
i (x

k
i −

∑

j:(i,j)∈L

fk
i,j +

∑

j:(j,i)∈L

fk
j,i). (3.36)

Interpret pk
l as the congestion price at node i for the flows to destination k, we can

use the algorithm (3.10)–(3.13) to solve the problem (3.33)–(3.35) and its dual.
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Rate control: At time t, given congestion price p(t), the source s adjusts its sending

rate xs according to the local congestion price at the source node

xs(p) = U ′
s
−1

(ps), (3.37)

where ps = pi
k for s = [i, k] ∈ S×D. In contrast to traditional TCP congestion control

where the source adjusts its sending rate according to the aggregate price along its

path, in this algorithm the congestion price is generated locally at the source node.

Note that, since

∑

i,k

pk
i

(∑
j

fk
i,j −

∑
j

fk
j,i

)
=

∑

i,j,k

fk
i,j

(
pk

i − pk
j

)
,

the scheduling problem is equivalent to the following problem

max
f∈Π

∑
i,j

fi,j max
k

(
pk

i − pk
j

)
. (3.38)

This motivates the following joint scheduling and routing algorithm:

Scheduling: Each node i collects congestion price information from its neighbor

j, finds destination k(t) such that k(t) ∈ arg maxk(p
k
i (t) − pk

j (t)), and calculates

differential price wi,j(t) = p
k(t)
i (t)−p

k(t)
j (t) and passes this information to its neighbors.

Allocate capacities f̃i,j(t) over links (i, j) such that

f̃(t) ∈ arg max
f∈Π

∑

(i,j)∈L

wi,j(t)fi,j. (3.39)

If the network with time-varying channel is considered, each node monitors the chan-

nel state h(t) and allocates capacities f̃i,j(t) over links (i, j) such that

f̃(t) ∈ arg max
f∈Π(h(t))

∑

(i,j)∈L

wi,j(t)fi,j. (3.40)

Routing: Over link (i, j), send a number of bits for destination k(t) according to
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the rate determined by the scheduling.

The wi,j values represent the maximum differential congestion price of destination

k flows between nodes i and j. The above algorithm uses backpressure to do optimal

scheduling and find optimal routing. Also note that the scheduling problem is solved

by the following assignment,

fk
i,j(t) =





f̃i,j(t) if k = k(t),

0 if k 6= k(t).

Congestion price update: Each node i updates its price with respect to destination

k, according to

pk
i (t + 1) = [pk

i (t) + γt( xk
i (p(t))− (

∑

j:(i,j)∈L

fk
i,j(p(t))−

∑

j:(j,i)∈L

fk
j,i(p(t)) ) )]+, (3.41)

and passes the price pk
i to all its neighbors. Note that pk

i (t) is interpreted as the

congestion price at the beginning of time slot t.

The above dual algorithm motivates a joint congestion control, routing and schedul-

ing design where at the transport layer sources s individually adjust their rates ac-

cording to the local congestion price at the source nodes, and nodes i individually

update their prices according to (3.41), and at the network/link layer nodes i solve

the scheduling (3.39) and route data flows accordingly. Also, note that the congestion

control is not an end-to-end scheme. There is no need to maintain end-to-end paths

and no communication overhead for congestion control.

3.7.2 Numerical Examples

In this subsection, we provide numerical examples to complement the analysis in the

previous subsections. We consider a simple ad hoc network with primary interference

as shown in Figure 3.7, and assume that there are two network layer flows A→F and

B→E with the same utility Us(xs) = log xs.
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Figure 3.7: A simple network with two network layer flows. All links are bidirectional.

The Network with Fixed Channel and Single-Rate Devices

We consider first the network with fixed link capacities. For simplicity, we assume

that links CE, EC, BF and FB have one unit of capacity and all other links have

2 units of capacity when active. Figure 3.8 shows the evolution of source rate and

congestion price of each flow with the joint algorithm (3.37), (3.39) and (3.41) with

stepsize γ = 0.2. We see that they converge quickly to a neighborhood of the optimal

and oscillate around the optimal. However, Figure 3.9 shows that the average source

rates and congestion prices are smooth and approach the optimum monotonically.

We again note that the performance of the algorithm is much better than the bound

of γG2/2 specified in Theorems 3.2 and 3.3.
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Figure 3.8: Source rates and congestion prices in the network with fixed link capaci-
ties.
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Figure 3.9: The average source rates and congestion prices in the network with fixed
link capacities.

Table 3.1 shows the average link rates allocated to each flow.4 In this table (and

another table in this subsection), the first column contains the sending nodes and the

first row contains the receiving nodes of each directed link. From this table, we can

tell which paths each flow has used. Note that links BC and CB are not used. This

is due to the fact that BC and CB are near the sources and is the link with most

contention. So, an optimal routing and scheduling will not activate it.

The Networks with Time-Varying Channel and Multirate Devices

We now consider the network with time-varying link capacities. For simplicity, we

assume that links CE, EC, BF and FB’s capacities are identically, uniformly dis-

tributed over 0.5, 1 and 1.5 units, while other links’ capacities are identically, uni-

formly distributed over 1, 2 and 3 units. Thus, the average capacity for each link

when active is the same as that in the example with fixed link capacities.

Figures 3.10 and 3.11 show the evolution of source rates, congestion prices and

their averages with the same stepsize γ = 0.2. The source rates and congestion

4In this and another tables, flows are slightly not conserved at some nodes. This is because we
run numerical simulations for finite time and some residual effect of the initial condition remains.
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Table 3.1: Average rates of flows AF (upper table) and BE (lower table) through
different links in the network with fixed link capacities

Rates A B C D E F

A 0 0.265 0.404 0 0 0

B 0 0 0 0 0 0.262

C 0 0 0 0.222 0.182 0

D 0 0 0 0 0 0.222

E 0 0 0 0 0 0.182

F 0 0 0 0 0 0

Rates A B C D E F

A 0 0.000 0.000 0 0 0

B 0 0 0 0.510 0 0.225

C 0 0 0 0 0 0

D 0 0 0 0 0.510 0

E 0 0 0 0 0 0

F 0 0 0 0 0.225 0

prices have much larger variations than those with fixed channel, due to the channel

variations. But the average source rates and congestion prices are still smooth, and

converge quickly and monotonically to optimal values. Note that, although the aver-

age link capacity when active is the same as that in fixed channel, each flow achieves

larger sending rates. This is again due to the multi-user diversity that we exploit

when doing scheduling. Also note that the increase in sending rate of flow BE is

much more notable. This is because node B has more neighbors and thus a much

larger multi-user diversity.

Table 3.2 summarizes the average link rates allocated to each flow. We see that

the routing pattern has changed for flow BE, while almost all the data for flow AF

are routed along the same paths as those for the network with fixed link capacities.

This change is due to the time-varying capacities, which makes every link have a

chance to be a globally heavy link for some channel state and thus affects the paths

each flow takes.
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Figure 3.10: Source rates and congestion prices in the network with time-varying link
capacities.
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Figure 3.11: The average source rates and congestion prices in the network with
time-varying link capacities.

3.7.3 Summary

We have presented a model for the joint design of congestion control, routing and

scheduling for ad hoc wireless networks. The resulting dual algorithm motivates a
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Table 3.2: Average rates of flows AF (upper table) and BE (lower table) through
different links in the network with time-varying link capacities

Rates A B C D E F

A 0 0.328 0.390 0 0 0

B 0 0 0 0.074 0 0.253

C 0 0.001 0 0.243 0.147 0

D 0 0 0 0 0.022 0.295

E 0 0 0 0 0 0.169

F 0 0 0 0 0 0

Rates A B C D E F

A 0 0 0.104 0 0 0

B 0.104 0 0.032 0.504 0 0.211

C 0 0 0 0.012 0.124 0

D 0 0 0 0 0.443 0.072

E 0 0 0 0 0 0

F 0 0 0 0 0.283 0

joint design where at the transport layer, sources s adjust their rates according to the

local congestion price at the source nodes, and at the network/link layer nodes solve

the scheduling and route data flows according to backpressure in congestion between

neighboring nodes. As our design only requires nodes exchanging local information

with their neighbors and does not need to maintain end-to-end paths, it has a very

low communication overhead and can adapt to changing topologies such as those in

mobile ad hoc networks.

3.8 Conclusions

We have seen in previous sections that, by formulating a general utility maximization

problem for the network design, duality theory leads to a natural “vertical” decompo-

sition into functional modules of various layers of the protocol stack and “horizontal”

decomposition into distributed computation across various network nodes or links.

As shown in Figure 3.12, our current theory integrates three functions—congestion

control, routing and scheduling—in transport, network and link layers into a coherent
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framework. With this layering scheme, the dual variables of the utility maximization

problem capture the network state information and are the information that is passed

across the interfaces among different layers. These layers are interacting through and

coordinated by the dual variables, i.e., congestion prices, so as to achieve a global

optimality. Even though this framework does not provide all the design and im-

plementation details (such as the implementation of congestion prices and signalling

mechanism), it helps us understand issues, clarify ideas, and suggests directions, lead-

ing to better and more robust designs for ad hoc wireless networks.

Links to Transmit

   Utility Functions
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 Routing

 Scheduling
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Figure 3.12: Layering as dual decomposition.

This framework—layering as dual decomposition—is promising to be extended to

provide a mathematical theory for network architecture, and to allow us to system-

atically carry out cross-layer design. In this general framework, application needs

(possibly, plus other performance metrics such as network cost) form the objective

function (i.e., network utility to be maximized) and the restrictions in resource pro-

visioning are translated into the constraints of the generalized network utility maxi-

mization problem. By choosing different objective functions and having different sets

of decision variables involved, we can explicitly characterize and trade off different

design objectives such as performance, scalability and robustness.
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There exist, however, some challenging issues with this framework. First, utility

design, i.e., how to model the user or application needs, is not an easy task, especially

for real-time applications. Second, the general utility maximization problems may be

very difficult nonlinear, nonconvex optimization with integer constraints. Third, this

framework only involves the functionalities of the data plane of the network, but

leaves out the issues related to the control plane such as the implementation and

management complexity. To address these issues will be a future research step.
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Chapter 4

Contention Control: A
Game-Theoretic Approach

In this chapter, we develop a general game-theoretic framework for contention con-

trol [24]. We define a general game-theoretic model, called random access game, to

capture the contention/interaction among wireless nodes in wireless networks with

contention-based medium access, and design a novel medium access method derived

from CSMA/CA according to distributed strategy update mechanism achieving the

Nash equilibrium of random access game. Our access method uses a continuous con-

tention measure – conditional collision probability, and could stabilize the network

into a steady state with a target fairness (or service differentiation) and high efficiency.

As wireless nodes can estimate conditional collision probabilities by observing con-

secutive idle slots between transmissions, our access method can decouple contention

control from handling failed transmissions. This also opens up other opportunities

such as rate adaptation to channel variations. In addition to providing a general and

systematic design methodology for medium access control, the random access game

model also provides an analytical framework to understand equilibrium properties

such as throughput, loss and fairness, and dynamic properties of different medium

access protocols and their interactions.
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4.1 Introduction

Wireless channel is a shared medium and interference limited. Contention-based

medium access control (contention control) is a distributed strategy to access and

share wireless channel among contending wireless nodes. From a control-theoretic

point of view, it consists of two components: a contention resolution algorithm that

dynamically adjusts persistence probability or contention window in response to con-

tention in the network, and a feedback mechanism that updates a contention measure

and sends it back to wireless nodes. Contention resolution is usually achieved through

two mechanisms: persistence and backoff [67]. In the persistence mechanism, each

wireless node maintains a persistence probability and accesses the channel with this

probability when it perceives an idle channel. In the backoff mechanism, each wireless

node maintains a contention window and waits for a random amount of time bounded

by the contention window before a transmission. When simultaneous accesses to the

channel by different nodes cause contention, the persistence probability or contention

window is adjusted appropriately so that contention is reduced. Different medium ac-

cess control methods differ in terms of how they adjust these parameters in response

to contention and what contention measure they use. For example, the standard

IEEE 802.11 DCF uses a backoff mechanism and a binary contention signal – packet

collision or successful transmission, in which each wireless node doubles its contention

window upon a collision (binary exponential backoff) and sets it to the base value

upon a successful transmission [41].

The choice of contention measure and contention resolution algorithm is key to the

performance of medium access methods. “Inappropriate” choice of these two compo-

nents will result in poor performance. For example, when the number of contending

nodes is large, 802.11 DCF results in too many collisions and hence low through-

put, because setting to the base contention window upon successful transmission is

too drastic and each new transmission starts with the base contention window in-

dependent of the contention level in the network. It also has short-term unfairness

problem, due to oscillation in contention window. The binary exponential backoff
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directly causes short-term unfairness. However, this oscillation in contention window

is unavoidable because DCF uses a binary contention signal. In order to achieve

high efficiency (high throughput and low collision) and better fairness, we need to

stabilize the network into a steady state which sustains an appropriate contention

window size (or equivalently, persistence probability) for each node. Furthermore,

how we can estimate and implement the contention measure is important. Almost all

medium access methods, including 802.11 DCF, adapt to packet collisions. However,

they cannot distinguish collisions from corrupted frames that are common in wireless

networks. This leads to lower throughput and increased unfairness. To ensure good

performance, we need to use a contention measure whose estimation is not based on

packet collisions, and decouple contention control from handling failed transmissions.

The main motivation of this work is to provide an analytical framework to sys-

tematically study the contention/interation among wireless nodes and design medium

access methods that could stabilize the network around a steady state with a tar-

get fairness (or service differentiation) and high efficiency. To this end, we define

a general game-theoretic model, called random access game, to capture the con-

tention/interaction among wireless nodes in wireless networks with contention-based

medium access. Here the game-theoretic model is not intended to model selfish be-

haviors of wireless nodes, but rather to capture the constraints encountered in real

networks. In real networks, we prefer distributed algorithms with no or minimal ex-

plicit message passing, and each wireless node does not know how many nodes are

present, is not aware of the actions (such as transmission or channel access probabil-

ity) of others a priori, and can only sense limited information about the channel state

(such as packets encountering collisions, or channel being idle or busy). In such a

situation, the best a node can do is to optimize some local or private objective and ad-

just its action based on limited information about the network state. Noncooperative

game is best to model such a situation, and we design random access game to guide

individual nodes to seek an equilibrium that achieves some systemwide performance

objective.

In random access games, a player (wireless node) strategy is its persistence proba-
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bility or equivalently its contention window size, and its payoff function includes both

utility gain from channel access and cost from packet collision. Through the specifi-

cation of per-node utility function, we can model a large class of systemwide quality

of service models, similar to that in utility framework for network flows [48] [60]. We

characterize the Nash equilibrium of random access games, study their dynamics and

propose algorithms (strategy evolutions) to achieve the Nash equilibrium. We show

that systemwide fairness or service differentiation can be achieved in a distributed

manner as long as each node executes a contention resolution algorithm that is de-

signed to achieve the Nash equilibrium.

Based on the understanding of the equilibrium and dynamics of random access

games, we propose a novel medium access method derived from CSMA/CA in which

each node estimates its conditional collision probability and adjusts its persistence

probability or equivalently contention window accordingly. Unlike other medium ac-

cess methods, our method adapts to continuous feedback signal (conditional collision

probability) rather than binary contention signal (packet collision or successful trans-

mission), and each node tries to keep a fixed persistence probability or equivalently

contention window specified by the Nash equilibrium of random access game. In

addition to simpler dynamics resulting from responding to continuous feedback and

controllable performance objectives via the specification of per-node utility functions,

as the conditional collision probability is a more accurate measure of contention in

the network, our medium access method achieves better contention control (collision

reduction) and hence higher throughput. Moreover, as wireless nodes can estimate

conditional collision probabilities by observing consecutive idle slots between trans-

missions, we can decouple contention control from handling failed transmissions. This

also opens up other opportunities such as rate adaptation to channel variations. As a

case study of medium access control design in game theory framework, we present a

concrete medium access method and show that it achieves higher throughput, lower

collision and better short-term fairness than the standard 802.11 DCF, and can pro-

vide flexible service differentiations among wireless nodes.

The remainder of this chapter is organized as follows. The next section briefly
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discusses some related work. Section 4.3 presents details of the random access game

model and medium access control design in general for a single-cell wireless LAN,

and section 4.4 presents a concrete medium access control design and evaluates its

performance. Section 4.5 extends the game-theoretic framework to multicell wireless

LANs. Section 4.6 discusses utility function and reverse engineering of medium access

control protocols in our framework. Section 4.7 concludes the chapter with some

discussions on further research.

4.2 Related Work

Game-theoretic approach has been applied extensively to study random access. Jin

et al. [45] study noncooperative equilibrium of Aloha networks and their local con-

vergence. MacKenzie et al. [63] study the stability of multipacket slotted Aloha.

Altman et al. [4] and Borkar et al. [16] study distributed scheme for adapting random

access. Altman et al. [3] [5] study distributed choice of retransmission probability

in slotted Aloha with partial information, and with priorities and random power.

Tang et al. [82] reverse engineer binary exponential backoff algorithm in game theory

framework. Čagalj et al. [19] study selfish behavior in CSMA/CA networks using

game-theoretic approach and propose a distributed protocol to guide multiple selfish

nodes to a Pareto-optimal Nash equilibrium. We do not consider such selfish behav-

iors of wireless users that tamper with wireless interfaces to increase their share of

channel access as in [19]. In contrast, we use game-theoretic model to capture the

information and implementation constraints encountered in real networks and design

games to guide distributed users to achieve systemwide performance objectives. An-

other major difference of our work from most other game-theoretic works is that we

take a control-theoretic viewpoint and regard channel access probabilities as dynamic

variables. As such, we define a general utility for each user directly in terms of its

channel access probability, and specify a special structure for random access game that

respects the distributed and adaptive nature of contention-based medium access, see

the first paragraph in the introduction. Optimization-theoretic framework has also
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been used to design medium access control, see, e.g., [67] [57]. However, there is se-

rious limitation for the optimization-based design: extensive message passing among

wireless nodes is needed to align the behaviors of individual nodes to achieve some

global optimality; otherwise, the convergence to the optimality is actually not guar-

anteed.

There are many papers on various enhancements and improvements to 802.11

DCF. We will only briefly discuss some designs that propose better contention resolu-

tion algorithms and that improve throughput by tuning contention window according

to the number of contending nodes. Aad et al. [2] introduce slow decrease method

to improve efficiency and fairness. Kwon et al. [55] propose fast collision resolution

algorithm for throughput improvement. Our design is different in terms of both con-

tention measure and contention resolution algorithm. Bianchi et al. [13] and Cali et

al. [20] propose to choose and compute an optimal contention window to maximize the

throughput. They need sophisticated methods to estimate the number of contending

nodes in the system, while in our access method wireless nodes do not need that in-

formation but still are able to choose optimal contention windows. There also exists

extensive work on 802.11 QoS provisioning, see, e.g., [1] [42]. Our access method can

provide general and more flexible service differentiations through the specification of

per-node utility functions, except for manipulating the length of inter-frame space.

Related work also includes [38], which proposes idle sense access method for a

single-cell wireless LAN that compares the mean number of idle slots between trans-

mission attempts with the optimal value and adopts an additive increase and multi-

plicative decrease algorithm to dynamically control the contention window in order to

improve throughput and short-term fairness. In our access method, wireless nodes es-

timate conditional collision probabilities by observing consecutive idle slots between

transmissions. So, like idle sense access method, our access method can decouple

contention control from handling failed transmissions (that could be due to packet

collisions or corrupted frames) and be able to estimate frame error rate and based on

that to do rate adaptation. However, idle sense method intends to make contention

windows equal for all wireless nodes and requires the calculation of optimal average
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number of idle slots between transmissions. It is not clear how to achieve this for

a single-cell wireless LAN of heterogenous users with different system parameters or

different service requirements and how to extend to the multicell networks. In con-

trast, our access method is fully distributed and adaptive, and works for single-cell

wireless LANs of heterogeneous users and multicell wireless LANs.

Finally, several works, see, e.g., [14] [52] [75], have proposed analytical models

for 802.11 DCF and studied its performance by fixed point analysis. Our analysis of

nontrivial Nash equilibrium has some similarity with those fixed point analysis.

4.3 Random Access Game

Consider a set N of wireless nodes in a wireless LAN with contention-based medium

access. We first focus on single-cell wireless LANs,1 and will consider multicell wire-

less LANs in section 4.5. We consider the case of greedy nodes, i.e., they always

have a frame to transmit. We will mainly present our theory and analysis in terms of

“channel access probability.” If a persistence mechanism is implemented, the channel

access probability is just the persistence probability. If a backoff mechanism is imple-

mented, channel access probability p is related to a constant contention window cw

according to

p =
2

cw + 1
. (4.1)

Relation (4.1) can be derived under the decoupling approximation for a set of wireless

nodes with constant contention windows, see, e.g., [14] [52]. The decoupling approxi-

mation is an extremely accurate approximation, as validated by extensive simulations

reported in, e.g., [14] [52].

Assume that each node i ∈ N attains a utility Ui(pi) when it accesses the

channel with probability pi. We assume that Ui(·) is continuously differentiable,

strictly concave, and with finite curvatures that are bounded away from zero, i.e.,

1Single-cell means that every wireless node can hear every other node in the network. For
example, a single-cell ad hoc wireless network or a single-cell wireless access network.
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there exist some constants µ and λ such that 1/µ ≥ −1/U ′′
i (pi) ≥ 1/λ > 0. Let

qi(p) := 1 −∏
j∈N/{i}(1 − pj) denote the conditional collision probability of node i.2

Our objective is to choose p := (p1, p2, . . . , p|N |) such that each node maximizes its

payoff Ui(pi)−piqi. Since wireless nodes are not aware of channel access probabilities

of others a priori, we model their interaction as a noncooperative game. Formally,

we define a random access game as follows.

Definition 4.1 A random access game G is defined as a triple G := {N, (Si)i∈N , (ui)i∈N},
where N is a set of players (wireless nodes), player i ∈ N strategy Si := {pi|pi ∈
[νi, ωi]} with 0 ≤ νi < ωi ≤ 1, and payoff function ui(p) := Ui(pi) − piqi(p) with

qi(p) := 1−∏
j∈N/{i}(1− pj).

We may constrain the strategy space Si of each node to a strict subset of [0, 1],

in order to prevent a node from exclusively occupying wireless channel or being com-

pletely excluded from the channel. We further assume that utility Ui(pi) is an in-

creasing function in the strategy space Si. Wireless nodes (players) interact through

collisions. Note that the throughput of node i is proportional to pi if there is no

collision, and piqi is the collision probability experienced by node i and can be seen as

collision cost. Thus, the payoff function ui(·) has a nice interpretation: the net gain of

utility from channel access, discounted by collision cost.3 Correspondingly, the payoff

function has a simple structure, which makes the analytical study of equilibrium and

dynamic properties of random access game manageable. This will in turn facilitate

the design of medium access control.

Random access game G is defined in a rather general manner. Each node i can

choose any utility function Ui(·) it thinks appropriate. We classify different choices

into two categories as follows. If all nodes have the same utility functions, the system

is said to have homogeneous users. If the nodes have different utility functions, the

system is said to have heterogeneous users. The motivation for studying systems of

heterogeneous users is to provide differentiated services to different wireless nodes.

2For any two sets A and B, define A/B := {i|i ∈ A and i 6∈ B}.
3In most references on game theory, utility function and payoff function mean the same thing.

In this thesis we distinguish between them.
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4.3.1 Nash Equilibrium

We now analyze the equilibrium of random access game. The solution concept we use

is the Nash equilibrium [34]. Denote the strategy (channel access probability) selec-

tion for all nodes but i by p−i := (p1, p2, . . . , pi−1, pi+1, . . . , p|N |), and write (pi,p−i)

for the strategy profile (p1, p2, . . . , pi−1, pi, pi+1, . . . , p|N |). A vector of access proba-

bility p∗ is a Nash equilibrium if, for all nodes i ∈ N , ui(p
∗
i ,p

∗
−i) ≥ ui(pi,p

∗
−i) for all

pi ∈ Si. We see that the Nash equilibrium is a set of strategies for which no player

has an incentive to change unilaterally. The following result is immediate.

Theorem 4.2 There exists a Nash equilibrium for any random access game G.

Proof. Since the strategy spaces Si are compact convex sets, and the payoff functions

ui are continuous and concave in pi, there exists a Nash equilibrium [34].

Since utility function Ui(·) is concave, at the Nash equilibrium, p?
i either takes

value at the boundaries of the strategy space Si or satisfies

U ′
i(p

∗
i ) = qi(p

∗), (4.2)

where U ′
i(p

∗
i ) =

dUi(p
∗
i )

dpi
, the marginal utility at p∗i . We call a Nash equilibrium p∗

a nontrivial equilibrium if, for all nodes i, p∗i satisfies equation (4.2), and trivial

equilibrium otherwise. In the remainder of this section, we will mainly focus on

nontrivial Nash equilibria.

Theorem 4.3 Random access game G has a nontrivial Nash equilibrium if, for each

node i ∈ N , inverse function (U ′
i)
−1(qi) maps any qi ∈ [0, 1] into a point pi ∈ Si.

Proof. From equation (4.2), we get

p∗i = Gi(p
∗) := (U ′

i)
−1(qi(p

∗)). (4.3)
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Since qi(p) maps any p ∈ S1×S2×· · ·×S|N | into a point in [0, 1] and by assumption

(U ′
i)
−1(qi) maps any qi ∈ [0, 1] into a point in Si, vector function

G(p) := (G1(p), G2(p), . . . , G|N |(p))

maps compact set S1 × S2 × · · · × S|N | into itself. Hence, by Brouwer’s fixed point

theorem [15], there exists at least one fixed point of G in S1 × S2 × · · · × S|N |, i.e.,

random access game G has a nontrivial Nash equilibrium.

The assumption that (U ′
i)
−1(qi) maps any qi ∈ [0, 1] into a point in Si is a mild

assumption. For convenience, we call it assumption A1. It gives a sufficient condition

for the existence of nontrivial Nash equilibrium. For some utility functions that do

not satisfy this condition, nontrivial Nash equilibrium may exist too. For example,

take Ui(pi) := a ln(a + pi) with a > 0, we have (U ′
i)
−1(qi) = a(1− qi)/qi, which does

not satisfy the assumption A1. However, there exists at least one nontrivial Nash

equilibrium p∗ that satisfies a
a+p∗i

= 1− (1− p∗i )
|N |−1, i ∈ N .

Since Ui(pi) is a continuously differentiable concave function, U ′
i(pi) is a contin-

uous, decreasing function and so is (U ′
i)
−1(qi). Note that [0, 1] is a connected and

compact set. Hence the range of (U ′
i)
−1(qi) is a connected and compact set. Without

loss of generality, with the assumption A1 we constrain the strategy space Si to this

set, i.e., (U ′
i)
−1(0) = ωi and (U ′

i)
−1(1) = νi, in the following discussion.

Define idle probability γ(p) :=
∏

i∈N(1 − pi), and Γi(pi) := (1 − pi)(1 − U ′
i(pi)).

It follows from equation (4.2) that, at nontrivial Nash equilibrium,

Γi(p
∗
i ) = γ(p∗). (4.4)

Note that the right-hand side of the above equation is independent of i. Thus, Γi(p
∗
i ) =

Γj(p
∗
j) for any i, j ∈ N .

Theorem 4.4 Suppose A1 holds. If additionally Γi(pi) is a monotone function in Si

for all i ∈ N , then random access game G has a unique nontrivial Nash equilibrium.
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Proof. The assumption A1 guarantees the existence of nontrivial Nash equilibrium.

Note that Γi(pi) is an increasing function, since it is monotone by assumption, non-

negative and Γi(νi) = (1−νi)(1−1) = 0. Suppose that there are two nontrivial Nash

equilibria p̄ and p̂. From equation (4.4) we require that there exist γ1, γ2 > 0 such

that, for all i,

Γi(p̄i) = γ1,

Γi(p̂i) = γ2.

Since Γi(pi) is monotone, γ1 6= γ2. Without loss of generality, assume γ1 > γ2.

Thus p̄i > p̂i for all i. By equation (4.2), U ′
i(p̄i) = qi(p̄) > qi(p̂) = U ′

i(p̂i), which

contradicts the fact that U ′
i(pi) is a decreasing function. Thus, random access game

G has a unique nontrivial Nash equilibrium.

The assumption that Γi(pi) is a monotone function in Si is also a mild assumption.

Again, for convenience we call it assumption A2. When this assumption is not

satisfied, multiple nontrivial Nash equilibria are possible. Consider the same example

with utilities Ui(pi) = a ln(a + pi), we have Γi(pi) = (1− pi)pi/(a + pi), which is not

monotone in [0, 1]. When the number of wireless nodes |N | > 2, in addition to the

Nash equilibrium mentioned above, there exists a family of nontrivial Nash equilibria

p∗ that satisfy p∗i = 1− ( 1
a+1

)
1

|N|−2 , p∗j =
a(1−p∗i )

a+p∗i
for all j ∈ N and j 6= i.

In order to study quality of service differentiation among wireless nodes, we further

differentiate among symmetric and asymmetric equilibria as follows.

Definition 4.5 A Nash equilibrium p∗ is said to be a symmetric equilibrium if p∗i =

p∗j for all i, j ∈ N , and an asymmetric equilibrium otherwise.

From the former examples, for a system of homogeneous users, both symmetric and

asymmetric Nash equilibria are possible. By symmetry, if a system of homogeneous

users has an asymmetric Nash equilibrium, all its permutations are Nash equilibria.

However, for symmetric nontrivial equilibrium, it must be unique.
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Theorem 4.6 For a system of homogeneous users, if random access game G has

symmetric nontrivial Nash equilibrium, it must be unique. More generally, for a

system with several classes of homogeneous users, if G has symmetric nontrivial Nash

equilibrium,4 it must be unique.

Proof. For a system of homogeneous users, suppose that there are two symmetric

Nash equilibria p̄ and p̂. Without loss of generality, assume p̄ > p̂. It follows from

equation (4.2) that, for all i,

U ′
i(p̄i) = qi(p̄),

U ′
i(p̂i) = qi(p̂).

Note that qi is an increasing function of p and U ′
i is a decreasing function of pi, which

contradicts the above equations. Thus, p̄ = p̂, i.e., the symmetric Nash equilibrium

must be unique. Following the same argument, we can prove the second part of the

theorem.

Since by symmetry there must be multiple asymmetric Nash equilibria if there

exists any, the following result follows directly from Theorems 4.4 and 4.6.

Corollary 4.7 For a system of homogeneous users, suppose A1 and A2 hold, then

random access game G has a unique nontrivial Nash equilibrium which is a symmetric

equilibrium. More generally, for a system with several classes of homogeneous users,

under the same assumptions, G has a unique nontrivial Nash equilibrium which is

symmetric among each class of users.

Corollary 4.7 is a powerful result. It guarantees the uniqueness of nontrivial

Nash equilibrium, and moreover, it guarantees fair sharing of wireless channel among

the same class of wireless nodes and provides service differentiation among different

classes of wireless nodes. This will facilitate the analysis of dynamic property of

random access games and the design of medium access control.

4For a system with several classes of users, a Nash equilibrium is symmetric if at equilibrium the
users of the same class choose the same strategy.
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Note that we establish the uniqueness of nontrivial Nash equilibrium by exploit-

ing special symmetry in the single-cell wireless LAN, see equation (4.4). It is not

clear how to extend this to the multicell wireless LAN. In section 4.5, we will use

contraction mapping theorem to specify conditions that guarantee the uniqueness of

and convergence to the nontrivial Nash equilibrium for any networks.

Remark 1: Since at trivial Nash equilibrium some player takes a strategy (channel

access probability) at the boundary of the strategy space, a trivial Nash equilibrium

usually has great unfairness or low payoff. So, nontrivial Nash equilibrium is desired.

If for a random access game there does not exist any nontrivial Nash equilibrium,

we may need to look for alternative solution other than the Nash equilibrium. For

example, we may use Nash bargaining framework in cooperative game theory to derive

a desired equilibrium solution, as in, e.g., [19].

4.3.2 Dynamics of Random Access Game

The dynamics of game studies how interacting players could converge to a Nash

equilibrium. As discussed in chapter 2, it is a difficult problem in general, and game

theory lacks a general and convincing argument that a Nash outcome will occur.

In the setting of random access, players (wireless nodes) can observe the outcome

(packet collision or successful transmission) of the actions of others, but do not have

direct knowledge of other player actions and payoffs. We consider repeated play of

random access game, and look for update mechanism in which players repeatedly

adjust strategies in response to observations of other player actions so as to achieve

the Nash equilibrium. In the following discussion, we will suppose that assumptions

A1 and A2 hold, i.e., a unique and nontrivial Nash equilibrium exists. Note that the

assumption A2 also implies ωi < 1. In practice, this can be used to prevent a node

from exclusively occupying wireless channel.

The simplest strategy update mechanism is of best response sort: at each stage,

every node chooses the best response to the actions of all the other nodes in the

previous round. Mathematically, at stage t + 1, node i ∈ N chooses a channel access
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probability

pi(t + 1) = Gi(p(t)) := arg max
p∈Si

(Ui(p)− pqi(p(t))) . (4.5)

Clearly, if the above dynamics reaches a steady state, then this state is a Nash equi-

librium. Nonetheless, there are no convergence results for general games using this

dynamics.

Theorem 4.8 Suppose A1 and A2 hold. If function G(2)(p) has a unique fixed point

in the strategy space,5 then the best response strategy (4.5) converges to the unique

nontrivial Nash equilibrium of random access game G.

Proof. First, note that the unique nontrivial Nash equilibrium p∗, which is

the fixed point of G(p), is also a fixed point of G(2)(p). Thus, by assumption p∗

is the unique fixed point of G(2)(p). Let pmin := (ν1, ν2, . . . , ν|N |) and pmax :=

(ω1, ω2, . . . , ω|N |), we have 0 < pmin ≤ p∗ ≤ pmax < 1. Since G(p) is a decreas-

ing function with respect to relation < over vectors p, we have

0 < pmin < G(pmax) ≤ p∗ ≤ G(pmin) < pmax < 1,

and further,

0 < pmin < G(pmax) < G(2)(pmin) ≤ p∗

≤ G(2)(pmax) < G(pmin) < pmax < 1.

Recursively applying the best response strategy (4.5), we can obtain, for any m ∈ N ,

0 < pmin < G(pmax) < G(2)(pmin) < G(3)(pmax)

< G(4)(pmin) < · · · < G(2m−1)(pmax) < G(2m)(pmin)

5We denote m recursive operations of function G(p) by G(m)(p).
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≤ p∗ ≤ G(2m)(pmax) < G(2m−1)(pmin) < · · ·
< G(4)(pmax) < G(3)(pmin) < G(2)(pmax)

< G(pmin) < pmax < 1.

We see that {. . . , G(2m−1)(pmax), G
(2m)(pmin), . . . } is an increasing sequence bounded

above by p∗, and thus converges to a point p̄. {. . . , G(2m−1)(pmin), G(2m)(pmax), . . . }
is a decreasing sequence bounded below by p∗, and thus converges to a point p̂.

Furthermore, p̄ and p̂ are fixed points of G(2)(p). So, we must have p̄ = p̂ = p∗, i.e.,

starting with pmin or pmax the best response strategy converges to p∗. Since G(p) is

a continuous function and for any p in the strategy space pmin ≤ p ≤ pmax, sequence

{. . . , G(m)(p), . . . } converges to p∗. We conclude that, if G(2)(p) has a unique fixed

point in the strategy space, repeated play of the best response strategy (4.5) converges

to the unique nontrivial Nash equilibrium of random access game G.

The condition specified in the last theorem is not easy to verify in general. More-

over, best response is expected to have large fluctuations. We thus consider an al-

ternative strategy update mechanism called gradient play [32]. Compared to “best

response” strategy, gradient play can be viewed as a “better response.” In gradient

play, every player adjusts a current channel access probability gradually in a gradient

direction suggested by observations of other player actions. Mathematically, each

node i ∈ N updates its strategy according to

pi(t + 1) = [pi(t) + fi(pi(t))(U
′
i(pi(t))− qi(p(t)))]Si , (4.6)

where the stepsize fi(·) > 0 can be a function of the strategy of player i, and “Si” de-

notes the projection onto the player i strategy space. We can interpret the conditional

collision probability qi as contention price for node i. If the marginal utility dUi(pi)
dpi

is

greater than contention price, we increase the access probability, and if the marginal

utility is less than contention price, we decrease the access probability. Since at each

stage, players update channel access probabilities by a small amount, gradient play

is expected to have a smooth dynamics. The following result is immediate.



73

Lemma 4.9 By the definition of nontrivial Nash equilibrium, nontrivial Nash equi-

libria of random access game G are fixed points of the gradient play (4.6) and vice

versa.

Theorem 4.10 Suppose A1 and A2 hold, the gradient play (4.6) converges to the

unique nontrivial Nash equilibrium of random access game G if for any i ∈ N , the

stepsize fi(pi) < 1
λ+|N |−1

.

Proof. Consider Lyapunov function V (p) :=
∑

i∈N(Ui(pi) − pi) −
∏

i∈N(1 − pi).

Define a matrix B(p) := −∇2V (p), we have (see, e.g., pp. 635 in [9])

||B(p)||22 ≤ ||B(p)||∞ · ||B(p)||1.

Since B(p) is symmetric, ||B(p)||∞ = ||B(p)||1 and hence

||B(p)||2 ≤ ||B(p)||∞
= max

i

∑
j

[B(p)]ij

= max
i

∑
j

(−U ′′
i (pi)δi,j + (1− δi,j)

∏

k 6=i,j

(1− pk))

≤ max
i
{−U ′′

i (pi)}+ |N | − 1

≤ λ + |N | − 1.

By Taylor expansion, we have

V (p(t + 1))− V (p(t))

= ∇V (p(t)) · (p(t + 1)− p(t))

+
1

2
(p(t + 1)− p(t))T · ∇2V (p̄) · (p(t + 1)− p(t))

= ∇V (p(t)) · (p(t + 1)− p(t))

−1

2
(p(t + 1)− p(t))T ·B(p̄) · (p(t + 1)− p(t))

≥ ∇V (p(t)) · (p(t + 1)− p(t))

−λ + |N | − 1

2
||p(t + 1)− p(t)||22,
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where p̄ ∈ {p|p = ap(t) + (1 − a)p(t + 1), a ∈ [0, 1]}. Now, note that there exists

some nonnegative number ∆i ≤ |U ′
i(pi(t))− qi(p(t))| such that equation (4.6) can be

written as

pi(t + 1) = pi(t) + fi(pi(t))(U
′
i(pi(t))− qi(p(t)))

−fi(pi(t))∆isign(U ′
i(pi(t))− qi(p(t))), (4.7)

where we define sign(a) = 1 if a ≥ 0 and sign(a) = −1 if a < 0. Plug equation (4.7)

into the above inequality, we have

V (p(t + 1))− V (p(t))

≥
∑

i

(fi(pi(t))− (λ + |N | − 1)f 2
i (pi(t))

2
)(U ′

i(pi(t))− qi(p(t)))2

−
∑

i

(λ + |N | − 1)f 2
i (pi(t))

2
∆2

i

+
∑

i

((λ + |N | − 1)f 2
i (pi(t))− fi(pi(t)))∆i|U ′

i(pi(t))− qi(p(t))|

≥
∑

i

(fi(pi(t))− (λ + |N | − 1)f 2
i (pi(t)))(U

′
i(pi(t))− qi(p(t)))2

+
∑

i

((λ + |N | − 1)f 2
i (pi(t))− fi(pi(t)))∆i|U ′

i(pi(t))− qi(p(t))|

=
∑

i

(fi(pi(t))− (λ + |N | − 1)f 2
i (pi(t))){(U ′

i(pi(t))− qi(p(t)))2

−∆i|U ′
i(pi(t))− qi(p(t))|}.

Thus, if fi(pi) < 1
λ+|N |−1

, V (p(t + 1)) − V (p(t)) ≥ 0. Note that ∆i < |U ′
i(pi(t)) −

qi(p(t))| if U ′
i(pi(t)) − qi(p(t)) 6= 0. We see that V (p) will keep increasing until the

system reaches a fixed point of equation (4.6). Since by Theorem 4.4 equation (4.6)

has a unique fixed point in strategy space, gradient play (4.6) converges to the unique

nontrivial Nash equilibrium of random access game G.

Theorem 4.10 guarantees the convergence of distributed gradient play to the de-

sired Nash equilibrium. If a backoff mechanism is implemented, by equation (4.1)
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each node i ∈ N updates its contention window cwi as follows:

cwi(t) =
2− pi(t)

pi(t)
. (4.8)

Remark 2: For a general game model, there may exist multiple nontrivial Nash

equilibria. In this situation, a “naive” strategy such as best response or gradient play

may not converge to the desired equilibrium, and concepts from incentive design or

control theory may come in to work, see, e.g., [77].

4.3.3 Medium Access Control Design

Our ultimate purpose for studying random access games is to design medium access

method with better performance and simpler dynamics. Corollary 4.7 and Theorem

4.10 (and Theorem 4.8) suggest that random access games provide a general analyti-

cal framework to model a large class of systemwide quality of service models (mainly

in terms of throughput) via the specification of per-node utility functions, and sys-

temwide fairness or service differentiation can be achieved in a distributed manner

as long as each node executes a contention resolution algorithm that is designed to

achieve the Nash equilibrium.

Based on this understanding of the equilibrium and dynamics of random access

games, we propose a novel medium access method derived from CSMA/CA: instead

of executing exponential backoff upon collisions, each node estimates its conditional

collision probability and adjusts its channel access probability and contention win-

dow accordingly. As gradient play guarantees the convergence to the Nash equilibrium

and results in smoother dynamics, we will design medium access method according to

equations (4.6) and (4.8), see Table 4.1 for a formal description. Unlike other medium

access methods, our method adapts to continuous feedback signal (conditional col-

lision probability) rather than binary feedback (packet collision), and stabilizes the

network around a steady state specified by the Nash equilibrium of random access

game. Our access method is an equation-based control, and its performance (such

as throughput, collision and fairness) is determined by the Nash equilibrium. Note
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Table 4.1: Medium access method via gradient play

After each transmission

{
/*wireless node observes n idle

slots before a transmission*/

isum ← isum + n
ntrans ← ntrans + 1
if(ntrans >= maxtrans){

/*compute the estimator*/

n̄ ← isum
ntrans

qi ← 1−(n̄+1)pi

(n̄+1)(1−pi)

/*update access probability*/

pi ←− pi + fi(pi)(U
′
i(pi)− qi)

/*update contention window*/

cwi ←− 2−pi

pi

/*reset variables*/

isum ← 0
ntrans ← 0
}

}

that U ′
i(pi(t)) − qi(p(t)) specifies how far the current state is from the equilibrium.

The contention window adjustment is small when the current state is close to the

equilibrium and large otherwise, independent of where the equilibrium is. This is in

sharp contrast to the approach taken by 802.11 DCF, where window adjustment de-

pends on just the current window size and is independent of where the current state

is with respect to the target equilibrium. So, our access method can achieve better

contention control (collision reduction) and better short-term fairness. In addition

to simple dynamics resulting from using continuous feedback and controllable per-

formance objectives via the specification of per-node utility functions, as conditional

collision probability is a more accurate measure of the contention among wireless

nodes than instantaneous packet collision, our access method can achieve better bal-

ance/tradeoff between channel access and collision avoidance, and hence a higher

throughput.
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Furthermore, wireless nodes can estimate conditional collision probabilities by

observing idle period of the channel. Let n denote the number of consecutive idle slots

between two transmissions. Here “a transmission” corresponds to a busy period in the

channel when only a node transmits (i.e., a successful transmission) or multiple nodes

transmit simultaneously (i.e., a collision). Since n has the geometric distribution with

parameter γ(p), its mean n̄ is given by

n̄ =
γ(p)

1− γ(p)
.

Thus, each node can estimate its conditional collision probability by observing the

average number of consecutive idle slots, according to

qi = 1− γ(p)

1− pi

=
1− (n̄ + 1)pi

(n̄ + 1)(1− pi)
. (4.9)

So, our access method can decouple contention control from handling packet losses,

and is immune to all the problems incurred in methods that infer channel contention

from packet collisions.

Moreover, our access method provides a way for adapting transmission rates to

channel variations. Rate adaptation is not easy, since it depends on the frame error

rate perceived at the receiver and it is difficult for the sender to obtain or estimate

the frame error rate. In our access method, with the conditional collision probability

at hand, wireless nodes i can estimate frame error rates ei. This can be achieved by

first estimating conditional packet loss probabilities li. Each wireless node i keeps a

counter tx sumi for its total transmission and another counter l sumi for its total

packet losses over some period. The conditional loss probability over that period is

given by li = l sumi

tx sumi
, and the frame error rate can be estimated by ei = li−qi

1−qi
. Denote

its current rate by ri, wireless node i can switch to a lower rate r̂i roughly when

r̂i(1− êi) ≥ r(1− ei),

where êi is the error rate if operating at the lower rate. Note that êi is expected
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to be small. As a first approximation, node i can switch to the lower rate when

ei = 1− r̂i/ri.

In the next section, we will study a concrete random access game and the cor-

responding medium access control design, as a case study for the proposed design

methodology in game theory framework. We will describe there in detail the design

of our medium access method.

4.4 A Case Study

Consider the following utility

Ui(pi) :=
1

ai

(
(ai − 1)ωi

ai

ln (aipi − ωi)− pi), (4.10)

where 0 < ωi < 1, ai > 1 and pi ∈ [2ωi/(1 + ai), ωi]. Define a random access game

G1 := {N, (Si)i∈N , (ui)i∈N}, where N is a set of players (wireless nodes), player i

strategy Si := {pi|pi ∈ [2ωi/(1+ai), ωi]} and payoff function ui(p) := Ui(pi)−piqi(p)

with qi(p) := 1 − ∏
j∈N/{i}(1 − pj). In the following, we will study the equilibrium

and dynamic aspects of random access game G1, and design a medium access method

accordingly.

4.4.1 Nash Equilibrium

The marginal utility

U ′
i(pi) =

ωi − pi

aipi − ωi

,

thus the inverse function

(U ′
i)
−1(qi) =

ωi(1 + qi)

1 + aiqi

.
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It is easy to check that (U ′
i)
−1(qi) is a decreasing function in [0, 1] and satisfies the

assumption A1. Also,

Γi(pi) = (1− pi)(1− U ′
i(pi)) =

(1− pi)((1 + ai)pi − 2ωi)

aipi − ωi

.

Lemma 4.11 Γi(pi) is monotone in [2ωi/(1 + ai), ωi], if aiωi < 1.

Proof. The derivative of Γi is

Γ′i(pi) = −1 +
ωi − pi

aipi − ωi

− (1− ai)ωi

(aipi − ω)2
(1− pi). (4.11)

Note that ωi−pi

aipi−ωi
≥ 0, and (1−ai)ωi

(aipi−ω)2
≤ 1

(1−ai)ωi
. Thus, Γ′i(pi) ≥ −1 + 1−w

(ai−1)ωi
. So, if

aiωi < 1, we have Γ′i(pi) > 0, which means Γi(pi) is monotone in [2ωi/(1+ai), ωi].

Lemma 4.11 shows that, If aiωi < 1, the assumption A2 is satisfied. Thus, the

following result follows directly from Corallary 4.7.

Theorem 4.12 If aiωi < 1, random access game G1 has a unique nontrivial Nash

equilibrium. Moreover, for a system of homogeneous users the unique nontrivial Nash

equilibrium of G1 is a symmetric equilibrium, and for a system with several classes of

homogeneous users the unique nontrivial Nash equilibrium of G1 is symmetric among

each class of users.

4.4.2 Dynamics

Assume that each node i ∈ N adjusts its strategy according to gradient play

pi(t + 1) = [pi(t) + fi(pi(t))(
ωi − pi(t)

aipi(t)− ωi

− qi(p(t)))]Si , (4.12)

cwi(t) =
2− pi(t)

pi(t)
, (4.13)

where fi(pi) > 0 is the stepsize. Note that nontrivial Nash equilibria are the fixed

points of equation (4.12) and vice versa. The following result is immediate.
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Theorem 4.13 Suppose aiωi < 1, the system described by equation (4.12) converges

to the unique nontrivial Nash equilibrium of random access game G1 if for any i ∈ N ,

the stepsize fi(pi) < 1
λ+|N |−1

.

Proof. Note that, if aiωi < 1, assumptions A1 and A2 hold. The result follows

directly from Theorem 4.10.

The condition aiωi < 1 is a mild assumption and admits a very large region in

parameter space. The Nash equilibrium can be easily calculated numerically with

equation (4.2). Note that Γi is a decreasing function of ωi and an increasing function

of ai. Since Γi is an increasing function of pi, larger value of ωi or smaller value of

ai will results in larger channel access probability p∗i at equilibrium. Thus, in order

to provide differentiated services, we can choose larger value of ωi or smaller value of

ai for the users of a higher priority class. For example, in wireless access network,

we can assign a large ωi value or small ai value to the access point, because usually

downlink traffic is greater than the traffic of mobile nodes.

4.4.3 Medium Access Control Design

We design a medium access method according to channel access probability and con-

tention window update mechanism (4.12)–(4.13), by modifying a CSMA/CA access

method such as 802.11 DCF [41]. The basic access mechanism in DCF works as fol-

lows: a node wishing to transmit senses the channel for a period of time equal to the

distributed interframe space (DIFS) to check if it is idle. If the channel is determined

to be idle, the node starts to transmit a DATA frame. If the channel is considered to

be busy, the node waits for a random backoff time b, an integer uniformly distributed

in the window [0, cw − 1] before attempting to transmit. Upon successful reception

of the DATA frame, the receiving node waits for a short interframe space (SIFS)

interval and then sends an ACK frame. When the node detects a failed transmis-

sion, it doubles the contention window cw (exponential backoff). In order to avoid

channel capture, a node must wait for a random backoff time, in the same way as if

the channel is sensed busy, between two consecutive new packet transmissions. Note
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that DCF employs a discrete-time backoff scale. The time immediately following an

idle DIFS is slotted with slot time size σ. The backoff time counter is decremented

as long as the channel is sensed idle during a time slot, and frozen when the channel

is sensed busy, and reactivated when the channel is sensed idle again for a DIFS. The

node transmits when the backoff time counter reaches zero. See the reference [41] for

more details.

In our medium access method, we make two key modifications to 802.11 DCF.

Instead of adjusting contention window cwi to a binary feedback signal (packet loss

or successful transmission) and using exponential backoff algorithm, each node i es-

timates its conditional collision probability qi, which is a continuous feedback, and

adjusts cwi according to algorithm (4.12)–(4.13). The detailed medium access method

is described as follows:

(1) Initially, each node i is in state INITIAL and sets its channel access probability

pi to be ωi, and contention window cwi to be (2− ωi)/ωi.

(2) in state INITIAL or NEW, node i monitors the channel. If the channel is idle

for a period of time equal to DIFS, it will generate a backoff time bi, an integer

uniformly distributed in the interval [0, cwi − 1], before transmitting. We say

that the node enters state BACKOFF.

(3) In state BACKOFF, a node will decrease its backoff time counter by one as

long as the channel is sensed idle during a time slot, freeze the backoff time

counter when the channel is sensed busy, and reactivate it when the channel is

idle again for a DIFS interval. When the backoff time counter reaches zero, the

node will transmit a DATA frame.

(4) Upon receiving the ACK frame, the node will enter state NEW.

(5) If the node does not receive the ACK frame within a DIFS interval, it decides

that a packet collision has happened, and enters state BACKOFF.

(6) Each node i also keeps a transmission counter ntrans and an idle slots counter

isum that are initially set to zero. The node increases ntrans by one after
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a transmission. The node also counts the consecutive idle slots n before a

transmission and increases isum by n. Note that, as explained in Subsection

4.3.3, “a transmission” here corresponds to a busy period in the channel.

(7) If ntrans ≥ maxtrans, each node i will estimate the average number of con-

secutive idle slots n̄ = isum
ntrans

and its conditional collision probability via qi ←
1−(n̄+1)pi

(n̄+1)(1−pi)
, and update its channel access probability pi and contention window

cwi according to the following algorithm

pi ←− pi + fi(pi)(
ωi − pi

aipi − ωi

− qi)

cwi ←− 2− pi

pi

,

and reset ntrans and isum to be zero.

(8) Upon successful receiption of the DATA frame, the receiving node waits for a

SIFS interval and then sends an ACK frame.

We can see that our medium access method works in similar way as 802.11 DCF,

except for the contention window update mechanism. So, it can be easily implemented

with existing 802.11 hardware. Note that we do not specify all the implementation

details. For example, in (5) we have described a simple time-out mechanism that

works for a single-cell system. In practice, we can have other choices such as setting

an appropriate ACK Timeout interval. If the transmitting node does not receive the

ACK frame within ACK Timeout or detects the transmission of a different frame

on the channel, it will decide that there is a collision and will reschedule the frame

transmission according to the given contention window update mechanism and backoff

rules.

There are several parameters in our medium access method. The parameters ωi

and ai determine the strategy space and the equilibrium properties such as through-

put, loss (collision) and fairness. The parameters fi(·) and maxtrans determine the

dynamical properties such as stability and responsiveness. The stepsize fi(·) affects

the convergence speed. In practice, we will choose a constant stepsize for all nodes.
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The number of transmissions, maxtrans, for each node before updating its chan-

nel access probability and contention window, affects the convergence speed and the

accuracy of the conditional collision probability estimation. Note that in strategy

update algorithm (4.12)–(4.13), t is not real time but represents the stages at which

the random access game is played. In our design, each node repeatedly plays game

G1 every maxtrans transmissions, and between consecutive plays the channel access

probability and contention window are fixed. If maxtrans is too large, it will take

longer time to reach the Nash equilibrium, but if maxtrans is too small, it will re-

sult in large estimation error in the average number of consecutive idle slots between

transmissions and thus conditional collision probability. Since by gradient play nodes

update pi and cwi gradually, in order to achieve a good tradeoff between convergence

speed and estimation accuracy we will choose a relatively small value for maxtrans

and estimate average number of consecutive idle slots between transmissions using an

exponential weighted running average

n̄ ←− βn̄ + (1− β)
isum

ntrans
,

where β ∈ [0, 1). If β is small we weight history less, and if β is large we weight history

more. By choosing appropriate β value, exponential weighted running average gives

better estimate than the “naive” estimator isum/ntrans.

By our access method, the system is designed to reach and operate around the

Nash equilibrium of random access game G1. Thus, its performance is determined by

the Nash equilibrium of G1. Consider a system of greedy nodes. Denote the channel

access probability of node i at Nash equilibrium by pi, we can calculate its throughput

Ti and conditional collision probability qi as follows.

Ti =
pi(1− qi)P

γ(p)σ +
∑

i pi(1− qi)Ts + (1− γ(p)−∑
i pi(1− qi))Tc

, (4.14)

qi = 1−
∏

j 6=i

(1− pj), (4.15)
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Table 4.2: Parameters used to obtain numerical results

Slot Time (σ) 20 µs
SIFS 10 µs
DIFS 50 µs

Basic Rate (br) 1 Mbps

Data Rate (dr) 11 Mbps

Propagation Delay (δ) 1 µs
PHY Header (ph) 192 bits

MAC Header (mh) 272 bits

ACK 112 bits

Packet Payload (P) 12000 bits

where P is the packet payload, idle probability γ(p) =
∏

i(1− pi) and

Ts =
ph

br
+

mh + P

dr
+ SIFS +

ph

br
+

ACK

dr
+ DIFS + 2δ,

Tc =
ph

br
+

mh + P

dr
+ DIFS + δ,

are the time the channel is sensed busy because of a successful transmission and

during a collision, respectively. See Table 4.2 for other notations. Here for simplicity,

we have assumed an equal payload size. The throughput for general payload size

distribution can calculated in a similar way [14], and the aggregate throughput is the

summation of Ti over all nodes i ∈ N .

4.4.4 Performance

To evaluate the performance of our medium access method, we develop a discrete-

event simulator that implements our method and the standard 802.11 DCF basic

access method (i.e., no RTS/CTS). The values for the parameters used to obtain

numerical results are summarized in Table 4.2. The system values are those specified

in the 802.11b standard with DSSS PHY layer [41]. In all simulations, we set the

following values of the control parameters: maxtrans = 10, fi = 0.01 and β = 0.2.
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The Networks with Perfect Channel

We first consider the networks with perfect channel, i.e., there is no corrupted frame.

Throughput and Collision Overhead: We consider a system of homogeneous users,

and compare the throughput achieved by our method and 802.11b DCF. In our design

each node i is limited to choose a contention window size between (2 − ω)/ω and

(1 + a − ω)/ω, corresponding to channel access probability pi ∈ [2ω/(a + 1), ω]. To

compare the performance of our design with that of 802.11 DCF on the same ground,

we choose values for those related parameters such that (2 − ω)/ω = CWmin and

(1 + a − ω)/ω = 2mCWmax, corresponding to a maximum backoff stage m. Also

note that in our numerical experiments with DCF, we assume that after a packet’s

(m + 1)th failed transmission the contention window resets to CWmin. This is also

equivalent to the packet being discarded after m failed retransmissions.
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Figure 4.1: Throughput comparison.

Figure 4.1 shows the aggregate throughout achieved by our design with ω = 0.0606

and a = 14.576, and DCF with CWmin = 32 and CWmax = 256. We see that for a

small number of wireless nodes, DCF provides a slightly higher throughput. But as

the number of nodes increases, our access method achieves much higher throughput.

With DCF each new transmission will start with the base contention window and
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Table 4.3: Throughput (in Mpbs) for our design with ω = 0.0606 and a = 14.576,
and 802.11 DCF with CWmin = 32 and CWmax = 256

N our design∗ our design DCF

2 6.5193 6.513 6.740

4 6.6658 6.663 6.738

6 6.6961 6.695 6.600

10 6.6574 6.657 6.303

15 6.5553 6.560 5.975

20 6.4380 6.445 5.688

25 6.3193 6.327 5.427

40 5.9677 5.975 4.754

60 5.5224 5.540 4.007

80 5.1255 5.123 3.377

100 4.7318 4.735 2.824

∗Analytical value calculated with Nash equilibrium of game G1

execute binary exponential backoff upon collisions, while with our access method

nodes will choose a constant contention window determined by the Nash equilibrium,

which is “optimal” for the current contention level in the network. Thus, for a system

of many competing nodes where the contention in the network is heavy, DCF will

incur much more packet collisions than our access method, which results in much lower

throughput, as shown in Figure 4.1. This is further confirmed by the comparison of

collision overhead between DCF and our access method, as shown in Figure 4.2. We

see that our access method achieves a better tradeoff between channel access and

collision avoidance, and hence a higher throughput that is sustainable over a large

range of numbers of competing nodes. Mathematically, this behavior results from the

structure of the payoff function of random access game, which includes both the gain

from channel access and the cost from packet collision. Practically, this means that

our access method can achieve higher throughput but with fewer transmissions than

DCF, which will benefit the whole system in many aspects such as lower energy usage

and less interference to the wireless nodes of neighboring cells.

Tables 4.3 and 4.4 record some of the numerical values used to plot Figures 4.1

and 4.2. They also show the analytical values of throughput and conditional collision
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Figure 4.2: Conditional collision probability comparison.

Table 4.4: Conditional collision probability for our design with ω = 0.0606 and
a = 14.576, and 802.11 DCF with CWmin = 32 and CWmax = 256

N our design∗ our design DCF

2 0.0399 0.0396 0.0594

4 0.0853 0.0849 0.1477

6 0.1185 0.1174 0.2125

10 0.1693 0.1683 0.3061

15 0.2201 0.2179 0.3889

20 0.2625 0.2600 0.4518

25 0.2991 0.2967 0.5035

40 0.3901 0.3884 0.6188

60 0.4855 0.4832 0.7224

80 0.5587 0.5592 0.7945

100 0.6228 0.6224 0.8475

∗Analytical value calculated with Nash equilibrium of game G1

probability for our access method, calculated with the Nash equilibrium of random

access game G1 according to equations (4.14)–(4.15). We see that the analytical

values and numerical values from simulations match extremely well. This also proves

that our medium access method does converge to the desired Nash equilibrium of

the random access game. We also track the evolution of contention windows, which
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Figure 4.3: Throughput comparison.
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Figure 4.4: Conditional collision probability comparison.

quickly approach and stay around the values specified by the Nash equilibrium.

To investigate the dependency of the throughput and conditional collision prob-

ability of our design on parameters ω and a, we report in Figures 4.3 and 4.4 the

aggregate throughput and conditional collision probability versus different setting of

these parameters. We see that larger ω or smaller a will result in higher throughput
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Figure 4.5: Fairness comparison for 40 competing nodes.

for a system of a few competing nodes, since they lead to a higher channel access

probability. But smaller ω or larger a will result in much higher throughput for a

large system. This is because smaller ω or larger a result in much smaller collision

probability. In the practical implementation, we need to choose a set of parameters

that could provide sustainable high throughput over a large range of the number of

wireless nodes.

Fairness: It is well known that 802.11 DCF has short-term unfairness problem,

due to binary exponential backoff process. In our access method for a system of

homogeneous users, wireless nodes have the same contention window size, specified

by the symmetric Nash equilibrium of random access game G1. Thus, it is expected

to have a better short-term fairness. Figure 4.5 compares short-term fairness of

our access method and DCF using Jain fairness index for the window sizes that are

multiples of the number of wireless nodes [44] [50], where we normalize window size

with respect to the number of nodes. We can see that our method provide better

short-term fairness than 802.11 DCF.
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Figure 4.6: Throughput comparison of our design with ω = 0.0606 and a = 14.576,
and 802.11 DCF with CWmin = 32 and CWmax = 256, with different frame error
rates.

The Networks with Unreliable Channel

We now consider the networks with unreliable channel, i.e., there exist corrupted

frames, due to the channel variations. Figures 4.6 and 4.7 show the aggregate through-

put achieved by our design with ω = 0.0606 and a = 14.576, and 802.11 DCF with

CWmin = 32 and CWmax = 256, with zero, 10%, 20% and 40% frame error rates

respectively. We see that the channel error has larger impact on DCF than that on

our design, due to the additional backoff in DCF that results from the corrupted

frames. With fixed frame error rate, the impact of the channel error on both our

design and DCF becomes smaller as the number of contending nodes increases. This

is because a lost packet takes a shorter time than a successful transmission. Thus,

more packet losses from the channel error will result in more transmissions, which

partially compensates the packet losses. For DCF, this is also because the packet

losses from the channel error take smaller portion of the total losses when there are

more collisions. So, the additional backoff resulting from the corrupted frames is

relatively less often as the number of nodes increases.



91

20 30 40 50 60 70 80 90 100
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

Number of Nodes

T
hr

ou
gh

pu
t (

M
bp

s)

our design (perfect channel)
our design (10% error rate)
our design (20% error rate)
our design (40% error rate)
802.11 DCF (perfect channel)
802.11 DCF (10% error rate)
802.11 DCF (20% error rate)
802.11 DCF (40% error rate)

Figure 4.7: Throughput comparison of our design with ω = 0.0606 and a = 14.576,
and 802.11 DCF with CWmin = 32 and CWmax = 256, with different frame error
rates.

Note that the throughput degradation of DCF resulting from the additional back-

off that is only due to the corrupted frames is not very significant for a frame error

rate as large as 20%. There are two reasons for this. The first and major reason is that

the idle slot has a much shorter duration than a collision or successful transmission.

Thus, the additional backoff in DCF due to the corrupted frames does not take much

time. The throughput degradation will be more severe for relatively shorter durations

of a successful transmission or collision. The second and minor reason is that in the

example shown in Figures 4.6 and 4.7, the maximum backoff stage is small. The

throughput degradation will be larger if DCF has a larger number of backoff stages.

Service Differentiation

As discussed in section 4.3 and subsection 4.4.2, we can provide service differentiation

by choosing different utility functions for different classes of users. Regarding the

concrete medium access method we consider, each node i will receive different services

by choosing different values for parameters ωi or ai (with only constraint aiωi < 1).

For the simplicity of presentation, we consider two classes of users. Assume that class
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1 has n1 users with parameters (ω1, a1), corresponding to a higher priority of service,

and class 2 has n2 users with parameters (ω2, a2), corresponding to a lower priority

of service. Let first study the impact of ωi on the service differentiation by setting

the same ai value. Figure 4.8 shows the throughput ratio of a class 1 node to a class

2 node versus the total number of nodes for two different scenarios: two classes have

equal number of users, and class 1 has fixed number of users. We see that, as the

total number of nodes increase, the throughput ratio approaches 1.5. When there is

a large number of nodes accessing the channel, each user should sense approximately

the same environment on average, and we can assume that each user has the same

conditional collision probability,6 denoted by q. Thus, with equal packet payload sizes

the throughput ratio between a class 1 user and class 2 user is approximately

(U ′
1)
−1(q)(1− q)

(U ′
2)
−1(q)(1− q)

=
ω1

ω2

.

So, when the service differentiation is provided by maximum channel access proba-

bility, the throughput ratio between users of different classes is approximately ω1

ω2
for

a large number of users.

We then study the impact of ai on the service differentiation by setting the same

ωi value. Figure 4.9 shows the throughput ratio of a class 1 node to a class 2 node

versus the total number of nodes for the scenario where two classes have equal number

of users and the scenario where class 1 has fixed number of users. We see that, as

the total number of nodes increase, the throughput ratio seems to converge to some

fixed value. For a large number of users, we can again assume that users of different

classes experience the same conditional collision probability q. Thus, with equal

packet payload sizes the throughput ratio between a class 1 user and class 2 user is

approximately

(U ′
1)
−1(q)(1− q)

(U ′
2)
−1(q)(1− q)

=
1 + a2q

1 + a1q
.

6This assumption is similar to the decoupling approximation made in [14] and other works in
performance analysis of 802.11 DCF.
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Figure 4.8: The throughput ratio of a class 1 node with ω1 = 0.06 and a1 = 15 to a
class 2 node with ω2 = 0.04 and a2 = 15.
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Figure 4.9: The throughput ratio of a class 1 node with ω1 = 0.04 and a1 = 10 to a
class 2 node with ω2 = 0.04 and a2 = 20.

So, when service differentiation is provided by ai, as the total number of users in-

creases, the throughput ratio will approach 1+a2

1+a1
. Also, note that the scenario with

n1 = n2 has a higher throughput ratio than the scenario with n1 = 4. This is because



94

as the traffic load increase, the throughput ratio is in favor of high priority class, and

in the first scenario the traffic load is higher, due to larger number of class 1 users.

4.5 Extension to Multicell Networks

We now extend the above development to multicell networks where wireless nodes

could have asymmetric information about contention. For each node i, denote by Ii

the set of nodes that interfere with the transmission of node i. Thus, the conditional

collision probability is

qi := 1−
∏
j∈Ii

(1− pj), i ∈ N. (4.16)

Random access game G is defined in the same way as in Definition 4.1, but with

conditional collision probabilities (4.16).

As mentioned in section 4.3, we established the uniqueness of nontrivial Nash

equilibrium for single-cell wireless LANs by exploiting the special symmetry in the

network. It is not clear how to extend that to the multicell networks. In this sec-

tion, we will establish the uniqueness of and the convergence to the nontrivial Nash

equilibrium by general techniques that are applicable to any networks. That said, for

single-cell networks, we have two sets of overlapping and complementary conditions

for the uniqueness of the equilibrium and the convergence of the strategy update

algorithm, which means a larger design space for random access game and medium

access control.

4.5.1 Nash Equilibrium

It is straightforward to verify that Theorems 4.2 and 4.3 still hold for the multicell

networks, i.e., under the assumption A1 there exists at least one nontrivial Nash

equilibrium for random access game G. In the following discussion, we will suppose

that the assumption A1 holds. We now establish the uniqueness of the nontrivial

Nash equilibrium.
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Theorem 4.14 If
∑

j∈Ii

−1
U ′′i ((U ′i)−1(qi(p)))

∏
k∈Ii/{j}(1 − pk) < 1 for any node i ∈ N ,

then random access game G has a unique nontrivial Nash equilibrium.

Proof. Following U ′
i ◦ (U ′

i)
−1(qi) = qi, we have for j ∈ Ii,

∂Gi(p)

∂pj

=
1

U ′′
i (Gi(p))

∏

k∈Ii/{j}
(1− pk)

=
1

U ′′
i ((U ′

i)
−1(qi(p)))

∏

k∈Ii/{j}
(1− pk), (4.17)

and for j 6∈ Ii,
∂Gi(p)

∂pj
= 0.

Denote the Jacobi matrix of the best response function G(p) by J , i.e., Ji,j =

∂Gi(p)
∂pj

. Note that Ji,i = 0. By Geršgorin disc theorem [40], all the eigenvalues λi of J

are located in the union of |N | discs centered at 0 with radii

∑

j 6=i

|∂Gi(p)

∂pj

| =
∑
j∈Ii

−1

U ′′
i ((U ′

i)
−1(qi(p)))

∏

k∈Ii/{j}
(1− pk), i ∈ N.

So, if
∑

j∈Ii

−1
U ′′i ((U ′i)−1(qi(p)))

∏
k∈Ii/{j}(1−pk) < 1 for any node i, then complex norms of

all eigenvalues |λi| < 1 and G(p) is a contraction mapping. By contraction mapping

theorem [6], G(p) has a unique fixed point, i.e., random access game G has a unique

nontrivial Nash equilibrium.

The condition specified in the above theorem is in terms of general utility func-

tions. For convenience, we call it assumption A3. It may look restrictive since it

requires the summation of |Ii| terms to be less than one, but is not necessarily so.

For example, for random access game G1 considered in section 4.4, the assumption

A3 reads (ai−1)ωi

(1+aiqi(p))2

∑
j∈Ii

∏
k∈Ii/{j}(1− pk) < 1. This requires that

(ai − 1)ωi

(1 + ai − ai

∏
j∈Ii

(1− νi))2

∑
j∈Ii

∏

k∈Ii/{j}
(1− νk) < 1. (4.18)

It seems that, as |Ii| becomes large, we need large νi values to satisfy this condition,

but this is not true. To see this, let us consider a set of parameters that is considered
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Figure 4.10: The evolution of deleted absolute row sum of the Jacobi matrix versus the
number of interfering nodes for random access game G1 with ωi = 0.04 and ai = 23.

in section 4.4: ωi = 0.04, ai = 23 and νi = 2ωi/(ai + 1) = 0.0033. Figure 4.10 shows

the evolution of the left-hand side of equation (4.18), called deleted absolute row

sum [40] of the Jacobi matrix, versus the number of interfering nodes. We see that

A3 holds for any number of interfering nodes. Thus, A3 is a mild assumption and

allows for a large design space for random access game and medium access control.

4.5.2 Dynamics

Let us first consider the best response strategy. By contraction mapping theorem,

the following result is immediate.

Theorem 4.15 Under the assumption A3, the best response strategy (4.5) converges

to the unique nontrivial Nash equilibrium of random access game G.

We next consider the gradient play (4.6). Before proceeding, note that we can

reformulate the assumption A3 as
∑

j∈Ii

−1
U ′′i ((U ′i)−1(qi(p)))

∏
k∈Ii/{j}(1 − pk) ≤ 1 − δ by

appropriately choosing a positive constant δ > 0.
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Theorem 4.16 Suppose A3 holds. The gradient play (4.6) converges to the unique

nontrivial Nash equilibrium of random access game G if 1− δ < µ
λ

and for any i ∈ N ,

the constant stepsize fi ≤ 1
λ
.

Proof. First note that the nontrivial Nash equilibrium of random access game G
is the fixed point of the gradient play (4.6) and vice versa. Define a mapping M(p)

Mi(p) := pi + fi (U
′
i(pi)− qi(p)) . (4.19)

By the assumption A1, for any qi, there exists a p̄i ∈ Si such that U ′
i(p̄i) = qi. By

Taylor expansion, there exists a p̂i ∈ Si such that

Mi(p) = pi + fiU
′′
i (p̂i) (pi − p̄i) .

It is easy to verify that if the stepsize fi ≤ 1
λ
, Mi(p) ∈ Si for any p ∈ S1×S2×· · ·×S|N |.

Thus, when fi ≤ 1
λ
, the gradient play (4.6) can be written as

pi(t + 1) = Mi(p(t)).

Now, assume a constant stepsize fi and consider the Jacobi matrix JM of M(p),

JM
i,j = δi,j + fi

(
U ′′

i (pi)δi,j − U ′′
i ((U ′

i)
−1(qi(p)))Ji,j

)

= (1 + fiU
′′
i (pi))δi,j − fiU

′′
i ((U ′

i)
−1(qi(p)))Ji,j. (4.20)

Since Ji,i = 0, by Geršgorin disc theorem all the eigenvalues λi of JM are located in the

union of |N | discs centered at 1+fiU
′′
i (pi) with radii −fiU

′′
i ((U ′

i)
−1(qi(p)))

∑
j 6=i |Ji,j|.

By assumption,
∑

j 6=i |Ji,j| ≤ 1− δ. We see that the complex norms |λi| < 1 if

1− fiµ + fiλ(1− δ) < 1,

1− fiλ− fiλ(1− δ) > −1,
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i.e., 1−δ < µ
λ

and fi < 2
(2−δ)λ

. Note that, if the complex norms |λi| < 1, then M(p) is

a contraction mapping and the gradient play will converge to the unique fixed point

of (4.6). Since 1
λ

< 2
(2−δ)λ

, the gradient play (4.6) converges to the unique nontrivial

Nash equilibrium of random access game G if 1 − δ < µ
λ

and for any i ∈ N , the

constant stepsize fi ≤ 1
λ
.

The condition 1 − δ < µ
λ

in the above theorem may be restrictive. In order

to go around it, we consider another alternative strategy update mechanism called

Jacobi play.7 In Jacobi play, every player adjusts current channel access probability

gradually towards the best response strategy. Mathematically, each node i ∈ N

updates its strategy according to

pi(t + 1) = [pi(t) + gi(pi(t))
(
(U ′

i)
−1(qi(p(t)))− pi(t)

)
]Si , (4.21)

where the stepsize gi(·) > 0 can be a function of the current strategy of node i. When

gi = 1, we recover the best response strategy. However, we would like a small stepsize,

since smoother dynamics are preferred.

Theorem 4.17 Suppose A3 holds. The Jacobi play (4.21) converges to the unique

nontrivial Nash equilibrium of random access game G if for any i ∈ N , the constant

stepsize gi ≤ 1.

Proof. First note that the nontrivial Nash equilibrium of random access game G
is the fixed point of Jacobi play (4.21) and vice versa. Define a mapping M̄(p)

M̄i(p) := pi + gi

(
(U ′

i)
−1(qi(p))− pi

)
. (4.22)

It is easy to verify that if the stepsize gi ≤ 1, M̄i(p) ∈ Si for any p ∈ S1×S2×· · ·×S|N |.

Thus, when gi ≤ 1, the Jacobi play (4.21) can be written as

pi(t + 1) = M̄i(p(t)).

7The name comes from Jacobi update scheme, see, e.g., [56] [45].
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Now, assume a constant stepsize gi and consider the Jacobi matrix JM̄ of M̄(p),

JM̄
i,j = (1− gi)δi,j + giJi,j. (4.23)

Similarly, by Geršgorin disc theorem, we see that the complex norms of eigenvalues

λi of JM̄ are less than one, if

1− gi ≥ 0,

1− gi + gi(1− δ) < 1,

i.e., gi ≤ 1. Note that, if the complex norms |λi| < 1, then M̄(p) is a contraction

mapping and the Jacobi play will converge to the unique fixed point of (4.21). So,

the Jacobi play (4.21) converges to the unique nontrivial Nash equilibrium of random

access game G if for any i ∈ N , the constant stepsize gi ≤ 1.

4.5.3 Medium Access Control Design

Comparing the gradient play and Jacobi play, we see that the gradient play (4.6)

has a nice economic interpretation, i.e., adjusts channel access probability based on

marginal utility and contention price, but the Jacobi play (4.21) demands a weaker

condition for convergence. However, both of them are equally easy to implement, and

can be used to design medium access methods as described in subsections 4.3.3 and

4.4.3.

4.6 Utility Function and Reverse Engineering

As we see from the above discussions, utility functions determine Nash equilibria of

random access games and thus the equilibrium (steady) operating points of medium

access control protocols. Conversely, utility functions are determined by the equilib-

rium (steady) operating points of medium access control protocols. Since the medium

access control protocol adapts channel access probability pi according to current access
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probability and packet collision, the equilibrium operating point defines an implicit

relation between equilibrium channel access probability pi and conditional collision

probability qi,

pi = Fi(pi, qi). (4.24)

Assume Fi is continuously differentiable and ∂Fi/∂qi 6= 0 in [0, 1]. Then, by implicit

function theorem [6], there exists a unique continuously differentiable function Fi such

that

qi = Fi(pi). (4.25)

Define the utility function of each node i as

Ui(pi) =

∫
Fi(pi)dpi. (4.26)

With the above defined utility functions, we can define a random access game as

in section 4.3. Hence, we can reverse engineer medium access control protocols and

study them in game theory framework: medium access control can be interpreted as a

distributed strategy update algorithm to achieve the Nash equilibrium of the random

access game.

For example, if we are first given the medium access method presented in subsec-

tion 4.4.3, it can be interpreted as a distributed strategy update algorithm to achieve

the Nash equilibrium of random access game G1 that is defined with the utility func-

tions determined by the equilibrium of equation (4.12). Take another example, 802.11

DCF. It is well established that for a single-cell wireless LAN at steady state, channel

access probability p relates to conditional collision probability as follows [14]:

p =
2(1− 2q)

(1− 2q)(CWmin + 1) + qCWmin(1− (2q)m)
,

where CWmin is the base contention window and m is the maximum backoff stage.
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Following procedures (4.25)–(4.26) to derive a utility function, we can define a random

access game and interpret DCF as distributed strategy update algorithm to achieve

the corresponding Nash equilibrium.8

The random access game model can be used to analyze equilibrium properties

such as throughput, collision and fairness of different medium access control protocols.

When wireless nodes in a wireless LAN deploy different medium access protocols with

different contention measures, we can also study the coexistence and interaction of

different protocols in the random access game framework. For example, 802.11 DCF

and our design are based on different contention measures. It is interesting to see

how they interact.

4.7 Conclusions

We have developed a general game-theoretic model to study the contention/interaction

among wireless nodes, and propose a novel medium access method derived from

CSMA/CA in which each node estimates its conditional collision probability and

adjusts its persistence probability or contention window, according to distributed

strategy update mechanism achieving the Nash equilibrium. This results in simple

dynamics, controllable performance objectives, good short-term fairness, low collision

and high throughput. As wireless nodes can estimate conditional collision proba-

bilities by observing consecutive idle slots between transmissions, we can decouple

contention control from handling failed transmissions. This also opens up other op-

portunities such as rate adaptation to channel variations. As a case study of medium

access control design in game-theoretic framework, we present a concrete medium

access method and show that it achieves superior performance over the standard

802.11 DCF, and can provide flexible service differentiations among wireless nodes.

In addition to guiding medium access control design, the random access game model

also provides an analytical framework to understand equilibrium properties such as

throughput, loss and fairness, and dynamic property of different medium access pro-

8However, the dynamics of 802.11 DCF cannot be described by gradient play.
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tocols and their interactions.

There are a number of issues to investigate. We will search for other contention

measures and contention resolution algorithms that could achieve Nash equilibria

of random access games. We are also studying the issue of ensuring time fairness

in a wireless network with rate diversity. We are also investigating the coexistence

of our access method and 802.11 DCF that use different contention signals: how the

resource is allocated to and shared among wireless nodes using different medium access

methods. This issue is important for the deployment of the new access method. We

also plan to implement our access method in a testbed to evaluate its performance

against realistic physical characteristics of a network, especially to examine the setting

of various control parameters that determine the dynamic properties of the access

method.
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Chapter 5

Discussions and Future Research

In this thesis, we view network protocols as distributed algorithms achieving the

corresponding network equilibria, and have explored aspects of this general design

methodology in optimization and game-theoretic frameworks through the study of

two wireless network design problems, cross-layer design and contention control, re-

spectively. In broader context, the underlying theme of this thesis is that optimization

theory and game theory provide a suite of tools that are flexible in modelling various

network systems, and a rich series of equilibrium solution concepts and distributed

convergent algorithms to guide systematic design of network protocols. Our results

have demonstrated the merit and power of such mathematically rigorous and system-

atic methodology for network design.

Before closing, I shall briefly discuss some future research directions.

We have been focusing on the utility maximization that is convex problem in chap-

ter 3. However, nonconvex utility maximization problems often appear. This can be

due to nonconvex utility as in modelling inelastic traffic such as voice, or nonconvex

constraints such as integral constraints as in some routing scheme or scheduling. Such

nonconvex optimization problems are in general difficult and NP-hard. Especially,

nonconvex optimization often has non-zero duality gap, and the distributed algo-

rithms based on dual decomposition may lead to suboptimal design and instability in

cross-layer interactions. In the framework of “layering as dual decomposition,” some

key questions to be addressed are to quantify the duality gap as it is a measure of the

tradeoff between optimizing the performance (optimality) and adhering to distributed
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layered structure (decentralization), to seek systematic ways to reduce or even close

the duality gap, and to determine conditions under which dual-based subgradient al-

gorithms and their variants still lead to decent designs. These are difficult problems,

but fortunately, recent developments such as sum of squares programming [72] seem

to provide the right mathematical tool to tackle these issues.

Regarding network design and control in game-theoretic framework, a key issue is

the distributed convergence of the equilibria. Various equilibrium solution concepts

are somewhat delicate objects, as they usually require complete information of the

system. As the network consists of distributed entities having limit information, it

is important to understand how the structure of the system affects equilibria and

what we can expect in terms of dynamics when the agents are using adaptive al-

gorithms, and to identify those key mathematical structures (e.g., the properties of

the objective functions such as monotonicity, and the information structure of the

system) that guarantee the distributed convergence of different equilibria. Another

issue is concerned with the property of the equilibria: how the system performs under

game-theoretic equilibrium, compared with a globally optimal solution. One related

and highly studied concept is the price of anarchy [51], which is usually for Nash

equilibrium. It would be interesting to characterize other solution concepts such as

correlated equilibrium against the globally optimal. Also, one other research direction

is simply to study more network design problems in game-theoretic framework.

As discussed in chapter 1, there are computational, informational and incentive

constraints in network design and control. These constraints together determine what

kind of equilibrium, or stable operating point, the system can achieve, and what kind

of convergent algorithm to the equilibrium is feasible. A research agenda in the long

run is to seek a general mathematical framework of network design that could handle

these constraints in a systematic way, while achieving designs with the best possible

performance. Recent developments such as distributed algorithmic mechanism de-

sign [31] have taken a thrust at this problem, but usually target to the design for

maximal social welfare. However, in many situations an agent’s (subjective) prefer-

ences, which are encapsulated in utility or cost functions, are not aligned with the
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(objective) performance of the network. For example, due to the economic incentive,

an autonomous system may prefer to transfer traffic through a link with largest delay.

So, in view of the network performance, to maximize the social welfare may not be

a good design objective. It would be interesting to bring in accountability and study

the design for optimal overall performance rather than welfare maximizing.
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[19] M. Čagalj, S. Ganeriwal, I. Aad and J. P. Hubaux, On selfish behavior in

CSMA/CA networks, Proceedings of IEEE Conference on Computer Communi-

cations (Infocom), March 2005.



108

[20] F. Cali, M. Conti and E. Gregori, Dynamic tuning of the IEEE 802.11 protocol to

achieve a theoretical throughtput limit, ACM/IEEE Transactions on Networking,

8(6):785-799, December 2000.

[21] L. Chen, S. Low and J. Doyle, Joint congestion control and media access control

design for ad hoc wireless networks, Proceedings of IEEE Conference on Computer

Communications (Infocom), March 2005.

[22] L. Chen, S. Low, M. Chiang and J. Doyle, Cross-layer congestion control, routing

and scheduling design in ad hoc wireless networks, Proceedings of IEEE Confer-

ence on Computer Communications (Infocom), April 2006.

[23] L. Chen, S. Low and J. Doyle, Dual scheduling algorithm in a generalized switch:

Asymptotic optimality and throughput optimality, in High-Performance Packet

Switching Architectures, I. Elhanany and M. Hamdi (eds.), Springer, August 2006.

[24] L. Chen, S. Low and J. Doyle, Random access game and medium access control

design, preprint, March 2006.

[25] L. Chen, T. Ho, S. Low, M. Chiang and J. Doyle, Rate control for multicast

with network coding, to appear Proceedings of IEEE Conference on Computer

Communications (Infocom), May 2007.

[26] M. Chiang, Balancing transport and physical layers in wirless multihop networks:

Jointly optimal congestion control and power control, IEEE Journal on Selected

Areas in Communications, 23(1):104-116, January 2005.

[27] M. Chiang, S. H. Low, R. A. Calderbank, and J. C. Doyle, Layering as opti-

mization decomposition, to appear Proceedings of the IEEE, 2007.

[28] R. Diestel, Graph Theory, Springer-Verlag, 1997.

[29] A. Eryilmaz and R. Srikant, Fair resource allocation in wireless networks us-

ing queue-length-based scheduling and congestion control, Proceedings of IEEE

Conference on Computer Communications (Infocom), March 2005.



109

[30] Z. Fang and B. Bensaou, Fair bandwidth sharing algorithms based on game

theory frameworks for wireless ad hoc networks, Proceedings of IEEE Conference

on Computer Communications (Infocom), March 2004.

[31] J. Feigenbaum and S. Shenker, Distributed algorithmic mechanism design: Re-

cent results and future directions, Proceedings of ACM International Workshop

on Discrete Algorithms and Methods for Mobile Computing and Communication

(Dial-M), September 2002.

[32] S. D. Flam, Equilibrium, evolutionary stability and gradient dynamics, Interna-

tional Game Theory Review, 4(4):357-370, December 2002.

[33] S. Floyd and V. Jacobson, Random early detection gateways for congestion

avoidance, IEEE/ACM Transactions on Networking, 1(4):397-413, August 1993.

[34] D. Fudenburg and J. Tirole, Game Theory, The MIT Press, 1991.

[35] M. Gerla, R. Bagrodia, L. Zhang, K. Tang and L. Wang, TCP over wireless mul-

tihop protocols: Simulation and experiments, Proceedings of IEEE International

Conference on Communications (ICC), June 1999.

[36] T. G. Griffin, F. B. Shepherd and G. Wilfong, The stable path problem and in-

terdomain routing, IEEE/ACM Transaction on Networking, 10(2):232-243, April

2002.

[37] B. Hajeck and G. Sasaki, Link scheduling in polynomial time, IEEE Transactions

on Information Theory, 34(5):901-917, September 1988.

[38] M. Heusse, F. Rousseau, R. Guillier and A. Dula, Idle sense: An optimal access

method for high throughput and fairness in rate diverse wireless LANS, Proceed-

ings of ACM Conference of the Special Interest Group on Data Communication

(Sigcomm), August 2005.

[39] J. Hoepman, Simple distribute weighted matchings, preprint, October 2004.

Available at http://arxiv.org /abs/cs/0410047.



110

[40] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press,

1985.

[41] IEEE, Wireless LAN media access control (MAC) and physical layer (PHY)

specifications, IEEE Standard 802.11, June 1999.

[42] IEEE 802.11 task group e.

http://grouper.ieee.org/groups/802/11/Reports/tge update.htm.

[43] K. Jain, J. Padhye, V. N. Padmanabhan and L. Qiu, Impact of interference

on multi-hop wireless network performance, Proceedings of ACM International

Conference on Mobile Computing and Networking (MobiCom), September 2003.

[44] R. Jain, D. Chiu and W. Hawe, A quantitative measure of fairness and discrim-

ination for resource allocation in shared computer systems, DEC Research Report

TR-301, September 1984.

[45] Y. Jin and G. Kesidis, Equilibria of a noncooperative game for heterogeneous

users of an Aloha networks, IEEE Communication Letters, 6(7):282-284, July

2002.

[46] V. Jocobson and M J. Karels, Congestion avoidance and control, Proceedings

of ACM Conference of the Special Interest Group on Data Communication (Sig-

comm), August 1988.

[47] D. B. Johnson and D. A. Maltz, Dynamic source routing in ad-hoc wireless net-

works, in Mobile Computing, T. Imielinski and H. Korth (eds.), Kluwer Academic

Publishers, 1996.

[48] F. P. Kelly, A. K. Maulloo and D. K. H. Tan, Rate control for communication

networks: Shadow prices, proportional fairness and stability, Journal of Opera-

tions Research Society, 49(3):237-252, March 1998.

[49] M. Kodialam and T. Nandagopal, Charaterizing achievable rates in multi-

hop wireless networks: The joint routing and scheduling problem, Proceedings



111

of ACM International Conference on Mobile Computing and Networking (Mobi-

Com), September 2003.

[50] C. E. Koksal, H. Kassab and H. Balakrishan, An analysis of short-term fairness

in wireless media access protocols, Proceedings of ACM International Conference

on Measurement and Modeling of Computer Systems (Sigmetrics), June 2000.

[51] E. Koutsoupias and C. Papadimitriou, Worst-case equilibria, Proceedings of the

16th Annual Symposium on Theoretical Aspects of Computer Science (STACS),

March 1999.

[52] A. Kumar, E. Altman, D. Miorandi and M. Goyal, New insights from a fixed

point analysis of single cell IEEE 802.11 WLANs, Proceedings of IEEE Conference

on Computer Communications (Infocom), March 2005.

[53] S. Kunniyur and R. Srikant, End-to-end congestion control schemes: Utility

functions, random losses and ECN marks, IEEE/ACM Transactions on Network-

ing, 11(5):689-702, October 2003.

[54] H. J. Kushner and P. A. Whiting, Convergence of proportional-fair sharing al-

gorithms under general conditions, IEEE/ACM Transactions on Wireless Com-

munications, 3(4):1250-1259, July 2004.

[55] Y. Kwon, Y. Fang and H. Latchman, A novel MAC protocol with fast colli-

sion resolution for wireless LANs, Proceedings of IEEE Conference on Computer

Communications (Infocom), March 2003.

[56] R. La and V. Anantharam, Utility based rate control in the internet for elastic

traffic, IEEE/ACM Transactions on Networking, 10(2):271-286, April 2002.

[57] J. W. Lee, M. Chiang and R. A. Calderbank, Utility-optimal random-access

control, to appear IEEE Transactions Wireless Communications, 2007.



112

[58] X. Lin and N. Shroff, Joint rate control and scheduling in multihop wireless

networks, Proceedings of IEEE Conference on Decision and Control (CDC), De-

cember 2004.

[59] X. Lin and N. Shroff, The impact of imperfect scheduling on cross-layer rate con-

trol in multihop wireless networks, Proceedings of IEEE Conference on Computer

Communications (Infocom), March 2005.

[60] S. H. Low and D. E. Lapsley, Optimal flow control, I: Basic algorithm and

convergence, IEEE/ACM Transactions on Networking, 7(6):861-874, December

1999.

[61] S. H. Low, L. Peterson and L. Wang, Understanding Vegas: A duality model,

Journal of ACM, 49(2):207-235, March 2002.

[62] S. H. Low, A duality model of TCP and queue management algorithms,

IEEE/ACM Transactions on Networking, 11(4):525-536, August 2003.

[63] A. B. MacKenzie and S. B. Wicker, Stability of multipacket slotted Aloha with

selfish users and perfect information, Proceedings of IEEE Conference on Com-

puter Communications (Infocom), April 2003.

[64] A. Mas-Colell, M. Whinston and J. Green, Microeconomic Theory, Oxford Uni-

versity Press, 1995.

[65] E. Modiano, D. Shah and G. Zussman, Maximizing throughput in wireless net-

works via gossiping, Proceedings of ACM International Conference on Measure-

ment and Modeling of Computer Systems (Sigmetrics), June 2006.

[66] D. Monderer and L. S. Shapley, Potential games, Games and Economic Behavior,

14:124-143, 1996.

[67] T. Nandagopal, T. E. Kim, X. Gao and V. Bharghhavan, Achieving MAC layer

fairness in wireless packet networks, Proceedings of ACM International Conference

on Mobile Computing and Networking (MobiCom), August 2000.



113

[68] M. Neely, E. Modiano and C. Rohrs, Dynamic power allocation and routing

for time varying wireless networks, Proceedings of IEEE Conference on Com-

puter Communications (Infocom), April 2003. Journal version, IEEE Journal on

Selected Areas in Communications, 23(1):89-103, January 2005.

[69] M. Neely, E. Modiano and C. P. Li, Fairness and optimal stochastic control for

heterogeneous netwroks, Proceedings of IEEE Conference on Computer Commu-

nications (Infocom), March 2005.

[70] M. J. Osborne and A. Rubinstein, A Course in Game Theory, MIT Press, 1994.

[71] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithm

and Complexity, Dover Publications, 1998.

[72] P. A. Parrilo, Semidefinite programming relaxations for semialgebraic problems,

Mathematical Programming Series B, 96(2):293-320, 2003.

[73] R. Preis, Linear time 1/2-approximation algorithm for maximum weighted

matching in general graphs, Proceedings of the 16th Annual Symposium on The-

oretical Aspects of Computer Science (STACS), March 1999.

[74] C. E. Perkins and E. M. Royer, Ad-hoc on-demand distance vector routing,

Proceedings of IEEE Workshop on Mobile Computing Systems and Applications

(WMCSA), Febuary 1999.

[75] V. Ramaiyan, A. Kumar and E. Altman, Fixed point analysis of single cell

IEEE 802.11e WANs: Uniqueness, multistability and throughput differeniation,

Proceedings of ACM International Conference on Measurement and Modeling of

Computer Systems (Sigmetrics), June 2005.

[76] N. Z. Shor, Minimization Methods for Non-Differentiable Functions, Springer-

Verlag, 1985.



114

[77] J. S. Shamma and G. Arslan, Dynamic fictitious play, dynamic gradient play,

and distributed convergence to Nash equilibria, IEEE Transactions on Automatic

Control, 50(3):312-327, March 2005.

[78] A. L. Stolyar, MaxWeight scheduling in a generalized switch: State space col-

lapse and workload minimization in heavy traffic, Annuals of Applied Probability,

14(1):1-53, August 2004.

[79] A. L. Stolyar, On the asymptotic optimality of the gradient scheduling algorithm

for multiuser throughput allocation, Operation Research, 53(1):12-25, January-

Febuary 2005.

[80] A. L. Stolyar, Maximizing queueing network utility subject to statbility: Greedy

primal-dual algorithm, Queueing Systems, 50(4):401-457, August 2005.

[81] K. Tang and M. Gerla, Fair sharing of MAC under TCP in wireless ad hoc

networks, Proceedings of IEEE Workshop on Multiaccess, Mobility and Teletraffic

for Wireless Communications (MMT), October 1999.

[82] A. Tang, J. W. Lee, J. Huang, M. Chiang and A. R. Calderbank, Reverse engineer

MAC, Proceedings of International Symposium on Modeling and Optimization in

Mobile, Ad Hoc, and Wireless Networks (WiOpt), April 2006.

[83] L. Tassiulas and A. Ephremides, Stability properties of constrained queueing

systems and scheduling policies for maximum throughput in multihop radio net-

works, IEEE Transactions on Automatic Control, 37(12):1936-1948, December

1992.

[84] D. N. Tse, Multiuser Diversity in Wireless Networks, http://www.eecs.

berkly.edu/dtse/stanford416.ps, April 2001.

[85] R. Uehara and Z. Chen, Parallel approximation algorithms for maximum

weighted matching in general graphs, Information Processing Letters, 76(1-2):13-

17, November 2000.



115

[86] X. Wang and K. Kar, Cross-layer rate control for end-to-end proportional fair-

ness in wireless networks with random access, Proceedings of ACM International

Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), May 2005.

[87] J. G. Wardrop, Some theoretical aspects of road traffic research, Proceedings,

Institute of Civil Engineers, Part II, 1:325-378, 1952.

[88] M. Wattenhofer and R. Wattenhofer, Distributed weighted matching, Proceed-

ings of the 18th Annual Conference on Distributed Computing (DISC), October

2004.

[89] D. X. Wei, C. Jin, S. H. Low and S. Hegde, FAST TCP: Motivation, architecture,

algorithms, and performance, to appear IEEE/ACM Transactions on Networking,

2007.

[90] X. Wu and R. Srikant, Regulated maximal matching: A distributed scheduling

algorithm for multi-hop wireless networks with node-exclusive spectrum sharing,

Proceedings of IEEE Conference on Decision and Control (CDC), December 2005.

[91] L. Xiao, M. Johnasson and S. Boyd, Simultaneous routing and resource allocation

for wireless networks, Proceedings of IEEE Conference on Decision and Control

(CDC), December 2001.

[92] S. Xu and T. Saadawi, Does the IEEE 802.11 MAC protocol work well in

multihop wireless ad hoc networks?, IEEE Communications Magazine, 39(6):130-

137, June 2001.

[93] K. Xu, S. Bae, S. Lee and M. Gerla, TCP behavior across multihop wireless

networks and the wired internet, Proceedings of ACM International Workshop on

Wireless Mobile Multimedia (WoWMoM), September 2002.

[94] K. Xu, M. Gerla, L. Qi and Y. Shu, Enhance TCP fairness in ad hoc wireless

networks using neighborhood RED, Proceedings of ACM International Conference

on Mobile Computing and Networking (MobiCom), September 2003.



116

[95] Y. Xue, B. Li and K. Nahrstedt, Price-based resource allocation in wireless ad

hoc networks, Proceedings of IEEE/ACM International Workshop on Quality of

Service (IWQoS), June 2003.

[96] Y. Yi and S. Shakkottai, Hop-by-hop congestion control over a wireless multi-

hop network, Proceedings of IEEE Conference on Computer Communications

(Infocom), March 2004.


