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ABSTRACT

The asymptotic expansion of the Navier-Stokes solutions at fixed
Reynolds numbers and large distances from a finite object for an incom-
pressible, stationary and two-dimensional flow is studied, The expansion
is a coordinate~type expansion and differs in many mathematical aspects
from the more familiar parameter-type expansions for large and small
Reynolds number flows. These differences are noted and discussed in
some detail. The technique chosen for dealing with the problem is that
of the use of an artificial parameter. This is one possible method for
using some of the techniques of parameter-type expansions. In parti-
cular, at large distances from the object one may distinguish a viscous
wake region and a potential ("outer') flow region., The relation between
these regions is very similar to the relation between the viscous
boundary layer and the potential flow region for flow at large Reynolds
numbers,

Several terms of the expansion are computed, However, the main
emphasis is placed on discussing the methods for deriving these terms.
The special features of expansions in artificial parameters are discussed
in detail. The role of various properties of Navier~Stokes solutions,
such as validity of integral theorems and rapid decay of vorticity is.
also brought out.

The original motivation of the study was an attempt to understand
the Filon's paradox which historically was an error in evaluating the
momentum integral of the asymptotic flow field. The present study,
however, deals with the general problem of the flow at large distances
from a finite object, and, more generally, with expansion techniques

for similar problems. The author's explanation of Filon's paradox is

only an inc¢idental result,
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I. INTRODUCTION

This paper is concerned with a theoretical investigation of the
flow field at large distances from an object moving through a viscous
fluid. The discussion will be restricted to the case of two-dimensional
stationary incompressible flow. The object will be assumed to be of
finite size. The domain of the fluid is infinite and it is assumed that
there are no other boundaries for the fluid except that of the given
object. The Reynolds number will be assumed to have a fixed value;
thus we shall not consider the limiting cases of the Reynolds number
tending to zero or to infinity,

The mathematical formulation of our problem is then the following:
We consider a certain infinite domain consisting of the region of the
plane outside of a fixed closed curve which represents the boundary
of the object. The flow field in this domain is then represented by a
time-independent solution of the Navier-Stokes equations which satisfies
certain boundary conditions at the curve and at infinity (cf. Section 4).
The existence of this solution is of course assumed. The results to be
derived will actually be valid whether the solution is unique. We con-
sider only time-independent solutions even though these solutions may
not be stable. The complete solution of this problem will in principle
give a vector function for the velocity g*(r*, 0;Re) and a function for
the pressure p¥*(r*, 6;Re). Here non-dimensional variables are used;
the notation is explained on page 74. These functions cannot be obtained
explicitly; however, their form at large distances may be obtained
analytically., More precisely we shall study expansions of these functions

which are asymptotically valid for large r*, uniformlyin 0 and for a
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fixed value of the Reynolds number Re. Since the flow near the object
is not considered the asymptotic expansions will involve certain unde-
termined constants. Some of these constants may be identified with the
(unknown!) lift and drag of the body and with the torque on the body. The
leading terms of the expansions will be found and methods given for
successively computing the higher-order terms.

Actually, (due to the fact that the flow near the body is not con-
sidered, the asymptotic expansions obtained give the solution of a some-
what more general pi'oblem:‘ It is only assumed that there exists a
closed finite curve C (which may be thought of as a curve enclosing
the body, not necessarily the body contour itself) such that the flow is
regular on C and that there are no boundaries for the‘fluid outside C.
The exact boundary conditions at infinity are used, but the boundary
condition at the body is replaced by the more general condition that the
flow is regular on C. By regularity is meant that the velocity and the
pressure as well as sufficiently many of their derivatives are finite on
C. It will be assumed that the net mass flow through C is zero. This
condition, which is a consequence of the no-slip condition at the body,
could easily have been relaxed.

In the present pé.per we are concerned with the problem of ex-
panding c—f for large values of the coordinate r* (coordinate-type
expansion). This type of problem differs m‘athem.étically from the
problem of expanding 51_: for large values of Reynolds number (para-
meter-type expansion). However, there is one important feature that
is corr‘lm.on to both problems. Even at a fixed Reynélds number there

are two distinct flow regions at large distances from the object: A
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viscous wake region and a region of potential ("outer") flow. The
relation between these regions is very similar to the relation between
the viscous boundary layer and the potential flow region for flow at
large Reynolds numbers. The latter problem may be studied with the
aid of techniques applicable to certain parameter~type singular per-
turbation problems. One method of carrying over this technique to
our present problem is to introduce a certain artificial parameter and
then to treat our problem as a parameter-type expansion. The general
nature of coordinate~type expansions and parameter~type expansions
as well as the use of artificial parameters are discussed in Section.2.
The specific artificial parameter used here is explained in Section 4.
It must be emphasized that the author uses the technique of artificial
parameters only for convenience, In principle, the material of
Section 4 may be rephrased in a language which avoids the use of
artificial parameters.

Section 3 contains a review of certain properties of exact solutions
of the Navier~Stokes equations, The two main items are the conser-
vation laws for mass, momentum, etc. and the principle of rapid decay
of vorticity. The fundamental solution of the Oseen equations and the
splitting theorem for Oseen solutions are also reviewed.

After the preparatory discussion in preceding sections a number
of the leading terms of the expansions for velocity and pressure at
large distances are derived in Section 4. Emphasis is placed on dis~
cussing the methods for determining these terms. The same methods
may in principle be used for finding terms of arbitrarily high order.

In these expansions certain intermediate terms of logarithmic nature
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appear. The mechanism which forces the introduction of these terms
is called "switchback, " This phenomenon is connected with certain
deeper questions in the theory of asymptotic expansions.

The flow field at large distances from an object was originally
studied by Filon (reference 1) The procedure was based on the Oseen
equations. Filon, however, was misled by the discovery that his
"second approximation" leads to an angular momentum integral which
depends on contour of integration and which tends to infinity as the con-
tour increases (Filon's "paradox"). Goldstein (reference 2) showed that
the boundary-layer type approximation is sufficient to obtain Filon's
term. He gave a simple explanation for the existence of the term.
responsible for paradox, and showed that Filon's approximation to the
flow field is correct. The paradox was resolved by Imai (reference 3)
by éhowing that a certain term of higher order gives a contribution to
the angular momentum integral which is comparable to that of Filon's
second approximation. This makes the angular momentum integral
finite and contour independent. ‘Imai used an expansion procedure
based on the Oseen equations, He showed that in principle no essential
difficulty is involved in this procedure, and obtained explicitly a large
number of terms. However, his procedure is unduly complicated.

The present report uses a simple and systematic expansion
procedure. The resulting simplifications are similar to those of

Goldstein.s
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I, COORDINATE- AND PARAMETER-TYPE EXPANSIONS

2.1. Coordinates vs. Parameters

Consider the function @:(r*, g;Re) defined in the introduction.
The velocity (i» depends on three independent variables r*, 06, and
Re. One calls r* and § coordinates and Re a parameter. The
reason for this nomenclature is obvious from the physical meaning
of the variables; however, for our pur\pose it is necessary to clarify
the mathematical nature of the distinction between parameters and
coordinates. The main problem of this paper is to find an asymptotic
expansion of cIt for a fixed value of Re which is uniformly valid
in 6 for large values of r*, We shall call such aﬁ expansion a

coordinate~type expansion. Amnother type of problem (not studied here)

is to find an expansion of c—f which is uniformly valid in r* and §
for large values of Re. Such an expansion will be called a parameter-

type expansion. The mathematical problems involved in constructing

these two expansions from the equations and boundary conditions
exhibit certain important differences. A discussion of these differences
will form the main content of the present Section.

We shall begin with a discussion of the different nature of coordi-
nates and parameters. General exact definitions will not be given; it
is sufficient for our purpose to illustrate the difference with the aid
of examples. To fix the ideas, consider a function f(x,€) of two
arguments x and €, defined for 0 < x< 0o, 0 < € < ., If the function
is given explicitly there is no mathematical reason for calling one of
its arguments a coordinate and the other one a parameter (although

from the point of view of applications x might be a position coordinate
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and € a parameter in the physicist's sense). However, assume now
that the function f(x, £) is defined implicitly as follows: The function
f satisfies, say, a second-order ordinary differential equation. The
argument € may appear in equation but all derivatives are taken with
respect to x. In addition f satisfies two boundary conditions, say
f(0) and f(oo) are prescribed, possibly as functions of €. (More
generally one could have assumed that the value of f is prescribed
for x = X and x = X where Xy and X, may depend on €.) With
respect to this implicit definition of f we may call x a coordinate
of £ and € a parameter of f. Note that in principle it is possible

to give € a definite value, say € =1, and find f(x,1l) for all x without
considering values of f(x, €) for € # l; on the other hand, we cannot
determine f£(l, €) without considering f(x, €) for x# 1. In general,
the region of influence of the point x =0, € = €g = fixed extends over

the whole line 0 < x <00, € =€ If the value of £(0, eo) is changed,

0°
then, in principle, all the values {(x, EO) may be changed. A similar
statement cannot be made for the dependence on €. Changing the

value of {(0, 60) does not imply that the values of f(xo, 61) or even

F €

(0, GO) have to be changed for €, 0

If now d}f:(r*, 0;Re) is implicitly defined by the Navier-Stokes
equations and boundary conditions at infinity and, say, at the circle
r¥* =1, it is clear that it is consistent with the terminology used above
to call r* and 6 coordinates and Re a parameter. No derivatives
with respect to Re occur in the Navier-Stokes equations, One may
say that one set of boundary conditions is given on the cylinder r* =1,

0<06 <27 0<Re< o in (r*,0, Re)-space. The region of influence
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of a point (1, 90, Reo) on this cylinder is the planar region r* = 1,

0 <6 < 27 Re = Re, but does not extend to points in (r*,0, Re)~-space

0

for which Re # Reo. Thus, with respect to the implicit definition of

_g:?_ » r* and Re play different roles. This accounts for the fact that

when the expansions for large r* or for large Re respectively are
determined from the implicit definition, the mathematical problems in

the two cases differ in certain important respects.

2. 2, Parameter—Type Expansion. Singular Perturbation Problems

and Matching.

Let the function f(x, €) be defined by a second~order differential
equation and by boundary conditions as in Section 2.1. One may then
pose the problem of finding an asymptotic expansion of f which is
uniformly valid in x for € near zero. In the simplest case (regular
perturbation problems) this expansion has the form of a convergent

series

6n(€)fn(x) (2-1a)

=
z
h
o]
118

where the Bn(e) are functions of € such that

5
€)=1 lim -2 =0 (2-1b)
€%0 n

60(

By inserting this expansion into the equation and boundary conditions
for f one obtains in typical cases a second-order equation and two
boundary conditions for each fn; these conditions determine each fn

uniquely,
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In other problems (singular perturbation problems) it may turn
out that f has an expansion of the form 2-1 for regions not including
x = 0 but that a different expansion is needed near the origin., This

expansion may have the form

m’\
f(x) = Z 6n(€)gn(§) (2-2a)
n=0
where
a(é)x =x, lim a(€)=0 (2-2b)
: €Y 0

The expansions 2-1 and 2-2 are then called the outer and inner expan-
sions respectively. Introduction of each expansion into the differential
equation leads to the differential equations for fn and 8, Inserting
2-1 in the boundary condition at infinity gives one boundary condition
for fn; inserting 2-2 into the boundary condition at x = 0 gives one
boundary condition for = Since some of the fn and g, will satisfy
second order equations these boundary conditions are insufficient for
the determination of fn and g, Additional conditions are obtained
from matching of the two expansions. It can be shown fofvm‘any singular
perturbation problems that there exist relations between a finite partial
sum of the outer expansion and a finite partial sum of the inner expansion,

Such conditions are referred to as matching conditions. They furnish

the missing boundary conditions necessary for the complete determination
of the fn and 8 A classical example of a matching condition occurs
in boundary-layer theory. The first term in the outer expansion (for

flow without separation) is the potential flow past a body; the first term
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in the inner expansion is the boundary-layer solution. These are
related by the requirement that the tangential velocity component of
the outer flow at the body surface equal the tangential velocity com-
ponent of the bouﬁdary layer at infinity. This matching principle
completes the boundary conditions for the boundary-layer equations.

It should be emphasized that a m.atching‘ condition, say between
fo and o is an exact relation, not a numerical approximation. When
€ is small one may think of gy 2s being approximately valid for x
between zero and some rather arbitrarily chosen small value of x,
say x = x, and one may consider fO to be approximately valid for
X 2 X5 One may then choose as a boundary condition that f(xo) = g(xo).
This, however, is only an approximate relation and will be referred
to here as numerical patching. Such a numerical patching in a
parameter-type expansion is not only logically less satisfactory than
an exact matching condition but is in addition generally less practical.
The nature of and the justification of exact matching conditions are
discussed at length in references 4, 5 and 6.

A final remark regarding uniformly valid expansions will be made.
Suppose that f(x, €) has an outer and an inner expansion with matching
conditions as described above. Once these have been found it is generally

easy to construct a simple uniformly valid expansion

%?_
f -'zL hn(x, €) (2-3a)
n=0

which is asymptotic in the sense that

n

f —z h.i(x, €)

i:O
£ (€)

= 0 wuniformly in x (2-3b)
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where the C’n are functions used to gauge the validity of the approxi-

mation, satisfying relations

£ol€) =1, lim =0 (2-3c)

E%C gn

This is discussed in references 4, 5 and 6.

2.3. Coordinate Type Expansions

As a special example consider the Blasius function occurring in
the theory of viscous flow past a semi-infinite plate. It may be con-

sidered as defined by the equation

3 2
a~f da-f
+f—% =0 (2-4a)
:1? dxz
f(0) =£(0) =0 (2-4b)

f1(o0) = 1 (2-4c)

The argument is the coordinate x which actually is a combination of

various physical quantities.

The equation and the boundary condition 2-4b give the following

expansion of f(x) near x =0

a 2 0,2 5 11a3 8

fzﬁ—X —§-!—X ’+—§'!—X + oeee (2-58.)

In 2-5a a is a constant remaining undetermined.

Near x = oo one obtains, using 2-4a and 2-4c

x x 1 12
'z(x"ﬁ) .
f~x-ﬁ+y§ dx‘g e dx + ... (2-5Db)
oo oo

This asymptotic solution of f(x) contains two unknown constants $ and
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Yy, since only one of the three boundary conditions for f has been
satisfied. Expansions 2-5a and 2-5b are examples of the coordinate-
type expansion. Note that no exact relation exists between any finite
number of terms of expansions 2-5a and 2-5b respectively. Thus
a, B, y cannot be determined by matching of a finite number of terms
of 2-5a to a {inite number of terms of 2-5b . For an exact deter-
mination of a, 8, and vy, one needs the complete infinite series 2-5a.
Let us denote by fa(x) the function defined by this series. The leading
term x in 2-5b may be said to match to the complete function
fa(x). " The problem is therefore a matter of analytic continuation,
In other words, if 2-5a were complete and continued analytically to
infinity one could determine a by requiring that the leading term of
the expansion of fa(X) near infinity is x.

For numerical purposes it may be possible to use a finite number
of terms of 2-5a and 2-5b and adjust the constants a, B, y so that
2-5a and 2-5b agree approximately at some intermediate points.
This numerical patching may be useful but is only an approximation and
should be distinguished from the exact relations valid in matching for
parameter-type expansions.

If a function f(x, €) is defined as in Section 2.1, so that x appears
as coordinate and € as parameter, one may still try to obtain expansions
of f for small and large x at fixed €. These are coordinate-type ex-
pansions of the type described for Blasius function and no matching is
possible between them in the sense valid for parameter-type expansions
(cf. Section 2.2). It is a problem of this type that will be studied in

the present article, namely the expansion of g¥(r¥,0;Re) for fixed Re
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and large r*, It is then clear that expansion at large r* cannot be
matched to an expansion near the body unless the exact solution near
the body is obtained. Thus the leading term in the expansion for large
r* may be said to match to the exact solution of the Navier-Stokes
equation near the body, or, more precisely the analytic continuation
thereof. Thus in principle this "matching" involves getting the exact
solution of 61-': and is consequently a very impractical procedure
indeed. However, later in Section 4 it will be seen that matching of
certain integrated values of the solution near the body and the solution

near infinity is very useful in the study of coordinate-type expansions.

2.4, Artificial Parameters

Consider a function f(x, €) defined by a differential equation as
in Section 2.1 with x appearing as a coordinate and € as a parameter.
For certain special types of equation it may happen that the parameter
€, while appearing in the formulation, can be eliminated from the
equation and the boundary conditions by coordinate transformation.

As an example, consider the equation

2
2d°f df
€ d—-z' -+ X-a;(— =0 (2—6&)
X
with the boundary conditions
f(0) =0 f(oo) =1 (2-6b)

The parameter € in 2-6 is then eliminable, because if one puts
- _ X . _
x == (2-7a)

and re-formulates the problem in x coordinate, the parameter € will

disappear completely from the problem. A parameter which can be
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eliminated in this way is called an artificial parameter.

There are many physical problems in which artificial parameters
appear. A typical example is the problem of incompressible
viscous flow past a semi-infinite flat plate, In the original physical for-
mulation two parameters occur, namely, the viscosity v and the free-
stream velocity U. These parameters may be completely eliminated
from the mathematical formulation of the problem by replacing the
coordinates x and y by XV—U and ng . Thus in spite of the physical
reality of these parameters they are, for the specific boundary-value
problem studied, artificial from a mathematical point of view.

Another example for which a physically real parameter is from
a mathematical point of view an artificial parameter is that of incom-
pressible non-viscous flow past a paraboloid of revolution. Here we
do have a true length, namely, the nose radius of curvature L of the
paraboloid. Note, however, that no other length parameter occurs.
The radius of curvature, 1, being the only length, disappears after
the equation and boundary conditions are expressed in non-dimensional
coordinates. Thus I. is in this sense an artificial parameter. Note
that in the two examples given, each case has only one length: the
semi-infinite plate problem has a viscous length and the paraboloid
problem has a true length. It follows from dimensional considerations
that if only one length parameter occurs in a physical problem, this
parameter must be artificial,

Consider now a function f(x, €) which has a parameter-type ex-
pansion as described by 2-3 except that uniformity in x is not required.

If € is an artificial parameter then the expansion is either not uniform,
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or the first term contains an exact solution. A more precise formulation

is given by the lemma below (cf. reference 4)

Lemma: Let f(x,€) be defined for 0 < x< oo and for 0 < € < €0

where €0 is some arbitrary number greater than zero, Let f¥(x, €)
be an approximation to f uniformly valid to order unity in some interval
0 <£x < Xg» i. €.

lim |f(x,€) - £%(x,€)| =0, (2-8a)
€ V0

uniformly in 0 < x < Xq

Furthermore, assume that f has the similarity form

f(x, €) = g(X) where X = %‘. (2-8Db)

Then it follows that

1im f%, € ¥ 0, x fixed, exists
(2-8c¢)
and equals f(x, €)

Proof: We write f¥(x, €) = g*(x, €). We want to show that for a
fixed value of X and for an arbitrary & > 0 one may find an 61(6)

such that [g(x) - g*(x,6 )| < & for € in the range 0< € <€,, One

1.
first chooses an €, suchthat [f - %] <& in the rectangle 0 < x < X g

0<e < €5, and then one chooses an €4 such that for 0 < € < ¢ the

33
point (€x, €) is in the rectangle just described. For the required
61(6) we may then choose any positive number smaller than both €,

and € 3°

Corollary 1. - It follows that if f* has the same similarity as f,
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ie. if g* depends on x only and not on €, then f* ={ under the
assumptions of the lemma. On the other hand, if for example £ =f+¢€
then the assumptions of the lemma are satisfied, but f* becomes equal

to f omnly in the limit 2-8c.

Corollary 2. If f* is an approximation to f such that

lim [f* - f| = 0 uniformly in X S xS X%, (2-9)
e¥ o0 |

and if f* does not contain f in the sense of 2-8c then %y >0, i.e.
the approximation is not uniformly valid near the origin. For example,

let

-1
f=(1+5> and f% =1

Then f* is valid to order unity uniformly in any region 0 < Xg SX S
but not in a region including the origin. Clearly a parameter-type ex-
pansion of f for fixed x and € small is equivalent to a coordinate-

-1
type expansion of (l + :1> for x large.
x

2.5, Expansion in an Artificial Parameter

One may be tempted to conclude that artificial parameters should
be avoided altogether in expansion procedures. It is, however, interesting
to note the following historical fact: A very important technique for
finding parameter-type expansions for singular perturbation problems,
the boundary-~layer technique, was initiated by Prandtl in 1904 in his
fundamental paper dealing with viscous flow for small values of the
viscosity v (reference 7). The main example chosen by Prandtl in

this article was that of flow past a semi~infinite flat plate, in other words
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a case for which v is an artificial parameter. Objectively speaking,
it is logically pbs sible to expand in an artificial parameter, although
the expansion will not be uniformly valid unless the exact solution has
been obtained. From a subjective point of view it may be convenient
to work with artificial parameters in certain cases, as long as the
difficulties resulting from non-uniformity are clearly realized. To
illustrate this we shall briefly discuss an example which has certain
features in common with the problem of viscous flow past a semi-
infinite flat plate,

We consider stationary inviscid incompressible flow past a
paraboloid of revolution with the x-axis as center-axis, The radius
o of a cross section at any positive x is given by

= 21x, L = radius of curvature (2-10)
at the nose

%o

The equation for the velocity potential is then in cylindrical coordinates

§+%%§+§§%’=o (2-1la)
and the boundary conditions are

8 %% - %;0 at T =1, (2-11b)

2y 2 0as r—w (2-11c)

. . . D X T
If one uses the non-dimensional variables T T T then
the parameters U and L. are completely eliminated from the equation,
These parameters are hence artificial. Nevertheless we shall attempt

an expansion for small values of L. It follows from the discussion in



] T

Section 2. 4 that, unless an exact solution is obtained, this expansion
cannot be valid near the origin. Thus the expansion obtained should
be equivalent to a coordinate-type expansion for large values of
x r
IJ and -L °

If 1. tends to zero the paraboloid becomes more slender at any

given station x = constant. This suggests the use of a slender-body

technique. We define an (exact) perturbation potential ¢ by

¢ = _§%§i§I§_ | (2-12)

and assume that ¢ has an outer expansion

¢ = QSO(X, r)+ LqSl(X, r)+ .., (2-13a)
and an inner expansion

¢ = q5>5(x*, r¥) + Ld)’l:ix*, r*¥) + ... (2-13b)
where the inner variables are defined by

I

/L

3
¥

SR

= x, R =

(2-13c)

Note that in accordance with slender-body theory the radial distance
from the body is measured in the body-scale, which for a fixed value
of x is proportional to /_

We now proceed as if we had a parameter-type expansion for a
singular perturbation problem. By inserting the expansions into the
original equation for & one obtains equations for an and gbr“l . The
inner éxpansio.n should satisfy the inner boundary coﬁdition and the
outer expansion should satisfy the outer boundary condition. Additional

boundary conditions are furnished by matching of inner and outer expan-
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sions. However, the fact that L is an artificial parameter adds certain
features to the problem which are discussed below.

First of all we have the principle of eliminability. It must be

possible to eliminate 1L in the sense that ¢ depends on x/L and
r/L only. Hence it follows that in the term Ln(}Sn(X, r) the function

an must have the form

¢ = < fn(%)]; "fo" = "function of" (2-142)

g
!,

Similarly for the term anBf[!;(x*, r*} one must have

22
= (%) [ fn( = )] (2-14b)

XA

¢

sl
r
n

As an example consider the first two terms of the expansions. The

equations and the inner boundary conditions give

([)O = log r* 4+ B(x*) (2-153)

Eliminability shows that the function B(x*) must have the form

B(x*) = by log x* (2-15b)

Finally matching with the outer solution gives

L
by=- > (2-15¢)

The corresponding outer solution is
qSO = 171og[ 74 X2+r2 - x| (2-16)

*If the expansions proceed in powers of L each term must satisfy
the principle of eliminability separately. In terms of order Lnlog L
occur eliminability is satisfied by combining various terms. Examples
of this will be given in Section 4.




-19-

For the next approximation one obtains

b 2
1 Fdc
¢1‘< =% - " (2-17a)
bop <
bl
X + T

The equations, boundary conditions and matching conditions are satisfied
for an arbitrary choice of the constant bl’ Thus, the ordinary technique

of param‘éter-type expansions leads to an indeterminacy. This is due

to the fact that the origin x =0, r = 0 is excluded, since the expansions
are not uniform there. In fact the term q’)l represents a source at the
origin and bl is proportional to the source strength. The function qSl
and the berm bl/x* of qu represent eigensolutions which may be added
without violating the boundary conditions.

The indeterminacy just described is typical of expansions in
artificial parameters. In the present case it can actually be removed

by using an integral theorem. In principle b1 should be determined by

matching with the exact solution at the origin. However, in the special
case considered it is sufficient to use one property of the exact solution
namely the conservation of mass. Consider the cylindrical surface

- o< x< Xgp T =Tg = 21x Since this surface extends to the

0"
paraboloid it follows that the outflow of mass through this surface
must be equal to the inflow through the disc x = - o, r < Toe If one
requires this to be valid for all orders of L. one finds that b1 = Zl .
Similarly the solution for qSZ and ¢)2 gives at first an undeter-

mined constant b2 corresponding to the strength of a dipole at the

origin, This constant may again be determined by the integral theorem
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about the conservation of mass. Actually all indeterminacy of the higher
order terms may be removed with the aid of this integral principle.
While the present example illustrates some important principles of
expansions in artificial parameters it must be emphasized that it is

quite exceptional that all indeterminacy can be removed.

Instead of considering expansions in I one could have introduced
an arbitrary length R and a non-dimensional parameter € = ] An
expansion in powers of € would, except for trivial changes, be obtained
in the same way as the expansion in powers of L. The principle of
eliminability would of course state that the artificial length R must
actually disappear in all terms of the expansion.

Equivalent results for the paraboloid could of course have been
obtained by considering a coordinate-type expansion directly. The
technique using artificial parameters has no fundamental significance.
The important thing is to realize clearly when a parameter is artificial
and when it is not,

For a further example of an expansion in an artificial parameter

see the discussion of the paraboloid of revolution in compressible flow,

given in reference 8.
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III. SOME PROPERTIES OF THE NAVIER-STOKES EQUATIONS AND

THE OSEEN EQUATIONS

3.1, Navier-Stokes Equations. Vorticity Equation.

The Navier-Stokes equations for two-dimensional steady, incom-
pressible viscous flow are

Momentum equation:

(grad )G + 5 grad p = v9°q (3-1a)

Continuity equation:

div g =0  (3-1b)

where
p = density of fluid = constant
v = kinematic viscosity = p/p = constant

velocity; g =ui + vJ] in Cartesian coordinates

1]

q

p = pressure

B = viscosity = constant
For flow past a finite body we shall impose the following boundary

conditions at infinity

—
1

H =Ui, p— P = constant as r — oo, uniformly in 8 (3-2a)

where r and 6 are polar coordinates., As boundary condition at the

surface of the body one normally assumes the no-slip condition

q = 0 at the surface of the body (3-2b)

Since we shall be dealing with solutions valid for large values of

r the boundary condition 3-2a will be of crucial importance. In Section 4



_22-

it will be seen that the solutions obtained are valid even if 3-2b is
replaced by a weaker condition.
In two-dimensional flows, one may introduce a stream function :
- 9y - . Sy
u = "8"-3—7 v = by (3_33’)

and write the vorticity w in the form

_ ov ou _ 2 _
o= g% - 52 -V (3-3b)

Equation 3-1 may then be written

uss 4 V'8—§ =vW o (3-4a)
ou ov  _

<ﬂ—"’— . %-‘?—> Vi = vty (3-5)

It should be pointed out that equations 3-3 and 3-4 (or 3-5) are
not fully equivalent to equation 3-1. For full equivalence one must require
that the solution of equation 3-4 (or equation 3-5) gives a single-valued

. 3k
pressure field.”

“As an example, the function ¢ = A6 + Brz, A = constant, B =
constant, solves equation 3-5, This stream function is multivalued
which in itself is allowed since the stream function is not a direct
physical quantity. The corresponding velocity field is single-valued.
However, the pressure field is single-valued only if A =0 or B = 0,

It seems that failure to impose the condition of a single-valued pressure
is responsible for the difficulties encountered in the discussion of the
Stokes paradox in references 9 and 10,
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3. 2, Parameters. Non-dimensional Equations.

The differential equations contain the parameters p and v. The
boundary conditions at infinity contain the parameters U and P oo’ In
addition we assume that a characteristic length 1, say a body-dimen-
sion, is given. Using these parameters one may obtain various non-
dimensional formulations of the Navier-Stokes equations and the

boundary conditions. If one, for instance, introduces the variables

>.’<—_)E‘ *:X o= et .:.t-‘:—q.:. -
X—L,Y L’p ";['I“Z'sq T (3-6a)

and the parameter Reynolds number

Re = Il;l: (3-6b)
then equation 3-1 may be written
ot W " 1 2 =
(grad g¥)g* + grad p¥ = V" g* (3-7a)
div g¥ =0 (3-7b)

Here the operators grad, VZ and div are formed with respect to x*

and y¥*: grad :(38}2*’ %*), etc,

3. 3. Divergence Relations, Integral Theorems.

The Navier-Stokes equations 3-1 are divergence relations: They
state that the divergence of a certain vector or tensor is zero. Addi-
tional divergence relations may be derived from these equations., By
integratihg over a region and using Gauss' theorem one can then
conclude that the flow of certain vectors or tensors through the boundary

of the region is zero. We shall, mostly, consider regions of an annular
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shape as shown in figure 3.1. The boundary will then consist of an
outer closed curve C* and an inner closed curve C. The body is
located inside the curve C which may or may not coincide with the
body surface. If the divergence of a quantity is zero one then obtains
the result that the flow of this quantity through C* equals the flow of
the same quantity through C. This gives an integral theorem which
may be regarded as limited information about analytic continuation:
One obtains exact relations between integrated value of flow quantitites
at a curve C near or at the body and at a curve C¥* arbitrarily far
away from the body. If C is taken to be the body surface the integral
over C often has a simple physical interpretation such as the force

on the body.

&1 =181 =1
dn =ds e,
n

Figure 3.1
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In writing the integrals we shall use the following notation (see
figure 3.1). The distance along each contour measured in the counter-
clockwise direction will be denoted by s. The tangential unit vector in
the counterclockwise direction will be denoted by 5; . The distance
normal to the surface, in the direction shown in the figure, will be
denoted by mn, the corresponding unit normal is 'e_;l, The components
of a vectorial quantity, e. g. 71», will be subscripted in the same way,
thus q, is the normal velocity at a point on the contour and qq is
the tangential velocity along the contour. Unless otherwise stated, all
formulas will be given in terms of physical variables, i.e. in dimen-

sional forms.

Mass flow. The continuity equation 3-1b gives

q.dn = © _qg.ds =§ ds (3-8a)
%SC §C Y Je 9p

If we assume that _qb actually represents flow past a body and if the no-

slip condition 3-2b holds, then one may write

§ Ld-dm =0 (3-8b)
o

&,

The same is of course true if one replaces 3-2b by the weaker condition
that the flow be tangential at the surface of the body. More generally
the integrals in equation 3-8a give the total source strength in the fluid
if the contour encloses all sources.

In the following we shall assume the no-slip condition for simplicity.
In Section 4 it will be pointed out the formulas obtained are easily general-
ized to cases for which the no-slip condition is not valid and even to cases

for which the net source strength is not zero,
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Flow of Vorticity. Using the continuity equation one may rewrite

equation 3-4a as a divergence relation:

div (wq - v grad w) = 0 (3-9)

Letting C be the body contour B one then finds (cf. equations 3-22

and 3-23 below)

ow _ 1 op
&gc*(qnw - Vgﬁ )ds = - ?)—§B -a—g dS (3—10)

If there is no pressure jump occurring at the boundary B, then
Jw
(q_nw-v%)ds =0 (3-11)
u C:}:

Flow of Momentum. Let

A=pdog-g (3-12a)

¢ =-pl+ 7, I=identitytensor (3-12b)

T =p def g (3-12c)

F = § c dn = Total fluid force on body (3-12d)
B

Here B is actually the body contour. The dyadic product a ob of

. » — -
two vectors is the tensor whose value for an arbitrary vector c¢ is

(

the (i, j)-component of def 7{ is aui/axj + Buj/axi.,, The momentum

a(b-<C). If the Cartesian components of _q: are (ui) then

—
a

0b)< =

equation 3-la is then equivalent to the divergence relation

div A =0 (3-13)
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This equation implies the following integral theorem:
-F_"=-§¢pd_r_1>+p§ def gdn - p§ (doq)dn (3-14)
s BS C* 2

Flow of Moment of Momentum. Since the tensor A is symmetric

the following identity is valid

T xdiv A =div (T x A) (3-15)
and hence by equation 3-13
div (¥ xA) =0 (3-16)

M = @ Tx(-p+7)dD - p§ T x(qoq)dm (3-17a)
-, C* - >k

where

&l
1
<
1

® g‘(?xg)d—f; (3-17b)

3. 4. Integrals of Divergence-Free Tensors

In Section 3. 3 we considered certain tensors of zero divergence
and their integrals over closed curves. In Section 4 we shall have
occasion to use similar integrals which are taken over a path which
is not closed. Some general properties of functions defined by such
integrals will be considered here.

We shall assume that the flow field is regular outside a given
curve C. For convenience the origin of the system of coordinates

will be located inside C. Let A(m') be a tensor of order m which is
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defined in terms of velocity, pressure and their derivatives. The tensor

(m)

A is hence single-valued. Assume that

aiv A™) = o (3-18)

Examples of such tensors, for m =1 and m = 2, were given in Section
3. 3. Now let P be a fixed point in the plane and Q a variable point,
both points being located outside the curve C. One may then define

a tensor of order (m-1), denoted by alm-1)

» by the integral over a

path from P to Q, the path lying outside the curve C:

ge)
alm=1g) :{? almgg (3-19a)
P

The direction of dn is chosen so that a counterclockwise rotation of

dn gives a tangent vector ds directed towards Q. Thus,

if ds =dx1 +dyj, then dm =dyi - dx] (3-19Db)

Equation 3-18 shows that the value of A 35 the same for two
different paths from P to Q provided that the combination of these

(m-1)

two paths does not enclose C. In general A is multiple-valued,

It is single-valued if the plane is slit along the positive x-axis. The
discontinuity across this slit is independent of x, as seen from the

following relation, which is easily proved:

aalm-1) _ p(m=1) oy o am=1) )

= - § A(m)d?; = constant (3-20)
“ C

Here x is positive and the point (x, 0) is located outside C.
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Special Cases: If m =1, then A(m‘) is a vector a = al—f + aZT

and A(m'-l) is a generalized stream function, i.e. a scalar function

G such that (cf. equation 3-20)

N a je

> (3-21)

o

"
cnlo:
<iQ
mlm
®lQ

In particular, if a is the velocity q then G is the ordinary stream-
function Y. The assumption 3-8b implies that ¢ is single-valued

even in the unslit plane. If instead

a =vgradw- wq (3-22a)

then a generalized streamfunction G may be defined to be the total

pressure divided by the density

L

2
=% +2; @ =u?+ 2 (3-22b)

This statement follows from the fact that the momentum equation 3-la

may be written as

2 2

9 [u+v P - _ , 0w

"6‘;{’( 2 '*‘E)- VW = VW (3-233.)
2 2

9 [ u +v P _ . 0ow

—8y(—-—2-——+ >+uw—v 5% (3-23b)

Since in this case the generalized streamfunction is expressed in terms
of pressure and velocity it is automatically single-valued in the unslit
plane outside the curve C. It follows that the integral of 2 around C,
i, e. the constant in equation 3-20, is zero., This fat was expressed by
equation 3-11 above. |

If m =2, say A(Z) = A where A has Cartesian components Aij
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— ———

then A(l) is a vector streamfunction G = Gli + GZJ such that
8Gi BGi
A7 3y 0 B2 T B3 - (3-243)

In particular if A is the tensor defined by equation 3-12 and if the flow
field is due to a solid inside the curve C then (cf. equations 3-12d,

3-14, and 3-20) the force on the body is

¥ = AG =C(x, 0+) - G(x, 0-) (3-24b)

Finally if A 1is a second-order tensor such that r x A has zero

divergence then one may write

qQ_’
T x
=]

dn = HQ)k (3-25a)

Il

where H 1is a scalar function such that

oH
- YA = = ; }<A22 - yA]_Z = - —832 (3-‘25'b)

In particular, if A is the tensor defined by equation 3-12, then (cf.

3-17)

Torque on body = M = -AH = H(x, 04) - H(x, 0-) (3-25c)

Harmonic Flow Fields. If the velocity field is harmonic, i.e, if

curlq =0, divg =0 (3-26)

then one may introduce a complex streamifunction ¥ such that

¥(z) = ¢+ 1§ 2z =x+ iy (3-27a)
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=w(z) =u-iv (3-27b)

e

Furthermore the pressure is given by Bernoulli's law

2
P+ % = constant (3-28)

We shall give expressions for the flow of momentum and moment

of momentum through a curve, Let a; and EZ be two harmonic vector

fields and let Uy, U, etc. be defined as in equation 3-27. A tensor

B 1is defined by

B =(qoq)+(qo0q)-(q- q,)I (3-29a)
and an (infinitesimal) vector b by
J =Bdn (3-29b)
A direct computation then shows that

by - ib, = -iw;w,dz (3-29¢)

and that

. >

- B +i(r xB)- K = z(b, - ib,) (3-29d)

—
I

Furthermore if an (infinitesimal) vector ¢ is defined by

< = cl“i’ - cZT = (def q)dn (3-30a)
then
e, -ic, = -21 Vg, (3-30b)
1 2 dz

We assume now that —c_:f is harmonic and the reference level for
the pressure is chosen such that the Bernoulli constant (right-hand

side of equatidn 3-28) is zero. Let the tensor A be defined by equation
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3-12 and the vector .streamfunction G by

.0
G =Gi +G,J = A dn (3-31a)
1 22 T ) =

The formulas just proved then imply that
@] 2
G, - iG, = -i § S w dz + Zip[ w(Q) - w(P)] (3-31b)

Furthermore, if H is defined by equation 3-26a then

‘ CQ p 2 dw
H = Real Part [} (5 2w"- 2pz o= )dz] (3-32)
‘-"P z

—

These formulas are derived by putting ?1-1 =q,=q in equations 3-29 ff,
The more general formulas with -q; * ?fz will be needed in Section 4
to handle certain "interference terms" when one considers a sum of
different harmo}nic flow fields,

Note that even in a harmonic flow field the viscous surface

- - — - .
stresses do not vanish, i.e. p def q is in general not zero.

Generalization to Flow Fields with Discontinuities., We shall only

consider flow fields which are regular outside the curve C. However,
as will be seen in Section 4, the asymptotic expansion for such a field
may contain terms which are discontinuous across the positive x-axis.
The formulas derived above are easily generalized to this case.

(m-1) by equation 3-19. However, if Al™) pag

One may still define A
zero divergence in the slit plane but is not regular on the positive
x-axis, then the path of integration should not cross the positive x-axis.

)

Furthermore, the discontinuity of A(m'"1 across the positive x-axis
may no longer be independent of x, i.e. equation 3-20 is no longer

valid.
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3.5. The Rapid (Non-Algebraic) Decay of Vorticity

The vorticity equation 3-4 states that vorticity is transported
with the streamlines of the flow and at the same time diffuses like heat.
Furthermore, we note that the flow coming from upstream infinity is
originally free of vorticity and there are no vorticity sources inside
the fluid. The vorticity is generated at the surface of the body and
then transported and diffused according:to equation 3-4. It is there-
fore expected that the vorticity is small except in the following types
of regions: Regi‘ons near the body, regions of closed streamlines
(w};e.re the effect of diffusion may be strong) and regions downstream
of the body composed of streamlines that have passed close to the
body. The regions of closed streamlines are expected to occur adjacent
to the rear part of the body. Together with the third type of region
described above they constitute the wake, If one replaces the
transporting streamlines by the free stream UT and assumes that
all vorticity is generated at the origin by the vorticity dipole one may
verify that vorticity decays as 1/ ﬁ'{ downstream of the origin in a
parabolic region. On the other hand, for a fixed value of x vorticity
decays exponentially in y. (cf. the discussion of the Oseen fundamental
solution and the discussion on p. 49 in Section 4). It is then expected
that this result is still qualitatively correct for an actual solution
of the Navier-Stokes equation for which the vorticity sources are
distributed and for which the streamlines at infinity approach the free-
stream flow. We shall therefore in the following (cf. Section 4) use

the following principle of rapid decay of vorticity:
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If one approaches infinity along a line whose
angle with the streamlines never becomes small then
vorticity decays along this line faster than any power

of the distance. (3-33)

An exact proof of this principle cannot be given, although further
plausibility argument will be given in Section 4. The use of this principle
is the following: In applying certain expansion methods for finding
Navier-Stokes solutiéns it may occur at a certain stage that the equations
and boundary conditions allow solutions for which vorticity decays only
algebraically. Such solutions must then be rejected by the principle
of rapid decay of vorticity., Examples of this will be given in Section 4.
Another example will be indicated here: We consider viscous flow
past a sem.ii;nfinite flat plate and study expansions for small values
of v (as pointed out earlier this expansion cannot be valid near the
origin; this is, however, irrelevant here). Leading terms are given
by the Prandtl-Blasius boundary-layer solution and by the solution for
flow due to displacement thickness. It was for a long time assumed
that the next term is of order v and various solutions were proposed
in the literature. However, it was found in 1956 by S. Kaplun, Imai and
others (cf. referencesll and 12 ) that all possible solutions of order
v have too slow decay of vorticity. This forced reconsideration of

the problem and led to the correct solution, of the order v ln v.

3. 6. The Oseen Equations

The Oseen equations may be obtained by linearizing equation 3-1
about the free stream velocity _(_{___ U1, i.e. by neglecting terms which

are quadratic in -C? =~EI - UT. The resulting equations are
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o9q , 1 2

divg =0 (3-34b)

The same equations hold for the perturbation —éf' The boundary conditions

are

q=0 q =-Ui atbody (3-35a)
q— Ui q — 0 at infinity (3-35b)

The corresponding equations for w and i are

2
U %}9{ = vV (3-36)
and
2 .
U %v o= vy (3-37)

The validity of the Oseen equations may be discussed based on two
different points of view. For any fixed Reynolds number; it is to be
expected that the linearized equations are approximately valid near
infinity because at large distances from the body the perturbational
velocity Ef will be small compared to the free stream velocity U7 .
Near the body, the linearization is not justified for any arbitrary
Reynolds number. However, as the Reynolds number tends to zero
the Oseen equations have uniform validity, at least for flow past
finite bodies. An explanation ofthis was found by Kaplun who pointed
out that as Re tends to zero the whole flow field may be regarded as
a perturbation of uniform flow (details are given in references 5 and 6).

In this article we are concerned with flow at a fixed Reynolds number.
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Hence in the present context only the first viewpoint (validity of the
Oseen equations at large distances) is relevant,

Finally, it may be pointed out, that one may sometimes use the
Oseen equations as a qualitative model for the Navier-Stokes equations.
The principle of rapid decay of vorticity is actually based on such a

qualitative comparison.

3. 7. Splitting of Oseen Solutions
It may be shown that any solution H of the Oseen equations may

be expressed as the sum of two components
q4 =d; +dp (3-38)

where q, and 'ér satisfy the Oseen equations. The component, Ef,
L T y L

called the longitudinal component satisfies the additional condition

curl HL =0 (3-39a)

The component a»T’ called the transversal component, satisfies the
additional requirement that its associated pressure field is zero. It

follows that the equations for EL may be written

— 2
q;,=grad ¢, V'¢=0, p-p_=-pUug (3-39b)

e 0]

where U is the x-component of EL (normalized in such a way that

up = 0 at infinity). The equations for ET may be written

84y 2 .
Ua—}-{— = vV dp s dlv dp = 0 _ (3-40)

Note that the longitudinal field contains the pressure disturbances

and that the transversal field contains all the vorticity of the given
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Oseen solution.

The decomposition 3-38 is often referred to as a splitting of an
Oseen solution. It may be proved that this decomposition is unique
provided both E’L and ET are' normalized to vanish at infinity.
Examples of a splitting will be given for the fundamental solution below.
Further discussion of splitting is given in reference:13,

The pr’oof of the splitting theorem uses the fact that the Oseen
equations form a system of linear equations with constant coefficients.
Splitting theorems may be proved for many systems of equations of this
type. Naturally one cannot expect a splitting theorem to hold for the
non-linear Navier-Stokes equations. However, we shall see in the
following section that the asymptotic expansion of a Navier-Stokes
solution near infinity may be decomposed in a manner somewhat

reminiscent of the splitting of the Oseen equations.,

3. 8. Fundamental Solutions of the Oseen Equations

In Section 4 we shall study the asymptotic flow field of the Navier-
Stokes equation. For the sake of comparison the corresponding flow
field given by the Oseen equation is of interest. At large distances
the detailed effects of the body is not important, and the flow field
may be studied by assuming a concentrated force at its origin., This
resulting solution is called the fundamental solution of the equation.

The x-component of the force is minus the drag, the y-component is
minus the lift. Due to linearity one may study the effect of these two
forceé separately. Only certain results will be givén here. For proofs

the reader is referred to references 13 and 14.
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Drag Case. We assume that the force is located at the origin and

has the value - 1. This corresponds to a body of unit drag. The re-

sulting flow field is (here q actually stands for the velocity perturbation)

—

4 =9q; +dp (3-4la)

where the longitudinal component is

T, = .2.7_}5@ grad log r (3-41b)

and the transversal component is

— 1 1 N A -
A1 = 7y {E_X grad[e XKO()\r)] - e XKO()\r) i} (3-41c)
-z

The pressure associated with the longitudinal component is

p' =p-py =-pUu; = - (3-41d)
27r

For large values of r the transversal wave is exponentially
small except in a parabolic region for which r -~ x remains finite as
r tends to infinity. In this region, which is actually the wake region
in the sense discussed in Section 3.5, the leading terms of the asympto~

. - —
tic expansion of qp are

My ‘
N U IR~
% y) = - o 5y © (3-42a)
, Ay .
- l 1 v T 2x
Note that EL represents a potential source of strength ;)l[-j . It
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follows, and may be verified explicitly from equation 3-41 or equation
3-42 that the transversal flow represents a sink of strength -5% . Thus
source strength of the potential flow equals sink strength of the wake
equals the drag divided by pU. Intuitively speaking the retarding
action of the body on the fluid causes a velocity deficiency, i.e. a net
sink strength in the wake., This displacement effect corresponds to an
apparent semi-infinite body whose thickness downstream appr;aches

a finite value. The longitudinal component corresponds to potential

flow past this apparent body.

Lifting case, If the singular force is located at the origin and

has the value - T , corresponding to unit lift, the resulting velocity

and pressure field is

q =9q; *dp (3-43a)
where

G = - = grad (tan"tY) (3-43b)

L 27pU © X '

- - 1 Ax

qp = curl[ K 57T © KO()\r)] (3-43c)
and

- - y
p' =-pUu, =- (3-43d)
L 27rrZ

For large values of r the transversal flow field behaves as

_ - KVZ
- 1 1 vy 2x
Up = - 7}.‘5/“‘”‘va 372 ° ' (3-44a)
2
Ay
1 v 1 T 2x
Ve = o [ e (3-44b)
T 4p |/ WUB 73 2
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Note that the T', the clockwise circulation around a large contour
. . - . 1 —
is given by dy, alone, It is equal to o0 In fact dy. represents a
- potential vortex.
For future reference we summarize the results regarding lift and

drag. If the singular force on the fluid is —Fl? - FZJ where Fl =

drag and FZ = 1lift then
Fl = pUm ; FZ = pUT (3-45)

where m = source strength of the longitudinal component = sink strength
of the transversal component and I = clockwise circulation around a
large contour of the longitudinal component. The circulation of the

drag solution is zero by symmetry and the circulation of the transversal
component of the lift solution vanishes as the contour tends to infinity.
The source (or sink) strengths of the longitudinal and transversal com-

ponents of the lift solution are zero individually.
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IV. THE ASYMPTOTIC EXPANSIONS FOR VELOCITY AND PRESSURE

4.1. Artificial Parameter. General Form of the Expansion.

The assumptions about the flow field are the following. First we
assume that the velocity g* and the pressure p* obey the Navier-Stokes

equations for two-dimensional stationary incompressible flow (cf. Section

3.2)
prrclnd w = L o2on
(grad g* ) g* + grad p* = V" g* (4-1a)
div g% =0 (4-1b)
Secondly we assume the boundary conditions at infinity
q_t -7, p¥ =0 as r¥* — oo (4-2)

Thirdly we assume that there exists a finite simple closed curve C

such that

.
ES

g*, p* and their first derivatives are

continuous on C (4-3a)

The net mass-flow through C is zero (4-3b)

Assumptions 4-3a,b are in particular valid if the flow field is caused
by a finite body inside C on which the no-slip condition is satisfied,

The problem is to find expansions for (T and p* uniformly valid
in 0 for a fixed value of Re as r* tends to infinity, We shall actually
construct two expansions each for c? and p*, an outer expansion, valid

outside the wake region and an inner expansion valid in the wake region.
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The domain of validity of these two expansions will overlap; hence an
expansion uniformly valid in ¢ may be constructed by a combination
of 6uter and inner expansions. The form of these expansions will be
given here, the justification for choosing this form will be discussed
later.

We introduce an artificial length R and an artificial parameter

=

.and propose the following expansions for € small.

QOuter Expansion. As independent variables (outer variables)

we use the Cartesian coordinates

i
™
%

<
it
ol

= €y (4-5a)

or, equivalently, the polar coordinates

T =

fﬁ = €r* and 0 (4-5b)
The dependent variables are a; and p*%*. The outer expansions of

velocity and pressure are assumed to have the form

gk =1 + €q + € / q3/2 + £ log qua-i‘f‘ Gy e - (4-6a)

" ~ 2 ~ g
pk = €p) + € p3/2+6 log6pla+ekp2+..° (4-6b)

Here ai » Py, etc. are functions of the outer variables x and ;
Expressed in outer variables the Navier-Stokes equations take the form

(grad g¥)g* + grad p¥ = & V ¥ (4-7a)

div ¢ =0 (4-7b)
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where the differential operators are formed with respect to x and V.
The outer limit is defined as the limit as € tends to zero for x and

;r fixed.

Inner Expansion. In the wake region we use the inner variables

;(-:)Ng, _3_/:: _.Y_ = _Y._. = € y-* (4—88.)

and the dependent variables

e
1,

u¥, vV = — and p* (4-8b)

[e

The inner expansions of velocity and pressure are assumed to have the

form

oA 3/2 3/2
wk 1+ Eul+€log6ula+ fu, + € 10g€u2a+_€ fy teee
/ sz
- 3/2 3/2 :
v v +€ log € Vig T EVy + €T log €v, +€ Vote s
(4-9Db)

. 3/2 2 2
p¥ ~ Fp1+F/p2+€ log€p2a+6 Py toas (4-9c)

Here Uy Vi etc. are functions of X and y. Expressed in inner

variables the Navier-Stokes equations take the form

% sk sk 2 x 2 ’k}
wr OF 5 2ux , BPY ﬁlé(e R (4-10a)
0% 9y 8% L ax 9y
— 2— 2—°
. OV — ov 1 8p* _ 1 o v oV
U¥ — %+ vV — + T = ——R—é[E——__—Z + —j] (4~10Db)
ox oy oy X Y
23_ + ?__‘: =0 (4-10c)
ox 9y

The inner limit is defined as the limit as € tends to zero for X and ¥
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fixed,

Comments on Outer and Inner Limits., It is clear that the outer

limit corresponds to r* tending to infinity for 6 fixed. In the inner
limit x* and y* tend to infinity whereas the ratio %} » and hence 0,
tends to zero. Actually y* and x* move towards infinity along a
parabola y* = (constant) «[; . The necessity for such an inner limit
is strongly suggested by the form of the Oseen fundamental solution

for r* Jarge (cf, Section 3, 8). Note that in the inner limit J ¥

tends to a finite value which is non-zero except when y* = 0,
Vorticity, The non-dimensional vorticity is

o . Lw _ 0v¥ ouk

U 53k .é_y—* (4"]'13')

/

It will be seen that the terms of the outer expansion are: all potential,
hence all the vorticity comes from the inner expansion. Using inner

variables one may write

W

v = 3/2V _ 1/2 2w (4-11b)

ox y

From equations 4-9 it then follows that the expansion of the vorticity is

W= == — = [€log e —"" JE—"+... (4-12)
€ — — -
9y 9y 9y
The first contribution of RY- to w will occur in the term of order €.

ox
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4, 2, Comments on Mathematical Nature of Problem,

It follows from the discussion in Section 2 that one cannot expect
the expansions to be completely determined. Since values for large 1t
cannot be matched with an expansion for finite r%*, certain undeter-
mined constants will occur.

The following principles will be used for finding the form of the
expansion and for eliminating certain apﬁare.nt indeterminacies (cf.

Section 2. 5).

l. Principle of Eliminability. (Similarity) The form of the

expansion give.h indicates that one has to find certain functions of two
independent variables. However, the principle of eliminability of €
requires that these variables occur in certain combinations so that
effectively only functions of one variable have‘ to be found. In the

outer expansion a term enf(;{, ;r) must have the form

n.~ ~ En
€ f{xy) = == K

- (4-13a)

H 1
UM

and a term €"£(X,y) of the inner expansion of uw¥, v* and p* must
have the form
n =2

"%y = = (L) (4-13b)
X X

There are some modifications of the above rules due to the presence
of terms involving log €. These modifications will be obvious in each

special case and the general rule need not be given here.
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2. Matching of Inner and Outer Expansions. The principles for

this matching are the same as for an expansion in a non-artificial
parameter (cf. references 4,5 and 6 ), Actually the relation of outer
flow to wake flow in the present problem resembles the relation of
outer flow to boundary-layer flow in the problem of éxpansions for

large Reynolds number.

3, Integral Theorems. The conservation laws discussed in

Section 3. 3 are exact theorems about Navier-Stokes solutions. With
the aid of these theorems one may match certain integrals of the
expansion for large r* with the corresponding integrals at the given

curve C, In this sense it is possible to match certain integrated

e

quantities at finité r* with the corresponding quantities at large r¥,
This matching is quite different from the matching described under 2)
above, It is not a consequence of some general theory about singular
perturbations, but derives from the fact that certain properties of exact

Navier~Stokes solutions are known.

4. Principle of Non~algebraic Decay of Vorticity, The rapid decay

of vorticity is also regarded as a known property of exact Navier-Stokes
solutions, This principle will be helpful in eliminating certain a priori

possibilities,

4, 3, Determination of First-Order Terms

Determination of uj, vj and pj. By inserting the inner expansions

into equations 4-10a, b, ¢ one finds to order F



T

aul 1 82111

— - fe — =0 (4-14a)
ox oy

8p1

—_t =0 (4-14b)
oy

du,  ov \
_ty Voo (4=14c)
9x 9y

The following solutions will be obtained

2
m | Re e 2 __Rey (4-152)

2 | 7= 4%

ul:...

e = 2
vy = v§l) A where V§1) = - @57% e M (4-15b)
27x 4 7%

)

The corresponding streamfunction is

1 3k _ 1 , > —
4’1 = qé ) + —%—- log x where ¢§ ) = - —Izri erf —ZB;;_:-;Y— ) (4-15c¢)
x
p, = - —— (4-154)
27x

Here m and T are undetermined constants, Later on (cf. equations
4-30 and 4-31) these constants will be identified with the drag coefficient
and lift coefficient respectively.

The answers given may be justified as follows. Eliminability
of € implies that x is a function of ?2& only. This function must
then sai:isfy the equation A~4a of Appendix A with a - l. Since uy

alone determines the leading term of the vorticity (cf. equation 4-12)
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the principle of rapid decay of vorticity implies that of the two inde~
pendent solutions of equation A-4a onlythe solution given by A-7a can
be used. This proves equation 4-15a. The multiplicative constant
has been written so as to exhibit the constant m which later on will
be shown to be the drag coefficient (cf. p. 53). Incidentally, it
follows from Appendix A and the principle of eliminability if one had
assumed the innér expansion to start as u*~ 1+ Eo'/zul with

0 <a <1 then the decay of vorticity would have been algebraic. This
justifies the choice of a =1,

By integrating the continuity equation one finds the first term
of the right-hand side of equation 4-15b. The second term represents
a "constant” of integration which, by eliminability, must be propor-
tional to 32-1, Th? undetermined constant I“'* will later on be
identified with the lift coefficient.

Similarly one finds from equation 4-14b that p; must be pro-

1

portional to X . At the present stage one cannot justify the appearance

of the same constant m in both equation 4-15a and equation 4-15d,

Determination of a’l . Assume for convenience that the origin

x* =0, y* =0 is located inside the given curve C (cf. equation 4-3a).
Since r* is finite on the curve C it follows that in the limit of ¢
tending to zero the curve C is represented by the origin in the (;, ;r)-
plane. The wake is represented by the positive %-axis, Thus ?1;
may be considered to be defined in the (;c, ;)-plane slit along the
positivé X-axis. |

It follows from equation 4-7 that 9 obeys the linearized Euler



~49 .

equations
—_ grad p¥ = 0 (4—16&)

div EI} =0 (4-16b)

Hence vorticity is constant along the lines ';r = constant (streamlines
of the undisturbed flow), Since -q_[z is defined in the slit (;, ;)~p1ane
and since vorticity is zero at upstream infinity it follows that the
vorticity of (—11 is zero.

By a similar reasoning, and using induction, one shows that all
terms of the outer expansion are potential (cf, reference 4, p. 871).
Incidentally, if one assumes that voﬁicity in the wake decays only
algebraically‘then it would follow by matching that vorticity must exist
in the outer flow. Hence the expansion scheme assumed necessitates
the assumption of rapid decay of vorticity.

Since —(i; is potential we may express it in terms of a complex

velocity Wy by the following definition. If

@ = )T+ vy y)T (4-17a)
then Wy is defined by
Wl(z) =u - ivl, z = x + 1y (4-17b)

The solution will be shown to be

_ m . I -
157w Y i Em (4-18a)
i. e.
~ > * ~ ~ - ‘>',<~
g, = mxtIy 3 _my-T'x (4-18b)
1 ~2 1 ~2
27r 27r
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The corresponding pressure is

~

p = - ;1 (4-19)

For future reference we note that the inner expansion of uy and vy is

3 5
e 2
€5, ~ 2 42 IY 2 oed) (4-20a)
_ 27 27x 27X
3, 3 5
~ i ;,,: 7 — 2 — O ?
Evl.,f,ef_:u _.131__}’2-6_1-“:%’+0(e) (4-20b)
27%. 2% 27% :

To justify equation 4-18 we first observe that eliminibility implies
that wy must have the form

<

W17 27z

G,

t1 2Tz

; C1 and C, real constants (4-21)

The first term of the right-hand side represents a potential source; the
second term a potential vortex. By matching with the inner expansion
we may identify C, with T'™. The correctness of this follows from a
comparison of equations 4~15b and 4-20b. According to equation 4-15b
the inner expansion of v* for large values of y is

1,

F,:

vk = -€ =— 4+ o(€) as ¥ — (a)
27x

This checks with the leading term of equation 4-20b,

On the other hand matching of inner and outer expansions will not
determine the relation between Cl and m. The inner expansion of
uk is

wk =1 4 f—eﬁul + of €) ' | (b)

As v tends to infinity Uy tends to zero as shown by equation 4-15a.
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This checks with the fact that the outer expansion of uw¥* has no term
of order [€ but it does not determine the relation between C; and m.
This relation will now be determined by an integral theorem, namely

the conservation of mass,

Conservation of mass, The following will be a typical example

of the application of the reasoning of Section 3. 4. Since the divergence
of g is zero one may define a streamfunction ¢ (cf, equations 3-19

and 3-21). If one defines a non-dimensional streamfunction y* by

w = ¥ 4-22
V= oL (4-222)
then
% = 841* % = _ 8\41*
uk = Byx vE = - = (4-22hb)

Since by assumption 4-3b the mass flow through the given curve C is
zero it follows that (¢ is single-valued outside the given curve C

(cf. equation 3-20).

If we put
o= egr (4-23a)
then
we =28 g o L BY (4-23b)
oy ox
If we put
o= e gk (4-24a)
then )
L (4-24b)
oy ox

The outer expansion of the streamfunction is then
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$ = ;"' 6$1 + o0 a (4:"25b)

The inner expansion is

U= v+ [eq+... (4-26a)
where

—'=u, — =-v (4-26b)

oy ox

The matching conditions require that

(35 04) = Gy(x), @), (%, 0-) = Uy (x;, =o0) (4-27)
Since Y is single-valuyed, i.e. there is no discontinuity at
y* = 0, one finds from equation 4-15a
— — — —— m ——
3%, ) = Ty(%, ~o0) = 5 - wdy = -m (4-28)
e

Hence, from equation 4-27

$l(sz, 0-) - $1(§, 04) = % g dn =m (4-29)
This equation requires that the constant C1 in equation 4-21 be equal to
m. Thus equation 4-18 has been justified,
The somewhat formal argument given above means intuitively
the following: The inner term u, represents a sink of strength m.
The outer term az represents a’source whose strength must be m

in order for the total mass flow to be zero,

Determination of Pressure. Since ?13 represents a potential

flow field equation 4~19 follows from Bernoulli's law. By matching of

the inner and outer expansion for pressure one may now finally prove
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that the multiplicative constant for Py (equation 4-15d) is correctly

chosen,

Lift and Drag,. Momentum Integral, We define the non-dimensional

force on the body by

o= F , (4-30)
pU L
We shall now prove that

m=F%. T = 238 (4-31a)

pU L

. == Lift
I‘* = F* s J :——T (4"“31b)

pU L

Here m and I are the undetermined constants appearing in equations
4-15 and 4-18. Of course, equation 4-31 does not determine the value
of these constants but it shov;rs their physical meaning,
Equations 4-3la, b will be derived from the momentum integral
as discussed in Sections 3.3 and 3.4. We define a non-dimensional

tensor A¥* by (cf. equation 3-12)

lii>

e L[ T ouT
sk :—_.z[é— p(Ul OUl)'pmﬂ
pU

= FodF - (ToT) + p*l - o def & (4-32a)

and a vector streamifunction by

Byt Q —
G* = gl A% dn¥k S (4-32b)
2, P -

Here P is a given fixed point, The choice of P will be irrelevant

for the following. In order to make G* single~valued we slit the plane
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along the positive x¥%-axis, Then (cf. equation 3-24b)

F* = G (x%, 04) - G (x*, 0-) = AGH (4-33)

In order to compute AG%* we shall study the outer and inner ex-

pansions of A* and G*. The following notation will be useful. For

twb arbitrary vector fields ﬁ and 72 we define a tensor field T(ﬁ, ?2)
by

T(v} Vo) = (Vj oV, ) + (Vy0¥)) = ¥ * ¥, 1 (4-34)

It then follows from Bernoulli's law that, for the outer expansion,

—

(¥ o g¥) - (Tol) + p*

%

= GT(TO EL;)-;-ES/ZT(TOH:,’/ZH Ezlog €T(To aia)

2 - - 1 ,— = 2
+ el T oq2)+ -ZT(qlo ql)] + o(€”) (4-35a)

Furthermore

v 5 2 v = 2
def* g* =€~ def q + o(e™) (4-35b)
where def* is formed with respect to x%, y* and def with respect to

g, ;r The above formulas give the leading terms of the outer expansion

of é*,

By repeated application of the inner limit one obtains an inner

expansion of A* which will be denoted by é. The components of

Ih

- — 2
A,=2 | € u, + 2€ log € up + €(uy + 2u,- p; ) + of€) (4-36a)
ou

'y < 1 1 3/2. - 9u,
A12= AZlZE(Vl—'R—é ‘:)‘I‘E ].OgE(Vla-—:a)
du
3/2 1 972 3/2
+ € (ulV1+V2-R_E'5.3:7_ ) + o(e ) (4-36b)
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KZZ = €p; + of€) (4-36c)

—~

The terms given by equations 4~35 and 4-36 are sufficient both for com-~
puting the integral of momentum and the integral of moment of momen-
tum.

We shall also use the notation

G = inner expansion of G* (4-37a)
G = outer expansion of G¥ (4-37b)

For the following, compare the computation of Ay* above. The
:~<-=argum.ent will not be shown explicitly below. The argument shown
is the value of y or ;r for inner dnd outer terms respectively. Since

the inner expansion is valid near the x-axis one finds

—

- AG = E(o+) - G (0-) (4-38a)

.".l
iy

A

The matching conditions are, in concentrated notation

g(o+) =G (+ o), g (0-) = & (- o0) (4-38b)

3G . 1 (X T+A.7) (4-38c)
oy I 11 12
Combining the above equations one finds (cf. equation 4~44 ff)
> = R P T g -
AG¥* = AG - S:OO ,{:e: (Alll + A12 j)dy (4-39)

The quantity represented by each side should be exactly of order unity,

the terms of higher order should vanish identically. To order unity the
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first terms of equations 4-35a and 4-36a should be used, the term

L KlZ gives no contribution. Thus

e

AG* =-l§> T(i 0 ql)dn - 2( gﬁ u1d§ )i (4-40)
. Jowo
With the aid of equations 3-29 and 4-18a one shows that the first term
of the right-hand side is -mi + I'*J. By direct integration of
equation 4-15a one finds that the second term is 2mi. This proves

equation 4- 31,

4. 4. Some Higher-Order Terms

Results: The following formulas will be derived:

For the inner expansion

ou
o.M
U.la — ﬁ —: (4""413.)
9y
du
I !
ox
There is no pressure term of order € log €.
u, = u(zl) + u(ZZ) ; u(zl) even in vy, ufzz) odd in y (4-42a)
2 1) (1
(1) 9y + Rev( )Lp§ ) m
u, = - > + — (4~42b)
27x
" ou ou
u(z) - L* (log x) ! + C -——1,' C, = constant (4-42c)
2 2T — 1 — 1
oy oy
vy = V(Zl) + V(ZZ); v(zl) odd in vy, V(ZZ) even in y (4-424d)
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Vgl) _ _Rl—é %1:;(31 . ulvgl) _Re_ing_/zirne %erf(ﬁn)]

4 z]:g (4-42e)
V(22) - . ZL;(ZZ) (4~42f)
Lp(22) - % (log X)u + Cpup; ~ C, = constant (4-42g)

Note that u(zl) and v(zl) represent a flow field which is symmetric
with respect to the x~axis. The remaining terms of u, and )
represent an antisymmetric flow field. The corresponding pressure

is

P, = - I_—% (4-42h)

2N

For the outer expansion. we shall determine

Qa /o SUa /ol 4 Varad: w =§ —1v Re m” (4-43a)
93/2 = "3/2 3/20 0 W3/2 F03/27 WV3/2 F ———W

p3/2 = U.3/Z (4-43b)
~ T T ( ) (2)
g =Wt A Vi oW =uy mdvy = w4 W (4-44a)

The symmetrical part Wl(a'l) will' not be discussed here. The anti-

symmetrical part is

(2) _ imI* )

Yia T 77 (4-44b)
Tz

Py, == 9, (4-44c)
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For a; we shall only compute the antisymmetric term involving

a logarithmic function. This term is given by

Wg):-§%£§hgz (4-45)
Tz

The formulas given above will now be derived.

Computations for up, vy and pp. The equations for these terms

are
9 8211 ou ] OF
H(u,) = 2. Rl'é —"2‘2 == (v —l v L ) - = (4-46a)
| 8% 9y 9% oy  ox
0 9 82
P2 %M1 1 °Y1  p= 6
ST T T TRe T=2 T T =2 (4-46b)
oy ox oy 2TX
ou v
N _2 =0 (4-46c)
% dy
(1) I .
The even part of us, namely uy then satisfies the equation
ou ou op
I N (457
9x oy 0x

Note that the even part of the forcing function in equation 4~46a is
obtained by replacing vy by its odd part v(l). If one assumes that

1
u(zl) is of the similarity form

v = 2 g ()

then equation 4-47 becomes an ordinary differential equation for f.

By straightforward computation one finds the particular solution given
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by equation 4-~42b. This solution shows the correct exponential decay
of vorticity., We have to consider the possibility of adding eigen~
solutions, i. e. solutions of the homogeneous heat equation. The
eigensolutions of the similarity form (a) are the function obtained

(2)

by linear combination of the functions f(zl) and f5°" defined by equation

A-9, However, fg) cannot be used since it is odd and ffzz) cannot

be used since it decayssalgebraically. Thus no eigenfunctions may
be added and the solution obtained for u(zl) is unique. Here and also
below we are using the fact that 8u2/8§ alone gives the vorticity to

the corresponding order (cf. equation 4-12).

The odd part of u, obeys the equation
mu{?) = TL (4-48)

If one assumes that u(zz) has the similarity form (a) then the equation

for f 1is
mP'*Re d —nz
Lz(f) = —57-7_372— '(Tr_](e ) (b)

This is, within a multiplicative constant, equation A-19 for n = 2.
Hence all solutions of (b) give algebraic decay of vorticity.

(2)
2

In other words u cannot have the similarity form given by

(a2) However, one may verify directly that u(zz) as defined by equation
4-42c is a solution of equation 4-48., The function 8111/8? is an eigen~
solution which is odd in y and which vanishes exponentially at |y| = co.
Thus an arbitrary multiple of this function may be added to u(zz). This

accounts for the undetermined constant C1 in equation 4-42c.

We shall presently comment on the fact that u(zz) does not have
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proper similarity form. However, first we shall discuss Vs and
Poe Equations 4-46b, ¢ show that these functions are obtained as
integrals with respect to y of known functions. This integration
leads to the expressions for Vo and P, given by equation 4-42. To
these expressions one may in principle add a function of %, Any
function of X may be regarded as eigensolution of the equations for
vy and P,. By similarity (eliminability) one finds that the eigen-

solutions must be proportional to x -3/2. Thus

Eigensolution for vy = Cyx (4~49a)

]
O

Eigensolution for Py (4-49b)

At the present stage one cannot determine C2 and C3. However, as
will be shown later, one finds by matching with the outer expansion

that both C2 and C3 must be zero.

Switchback. Terms of order € log €. The particular solution

of equation 4-48 used above was the. function
ou

u, = L5 (log X) — (4-50)
Po2mx oy

This function does not have the correct similarity. Now, the reason
for requiring similarity was the requirement of eliminability of €.

As is easily seen € cannot be eliminated from Euzp since

= ou

, 1
Euzp = 5= (log x* + log € )€ —8—5 ) _ (c)

where the factor’ E(8u1/8§) actually is independent of €. The term

log € can only be eliminated by a term of different order. Indeed one
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finds that Euzp + € log €uy is independent of €. Thus the function

u as given by equation 4~4la is determined by the requirement of

la
eliminability., Note that it follows from equations 4-9a and 4-10a that

u must satisfy the homogeneous heat equation. This additional

la
requirement is of course fulfilled for the u; as chosen.

In a similar way one finds Vi, @8 given in equation 4-41b by
requiring that € must be eliminable from [€ (€ log €vy, + EVy )

Note that Yy, and Vige 28 determined above, satisfy the correct
continuity equation,

The:formof the equations for u%, v¥ etc.seems to indicate that
aterm [€ Uy in the inner expansion is followed by a term €u,. How-
ever, in trying to determine u, we were forced to introduce an
additional term € log €uy whose order is intermediate between [€
and €. This phenomenon will be referred to as switchback. Here we
shall give a physical explanation for the special case of switchback just
encountered., This explanation is similar to that given by Goldstein
(reference 2 ), The terms u, and v, were found by Filon

(reference 1 ). They will be referred to as Filon terms.

Physical Explanation of the Filon Terms, The appearance of the
Filon terms may be explaijned from the fact that the wake is displaced
by the antisymmetric part of the velocity field,

First we observe that if u* ={(x,y) is a solution of a boundary
layer equation then so is the function f(x,y - yo(_;{)) where y_  is any
function of X, The function u1(§, y) is a solution of a boundary layer

equation which is symmetric about the center line y = 0, The solution
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for +v* contains the crossflow

SECE S S (a)

This crossflow displaces the centerline of the wake., If we denote the

displaced position of the centerline by

v =y (x%), ¥ = €y (x*) (b)
then

dyo I

Gk T 7 e (c)
or

ek . ek
Vo = - % log x*, € Vo = - TE— (logX— log €) (d)

A solution of the equation for Uy having a centerline corrected for

crossflow is then

€ U—]_(Es_}_; = ‘I? yO) = € ul(X Y) - € 10g '2;]5:'

3||

3%

ou
-g—— log x X! (e)
y
The second term of the right-hand side is the Filon term
€ log €Uy, the third term is part of €u,. Note that the present

reasoning considers interaction of perturbation velocities and hence

a nonlinear effect,

Determination of (_1,3/2 . The function Vo of the inner expansion

contains a term of the form §3/2f(n). The value of this term at |nl =0

is
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. JRe m”
o 5 —=3/2

¥ — at m=+ o (f)
8\/27TX

Thus there is inflow into the wake. The term €v, must then be matched
with a term of the outer expansion which has a sink distribution along
the x-axis. Since the term €v, occurs in the inner expansion of
v o= il it follows that the matching outer term must be of order
63/2. EBy elim,inability one concludes that the complex velocity function
must be prdportional to z~3/2.. The constant of proportionality is
determined by matching with (f). This leads uniquely to the outer
terms of order (—23/2 given by equation 4-43,

The constants C2 and C3 in equation 4-49 can now be deter=-
mined. The eigensolution of v, must match with the outer flow of
the order 63/2, but from the above v, is already matched with at%/Z’
one should put C2 = 0. By matching the constant C3 should be zero
also. This follows from the fact that —CY3/2 expanded in terms of
inner variables X, y does not contain terms of the order 63/2,

and consequently the pressure of the order 63/2 is zero in the outer

flow,

Pressure Discontinuity Across the Wake. We have thus far

determined terms up to and including 0(63/2) of the outer expansion
and O(€) of the inner expansion. The highest-order terms obtained
gave a discontinuity in v* across the wake but u* and hence the
pressure was continuous. Proceeding to higher-order terms one finds
a pressure discontinuity across the wake.

We shall first consider the wake terms of order 63/Zlog € and
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order 63/2. The equations are

ou 8211
0(63/210g6): _—Za__Rl_é_:_z_Za
ax ay
8u1a aul Bula du
= - (ul——: + Uy, + Vi + Vla - ) (4~51a)
0 ) oy oy
2
ap v v
__:Za - (__:1a _ "l'éTzla) (4-51b)
oy 0x oy
du ov
_2a , _2a _g (4-51c)
ox y
2
O(€3/2) ?_53 1 i
ox ¢ oy
du 8ul du du
= -(ul— + U.Z—"_—_ +V}.—: + v — )
ox oy 8y oy
apz 1 82111
="+ 55— (4-52a)
ox ox
2
9ps av, ; 9V, ov ov
— = (— --R—e—-_—_-z-)-(u—: +v1—__) (4-52b)
oy ox oy ox oy
ou ov
3y =0 (4-52¢)
ox oy

By simple consideration one may come to the conclusion that solutions
of equations 4~51 are simply the switchback terms of the solutions of
equations 4-52. This comes from the fact that the principle of elimina-

bility of the parameter € may apply as well directly to the equations
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instead of the solutions. In fact, equations 4-51 may be regarded as
a switchback equation of eqguations 4-52,
Since Via satisfies the homogeneous heat equation it follows that

equation 4-51b reduces to

aPZa
oy

=0 (4-53)

The pressure Py is therefore constant across the wake. By combi-
nation with p1,€ Py one concludes that the pressure is continuous across
the wake up to and inciudi.ng the order 0(63/210g €). We shall show
in the following that pressure jump occurs in j This jump in pressure
induces a switchback term in the outer flow.

To find the pressure jump one needs only consider the odd part

in P3e This part will be denoted by p(32). It obeys the equation

(2) (1)
SER L R (4-54)
oy 9x X 27x 271 9y
Integrating, one finds
plF) - %én? erf(;—i%) (4-55)
Hence
2?5 o) - oo o) = I (5-56)

>
By matching it follows that the term 52 of the outer expansion must
have aydiscontinuity at ; = 0 whose magnitude is given by equation
4-56. From Bernoulli's law one finds that

~ ™ 1, ~2 ~2
p2~-u2-—7(ul+vl) (4-57)
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Since El and :;l are continuous at ; = 0 it follows that

A, ="0,(%, 0+) = Uy(%, 0-)=-Ap, = - ™m (4-58)
<2

The corresponding complex velocity function of order 62 which gives
this jump is

62' I“:‘:
- _—12“_12_ log z (4-59)

27z

When the principle of eliminability is applied there arises the switch-

back term, which we shall refer to as the Imai term, (cf. reference 3),

e? log € 1—@%—‘;—2 (4-60)

27z

Physically, this term given by equation 4-60 represents a vertical

dipole of strength rﬂ% in the outer flow. However, it must be pointed

am
out here that due to the matching of velocity between the outer and
the wake flows there arise other switchback terms which correspond

to horizontal dipoles. These horizontal dipoles contribute nothing to

the moment on the body and will be left out of the discussion.

4.5, Torque on Body. Filon's Paradox .

Let A* be the tensor defined by equation 4~32a. We define a

scalar function H¥(Q) by
- Q s J—y
*k = S‘ r* x A*dn _ (4-61)
~ P

The position of the initial point P will be irrelevant for the following,

The path of integration must lie outside the given curve C (cf. p. 41)
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and may not cross the x*~axis. It then follows (cf. equation 3-25) that

Torque on Body _ yry o Appx = (%, O+ )= H¥(x%0-)  (4-62)
szZLZ

where the point (x%, 0} is on the positive x¥-axis outside the curve C,

The value of AMH* is then independent of =x%,

To evaluate M¥ we first consider the outer expansionsof %,

Let 'I‘—’I and

>

denote the formal outer expansions of H* and A%

respectively. Then (cf, equations 4~34 and 4-35)

Hk = § r xA dn
2 Jp =
(07, (2 T og)+t = T(Tody )+ log €T(Toq.)
~ Jp € 9 In 93/2 gerirog,
+ [ T3 0q,) +5(d; 04d) = &5 def q 1} dn + ofl) (4-63)

We shall consider

AH = H(x, 0+) - H(%, 0-) (4-64)

From the formulas on p. 3l it follows that if two harmonic velocity

fields v(l) and V(z) have the complex velocity functions w(l) and

W( 2) then

Q. RO S Q
Ko S‘ T X T(V(l), v 2) Jdn = Real Part ( g , zw(l)w(z)dz) (4-65)
P Y P

o~ ~
where now z =x + iy,
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() _ 7, v(z) = EE then w(l) =1 and (cf. equations

If we take v
4-17 and 4-18) W(z) = constant times z-l. The integral in equation
4-65 is then single~valued. Hence the term of order -é_l- in AH is

—

zero, If we instead take v 2) < %/2’ then (cf. equation 4-43)

W(Z) = ibz—3/2, b = real constant. Then

~Q
% R Y 2ibJZz'+ constant (a)
P

The real part is

-2b J?sing . (b)

which has the same value for 6 = 0 and 8 = 27, Hence the term of

order L is zero. If we take VTZ) = ——l>a , then equation 4-43a shows
{€
that
N IR (c)

Hence

S‘ zw(l)w(z)dz = i+ ¢ log z + constant (d)
and |

Real part = - c0 + constant (e)
and

AfE =(log €) 2L 4 o (4-66)

Thus the Imai term gives rise to torque of order log €.
We shall now consider the inner expansion. Let H and A be

the formal expansions of H* and A% respectively. From equations
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3-25b we find that

O

T - xeAg - AL (4-68)
oy*

Hence from equation 4-36

o _ _-3/2— wl— —
oy
ou du
1 [ = 1 1 — — 1 la —
= = XV e e — ) = Zyu] + log E[X(V “ = —— )= 2yu ]
G 1 Re 8y 1 la Re 9 la
_ 194 o _ o
+ [x(ulvazj_ﬁ_e-a___ ) = y(u; + 2u, - p))] + o(1) (4-69)
Yy

The matching between inner and outer expansions of H* has to be

done carefully, We remind the reader of the following facts for the

(1)

matching of the flow field. The outer source €q; where qil) has

(1) _

the complex streamfunction wy = r?r.z (equation 4~18a) contains

nothing of the inner sink with velocity components € uy and 6v§1)

(equation 4-~15)., The flow components of the inner sink are exponentially

small at ¥ = 0. On the other hand the outer vortex quz) where

12) . (2) _ ip* .

4 has the complex streamfunction Wy = contains completely

the inner "vortex" with vertical component Evgz) - . fIF . In fact
2Tx

2)

the inner expansion of ;1 gives the complete term

vgz) (cf. p. 50). In computing the contribution of the inner expansion

of H* to AH¥* to order 1 we then neglect the component v&l)
€ .

since this flow component has already been considered in the outer

of v1

expansion. In the first square bracket of equation 4~69 we hence

replace v; by v&l), The remaining term is then odd in y and its
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integral from y = -0 to y =+ oo is zero, Thus AH¥ = 0 to order - .

{e
Next we consider the term of order log € in equation 4-69,
The functions Via and u;, are exponentially small at Yy =+ oo,
Hence they contribute nothing to the outer expansion., The complete
term of order log € should therefore be retained. One finds
(cf. equation 4-41a)
o du
- 1 la — —
- g‘ [lea ~Rs — - 2y ula] dy
> a-y-
- 00
Tk Qroo Bul.a _ mI*
= e e y — dy = = (4-70)
T — T
*'=00 oy

By analogy with equation 4~39 we then find that the Filon term con-

mr %k
ﬂ' L]

tributes a torque of magnitude « log € This contribution is
exactly cancelled by the contribution of the Imai term (equation 4~66),
Since Filon had not computed the Imai term he was led to the paradoii—-
cal result that the torque is infinite (reference 1). This is Filon's
paradox which was resolved by Imai in reference 2. Note that the
Imai term is of higher order, i.e. smaller than the Filon term; how=-
ever, their contributions to the torque are of the same order. Intuitively
speaking this is due to the fact that the length of the path of integration
for the outer terms is of larger order of magnitude than that for the
inner terms. For the outer terms we integrate over a path of length
~ r*, the inner terms are integrated over the parabolic wake over a
1e.ngth‘ ~ [k o~ Jrx,

The torque to order unity can now be computed from the next
terms in the expansions, This will relate one of the undetermined

constants in the expansion to the value of M*, These calculations will

not be carried out here,
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LIST OF PRINCIPAL SYMBOLS

3. Dimensional Variables and Parameters

X, V = Cartesian position coordinates
r,0 = Polar coordinates
T,T, K = Cartesian unit vectors
7;1’ =ui + VT = Flow velocity
P = pressure
L = characteristic length of body
UT = velocity at infinity
P = pressure at infinity
o = density = constant
1. = viscosity = constant
v = % = kinematic viscosity
w = oy _8u . vorticity
9x oy
J = streamfunction, u = -g—;& s V = = %
p?lb oa’ = Dyadic product of p _cf and ?f = Flow=~of-momentum tensor
T = def'q = viscous stress tensor
I = identity tensor
g = «pl + T = stress tensor
A =pqoq-g
C = curve enclosing body. The origin is assumed to be inside C.
F = fluid force on body
M = moment exerted by fluid on body = MK
M = torque, positive if counter-~clockwise,
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b. Original non~dimensional variables and parameters

XN = _}E R = X e = E.
T°* 7 L - T
—_§<=§ >}:=E *:.Y.
4 g Y gV T
P~ P,
PT =
pU
Rezt-J;—L
« = Y % = QY % o= OWF
VE gL W Ve g
1 -
A = — [A-(ToT)
pU
— F -
Pk T - =mi + I['*]j
pU L
M
M'::T
pUL2

¢, Variables for outer expansion

R = an artificial length scale

€ = I—ﬁ = artificial parameter

> X s ~ o -~ _ o

X=§=€Xﬂ~, y=%=€y¢, r—-R-Er"‘

z =x+1iy

(un, vn) = flow velocity terms in the outer expansions of uw¥ and v
Wy = U, = iv, = complex velocity

p, = term in the outer expansion for pressure



-75-

d. Variables for inner expansion

€,

Re
4x

= FY*: 11-‘-?’

o ~ n——
X=X=EX*, y =

ENIEE

2,

gk = (u¥k, v¥) = (u¥, l€ ¥) = flow velocity
(un, vn) = flow velocity terms in the inner expansion

p, = term in the inner expansion for pressure
n

Mathematical symbols

2

du 1 98™u
H(u) = — = —=— —

9x ¢ 8y
Il DU oD o B Ll L
n n=-1 ? ne- ‘

dn dn 0
fr(ll)’ fr(iZ) are the two independent solutions of

1]
Fo=d ¥ —
Ln(f) = fn' + ann + 2nf =0

KO = modified Bessel function of the second kind of the

zeroth order,
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APPENDIX A: SIMILARITY SOLUTIONS OF THE HEAT EQUATION

Homogeneous Equation

We define a linear operator H by

2

H(u) =29 . 1L 3u (A-1)
- Re =2
ox oy
If u(x,y) has the form
- —  —-af2 Re' ¥
WE ) =% Y ) =BT (A-2)
2[x
then
(at2)/2
H(u) = - —_— La(f) (A-3a)
where
La(f) =f" 4+ 2nf' + 2af (A-3b)
and prime denotes differentiation with respect to n.
Thus solutions of the ordinary differential equation
La(f) =0 (A-4a)
give similarity solutions of the homogeneous heat equation
H(u) =0 (A-4b)

We note that if u is a solution of the homogeneous heat equation
A-4b then 8u/dy is another solution. For the special case of similarity
solutions one finds
If u has the form A-2 then

du _ E;?_ (atl)/2 g, (A-5)
oy
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This recursive formula for generating similarity solutions of the heat
equation corresponds to the following recursive formula for the operator

L,
a

[L (O] =L () (A-6)

a+l

We shall now discuss the solutions of equation A-4a. For a =1

we find two linearly independent solutions

.2
f(11) =M (A-7a)
2pm 2
fgz) =e M ‘\T e ds (A-TDb)
wo

For large values of m the asymptotic expansion of the second solution
is

2 . L

( 1
f] o +;—F+... (A-8)

The recursive formula A-6 gives us the following pair of solutions

of equation A-4a for a = n = positive integer

n-1(1}

(1) _ d f1

.fn - _—]?J__—T— (A"ga)
dn
n-1.(2)

(2) d fl

£57 = (A-9Db)

n dnn—l

We note that f(ll) has exponential decay at infinity and that f(lz) has

algebraic decay. From this we conclude that fr(11) has exponential
decay and féz) has algebraic decay. In particular, equations A-9a,b

define two linearly independent solutions,

When o is not a positive integer equation A-4a may be solved
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in terms of confluent hypergeometric functions. One may write equation

A-4a as
a’ -2 _grog A-10
“L2 T2 a2 (4-10)

It then follows (cf. reference 15 , p. 252) that there are two linearly

independent solutions

1 1 2

ff’l ) = 1F1( '(21‘, ‘2"3; -n ) (A_lla)
2 +1 3 2

19 = F &R, 35n?) (A-11b)

For large values of m, n real, one finds (reference 15, p. 277)

O ey
F(—Z—') ; n

(2) . m T(3/2) -a o+l a1
£190 ~ D0 25/ 8) g F (22, 55— ) (A-12b)
a Im] l,1(2;1) 2072 2 T].z

where o
I'(a;+n)T (a,+n) _n

F.la,a,;2) = N L 2 Z.
27071 2 L~ T(a)T(e;) nl
n=0

(A-12c)

When a is an odd positive integer the expression for fgl) gives zero
and when a is an even positive integer the expression for fﬁlz) gives
zero. However, for a 2 0 and not a positive integer the above
formulas give the leading term of the asymptotic expansions of two
1'1neariy independent solutions of equation A-4a. Ea(ch of these solutions

decays algebraically for [nl large. Consider now a linear combination
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f =C

a 1f511) + szgz). Since the expressions given by A-lla and A-1lb

differ only by a constant factor, one may choose Cl and C, in such

a way that the algebraic part of fc, vanishes for m near +o. Thus
fa will then decay exponentially near m = + . However, near m = - ®©
f(iz) changes sign due to the factor m/Inl. Hence fa will decay
algebraically near m = - . The role of + @ and - may be reversed,
but it is impossible to find a fa which decays exponentially both near
mn=+o0 vand 1N = - 00. One may conclude directly that since f‘gl) is

even in n,- fgz) odd in n and since both have algebraic decay at

M =+ o no linear combination of these two functions can have non-
algebraic decay at both =+ and 7n = - oo,

The results about the asymptotic behavior of fo. may be sum-

marized as follows: Let fa be any non-zero solution of the equation
L= 1"+ 2nf" + 20 =20; a2 0 (A-13)

When a is not a positive integer there are no solutions which have a
non-algebraic decay at both n=4w and n=-0. When a is a

positive integer the only solutions with non-algebraic decay are constant

(1)

multiples of fn where
n-1 2
Ao d ey, n=1, o2, ... (A-14)
n n-1
dn

Non-homogeneous Equations

We shall now study special cases of the equation
L({(fy=g, n=1 2, ... (A-15)

First we consider the case for which g is a solution of the corresponding
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homogeneous equation (case of resonance), in particular the case g = fg)

(cf. A-14). For n =1 the equation then reads

L (f)= £ + 2nr + 2f = 41 (A-16)

1

A particular solution of this equation is

£ Te™ M (»n ot fod A-17
= e e erfodos -lia
1P 2 Jo ( )
where
2 (S P |
erf s = — g e dt (A-17b)
7 Y0
Since erf oo =1, erf(-ow) = -1, a comparison of A-7b, A-9 and A-17

shows that flp decays as 1/Iml as |nl tends to infinity. Since flp

is even and f§2) is odd it follows that adding a multiple of f§2) to flp

cannot remove the algebraic decay at + co simultaneously. Adding

a multiple of f&l) cannot remove the algebraic decay at either + oco.
By the recursion formulas A~6 and A-9a one shows that the

function

dn-l
fnp = Ci-;]-ﬁ___l (flp) | , (A-18)

is a particular solution of the equation
= 1) B
L (f) =1 (A-19)

By the same method as above one shows that an arbitrary solution of
equation A-19 cannot decay faster than algebraically at both 1 = + ©

and 71 = - oo,



