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SUWIARY
The purpdse of the research was to find if it is possible
to have an unsymmetrical span load distribution on a monoplane
wing at the stall without a rolling velocity. The investigation
is based upon the Prandtl first order wing theory. It is shomm
that is is possible to have an wnmsymmetrical 1ift distribution
. section
at the stall if & certain shape is assumed for the curve ofAlift
coefficlent vs. sffective angle of attack. Two methods of de-
termining such a solution for any partioular wing shape ar;
discussed., Curves ars presented showing uwasymmebtrical solﬁtions
for a number of different wing shapes and also showiﬁg'the
resulting 1ift and rolling moment ccefficieﬁts. The imporbtant
conclusions are as followss
1. An unsymmetriecal 1ift distribution across the span
of o monoplane wing at the stall is possible.
2. The msymmetrical solution produces a rolling moment
of the same order of megnitude as that caused by a fully
deflscted aileron.‘
3. The unsymmetrical distribution can occur only in a
very small range of angles of attack after the wing
begins to sball.
4. The magnitude of the maximum rolling moment coeffi-
cient and the difference between the angle of attack
at which the maximum rolling moment occurs and the
angle of attack for first stall are mearly the same

for all of the wing shapes invsstigated.
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NOTATION

Rectilinear velocity far from the wing
Rectangular coordinates

Induced velocities in x,y,z directions
Circulation around lifting line

Span of wing

Geometrical angle of attack

Effsotive an(gle of attack

Lift per unit length of wing

Lift coefficient of profile section
Density of the air

Wing chord

Root chord of wing

Dimensionless coordinate along span
Lift coefficient above stall

Fraction of span not stalled

Rolling moment coefficient of wing

Difference between O and geometrical angle of attack
of wing at which stall begins.

Total 1lift coefficient of wing



INTRODUCTION

The problem of the stalling of tapered wings is of great
importance. One of the greatest disadvantages of the highly
tapered'wing is its tendency to tip stall. When this tip stall
ocours there iz not only a loss of lateral combrol but also there
often exists a rolling moment of sufficient megnituds to put the
airplane into an undesirable meneuver. This fact led to the belief
thet it is possible to have an unsymmetriscal 1ift distribution of
a wing which is partially stalled even when there is no rolling
velocity. This paper is a discussion of the research carried out
in looking for such unsymmetrical 1ift distributions.

Much work has been done on the determination of the 1ift dis-
tribution of & wing which is not stalled. Several good methods for
calculating this 1ift distribution bave been developed. Thess
methods can also be used for caleulating the unsymmetrical distribu-
tion which exists when the wing hgs a rolling velocity. When the
wing is at an angle of attack just above the stall and is given a
rolling velocity it is possible to have a rolling moment produced
which causes the rolling velocity to continue. This is known as
autorotation. All of these cases have been rather thoroughly inves~
tigated, both theoretically and experimentally. However, epparsntly
there has been no successful investigation of unsymmbtrieal 1ifs
distributions at the stall without a rolling velocity. |

The basis of this work is the Prandtl wing theory. In this
theory the wing is represented by & line vortex or & sum of coineident

line vortices. This line which represents the wing is called the
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lifting line. The circulation about the lifting line at any position
along the span is equal to the circulation about the wing at the same
| spanwise location. In general the circulation about the lifting line
7 varies along the span. This circulation is éhe sum of the strengths
of the line’vortices which form the 1lifting line. Since the number
of vortices forming the lifting line changes and since by Helmholtz!
Theorem 2 vortex tube never ends in the flwid, it ig evident that
vortices must be shed from the lifting line. Free vortices move with
the fluid,and therefore the vortex lines which are shed from the 1ift-
ing line trail in the direction of the fluid. These are called the
trailing vortices. In the steady state these trailing vortices ex-
tend to infinity downstream from the lifting line. One of these
vortices which starts at infinity, goes up to the lifting line and
then back again to infinity is cslled a horse-shoe vortex. Thie
asgumption of the Brandtl wing theory results in the concept of an
infinite number of horse~ghoe vortiées of infinitesimal strengthsso
placed that their central pasrts coincide to form the 1lifting line and
their trailing parts lie parallel to the fluid velocity.

Another assumption of the Prandtl wing theory ig that the cir-
culation around the lifting line is evefywhere small. The gignificance
6f this assumption is seen from a congideration of the so=called in-
duced velocity of a vortex. Consider an infinitely long straight
vortex., At a point not on the line 6f the vortex there is a velocity
which is preportional to the strength of the vortex, inversely
proportional to the distance from the vortex, and in a direction
perpendicular to the plane containing both the line and the point .

Therefore the system of horse-~ghoe vortices described above has



associated with it induced velocities which are perpendicular to
the plane of the vortices. If the circulation around the lifting
line is large,then these induced velocities are large and the
original free stream flow is considerably distorted. The assump-
tion thet the circulation is small means that the induced velocities
osn be considered so small that the trailing vortices follow the
streamlines of the original undisturbed flow. The only case to be
considered in this work is that of rectilinear flow from infinity.
For this case the ssecond assumption gives the result that the frse
vortices are stralght lines in the direction of the flow.

The first assumption requires thet the thickness and chord of
the wing be smell in comparison with the span. In other words » the
assumption is not good for wings of small aspect ratio. Also the
vortex filaments which represent tﬁe wing must be everywhere parallel
to each other. This means that a wing with sweepback cannot be
represented by a simple 1lifting line.

For the further considerations it is convenient to set up a
coordinate system. Take the rectilinear wvelocity far f;-om the wing
as Vo Take the origin of the coordinate system at the center of the
span of the lifting line. Let the y axis be parsllel to V, the x
exis coincident with the 1lifting line, and the Z axis vertically down.
Let u, v, and w be the induced velocities of the vof’cex system in the
X, y,and z directions respectively.

The induced velooitiss of the vortex system must be found for

eny point on the lifting line. This is done by applying Biot-Savart's

3e
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law. For all points in the plane of the horse-shoe vortiqes thel
velocities u and v are zero. For points on the x axis, which
includee the 1ifting line, the so-called downwash velocity w is

given by the expression

w(xoo) ‘w—f

where | is the circulation around the liftlng line and b ig the

ofi"‘ dx’
X 'X'

span of the wing.

The problem to be solved is to find the 1ift distribution for
a given wing shape. The wing shape is given when the chord, airfoil
section, and geomstrical angle of attack are given fqr each point
along the span. The solution of the problem comes from a combination
of the three-dimensional anslysie Just given and the two-dimensional
airfoil theory. At this point must be introduced the assumptions of
the strip theory. The flow at any section along the span is the sum
of the original rectilinear flow, V, and the induced velocities, u, v,
and w. The assumption of the strip theory is that the induced veloci-
ties, u and v, are small enough t¢ be neglected and therefore that the
resultant velocity at any section is the sum of V and w. This means
that the flow at any section of the wing is two dimensional and that
the two dimensional airfoil theory can be applied.

This assumption is fairly good over most of the span. At the
wing tips the cross flow, u, is not small and therefore this theory
does not give the correct conditions near the tip. For this reason
the theory is better for wings of large aspect ratio than for those

of small aspect ratio. This paper is concerned with conditions at



the stall. At the sgtall the assumptions that have been made are

not so valid as they are below the stall. First of all,at the stall
the wing is at a high angle of attack. This throws some doubt on

the assumption that the wing can be represented by a 1ifting line
from which are ghed trailing vortictes all of which lie in the

same plane. Also at the stall the wing is acting at a very high

1ift coefficient. This means that the circulation around the wing

is much larger than for conditions well below the stall. Therefore
all of the vortex filaments are fairly sftrong and their induced veloci-
ties are proportionately large. This makes the assumption that the
trailing vortices follow the rectilinear flow, V, poorer when the
wing is at the gtall than for any other condition. Algo at the stalll
the cross flow at the wing tips is not emall. It is probable that
when there is an uneymmetrical 1ift distribution such as thoge dis-
cugsed later there is crosg flow even in the regions far from the
wing tip. In spite of these objections to the assumptions that have
been made, it ig considered that the agssumptions are good enough for
a first order theory.

Consider conditions at a cross section of the wing cut by a plame
parallel to the yz plane., The airfoil is at a geometrical angle of
attack, X, relative to the rectilinear flow, V. Also acting at the
airfoil is the ianduced downwash velocity, w, which is assumed to be
uniform. over the chord of the wing. The resultént velocity is the
vector sum of V and w. V is taken as very much larger than w so that
it is assumed that the magnitude of the resultant velocity is the
same as the magnitude of V. The important effect of w is that it

changes the direction of the flow. The change in angle is
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If g is the effective angle of

tan

since w is emall compared to V.

attack, there is the result: \
' W
X = Ne + =/
v
DIRECTION OF

RESULTANT VELOCITY

In the two dimensional airfoil theory the 1ift per unit length

of wing can be written:
L' = CozpVil
where L' is the 1ift per unit length, 07, is a non-dimensional
1ift coefficient which is a function of the effective angle of attack
of the airfoil,/o is the fluid density, and t is the chord of the
According to the Kubtta-Joukowsky Law:

airfoil.
L = e VI
ME G (- )

Therefore
T o=
where (:Léﬁﬁﬁi)is read: COp, as a function of (b(—-ﬁf) . This)



- combined with theequation for w,gives:

b
Vi) || dr_dx
) = 222G (oA =y b%’?‘r’%‘>

This is the integral equation which must be satisfied by any 1ift
distribution. It is convenient to write the equation in the dfmen-

sionlegs form
! t
t L t | G{(C‘L’fa) ge /
Ct =40 Culo - g [ 450 e

where t, is the rool chord and s = gr,

b

The discussion up to this point gives the basis upon which the
research was carried out. The integral equation ghown above is the

starting poiﬁt for all 1ift dietribution investigations.

[o
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THE DETERMINATION OF UNSYMMETRICAL LIFT DISTRIBUTIONS OF

A WING AT THE STALL

Any 1ift distribution, whether symmetrical or unsymmetrical,
mist satigfy the equations:
t _ L _w
CL?_-'O = -to(s) C:L (O< —\7)
] JO‘(CL%,) 0(5'

6’5' S-S/
{

This ig the mest general form in which the problem can be stated.

W -
vV 4T

In order to do any more with the problem it is neceséary to express
the functional relationships eﬁplicitly. The relationship which
varies 1éast with the design of the wing is thai between the 1ift
coefficient and effective angle of attack. Therefore it is usual
to assume an explicit fora forbthis function and to develope on this
hasis methods for solving the integral equation for any given wing
ghape., For ;;:;rof the work that has been done on 1ift distributions
it has been assumed that this alrfoil section characteristic doeé not
change as a function of the gpanwise position. In considering the
1ift distribution of a wing which is not stalled it is customary to
agsume that the 1ift coefficient is directly proporfional to the
effective angle of attack above the angle of attack for zero 1lift.
This is a true agsumption for almost every airfoil gection. It is
only in the slope of the curve that the airfoils differ from each
other and even this variation is not great.

At the stall the section characteristic is not so well defined.
First of =211 thers ig no theoretical way of determining what the

C. vs e

shape of the curve ie at the stall. This means that the curve must

be determined experimentally for each airfoil section. In this

experimental determination it is almost alwaye true that the measured



curve is the average characteristic for the whole wing and not
the true property of the two dimension‘al cross section. Also the
value of the maximum 1ift coefficient obtained depende l@on the
tarbulence in the wind tunnel in which the experiﬁent is made and
upon the Reynolds number. Some airfoil sections have a flat topped
1ift curve which meang that they maintain a high 1ift coefficient
over a wide range of angles of attack. Others have curves which
bresk suddenly at the stall and may even be discontinuous. In
general the 1lift coefficient drops slowly back to zero as the angle
of attack is increaéed from that at which the stall occurs to 90°.
Thig discussion shows the difficulty in choosing a 1ift coefficient-
angle of attack curve which is general enough to be useful in a
large number of cases.

The ghape of the curve that is uged in the following work is
ghown below. 'The angle of zero 1ift is taken as zero degrees. The

per radian

slope of the curve below the stall is 5.73 A80 that at an angle of
ten degrées the 1ift coefficient is one. For all of the computations
that have been made the maximum 1ift coefficient is 1.5, ‘At the
stall the curve is discontinuous. For all angles of attack above
the gtall the 1ift coefficient has iha same value. For most of the

computations this value is 1.2..

/51

/,0--’
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With & 1ift curve of the shape shown it is possible to have
ungymmetrical 1ift distributions in which pért of the wing is
stalled and the rest of it is unstalled. Such a2 distribution is
sketched below. The wing in this éase is of elliptical planfqrm
and untwisted. Therefore all parts of the wing reach the peak of
the 1ift eurve at the game time. The wing in this case isg at an

angle of attack very slightly greater than the angle of attack

- o ] /

at which the stall can occur. If the whole wing were stalled, the
1ift distribution would be that indicaxed by the broken line. How-
ever, it is also possible to have the distribution shown by the full
line. In thie case there are she&r::a; trailing vortices of great
strength which induce a downwash over the part of the wing to the
right of A which is large enough to make the effective angle of
attack less than that at which the stall occurs. Just to the left
of the point A there is a very large upwash which causes the
effective angle of attack to be very great. Since the 1ift coeffi-
ciént ig independent of the angle of attack above the stall, this

" upwash does not affect the 1ift distribution.



In reference five there is a discussion of the bshavior of
the 1ift distribution near singular points of the wing. The cir-
culation must vary contiﬁbusly across fhe span. At the tip of the
wing the cireulation must vanish like /1 - s2 . At a1l other .
points of the wing the sglope of the 1ift distribution curve, fég%flﬁz
must be continuous if the possibility of infinite upwash is excluded.
A discontinuity in this slope meansg that at the point where there is
the discontinuity there is an infinite upwash. The curve shown has
such a discontinuity at the point A. However, the airfoil section
characteristic which is used does not exclude the possibility of
infinite upwash and therefore this limitation is avoided. If an
airfoil section characteristic is chosen which does not permit
infinite upwash, then an unsymmetrical solution is still possible.

In this case it is necessary to have a 1lift distribution which
caugses a finite discontinuity in the downwash at the point between
the stalled and the unstalled parts of the wing. Betz and Petersohn
(reference 3) have determined the 1ift distribution for a wing having
a finite jump in the geometrical angle of attack. This solution
gives a finite discontinuity in the downwash and can be used in
determining the ghape of thevlift distribution curve at the point at
which the wing stalls. The change in the 1ift distribution caused by
considering this effect is such that there is only a2 very small
change in the rolling moment caused by the unsymmetrical solution.
Since it is the rolling moment that camses the unsymmetrical solution

to be important, it is considered satisfactory to use the C, vs. Kg

11.



curve which permits infinite upwash.
The following equations show a method which can be used for
determining an unsymmetrical 1ift distribution at the stall.
The equations t&'hich must be satisfied are:
CL = 573 (O(""'\v/g') ( "T/w) <0(sTAu.
Co = Cu (consTANT) (=) > Asran
_ L [dcd _ds

w
% 4TT—% /d’s’ S-S

Let C.=C.,+C,
where ch is not vconstant
Then ' ‘ A
‘J(CL%‘O) ds: _ J(CL.%) ds: +jd(CLz%,) ds
ds’ S~ ds' S-8' ds' s-—-s’
Let " K N

1 [dend) ds

_V!_) —
(\/a "'41‘1’% L ds s- s

/
(__V_V__) - | d(cLz%) OlS'
Viz “4nb | TJsT s-s

(Vv!),, is @ known function of s as soon as the constant GL]. and

the chord function are given.
w W W
v = (V)
Subgtitution into theequation for the unstalled part of the

wing gives:

CL| + C)_2 = 573 [ X - (_\Y_/\-/)l - (Vw)zj

C., = 573 [oz*({f), - ()]

w Ce,
Let O('z = O("(V)/—-&;s

oo Co, s 5-73[0(2_(*{1/\/—)2:]

12.
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When the wing shape and CLl are given, then o, is a known
function of s. Therefore the equations which must be satigfied
by the 1ift distribution over the unstalled part of the wing are:

- A
Cip = 573 [o(z ()]

w dic.t)_ds'
( p) 44TT—~ —ZJE;Td S-S

The equation for‘(ﬁ,)2 includes an integral over the whole gpan
of the wing. Since CLE is different from zero only in the unstalled
part of the wing, the equations above give a distributidn of CL2
which igs the same as that obtained by considering a wing having the
planform of only the unstalled part of the wing. Therefore the
procedure to be followed in determining the 1ift distribution accord-
ing to this method is as follows.

The things that are given are the wing shape (chord and twist
distribution) and the curve of lift coefficient against effective
angle of attack. The latter curve is assumed to hold for all cross
sections of the wing. The first thing to compute is the downwash
digtribution caused by the wing acting everywhere at the 1ift
coefficient beyond the etall. Then the function, Oz, is determined.
An arbitrary choice is made of the part of the wing which is not
stalled. The 1ift distribution on thig odd shaped piece of the wing
ig determined by any of the usual methods for a number of different
angles of attack. It is assumed that at some point of the wing the
maximim 1ift coefficient is obtazined. Therefore the angle of attack

is chosen for which the maximum value of CLE is ecual to the differ-

ence between Cpp,y 2nd CLl. The values of GL2 for this angle of

attack added to GLl give the distribution of Cy and from this the
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circulation or Cy . % distribution is determined. Thig method is
not fool-proof and'mu:t be used with care. Its 1imitations are geen
from the followingﬂdiscussion of its use in particular cases.

The case for which the method is most useful is that of the un-
twistedeing of elliptical planform. For an elliptical wing which every-
where acts at the same 1ift coefficient the down wagh is the same at
éll points across the span., Therefore for an untwisted elliptical
wing the value of O, ig the same at ali points across the span. This
simplifieg the problem of finding the distribution of CLE for the un-
stalled portion of the wing because for an untwisted wing which hag
the same section characteristic at all spanwise positions the shape
of the 1ift distribution is the same for all angles of attack and the
magnitude is preportional to the angle of attack, For this reason
it is necessary to compute only one 1lift distribution for the ‘
unstalled part of the wing in order to determine the angle of attack
at which the maximum 1ift coefficient ie reached. In this case the
computations are easy andvshort enough to make the method guite
ugeful.

Condider the cage of a tapered wing, either twisted or untwisted.
Here the downwash caused by a wniform 1ift coefficient across the
gpan is not the game for all gpanwise pesitiong. Near the center the
downwash is very great while at the tipé it is very much smaller.
This means that &, varies across the span unless the wing happens to
be twisted so that the difference between X and (g)l is a constant,

Thie case does not ordinarily occur. Therefore the unstalled part
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of the wing is trested ss twisgted in the determination of the distri-
bution of C 2. Now in order to find the angle of attack at which the
meximum 1ift coefficient cccurs it is necessary to determine 1lift
distributions for several angles of attack because for a twisted wing
the ghape of the 1ift distribution depends upon the angle of attack.
Another difficulty with the use of this method for a tapéred wing
ariges from the fact that in the uswal symmetrical solution all parts
of the wing do not come te the effective angle of attack for stall at
the same time. In the unsymmetrical solution some of the parts of
the wing are stalled when the wing is at an angle of attack at which
in the symmetrical case these parts are not stalled. This means that
at such points the unsymmetrical solution must cause sufficient upwash
to increase the effective angle of attack to a value greater than that
for the stall. Therefore in finding an unsymmebrical solubion it is
necessary to check that this does happen. All of this mskes thisg
method so complicated that it was not used in the detérmination of
the 1ift distributions on tapered wings.

Another method which can be used is one shown by Fage (reference
6). It is a simple graphical method of determining the downwash
caused by any given 1ift distribution. The process is one of trial
and error. The golution is known when the agsgumed and éalculated
1ift distribution curves asgree. The procedure to be followed in
determining the 1ift distribution is as follows, First assume a
1if% digtribution curve. TFrom this determine by the graphical methed
the'downwash at a number of different gections. From the section

characterigtic of 1ift coefficient against effective angle of attack
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is obtained the 1ift coefficient which corregponds to the calculated
dowmwesh. If the value obbained in this way does not agree with the
value originally assumed, it is necessery to repeat the whole process
until there is agreement.

Fage's graphical method is as followé. Since the integrand in

the downwash equation «

wo_ | f'arch%o) ds’

V. 4ang | ds' S-S

becomes infinite when s = &', the integral is evaluated in two sections.

i 1 ° t SitSa +
4TTE_ LAV 4 (C.%) + d(C.3) + J, AC.3) ds’

O{S' s, -S'
_s2

To V S-S s, -S'
o tgz
where €, is the value of G, i at s = (5, = '82), end £z the value at
o
s = (s, +s,). The velue of the first two integrals is the ares of

the diegram obtained when __ 1 is plotted egainst (Cp §o> as &'

'

varies from =1 to (s, = s,), and from (s,+s,) to L. The third integral

is transformed into the form

Sz
4[{[%@3:%5#% - )-%(—gk—%l‘wz} g[-z—%

The slopes used in this integrael are determined graphically from the
assumed 1ift distribution curve. The integration is performed grephi-
cally.

In order to arrive at the sclution in a reasonably short time it
is necessary to have the first assumed 1ift curve close to the final
resulte It is found that the unsymmetrical sclutions occur only at
angles of attack just slightly above the angle at which stell firét
happens. Also the 1ift coefficient over most of the umstelled part

of the wing differs very little from the value obteined at the angle
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for first stall. Therefore the first step in finding an unsymmet-
rical solution for a tapered wing is to calculate the lift disgtribu-
tion at an angle of attack such that at one or more points there ig
the maximum 1ift coefficient and at no point is the wing stalled.
Thia ig done by any of the ordinary methods.

In this work the only type of solution that is considered is
that in whiéh the wing is stalled from the tip in to some internal
point and then the rest of the wing is unstalled.  In finding the
solution, the point separating the stalled and unstalled portions
of the wing ie tazken arbitrarily. At this point the 1ift coeffi-~
cient changes rapidly from that above the stall to some higher
value in the unstalled region. New there is enough materisl avail-
able to draw up the firet assumed 1ift distribution curve so that
it is #ear to the final result. The shape of the curve is known
for the stalled region. At the op@osite wing tip the curve is
almogt identical to the calculated curve for the case just before
the gtall. In the intermediate region as the point of stalling is
approached the 1ift coefficient falls slightly below the above
mentioned caleulated value. The curve is drawn with a continous
slope everywhere except at the point separating the stalled and
unstalled parts.

It is found that the value of the downwash at any point de-
pends mostly upon the shape of the 1ift distribution curve in the
immediate meighborhood of the point and upon the maximum value of

t

Cr, 1 that exists on the wing. Also it is found that the span-
o .

wise'position of the point of maximum 1ift coefficient differs very
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little from the position found for the completely unstalled wing.
Thege facts are useful in determining the angle of attack at which

the unsymmebtrical solution occurs. Starting with the assumed CL %
. _ o

curve, the downwash ig calculated_by Fagels method at the point of
paximum 1ift coefficient and at the point of maximum Cp { . If the
correct solution is assumed at first then the anglé of axzack is the
gum of the effective angle of attack at wh;ch the stall occurs and the

. downwash angle calculated at the point of maximum 1lift coefficient.

This angle of attack and the downwash at the point of maximum Oy %
0

are used to check this meximum value. If the assumed and calculated
values do not agree, the curve must be changed and the process re-
peated until there is agreement. Once this agreement is reached, any
further changes that are necessary in the shape of the curve affect
only very slightly the angle of attack and the maximum value of Cp %é
The next part of the curve to be brought to the proper shape is the
unstalled portion near to the part that is stalled. This is done by
the sams graphical method. After these three ;:::::‘of the curve
have been made to check, it is probable that the rest of the éurve is
nearly correct and that only slight changes needbto be made. It is
advisable to chéck as soon as possible in the process that points in
the gtalled region actually are stalled. This consideration is one
which limits the amount of the wing that can be stalled in the case
of a highly tapered wing.

The process is long and tedious because even with a lot of
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experience it is difficult to make a very close first approxima-

tion to the final result. The method ig not one of successive
approximations but one of trial and error. For the type of solu-
tion dlscussed here it is ususlly necessary tc make three or four
attempts in order to find a curve that is good enough. Unlese some
such systematic approach as is outlined above is used, it is almost
impossible to arrive at the solution. Blind guesses sre quite useless
because the downwash is quite sensitive to changes in the shape of
the 1ift distribution. Another tréuble with the method is that it is
difficult to determine accurately the slope of the 1ift distribution
curve. However, apparently this can be done well enough to give
sufficient accuracy to the final result.

The method that was used in the computation of the 1ift distribu-
tion below the stall is one developed by Multhopp (reference 2). The
method is quick and easy to use and the computations are not long.

One of the most difficult ﬁhings in the whole problem is to find
the angle of attack at which any particular amount of the wing 1is
stalled. It 15:%:=:dthat the range of angles of attack in which the
unsymmetrical solutions can occur is very small and also that for
each solution there is a definite angle of attack. For this reason,
a pure guess at the angle of attack is useless. It is an essential
point of both of the methods outlined in this paper that the angle

of attack is determined without any guessing.



DISCUSSION OF COMPUTATIONS AND RESULTS FOR

SEVERAL DIFFERENT WING SHAPES

The first case to be comsidered is that of an wntwisted
elliptical wing having an espect ratioc of 10.18. The method
of 6§mputation is desoribed im the previous chepter. Solutions
were found for ceses in which different fractions of the wing were
wnstalled. For each of these fractions of the wing an ordinary
1ift distribution is obtained and from that the distribution of

% across the span of the plece of the wing. For each piece

Co

———

of the wing there is a maximum value of o .
. [ Cu
Let K = (&—)MAx
K is a function of the fraction of the wing that is not stalled.

The equation on page 12 for O, gives

Ce,
o = X2 F ('\v}/), + T3 (o{ IN RAD)ANS)
or X = Ay + (V) + 10C, (o N DEGREES)

In this equation

Ca’-z AMAX
— s

Az = —3 _
For san wtwisted elliptical wing of aspect ratio 10.19
w
(7), =179 C.,

CLzMAx

X = T T L79C,
CLMAx,: CL/ - CLzMAx

Com
S o= =2 (19 - k),

Let ({3 = angle of attack at which wing first stells
AKX = A -3

Then X3z = 11,79 CLMAx

A - (R’——//l']?)(C,_MAX—CLI) (Ao( IN DEGREES)



2l.

Let & = fraction of span not stalled.

The compubations give the following result.

¢ (g - 11.79)
1/8 2.61
1/4 1.2

3/8 .72
1/2 0
5/8 .23
3 /4 <14

1 0

The rolling moment coefficisnt caused by an ungymmetrical

1ift digtribution is given by the following equation.
'ﬁlﬁsds
¢ = g
Iads
For wings heving a symmetrical chord distribution this equation

can be transformed into

), - (e ]E sds
-2

I
t
I'TOJS
where C., = C.-Cy

C,

and CL, /s coNsSTANT

For a given fraction of an untwisted elliptical wing not stalled,

Gy, is directly proportional to CLomex or in other words to the drop

2
in 1ift coefficient of the profile section at the stall. Therefore
the rolling moment in this case is also proportional to that drop in
1ift coefficient, It is shown that AN ig proportional to this same
quantity.

The 1ift coefficient for the whole wing is given by the following

equation
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. fc—f— ds
5[_ = -II
: x
[ %9

'CL. = CL/ + CLZ

1

t
C,_.t

[}

I 1
ds = CL,/—%JS + CLZ;Eo/s
-/ . ~1

-~

For the untwisted elliptical wing the second integral on the right
is proportional to the drop im 1ift coefficient at the stall.

The results for the untwisted elliptical wing can be summed
up as follows. A, the rolling moment coefficient, and part of
the total 1ift coefficisnt are proportional to the drop in the
infinite aspect ratio 1ift coefficient at the stall for any given
fraction of the wing that is not stalled, These values do not

depend upon the absolute magnitude of chax and CLl but only wupon

the difference between them. The variation with the amount of the
wing that is not stalled of AX , the rolling moment coefficient,

and the total 1ift coefficient is determlined by computation. The

regults are shown in figure 1.

For all of the other planforms considered, the graphical method
of solutlion described previously was used. Besides for the untwisted
elliptical wing, computations were carried out for wings with five
to one taper untwisted, five to one taper with 3° twist, and three

to one taper untwisted. All of the wings have gtraight taper from
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the center to the tip except that the tips are rounded off
from nine tenths of the semi-span to the tip. All of the
winge have the same aspect ratio as the elliptical wing. For
the case of a tapered wing, the dependence of A, the rolling
moment coefficient, and the total 1ift coefficient upon the
drop in infinite aspect ratio 1ift coefficient at the stall
cannot be stated so elegantly as for the untwisted elliptical
wing. These quantities have been computed on the basis that
CLmax = 1.5 and Op, = 1.2.

The highly tapered wing causes a very large downwash near
fhe cenber of the span and therefore the effective angle of attack
of the center is less than that at the wing tip. Por thig reason
the stall beging near the tip of the wing and works in toward the
center as the angle of attack is increased. If there is sufficient
taper, the center of the wing may never stall within the usually
encountered angles of abttack. In the discussion of unsymmetricai
1lift distributions the term, &, hag the same meaning for tapered
wings as it has for the elliptical wing. It must be remembered
that with the elliptical wing all sectioné reach the effective angle
of attabk for the stall at the game time while for the tapered wing
the stall startes at a single point soméwhere near the wing tip. It
is found that Avis usually smaller than half of a degree and that
therefore the number of wnsymmetrical solutions is limited for the
highly tapered wing. For the elliptical wing a solution is possible

with any given fraction of the wing stalled. However, for the



highly tapered wing it is necessary that more than half of the
wing be unatalled. The reason for this is that the doﬁnwash near
the center is so great that even the unsymmetrical solution does
not cause sufficient upwash to bring the effective angle of attack
to that above the stall. The fraction of the wing that can be
stalled depends upon the amount of taper. A tapered wing which is
twigsted so that the fips are at a smaller geometrical angle of
attack than the center acts more nearly like an elliptical wing.
The stall starts nearer the center of the wing and the 1lift
coefficient is more nearly uniform across the span than in the
cage of an untwisted wing of the same planform. Therefore a
larger part of the wing can be stalled in the unsymmetrical solu-
tion for the twisted wing than for the untwisted.

It is of interest to follow the sequence of events when a
wing stalls unsymmetrically. The wing acts quite normally while
the angle of attack is increased until some point reaches the angle
of attack of stall. If the angle ig made just slightly larger, it
is possible for one tip of the wing to stall while all of the rest
remains ungtalled. As the angle ig increased the amount of the
wing that can be stalled increases until the limit described above
is reached. When this limit is reached the value of Ad ig of the
order of magnitude of only a quarter of a degree. A further in-
crease in the angle of attack eliminates the possibility of an
unsymmetrical solution and the rolling moment disappears. The

rolling moment is a maximum when the wing is as nearly as possible

2k,
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half stalled. The magnitudes of the rolling moment and of AKX

for any given amount of the wing stalled depend upon the differ-
ence between the maximum 1ift coefficient and the 1ift cesfficient
above the stall for infinite aspect ratio. For a highly tapered
wing the amount of the wing that can be stalled in an unsymmetrical
solution also depends upon this difference in 1lift coefficients. As
the drop in 1ift coefficient decreases, the amount of wing that can
be stalled decreases. When there ig no decrease in the 1lift coeffi-
cient at the stall, the unsymmetrical solution of the type described
here is no longer possible.

Figureé 2 through 5 show the unsymmetrical solutions calculated
for four different wings. It is seen that all of the solutions are
gquite similar in appearance. The effect of twisting the five to one
tapered wing is to increase the total 1ift coefficient of the wing
and the rolling moment. At the stall the distribubtion of 1ift at
the tips is very little changed but the tip stall is delayed so that
the center acts at a higher 1ift coefficient for the twisted wing
than for the flat one. This also permits more of the wing to be
stalled. TFigure 6 shows the way in which the total 1ift coefficient
of the wing decreases after the wing reaches its maximum 1lift, If
the elliptical wing sfalls symmetrically, the 1ift coefficient drops
immediately to 1.2 ag soon as AX is greater than zero. Figure 7
shows the variation of the rolling moment coefficient wiﬁh the total
1ift coefficient of the wing. The curves for the tapered wings are
discontinuous. After the maximum rolling coefficient is reached it
drops suddenly back to zero. The lift coefficient of the wing just
after the breakdown of the unsymmetrical solution has not been

calculated.



Figure & ghows the variation of the rolling moment coeffi-
cient with AX. It shows that the magnitude of the meximum rolling
moment coefficient is about the same for all of,the wings invegti-
gated. It shows that the range of angles of aitack in which the
unsymmetrical solution can occur is very small. The value of AX
giving the maximum rolling moment coefficient does not change much
with the shape of the wing. The difference between the angle of
attack at which the stall beging and the. angle for zere 1ift
decreases as the taper ratio increases. Iwisting a tapered wing
increases this difference in angles. Therefore, although the
twisted wing can give Jjust as large a rolling moment as the un-
twisted wing, the gtall does not occur as soon and also a larger
total 1ift coefficient is reached. It seems to be the fact that
the stali is reached soéner and at a smaller total 1ift coefficient
that causes the highly tapéred wing to be more dangerous than one
not so highly tapered.

This ftheory indicates that if a wing is brought slowly up te
the stall,vthe unsymmetrical solution can cause the wiag to roll
rather violently., However, if the wing is taken through the stall
guickly, it is probably possible o get beyond the range of angles
of attack in which the rolling moment is possible before the
rolling moment has had time to seriously disturb the wing.

The unsymmetrical 1ift distributions are possible but not
necessary. There is nothing in the theory which explains the cause
of subh a solugion. Also there is nothing to indicate which side of
a perfectly symmetrical wing will stall first in producing such an

unsymmetrical 1ift distribution. There has been no consideration of



engine nacelles and the fuselage. In any actual airplane there
iz probably enough dissimilarity between the wings to cause the
rolling moment to be always in the same direction.

Because of the great amount of time involved in finding an
unsynmetrical solution for any particular case, the number of
examples for which the’calculations have been carried out is very
gmall., The calculated points show quite a bit of scatter and
therefofe it would be of interest to make more computations with
the‘samevwings in order to find out the true nature of the curves.
’Wings of other shapes should be investigated. It ié probable that
for an untwisted rectangular wing solutions of the type described
here are not possible. It would be interesting to find the wing
shape that isg the limit of the poeseibility of an unsymmetrical
gsolution. Other variations to try are the cases of wings with
flaps and of wings with a varying profile characterigtic across
the span. In these cases the {type of profile charaétefistic is
not changed but such things as the slope of the 1lift coefficient
. ecurve  below the stall, the maximum 1ift coefficient, and the value
of the 1ift coefficient above the stall could be changed.

Also work shou;d be done in looking for solutiong in the
cases of 1ift coefficient ve., effective angle of attack curves of

different shapes than the one used in this work.
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