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Abstract 

Vibrational entropy is important for the thermodynamics of alloying, alloy formation, 

phase transitions and pha-se stability at high temperature. Vibrational entropies of 

alloying and alloy formation were calculated for 32 binary alloys and intermetallic 

compounds using phonon DOS curves taken from the literature. The vibrational 

entropies of formation span a wide range from -0.64 to  $0.55 k ~ / a t o m ,  and the 

vibrational entropies of alloying ranged from -0.39 to $1.0 ks/atom. This range ex- 

ceeds the range of configurational entropy of a binary alloy, which reaches a maximum 

value of $0.69 kB/atom and a minimum value of 0 kB/atom. 

The vibrational entropy of the NiTi rnartensitic transition was measured using low- 

temperature calorimetry and inelastic neutron-scattering. The high-temperature B2 

phase of NiTi has a vibrational entropy 0.5 kB/atom larger than the low-temperature 

martensitic phase. The difference in vibrational entropy accounts for the total entropy 

of the austenitic-martensitic phase transition. 

Inelastic neutron scattering was used to show that the phonon DOS of V is un- 

changed between 20 and 1000 " C, inconsistent with the phonon softening expected 

from thermal expansion. It is found that the effects of volume expansion and rising 

temperature exert equal and opposite shifts on the phonon DOS. The pure temper- 

ature dependence of the phonon DOS is due to strong phonon-phonon scattering, 

which in turn leads to  a large anharmonic vibrational entropy contribution at high 

temperature. 

The vibrational entropy of eight chemically disordered Cu-Au alloys was measured 

using inelastic neutron scattering. The analysis of the phonon entropy of a disordered 

alloy was performed in a novel way by modeling the partial vibrational entropies of 

Cu and Au. The partial vibrational entropies of Cu and Au were shown to be slowly 

varying and smooth functions of composition. The vibrational entropy of disordering 

in CuSAu is calculated as 0.24 & 0.02 kB/atom, substantially larger than results 



v 

predicted from recent theoretical work. 
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Chapter 1 Introduction 

1.1 Overview 

The measurement and prediction of thermodynamic equilibrium in the solid state is 

one of the enduring scientific goals of materials science and condensed matter physics. 

Measuring thermodynamic equilibrium is the everyday work done in characterising 

new materials: atomic positions and crystal structure are determined by diffraction, 

microstructural features through electron miscroscopy. Predicting thermodynamic 

equilibrium has historically been the work of theory and theorists; the minimization 

of the free energy function with respect to atomic position is the ultimate goal. Much 

progress has been made towards this goal in the last few decades; the advent of fast, 

cheap computation has been crucial in this regard. The free energy function has two 

discrete terms: energy and entropy. The free energy function, F, can be calculated 

with 

where E is the internal energy, T is the temperature and S is the entropy. 

The energy term can now be calculated, in the ground state at zero temperature, 

for near arbitrary atomic positions. The entropy terms, however, are less well char- 

acterised. There are many different possible sources of entropy in a solid: electronic, 

magnetic, configurational and vibrational: 

More esoteric sources exist, but the ones listed are typically the important ones in 

metals. Of the four, the electronic and configurational entropies are well understood 

and accessible through calculation. The magnetic entropy is of importance only in 
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the handful of materials that exhibit magnetic order. The vibrational entropy is 

ubiquitous, very difficult to predict computationally and also quite hard to measure 

experiment ally. Ironically, the vibrational entropy comprises most of the entropy of 

a solid, yet historically is the least well understood. 

Some progress has been made in our understanding of the vibrational entropy of 

materials. Grimvall and J. Roskn have shown that calorimetric entropy differences 

between T i c ,  ZrC and HfC are explained entirely by the mass differences of the 

constituent metals [2]. Langeveld and Niemantsverdriet showed that segregation of 

P t  to the surface of a bulk Pt-Rh alloy was accounted for by the large vibrational 

entropy difference between bulk and surface P t  [3]. Clark and Ackland calculated the 

effect of vacancies and interstitial atoms on the vibrational entropy of silicon [4]. 

Co Atomic Percent Y 

Figure 1.1: Phase diagram of the Co-V alloy system. 

The entropy is of special interest in the calculation of alloy phase diagrams. In 
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figure 1.1 we show the alloy phase diagram for the Co-V system [5]. The solubility of 

Co in bcc V rises from 8% at ambient to 15% at 1000 " C. The configurational entropy, 

in the absence of short-range order, averages 0.35 ks/atom in this concentration range. 

The contribution to the free energy is arrived at using equation 1.1. We calculate 

a configurational free energy of -900 J/mol at room temperature and -3700 J/mol 

at 1000 "C. Clearly, the fourfold increase in the free energy contribution at 1000 "C 

is responsible for the greater solubility at higher temperature. We arrive at this 

conclusion by noting that the bcc V solid solution phase competes with the CoV3 

phase up to 1000°C. For a given temperature and total composition, the relative 

amounts of bcc V and CoV3 are determined by the choice that minimizes the total 

free-energy, Ftotal. The quantity FtOtal is the sum of the free-energies of the two phases 

The FbccV term has an entropy contribution that the CoV3 phase lacks: the configura- 

tional entropy. The CoV3 phase is a stoichiometric intermetallic compound, and thus 

lacks the configurational degrees of freedom. As the temperature rises, the greater 

total entropy of the bcc V phase becomes a more important term to the total free 

energy, and the free energy minimum moves in the direction of more bcc V phase. 

Although it is likely that the vibrational entropy as a function of Co concentra- 

tion contributes to  the rising solubility of Co in bcc V, the effect is masked by the 

configurational entropy. A clear example of the effects of vibrational entropy are in 

the allotropes of elemental Co. Co undergoes a transition from hcp to fcc crystal 

structure at 422°C. The free-energy difference between the two phases must be zero 

at this temperature, T,. 

where AE is the internal energy difference between the two allotropes and AS is 

the entropy difference between the two allotropes. The energy difference is well un- 

derstood: the two phases have distinct crystal structures, and therefore different 
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electronic band structures and total electronic energies. The source of the entropy 

difference can be arrived at by elimination. Elemental crystalline solids have no con- 

figurational entropy, and the magnetic entropy difference is zero since both phases 

are ferromagnetic. Electronic entropies of transition metals are small at moderate 

temperatures, typically 1 to 10% of the size of the vibrational entropies. Thus, we ex- 

pect the electronic entropy difference between the two phases to be small and unable 

to account for all the entropy of the ~ h a s e  transition. The only possible remaining 

source of the entropy difference between the phases is vibrational. 

The entropy of solid state allotropic phase transitions has attracted much recent 

interest. Inelastic neutron scattering and calorimetric measurements on Ce showed 

that the allotropic /'3 - y phase transition has a vibrational entropy contribution that 

accounts for 65% of the total entropy difference 161. In chapter 3 we show that vibra- 

tional entropy accounts for the entire entropy of the ambient martensite transition in 

NiTi, to within experimental error. At higher temperatures, the electronic entropy 

can equal the vibrational contribution. Electronic band-structure calculations show 

that the electronic entropy accounts for 63% and 40% of the hcp-bcc phase transitions 

in Ti and Zr, respectively [7] .  More recent calculations by Moroni, Grimvall and Jarl- 

borg [8] claim the electronic entropy accounts for over 90% of the transition entropy 

in both these cases. However, the same work show that the high temperature hcp-bcc 

phase transitions in Sc and Y have electronic entropy differences that accounts for 

only 32% and 50% of the total entropy, respectively. In the high temperature y - 6 

transition in Ce, recent measurements [6] show that the vibrational entropy differ- 

ence is almost twice as large as the total transition entropy. The electronic entropy 

difference must be half as large and with the opposite sign in order to account for the 

measured total entropy. 

Allotropic phase changes are an example of first-order phase transitions. First 

order phase transitions follow the relationship between energy differences, entropy 

differences and transition temperature shown in equation 1.4. Given a fixed energy 

difference, the exact value for AS is said to determine the transition temperature, T,. 

Including the vibrational entropy in phase diagram calculations should lead to better 
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agreement with experiment and measured transition temperatures. The effect of 

lattice vibrations improved the agreement between predicted and experimental values 

of the solubility of Sc in A1 [9]. On the other hand, agreement between predicted and 

experimental values of the order-disorder transition temperatures in Cu-Au alloys 

worsen when vibrational effects are included [lo]. In this case, the lack of agreement 

with experiment is indicative of our continuing poor methodology for calculating the 

energies and entropies of the chemically disordered solid. 

1.2 Experimental Methods 

1.2.1 Calorimetry 

Calorimetric data are indispensable in any thermodynamic study. Heat capacity 

measurements and their corresponding entropies are regarded as the most reliable 

direct measurements of thermodynamic quantities. However, there exists no way to 

separate the differing contributions to  the heat capacity from all the internal degrees 

of freedom. Thus, although one can measure the calorimetric entropy of a solid very 

accurately, one cannot separate the vibrational entropy from the electronic, magnetic 

and ordering contributions. Vibrational entropies derived from calorimetric studies 

suffer from both the uncertainty of the measurement and the difficulty in ascertaining 

other contributions to  the entropy. In many cases, the latter overwhelm the former. 

Calorimetric data is a useful piece of the entropic puzzle, but it fails to give the entire 

picture. 

1.2.2 Inelastic Neutron Scattering 

Inelastic neutron scattering provides us with the most direct measurement of the lat- 

tice entropy of a solid. Knowledge of the lattice-d~namical excitations of a crystalline 

solid together with the use of statical mechanics is sufficient to derive the vibrational 

entropy. The use of neutron scattering allows us to isolate the lattice contribution 

specifically. However, the accuracy of the derived entropy depends greatly on how 
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accurately one can measure the vibrational excitations of the solid. In turn, these de- 

pend on how well the sample scatters neutrons and the type of neutron spectrometer 

used. These factors are given further consideration below. 

Incoherent and Coherent Scattering 

Neutrons can scatter from a solid coherently or incoherently. The former preserves 

phase between the initial and scattered neutron waves; the latter does not. An im- 

portant consequence of this distinction is that Bragg peaks are observed only from 

coherently scattered neutrons. Coherent inelastic scattering occurs when the change 

in neutron wavevector equals the wavevector of the dynamic excitation in the Sam- 

ple: magnetic, vibrational or otherwise. Incoherent inelastic scattering, on the other 

hand, has no such conservation. The vibrational entropy can be calculated from 

measurements of either the incoherent or coherently scattered neutron cross-section. 

The former is most easily performed using a triple-axis neutron spectrometer and 

involves no approximations in the data analysis. This technique is unfeasible when 

the sample exhibits significant coherent scattering. The latter demands the use of a 

time-of-flight (TOF) neutron spectrometer and involves a number of approximations 

in the data analysis. As a side note, these approximations can be eliminated by us- 

ing a lattice dynamics model to  interpret the raw data. However, current generation 

TOF instruments lack the neutron flux and spectrometer resolution to make this a 

feasible option. The TOF spectrometer method is also appropriate for samples that 

have significant incoherent scattering. 

In theory, every element exhibits some coherent and some incoherent scattering. 

Practically, most elements, in their naturally found isotopic proportions, exhibit a 

signicant amount of coherent scattering (see Table 1.1). Therefore, with the exception 

of a handful of elements and almost no alloys, most materials require time on a TOF  

neutron spectrometer for measurements of the vibrational entropy. Chapters 3 and 5 

both contain measurements done on a TOF neutron spectrometer. Chapter 4 contains 

measurements on elemental vanadium done on a triple-axis spectrometer. 



Table 1.1: Thermal neutron scattering cross-section of 3d-transition metals. 

Element 

Ti 
V 
C r 
Mn 
Fe 
Co 
Ni 
Cu 

Variation in Elemental Scattering Cross-Section 

cross-section (10-24~m2) 
coherent incoherent 

1.48 2.71 
0.02 5.08 
1.66 1.83 
1.75 0.4 

11.22 0.4 
0.78 4.8 
13.3 5.2 
7.48 0.55 

Additional difficulties arise for samples containing more than one element. Differ- 

ing elements have differing total neutron scattering cross-sections; Ni and Al have, 

respectively, cross-sections of 18 and 1.3 barns. Individual lattice-dynamical excita- 

tions (phonons) scatter neutrons with an efficiency proportional to the quotient of 

cross-section and atomic mass of the atoms undergoing displacement during the ex- 

citation. Practically speaking, this means that the phonons that displace the species 

with larger cross-sections and samller masses give a much greater signal than the 

phonons that displace the lesser-scattering elements. The energy spectrum of phonons 

measured by inelastic neutron scattering is thus weighted by the neutron-scattering 

cross-sections of the individual atomic species in the sample. This neutron-weighting 

of the phonon spectrum, or density of states (DOS), prevents a correct derivation of 

the vibrational entropy. The neutron-weight correction for experiment a1 data is not 

simple. Chapters 3 and 5 both contain numerous examples of different techniques 

used to  remove the neutron-weighting from the phonon DOS of binary alloy systems. 

These include using a lattice-dynamical model to fit the neutron-weighted DOS and 

estimating the element-specific partial DOS from multiple neutron-weighed DOS at 

similar compositions. These corrections become more elaborate and less reliable for 

ternary and high-order systems. Chapter 4 contains neutron-scattering data taken 

from an elemental metal. In this case no neutron-weight correction was needed. 

Accounting for the coherent neutron scattering and neutron-weighting of the 
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phonons is the largest obstacle in any attempt t o  measure the phonon DOS directly 

with inelastic neutron scattering. Historically, these obstacles were considered so 

unmanageable that very few systematic atternpts to measure the phonon DOS in 

coherently scattering multi-atomic systems were made. In part, this thesis deals di- 

rectly with how to overcome these obstacles, showing in chapters 3 and 5 a consistent 

methodology for extracting and correcting the neutron-weighted DOS from coherently 

scattering alloys. 

1.3 Anharmonic Entropy 

Lattice vibrations are primarily quantum mechanical phenomena at low temperature 

and classical phenomena at high temperature. The classical nature of phonons at 

finite temperature is responsible for the existence of a quantity known as anharmonic 

entropy. Simply put, anharmonic entropy is the entropy due to deviations from 

harmonicity of the interatomic forces. The cubic and quartic terms in the interatomic 

forces are responsible for the existence of thermal expansion; the anharmonic entropy 

has often been loosely defined as the excess vibrational entropy associated with the 

thermal expansion of the solid. This definition is strictly incorrect because the thermal 

expansion of the solid accounts for both a volume and a temperature effect on the 

phonon energies. Furthermore, changes in the electronic entropy with specific volume 

can also drive thermal expansion. It can be shown that the anharmonic entropy is 

identified solely with the temperature effect on the phonon energies, to first order. 

The relationship between phonon energies and anharmonic interatomic forces is 

straightforward. Theory tells us that the anharmonic nature of the interatomic forces 

leads to phonon-phonon scattering [Ill. In turn, phonon-phonon scattering leads to  

shifts in the energies of individual phonon modes. Lastly, phonon-phonon scattering 

is strongly temperature dependent; at low temperatures few phonons are present so 

little phonon-phonon scattering occurs, while at high temperatures phonon-phonon 

scattering is commonplace. This quantum-mechanical viewpoint has a direct clas- 

sical counterpart; at low temperatures atomic displacements due to vibrations are 
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low and thus the atoms mostly see harmonic interatomic forces. At high tempera- 

tures vibrational displacements are large and atoms see large anharmonic interatomic 

forces. 

By using phonon energies modified by phonon-phonon scattering to  calculate the 

vibrational entropy we can account for the anharmonic contribution. This method is 

exact to first order in the vibrational entropy Ell]. If the anharmonic effects are large 

and the phonon energy shifts are large, it is unclear how well this method accounts for 

the anharmonic entropy. Thus, at very high temperatures it is unclear whether using 

the temperature dependent phonon DOS with the standard formula is sufficient to 

capture the entire anharmonic contribution to the vibrational entropy. In chapter 4 it 

is shown that for V the temperature dependent phonon DOS captures the anharmonic 

contribution to at least 1400 O C. 

1.4 Chemically Disordered Materials 

The measurement of phonons and phonon entropy in chemically disordered materials 

continues to be of interest. This interest results from the theoretical and computa- 

tional difficulties in treating chemically and topologicaly disordered materials. In the 

absence of adequate theory, experiments assume enormous importance. The difficulty 

with chemically disordered materials is twofold: lack of translational periodicity and 

local relaxations. The first removes the wave-vector as a good quantum number for 

both electronic and vibrational quantum states. Modern ab-initio electronic struc- 

ture computations require a cryst a1 with a translationally-periodic unit cell. In its 

absence, these computations become unmanageable. Furthermore, the effect of lo- 

cal relaxations compounds the computational difficulties. In a chemically-disordered 

material, the atomic nuclei deviate from the lattice sites measured by diffraction. 

These atomic relaxations away from the average lattice sites are a function of the 

local chemical environment, which is heterogeneous in the presence of chemical dis- 

order. An accurate treatment of local relaxations requires each atom to be moved 

until the net forces on it are zero. Ideally, the entire crystal would have to be relaxed 



simultaneously in order to  account for the long range of the forces in metals. This 

methodology is not possible using the most accurate ab-inito calculation codes, which 

requires days or weeks to  calculate the energy of one crystal configuration. 

Two theoretical approaches have shown some success in dealing with chemical 

disorder. The cluster variation method (CVM), refined by Zunger and others [lo] ,  

was first formulated to calculate the configurational entropy in the presence of short 

range order [12, 131. Using this method, the vibrational entropy of a chemically 

disordered material can be calculated by computing the entropy of a large number of 

chemically ordered materials. The chemically disordered alloy is then approximated 

by a suitable average over the ordered materials, taking into account short-range 

chemical correlations t o  arbitrary distances. Our measurements of disorderd Cu-Au 

alloys in chapter 5 show good agreement with this method. The drawback of this 

method is that the phonon DOS of the disordered material is never computed, only 

the vibrational entropy and free energy. 

The second approach uses special quasi-random structures (SQS) to approximate 

the disordered material [14]. Using this method, an artificial unit cell (SQS) is 

constructed that has the property that the resultant crystal has some of the same 

short-range chemical correlations of the disordered material. The SQS crystal has 

long-range translation periodicity and is amenable to ab-initio computation, unlike 

the real disordered material. The properties of the SQS crystal are then assumed to  

be the same as the disordered material. The drawback of this approach is that the 

SQS crystal matches only a handful of the short-range chemical correlations in the 

disordered material. It is unclear if the SQS crystal handles local relaxations in the 

same way as the real disordered material. In contrast, the CVM method can abri- 

trarily extend the range of the chemical correlations that are matched by including 

more ordered materials in the computation. 

Of the two approaches, we prefer the CVM methodology. In chapter 5 we measure 

the neutron-weighted DOS and vibrational entropy of six chemically disordered Cu- 

Au alloys and show fair agreement with existing theoretical predictions using CVM. 



1.5 Summary 

In this chapter we have briefly touched upon the justification, methodology and sci- 

entific focus of this thesis. The thermodynamic consequences of the phonon entropy 

in metals and alloys are enormous, both in size and scope. We further this assertion 

in chapter 2, where we tabulate the vibrational entropy differences of alloying and 

formation for 32 alloys and intermetallic compounds. In chapter 3 we demonstrate the 

largest measured vibrational entropy difference for a polymorphic solid-state phase 

transition. In chapters 4 and 5 we explore the effects of thermal and chemical disorder 

in elemental V and Cu-Au alloys. 



Chapter 2 Experimental Trends in 

Vibrational Entropy 

2.1 Introduction 

There has been a steady growth in our understanding of alloy phase diagrams from 

ab-initio calculations [15] and more phenomenological approaches [16, 17, 18, 191. 

From the work of Ising [20] and Bragg and Williams 1121, 221 to the present day, the 

free energies of alloy phases have been largely understood as an internal energy plus a 

configurational entropy [23, 24, 25, 26, 27, 151. There were indications that vibrational 

entropy could also be important to alloy phase stability [28, 29, 30, 31, 32, 331 but 

experimental proof of this has been available only recently [34, 35, 36, 37, 38, 391. 

In the harmonic approxin~ation, differences in the phonon density of states (DOS) 

can be used to  identify the reasons for differences in vibrational entropies of alloy 

phases. There have been recent attempts to calculate the lattice dynamics of inter- 

metallic phases [4, 40, 41, 421 and some alloys were chosen for these calculations in 

part to provide comparisons with experimental vibrational entropies of order-disorder 

transformations. The difficulty with such comparisons is calculating the phonon DOS 

of the disordered alloy. The state of disorder involves chemical and spatial disorder 

of atoms on crystal lattice sites, and the details of this disorder may differ between 

experiments and calculations. For example, disordered alloys of Ni3Al show a wide 

range of lattice parameters [43, 44, 45, 461, suggesting that Ni3A1 is not a reliable 

alloy for experimental comparisons. 

More reliable comparisons between theory and experiment should be possible with 

vibrational entropies of formation, defined here as the entropy per mole of the inter- 

metallic compound minus the total vibrational entropy of its two elemental metals. 

The advantage of studying vibrational entropies of formation is that the unit cells 
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of both the initial state (two crystalline elemental metals) and the final state (inter- 

metallic compound) are translationally ~eriodic,  so well-defined phonon modes exist. 

An advantage for experimental studies of vibrational entropies of formation is that 

the lattice dynamics for the phonon DOS should be obtained reliably from coher- 

ent neutron inelastic scattering experiments on single crystals. In contrast, coherent 

neutron inelastic scattering experiments on disordered alloys are typically interpreted 

with the assumption of a virtual crystal, an assumption that has been shown to be 

unreliable 138, 47, 41, 421. 

Here we report differences in vibrational entropies of formation, AS$irn , for in- 

termetallic compounds and alloys in the harmonic approximation. We performed a 

search of the literature for data on phonon densities of states for alloys and com- 

pounds, and their elemental constituents [48, 49, 50, 51, 52, 53, 54, 55, 56, 571. The 

vibrational entropies of formation can be large and range from 0.64 to $0.55 ks/atom. 

It is interesting that this range is larger than is possible for the range of the configu- 

rational entropy of mixing for a binary alloy, ASCOnfig(c): 

AScOnfig(c) = ks[c In c + (1 - c) ln(1 - c)] 

which has a maximum value of 0.693 kB/atom when c = 0.5, and has a minimum 

value of 0. 

We attempted many correlations of vibrational entropies of formation to ther- 

mophysical properties of the compounds and the constituent elements. Many of the 

parameters were chosen because of their relationship to the masses of atoms and 

forces between them, since these masses and forces are the basis for lattice dynamics. 

Structural differences between phases are also expected to be important, so most sys- 

tematic comparisons were made within the L12 and A15 families of compounds. We 

report a good correlation of the vibrational entropy of formation to  the difference in 

metallic radii of the two species. For the related problem of alloy formation, consid- 

ered here as substituting solute atoms for atoms of the matrix, we report some success 

in correlating the vibrational entropy of alloying to the mass ratio of the solute and 



matrix atoms. 

2.2 Methods and Results 

In the high temperature limit, the vibrational entropy of formation can be obtained 

from the phonon densities of states as 

00 

= -3ka 1 Ag(E) ln(E)dE (2.2) 

where Ag(E) is defined as the difference in phonon DOS of the intermetallic com- 

pound, g(E), and the elemental constituents, g;(E): 

where fi is the atom fraction of the elemental constituent, i, in the intermetallic 

compound. The fi sum to unity. To calculate the vibrational entropy of alloying, 

a s a l l o y  ,;,, , we use the following definition of Ag(E): 

where gl(E) is the DOS of the majority constituent element - the element with the 

largest fi. To compare the success of the many different correlations and models, we 

use the parameter, R, the standard error of estimate, as a measure of the quality of 

the fit to a straight line through the origin. We define R as 

where the index i sums over all the data points, ASexP is the measured value of the 

vibrational entropy difference for data point i, Asfit is the best fit or model value of 

the vibrational entropy for data point i, and n is the number of data points. The 

value R can be used to compare the quality of correlation between different models. 

To calculate vibrational entropies, we used the phonon DOS curves for 32 com- 
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pounds and alloys and their 21 elemental constituents compiled in the Landolt- 

Bornstein tables [51, 521 and other references [48, 49, 50, 53, 56, 58, 54, 59, 361. 

All neutron scattering measurements were performed at room temperature, with the 

exceptions of elemental Ge (80 K), Pb  (80 K) and Pt (90 K). Most phonon DOS curves 

were obtained from coherent inelastic neutron scattering measurements of phonon dis- 

persion curves from single crystals. The original authors fit their measured phonon 

dispersion curves to predictions from a Born-von KBrmAn model of lattice dynam- 

ics. This model was then used to calculate the phonon DOS. Exceptions were the 

DOS curves for the A15 intermetallics, bcc alloys and the MgZn2 Laves compound, 

which were obtained by neutron scattering from polycrystalline samples. For these 

polycrystalline samples, the neutron data were interpreted in the incoherent approxi- 

mation [60, 611, but without correcting for the different constituent scattering lengths. 

This correction is in principle impossible without prior knowledge of the lattice dy- 

namics, but it could be important. Results for the A15 intermetallics, bcc alloys and 

the MgZn2 Laves compound should therefore be treated with caution. 

For the present study, we used two methods for obtaining phonon DOS curves. In 

the first method, the interatomic force constants provided by the original authors were 

used to calculate the phonon DOS, as described previously 157, 361. In the second 

method, we converted the published graphs of the phonon DOS curves into digital 

form using the software package Datathief 2.0b. Although the number of original 

points in the data was not preserved, the shape of the DOS curve was reproduced 

faithfully after digitization. The digitization process provided essentially the same 

phonon DOS curves that we calculated from the force constants, and nearly the 

same values of AS$;m that we calculated directly with the Born-von KLrmAn model 

for L12 Cu3Au, Fe3Ni, Ni3A1, Ni3Fe, PtsFe, and their elemental constituents. The 

discrepancies were used to provide the error bars for our estimates of AS$;m. All 

digitized DOS curves were normalized to unity, which typically required corrections 

of less than one part per thousand. Results for AS$km and  AS:^? for 32 intermetallic 

compounds and alloys are presented in Table 2.2. We expect that AS:I;Y is physically 

meaningful only when the minority constituent does not change the structure of the 



16 

underlying lattice. We therefore do not present  boy for the A15 and Laves phase 

compounds. 

2.3 Correlations 

2.3.1 Vibrational Entropy of Formation 

We correlated the values of 4 S g m  in Table 2.2 to the standard thermochemical 

properties of the elements suggested by Hume-Rothery and others, i.e., differences in 

metallic radius, mass, electronegativity, the enthalpy of mixing [62, 63, 64, 651 and 

Mendeleev number [66]. Some of the more interesting correlations are reported here. 

It might be expected that differences in vibrational entropy would correlate to  

changes in Debye temperature, OD , which we obtained from measured values of the 

bulk modulus 167, 68, 69, 70, 711. We used the following relationship to find the Debye 

temperature, OD : 

where B is the bulk modulus, M is the atomic mass and p is the density. The value of 

M for the compound was the compositionally-weighted mean of the elemental atomic 

masses. From equation 2.6 we calculated the vibrational entropy of forination as 

where Ob is the Debye temperature of the ith constituent element. Note that any 

constant of proportionality in equation 2.6 would cancel in equation 2.7. The re- 

sults, presented in figure 2.1, show that the Debye approximation is unsuccessful for 

predicting vibrational entropies of formation. 

Although the Debye temperature does provide an average of phonon energies, de- 

terminations of Debye temperatures from low temperature heat capacities or from 



Alloy Structure AS::? a s f o r m  
vib 

(kB/atom) (kB/atom) 
CeSn3 Ll2 NA -0.54 k 0.09 
LaSn3 Ll2 NA -043 f 0.09 
Ni3AS Ll2 -0.20 -0.20 
Ni3Fe Ll2 0.02 0.09 
Nio.7Pto.3 L12 0.24 -0.24 
Pt3Fe L12 -0.23 0.14 
Pd3Fe L12 -0.27 0.05 
Pt3Mn Ll2 -0.25 NA 
Cu3Zn Ll2 0.23 -0.01 
Cu3Au L12 0.51 0.07 
Fe3Pt L12 1.0 0.55 
Fe3A1 Do3 -0.01 -0.06 
Nb3A1 A15 NA -0.28 
Nb3Sn A15 NA -0.59 
V3Si A15 NA -0.31 
V3Ge A15 NA -0.25 
Nio.3Feo.7 A1 (fcc) 0.13 0.32 
Nio.55Pdo.45 A1 0.48 0.02 
Nbo.75Zro.25 A2 (bee) 0.32 0.23 
Nbo.zZro.8 A2 0.54 0.21 
Vo.75Tio.25 A2 0.37 0.31 f 0.07 
Vo.75Cro.25 A2 -0.19 -0.03 6 0.07 
V0.93Pto.07 A2 -0.39 -0.56 k 0.09 
V0.95Pto.05 A2 -0.26 -0.42 f 0.09 
V0.95Cr0.05 A2 -0.02 -0.10 f 0.09 
Zno.47C~o.53 B2 NA 0.04 
CeAS2 C l 5  NA -0.64 
LaA12 C15 NA -0.41 
YA12 C15 NA -0.33 
MgZn2 C14 NA 0.19 
MgaPb C1 NA -0.57 

Table 2.1: Vibrational entropies of alloying and formation. Entropies are in high 
temperature limit. NA means 'not applicable' or 'not available' , as appropriate. 
Unless otherwise stated, the uncertainties of AS:::' and are 60.03 ks/atom. 
The  phonon DOS for elemental Sn, Ce and La were taken from the P ,  y-fcc and hcp 
structures, respectively. 



-3k,ln[0 alloy 0 1 - f 1 ~ ~ f 2 ]  

Figure 2.1: Comparison of the measured vibrational entropy of formation with that 
calculated from the bulk modulus in the Debye approximation (equation 2.6) for 
selected L l a  alloys. R = 0.430. 



elastic constants emphasize the low energy phonons. At modest temperatures the 

higher energy phonons account for most of the heat capacity, however, and the ele- 

ments and compounds discussed here showed large differences in the structure of the 

higher energy part of their phonon DOS. The structure of the phonon DOS at higher 

energies is expected to depend more sensitively on the local structure of the alloy [72] 

than the low energy part of the DOS. 

Of the correlations performed with other thermochemical parameters, the most 

successful involved the difference in metallic radius [73] between the majority and 

minority species. This correlation is shown in figure 2.2 for L l z  compounds. 

Ar metal (4 
Figure 2.2: Vibrational entropies of formation of L IZ  alloys as a function of differ- 
ence in metallic radius between the majority species and the minority species. The 
difference, Armetal, is positive when the majority species is larger than the minority 
species. 

When the minority species has a significantly larger metallic radius than the majority 

species, the lattice becomes stiffer, so AS:irn becomes strongly negative. The same 

type of graph as figure 2.2 was prepared for the four A15 compounds in Table 2.2, and 
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a similar trend was found, although the entropy va.lues for the A15 compounds were 

all strongly offset negative by about 0.36 kB/atom. This offset may originate with 

the difference between bcc and A15 structures, probably because the A15 structure 

includes compressed chains of atoms. The L12 data of figure 2.2 lack this offset 

because the underlying lattice has not changed (fcc to  ordered fcc). 

The success of the correlation of with differences in metallic radius seems 

consistent with interatomic force constants determined from coherent inelastic neu- 

tron scattering. Consider first the case where the B-atom is larger than the A-atom. 

The condition for axially-symmetric Inn force constants, C1,, - CI,, = C1,,, is sat- 

isfied reasonably well for both A-A pairs and A-B pairs in most L12 alloys of A3B 

stoichiometry [51]. Furthermore, the force constants C ~ G ~  are usually small, indi- 

cating that the dominant forces between A-B Inn pairs are radial. This suggests 

an intuitive picture of the lattice dynamics involving spheres that interact by stiff 

first-neighbor central forces. First consider the case of an A3B alloy with the L12 

structure, where the larger B atoms fit tightly into a matrix of smaller A atoms. The 

general trend of finding large force constants c$gB and C ~ G ~  is consistent with this 

stiff sphere picture. When the larger B-atoms are squeezed onto the A-lattice without 

causing much change in lattice parameter, the amplitudes of the atomic vibrations 

are expected to be constrained, and the vibrational frequencies increased. This effect 

is consistent with the large slope of the curve of ASzm versus Ar at increasingly 

negative Ar. (The exception to the trend in figure 2.2 was the invar alloy FesPt, 

not shown on figure 2.2, which has a positive of $0.5 kB/atom. The force 

constants for Fe-Pt neighbors showed by far the largest deviations from central force 

character of any L12 alloy. Invar alloys are generally expected to show anomalous 

vibrational modes.) 

On the other hand, figure 2.2 shows that AS:;;" is small and slightly positive 

when the minority atom is smaller than (or only slightly larger than) the majority 

atom. When the minority B-atom is smaller than the majority A-atom, we expect 

poor contact between the B-atom and its neighbors, and weak A-B force constants. 

For stiff spheres, once contact is lost, the A-B force constant is not sensitive to  the 
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metallic radius of the B-atom. This is consistent with the flattening of the curve in 

figure 2.2 for small and positive values of Ar. As a corollary, we suggest that when 

the B-atoms are smaller than the A-atoms, the phonon DOS of the L12 alloy should 

be less sensitive to the state of chemical order in the alloy. 

2.3.2 Vibrational Entropy of Alloying 

It is well-known that mass disorder has no effect on vibrational entropy, assuming the 

force constants remain unchanged. It is therefore unreasonable to make a model for 

the effect of atomic mass on the vibrational entropies of formation of intermetallic 

compounds from their constituent elements. In alloying, however, substituting atoms 

of one mass for atoms of a different mass will alter the vibrational entropy even when 

the interatomic force constants remain unchanged. At a fixed temperature such a 

substitution will have no effect on the mean-squared interatomic displacement (in 

the harmonic approximation), which is set by the force constants. The substituted 

alloy will explore a different range in its momentum coordinates, p, however. Since 

p2/2M oc kBT, the range in momentum coordinates will increase as the square root 

of the increased mass of the alloy. The change in vibrational entropy will be (per 

substituted atom): 

where the masses of the solute and matrix atoms are MsOlute and M,,triX. The corre- 

lation between the vibrational entropy of alloying and In(Ms,lute/M,,t,ix) is shown in 

figure 2.3. This mass correlation, without adjustable parameters, seems reasonably 

successful with R = 0.212. 

In alloying there will also be changes in interatomic force constants. A proper 

estimation of this contribution requires knowledge of the interatomic potential, but 

we attempt a simple correlation here. For L12 compounds the lattice parameters are 

known. We obtain the change in phonon frequencies through the Gruneisen relation: 



Figure 2.3: Vibrational entropy of alloying of L12 alloys compared to predictions 
of mass correlation in equation 2.8. The bottom axis scales linearly with c, the 
concentration of the minority constituent. 



where yi is the mode Gruneisen parameter. Using w,,,, as a constant of normal- 

ization, the force constant effect on the vibrational entropy, A S Z  , can then be 

evaluated as 

3N 
asforce 

vib = + k B z 7 i A l n V  
i=l  

We assume the Griineisen parameter is the same for all phonon modes. For the 

contribution to the vibrational entropy change upon substituting the minority species 

for the majority species, we attempt to use x-ray lattice parameter data [69, 741 for 

the change in volume upon alloying. The change in entropy of the alloy owing to 

changes in force constant is (per atom): 

V a ~ l o y  OS"'~' vib = 3 y kBln (-) 
Vmatr ix  

where Vall,, is the volume per atom of the alloy, and Vrnatrix is the volume per atom 

of the elemental metal of the majority species. 

Combining the mass effect of alloying, equation 2.8, with the force constant effects 

predicted by equation 2.14, and setting y = 2, we obtain for an alloy with solute 

concentration, c: 

Msolute V a ~ ~ o y  = c 3 k ~  in ( ) + 6 k s  in (-) vib 2 Mrnatrix Vrnatrix 
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For L12 alloys, the correlation with equation 2.15 is less successful than the mass 

effect alone (equation 2.8 and figure 2.3). The theoretical fit overestimated the mea- 

sured entropy change by a factor of 2 to 3 in most cases. The change in unit cell 

volume may be unsuccessful as a parameterization of the change in vibrational modes 

because some interatomic separations are reduced, and some are expanded beyond 

their equilibrium separations when an atom of different size is inserted into the ma- 

trix. Upon alloying, some of the interatomic forces are therefore increased, and some 

decreased. The expected trend for correlation of vibrational modes to the unit cell 

volume is uncertain. We may expect equation 2.15 to be more appropriate for the 

vibrational entropy of substitution between the same cryst a1 structures. Figure 2.4 

shows the vibrational entropy difference between similar Laves, L12 and A15 phases 

as a function of minority constituent and volume difference [69, 741. The same data 

plotted versus equation 2.8 (mass term only) gives a moderately better correlation 

(not shown) with an R value of 0.316. 

In figure 2.5 we plot the vibrational entropy of alloying for L12 alloys against 

the Debye model approximation of equations 2.6 and 2.7. As was the case for the 

vibrational entropy of compound formation, the Debye temperature is not very suc- 

cessful for predicting the vibrational entropy of alloying. The emphasis of the Debye 

temperature on low energy phonons makes it less relevant for most of the phonon 

DOS. 

Finally, in figure 2.6 we plot the vibrational entropy of alloying for eight L12 

compounds versus the atomic volume change associated with alloying. The correlation 

is good, with an R value of 0.190. Atomic mass and atomic volume are correlated, 

however, and an examination of the data in figure 2.6 shows that to a large extent the 

correlation shown is similar to that of figure 2.3. Although the R values of the mass 

and volume correlations are comparable, the mass correlation is more impressive, 

since it involved no adjustable parameters. For the volume correlation in figure 2.6, 

the slope of the line was a free parameter. Using the slope of the best fit line and a 

value of 13 A3/atom for V,,tri,, the Griineisen constant for figure 3.6 was determined 

to  be 1.2. The average Griineisen constant calculated from the bulk modulus, thermal 



Figure 2.4: The vibrational entropy difference of substitution for Laves, A15 and 
L12 alloys versus the prediction from equation 2.15. The specific intermetallics being 
compared are indicated for each data point. The variables MI, and M2, are the atomic 
masses of the minority constituents of the final and initial states, respectively. R = 
0.541. 
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Figure 2.5: The vibrational entropy of alloying for six L12 alloys compared to the 
entropy predicted from the bulk modulus in the Debye approximation. Or is the 
Debye temperature of the majority constituent element. R = 0.372. 



Figure 2.6: The vibrational entropy of alloying for eight L12 alloys as a function of 
the difference AV in atomic volume (from x-ray lattice parameter) before and after 
alloying, where AV - Vall,, - V,,,,j,,.ity species. Dashed line is the best fit through 
the origin. 



Notes: For consistency, R values for all correlations were calculated with six LIZ 
compounds for which all physical parameters were available. 

Table 2.2: Correlations with entropy of alloying. 

R 

0.372 

0.208 

0.637 

0.207 
0.280 

Correlation 

Debye (equation 2.7) 

Mass (equation 2.8) 

Mass plus Griineisen (equation 2.15) 
Change in atomic volume (W3/atom) 
Difference in metallic radius (A) 

expansion [75] and classical heat capacity for five Liz compounds was 1.82 f 0.46. 

The average Griineisen constant (derived from best fit line to  AV, see figure 2.6) for 

the same 5 L l z  compounds was 1.04. The lack of agreement is a good indication that 

equation 2.13 fails to model the observed entropy of alloying, and that the correlation 

in figure 2.6 may, as stated above, reflect the correlation between atomic volume and 

atomic mass. 

Some comparison of the success of the various correlations for the entropy of 

alloying are presented in Table 2.2. Six Liz compounds were chosen for the results of 

Table 2.2 because bulk moduli were available for them. For consistency, these same 

six compounds were used for all correlations in Table 2.2. 

It is important to  note some limitations of the experimental measurements of the 

phonon DOS curves. The phonon DOS curves for the A15 compounds (Fawcett , et al. 

1983) were determined in the incoherent scattering approximation, but no attempt 

was made to correct the experimental DOS curve for differences in neutron scattering 

cross-sections and masses of the elements. The relative strength of scattering of each 

element is determined by the quotient of total scattering cross-section and atomic 

mass. Those phonons that involve primarily the motions of atoms having a small 

value of this ratio will be under-represented in the experimental phonon DOS. For 

example, the ratios of total scattering cross-section to mass differ by 60% for Nb 

and Sn in Nb3Sn, but differ by only about 20 - 25% for the other A15 compounds. 

The entropy of formation of NbsSn may therefore be in error. The phonon DOS 

Model 
O a l l o ~  

-3 kg In rn2jority 
0, 

c 3/2 \Ll 
c3/2 In + 6 In ( Vrnatrix ) 
linear regression through origin 
linear regression through origin 
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curves for the bcc alloys listed in Table 2.2 were also obtained in the incoherent 

scattering approximation (Fawcett et al. 1983), suggesting problems with the V-Ni 

alloy. Finally, we point out that the phonon DOS curves used for the data of Table 2.2 

were obtained at temperatures of 300 K and below. For phase transformations at 

elevated temperatures, anharmonic effects could alter considerably the vibrational 

entropies. 

2.4 Summary 

Using all available data on phonon densities of states of intermetallic compounds, 

alloys, and their element a1 metals, we calculated and tabulated the vibrational en- 

tropies of formation of the alloys and compounds in the harmonic approximation. 

The range of these entropies of formation, from -0.64 to  $0.55 ks/atom, is larger 

than the maximum possible range for the configurational entropy of formation of a 

binary alloy. Vibrational entropies of alloying ranged from -0.35 to 1.0 ks/atom. 

We correlated the vibrational entropies of formation to several thermophysical 

properties of the atoms. The Debye approximation does not account adequately for 

the structure of the phonon DOS, and the Debye model made poor predictions of 

the vibrational entropy of formation and the vibrational entropy of alloying. For L12 

compounds and A15 compounds, we found that the vibrational entropy of formation 

correlated best to  the difference in metallic radius of the two atomic species. We 

also modeled the vibrational entropy of alloying in terms of atomic mass and volume 

effects. The correlation between the vibrational entropy of alloying and the mass ratio 

of the solute and matrix atoms was most successful, although correlations involving 

the volume and metallic radius were also good. 



Chapter 3 The Role of Phonons in the 

Thermodynamics of the NiTi Martensitic 

Transformat ion 

3.1 Introduction 

The intermetallic compound NiTi exhibits the shape memory effect near room tem- 

perature. This phenomenon involves large, reversible strains, and is closely related 

t o  the martensitic transformation that occurs spontaneously upon heating or cooling. 

The high temperature 'austenite' has the cubic B2 structure (CsC1 prototype), and 

the low temperature 'martensite' has a monoclinic B19' structure [76]. Since this 

martensitic phase transformation is reversible, we expect the austenite to have larger 

energy and larger entropy than the martensite. The present investigation addresses 

the entropy. Since the atom motions during the transformation occur by a coopera- 

tive process, no significant change in configurational entropy can occur. The phase 

transformation involves no known chemical, electronic or magnetic ordering; hence 

the entropy should be entirely vibrational. 

Calorimetric methods were used in several previous investigations of the marten- 

sitic transforination in NiTi. McCormick and Liu [77], using the temperature de- 

pendence of the transformation stress, measured an entropy gain of 0.41 ks/atom 

upon transforming to austenite. Johari and coworkers [78] measured values of 0.44 f 

0.09 k ~ / a t o m  and 0.37 kB/atom using pressure-dependent resistivity and calorimetry, 

respectively. Smaller values were reported by Obrad6, Mafiosa and Planes for Cu- 

A1-Mn alloys [79]. Calorimetry can provide useful numbers, but it does not address 

the atomistic origin of the transformation entropy. There have been several previous 

investigations using coherent inelastic neutron scattering to  measure phonon soften- 
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ing in the austenite near the martensitic transformation temperature. These studies 

on NiTi [80, 81, 82, 831, with a single exception 1841, were single-crystal experiments 

measuring a few phonon dispersion curves. Their focus was on the mechanism by 

which the phase transformation occurs, not the vibrational entropy. More recently, 

there have been several experiment a1 and theoretical investigations on the role of vi- 

brational entropy in solid-state phase transformations [34, 35, 38, 101. The emphasis 

of this work has been on how differences in vibrational entropy originate from dif- 

ferences in the phonon density of states (DOS) of the different phases. The present 

investigation has this same emphasis. 

We performed measurements of the phonon DOS, heat capacity, transformation 

ent halpy, thermal expansion, and performed calculations of Born-von KBrmAn lattice 

dynamics to investigate the vibrational entropy of the martensitic transformation. 

The neutron scattering and latent heat data gave independent measurements of the 

entropy. The heat capacity measurements and lattice dynamics simulations were 

used to check the reliability of the phonon DOS measured by neutron scattering. 

The phonons implicated in the mechanism of the martensitic transformation, the 

k = $ [110] 27r/a transverse acoustic phonons, are not sufficient in number to account 

for the entropy of the transformation. On the other hand, the softness of the acoustic 

branches in the B2 austenite phase is shown to be responsible for most of the vibra- 

tional entropy of the phase transformation. The stability of this bcc-like B2 phase 

seems related to the transverse force const ant between first-nearest neighbors. 

3.2 Experimental Methods 

A NiTi plate of 0.125 cm thickness was obtained from Shape Memory Applications, 

Inc., and annealed for 15 min at 700 O C .  This annealed plate provided all samples for 

the present study. The sample for differential scanning calorimetry was ground into 

a 0.2613 g disc of approximately 0.20 cm diameter. Nickel metal of 99.99% purity 

was selected as a reference material, and the Ni sample was cold-rolled and ground 

to  a 0.3293 g disc. The masses were chosen so the two samples had approximately 



the same number of atoms. 

Low-temperature heat capacity measurements were performed with a Perkin- 

Elmer DSC-4 differential scanning calorimeter that had been modified by installing 

its sample head in a liquid helium dewar. The latent heat measurements were taken 

using liquid nitrogen as the cryogen. Heating scans were performed from -90 "C to 

+ 100 " C, at heating rates of 10, 5 and 3 " C per second. Cooling scans were taken from 

+I00 "C to -90 "C at cooling rates of 10 and 5 "C per second. All measurements were 

repeated with the two samples interchanged in the sample pans. Representative data 

are shown in figure 3.1. 

-40 0 40 80 

Temperature ("C) 

Figure 3.1: Representative data of the latent heat upon cooling and heating of the 
martensite-austenite phase transformation in NiTi. In both cases a background has 
been subtracted from the raw data. 

Using the same samples and calorimeter, the differential low temperature heat 

capacity of martensitic NiTi was measured with respect to Ni. Liquid nitrogen was 

used as the cryogen, allowing measurements of the differential heat capacity from 

-170 to -50 "C. Data were taken with a heating rate of 20 "C/min in 30 "C intervals 

with 10 "C overlaps. Scans were repeated with samples interchanged in the sample 



pans. The difference between the pairs of data with samples interchanged is equal to 

twice the differential heat flow, from which the differential heat capacity was found. 

The differential heat capacity was added to the heat capacity of Ni [85] to obtain the 

absolute heat capacity for martensitic NiTi. The result is shown in figure 3.2. 

Corrected martensite DOS 

Temperature (K) 

Figure 3.2: The low-temperature heat capacity of martensitic NiTi. The filled dia- 
monds are our calorimetric results. The thin curve was calculated from the neutron- 
weight corrected martensite phonon DOS derived from low temperature neutron in- 
elastic scattering (shown in figure 3.6). Dashed line is heat capacity taken from 
Herget, et al. [84]. 

Three samples for thermal expansion measurements were cut with a water-cooled 

diamond saw into rectangular prisms of typically 0.5 x 0.7 x 0.125 cm. A Perkin- 

Elmer TMA 7 with liquid nitrogen as the cryogen was used for measuring the linear 

thermal expansion from - 160 to $100 O C. Samples were cycled typically between 

-160 and +lOO°C at heating (cooling) rates of 20, 10 and 5"C/min. Our best data 

were obtained at 5 "C/min, and these are shown in figure 3.3. 

Inelastic neutron scattering spectra were measured with a time-of-flight (TOF) 

chopper spectrometer (LRMECS) at the Intense Pulsed Neutron Source (IPNS) at  

the Argonne National Laboratory. The sample for inelastic neutron scattering was a 



-150 -100 -50 0 50 100 

Temperature ("C) 

Figure 3.3: Thermal expansion of NiTi plate in three orthogonal directions. The long 
dashed line is linear expansion in the direction perpendicular to the plane of the plate. 
The continuous and short dashed lines are linear expansion in orthogonal direct ions 
within the plate plane. Data were taken with the sample at low temperature, pro- 
ceeding to 100°C and then returning to low temperature. Heating and cooling are 
indicated by arrows. 

plate of 7 x 9 x 0.125 cm encased in thin-walled A1 pans and mounted at a 45 O angle 

normal to the incident beam to minimize self shielding. Total scattering was 13%. 

Spectra with an incident energy of 50 meV were measured at 8, 77, 127, 177, 300 and 

573 K. The 300 and 573 K data were taken with the sample in the IPNS "drylid" 

furnace, while the 8, 77, 127 and 177 K data were obtained with a displex refrigerator. 

Background spectra were measured from the empty can both in the furnace and in the 

refrigerator at 300 K. The broad detector coverage of LRMECS, ranging from 3 " to 

117 ", allowed measurements over a range of momentum and energy transfer (k, hw), 

with I k(u) I varying between 0.5 and 8.3 A-1 when Iiw varied from 0 to f50 meV. 



Method AS AH 
(kslatom) (J /mol> 

Calorimetric heating 2 0.41 f 0.04 1070 f. 100 
Calorimetric cooling 5 0 . 5 6 f 0 . 1  -1300rt200 
Calorimetric (section 3.3.1) 0.47 f 0.09 NAt 
Neutron scattering 0.57 -1 0.03 NA'C 

tnot available. 

Table 3.1: Enthalpy and entropy of martensite transformation. Calorimetric error 
bounds were obtained from the statistical variation of the repeated measurements for 
both heating and cooling. 

3.3 Results 

3.3.1 Calorimetry 

The enthalpy of the martensitic transformation is obtained from the area under the 

heating and cooling curves in figure 3.1. The entropy can then be calculated by 

integrating dQ/T, where dQ is the measured heat input, over the temperature range 

of the phase transformation. A reversible process should provide the same values of 

AH and AS for heating and cooling, but Table 3.1 shows a discrepancy between the 

heating and cooling results slightly beyond the error bars. 

This hysteresis of the phase transformation implies that the transformation to 

martensite is more dissipative. Assuming this is so, the values of AS in Table 3.1 are 

upper and lower bounds as indicated. Alternatively, by assuming that the heating and 

cooling ent halpies are in substantial agreement (within error bars), we can calculate 

AS = AHIT,, where the equilibrium transformation temperature, T,, is assumed to 

lie equidistant between the heating and cooling transformation start temperatures. 

This provides a value for AS of 0.47 6 0.09 kB/atom. 

The calorimetry curves of figure 3.1 did not vary with cooling and heating rate, but 

they did change with cycling. This effect has been reported previously [86,87,77], and 

has been attributed to increasing defect densities and internal stresses in the marten- 

site. Perhaps such microstructural dissipation mechanisms could be responsible for 

the small discrepancy between the heating and cooling results of Table 3.1. 



3.3.2 Thermal Expansion 

Figure 3.3 presents the fractional sample dilatation versus temperature along each 

orthogonal sample dimension. The anisotropy of the B19' martensite structure and 

the strong crystallographic texture of the samples caused different dilatations in each 

direction. The martensitic transformation is evident between -30 and $50 OC, where 

the linear thermal expansion is interrupted by a large contraction or expansion, de- 

pending on the axis. Summing the linear transformation dilatations gives a volumetric 

expansion of -0.2% (i.e., a contraction) upon transformation to martensite. 

The transformation start and stop temperatures for heating and cooling agree well 

with those observed in the calorimetric measurements of the latent heat (figure 3.1). 

The complicated kinetics observed upon cooling, which appear as the three separate 

peaks in the cooling curves in figure 3.1, are also observed in the thermal expansion 

data. The linear expansions measured within the plane of the rolled plate (short 

dashed and solid lines, figure 3.3) show a kink in slope between 0 and 10°C upon 

cooling, corresponding to the region between the peaks in latent heat of cooling at  

-4 and +12OC (figure 3.1). 

The linear thermal expansion was determined by measuring the slopes of the 

curves in the straight regions above and below the transformation temperature (fig- 

ure 3.3). For martensite this depends on the crystallographic direction. Summing the 

linear thermal expansion in all three plate dimensions gives the volumetric thermal 

expansion, which is independent of the crystallographic texture in the sample. The 

coefficients of volume thermal expansion are 36 f 3 x 10-6K-1 for the austenite and 

30 f. 2 x IO-~K-' for the martensite. 

3.3.3 Neutron Scattering 

All TOF spectra were first normalized and corrected for detector efficiency and time- 

independent background following standard procedures. In this step, the detector 

counts were grouped into 10 " ranges of scattering angles having average angles from 

5"  to  115 O .  The scattering contribution of the container and displex (or furnace) 
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was removed using the runs on the empty container. The data below 3-4 meV are 

dominated by the large elastic peak, which was stripped from the data by assuming 

the raw data were linear in energy at small energy transfer. 

The first step in obtaining a phonon DOS from the corrected spectra used an iter- 

ative procedure to calculate the multiphonon contribution to  the measured scattering, 

and this multiphonon contribution was subtracted from the data [88]. The 'neutron- 

weighted' phonon DOS, gNw (E), is obtained easily from the remaining 1-phonon 

cross-section. When using this procedure with data from LRMECS, we accounted 

for the fact that the TOF spectra were obtained at  constant scattering angle, not 

constant scattering vector. The scattering vector and multiphonon correction there- 

fore vary with energy transfer, and this dependence is different for the energy spectra 

from the different angle banks. The sum of the corrected intensities from the upper 

6 angle banks was used to  obtain the phonon DOS. Disallowing the data from the 

lower 6 angle banks eliminates any possible contribution from magnetic scattering, 

which is greatly suppressed at high Q. Summing over the highest angle banks ensures 

that a large portion of reciprocal space is sampled at each phonon energy. Figure 3.4 

shows that the calculated 1-5 phonoli contribution fits well a typical TOF spectrum 

of austenite. The amount of the multi-phonon (2-5 phonon) contribution is large at 

this temperature. 

These background, elastic and multi-phonon corrections are sufficient when the 

sample contains only one species of scatterer. When applied to  an alloy, however, 

these procedures provide a 'neutron-weighted' phonon DOS, gNw(E). The weighting 

originates with the following phenomenon: Ni and Ti scatter neutrons with different 

cross-sections, so each vibrational mode scatters neutrons with an efficiency that 

depends on the displacement amplitudes of Ni and Ti atoms. Failing to correct for 

this phenomenon leads to errors in the calculated phonon DOS. A rigorous correction 

is possible if the partial phonon densities of states gd(E) is known for each atom, d, 

where 



Energy Transfer (meV) 

Figure 3.4: Raw TOF data compared with the self-convergent multiphonon expansion. 
The background corrected TOF spectra, at the 1 2 ~ ~  angle bank, of NiTi at 573 K 
is the bold line. The thin line is the 1-5 phonon contribution as calculated with 
the procedure of Bogdanoff, Fultz and Rosenkranz [88]. The dashed line is the 2-5 
phonon contribution. 

and q and j are the phonon wave vectors and polarization branch that specify a 

single vibrational mode. Here e$ and wqj are the polarization vector for atom d and 

frequency of mode q,j. Note that g(E) = Cdgd(E) but the neutron-weighted phonon 

DOS ~ N ~ ( E )  is given by 

where exp(-2Wd),gd and md are the Debye-Waller factor, total scattering cross- 

section and mass of atom d. The Debye-Waller factor is an explicit function of gd(E). 

The term exp(2W) is the average Debye-Waller correction; this is calculated from the 
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self-consistent neutron-weighted D 0 s .  The factor exp[2(W - Wd)] is approximately 

unity. For the case where ad/md is the same for all species d, gNw(E) m g(E). For 

the case of NiTi, the quotient of aNi/mNi and aTi/mTi is 3.6, so the correction is 

potentially large. We need a correction function F(E), where 

The correction function F(E) for the austenite DOS was obtained by a Born-von 

KBrmAn lattice dynamics simulation. Such simulations are often used to generate 

interatomic force constants by fitting to experimental phonon dispersions. In turn, the 

force constants can be used to calculate complete lattice dynamics information for the 

crystal, including the partial DOS, the neutron-weighted DOS, and arbitrary phonon 

dispersions. The acoustic phonon dispersions in the high symmetry directions are well 

documented in the literature [80, 81, 82, 891, and the neutron-weighted phonon DOS 

is known from our measurements. These data provide adequate constraints on the 

force constants to  allow a hybrid least-squares fit procedure. Our model generates the 

dispersions of acoustic phonons, which are well-documented, but also generates the 

neutron-weighted phonon DOS by sampling the phonon frequencies and polarization 

vectors over the irreducible portion of the Brillouin zone of the B2 structure. The best 

16 independent force constants out to 4th nearest neighbors are shown in Table 3.2. 

These force constants produce a good fit to the neutron-weighted phonon DOS and 

a fair fit to the known acoustic dispersions. 

Using the force constants of Table 3.2, the correction function F(E) is calculated 

from the lattice dynamics simulations by taking the ratio of the real and neutron- 

weighted DOS, both of which are generated by the simulation. As with any optimiza- 

tion scheme, the uniqueness of the fitted force constants is unclear. Nevertheless, the 

shape and magnitude of the calculated F(E) itself proved rather insensitive to the 

choice of force constants. This correction function is shown in figure 3.5. 

'Previous Born-von KSrmSn simulations [go, 891 have focused exclusively on the acoustic phonon 
dispersions, and the force constants obtained give very poor results for the optical (high-energy) 
modes. 



Force Const ants (103dyne/cm) 
Ni-Ni Ti-Ti Ni-Ti 

Table 3.2: Best fit Born-von KArmAn force constants to NiTi neutron-weighted 
phonon DOS. 

The correction is physically reasonable. Given the lower mass of Ti compared to 

Ni, we expect the higher-energy modes to have more Ti displacements and the lower- 

energy modes to have more Ni displacements. Since the scattering is stronger for Ni, 

the higher-energy modes are under-emphasized in the neutron-weighted DOS. The 

correction, F(E), should enhance the high energy modes at the expense of the low 

energy modes. We also expect the correction to become a constant in E at low energies 

in the hydrodynamic limit. We use the same F(E) to correct the martensite neutron- 

weighted DOS. Although the real correction function for martensite is most likely 

different in detail, we note below that the F(E) for austenite is successful in providing 

a martensite phonon DOS that is consistent with the heat capacity measurements 

on martensite. The corrected and uncorrected (neutron-weighted) martensite DOS 

are shown in figure 3.5. The corrected austenite and martensite DOS are shown in 

figure 3.6. 

As a test for the reliability of applying the austenite correction function to the 

g ~ w  (E) of the martensite, the heat capacity calculated from the corrected martensite 

DOS is shown by the solid curve in figure 3.2. The agreement with the experimental 

data is quite good. Herget, et al. [84] measured the neutron-weighted phonon DOS of 

Ni50.5Ti49.5 at 200, 296 and 406 K using a TOF spectrometer with an incident neutron 



Figure 3.5: The upper curves show the uncorrected and corrected martensite DOS. 
The thin curve is the neutron-weighted martensite DOS, obtained by averaging the 
measurements at 127 and 177 K. The thick curve is the neutron-weighted DOS mul- 
tiplied by the correction function F(E). The lower plot shows the correction function 
F(E), derived from Born-von KArmAn lattice dynamics simulation. 

energy of 52 meV. They compared the heat capacity taken from the literature to  the 

heat capacity generated from their neutron-weighted martensite DOS. Although the 

two are in rough agreement, it is clear that their heat capacity curve, shown in 

figure 3.2, is in error because it exhibits a linear dependence on temperature at  low 

temperatures where it should be decreasing much more rapidly. As noted above, a 

substantial correction, F(E) of equation 3.3, is required if the neutron-weighted DOS 

is to  be consistent with the calorimetric heat capacity. Our neutron-weighted DOS 

agrees very well with the curves of Herget, et al. The shapes of our corrected phonon 

DOS curves are different, of course, as shown in figure 3.5. Unlike this earlier study, 



Figure 3.6: Phonon DOS of NiTi from 8 to 573 K. The thin curve with error bars is 
the average of the DOS curves from 127 to 177 K, the bold curve is the 300 K DOS, 
and the unadorned thin curve is the 573 K DOS. 

which found no statistically significant softening between the 296 and 406 K data, 

our measurements to 573 K seem to show a softening in the DOS. 

3.4 Discussion 

3.4.1 Vibrational Entropy 

In the quasi-harmonic approximation, the vibrational entropy of phase A, Sab (T), is 

calculated from the DOS of phase A at temperature T, g + ( ~ ) :  

where n~ is the Bose-Einstein distribution. The vibrational entropy of the martensite- 

austenite phase transformation can be calculated from the respective DOS curves as 



austenite martensite as:;a = svib (T,) - svib (T,) (3.5) 

where T, is the transformation temperature and S$,(T,) is given by equation 3.4 

using g$, (E) of phase A. From the phonon DOS curves of figure 3.6, AS:;" 0.57 k 

0.03 kB/atom at  300 K. This value falls within the bounds on ASm-" as measured 

by calorimetry (see Table 3.1). Contributions to ASm-" from non-vibrational sources 

are either small or mutually-cancelling. 

By using phonon DOS curves obtained at different temperatures T, equation 3.4 

can account for the anharmonic contributions to the vibrational entropy. For our 

two DOS curves of the austenite phase obtained at 300 and 573 K,  AS?, can be 

calculated as 

The anharmonic contribution to the vibrational entropy of an individual phase can 

be calculated with the classical formula 

where B, u and ,O are the temperature-dependent bulk modulus, specific volume 

and coefficient of volume thermal expansion. We evaluated equation 3.7 at 300 K 

using our measured coefficients of volume thermal expansion: 36 f 2 x 10-6K-1 for 

austenite and 30 k 2 x 10-6KE(-1 for martensite. Values for B and v were taken from 

the literature [91,92]. Lacking data on the temperature dependence of B, v and P, we 

assume them constant. The anharmonic contribution to the total entropy of either 

state at 300 K is on the order of 0.02 kB/atom. The anharmonic contribution t o  

AS:;" is the difference between two very small numbers, and is negligible. A similar 

analysis provides a value of 0.05 ks/atom for the anharmonic vibrational entropy 

change in austenite from 300 to  500 K. This anharmonic contribution to the entropy 

of the austenite is smaller than that obtained from the phonon DOS. The discrepancy 
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could originate with errors in /3 or in an exaggerated difference between the austenite 

phonon DOS at 300 and 570 K. 

3.4.2 Premartensitic Phonon Softening 

Previous neutron scattering investigations on NiTi have studied the premartensitic 

phonon softening of the austenite phase. It was reported that the softest mode in the 

[[[O] transverse acoustic (TA2) phonon dispersion branch, the mode at 

softens from 4 meV at 623 K to 0 meV as the martensite transformation temperature 

is approached upon cooling. Our phonon DOS curves do not show this softening, 

but we do not expect to see it. We estimated the number of modes involved in the 

softening by assuming they occupied a spherical volume in k-space with a diameter 

equal to the width of soft phonons in the [I101 TA2 branch. We find that at most a 

half percent of the total number of phonons in NiTi participate in this softening, and 

thus the premartensitic phonon softening at  ko is imperceptible in the total phonon 

DOS. Furthermore, the relevant phonon energies lie entirely beneath the elastic peak 

footprint of our TOF data, so the relevant featues would have been eliminated by our 

stripping of the elastic peak. 

3.4.3 Soft Acoustic Phonons in B2 Austenite 

The martensite and austenite have very similar DOS at the highest phonon energies. 

The high energy cutoffs are identical, within the limits of experimental resolution. 

Our lattice dynamics simulations using the force constants of Table 3.2 show that the 

optical phonons do not account for any modes below 20 meV, but account for most 

of the modes above this energy. Changes in the optical modes do not have much 

thermodynamic significance for the martensitic transformation. 

The martensite and austenite DOS differ most significantly in the low-energy 

region. The softer acoustic branches in B2 NiTi contribute sufficient entropy to  



stabilize the austenite with respect to  the martensite at modest temperatures. From 

the many studies of soft acoustic modes in the bcc and B2 structures [93, 94, 95, 

96, 971, we know that although the TA2 phonon branch at ko undergoes the most 

dramatic change near the martensitic transformation, the entire [I101 TA2 phonon 

branch undergoes a significant softening with decreasing temperature [80]. According 

to Zhao and Harmon [89], the peculiar temperature behavior of this phonon branch 

originates with a strong coupling between its phonon modes and nested electronic 

states on the Fermi surface. The Fermi surface smearing that occurs with higher 

temperatures reduces the strength of the electronic nesting, and thus reduces the 

phonon softening. Nevertheless, the difference between the austenite and martensite 

DOS shown in figure 3.6 covers the energy range up to 17 meV, which also involves 

the longitudinal acoustic (LA) phonon branch. 

Our lattice dynamics simulations showed that the [[[O] TA2 dispersion is most 

sensitive to the axially-symmetric first nearest-neighbor (Inn) transverse force con- 

stant (@?"). In bcc structures, small perturbations in @pn lead to large changes in 

the [[to] TA2 dispersions and smaller changes in the other high symmetry acoustic 

phonons. In B2 structures the Inn radial force constant, @En, also has a large effect 

on the [tt0] LA dispersion, and small effects on the optical modes. Zhao and Har- 

mon [89] asserted that only the [[to] TA2 and LA modes couple strongly with the 

nested Fermi states in NiTi, which lends credence to the suggestion that the @Yn force 

constant displays the strongest temperature dependence in NiTi and related alloys. 

This phenomenon can be seen in the data of Heiming and coauthors [98], who mea- 

sured phonon dispersions in bcc zirconium at 915, 1210 and 1610 " C, and fitted them 

to  a 5th nearest-neighbor Born-von KArm&n model. The [[to] TAI dispersion in bcc 

Zr shows the same anomalous temperature behavior as in NiTi. Furthermore, exam- 

ination of their force constants for Zr, converted from tensorial to axial form, shows 

that @?" decreases in the sequence 0.147, 0.543 and 1.215 N/m at 1610, 1210 and 

915 " C. In contrast, the first nearest-neighbor radial axial-symmetric force constant 

a?" stays unchanged at 24.12, 24.482 and 24.481 N/m over the same temperature 

range. The softening of the TA1 and LA branches are visible in the full phonon DOS, 
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with the modes in the lowest energy van-Hove singularity (approximately 10% of the 

total) softening 2-3 meV as the temperature decreases, while the rest of the DOS 

remains stationary. 

Conclusions 

Inelastic neutron scattering measurements of the phonon DOS of NiTi were accom- 

panied with ancillary measurements of heat capacity and thermal expansion. We 

developed a Born-von KArmAn lattice dynamics simulation to calculate a neutron de- 

weighting correction for the neutron-weighted austenite DOS. The correction function 

proved robust, and reasonably insensitive to the choice of force constants in the lattice 

dynamics model. There is a large entropy difference of 0.5 k 0.05 kB/atom between 

the austenite and martensite phases at the martensitic transformation temperature of 

NiTi. The entropy is nearly all vibrational in origin. More specifically, it originates 

with the relative softness of the acoustic modes of austenite compared to those of 

martensite. We found that the acoustic phonon branches are most sensitive to the 

axially symmetric first nearest-neighbor transverse force constant. Changes in this 

@pn could also be responsible for the mode softenings that provide the mechanism 

for the martensitic transformation in NiTi and in bcc Zr. 



Chapter 4 The Temperature Dependence 

of the Phonon Entropy of Vanadium 

4.1 Introduction 

Although there have been many measurements of macroscopic equations of state of 

solids [99], there is, unfortunately, much less experimental data on the temperature 

and volume dependence of the phonon density-of-states (DOS). A few studies on the 

temperature dependencies of phonon dispersions have been performed [98, 100, 101, 

1021, but they were presented in the context of diffusion and kinetic mechanisms 

of structural phase transitions, not of phonon thermodynamics. Ultimately there 

should be a rationalization of macroscopic equations of state in terms of the specific 

changes in phonons and electrons that underlie the relationships between pressure, 

temperature, and volume. The present investigation was undertaken to help identify 

the individual thermal contributions to the entropy of phonons and electrons. 

Calculations of the electron entropy and its effect on heat capacities of transition 

metals were reported by Eriksson, Wills and Wallace [7]. By calculating the full 

electronic entropy, Sell and using heat capacity data and phonon DOS measurements 

in the literature, these authors deduced the phonon anharrnonicity from the simple 

relationship for the total entropy, Stat: 

where Shar is the harmonic phonon entropy. This Shar originates from the part of 

the phonon DOS that is unchanged with temperature. The anharmonic contribution, 

Sanh, originates with the temperature-dependence of the phonon DOS, and is typi- 

cally represented by cubic and quartic terms in the interatomic potentials that lead to  
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phonon-phonon scattering and shifts in the energies of individual phonon states. The 

"quasi-harmonic" approximation used in this paper captures most of the effect of an- 

harmonicity on the phonon entropy of a solid. This approximation assumes harmonic 

vibrations, but with a phonon DOS characteristic of the elevated temperature. 

Vanadium is an ideal element for measuring a phonon DOS because it scatters 

neutrons incoherently and has a cubic crystal structure. These properties allow its 

phonon density of states (DOS) to be obtained rigorously from inelastic neutron scat- 

tering spectra. A recent measurement of the phonon DOS of vanadium at ambient 

conditions [I] was undertaken with little complication, and many previous measure- 

ments have been performed with generally good success [103, 104, 105, 106, 107, 108, 

109, 110, 111, 112, 113, 114, 1151. Using similar techniques, we measured the phonon 

DOS of vanadium at 293, 873, 1273 and 1673 K. We assess the thermal broaden- 

ing of the phonon DOS, and interpret it as phonon lifetime broadening. We also 

assess the temperature dependence of the phonon DOS in terms of the phonon soft- 

ening predicted under thermal expansion. This volume dependence of the phonon 

DOS overestimates significantly the observed thermal softening of the DOS. A pure 

temperature dependence of the phonon DOS, comparable in size to the volume de- 

pendence, is deduced. Using phonon data from the literature, we perform similar 

assessments of the anharmonic contributions to the entropy of chromium, niobium, 

titanium and zirconium. 

4.2 Experimental 

Vanadium slugs of 99.9% purity were arc melted into 7 button ingots of 10 g mass. 

The ingots were stacked vertically within a thin-walled vanadium can to provide a 

sample with cylindrical geometry, prior to mounting within an AS Scientific furnace 

that was kept under high vacuum for all measurement. Inelastic neutron scattering 

spectra were measured on the HB2 and HB1 triple-axis spectrometers at the HF'IR 

research reactor at Oak Ridge National Laboratory. The magnitude of the scattering 

vector Q and final neutron energy Ef were fixed at 4.6 A-1 and 14.8 meV. The incident 
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neutron energy was varied to provide an energy transfer from 50 to -2 meV. A total of 

7 scans on the HB2 spectrometer were taken at temperatures of 293, 873 and 1273 K, 

including an empty furnace measurement at 293 K. Two more scans were taken on 

the HB1 spectrometer at 293 and 1673K. The spectrometer energy resolution was 

estimated as 1 meV. 

4.3 Analysis and Results 

4.3.1 Phonon Density of States 

The individual scans were corrected for the scattering from the furnace using the 

empty-can runs. The data below 2meV were dominated by the large elastic peak, 

but this peak was easily deleted. The raw data are featureless and linear in energy 

transfer at low energies, which allowed for the inelastic portion of the scattering 

below 2rneV to be estimated. Data so corrected were analyzed in the incoherent 

approximation to obtain the phonon DOS. Our iterative procedure generates a self- 

consistent multiphonon scattering contribution, and for an incoherent scatterer with 

cubic symmetry it involves no approximations [88]. An advantage of a triple axis 

scan is that the scattering vector Q is fixed, so the Q-dependence of the energy 

transfer is eliminated. The Q-space is sampled over only a very small range, but for 

an incoherently-scattering sample this does not pose a problem, and the phonon DOS 

can be extracted reliably. The final phonon DOS curves are shown in figure 4.1. 

4.3.2 Vibrational Entropy 

In the quasi-harmonic approximation the phonon DOS at temperature T and volume 

V, gT,v (E), provides the the phonon entropy at temperature T, SPh(T): 

where nE is the Bose-Einstein distribution at temperature T. A generalized version 



Figure 4.1: Phonon DOS of vanadium at 293, 873, 1273 and 1673 K. Temperatures 
are as labeled. Measurements at 293, 873 and 1273 K were taken on spectrometer 
HB2, shown in the bottom half of figure. Measurements taken on spectrometer HB1 
at 1673 and again at 293 K are shown in the top half of figure. 

of equation 4.2 provides Sph(V, Ti, Tj) ,  where the phonon DOS gTi,v(E) is measured 

at temperature Ti and volume V, and n~ is evaluated at temperature Tj. 

A conventional textbook analysis of anharmonic behavior reconciles the observed 

softening of the phonon DOS with the thermal expansion. This is done by minimizing 

a free energy comprising a positive elastic energy from expansion against the bulk 

modulus, and a phonon entropy that increases as the phonon DOS softens under 

thermal expansion. This anharmonic entropy is 

where the entropies on the right-hand side are obtained from phonon DOS curves 

measured at volumes and temperatures V1, TI  and Vo, TO. Using our experimentally- 

determined phonon DOS curves, the results for vanadium are shown as the crosses in 



figure 4.2, where To = 293 K, Vo is the volume at 293 K,  and T1 is along the abscissa. 

The near-zero values at 873 and 1273K reflect the negligible shifts in the vanadium 

at 1673 K originates phonon DOS between 293 and 1273 K. The large value of Sph 

with the large softening of the DOS between 1273 and 1673K (seen in figure 4.1). 
AV,AT 

The uncertainty in the values of Sph are from counting statistics. 

Figure 4.2: Anharmonic entropy contributions to V. Bold curve is as computed from 
equation 4.5. Crosses are computed from the phonon DOS of vanadium using equa- 
tion 4.3. The solid circles are the difference between the bold curve and the crosses 
(the solid circle at 1673 K is obtained by extrapolating the bold curve to higher tem- 
peratures). The solid curve is the quantity of equation 4.10. The other curves are 
labeled with notation used in the text. 

A similar quantity, s;:'*~, can be calculated for the total thermodynamic en- 

tropy. Like the anharmonic phonon entropy, it originates with the thermal expansion 

against the bulk modulus, but includes the effects of thermal expansion on all entropy 

contributions, including the electronic ones. Classical thermodynamics provides the 

relationship between the heat capacities at constant pressure and volume, Cp and 

Cv, which when divided by T and integrated from To to  T1 gives 



where B, v and /3 are, respectively, the bulk modulus, the specific volume and the 

coefficient of volume thermal expansion. The quantity St,t(V, T) is the total entropy 

at volume V and temperature T, and V(P, TI) is the volume at fixed pressure P and 

temperature TI. Thus V1 = V(P, TI)  and Vo = V(P, To). Equation 4.4 accounts for 

the volume dependence of the total entropy, not just the phonon entropy. Subtracting 

we obtain: an electronic contribution, Sel 

T1 AV,AT 
Sph(V1, TI) - Sph(V01 TI)  = / B V  PZ dT - Sel 

To 
(4.5) 

We rewrite equation 4.5 with the generalized notation presented earlier: 

is the difference in electronic entropy at constant The electronic term, Sel 

pressure versus constant volume over the temperature range AT. It is obtained by 

comparing the electronic density of states at Val To with that at V1, T1. This elec- 

tronic term is typically small compared to the total anharmonic entropy, and can 

have either positive or negative sign. Evaluating S F  for elemental vanadium using 

variables taken from the literature [75], we obtain the bold curve in figure 4.2. The 

electronic term in equation 4.5 was calculated using the electronic Gruneisen param- 

eters provided by Eriksson, Wills and Wallace [7], with the experimental thermal 

expansion. It is shown as the dashed curve in figure 4.2. 

The discrepancy between the bold curve and the crosses on figure 4.2 is quite 

large up to 1273 K. A comparison of equations 4.7 and 4.3 shows that the discrepancy 

between S~:"~(T~) and Sfc(Tl)  likely originates with the difference between the 

quantities Sph(Vo, TI, TI )  and Sph(Vo, To, TI) .  The significance of this difference is 
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discussed in section 4.4.2. 

4.3.3 Phonon Broadening 

One effect of temperature on phonons is to  reduce their lifetimes, and thus broaden 

their energies. This is commonly attributed to increased phonon-phonon scatter- 

ing due to  the increase in phonon occupations at high temperature. This energy 

broadening is observed in the DOS as a general smearing of features such as van 

Hove singularities and the high energy cutoff 11161. The energy broadening of a sin- 

gle phonon mode at energy 6 is expected to have the form of a damped harmonic 

oscillator, D,, (c) 

The only free parameter in equation 4.8 is Q ,  the quality factor of the oscillator. 

Convolving equation 4.8 with the DOS obtained at the lowest temperature of 293 K, 

we adjusted Q to give the best fit to the DOS obtained at 873 and 1273 K. Figure 4.3 

shows the excellent agreement between the measured 873 and 1273 K DOS curves and 

the best fits generated by broadening the 293 K DOS with equation 4.8. Figure 4.4 

shows the optimal (inverse) Q versus temperature. The behavior of inverse Q as 

a function of temperature shows a large broadening of phonon energy with rising 

temperature, but we cannot state conclusively that the temperature dependence is 

linear or quadratic. 

4.4 Discussion 

4.4.1 Phonon DOS Curves 

Figure 4.5 shows that our phonon DOS of vanadium at 293K agrees well with the 

earlier result of Sears, Svensson and Powell [I]. We do not find the small peak at 

5 meV seen by Sears, et al., but this is a small feature about which these investigators 



Figure 4.3: Symbols are phonon DOS of vanadium at $73 and 1273 K. Solid curves are 
293 K DOS broadened by convoluting with the damped harmonic oscillator function 
of equation 4.8. 

were uncertain. The phonon DOS of vanadium is essentially constant up to 1273 K, 

subject only to broadening. Between 1273 and 1673 K, the DOS undergoes a large 

softening in energy. The temperature behavior of the DOS is inconsistent with what 

is expected from equation 4.5, which suggests that the DOS should soften gradually 

between 293 and 1673 K. 

4.4.2 Anharmonic Entropy 

The high temperature behavior of the vanadium phonon DOS is troubling because it 

is inconsistent with the predicted increase in volumetric phonon entropy, St:, given 

by equation 4.5. This discrepancy can be accounted for on the basis of the difference 

between equations 4.3 and 4.5. A difference between S ~ ( T )  and s ~ : ' ~ ~ ( T )  requires 

an explicit temperature dependence of the phonon DOS, countering the common 



Figure 4.4: Best-fit inverse Q versus temperature. 

assumption that phonon frequencies depend only on volume. For vanadium a tem- 

perature dependence of the phonon DOS is needed to  reconcile the negligible phonon 

softening of the DOS with that expected from thermal expansion. 

The difference between equations 4.3 and 4.7 is the entropy overlooked by ignoring 

the temperature dependence of the DOS. We call it Sanh, where 

Equation 4.9 is nonzero only if Sph(V, T, T') has a functional dependence on T.  This 

occurs only if the phonon DOS varies with temperature at a fixed volume. The 

quantity Sanh is plotted as the solid circles on figure 4.2, and is the difference between 

the crosses and the bold solid curve of figure 4.2. 

Eriksson, Wills and Wallace used a different approach to obtain the anharmonic 

vibrational entropy of elemental vanadium at high temperature [7]. They calculated 



Figure 4.5: Phonon DOS of vanadium at 293 K. Present data are the solid circles and 
solid curve is from Sears, et al. [I]. 

the electronic entropy from first principles, and obtained the harmonic vibrational en- 

tropy from a volume-corrected phonon DOS taken from the literature. By subtracting 

the electronic and vibrational entropy contributions from calorimetric measurements 

of the total entropy, they arrive at the anharmonic entropy: 

EWW Sanh (TI )  = Sph(Vo, TI, TI) - Sph(Vo,O, T I )  (4.10) 

Equations 4.9 and 4.10 are near-identical, differing only insofar as the temperature To 

differs from zero. The anharmonic entropy calculated by Eriksson, Wills and Wallace 

is shown as the thin solid curve in figure 4.2. The quantity Sanh of equation 4.9 is 

shown as the solid circles in figure 4.2. In principle, the two curves should differ only 

insofar as the phonon DOS of vanadium differs between 0 and 293K. We note that 

the solid circles and the thin solid curve coincide almost exactly. This agreement 

between equations 4.9 and 4.10 is impressive, considering that Sanh was constructed 

using a temperature-dependent phonon DOS and measured elastic constants, whereas 
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S:lW was derived from heat capacity data and electronic structure calculations. The 

calculation by Eriksson, Wills and Wallace even captures the large softening of the 

phonon DOS near 1673 K - Eriksson's curve goes from negative to  positive near this 

temperature. 

Eriksson, Wills and Wallace's work lends support to our assertion that the sta- 

tionary behavior of the phonon DOS of vanadium up to 1273K is caused by a pure 

temperature dependence of the phonon energies. The strongly-positive bold curve 

in figure 4.2 (from classical thermodynamics with a small correction for electronic 

entropy) shows that expanding the crystal volume at constant temperature causes a 

softening of the phonon DOS. The phonon DOS of vanadium is nearly unchanged 

up to 1273 K, however, even though the cryst a1 expands. We therefore conclude that 

the volurne and temperature effects on the phonon energies are nearly equal and op- 

posite from 293 to 1273 K. The phonon DOS of vanadium hardens with increasing 

temperature at fixed volume. The most likely source of a pure temperature effect on 

EWW EWW the phonon energies is phonon-phonon scattering because Sanh N Sanh , and Sanh 

is unambiguously identified as originating with phonon anharmonicity. 

4.4.3 Chromium, Niobium, Titanium and Zirconium 

Results from a number of investigations performed over the past decade suggest sim- 

ilar or related behavior in other bcc transition metals at high temperature. The 

behavior of the phonon DOS of chromium, titanium, niobium and zirconium at high 

temperature are all in disagreement from what is expected from measured thermal 

expansions, even when corrected for the electronic entropy. These discrepancies can 

be quantified by taking the difference of equations 4.7 and 4.3. This difference is 

Sanh, as calculated in equation 4.9. The values of Sanh for these elements, shown on 

figure 4.6, are nonzero and increase monotonically with temperature. 

A high-temperature DOS consistent with equation 4.5 would yield negligibly small 

values of Sanh. Evaluating equation 4.5 required the use of thermal expansion coeffi- 

cients taken from the literature [75] and elastic constants extracted from the phonon 



Figure 4.6: Anharmonic entropy of elemental chromium, niobium, titanium and zir- 
conium as calculated from equation 4.9. Results labeled "EWW" are from Eriksson, 
Wills and Wallace [7]. 

dispersion measurements. 

Measurements by Heiming and coworkers [98] showed that the phonon DOS of 

bcc zirconium hardens significantly with increasing temperature (figure 4.7). Eval- 

uation of equation 4.5 for bcc zirconium suggests, however, that the phonon DOS 

should exhibit the opposite behavior. The discrepancy can be quantified with the 

anharmonic entropy of equation 4.9, shown in figure 4.6. The electronic anharmonic 

entropy needed for equation 4.5 is unavailable for zirconium. Although our evaluation 

of equation 4.9 for zirconium neglects this term, we expect it to change our result 

by at  most 25 %, as estimated from niobium. The vibrational anharmonic entropy, 

Sanh, of zirconium is large and negative in the high temperature bcc phase. A large 

thermal hardening of the phonon DOS at constant volume is required to explain the 

temperature-dependence of the phonon DOS. Our conclusion is supported by ab-initio 



calculations of the effect of phonon-phonon scattering on the energies of five unstable 

phonon states in bcc Zr [117]. Ye and coauthors showed that fourth order phonon 

anharmonicites made enorlnous positive shifts to the energies of selected modes at 

high temperature. 

Figure 4.7: Phonon DOS of bcc zirconium, niobium and chromium at various tem- 
peratures from Heiming, et al. [98], Giithoff, et al. [loo] and Trampenau, et al. [loll.  
The DOS are offset vertically for clarity. 

Similar but less complete work on bcc titanium [I021 also shows anomalous tem- 

perature behavior - the phonon DOS of bcc titanium hardens noticeably between 

1208 and 1713 K. Evaluating equation 4.9 for titanium gives the anharmonic entropy 

shown in figure 4.6. The anharmonic entropy of bcc titanium is negative, and about 

half the size of that of zirconium, which lies in the same column of the periodic table. 

The unknown electronic contribution to equations 4.5 and 4.9 could modify our result 

substantially, but probably not qualitatively. 
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The phonon dispersions and DOS of bcc niobium at high temperature are also 

available from the literature [loo]. A close examination of the temperature-dependent 

DOS in bcc niobium, reproduced in figure 4.7, shows that many acoustic modes 

near 15 meV harden significantly between 293 and 773 K. Accordingly, the agreement 

between equations 4.5 and 4.3 is poor, and the anharmonic entropy calculated with 

equation 4.9 is substantially negative. The electronic contribution to equation 4.5 was 

calculated using the DOS and electronic Griineisen parameters ~rovided by Eriksson, 

Wills and Wallace (71. Our result is in excellent agreement with the previous estimates 

by Eriksson, Wills and Wallace [7], as marked in figure 4.6. The temperature behavior 

of the niobium DOS is very similar to that of vanadium, with little change up to 

1000 K. (Vanadium and niobium both lie in the same column of the periodic table.) 

The case of niobium is important because it points out that the average phonon 

energy shifts, as inferred by evaluating equations 4.5 and 4.9, can be quite different 

from the energy shifts of individual phonon modes. For the case of bcc niobium, a 

large number of transverse phonons harden with temperature, but a similar number of 

longitudinal phonons soften with temperature, leading to zero average shift of phonon 

energies. 

The phonon DOS of bcc chromium has been measured from 293 to 1773 K [loll.  In 

contrast with zirconium and titanium, the DOS of chromium softens enormously over 

this temperature range, as shown in figure 4.7. The anharmonic vibrational entropy as 

calculated with equation 4.3 is twice as large as that calculated from equation 4.5. The 

discrepancy is accounted for by the explicit temperature dependence of the phonon 

energies. For chromium, however, this is a pure thermal softening of the DOS, instead 

of the hardening that occurs for vanadium, niobium, zirconium and titanium. The 

anharmonic entropy of bcc chromium as given by equation 4.10 was calculated by 

Eriksson, Wills and Wallace [7], and is shown in figure 4.6 as solid crosses. The 

electronic contribution to equation 4.5 was calculated using the DOS and electronic 

Griineisen parameters provided by Eriksson, Wills and Wallace [7]. The anharmonic 

entropy calculated using equation 4.9 is shown in figure 4.6. Our result is half that 

obtained by Eriksson, et al., but we are encouraged by the agreement in sign and 
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magnitude. Perhaps local magnetic effects play a role in the thermodynamics of 

chromium, even at these high temperatures. 

4.5 Conclusions 

The phonon DOS of bcc vanadium was measured using the time-of-flight triple axis 

spectrometers on the HB2 and HBl  beam lines on the HFIR reactor at the Oak 

Ridge National Laboratory. The DOS showed little change up to 1273 K,  and a 

large softening at  1673K. The behavior of the phonon DOS leads us to conclude 

that volume expansion and rising temperature exert equal and opposite shifts in the 

phonon energies up to  1273K. In practice, the phonon DOS depends as strongly on 

temperature as it does on volume. The most likely physical explanation for this pure 

temperature dependence is phonon-phonon scattering. Similar effects are also found 

by analyzing previous high-temperature data on bcc chromium, zirconium, niobium 

and titanium. 
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Chapter 5 The Vibrational Entropy of 

Alloying and Ordering in Cu-Au 

5.1 Introduction 

5.1 .I Alloying in Cu-Au 

The Cu-Au binary alloy system has long been of interest in the study of metals. 

Cu and Au form a face-centered cubic (fcc) single-phase solid solution at arbitrary 

compositions. Near the compositions CusAu, CuAu and CuAus the stable phase 

at low-temperature is a chemically ordered one: L l o  for CuAu and L12 for the re- 

maining two. The chemical ordering can be suppressed by quenching the alloys from 

high temperature. The ordering transformations in Cu-Au have made it a model 

system for both theoretical and experimental studies of ordering. Early interest in 

ordering has also led to the study of many different properties in Cu-Au: elastic 

constants [llS], heat capacity [I191 and lattice dynamics [56]. These studies have 

focused upon the differences between the ordered and disordered phases at specific 

compositions. Among these studies is a recent measurement of the vibrational en- 

tropy of ordering in Cu3Au using low-temperature heat capacity [37]. There has been 

no study focused exclusively on the vibrational entropy of the chemically disordered 

phase. The presence of a common chemically disordered phase throughout the phase 

diagram of Cu-Au allows for a model experiment: we can measure the composition 

dependence of the vibrational entropy in the absence of changes in crystal structure 

and chemical order. Because this phase is chemically-disordered, the study offers 

challenges and opportunities. 

The presence of chemical disorder presents enormous difficulties to computational 

and theoretical studies. Without long-range chemical order, Blochis theorem no 
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longer applies and states (electronic and vibrational) can no longer be labeled by 

wave-vector. Without the simplifications allowed for by Bloch's theorem, and in the 

presence of unknown local relaxations, true ab-initio calculations are prohibitively ex- 

pensive and methodologically uncertain. Presently, ab-initio efforts to calculate the 

electronic energy (a pre-requisite to calculating the phonon energies) of the disordered 

phase use a number of approximations. Approximations such as the special quasi- 

random structure (SQS) [14] or the cluster variation model [lo] attempt to match the 

short-range chemical correlations present in the disordered phase using calculations 

done on chemically ordered phases. These approaches introduce errors of unknown 

magnitude because not all chemical correlations are included in the matching process. 

Empirical models such as the embedded-atom method (EAM) overcome these obsta- 

cles by performing calculations on large chemically disordered supercells, including 

local relaxations. However, these calculations are only as good as the potential model 

being used. Typically, the EAM method gives good results for some alloy proper- 

ties but poor results for others. In the absence of a reliable theory, experiments on 

chemically-disordered alloys are especially important. 

The measurement of the vibrational entropy in chemically-disordered Cu-Au pre- 

sents challenges not encountered in chapters 2, 3 and 4. The presence of chemical 

disorder disallows the use of a Born-von K&rm&n model to extract the DOS and 

entropy from triple-axis measurements of the phonon dispersions, as was done in 

chapter 2. Cu and Au are strong coherent scatterers of neutrons, and this prevents us 

from measuring the phonon DOS directly using a triple-axis spectrometer, as we did 

in chapter 4. In this alloy system with strong chemical disorder, the instrument of 

choice is a time-of-flight (TOF) spectrometer. However, Cu phonons scatter neutrons 

more than three times as efficiently as Au phonons, which gives rise to the problematic 

neutron-weight correction to the phonon DOS. A very similar difficulty was observed 

in chapter 3 with NiTi, which was solved using Born-von KArm&n lattice dynamics to  

estimate the neutron-weight correction. The presence of chemical disorder prevents 

us from following the same approach with Cu-Au. Much of this chapter is devoted 

to developing a reliable methodology for deriving the vibrational entropy from the 
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neutron-weighted phonon DOS. In the process, we learn much about the composition 

dependence of the partial vibrational entropies of Cu and Au. 

5.1.2 Ordering in Cu3Au 

Alloys near the composition Cu3Au undergo an order-disorder transition at high tem- 

perature. The low-temperature phase has the ordered L12 structure, while the high 

temperature phase is a chemically disordered face-centered cubic (fcc) phase. In both 

cases the parent lattice is fcc. The first-order transition from chemical order to dis- 

order occurs at 390 "C. This critical temperature (T,) is determined by the energy 

and entropy difference between the two phases. The energy difference between the 

two phases can be estimated by modern electronic structure calculations (more accu- 

rately for the ordered than disordered phase), and the configurational entropy is well 

understood through cluster-variation calculations or Monte-Carlo simulations. The 

vibrational component of the transit ion entropy, A S O , ~ ~ ,  is less accessible by theory. 

Nagel, Anthony and Fultz obtained a AS:;: value of 0.14 f 0.05 ks/atom at 300K 

using low-temperature calorimetry, where 

and Sdis, Sord are the entropies of the disordered and ordered phases. Using a Born- 

von Kiirmiin model with force constants taken from phonon dispersion measurements 

of the ordered and disordered phases [56], the phonon entropy difference AS::: is 

estimated as 0.23 ks/atom at 300 K. This measurement by Kat ano is the most direct, 

yet suffers seriously from the use of the virtual-crystal approximation to  interpret 

the disordered phase lattice dynamics within the Born-von Kiirmiin model. The 

calorimetric measurement has a large uncertainty that stems from the difficulty of 

measuring the difference in heat capacities of the two phases. Ozolipi, Wolverton 

and Zunger calculated a AS:!: value of 0.06 ks/atom at 300 K using the cluster- 

variation method to model the vibrational entropy of the disordered phase from ab- 

inito calculations of the lattice dynamics of ordered Cu-Au phases. Both experiment a1 



values are substantially larger than the value calculated by Ozoliqg, Wolverton and 

Zunger. However, the vibrational entropy difference at 300 K is not necessarily the 

same as the vibrational entropy difference at T,. The vibrational entropy difference 

within the quasiharmonic approximation is a function of the phonon DOS, and the 

phonon DOS of either or both phases change as the phases expand and absorb heat 

between 300 and 663 K. If the phonon DOS of the two phases change unequally, then 

the vibrational entropy difference between the two phases will not remain the same 

between 300 and 663 K. 

The use of a time-of-flight (TOF) spectrometer to measure the differences in vi- 

brational entropy between the ordered and disordered phases of Cu3Au has distinct 

advantages and distinct challenges. Through our measurement of the phonon excita- 

tions, our value of the phonon entropy is more direct than calorimetry. Additionally, 

by direct measurement of the phonon spectrum, we avoid the use of a Born-von 

KArmAn model and the unreliable virtual crystal approximation. The TOF spec- 

trometer data can be corrected to obtain the DOS directly. The challenge for this 

method is the uncertain neutron-weight correction needed to obtain the phonon DOS 

from the neutron-weighted DOS (see section 3.3.3). 

5.2 Experimental Methods 

5.2.1 Disordered Cu-Au Alloys 

Six Cu-Au alloys of varying composition were prepared for neutron scattering. Au 

shot of 99.99% purity and Cu shot of 99.999% purity were arc-melted in the right 

proportions as to provide ingots with composition Cu,Aul-,, where x are nominally 

96, 82, 75, 68, 50 and 25 atom %. Ingots were flipped in the crucible and arc-melted 

repeatedly to  ensure homogeneity. The ingot masses ranged from 35 to 88g. Ingot 

sizes were chosen so that the final specimens would scatter less than 10% of the 

incident neutron beam. Total mass lost during arc-melting ranged from 0.05 to 0.02 g, 

and there was no evidence of a surface oxide. Without knowledge of how much Cu 



66 

and Au accounted for mass lost during melting, we are unable to quantify this effect 

on the final ingot composition. However, we can make a worst case estimate (assume 

all the mass lost came from the minority element). Doing this, we get effects on the 

composition x of a few parts per ten thousand. Final ingot Cu concentrations were 

estimated as follows: 95.99, 81.99, 67.98, 50.00 and 24.99%. For simplicity we shall 

refer to these concentrations by their nominal values. 

Each ingot was subsequently cold-rolled to  a thickness of approximately 0.76 mm. 

Each cold-rolled ingot was cut and assembled into a mosaic sample of uniform thick- 

ness of dimensions 7 by 9 cm, preparatory to  mounting for neutron scattering. The 

Cu50A~50 sample was annealed briefly at 550 OC to eliminate work hardening during 

cold-rolling. Subsequent to  final cold-rolling and cutting, each specimen was annealed 

for 45 minutes at 850 C in evacuated quartz ampoules, then quenched into ice-brine 

to preserve chemical disorder. 

Chemical order was measured by x-ray diffractometry with Co K a  radiation using 

an Inel CPS-120 position sensitive detector. A representative diffraction pattern of 

the quenched material, presented in figure 5.1, shows an fcc material with no long 

range order. 

Inelastic neutron scattering spectra were measured with the time-of-flight (TOF) 

chopper spectrometer LRMECS, at the IPNS spallation neutron source at Argonne 

National Laboratory. All samples were encased in thin-walled A1 pans for mounting 

in the displex refrigerator of the LRMECS spectrometer. The plates and powder 

samples were mounted at a 45 degree angle normal to the incident beam to minimize 

self shielding. Spectra with an incident energy E; of 35 meV were measured at 300 K 

for all samples and an empty container. A run with a "black absorber" cadmium sheet 

in the sample position was measured at room temperature to improve the background 

correction. Detector response was calibrated with a run performed on a vanadium 

sample at room temperature, using broadband radiation without a fermi chopper. 

The instrument resolution function was determined with a vanadium run taken with 

E; = 35 meV. The continuous detector coverage on LRMECS, ranging from 3 to 117 O ,  

allowed a simultaneous probe of the spectral response over a large range of momentum 
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Figure 5.1 : X-ray diffraction pat terns of disordered C U ~ ~ A U ~ ~ .  Peak diffraction indices 
are labeled. 

and energy transfer ( K ,  &w), with I K ( w )  1 varying between 0.2 and 7 A-1 at zero energy 

transfer. 

5.2.2 Ordered Cu3.Au 

Neutron scattering spectra were measured on ordered and disordered CusAu using 

the same neutron TOF spectrometer with the same incident neutron energy. Repre- 

sentative x-ray diffraction patterns are shown in figure 5.2. The presence of the extra 

(100)-family of superlattice diffractions is evident in the ordered family. 



Figure 5.2: X-ray diffraction patterns of ordered and disordered Cu3Au. 

5.3 Analysis and Results 

5.3.1 PhononDensityofStates 

All TOF spectra were first normalized and corrected for detector efficiency and time- 

independent background following standard procedures. In this step, the detectors 

were combined into groups spanning 10 O each with average angles from 5 to 115 O. The 

scattering contribution of the container and spectrometer hardware to the observed 

spectra was determined using the runs on the empty container and Cd sample, and 

taking into account the sample absorption. The data below 3-4 meV are dominated by 

the large elastic peak, which was stripped from the data. The raw data are featureless 

and linear in energy transfer at small energy transfer in the hydrodynamic limit, 
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and thus are estimated easily. The neutron-weighted phonon density of states was 

determined from the corrected spectra with the procedure described in Appendix A. 

The final neutron-weighted phonon DOS curves are shown in figure 5.3. 

The neutron-weighted phonon DOS have in principle a significant neutron-weight 

correction. The quotient of ac,/mc, and aA"/mAu is 3.21, which implies that some 

parts of the neutron-weighted DOS could be underweighted by a factor of 3.21 com- 

pared to the true phonon DOS. The neutron-weight correction, as described in equa- 

tion 3.3, is different for each of the six alloys. We are unable to perform a Born-von 

KArmAn lattice-dynamics simulation, as we did in chapter 3, because the alloys are 

chemically disordered. In the next section we show that the neutron-weight correc- 

tion, although quite difficult for the phonon DOS, can be performed reliably and 

accurately for the vibrational entropy. 

5.3.2 Neutron-Weighted Vibrational Entropy 

Using equation 4.2, we can calculate the vibrational entropy from the phonon DOS. If 

we evaluate equation 4.2 using the neutron-weighted DOS instead of the true phonon 

DOS, we arrive at a quantity we call the neutron-weighted vibrational entropy, Ssy, 
where 

where gNw(E) is the neutron-weighted phonon DOS. Does the quantity S;F have 

any physical significance or theoretical usefulness? The answer is yes. Substituting 

equation 3.2 into equation 5.2 and allowing exp[-2(W - Wd)] = 1, we arrive at 



Figure 5.3: Neutron-weighted phonon DOS of disordered Cu,Aul-, alloys and ele- 
ments. 
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where Sd,ib is the vibrational entropy of atom d. By definition s$?' = Ed Sd,ib. For 

the case of Cu,Aul-, 

s:: = C (3.21s;$(x) + S$(1 - x)) (5.6) 

where S:;"b(x) and S$(l - x) are unknown functions of the concentration variable x. 

C is the normalization constant for the neutron-weighted DOS: 

The notation S $ i b ( ~ )  refers to the vibrational entropy of species d within a n  alloy 
Cux A,(, -,) where species d is at concentration x. By definition Svib = S:$(x) + S$(l - x). 

The neutron-weighted entropy is thus a neutron-weighted sum of the partial entropies, 

s$ib' 

In figure 5.4 we show the neutron-weighted vibrational entropies at 300 K of ele- 

mental Cu, Au and six disordered Cu-Au alloys. These values are as calculated from 

the neutron-weighted phonon DOS of figure 5.3. The values for elemental Cu and Au 

were taken from previous work [88], and the DOS are reproduced in figure 5.3. The 

entropies of elemental Cu and Au were measured in substantially the same manner as 

the Cu-Au alloys: the vibrational entropy was calculated from phonon DOS measured 

by TOF inelastic neutron scattering from bulk polycryst alline samples. In addition, 

the vibrational entropy of Cu and Au were verified by comparing with results from 

single-crystal phonon dispersion measurements [56]. These comparisons are shown in 

figure 5.5. 

Our approach to neutron-deweighting the vibrational entropy consists of infer- 

ring the real partial entropies from the neutron-weighted entropies, and from these 

constructing the true vibrational entropy. In the next section we show a variety of 

different met hods for accomplishing this task. 



Au concentration (%) 

Figure 5.4: Neutron-weighted vibrational entropies of disordered Cu-Au alloys at 
300 K. The dashed line is the straight line connecting the vibrational entropies of 
elemental Au and Cu. 



Energy (meV) 

Figure 5.5: (a) Phonon DOS of elemental Cu at 300 K. (b) Phonon DOS of elemental 
Au at 300 K. The bold lines are TOF results, and the thin lines are taken from 
triple-axis phonon dispersion measurements [120, 1211. 
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5.3.3 Neutron-Weight Corrections for Disordered Alloys 

Our goal is to derive the true vibrational entropies from the neutron-weighted vi- 

brational entropies. We shall proceed from the simplest corrections to the most 

complicated. 

Point Approximation 

The simplest chemical model of vibrational entropy assumes the point approximation: 

where 0 < x 5 1 and neither S:; or S$ are functions of x. Consolidating equa- 

tions 5.6 and 5.8 we arrive at 

where 

and 

Thus, s:$, = x$$ and S$ = (1-x)$$. We note that equation 5.10 has the form of 

the point approximation, equation 5.9, where x = k. Thus, we assert that Svib(k) = 

S:r(x). Using this scheme, the S:? for Cu50Au50 becomes the true value of Svib for 

C U ~ ~ A U ~ ~ .  The point approximation correction is shown in figure 5.6. 

The point approximation is strictly correct only if the partial entropies (and par- 

tial DOS) of Au and Cu stay unchanged as the alloy varies in composition between 

Cu,Aul-, and CukAuIpk. For x and k far apart, this approximation is likely to  have 

large errors. We can better make use of the point approximation by choosing alloys 

where x and k are close in value, as in the following procedure. 
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Figure 5.6: Neutron-weight corrected vibrational entropies of disordered Cu-Au alloys 
at 300 K. The dashed line is the straight line connecting the vibrational entropies of 
elemental Au and Cu. 

Modified Point Approximation 

In equation 5.10 the left-hand side is known and the right-hand side is unknown. 

This is a linear equation where there are two unknowns. Two such equations with 

the same two unknowns would allow us to solve for the partial entropies, and thus 

the real vibrational entropy. Each alloy composition provides us with one equation of 

form equation 5.10. We choose two adjacent alloy compositions, assume the partial 

entropies are the same for each composition, then solve. By choosing compositions 

that are close to each other, we can improve upon our previous point approximation. 

The partial entropies, 3:; and !?$, calculated in this fashion are an average of the 

two somewhat different partial entropies at each adjacent alloy composition. Thus, we 



assume the partial entropies derived in this fashion are most accurate not at the two 

Au concentration (%) 

compositions, but at  the average composition. Using the neutron-weighted entropies 

of the CussAu32 and CuSoAuso alloys, we calculate the average partial entropies 3;; 
= 4.12 kB and 3% = 6.41 kB. From these values we calculate the vibrational entropy 

of the alloy at composition C U ~ ~ A U ~ ~ .  The partial entropies of Au and Cu, calculated 

from pairs of adjacent compositions, are shown on figure 5.7. 

Figure 5.7: Partial vibrational entropies of Cu and Au in Cu-Au alloys. Open symbols 
are obtained in the modified point approximation. Bold lines are taken from a three- 
parameter generalized partial entropy model. 

" - 7 :  E 
0 
c. 

The total vibrational entropies, calculated from the partial entropies of figure 5.7, 

are shown on figure 5.6. We note that these agree well with the values computed 

from the point approximation. Although this method is in principle better than 

- 1 ~ 1 1 1 1 ~ 1 1 1 1 ~ 1 1 1 1 ~ 1 1 1 1 [ 1 1 1 1 ~ 1 1 1 1 ~ 1 1 1 1 ~ 1 1 1 1 ~ 1 1 1 1  - - - - ' - - - - - Au partial entropy - - - - - - - - - - - - - 

the point approximation, it suffers from large uncertainties in the computed partial 

entropies and total entropies. The errors become larger as the level of approximation 

becomes better. The closer the two alloys are in composition, the more accurate our 

assumption of equal partial entropies. Unfortunately, as the compositions become 

closer in value, it is more difficult to resolve accurately the difference in neutron- 

- ;!. cu partial entropy - - - - - ' x 6; ( A - A - 
w - V -2 

9 - - - - 
c6 - - - - - - - - 

5 '  - - - - - - - I - - v' V - - - - .i-? - - - 
v v - - 
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weighed entropies, given the uncertainties in the values of these entropies. The large 

error bars on the total entropy values at Cu concentrations of 78.5% and 71.5%, 

shown on figure 5.6, result from the small differences between the neutron-weighted 

entropies at alloy compositions Cus2Auls, C U ~ ~ A U ~ ~  and C U ~ ~ A U ~ ~ .  Unfortunately, 

with this method, any improvement in the approximation is negated by the magnified 

uncertainty in our final result. Nevertheless, it appears that the Au partial vibrational 

entropy per Au atom is largest at low Au concentrations. 

Au Resonance Mode 

The modified point approximation method, although lacking good convergence, has 

the ability to measure the partial entropies of each independent atomic species. It 

motivated the following neutron-weight correction. Each alloy composition gives us 

one equation of form equation 5.10. If we knew 5% we could solve for $:$ and then 

the vibrational entropy, using the relationship 

We need to make a suitable guess for 5%. To this end we shall examine the neutron- 

weighted DOS. An examination of figure 5.3 reveals certain regularities in the evolu- 

tion of the neutron-weighted DOS as a function of Au concentration. For Au concen- 

trations between 0 and 50%, we note that the peak at 9 meV grows proportionally 

with increasing Au concentration. Related phenomena have been observed in phonon 

dispersion measurements of Cu-Au [I221 and Cr-W [123, 1241 dilute alloys. The pres- 

ence of a low-energy peak in Cu-Au alloys is well explained by the mass-defect theory 

of lattice dynamics [125], which we summarize here. The addition of a heavy atom 

to a matrix of light atoms results in a resonance mode at low energy associated with 

damped vibrations of the heavy atom. In the low solubility limit, the partial DOS 

of the heavy atom is a modestly sharp peak at the resonance energy. As the con- 

centration of the heavy atom increases in the alloy, the partial DOS of the heavy 

atom broadens and develops more features. We make the assumption that the partial 
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DOS of Au has this form, where the resonance energy is 9 meV. We use the following 

relationships 

and allow gAu(E) to be a Gaussian in energy E, of unknown width and centered at 

E=9 meV. We estimate the width of gAu(E) from calculations by Elliott and Tay- 

lor 111261. Elliott and Taylor calculated the phonon DOS of 3 and 10% Cu-Au alloys 

using an analytical Green-function technique. Their results are shown in figure 5.8. 

cut,, 

Figure 5.8: Phonon DOS of 3 and 10% Cu-Au alloys as calculated by Elliott and 
Taylor [126]. 

The DOS in figure 5.8 show a low-energy resonance peak at  9meV that grows 

proportionally with Au concentration. This peak is well-modeled as a Gaussian with 

a standard deviation of 2.5 meV. Using this width as a starting point, we extract the 



79 

Cu partial DOS, gcu(E), and total DOS gcuxnu,,-x, (E) at each alloy composition. Our 

results for alloy composition Cug6AuO4 are shown in figure 5.9. 

Figure 5.9: The neutron-weighted DOS, Au partial DOS and corrected DOS of 
Cug6Au04 alloy within the resonance peak approximat ion. 

Although not shown in figure 5.9, the Cu partial DOS is nearly identical to the 

neutron-weighted DOS, gNw (E). Using the corrected total DOS at each alloy compo- 

sition we can calculate the vibrational entropy. These values are shown in figure 5.6, 

and are in excellent agreement with the values from the point approximation and 

the modified point approximation at low Au concentrations. Our results do not de- 

pend sensitively on the width of the Gaussian that approximates the Au partial DOS. 

Varying the Gaussian width by a factor of two led to variations in the entropy smaller 

than the size of the open circles on figure 5.6. 
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Au Modified Resonance Mode 

The resonance-peak approximation for the Au partial DOS is a poor one for alloys 

with high Au concentrations. This is apparent by looking at the DOS of elemental 

Au in figure 5.3, which bears little resemblance to a gaussian in energy centered at 

9 meV. We can improve upon our scheme by assuming the Au partial DOS resem- 

bles the Gaussian resonance peak G(E) at low Au concentrations, the elemental Au 

DOS at high Au concentrations, and a weighted sum of the two at intermediate Au 

concent rations. Thus, 

6 CuxAu(1-x) 
~ A U  

(E) = x G(E) + (1 - x) g$!, "leme"" (E) (5.17) 

A CuxAu(~-x)  where gAu (E) is the partial DOS of Au within an alloy of Cu concentration x. 

The resulting values for the vibrational entropy using this improved approximation 

for the Au partial DOS are shown in figure 5.6. They are very close to the resonance- 

peak results, with large differences at the high Au concentration alloys. Where there 

are differences, we expect the approximation utilizing equation 5.17 to be the more 

reliable. 

5.3.4 Vibrational Entropy of Ordering of L12 Cu3Au 

The phonon DOS of ordered Cu3Au and disordered Cu3Au are shown in figure 5.10. 

The DOS of ordered Cu3Au was taken from the previous work [88]. The disordered 

Cu3Au DOS was derived by performing a neutron-weight correction on the neutron- 

weighted DOS of figure 5.3. For the ordered alloy, the phonon DOS is expected 

to  be highly reliable due to the precision with which the neutron-weight correction 

is known. This neutron-weight correction is calculated directly from the Born-von 

KirmAn lattice dynamics extracted from the measured phonon dispersions for ordered 

Cu3Au. For the case of disordered CusAu, no such Born-von Kirmin lattice dynamics 

model is available. For lack of a better choice, the neutron-weight correction chosen 

for the disordered phase was the same used to correct the neutron-weighted DOS 

of the ordered phase. Although the neutron-weight corrections of the ordered and 



Figure 5.10: Phonon DOS of ordered and disordered CusAu. 

disordered phases are most likely different in detail, the use of the same correction 

preserves differences observed in the neutron-weighted DOS. The AS::; value derived 

from the phonon DOS shown in figure 5.10 is 0.12 ks/atom. Our confidence in this 

value is low, due to the uncertainty associated with the neutron-weight correction of 

the DOS of the disordered phase. Better values for the vibrational entropy of ordering 

can be attained by calculating the neutron-weight corrected vibrational entropy of the 

disordered phase directly, using either the modified point approximation, modified 

resonance peak method or the generalized partial entropy method. This approach is 

implemented in section 5.4.4. 



5.4 Discussion 

5.4.1 Phonon DOS 

The neutron-weighted phonon DOS of Cu,Au(l-,) changes continuously with de- 

creasing Cu concentration. The primary effects are twofold. Firstly, the DOS softens 

monotonically with increasing Au concentration. This effect can be seen most clearly 

in the high energy cutoff of the DOS: 31 meV for Cu and 20 meV for Au. The effect 

is not quite linear in Au concentration, as can be observed in figure 5.3. The DOS 

of Cu50A~50 terminates at 27meV, not at 25.5 meV. Secondly, the peak at 9 meV 

grows rapidly with increasing Au concentration. This peak is almost certainly a 

resonance mode due to Au vibrations. First predicted by Rayleigh 11271 and Lif- 

shitz [128, 129, 1301, the resonance mode is the low energy vibration resulting from 

a heavy atom substituted into a matrix of much lighter atoms. The phonons con- 

tributing to a resonance mode are expected to be composed entirely of heavy atom 

motions, with contributions from light atoms near the heavy impurity. Strictly speak- 

ing, resonance modes are a phenomenon associated with dilute alloys only. For the 

case of CU,AU(~-,~, we see the persistence of a strong resonance mode up to Au con- 

centrations of 50%. The resonance mode in Cu-Au is strongly de-emphasized in the 

neutron-weighted DOS because of the small scattering cross-section and large mass 

of the Au atom. 

It is difficult to ascertain the changes of the phonon DOS at Au concentrations 

between 50 and 100% due to our single measurement in this region. In principle, there 

should be a local mode associated with the vibrations of the minority Cu atoms in a 

heavy Au atom matrix. Unlike the case for a Au resonance mode, these Cu vibrations 

should occur at high energy, perhaps even well separated from the rest of the phonon 

DOS. It is possible the extended tail and shoulder observed in the DOS 

between 23 and 25 meV are due to Cu local modes. 
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5.4.2 Generalized Partial Entropy Modeling 

The modified point approximation was a specific case of a more generalized neutron- 

weight correction method. In the modified point approximation, the partial entropies 

of Cu and Au were modeled with two parameters. Two linear equations were then 

inverted to solve for the unknown parameters. In principle, the partial entropies of 

Cu and Au can be modeled with an arbitrary number of parameters, and any number 

of equations of the form 5.10 can be inverted to  solve for the parameters and partial 

entropies. Here we are limited by the total number of different compositions we 

measured: eight. For a perfectly-determined system of equations, this allows up to  

eight parameters to model the partial entropies of Cu and Au. We choose to use four 

parameters: two parameters to parameterize 3:; and two for 9%. The form of the 

model is a first-order polynomial in concentration variable x: 

where the parameters are the coefficients c$ and cf. For each alloy composition 

CU,AU(~-,) we have one equation in four unknowns: 

where $:$ and $,qub are parameterized as shown in equation 5.18. We label each alloy 

composition x with an integer value i, where i={1,. . . ,8} and 

This system of equations is overdetermined, with four unknowns and eight equa- 

tions. Generally speaking, we cannot find values for the unknowns which simul- 

taneously solve all eight equations. However, we can find values of the unknown 

parameters that best solve all equations simultaneously, in a least-squares sense. 

In matrix notation, we denote the system of equations as 



where 

and 

where [k@Iij is the element at row i and column j of matrix [ka]. Matrix [ka] is size 

8 x 4. The term k(i) is the value of k, computed from equation 5.11, at alloy com- 

position i. Our definition of the matrix [k@] shown in equation 5.24 implements the 

linear parameterization of the Cu and Au partial entropies, shown in equation 5.18. 

Inverting equation 5.21, we solve for the parameter vector 2. The inversion is 

done using singular value decomposition, which returns the unique choice of c' if the 

number of parameters is equal to the number of unknowns or the least-squares choice 

of c' for an overdetermined system of equations. The least squares choice of c' is 

the 2 that minimizes the quantity 1 [k@]F - s?!  I .  For this example, the system is 

overdetermined so we expect only a least squares choice of c'. We can solve for the 

partial entropies and total vibrational entropy trivially once we know the parameter- 

vector c'. In matrix notation, solving for the correct vibrational entropy is done by 

evaluating 



where 

x(i) x(j-l) if j<3 
[x@]i,j = 

(1 - x(i)) ~ ( j - ~ )  otherwise 

and the ith element of gvib corresponds to the neutron-weight corrected vibrational 

entropy at the ith alloy composition. The term x(i) corresponds to the concentration of 

Cu of the ith alloy. Using the parameterization of 3:: and 3% shown in equation 5.18 

and the neutron-weighted entropies from all eight alloy compositions, we solve for 

c' = {cOcU, cyu, c t u ,  c?). 

Unfortunately, this procedure is flawed. Allowing both 9;; and 3% to be pa- 

rameterized with the same functional form introduces a fatal linear dependence into 

matrix [k@]. For arbitrary composition x, a row of [k@] has the following elements: 

These four elements are linearly dependent functions; there exists a choice of 

such that 

Using k defined in equation 5.11, c',,ll = X {-0.215,0.215, .0.69,0.69), where X is an 

arbitrary constant. This can be easily verified by substitution. For any choice of A ,  

the following holds true: 
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The above property leads us to say that Gun belongs to the nullity of matrix [kcD]. 

Thus, it is impossible to find a unique choice of c' that minimizes the quantity 

1 [k@]c'- s$? 1 .  An arbitrary vector Gull can be added to  c' without affecting our 

minimization of the quantity I [kcD]c'- S ~ Y  I .  It is sadly true that our system of equa- 

tions can be both overdetermined and linearly dependent at the same time. Speaking 

qualitatively, it is impossible to distinguish the separate contributions to S:r from 

3:; and 3% when the partial entropies are linearly dependent as shown in equa- 

tion 5.29. We have the case where the behavior of a set of Sx? can be equally well 

described with different linear models for 9;; and 3%. 
The linear dependence can be avoided by modifying our parameterization of $2. 

We set ci\" = 0 and solve for the least squares choice of 2 = {c:~, cYU, c*). This 

method improves upon the modified point approximation in three ways: first, we allow 

for a linear dependence on composition of the partial entropy of Cu, 3:s. Second, we 

model the partial entropies of Cu and Au by fitting to all eight alloy compositions 

simultaneously. Lastly, the generalized met hod does not suffer the poor convergence 

of the modified point approximation: the uncertainties on c' do not increase as the 

alloy compositions become more similar. The resulting partial entropies are shown in 

figure 5.7. The corrected vibrational entropy is shown in figure 5.6. We note excellent 

agreement between these results and the previous neutron-weight corrections to the 

entropy. 

The success of the generalized partial entropy model depends on the parameter- 

ization of the partial entropies $$ib. The parameterization of $$ib is constrained to 

be linear with respect to the parameters c:, where j = {I,. . . ,N). This constraint 

mandates the general functional form of $tib: 

N 

$Sib(x) = c c," f: (x) (5.31) 
j=1 

where ff(x) are functions of concentration variable x. We refer to ff as the jth basis 

function of the partial vibrational entropy of atomic species d. Additionally, the $d(x) 

must be chosen so to avoid linear dependence of [kcD], as was seen in the case of Cu-Au 
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above. For the case of a binary a,lloy, where d={1,2), we can state this constraint in 

general: The equation 

N 

c: (k) f:(x) + cl (1 - k) f:(x) = 0 
j=1 

must have only one solution for arbitrary x: c,d = 0 for all j and d. Typically we want 

to parameterize all atomic species with the same model, so fj = f t  for all j and i # k. 

Using tKis simplification, we restate equation 5.32 in matrix-vector notation: 

where fT is the vector transpose of shared basis functions fj(x), 4 is the parameter 

vector for atomic species d and AZ= Zl - Z2. We desire equation 5.33 to have the 

unique solution Zl = Z2 = 0 for arbitrary X. A set of basis functions fj(x) that both 

satisfy this constraint and model $ $ i b ( ~ )  is unknown. 

5.4.3 Local Cluster Approximation 

The local cluster approximation (LCA) can be used to  calculate thermodynamic prop- 

erties of chemically disordered materials. This theory is explained in some detail in 

Appendix B. The LCA can be used to parametrize the partial entropies of Cu and Au 

within the generalized partial entropy model. This parameterization is a poor one, 

since the LCA basis functions become linearly dependent beyond the point cluster. 

Using the LCA to interpret experimental results is motivated by the use of the LCA 

within the theoretical community to  describe the properties of disordered crystals. 

Recent theoretical work by Ozolipi, Wolverton and Zunger [lo]  has provided a 

temperature dependent LCA model for the vibrational entropy of formation of disor- 

dered Cu-Au alloys. In this work, Ozoliqii and coauthors obtained the phonon DOS 

and vibrational entropy for a series of ordered Cu-Au alloys using ab-initio electronic- 

structure calculations within the local density approximation (LDA). Using results 

from six ordered Cu-Au alloys, Ozoliqi and coauthors found the values of cluster- 



coefficients Si that best reproduced their results. The clusters used were the empty 

cluster So, the point cluster S1, the nearest-neighbour (NN) pair S2, the second NN 

pair SS and the NN triangle S4. The values for the cluster coefficients at 300 K, given 

in Table 5.1, were kindly ~rovided by V. Ozoliq; [131]. 

s 0 s 1 s 2  s3 s4 

Cluster Coeffecients 0.234 0.0185 -0.108 -0.122 -0.0185 

Table 5.1: LCA cluster coeffecients at 300 K from Ozoliq;, Wolverton and Zunger. 
Units are in kB/atom. The cluster expansion is for the vibrational entropy of forma- 
tion of disordered Cu-Au alloys [131]. 

Using the values given in Table 5.1 and equation B. 1, we can calculate the vibra- 

tional entropy of formation of binary Cu-Au at 300 K, as a function of Cu concen- 

tration. For the case of a perfectly disordered binary system, equation B.l simplifies 

sformation - 
vib - SO + sl(l - 2 ~ )  + s2(1 - 2 ~ ) ~  -I- $ 4 1  - 2 ~ ) ~  + s 4 ( i  - 2 ~ ) ~  (5.34) 

where c is the fractional concentration of Au in the alloy. Note that we include only 

five terms corresponding to the five clusters in our LCA sum. The terms corresponding 

to the NN pair and second NN pair, S2 and S3, have the same functional dependence 

on c. This occurs because in a fully disordered alloy there is no short-range chemical 

order, and hence no difference between first and second nearest-neighbors in the 

frequency of like and unlike atomic pairs. We evaluate equation 5.34 and plot the 

results in figure 5.11. The agreement is good with both the modified resonance 

peak approximation and the generalized partial entropy correction. The LCA results 

are smaller than those of the modified point approximation for Cu rich alloys. This 

difference is also found between the LCA and modified resonance peak approximation. 
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Figure 5.11: Vibrational entropy of formation of disordered Cu-Au alloys at 300 K. 
The circles marked OWZ are the LCA results by Ozoliyg, Wolverton and Zunger. 

5.4.4 Vibrational Entropy of Ordering of CusAu 

The phonon DOS of ordered and disordered CusAu differ substantially, as shown in 

figure 5.10. The DOS of the ordered alloy exhibits large Van-Hove singularities at 

9, 13, 20 and 25meV. The DOS of the disordered alloy has one very broad central 

feature at 16 meV, and two small peaks at 10 and 24 meV. The high-energy cutoff is 

the same for both the ordered and disordered DOS. 

The vibrational entropy of disordering calculated from the phonon DOS of fig- 

ure 5.10 is half the size of the value derived from the phonon dispersion measurements 

of Katano et al.[56] and is in good agreement with the calorimetric estimate. How- 
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ever, we have low confidence in the vibrational entropy of disordering calculated from 

the lattice dynamics corrected phonon DOS. In figure 5.12 we compare our phonon 

DOS of disordered Cu3Au with that of Katano and coauthors. 

Figure 5.12: Phonon DOS of disordered CusAu derived from phonon dispersions. 

The lack of agreement is notable, and is due largely to the inaccuracies introduced 

by the virtual crystal approximation. The virtual crystal approximation assumes a 

single atomic species only, where the atomic mass is the average of the real crystal. 

This assumption allows a phonon DOS to be modeled using a simple fcc unit cell and 

measured phonon dispersions. Our results are a direct measurement of the phonon 

DOS, with some small uncertainty introduced by the neutron-weight correction. 

The vibrational entropy of disordering depends sensitively on the phonon DOS 

of both the ordered and disordered phases of Cu3Au. The DOS of ordered Cu3Au 

is known more reliably than the DOS of the disordered phase, due to the more re- 

liable neutron-weight correction of the ordered phase. Our value of AS:!: derived 



from the phonon DOS has some uncertainty associated with it due to the neutron- 

weight correction of the disordered phase. Using the correction methods discussed in 

section 5.3.3, we show the values of AS:!: in Table 5.2. 

Neutron-weight Correction AS~~:(ks/atom) 
Point Approximation 0.33 
Modified Point Approximation 0.352~ 0.2 
Resonance Peak 0.25 
Modified Resonance Peak 0.25 
Generalized Partial Entropy Model 0.24 
L12 Born-von KArmin Lattice Dynamics 0.12 
Ozol i~ i ,  Wolverton and Zunger 0.06 

Table 5.2: AS",: of CusAu as a function of neutron-weight correction of disordered 
phase. Uncertainties due to neutron-counting statistics are f 0.02 kB/atom, unless 
otherwise stated. 

The resonance peak, modified resonance peak and generalized partial entropy cor- 

rections closely agree with each other and are twice as large as the value of AS::: 

derived from the lattice dynamics corrected phonon DOS. The phonon DOS results 

are of low confidence due to the use of the ordered phase lattice dynamics to cor- 

rect the neutron-weighted DOS of the disordered phase. The point approximation 

yields the largest result, but this approximation is the least sophisticated so we dis- 

regard it in favor of the other corrections. The modified point approximation agrees 

within error bars with the remaining corrections. Of these corrections, the modified 

point approximation and generalized partial entropy model are the most accurate in 

principle, but the modified point approximation is more difficult in practice. 

Conclusions 

The neutron-weighted phonon DOS of six disordered Cu-Au alloys have been mea- 

sured at 300 K. We observe an Au resonance mode at 9 meV in Cu rich alloys. The 

vibrational entropy of the disordered alloy as a function of composition has been suc- 

cessfully extracted from the neutron-weighted DOS, and is in general agreement with 

LCA results from Ozolipg, Wolverton and Zunger. The partial vibrational entropies 
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of Cu and Au are smoothly varying as a function of composition. This allows for a 

variety of neutron-weight corrections to the vibrational entropy using simple models 

for the partial vibrational entropies of Cu and Au. The failure of the generalized 

partial entropy model shows us that it is impossible to uniquely extract linear models 

of the Au and Cu partial vibrational entropies, as a function of alloy composition, 

from any given set of neutron-weighted DOS. 

We estimate the vibrational entropy of disordering, ASO,~; in CusAu as 0.24 % 0.02 

kB/atom, at  300 K. The vibrational entropy of disordering at T, might be different, 

depending on how the phonon DOS of the two phases change between 300 and 663 K. 

Our results are four times larger than the calculations of Ozoligg, Wolverton and 

Zunger. 



Chapter 6 Conclusions 

Science and Methods 

In this thesis we explored the importance of vibrational entropy on phase stability 

in metals and alloys. Each chapter has dealt with a specific alloy or alloy system, 

and has focused upon the vibrational entropy contribution to the thermodynamics of 

interest. Nevertheless, we find strong scientific connections that were not expected 

beforehand. In chapter 3 we found vibrational entropy to be the driving force for the 

martensitic transformation in NiTi. Lattice dynamics simulations in NiTi and high 

temperature Zr show that the large vibrational entropy of the low-temperature bcc 

phase is due to a large number of low energy acoustic phonon. These acoustic phonons 

shift to higher energy at higher temperatures, which is the opposite behavior expected 

from the volume expansion alone at high temperature. The temperature dependence 

of phonon energies in bcc metals is revisited in chapter 4. Measurements of the 

phonon DOS of V at high temperature show that phonon-phonon scattering at high 

temperature counteracts the phonon softening expected from thermal expansion. 

In chapter 5 we develop a novel methodology for the calculation of vibrational 

entropy from the neutron-weighted phonon DOS in chemically disordered alloys. The 

approach relies upon modelling the vibrational entropy contributions of each atomic 

species as a function of alloy composition. The advantage of dealing with the vibra- 

tional entropies directly is that the partial vibrational entropy of each species is a 

slowly-varying and smooth function of composition. In contrast, the partial phonon 

DOS of each species is difficult to parameterize simply as a function of composition. 

One can use the local cluster approximation (LCA), or cluster variation method, to  

model the partial vibrational entropies. This approach is explored more fully in Ap- 

pendix B. We conclude that it is impossible to uniquely extract best-fit linear models 

for the partial vibrational entropies from a set of neutron-weighted phonon DOS. 
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This limitation and its qualifications inform our understanding of the usefulness of 

the neutron-weighted 110s and entropy. 

Other specific conclusions have been sufficiently explained in each individual chap- 

ter, and we shall not revisit them here. Chapters 2, 3, 4 and 5 have focused on the 

science. Here we wish to examine the experimental methodology. 

6.1.1 Method 1 

The most straightforward measurement of the phonon DOS is the use of a triple-axis 

spectrometer at constant Q on an incoherently scattering polycrystalline element. 

Triple-axis spectrometers work in conjuction with reactor sources. This method allows 

the direct measurement of the phonon DOS, with no approximations in the data 

analysis. One can measure the DOS and hence the vibrational entropy limited only 

by the energy resolution of the spectrometer and the time one allows for good counting 

statistics. One can extend this method with almost equal accuracy to alloys where 

each atomic species has equal neutron-weight, such as Co-V alloys. In this case we 

introduce errors when we neglect the individual Debye-Waller corrections in favor 

of an average Debye-Waller correction. Our study on V in chapter 4 employed this 

method. Limitations of this method are the small number of elements and miniscule 

number of alloys that satisfy the requirements of incoherent scattering and equal 

neut ron-weighting. 

6.1.2 Method 2 

The second-easiest neutron scattering experiment is the use of a time-of-flight (TOF) 

spectrometer to measure the phonon DOS of a polycrystalline element. TOF neutron 

spectrometers need a pulsed source (spallation source) to achieve energy resolution. 

The broad sampling of scattering at different Q allows the use of samples that have 

coherent or mixed coherent-incoherent scattering. This method allows the direct 

measurement of the phonon DOS, with substantial approximations in the data analy- 

sis. These approximations are sufficiently accurate to allow differential measurements 
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of the vibrational entropy and phonon DOS. The data analysis and approximations 

needed for a TOF measurement are not trivial, and are explained in some detail in 

Appendix A. The methodology outlined in this appendix, combined with its exper- 

imental verification in chapters 3 and 5, is a large part of the scientific contribution 

of this thesis. The measurement of the phonon DOS of elemental Cu in chapter 5 is 

a good example of this method. The advantage to this method is that one can use 

it on any nearly any metal in the periodic table, although one is better off using a 

triple-axis spectrometer for samples that exhibit pure incoherent scattering. 

6.1.3 Method 3 

The most difficult neutron scattering experiment is the use of a TOF spectrometer to 

measure the vibrational entropy of a polycrystalline alloy. This experiment has all the 

difficulties of Method 2 and adds to them the difficulty of implementing a neutron- 

weight correction to  the neutron-weighted DOS. The neutron-weight correction to the 

DOS can range from the difficult (the use of Born-von K&rm&n lattice dynamics in 

NiTi) to the near-impossible (chemically disordered Cu-Au alloys). Neutron-weight 

correcting the vibrational entropy is a more feasible task. Despite the difficulty, this 

method is applicable to  almost all alloys. In principle, a high resolution TOF spectrum 

has sufficient information to extract the lattice dynamics near-uniquely from a poly- 

atomic coherently scattering polycrystalline sample. Limitations on the quality of 

current spectrometers and the sophistication of our data analysis tools make this goal 

a distant one. 

The three methods listed above all share some common limitations. Some el- 

ements (Cd, Rh, Gd, 235U) are prohibitively strong neutron absorbers, and their 

presence, even in small quantities, will eliminate any neutron signal from the sample. 

Other elements (Au, Co) have sufficiently unfavorable ratios of neutron scattering to 

absorption cross-sections that only small samples combined with prohibitively long 

measurement times will yield good data. 

An understanding of these practical limitations is useful for designing productive 
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experiments. In the next section I propose three broad areas of future scientific study, 

specifically optimized for one of the experimental methods outlined above. My work 

in chapters 2, 3, 4 and 5 show why these studies will be interesting. 

Future Work 

6.2.1 Temperature Dependence of the Phonon DOS 

Measuring the phonon DOS of elements is much easier than for alloys. However, 

the lattice dynamics, phonon DOS and vibrational entropy of almost all elements 

has already been measured . . . at room temperature. In chapter 4 we show how the 

temperature and volume dependent phonon DOS, combined with measurements of 

the temperature dependent thermal expansion and bulk modulus, can be used to  

determine the temperature dependent phonon DOS at fixed volume. A calculation 

of the temperature and volume dependent electronic DOS or electronic entropy is 

a,lso required. The temperature dependence (at constant volume) of the phonon DOS 

must be caused by either electron-phonon scattering or phonon-phonon scattering. 

If the latter, then the excess phonon entropy associated with the temperature shifts 

of the DOS is identical with the anharmonic vibrational entropy. The temperature 

dependence of the phonon DOS of the elements has, in general, not been measured. 

In addition to  our work, Manley and coauthors [I321 have recently measured the tem- 

perature dependence of the phonon DOS of U up to 1213 K. They used a calculation 

of the total vibrational power spectrum to show that the softening observed in the 

DOS of U was harmonic, not anharmonic. 

The use of polycrystalline elements greatly reduces the time needed for sample 

preparation and characterization. Beam time on a TOF instrument at a neutron 

spallation source will be needed for most samples, as described in Method 2. In 

addition, a reliable TOF compatible furnace that operates at high temperature will 

also be needed. The use of elemental samples eliminates the need for a neutron-weight 

correction in the data analysis, thus removing a major obstacle associated with the 
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measurement of the phonon DOS using neutron scattering. 

6.2.2 Vibrational Entropy of Alloying in the Dilute Limit 

The vibrational entropic effect of dilute alloying in metals has long been neglected. 

Although this area has attracted lattice dynamical interest from the theoretical com- 

munity (see sections 5.3.3 and 5.4.1), the thermodynamic importance has gone un- 

explored both theoretically and experimentally. What little experimental evidence 

exists shows promise. In Table 2.2 we observe that the dilute alloying of Pt  in V 

causes an enormous vibrational effect, while Cr in V does very little. Within the 

Einstein approximation, one might expect a pure mass effect of placing Pt  in V given 

by 

where c is the concentration of P t  and M is the atomic mass. For c = 0.05 we expect 

~ s a l l o y  ,ib - - 0.1 kg/atom. The value calculated from the phonon DOS is 0.4 kB/atom. 

An effect in excess of that predicted by the change in mass between the solute and 

solvent atoms must be caused by a change in the force constants of the alloys. In turn, 

a change in the force constants is caused by a change in the bonding, or electronic- 

structure between the element and the alloy. A reasonable experiment would be to 

systematically measure the effect of dilute alloying as a function of solute atom. One 

could look for systematic effects as a function of solute atom radius, mass and electron 

number. 

This experiment is well-suited for inelastic neutron scattering. By working in the 

dilute alloy limit we avoid the use of a neutron-weight correction. To a good first 

approximation, the neutron-weighed DOS and the real phonon DOS are identical 

when the concentration of impurity species is low. What we look for is large changes 

in the phonon modes of the majority species caused by a small concentration of solute 

atoms. This sort of effect is readily observed using Methods 1 or 2. Measurements 

could be confined to room temperature, and the data analysis and sample preparation 
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are greatly simplified by using dilute alloy samples. A good choice of solvent atom 

would be an element that had good neutron-scattering characteristics (low absorption, 

large cross-section) as well as metallurgical ones (readily alloys, high ductility). 

6.2.3 Fitting Lattice Dynamics to the Phonon DOS 

The vibrational entropy of a solid can be derived solely from knowledge of the phonon 

density-of-states. The phonon DOS is not a unique description of the vibrational ex- 

citations in a solid. Phonons (in a translationally periodic crystal) have two quantum 

labels: energy and wave-vector. Knowledge of the energy as a function of wave-vector 

constitutes a complete harmonic description of the phonons in a periodic crystal. 

Traditional methods of measuring the phonon dispersions are time-consuming and 

not comprehensive: a high quality, large single crystal and considerable time on a 

triple-axis neutron spectrometer are both needed. Time constraints mandate that 

only phonon dispersions along a few high symmetry directions are measured. The 

phonon-dispersions along other directions are inferred by using a Born-von KArmin 

model to fit the measured data, then arbitrary lattice dynamics information can be 

calculated using the model. 

Alternatively, one can fit measurements of the neutron-weighted phonon DOS 

(measured using Methods 1, 2 or 3) to  a Born-von KArmAn lattice dynamics model. 

This procedure is used in chapter 3 to arrive at a neutron-weight correction for NiTi. 

Of course, the difficulty with this scheme is that there exists more than one set of 

phonon dispersions that give the same phonon DOS. In principle, even a perfect fitting 

routine will be unable to distinguish uniquely which set of force constants is the correct 

one for the measured data. This same criticism can be leveled at the more traditional 

method using measured phonon dispersions. In that case, as in ours, there exists more 

than one set of force constants that equally well describe the measured data. Recent 

work on the validity of this approach shows that different sets of converged force 

constants vary little from each other, and thus one can reasonably hope to extract 

meaningful lattice dynamics data from neutron-weighted phonon DOS. 
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The simplest implentation of this approach is the following: choose a set of force 

constants, calculate the neutron-weighted phonon DOS with the model, then compare 

the model DOS with the experimental DOS. Adjust the force constants, then repeat 

until the model DOS and experimental DOS are converged. There are numerous prac- 

tical considerations that have a large effect on the accuracy of this procedure. First, 

the calculated force-constants can only be as good as the quality of the experimen- 

tal DOS. A measured DOS with few sharp features (due to poor energy resolution) 

and uncertain neutron-weighting can yield only a few trustworthy force-constants. 

Second, the mechanical fitting routine is capable of fitting the measured DOS to a 

much higher degree of accuracy than is called for, considering the likely error-bars 

on the measured DOS. One's fitting program might spend much of its time choosing 

the correct set of fifth-nearest force constants that improves the quality of fit by a 

few tenths of a percent . . . even though the measured DOS has uncertainties of a few 

percent! It seems necessary to  use as few force constants as can give an adequate 

fit to the data. For typical TOF spectra my experience shows that one should al- 

most never go beyond the t hird-nearest-neighbor force const ants. One should also 

repeat the fitting procedure many times with different starting guesses.. .the differ- 

ent sets of converged force-constants will give some idea of the uncertainties in the 

force-constants. Of course, one should always double-check one's results using phys- 

ical intuition. The first-nearest neighbour force constants should be larger than the 

second, which should be larger than the third. When possible, the force constants 

should be compared to a related system where the lattice dynamics are known. Fi- 

nally, the tensorial force constants should not stray too far from central-force behavior 

for close-packed crystal structures, although invar alloys may be a,n exception. 

The mechanical fitting of inelastic scattering data to a model can be greatly im- 

proved upon. First, by fitting the model directly to the raw data one can eliminate the 

large uncertainties introduced by treating the coherent scattering in the incoherent 

approximation. This would require, for the case of the Born-von KArmAn model, cal- 

culating correctly the incoherent and coherent single and multiple-phonon scattering 

contributions as a function of neutron wave-vector, energy transfer and temperature. 



This is no trivial task, and would require large modifications t o  an existing lattice- 

dynamics code base, which typically calculate phonon dispersions and phonon DOS. 

Secondly, one should implement a fitting routine that is sensitive to the estimated 

neutron counting statistics. The fitting routine should stop once it has found a set of 

force-constants that fit the raw data to within the error bars on the data. Thirdly, 

the fitting routine should be robust and fast enough to achieve convergence in a rea- 

sonable amount of time. Of the two, writing fast code is more feasible than writing 

robust code. N-dimensionsal function optimization (minimization) is a notorious dif- 

ficult task, and even the best codes are very sensitive to  the starting guess and give 

only local minima. With a very fast routine, one could minimize a few hundred times 

and find the best set of converged force-constants. 

Modeling of inelastic neutron-scattering data is still in its infancy. No equivalent 

of the Rietveld-refinement method, applicable in elastic scattering, exists for inelas- 

tic scattering. Our ability to measure vibrational properties of materials is rapidly 

falling behind our ability to predict vibrational properties using ab-initio theory. The 

potential for growth in this research area is enormous and promises a large experimen- 

tal reward: the measurement of the phonon DOS, lattice dynamics and vibrational 

entropy of arbitrary materials. 



Appendix A Neutron Scattering 

Analysis from TOF Instruments 

A common task is the measurement of the vibrational entropy through time-of-flight 

(TOF) inelastic neutron-scattering. In order to  calculate the vibrational entropy 

we extract the phonon density-of-states (DOS) from the inelastic neutron-scattering 

spectra. 

A.l  TOF Spectrometer 

The (neutron-weighted) phonon DOS can be derived from TOF inelastic neutron 

scattering. This appendix explains how to derive the phonon DOS from TOF in- 

elastic neutron-scattering data. In figure A . l  we show a schematic view of a TOF 

spectrometer. 

Angle Bank 12 

/ u Detectors 

k Scattering 
Angle 

Figure A. l :  Schematic diagram of time-of-flight neutron spectrometer. 

The incident neutron beam shown in figure A.1 is pulsed and monochromatic. 
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A small percentage of the incident neutron pulse is scattered from the sample, with 

the majority of the incident neutrons continuing through the sample unaffected. A 

near-continuous array of detectors are arranged in a circular arc to one side of the 

sample. These detectors capture the small number of neutrons that are scattered in 

their direction. A typical neutron-scattering experiment runs for many thousands of 

pulses in order to generate sufficient scattered neutrons, and hence good statistics 

(signal to noise ratio). For a spallation neutron source generating pulses at a few tens 

of hertz, a single TOF spectra will run for the better part of a day. 

For an isotropic sample, or an untextured polycrystalline bulk sample, the scat- 

tered neutron intensity only depends upon the scattering angle $. At the LRMECS 

spectrometer at the Intense Pulsed Neutron Source (IPNS) at Argonne National Lab- 

oratory, the detectors cover an angle + from - 10 ' to $120 '. The distance from the 

sample to the detectors combined with the detector timing gives the velocity, and 

hence the kinetic energy, of the scattered neutron. The location of the detector that 

records the scattered neutron gives the scattering angle 4 of the scattered neutron. 

The neutron-scattering angle + combined with the scattered and incident neutron 

energies gives the value k, where k = k; - kf. This vector equality is illustrated in 

figure A.2. 

Figure A.2: Relationship between k, k; and kf neutron wavectors. 

The values k; and kf are the incident and scattered neutron wave-vectors. The 

wavevector of a neutron propagating in space is given by the neutron kinetic energy 

E, where 



E is the neutron energy in meV and K is the magnitude of k in inverse angstroms. We 

use interchangeably Q and K ,  where K =  Q. The vector k points in the same direction 

as the velocity vector of the neutron. 

Each scattered neutron can be labeled by its energy loss and its detection angle. 

Alternatively, each scattered neutron can be labeled by energy loss and k. In practice, 

the neutron counts are grouped into bins of finite energy and angle width. This is 

done to  improve the neutron-counting statistics, and for sufficiently narrow bins does 

not introduce errors into the data analysis. Two detector angle banks are shown in 

figure A.l,  and are labeled banks 1 and 12. At the LRMECS TOF instrument, the 

default angle binning is done in increments of ten degrees, for a total of 12 angle 

bins (banks). The relationship between angle-bank, energy gain and K is shown in 

figure A.3. 

The raw data are labeled by angle-bank and energy-transfer. This information, 

combined with figure A.3, is sufficient to extract the scattering-vector magnitude K. 

The most elegant presentation of the scattering data is of a three-dimensional surface, 

where neutron-scattering counts are plotted as a function of the in-plane scattering 

angle and energy-transfer. In figure A.4 we show a constant angle "slice" of this 

scattering surface for an FeAl sample, taken on the LRMECS spectrometer at IPNS. 

The quantity S(Q,E) is proportional to the neutron counts per unit time multiplied 

by the factor k;/kf, where k; is the magnitude of the vector k; and kf is the magnitude 

of the vector kf . 

It is usually more convenient to preserve the data as a group of two-dimensional 

data sets, each corresponding to a constant scattering-angle slice of the three-dimensional 

scattering surface. The scattering-vector magnitude K can be calculated from the 

scattering angle and energy transfer using the following equation: 



Energy transfer (meV) 

Figure A.3: Q as a function of angle-bank and energy gain for a TOF spectrometer. 
The curves are labeled by angle-bank. The incident neutron energy is 50 meV. 

where Ei is the incident neutron energy in meV, x is the neutron energy-transfer in 

meV, (3 is the scattering angle and K is the scattering-vector magnitude in inverse 

angstroms. 

In figure A.5 we show representative constant scattering-angle slices of the scatter- 

ing surface of a chemically ordered FeA1 specimen with a 2% vacancy concentration. 

The twelfth and fourth angle-banks correspond to median scattering angles of 115 

and 35 O, respectively. 

The off-scale peak between -4 and +4meV neutron-energy loss is due to elastic 

scattering processes. Although phonon scattering does occur in this energy range, 

the elastic scattering is greater by several orders of magnitude and we effectively lose 

all information on the phonon scattering in this energy region. 



Figure A.4: Scattering surface, S(Q,E), for the third angle-bank of an FeAl sam- 
ple containing 2% vacancies. Data taken on LRMECS spectrometer at IPNS. The 
incident energy is 60 meV. 

The scattering to the left and right-hand sides of the elastic peak represent neu- 

trons that have either gained or lost energy during the scattering process. The signal 

is larger from the right-hand side of the elastic peak (positive energy-loss) because 

it is easier for monochromatic neutrons to lose energy to a phonon than it is for a 

phonon to impart energy to the incident neutrons. Because of the far superior signal 

in the positive energy-loss portion of the data, we confine our data aiialysis to this 

region only. 



Neutron energy loss (meV) 

Figure A.5: Neutron data (background corrected) from the twelfth and fourth an- 
glebanks of the LRMECS TOF spectrometer. The sample is chemically ordered B2 
FeA1, with a 2% vacancy concentration. Incident neutron energy is 60 meV. 

A.2 Data Analysis 

Proceeding from the scattering surface data taken by the TOF spectrometer to the 

phonon DOS is a multi-step, iterative procedure. In figure A.6 we illustrate the 

process in a flowchart. 

One must have at least two and optionally three data sets in order to proceed 

reliably with the data analysis. First, the inelastic TOF spectra of the sample must 

be measured. Second, some sort of background spectra must be measured, at con- 

ditions that are close as possible to the conditions present when the sample data 

was taken. At the LRMECS spectrometer, this is usually accomplished by removing 

the sample from the A1 sample can and recording the resultant TOF spectra. One 
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Figure A.6: Neutron data analysis flowchart. Data analysis proceeds from the raw 
neutron counts (top of the chart) to the phonon DOS (bottom of the chart). 



can improve upon the background correction by taking a TOF spectra of a 100% 

absorbing sample. At the LRMECS spectrometer, this is usually accomplished by 

replacing the sample with a plate of Cd, which is completely opaque to thermal neu- 

trons. The sample, empty-can and Cd data are transformed from the raw counts to 

their S(4, E) representation, which also adjusts the raw neutron counts for variations 

in detector effeciencies. This step is performed on LRMECS data using the iliad 

code, written and maintained by Ray Osbourne. The iliad code also transforms the 

3-dimensional surface representation of the scattering spectra into a more practical 

group of two-dimensional data sets. Each data set represents a constant-angle "slice" 

of the scattering surface, where the slice sums the neutron counts over a ten-degree 

scattering angle. 

A.3 Background Correction 

Once the data has been transformed into the S($, E) representation, the background 

corrections can be performed. The simplest background correction simply subtracts 

the empty-can data, Sbg, from the sample data, SSamp1,. 

This procedure is an over-correction, since the background with the sample in place 

is somewhat smaller than the measured background. The background counts are 

proportional to the incident neutron flux, but the sample absorbs and scatters a 

certain percentage of the incident neutrons. Thus the true background counts can be 

approximated by attenuating the measured background by an amount equal to the 

scattering strength of the sample 

where f is the percentage of the incident neutron flux that the sample scatters and 

absorbs. Typical values for f are between 0.05 and 0.1. This procedure is adequate 
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but can be improved upon. We can divide the background counts into two types: 

originating from scattering before the sample and after the sample. Background 

counts of the former type do not undergo the (1-f) attenuation shown in equation A.4. 

Background counts of the latter type do undergo the (1-f) attenuation. The Cd 

background measurement allows us to separate the latter from the former. Using the 

Cd data, we calculate the background correction as 

where SCd is the scattering from the Cd run. In practice, the Cd signal is near zero, 

so the corrections A.4 and A.5 are identical. It is more important to calculate f 

correctly for each angle-bank, which requires knowing the thickness and geometry of 

the specimen. 

Before the phonon DOS can be derived from the data, the multi-phonon scat- 

tering contribution must be subtracted from the data. The multi-phonon scattering 

increases with temperature and 6 .  Multi-phonon scattering arises when more than 

one-phonon participates in a single neutron-scattering event. The multi-phonon scat- 

tering can be calculated from the phonon DOS. We use an iterative procedure to arrive 

at both the multi-phonon contribution and the phonon DOS, where the phonon DOS 

is used to calculate the multi-phonon scattering and then the new phonon DOS. This 

procedure is iterated until convergence. We calculate the multi-phonon scattering 

within the incoherent, virtual-crystal approximation. This is the only approach pos- 

sible without detailed knowledge of the lattice dynamics of the crystal. We explain 

this method below. 

Thermal and Multiphonon Corrections 

The partial differential cross-section for a harmonic Bravais lattice is given in the 

incoherent approximation as [61, 601 



where U = - i ~ .  ~ ( 0 )  and V = i~ - u( t ) .  The variables u( t ) ,  crinC, kt, k, N, W, and 

I3 = hw are, respectively, the atomic displacement from equilibrium at time t ,  in- 

coherent scattering cross-section, final and initial neutron wave-vector magnitudes, 

number of atoms in the crystal, Debye-Waller factor and energy transfer. Although 

the one-phonon expansion of equation A.6 is a good approximation for small mo- 

mentum transfer, the higher order multi-phonon terms cannot be neglected at higher 

scattering vectors, where the incoherent approximation is more reliable. The TOF 

spectra were measured at constant scattering angle, not constant scattering vector. 

The scattering vector therefore varies with energy transfer, and this dependence is 

different for each angle bank. Evaluating equation A.6 while retaining the dependence 

of rc on w, the following expression is obtained for the incoherent inelastic n-phonon 

double-differential scattering cross-section: 

inc 
g inc  k' N - 2 .  (g) -- [p (w)] n-convolution 

47rh k ae  , (A.7) 

where m denotes the mass of the scat terer, 

and 

inc 

inelastic n=l  n-phonon 

The index s specifies a single vibrational mode and the notation (. . .), denotes an 

average over all vibrational modes with frequency w. The variable es is the phonon 

polarization vector of mode s. The function g is, as usual, the normalized phonon 

DOS. The not at ion [f]n-cOnvo'ution specifies the sequential convolution of n instances 

of the function f. For example, 



and 

The term ( ( K  e,)'), simplifies to ~ K ( w ) ~  for a crystal with cubic symmetry, which 

was the case for all our samples. 

As is seen from equation A.7, the phonon DOS is obtained easily from the 1- 

phonon cross-section. The latter was derived in an iterative process from the mea- 

sured spectra by evaluating equation A.7 for the l-5-phonon contributions, fitting 

their sum [equation A.91 to the corrected data and subtracting the 2-5 multi-phonon 

contributions from the spectrum. In figure A.7 we show the 2-5 and 1-5 phonon fits 

to  the S(E) spectrum, at the twelfth angle-bank, for an FeAl sample at 300K. 

The 2-5 phonon contributions, collectively known as the multiphonon scattering, 

are considerable at room temperature. It is sufficient to sum the multiphonon scat- 

tering to 5-phonon events since the n-phonon scattering rapidly goes to zero for large 

n. The 1-5 phonon contribution as calculated using equation A.7 fitted remarkably 

well the TOF spectra shown in figure A.7. This is surprising for a model which as- 

sumes a single mass and scattering factor for an average atom, as well as neglecting 

the coherent-scattering entirely. Nevertheless, since the multiphonon scattering is es- 

sentially featureless, the above procedure yields a sufficiently accurate correction for 

multiphonon scattering. 

The remaining intensity was then corrected for the elastic-peak, thermal and 

Debye-Waller factors. Mean square displacements (for use in the Debye-Waller factor) 

are calculated self-consistently. The sum of the corrected intensities from all 12 angle 

banks gives the phonon DOS. By summing over the angle banks, we ensure that a 

large portion of reciprocal space is sampled at each phonon energy. This is necessary 

in order to account for any coherent-scattering present in the sample. For a sample 

that exhibits purely incoherent scattering, the entire TOF spectra is redundant. In 



Figure A.7: S(E), 2-5 phonon and 1-5 phonon fits to neutron scattering spectra of 
12" angle bank of an FeAl sample containing 2% vacancies. The 1-5 and 2-5 phonon 
contributions are calculated self consistently using equation A.7. 

this case, equation A.7 involves no approximations and the phonon DOS can be in- 

dependently derived from each angle-bank spectra. Most samples exhibit significant 

coherent-scattering, which requires the phonon DOS to be extracted by averaging (or 

summing) the contributions from each angle-bank. 

The resulting phonon DOS was then used to re-evaluate equation A.7 to obtain 

the multiphonon scattering and Debye-Waller factor. This procedure is iterated until 

the DOS, multi-phonon and Debye-Waller factors converge. The first iteration can 

be calculated by ignoring the multi-phonon scattering and providing a suitable guess 

for the Debye-Waller factor. 



Neutron-Weight Corrections 

Strictly speaking, the phonon DOS arrived at using the procedure outlined above and 

in figure A.6 is not the true phonon DOS, but rather the neutron-weighted DOS. The 

neutron-weighted DOS is identical with the phonon DOS for an elemental scatterer. 

This is not the case for a sample that contains more than one type of atom, or 

scatterer. The neutron-weighted phonon DOS is rigorously defined in equation 3.2, 

which is provided again here: 

where exp(-2wd),od and md are the Debye-Waller factor, total scattering cross- 

section and mass of atom d. The Debye-Waller factor is an explicit function of gd(E). 

The term exp(2W) is the average Debye-Waller correction; this is calculated from the 

self-consistent neut ron-weighted DOS . The factor exp[2(W - Wd)] is approximately 

unity. For the case where ad/md is the same for all species d, gNW(E) % g(E). 

The error introduced by calculating the multi-phonon scattering self-consistently 

using the neutron-weighted DOS, rather than the true phonon DOS, is small. This 

can be qualitatively verified by examining how well the 1-5 phonon scattering, as 

calculated using equation A.7, fits the experimental data. In figure A.7 we observe a 

good fit between the 1-5 phonon contribution calculated using the neutron-weighted 

DOS and the experimental data. This agreement raises our confidence in the accuracy 

of the 2-5 phonon contribution. 

Arriving at the true phonon DOS from the neutron-weighted phonon DOS is be- 

yond the scope of this appendix. Various methods have been discussed in chapters 3 

and 5, with varing degrees of universality. As we mentioned in section 6.2.3, the 

neutron-weight correction as well as other approximations involved in the data anal- 

ysis can be overcome by fitting a dynamics model to the neutron-scattering data di- 

rectly. Although this approach is both scientifically and computationally demanding, 

we foresee no better method for extracting the vibrational dynamics from inelastic 

neutron scattering measurements. 



Appendix B Local Cluster 

Approximat ion 

The local cluster approximation (LCA), and its extension to  the cluster variation 

method, is a technique for modeling ground-state thermodynamic properties of crys- 

t als. Although best known for very successfully calculating the correct configurational 

entropy of ordering 1131, the LCA in principle can be used to calculate any lattice 

property. A lattice property is a property of a solid which is a unique function of 

the location of all the atoms in the solid. Most lattice properties can be shown to  

be thermodynamic ground-st ate varia,bles, including the vibrational entropy. Within 

the LCA the vibrational entropy Svib can be represented by 

where the Si are the cluster coefficients associated with cluster i, ai is the ith cluster 

type and 4(ai) is the spin-~roduct over cluster a;. Examples of clusters are single 

atoms, all first-neighbor-neighbor pairs, all second-nearest-neighbor pairs or all first- 

nearest-neighbor tetrahedrons. The function 45 is a multiplicative spin-product over 

a particular cluster of type a; 

where there are N atoms in cluster a and Xj is the spin value associated with the 

jth atom in cluster (T. For the case of a binary alloy, we let species A have spin +1 

and species B have spin -1. The spin product 4 of a first-nearest-neighbour cluster 

would have four possible values because there are four ways to occupy a first-nearest 

neighbour pair in a binary alloy: (- 1) (-I),  (- 1)(+1), ($1) ($1) and (+I )  (-1). These 

products are twofold degenerate, and 4 would either be $1 or -1, depending on the 
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occupancy of the pair cluster. In general, for a binary alloy, $ is one of two values, 

-1 or $1, for any arbitrary occupancy of any arbitrary cluster. 

The summations C,, q5 in equation B.l are over all clusters of type a; in the crystal. 

For the case of 'CPoi,, q5(point), where "point" is the single atom cluster, this sum is 

identically zero for a binary alloy of composition 50%. This can be shown in the 

following fashion: The spin-product 4 takes on the value -1 for atom A and $1 for 

atom B. We sum q5 over all point clusters in the crystal. Every point cluster is simply 

every atom, and thus the sum ~,,in,$(point) equals (N/2)(-1) + (N/2)(+1) = 0, 

where N is the number of atoms in the crystal. For a binary alloy of composition 

75%, this same sum would be - f , and for 25% it is +;. 
The cluster coefficients S; do not depend on the occupancy of the cluster, but 

vary as a function of cluster type. For temperature or pressure dependent data, we 

allow S; to depend on temperature and pressure. The coefficients S; are the variable 

parameters in the LCA, and they are to be solved for or fitted to, depending on the 

model. 

The equality in equation B. l  is exact if we allow the right-hand side to  sum over all 

possible clusters in the crystal. In practice, we cut off the summation at some finite 

cluster size and thus arrive at a "cluster approximation" or "cluster expansion." 

When we are solving for the coeffecients S;, we introduce error into the values of 

these parameters by truncating the sum at some finite cluster size. The power of 

the LCA is in the quick convergence of the right-hand side of equation B.l ;  however, 

fast convergence requires an intelligent guess of the clusters that contribute most 

significantly to  the sum. This guess is facilitated by a strong connection between 

the individual elements of the LCA sum and our physical intuition about the lattice 

property in question. For most lattice properties, short-range physical interactions 

predominate, with longer-range interactions contributing less. Within the LCA model 

this means that smaller, more localized clusters are more important than larger, more 

diffuse clusters. For this reason, the LCA always includes terms for the point and 

first-nearest neighbour pair. Typical additional clusters are the first-nearest neighbour 

triplet and tetrahedra. 
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For the case of the vibrational entropy, it is unclear how quickly the LCA con- 

verges. The vibrational entropy depends on the energies of the phonons in a crystal, 

and phonons are notoriously long-ranged excitations. A typical high-quality Born-von 

KBrmBn model of an elemental metal will have significant force interactions between 

sixth-nearest neighbour (or farther) pairs. There is reason to  hope that the vibra- 

tional entropy, however, can be expressed accurately with clusters of smaller size than 

the range of the force constants needed in a Born-von KArmin model [14]. 
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