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ABSTRACT

The differential equations of motion and the associatgd boundaxry
conditions for the slip-flow regime of fluid mechanics are derived
from the noint of view of the kinetiec theory of non-uniform gases.
The‘slip-flcw regime comprises the flow of gases whose molecular mean
free path is smaller than but not neglizible relative to the macros-
copic dimension characterizing the gas flow.

A systematic review is presented of the methods of Hilbert and
Burnett for obtaining a successive approximation solution to the
Boltzmann integro-differential equation, The complete second approxi=-
mation to the molecular velocity distribubtion function is calculated
for the molecular model of liaxwell., This molecular distribution func-
tion is employed for the derivation of the macroscopic differential
equations of motion and the associated boundary conditioms. It is
shown that the same number of boundary conditions are required for
slip flows as for gas=dynamical flows, although the differential equae
tions of motion for slip flows are of higher order than those of cone
tinuum gés-dynamics. Expressioniafor the second approximations to the
slip velocity and temperature Jump are obtained.

The general equations obtained are avplied to three specific pro=-
hlems: +the propagation of sound waves in farefied pases, highespeed
Couette flow of a rarefied gas,and slip-flow between concenbric cylinders
in relative robary motion, It is found that the rarefaction of a gas
increases the damping of sound waves, whereas the preopagation sveed differs
from the ordinary adiabatic sound velocity by less than two percent. The
Couette flow solution indicates that the slippage of gas and the tempera=-

ture discontinuity at a solid boundary may reduce the gas-dynamical friction



coefficient and heat transfer, respectively, by ten percent under
approximate conditionse. hen apolied to the flight of aircraft
through the rarefied atmosphere, the theory presented is apnlicable

to an altitude range from 100,000 to 300,000 feet,
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PART 1

INTRODUCTION AND SUMMARY

.In a recent paper, H, S. Tsien (Reference 1.1) pointe& out the
need for the further investigation of the mechanics of rarefied gases
in order to gain an understanding of the phenomena encountered in the
high altitude flight of aircraft and in flow processes of low density
gases,

The mechanics of rarefied gases differs from the usual gas-dy-
pamics in that the gas cammot be treated a priori as a comtinuum,
so that the effect of the random motion of individual molecules must
be considered. The parameter which measures the relative importance
of the microscopic molecular motion to the macroscopic mass motion of
the gas 1s the ratio of the mean free path of the gas,,[ s to the
smallest intrinsic linear dimenéion L, which characterizes the gas
flowe Using this parameter ,Z/ﬁu fluid mechanics is most naturally
subdivided into the following "realms" (Reference 1,1 ):z

(1) -%% <-Tl6; the molecules are so closely packed that the
gas is effectively a continuum, This is the realm of
gas=dynamics, in which the fluid adheres to any con-
taeting solid surfacs,

(2) T%)‘(S"ig‘ <1; the mean free path £ is small but not
negligible relative to the macroscopic dimension L.

The appreciable number of collisions between gas mole-
cules and a solid surface cause a slippage of the gas
flowing over such & surface., Hence this realm is called
the "slip~flow" regime,

(3) 1< f%'<'10; the collisions between gas molecules and



bounding surfaces are of the same order of frequency
as the intermolecular collisions, This region, which
has as yet been investigated only experimentally, will
be called the "intermediate™ realm,

(4) ﬁ%—) 10; intermolecular collisions are negligible re-
lative to collisions between gas molecules and solid
surfaces, hence this realm is desiénated as the "free
molecule flow",

Realms (1), (3), and (4) are also called the Poiseuille, Kundt and
Warburg, and Knudsen regions after the physicists who first investi-
gated gas flow through capillaries in these respective realms of
fluid mechanics,

The present investigation is confined entirely to the realm of
the slip=flow, the primary objective being the derivation and applica=
tion of the mathematical boundary conditions which are required for
the determination of particular flow solutions from the general differe
ential equations of motion for slip flow. The equations of motion for
slip flow differ from those of gas~dynamics only in the explicit form
the viscous stresses and the heat conduction of the zas, Various ap=
rroximate expressions for the stresses and heat conduction in a rare-
fied gas have been deduced by means of the kinetic theory of noq-uniform
gases by mathematicians and physicists, notably Maxwell, Enskog, Chapman,
and Burnett. In fact, Burnett has developed e method which may be used,
in principle at least, to deduce the stresses and heat conduction for
slip slow to an arbitrary degree of avproximation.

The boundary conditions, however, have been deduced only to a
first approximetion for certain special cases, principally by Maxwell,

Knuisen, von Smoluchowski, Basset, and Epstein. A general and more



rigorous method for deducing the boundary conditions for slip flow
to an arbitrary degree of approximation is presented in Part V of
this thesis, Quite analogous to the viscous stresses and the heat
conduction, the boundary conditions for the macroscopic motion of
the gas are obtained by a process of integration of the momentum and
energy exchange between the individual gas molecules and the solid
boundaries which confine the gas. This procedure in turn requires
the knowledge of the complete molecular velceity distribution function
which characterizes the non-uniform gas. Consequently, it is first
necessary to calculate a second aporoximation to the velocity distribu~
tion of a non-uniform gas, This is done in Part II using the method
developed by D, Burnett.,

The kinetic theory of non-uniform gases has been developed during
the past eighty years beinning with the mathematical investigations
of Maxwell and Boltzmamn., The basic method of successive approximetion
that is employed both for the solution of the differential equations
and the evaluation of the boundary conditioms for slip flow rests ul-
timately on the nature of the Bolﬁzmann integro-differential equation
whose solﬁtion is the desired molecular velocity distribution function
of the non-uniform gas. As, to the author's knowledge, there does not
exist a unified treatment of the derivation of the complete distribution
function from the Boltzmamn equation, such an exposition is presented in
Part II, where the method of solution discovered by D. Hilbert and its
adaption to a practical computation by D. Burnett are explained. The
significance of the "molecular model™ which is necessarily employed in
the calculetions of the kinetic theory is also discussed, Part II is
concluded with the results of the author's calculation of certain coef=-

ficients which completely determine the molecular velocity distribution



function, to a second approximation., Certain details of this caleulation
are given in Avpendix III,

The differential equations for the macroscopic motion of & non~uni-
form gas are given in Part I1I, The fact that only the stresses and
thermal conduction depend on the degree of rarefaction of the gas is
emphasized by means of a derivation of these differential equations of
motion due to Maxwell and Burnett. It is found that the use of the first
avproximation to the molecular velocity distribubion function in the cal-
culation of the viscous sitresses results in the equations of Navier and
Stokes of gas-dynamics, whereas the application of the higher orders of
approximation to the distribution function yields differential equations
of motion which are of increasingly higher order. The validity of the
third order vartial differentisl equations that are obtained from the
second avproximations to the stresses and heat flux, as calculated by
Burnett and Chapman, is seenr to depend on the relative values of the
mean free path of the gas, the characteristic linear dimension, and
the lach nunmber difining a particuler slip flow.

Prior to the derivation of the boundary conditioms for the slip
flow regime, Part IV of this thesis is devoted to the application of
the macroscopic differential equations of motion to the particular pro=
blem of the propagation of plane sound waves in rarefied gases, This
one~-dimensional problem, whose solution does not require any boundary
conditions, is of interest in connection with the evaluation of atmos-
pheric data at high altitudes by means of the method of anomalous sound
propagation., It is shown that the speed of sound vrovagation and the
damping coeffieient, for a partieular gas depend only on a single pars~
meter, the Reynoclds number of sound vropagation which is defined in

terms of the wave length and the adiabatic provagation svweed of the



sound wave, For decreasing‘values of this Reynolds number, a slight
increase in the propagation speed, accompanied by a pronounced increase
in the damping coefficient, is found, However, even for the extreme
conditions to which the theory of Part IV may be applied, such as core
respond to the propagation of a wave of 1000 cycles ver second at an
altitude of sixty miles, the propagation speed differs from the normal
adiabatic sound veloecity by only two per cent.

It was stated earlier that a decrease in the density of the rare-
fied gas, requiring for its mathematical description higher order approx-
imations to the viscous stresses, results in an inerease in the order of
the partial differential equations of motion., This leads one to the ex=
pectation that the number of boundary conditions required for the complete
evaluation of a slip flow problem should likewise depend on the degree of
rarefaction of the gas, However, in the first section of Part V it is
shown on hoth physical and mathematical grounds, that the number of phy-
sical boundary conditions required for a slip flow problem is effectively
the same as for the corresponding flow in the realm of gas=dynamics.

In the gas=dymamic regime, the flow of a gas over a solid surface
is specified by three boundary conditions which require that there shall
be no relative normal or tangential veloeclity between the gas and the
solid surface, and that the layer of gas adjacent to the boundary shall
have the temperature of the boundary., In the slip-flow regime, the con-
dition of zero relative normal velocity still holds. However the relative
tangential or slip velocity is no longer zero but is a definite function
of the velocity, temperaturs, and pressure gradients of the gas layer imme-
diately adjacent to the wall, Similarly the gas temperature differs from
the wall temperature by an amount, referred to as the "temperature jump"®,

which is again a function of these velocity, temperature, and pressure



gradients,

The determination of the boundary conditions for slip flow is thus
reduced to the calculation of appropriate expressions for the slip vel=-
ocity and the bLemperature jump., A general method from which such exvres—
sions may be calculated, again to an arbitrary degree of approximation,
is presented in Part V. This method anplies the laws of conservation
of mass, momentum,and energy to the infinitesimal layer of gas adjacent
to the solid surface, referred to as the "sub-layer", and uses the non-
uniform molecular wvelocity disﬁribution function as developed in Part II,

The first approximations for the slip velocity and temperature jump,
as obtained by the use of the first avproximation to the velocity disbri-
bution agree with the results deduced analytically and verified experi-
mentally by previous investigators for low speed slip flows., The second
approximation to the slip velocity and temperature-~jump, which are re=-
quired in conjunction with the second approximation to the viscous stress=
es and heat conduction for higher speed slip-flows, are also calculated
in Part V of this thesis. Certain details of these 1engthly calculations
are presented in Appendix IV, It is found, as in the case of the viscous
stresses and heat flux, thét the sccond approximations to the slip veloeiby
and temperature Jump are functions of the second partial derivatives or
products of two first order partial derivatives of the velocibty, tempera=
ture,and pressure of the gas in the immediate vieinity of the solid bound=
ary,

Once the general boundary conditions have been calculated by means
of the kinetic theory of non-uniform gases, the method of solution of a
particular slip flow problem is quite analogous to the gas-dynamical case,
in that the macroscopic velocity, temperature,and pressure fields are
obtained by solving the differential equations of motion with a given set

of boundary conditioms. This process, which does not involve the kinetic



theory explicitly, is illustrated by two related concrete examples that
are treated as Parts VI and VII of this thesis. |

The solution for the Couette flow of a rarefied gas is obtained
in Part VI, The arbitrary constants of the general solution of the
diferential equations for two-dimensional parallel motion are evalusted
from the boundary conditons by an iteration proceas. The zero order
solutionas correspond to Couette flow in the gas-dynamic realm, whereas
the first and second approximatibns represent the modification of the
basic gas-dynamic flow pattern caused by the slip and temperéture junps
ocourring at both the fixed and moving plates of the Couette flow,
These slip effects,'which_result in a reduction of both the wiscous
drag and heat transfer between the parallel plates, are seen to be
functions of the two parameters %%-and M?, where M and Re are the MNach
and Reynolds numbers of the Couette flow respectively, The parameter

£

é%, is equivalent to the rarefaction parameter-ir, by means of which the
realms of fluid mechanics are distinguished, where in the present case
the characteristic length of the problem L represents the distance be-
tween the walls of the Coustte {low.

The results of the Coustte flow computation have been used to obtain
an esfimate of the skin friection of a flat plate in high spesd flight
in a rarefied atmosphere, The caloulations indicate, for example, that
for a chord of one foot, Mach number of 3, and altibude of 250,000 feet,
the slip of the air over the plate reduces the gas-dynamic walue of the
friection coefficient by approximately 10 per cent.

The Couette flow calculation illustrates the application of the slip
flow boundary conditions to the ecase of planar walls, The boundary con=-

ditions, deduced in Part V, are however applicable to curved surfaces as

well, This is demonstrated in Part VII, where the flow is computed for a



rarefied gas confined in the amular gap between two concentric eylinders

of which the ouber one is statiomary, while the inner one is rotating at
high speed. The calculation shows that the curvature of the streamlines
‘with the resultent centrifugal pressure field tends to exaggerate the
slip and temperature jump effects which are found in the Couette flow
under squivalent cdndi’cions.

The solutions of the three specific problems, ~ as treated in
Parts IV, VI and VII, point to the conclusion that the high speed slip
flow of a rarefied gas does not differ naterially from the slip flow
at lower speeds, which is adequately calculated by means of the first
order theory. In fact, it is found, in all of the cases considered,
that the second order slip flow theory results in flow patterns which
are interﬁzediate to those caleulated from the gas-dynamic theory and
first order slip-flow theories, respectively, This coneclusion is dig-
cussed more fully in Part VIII,

An experimental check of these conclusions appears desirable, es-
peelally so since the theorstical analysis given here is based on a
number of simplifying assumptions such as are generally made in order
to make the kinetic theory treatable, One such experiment might consist
of 2 study of the concentric cylinder flow whose analytical treatment is
vresentaed in Part VII,

It should be pointed out that the methods of solution presented in
this thesis are quite gen_eral in that they are not confined to the second
order solutions which have been developed in detail, It is believed, how=-
ever, that the results to be expected from e third order theo;'y, and the
simplifying assumptions already made, do not warrant the immense effort
required for the preliminary caleulation of the third approxizrﬁa.tion to

the molecular velocity distribution function.



The symbols and notations used in the text are listed in Appendix I,
The mathematical formulae to whieh frequent reference is made in the

course of the analyses are summarized in Appendix II,
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PART II

THE MOLECULAR VELOCITY DISTRIBUTION FUNCTION

The early form of the kinetic theory of gases, as developed by
Joule and Cleusius *a;as limited by “the assumpbion that all of the
molecules composing the gas move with equal speeds. The experimental
investigations of the phenomena of heat transfer and viscosity, however,
established the existence of intermolecular collisions and hence the
finite size of the molecules, A simple argument concerning the conser-
vation of linsar momentum during an "elastic collision" of two molecules
shows that; even if at one instant of time all of the molecules are
moving with equal speeds, the process of elastic collision will immed=-
iately produce a variation in the speeds of the molecules. To describe
this state of molecular chaos involving a destribution of molecular vel-
ocity and of the direction of this velocity, statistical methods must be
employed.

2.1 Formulation of the Problem

The following notation will be employed to deseribe the state of
the gas in a statistieal manner: let x,y,z, be coordinates of a point
with respect to a set of Cartesian axes fixed in space. The velocibty
components of a molecule with réspect to these axes are § , N s £
(see figure 2.1). The velocity distribution function £( § , N £ X,¥,23%)
is then defined in such a manner, that the numbser of molecules per unit
volume, dN, which at a time t have coordinates lying between x and xhix,
y and ytdy, z and ztdz, and whose velocity components lie between the

limits § and §+df , nand n+dy , £ and S+df , is given by

dN = y(x,yz;t)- FUn, &1,y 2;¢) (dxdydz) -(dSdyold) (2.1)

where V (x,v,2;5) is the total number of molecules per unit volume at the

point (x,y,z) and at time t, PFrom the definition of V it follows that
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o L od
2,2
diquf dé - E(5,0. 60y 2,4) =1 (2.2)
- - .
If m is the mass of onme molecule of the gas, its density @ is
given by

e=m Y (2.3)
The problem of finding the mathematical conditions to which the
distribution function f must be subjected in order that it should repre-
sent the physical behaviour of the gas molecules was investigated suc-

cessfully by Boltzmamn in 1872, He showed that for a gas whose molecules

‘are subjected to the action of (a) the intermolecular forces of binary

elastic collision, and (b) an external field of force whose components

per unit mass are Fes Fy,

be a solution of the integro-differential equation (Reference 2.1)

Fz, the velocity distribution funetion £ must

X 95

o
[&+5803+s2+7 KB +53]0D

(!

= V’a [:clif_ I:o(qa I:a(fajma(g- (£, -4, £) Ga (2.4)

where

—h
u

‘F<'§‘)Q‘; §Ij x'yiz'ft)
‘cha; iné‘zl'xly/zit)
€05, 1, &', vy z;t), etc.

t

h b
ot

This so-called Boltzmamm integral equation is non-linear and has the

.following physical significance, The differentisl expression on the

left side of equation (2.4) represents the chance in the number, (V"F, )

of moleculss at the point (x,y,z) having velocity components ( § , n, s & )

as these molecules move to the point (xtdx, ytdy, zt+dz) during the infini-



1z

tesimal time dt, Since the number of molecules having prescribed
velocity components can be further altered by the process of elastie
collisions, the change in (\’ﬁ ) can also be computed by considering

the collisions of the molecules (§, , v , &) with all molecules

(s, 0,0 & ) during the same time interval dt., The net effect of all

- possible collisions is represented by the inbtegral expression on the
right side of equation (2.4). The velocities of the molecules before
collision are represented by the unprimed velocity components, whareas
the primed quantities are the values of corresponding velocity components,
after collision, The form of the quantities Gyp and dg, which represent
the effect of the orientation of the line of centers of the two molecules
at the instant of closest approach, depends on the law of interaction
between molecules, and will be discussed later., (See also Appendix IIT,
Section 3)

Fquation (2.4) was first used by Boltzmamn to calculate the distri-
bution function £ (§,4, §£) for a uniform gas in steady equilibrium and
in the absence of external force fields, For this special case the
differential expression in (2.4) vanishes and the Boltzmann equation will

be satisfied by the sufficient condition

(£ -£8)=0 (2.5)
This condition together with the laws of conservation of linear momentum
and kinetic energy for elastic impﬁcts results in the well-known Maxwell
velocity distribution

1 hm (§ D)
(60,6 = () e (2.6)
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where

f .
h=z-{—<=,'-. (2.7)
_Here T is the absolute temperature and k the Bolt;mann constant which is
the universal gas constant referred to one molecule.

By means of his "H - theorem" Boltzmann then showed that (a) equation
(2.5) is also a necessary condition, so that the Maxwell distribution is
unique for a uniform gas, and (b) that if a gas is given an arbitrary
initial velocity distribution, the gas. will return to a Maxwell digtribue
tion by means of the process of elastic collisions, if no external influence
are present. Thus, Boltzmann succeeded in showing from dynemic considera=-
tions that a perfect gas actually satisfies the statistical hypotheses upon
which Maxwell's original derivation for fo had been based.

In the general case, when the distribution function f is a funetion of
the space coordinates and the time, equation (2.5) does not hold, and for
the evaluation of the integral appearing in the Boltzmann equation the

quentities G,  and dg must be known. As mentioned above, this amounts

12
to the selection of a "molecular model" with which is associated a definite
mothematical law deseribing the interaction between molecules,

Throughout the development of the kinetic theory of gases, the
molecular models that were used have grown in complexity, ranging from
Clausius's smooth, rigid, elastic spherical molecule to models whose mass
is concentrated at the origin of a spherically symmetric force field,
Whereas %he above moleculss are "smooth"™ and capable only of interchang-
ing translational kinetic energy, the "rough" spherical molecule used by
Bryan can also account for the exchange of rotational kinetic energy when

two molecules collide, A detailed discussion of these and other molecular

models may be found in Hefereﬁce (2.2). The behaviour of actual gas
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molecules will be, perhaps, most closely approximated by the most cone
plicated molecular models, for which, however, most of the calculations
cannot be carried through in practice, Furthermore, from the point of
view of modern molecular physics, the validity of models, arbitrarily
constructed without proper consideration of the molecular structure and
the interaction according to the princiﬁles of quantum mechanics, is
highly questionable, Fortunately, Brysn's study shows that the introduce
tion of "roughness" of the molecules does not alter essentially the result
obtained from smooth molecules, In other words, the difference between
the different molecular models lies mainly in the modification of the
numerical coefficients in the final equations, but not their form, These
numerical coefficients will be, in any case, finally checked and deter-
mined by experiments, Therefore, the most fruitful results of the kinetie
theory of gases have been and can be obtained with the "smooth" molecular
model consisting of a spherically symmetric, repulsive field of force.
All of the derivations of this paper will be based on this molecular model.
If the centers of two molecules are separated by a distance r, the

force of repulsion, 7, will be given by

F(r) = Km' t n>o

, (20’

0

Y
;
7

C

where m is the mass of the molecule and X is s numerical constant, This
force law contains the rigid elastic spherical molecule as the limiting
case for n—-co. When n = 5 the molecular model is called the "Maxwellian
molegule“'which was first used by J. C. Maxwell because of its relative
mathematical s=impliecity,

It is well lmown that the exvonent n of the force law is related to

the temperature variation of the coefficient of viscosity of the gas,
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In particular, it is found experimentally that for many gases. the

coefficient of viscosity, M s can be approximated by the expression,

(/‘%) = (—%) - 0.5 £ s< I.O (2.9)

in which case (Reference 2.3 ) the relation between s and n is simply

4
2s8-1 °

Evidently the lMaxwellian and spherical molecules correspond to the limits

n = |+ (2.10)
on E_given in equation (2,9). This is also showm graphically in figure
(2.2) where F(r) is plotted to an arbitrary scale for various values of
n. The agreement between theory and experiment represented by equation
(2.9) is the principal justification for the use of the point center of
force molecule defined by equation (2.8).

2,2 Hilbert's Scheme of Solution for the Boltzmann Equation

Before proceeding with the discussion of the general solution of the
Boltzmann equation, it is convenient to transform equation (2.4) by re-
ferring the velocity components of the molescule to a set of coordinate
axes moving with the mean mass velocity of the gas. If u,v,w are the
X,¥,2 components, respectively, of the mean mass velocity of the gas, then

by the definition of the velocity distribution function

. oo © @

W(x,y,z;t) =f dff o(q[ dé-§- £(5,0,8;%,52,¢) | (2.11)
- - 00 -

with analogous expressions for v and w. The veloeity components of the

molecules relative to the mean motion of the gas will be dencted by U,7,W

(see figure 2.1), so that



3\

§ =u+1U

n=v+vV » (2.12)

F=wt+twW

The vector sum of U,7,W is called the "peculiar velocity", C, of

e molecules and is, of course, given by

=17 +v +9, (2.13)

After substituting equation (2,12) into equation (2.4), ane may write

the Boltzmamn equation in the symbolic form

f;(ﬁ.) = V‘J‘J‘(\C.'\‘;'\Cn‘a)'ﬁ.a-qLQa-dg

where

(2.14)

;Z E[% +(u+u,)%+<v+‘fl)§y+cw+w)_aai

2 2 :]
+ B 5w, +Fy%:+anw, ,

[ -rar6u sy = Jan a0 oo [ug-(E5s06, , @ao

and

!

fo= £ 00,V W', xy,z,¢), etc

The Yaxwell distribution function, equation (2.6), can be written as

3 - VW)
LmTw) = () e
s |
_ hm% - hmC (2.16)
= (7)) e ,
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because in the derivation of equation (2,6) it was implicitly assumed
that the jas he at reost on the average.

The first rigorous mathematical prbof for the existenée of a unigue
solution £(Y,V,Wsx,7,2;t) of %he Boltzmann equation (2.14) was given by
D. Hilbert (Reference 2.4) in 1912, As the fundamental ideas involved in
Hilbert's ‘proof are also reguired in obtaining the solution £, they will
be sketched helow,

Hilbert used the following expansion for the distribution funetion:

vf = f: [rexy o Pyw o 8] (217

\

where A is an arbl,rary, but constant parameter, ¥, = ¥ (U,V,¥;x,y,z:t),
for n = 1,2,..., and £ is the Maxwell distribution of eguation (2.18)e

The basic concept here is thus that of perturbation theory. The terms of
the series are perturbations or corrections to the basic Maxwell distribu-
tion. MNathematically, the essential improvement to be made is the linear=-
ization of the original non~linear integral equation., The resultant set

of linear integral equations can then be treated with the aid of the theory
of linear integral equations developed by Hilbert himself, Amalogous to

equation (2.4), the notation

will prove useful. Substitution of Hilbert's expansion (2.17) into
Boltzmann's equation (2,14 with subseguent collechion of terms in ascend-

ing powers of the parameter results in
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/"1? [ o - [J‘{;o:;o'a-pm'&z} G CLQZ dg]
+i" [ %.gl(;°‘) - fj{ 'FO'I (o;()ﬁ:‘+ lﬁal) - 'Foi (oz(lﬂr+wta)} GIZ OL.CZ ds]

* [ %:‘, (’FOI lﬂl) - ff{('{:ml Fo«; l{'{nl )ﬁz' - 1Co| Foa "#“ lﬁz)

b o for [H LT~ fuhg [H+2,1)}- 6 dC, dg)

+A[;’%z(£,4§,)-ﬁ{-»-}6,z dc,dgl+ [ ]+ ... =0 . (218

Sinee this eguation must be satisfied for arbitrary walues of A , all of
the coefficients of ).n , i.e., the quantities in the square brackets, must
vanish identically. The coefficient of ;'fz is automatically zero, since
the Maxwell distribution, fo, satisfies equation (2.5) from which it was
derived, Equating the coefficient of -)\L to zero results in an integral
equation for the unknown function Y , since the differential expression
in this coefficient is a !mown function of the velocity components, Assum=
ing that the solution for ¥ can actually be obtained, the coefficient of
/1° = 1 then furnishes ar integral equation for the unknown function ll-g .
and so on. Hence all of the unknowm functions #, of equation (2.17) can

be obhtained zuccessively orovided only thet the set of linear integral

eguations

2040 - [ (80 10} 6 de, dg = 0,

n=t2,3,.. (2.29)

has a solution W = Y ( én DIE §v\-x here represents a knowm function
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of the form § = én-uc*co;“‘f,"‘ﬁ,---,’fﬁ.-l) .
By means of & number of ingenious transformations Hildbert showed

that the set of squations (2,19) could be brought into the form *

(U w)
Fh‘((u|IV|IW;) = a e . *n(ul,‘lllw)

+JK(M‘/V‘JW‘J w,, v, W) K, (U, V,, W) dC,

3

N 123 .o (2.20)

where T 1s a known function, X is a symmetrical kernel, and a is a
constant, Equations (2.2C) are essentially non-homogeneocus, linear in-
tegral equations of the second kind with symmetrical kernel, for the
unknown functions 4& (U,v,Ww). Hilbert then showed that the associated
homogeneous equations, obtained by equating the right side of (2.20) to

. , @ G,
zero, each have the same five eigen-solutions ﬁi = HO {3 =1,2,444,5)

given explicitly by equation (2.21)

)

-E
Il
-

@)

@

% =
]
<

=Y d (2021)
&
=W

(s
R R

= =

* The dependence of the funections Fkﬂ and 4@ on the space and time coor-
dinates x,y,z,t does not affect the nature of the integral equation, and

is therefore not shown explicitly.



Physically, these five eigen-functions correspond to the mass, momenta,
and kinetic energy of a molecule. By the well lmown theorems of Fredholm
(Reference 2.5), the non-homogeneous equations (2.2C) have solutions only
for those functicms F,_, which satisfy the five asscciated conditions of

integrability (2,22).,

f‘f‘@)(K'V'W% F(KLVW) d¢ = 0

i= 12 5

)l-c)

n = i,ZI3,... (2.22)

The physical meaning of these conditions will De discussed in the next
section., The most general solution of equation (2.20,; is *hen the sum of

. ‘ ‘s . _ W .. .
a linear combination of the eigen~functions 4 of its homogeneous equation

©)
and the "particular solution namely
pa n o ® 3

(]
(R VW, x,yz,;t) = ¥ (WVW, X,y2z,t)

5 @) )
r 3 C,(xyzt) - ¥ (W, V,W)
}:l

n=+L2a,... (2'23)
Consequently, equation (2.17) is solved, in principle at least, Hilbert

also showed that the solubion (2.23) will be mique if one specifies the

values of the following five n integrals at same dofinite time + = to,

and for all voints of space x,y,z:

@® o
H (WYW) - £ (VW) - KR VW, (xy 2,8 dC

@

= Hn(X,)’,ZJ-{zfo) s 3‘2 L2, ...§

h= ,2,... (2.24)



It should be noted that Hilbert worked out the details of the above
existence proof for molecules which are rigid elastic spheres, However,

- the nature of his arguments was sxtended to other elastic smooth molecules
with spherical symmetry, such as those defined by equation (2.8), by

A. Lum and F, Pidduck (Reference 2.6 ),

2.3 Procedures of Solution

Before we exanine the physical interpretation of Hilbert's solution
of the Boltzmann equation, it will be convenient 4o transform somewhat
the pertinent aquations (2.17), (2.22), (2.23), and (2.24). The final
form of these equations, also leads directly to the methods of Enskog,
Chamman, and Burnett for the explieit calculation of the non-uniform
velocity distribution function. Substitution of eguations (2.23) into

the Hilbert expansion (2.17) results in

o © 2 n s oW -
wf) = -)'Tﬁ[H' nZn‘ln'ﬂ + g.lch g (2.25)
s =l PR .

Let dJ‘L’(U,V,T."I ) represent the complete set of orthogonal eigen~functions
associated with the symmetric kernel K(Ul,Vl,Wl;UZ,VZ,Wz) of equation (2.20).
The particular solutions Hf:o), n=1,%,..s, of equation (2.25), as continuous
functions of the velocity components, may be expanded in terms of these
eigen-functions, The eigen-functions 1{‘(‘) of equation (2.21) belong to the

]
set § , so that with the notation

03] @)
¢ = ¥ for izg = L2,...,5, (2.26)

equation (2.25) can be written in the form

izt

b= ve[1+ 220 ¢ ]

(2.27)
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()
where the coefficients @, are functions of the space and time variables,

This may again be written in the final form

Vix,yz,t) - $(UV, W, x,y2;t)

® d] .
= 'i" ‘Fa(u,v;w) [ [+ Z: b C)‘-;y,z,'f) ’ ¢“)(LI‘,V,W)J (2.28)
where
© z noo
b (X,Y,z ;‘t) = ZI A Qn (X;)’,Z.;f) . (2.29)
h=l '

The deduction of equation (2.28) requires that all of the series involved
be uniformly convergent, which fact was established in essence by D, Burnett
(Reference 2.7 ).

As was pointed out by Hilbert, the 5 n conditions of integrability,

equation (2,22), are equivalent to the 5 conditions of equation (2.30),
#) Pl
fl'u (U, V,W) Dt [V(X,Y,Z;f)' F(V,V,TA/; x,y’zii)J OLQ = 0O

for 4= 1,2,..5. (2.30)

Tt will appear later on, as first pointed out by Mexwell, that the evaluation
of equation (2,30) will result in the hydrodynamic equai':ion of continuity
for j = 1, the Tulerian equations of motion in the x,y,z directions for

J = 2,3,4 respectively, and the energy equation for a perfect gas for j = 5.
The functions ’I‘m were defined by equation {2.21). Physically this means

then that any dynamically correct configuration of discrete molecules of a

gas - that 1s one whose velocity distribution funchtion satisfies Boltzmann's



equation - must be so constituted that any macroscopic mass of this gas
will be subject to the laws of conservation of mass, momentun, and energy
.which aonly to the continuun of classical hydrodynanies,

Finally, it can be showm that the set of 5 n conditions of unigueness

equations (2.24), is equivalent to the following 5 equations:

| @)
[ wrw) £(Ruw, 2,20 de = H (nyzb)

for 4= 1,2,...,9. (2.31)

4

Actually, the values of H@) are not arbitrary, because of the restrietions
which, for convenience, have been imposed earlier on the distribution funce-
tion, and on the velocity coordinate system, namely equations (2.2) and
(2.12). Consequently, the following conditions will specify the distribu-
tion function uniquely:

0

H = {. d¢ = 1
Hm - fu”‘-‘igg ﬁ=05 H(‘ll= V:O ' H(‘”:W:O (2.32)

H(s’ = jczfd_;g = Cz(xIY,z;t).

The bar over a quantity means that this quantity has been averaged over all
velocity components of the molecules at the point x,y,z, and time £, It is
well known that for a uniform gas the absolute temperature T iz related to

the mean square of the molecular velocity by

pr 3kT 3
C — T (2.33)
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where h has already been defined by equation (2.7). It is both convenient
and logiecal to define also the temperature in a non-uniform gas by equation
(2.33 ), wheres C is now the "peculiar velocity" of a molecule defined by
equations (2.12) and (2.13). Physically speaking, this temperature is the
one that would be measured by a thermometer moving with the mean mass vel-
ocity of the gas. The above definition is evidently consistent with the
concept of the static temperature as commonly used in aerodynamics, There-
fore, the significance of equations (2,32) is that the state of the gas is
uniquely defined by equation (2,28), if five macrospic guantities, - namely
the density of the gasle , its absolute temperature T, and the three com-
ponents of the mass velociﬁy u,v,w, = are each known as a function of x,y,z,
and %,

Mothing has been said, as yet, about the choice of Hilbert's arbitrary
paraneter A , first introduced in eguation (2.17) and still present in the
final resul:, equation (2.28). It can be shovm (Reference 2.8), that a
particular choice of A merely affects the way in which the various terms
of the expansion (2.28) contribute to the sum ¥ which itself is entirely
independent of A , The fact that the importance of the deviation of the
non-uniform velocity distribution £ from the uniform distribution function
fo increased with a decrease in the density @ of the gas was discovered by
Maxwell, D. Enskog and S. Chapman (Reference 2.9) used this fact in their

selection of the parameter A , namely

| A
A=y (2.34)
where as before ) is the number of molecules per unit volume, For rarefied
gases, in which, however, the number of molecules per unit volume is still
sufficiently large, the coefficients go of the expansion (2.28) may, there=-

fore, be calculated to any desired degree of accuracy by replacing the



infinite series (2.29) by the finite sun of ¥ terms

; N ;
o (X,5,2;t) = HZI('»I’)“ G (RYZH) | (2.35)
s .
BEquation (2.35) alsc shows that the gquantities Q” can depend explicitly
only on the Space and time derivatives of the mean motion variables
u,v,w, @, T since for a uniform gas equation (2.28,; must reduce to the
Yaxwell distribution function,

3oth Enskog and Chapmann, using for the functions ¢¥Lequation.(2.28),
the products of various powers of U,V,W and 62 succeeded in evaluating the
coefficients QO, (2.35), to the first order, ¥ = 1, the labor involved in
calculating better approximations being prohibitive,

In 1935, D. Burnett (Reference 2,10, 2,11) discovered that the mathe-
matical complexity of the »nroblem can be considerably reduced by using for
+the functions q;“the product of spherical harmnonics in the peculiar velocity
and the so=called Sonine polynomials of the argument C2, This enabled
Burnett to devise a general method for the calculation of the coefficients
G” for arbitrary values of W, However, the labor involved for ¥ > 2 is
still stupendous. Consequently, Burnett calculated only those coefficients

Bw , for ¥ = 2, which were required for a calculation of the stresses in
the gas, in which Burnett was »rimarily interested,

It will be seen in Part V of this paper that for the svaluation of
the boundary conditions for the slip flow of a rarefied gas, all of the
coefficlents GP mast be known, Therefore, the first task of the present
study will be the complete computation of all these coefficients, Burneti's

form of the distribution function, will be used in the subsequent parts of

this investigation, and the method of calculating the unknown coefficients



will be outlined presently,

2,4 Method of Comnutation Devised by Burnet:

It is Tirst convenient to express the cartesian velocity components

in stherical nolar coordinates., According to the notation of fijure (2.1),

the transformation equations are
U=Csin® . cos ¢

V=Csing . sin¢ ¢ (2.36)

W=~ cos 8

-
so that the veloecity distridution may now be expressed in the form

£(U,V,W; x,v,2z,53) = £(C,e,d; x,y,23%) (2.37)

Burnett writes the expansion for £, equation {2,28),in the form

fF(C, 0,9, x,¥2;t) =

nzo

Z (n) .
‘Fo(hm CZ) {ZI ﬂ! r‘(n“'%) AH(X,.Y,Z,-f) ' Sé (th)

o0 Lg T = n}
+ 2 (lw«)E [% n P(K+n+§')'x‘n(c, 9,4’,-x,y,z,-i)~SK ,(hmcz)]}. (2.38)
k=i z0 'PE

o
]

The general solid spherical harmonic function YM is def'ined by equation
(A.1) to (A.4) in Appendix II, Section 2, The symbol S::, denotes the
Sonine polynomials, which are defined by equations (A.44)or (A,.53) of
Appendix II, Section 6, where other important properties of these poly-

nonials are given by equations (A.45) to (A.53 ).

After substitution for fo from equation (2.18) and for Ykn from equatiors
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(A.1) to (A.4), equation (2.38) assumes the more explicit form
f(C,0,0 ; x,v,2;¢t)

m 20

K

+ Z (hmcz)

K=

2 .n ct n
(b_"}.)z " [ n! ['n+ed) A, (2 y,2:8) - S(th)

vxl Miken+ 2). S (hmc) [Bm(" ¥.2,8) - R(coso)

€ e (c-8)! &) @ @
23 ED) o) {BK,‘(H,Z,-ﬁ)- cos(pP+ CKn(x,y,Z,-t)-sin@@)}ﬁ(wseil (2.39)
e

Some important properties of t he Legendre mnolynomials PK and of the asso=

¢}
clated legendre polynomials PK are sumarized in Appendix II, Section 3

and 4, respectively. A comparison of equations (2.39) and (2.28) shows
that the non-uniform distribution function £ is expanded in terms of the

. & *
funetion ¢ of the form

@ K n)
) cos(pe) 2
& (C,0,8) = P(coso -{sznw + C o SppylhmC)
(2.40)
. @ @) . N
The quantities B, , Byn , Cen » Whichwe shatl call the
"Burnett coefficients", correspond to the coefficients b (x,y,23t) of
equation (2.28)., According to the discussion leading to equation (2.35),
the Burnett coeff'icients may then be caleculated to the desired degrec of
accuracy, by choosing for N the value appropriate to the density of the
. gas, whose state is to be represented by equation (2.39)., Moreover, the

Burnett coefficients,a s functions of the space and time coordinates, will

depend explicitly only on the five "wvariables of state" of the gas,

@)
* The notation ¢ for a function will not be used hereafter, so that the

use of ¢ for the azimuthal angle will not be confusing.



(€ T,u,v,w), and their space and time derivatives, in accordance with the
discussion which followed equation (2.33 J)e In the remainder of this sjection
" the distribution function will be considered at a fixed point _(x,:f,Z) and
a definite time t; thc. Burnett coefficients can then be treated as "con-
stants", and their dependence on (x,y,z3t) will no longer be indicated
explicitly,

Equation (2.39) must satisfy the five uniqueness conditions of equation
(2432 ). As shown by Burnett, the use of the orthogonality relations (A.16),

(A.30), (A.47) reduces equation (2,32) to the five equivalent conditions

(2.41), respectively.

\
A =1

0] _

109 L

)
c. = 2,41

10=0 ( )
Byg =0
A, =0

J

In addition, the distribution funetion must satisfy the five conditions of

integrability of Hilbert, equation (2.30), As can be seenf ram the equations
@

in Appendix II, Sections 2 and 6, the five eigen-functions Y of equation

(2.21) are in Burnett's notation equivalent to equation (2.42).

-

()

¥= ¥, (c0,¢)- S;(hmcz)

3 1) (o 4 © o
e l S‘,. o Z(l)S: IFU= Yl. S‘_.’ X (2.42)
2 2 z
s} )
¥ = ¥ s, .
e ] )

Consequently, the distribution function (2.39) with the restrictions (2,41)
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is a useful representation of the state of a non-uniform gas, provided
only that
(a) the conditions of imtegrability (2.30) are satisfied by (2.39)
and (2.42);
L. @ (9]
(b) the unknown coefficient A s Byns By Oy can be calculated as
functions of (x,y,z3t). Burnett's method for extablishing con-

ditions (a) and {b) will be outlined below,

The poiat of departure is again the Boltzmann integral equation,

which in the notation of equations (2.14) and {2.15) is *

[ (el & v (v E + e W) & ] (04)

= Va j[({‘t‘;al’ 'Ft'(z)' 6(2. 0_‘.92' ds . (2'43)

Multiply equation (2.43) by an arbitrary function Ql, of the peculiar

velocity components,

Ql = Q(U]_, Vys Wl) (2.44)
end integrate both sides of the res{zlting equation over all values of the
velocity components Uy, V,, Wl. By means of some partial integrations

the result may be written in the most convenient form

* The terms containing the body forces Fo» Fy’ F» have been neglected,

This procedure is Justified in Appendix III, Section 1.
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’ 85 95 9_:0.' 9t é:o-‘ 561 éé—..
V['BT'+ w 5;‘+v;y‘+w5-2— ‘“ax‘VSy"Waz

: 22 |, 2/viTal)e 2(viTa)s 2(vWa
- ulg_g -V g-;? - W, g—i +5;(VHIQ‘)+ay(VMQ)+ az(VWQl)

- A [ ey ah 6, de, e, g (2.45)

The notation used here is analogous to equations (2.,4) and (2.15);

as in equation (2,32 ), the bar denotes an average valus, namely

0 o
FE = f f f FCu, v, W) - (U, V, W)~ d U, AV AW ,

e (2.46)
Equation (2,45) was first derived by Maxwell and is frequently called the
Maxwell transfer equation., Its physiecal significance is entirely analogous
to the Boltzmann equation (2.4) or (2,43 ). The left hand side of equation
(2.45) represents the net change, A(Z Q) in the sum total of the property
Q for the V (x,y,z,t) dxdydz molecules during the infinitesimal time dt.
Since any changes in Q, AQ, are brought about by intermoleeular collision,
A( 5 Q) can also be determined by summing up the effects of all the eolli-
sions which ocour during the time dt; the latter idea is represented by the
integral on the right side of equation (2.46),

Burnett chooses for Q(U,V,W) functions of the type

(7]

QR = Q, = (k+ T (hm)

Ky

o~

£ P ) .
’ yk (C,6,6) SK#(th ), (2.47)
2
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which inelude the important sigen-functions lf‘mof equations (2.21) and
(2.42) as special cases. The various averages occurring on the left side
" of equation (2.45) can now be caleulated by performing integrations of
the type (2,46) by using for £(U,V,W) its value given by equation (2.39)s

The simplest examples of the expressions thus obtained by Burnett are

) ()
ke = By

———

©) ] | ( 3 ) 0]
u ri = V”'Tv; [2K+3 { K+t’+a) BK-HJY - BKH,T‘I}

()] 1) 0
- { BK'i,f - ((+1) B( J D,::

2Kt K-, #1¢
N 2Vhm qu _‘Dw 2w
Uox Qe = 31?:3—{ ok “katy-t ¥ 7 ﬁDK.:,r}“‘---
L. 2h
t % {((+2"K) DK’(. - Dk,r—l } ) (2.48)

Substitution of the expressions (2,48) into equation (2.45) reduces

the Mexwell transfer equation to the form

}

®
V[mcuncf. (u,vw,h y . 2%
K,T ’ ’ ;BX,

(%) ®) @
2
st, Cos , i((st),... E%(Ces> ; efc.)_-]

®
= y.‘a fff{(aﬂ')a - (Q(:r)n} 'F‘ (a ’ 612' oi.gl 0—(—Ca "‘3 (2.49)

2

whe - <
ore k-2 & £ £ ke2 | (-2£sbree . prsgspel.

In order to evaluate the complieated integral of equation (2.49), a

specific molecular model must be selected in order to specify the "eollisiom
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paraneters" G._ and dg., Burnett succeeded in evaluating this integral for

12
molecules which are point centers of forece, and which repel one another
according to the law of force of equation (2.8), The details,of Burnett's
calculation are involved, and even his final results are too lengthy to be
reproduced here explicitly. However, certain details of such caleulations
are given in Appendix III, in commection with the author's evaluation of
certain coefficients not previously determined by Burnett.

It can be shown that the integral on the right side of equation (2,49)
venishes for the special molecular properties GiZjU;V;W), equation (2,47),
which are definsd by
(&) ¥X=0,r=0,p=0
() k=1, r=0, p=10,1 (2.50)
(¢) k=0, r=1,p=0

@
This means mathematically, that the functions @,

as defined by
equations (2.47) and (2,50) correspond to the eigen~functions ng)of
equations (2,42) and (2.21), and that Burnett's expansion for the distri-
bution function, equation (2.59),satisfies the conditions of integrability,
equations (2.30), It will be seen that the integral of equation (2.30) is
an abbreviated notation for the right side of the Maxwell transfer equation,
equations (2.45) or (2.49),

The physical interpretation of the above result is, of course, that
the total mass, momentum (in three directions ) and kinetic energy, are not
changed by elastic intermolecular collision, Consequently, the Maxwell
tranfer equation reduces to the equations of econtinuity, momentum and
energy for the méan motion of a non-uniform gas, when values of equation
(2.50) a,b, and ¢, respectively are substituted, These fundamental equations

are stated eiplicitly; and discussed in some detail in Part III.



In the general case, however, that is for an arbitrary molecular
property Qps the integral on the right side‘ of the Maxwell transport
equation (2.49), is a non-vanishing function of the Burnett coefficients.
‘The evaluation of this integral is made much simpler by the use of Sonine
- polynomials, Burnett shows that after evaluation of this integral for

arbitrary values of k and r, equation (2,49) takes on the form

«
@ G @ ]
u 2 \
[F“nCtncu,o-t)hj axj.,.,%tb ] BISJCES ; a_x' B.ls)j"'J etc.) Kr

©)
€,6) @ @ " ¢
@)
=V [: 2 (m { Ben B+ } ‘]
KI’KZ( K) K“'KZ K‘ﬂl Kznz CKlnl Ckzng ) Kr .
nlJ nz r) n,'ﬂz
€, 6

(2.51)
The quantities M are numerical constants which differ from zero only when

its indices satisfy all of the conditions (2.52).

LITa

5

K= [Ke-Kl+ 2n , n= 0,123 .. (2.52)

In the notation of equation (2,51) it is to be understood that

) ()

J os

B

In the sense of the discussion leading to equation (2.35), the exact

equation (2.51) may be approximated as clossly as desired by neglecting all

N
terms of order higher than (’f;) + This means that the sumation on the

| \N#I
right side of equation (2.51) must contain terms of order (‘)';) or less.

From equations (2.41), (2.39), and (2.35) it follows that the coefficlent
Boo = Ao = 1 is the only coefficient of order N = O, since the term in f,

equatioﬁ (2.39), containing Ao corresponds to the Maxwell distribubion,.

Therefore,reduction of equation (2.51) to terms of order N = 0, results in



(0,)

[-Fumcﬁ ( L2 at)] = V[KZ;: ( m"‘”‘z | A"'Bkz";)]m’ . (2.53)
n, yon;
Evidently, if the transport functions ri of equation (2.47) are used for
all possible values of k and r, equation (2.53) constitutes an infinite
set of linear algebraic equations, from which the same infinite number of
unknown coefficients, 1Bk2 can be calculated. The prescript (1) denotes
the fact that the coefficient Bk ny »i8 here accurate only to terms of
N=li
order ()';') .
Equation (2.53) leads to the determination of the "basie" Burnett
)
coefficients, By s only, However, the "associmted" coeffiecients, B“’ and
@ . 1l kr
1Ckr are readily caleulated from the basic coefficient, by the following
method of rotation of coordinate exes. Since the distribution fumetion,
equation (2.39) is valid for any values of (C,8,¢ ) or (U,V,W), it must
also hold for the special case U= V1= 0, W' = C. From the equations of

Appendix II, Section 2 for the spherieal harmonics, it can be seen that

=%, v'=v' =0)=B_7v (¢c'=W, U =7 =0) (2.54)

(2.54)

1 €

If the coordinate axes are now rotated, equation (2.54) may be expressed
in terms of the new eoordi.na.tes X,¥23U,V,W with
~0'2= R +vE 4,
Equation (2.54), expressed in terms of the primed coordinates can then be
arrenged in the form of equation (A.1), Appendix II, The associated Burnett

coefficients B]m’ Ck:n are then simply the coefficients of the guantities

(K-@} k-0
e el Yf(U.V,W) and 2 (K+6’)'Z (U,I,W) respectively. The

success of this method rests, of course, on the fact that the general form

of the expression for the distribution function must be the same for any
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system of cartesian axes., The above method is illustrated for the case
k=3, n=1 in Appendix IITI,
As all of the Burnett coefficients are thus knowm up to terms of order
, evaluate the next approximation to equation (2.51), which for N =1

is of the form

. @ W
[F“"Ct'(“""'h ; %,...,3{‘ st ) zs ; D%( BZS) etc‘)-]xr

i1

{0,0)

= V [ Z ( KOK ° ;Bkanz)

ron,_
(f=6) (01 (8) @ @
+Z(mKKK { Kanncn +|CK(n,.C«<zna} KY .
K, Ke i, n (2.55)
NN, :
Fi=6;
The only unknown quantities appearing in equation (2.55) are the second

F]
[
order, ()-;) s approximations to the basic Burnett coefficients, namely

2"kpny’
Consequently, if equation (2,55) is evaluated for all values of k and r, one
has an infinite se’c. of linear algebraic equations for the determination of
the coefficients 5B... As before, the associated coefficients ZB;:;’ 20(::'
are obtained by the method of rotation of axes.

By continuation of this process it is thus possible to calculate all
of the Burnett coefficients accurate to terms of order (—f;)NH by evaluating
the integrated form of the Maxwell transfer equation, equation (2.51), up
to terms of order (J);')N. Thus the calculation scheme of Burnett, as outlined
above, is the most convenient method yet devised for actually computing the
solution of the Boltzmann equation whose existence was Pirst established by

D, Hilberte

2.5 ZResults of Burmett's Computation

(6,6)
Actually, the formulae fram whieh thne numerical constants m K K, Kq
rnn,
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are calculated are very complicated for molecular models whose force of
repulsion varies as an arbitrary power of the reciprocal of the molecular
separation, equation (2.8)., For this reason, Burnett gives explicit for=
mulaeé only for the two limiting cases of (a) rigid spherical molecules
(n = 00) and (b) Maxwellian molecules (n =5),

For spherical molecules, Burnett found that the first order coefficients

1Bkr differ from zero only for k =1 and 2, The basic coefficients were

found to be
' AN o 2h
= x _3— - ] m— e
|Bu = - |, 009 E(P) hm 22
B. = . 048 By q (2.56)
B, = .004B,
\jB“+ = . 0002 B,
ete, -

S2E) (2 ¥-5%5)

\vs)
"

1720
feed 2.57
B, = .062 B, | (2.57)
B,, = .0043 B,,
B,, = - 0003 Bso
etc.

~J

In the above equations M is the coefficient of absolute viscosity
of the gas; its signifieance will be discussed in Part III., The parameter
‘,‘i’" is contained in % s 8ince the pressure p is related to the number density
by the equation of state

-

sz'él?f"r . (2.58)

For spherical molecules, the assoeiated first order coefficients are given
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by equations (2.59) and (2.60):

.

- LB(E)Y L — 2h ) 34y 2k
lBll = - 1.009 -3 (?) h{pm X lC,: = - L0099« 3 (1:).., Y
_ ) {1 ()
B;z - 04’8 zBlI ‘Cl'z = 04’8 lC“ - (2'59-)
ete, ete.
A
B = -26(%+%) ¢ -GN %)
20 -~ C\P 9z X7 ~20 = 7 P/NOL " oy
@) ~ m _ v a ' Ky %
20 = T 4'(1’) ( 5 ay) ; lCao = - 4(4’)(9J MEC (2.60)
0 w
'le = . oéa I.BZO s e‘bc. ~

The rapidity of the convergence of the two sets of coefficients for
spherical molecules is apparent,

For Maxwellian molecules, the eguations for the calculation of the
constants Wl assume the simplest form, In fact for this type of molecule
the summation of the unknowm coefficients in equations (2.53), (2.55), ete.
redueesto a single term of the form m(ok A NBlcr , 50 that each coeffi=-
cient can be calculated from a single equation. Thus for Maxwell mole-
cules there are only two basic fist order czoeffioients, namely lBll and
1B20. The complete set of first order coefficients for Maxwellian mole-

cules is given by equations (2.61) and (2.62)1



B ,=-2 () Wi 92
> (2.61)
R N /A Q. 0y 3y 2h
g = "a(P) hWhm 2%, IC" = -2 (?) hfhm oY
B, = -26)2%¥-%-%)
20 X (2.62)

\

w v L w r
Do) (B, -2 (B Ty

B = -4(5(%-%), &=-46)5+%)

20 1

1

~

In physical terms, it is apparent and will be shown more expliecitly

(] (4}
in Part III, that the coefficients _B., and 1Bag represent the components

1711

of the heat flux vector and of the stress tensor used in the treatment of
the hydrodynamics of a continuum. Hence the velocit& distribution of a
non-unifeorm gas is completely determined, to a first approximation, by the
stresses and heat conduction in the gas, This fact accounts for the great
similarity in the expressions for the first order coefficients for the two
molecular models disceussed above. However, it must be remembered that the
explieit expressions for the coefficient of viscosity‘/( are different for

different molecular models, as is implied by equations (2.9) and (2.10),

2.6 Additional Coefficients Computed for Maxwell Molecule

Burnett was primarily interested in ecalculating the stress tensor
1) £)
accurate to terms of order (V) s OF 6;) » BHe therefore evaluated only
.. o {2) )

the coefficients ,B,., By, ,eees oCpq bY means of equation (2,55), for both
spherical and Maxwellian molecules. For the evaluation of the slip flow
boundary conditions, diseussed in Part V, all of the basic coefficients
2By and some of the associated coefficients are required. It was shown

by the author that for Maxwell molecules there are only a finite number

of coefficients'szr. Since the labor involved in caleulating the infinite,



though convergent set of second order coefficients for spherieal molecules
is enormous, and as both the spherical and the Maxwell molecule. represent
. the same order of approximetion to the molecule of a real gas such as
nitrﬁgen, (see figure 2,2), the author has evaluated these seclond order
coefficients only for the Maxwell molecule,

For the Maxwell molecule, the pertinent equation (2.55) takes on the

more explicit form

ey

.; [‘Funcf (u )%“”%; B(ﬂ Cu) B . B C(n

IO bt Ty 9 2000 120

(21
%(nBu))... 3%' etc )]Kr

rzo
{0,0) f:!
= [mkox 2BK|" +fz",m|;::{ ILIJ [:MJ}

e 5y (BB« (e S M (LT, e

By examining the expressions of the form of equation (2.48), of which

the left side of equétion (2,63) is composed, one finds that

[ funct. ( )j « =0 for all velues (2.64)
of (k,r) except -
(k,r) = (0,2), (0,3); (1,1), (3,2)5 (2,0), (2,1), (2,2);
(3,0), (3,1);5 (4,0)
It can be shown from the general form of the expressions vfor the
constants m, as given by Burnett for Maxwell molecules, that these constants

satisfy the sufficient conditions of equations (2.65) :



*
mKH = 0 unless (k,r) = (0,3), (2,2), (4,1), (6,0).
il
)
< m , =0 uless (k,r) = (1,2), (3,1), (5,0). (2.65)
| ,
vio
(9]
ka2 unless (k,r) = (0,2}, (2,1), (4,0).
yoo

The oalculations required for determining the numerical values of
the constants Il is illustrated in Appendix III, Section 2 for (k,r) = (3,1).
The velues of those constents lwhich according to equation (2.65) may not

(0,0}
vanish are listed in Table 2.1, The values of | ok Which are required for

the calculation of the corresponding coefficients :gkr are also included
in Table 2,1,

From equations (2.64) and Table 2,1 it follows that only the ten basic
Burnett coefficients of the second order, ZBkr’ which are included in the

array (2.66) do not vanish for Mexwellisn molecules.

ohos ofiz
2B13, 2B12
2B20s 2Bs31s 2Ba2 S (2.66)

2Bz0s 2831

.1

2Bao

o

From equation (2.63) and Table 2.1, all of the second order coefficients

(2.66) can then be expressed interms of the variables (u,v,w,h,y ), their
: @)

space and time derivatives, and the first order coefficients 1811000 1020.

By the use of equations (2.61) and (2.62), the coefficients 5By are then

finally expressed explicitly in terms of the mean motion variables (u,v,w, h,” )

&
and their space and time derivatives., The associated coefficients 2Bk'r are

again calculated by the method of rotation of axes.
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The values of the 46 second order coefficients, szZ,'which form

- the complete set for Maxwellian molecules are given on the following
pages, by equations (2.68) to (2.113). ‘A comparison of these equations
with the expressions (2.61) and (2.62) for the first order coefficients
indicates how rapi&ly the algebraic complexity of the calculations ine
creases with each successive approximation, even for the relatively simple
Maxwell molecule, For this reason the next approximation, represented by
the coefficients’sB:i has not been determined,

The following standard notation has been used to abbreviate the ex-

pressions for the coefficients:

D _[2 2 2 2

2 M2
+<%z-37v) +<%f+§;)}] (2.65)

- - B B R



2B11 (/{)h hm 37- * 7{»9— [V t(vh Thm az
-%m{c%%+%¥>% G ¥ feE R P
(B (% gD 2 (G [ ¥ )

oW _ l7_|____ aw_&_&
+ S nGmles -5 %J)}+/5hm BCE-%-2)

2y
6 L [2h 2w, U 2h (2w u
+ 3 hm{ax (5x+5) + ay(ay 81)}
(2.70)
' oh w . 2b Bw ]
* Vo (5 5K+ % %)
Q]
2811 is obtained from 2B11 by cyclic substitution,
XY, Y2, 2—X; U—V, V—W; W—ru; (2.71)
)]
oCyy 1s obtained from 2B11 by eyclic substitution,
X—>2, y—*X, 2 ¥; U—W, V—> U, W—> T, (2.72)
3 ?)W 90( 3(4 DW
2B1z = -5 r—— [2 2% ) 3 (2.73)
+3 Dy 'ai"' Y, )]
) ) M _ ¥ _ dw
2P12 = (? h e L © ax(a "3y oz 33),( (2.74)
u aw]
+ 3 az( 32T )
C(i) _ 2(_/1)2_[———- [a&(aa ) 3 Qy (2.75)
2022 = -5 (5 Wam L2y @5 - 5 - y

e
+ 3 31(3" W)]
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2B20 = (—g) (2%“'"' + [%(5)%:(% [23%-%- 9-7)

t 2 aM,Z
+‘9'(%) {2(3 55 -% - )+3(az+ax)*'3( ?y)

-6 (53 -3 W} -GS (GBI BT

P
(2.76)
oo = - o(8) (B2 [ F B (FI%F)
¢ (23
+%(’1€) { 3Z+‘5' T*ax) - 3(97—""91‘ (2%/‘32'97?)}

2ffomw v VU WY W W P4 W a_g__}
'a(f){axaz Bxaz+%731) (5 5% 5 % th oz

7m {az<sﬁ W)*'?x %‘)”

!
w
Bix

(2.77)
(1)
2Cag is obtained from 2820 by making the substitutions,

XY, Y—rX; U—>»V, T—rU (2,78)



@)
P = - #E)(2-Z) + 4B BEIE-E)
| 2 | 2 2
) {3(F %) -3(%F)
-4 (F-2)(y-¥-¥)]

ol (- @) - 23

(2.79)

(2.80)

2 2 2 a
e G {5CH-F8) (WD)

2 2u 2 e .
Sa(2-%F -2 (33} (2.51)
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-2 (2%~ g?”’ﬂ}]

(2.82)
@ . . N
2021 is obtained from 2Boy By making the substitutions,
XY, ¥ X3 U=V, v—ru, (2.83)
@ 36 l L 2h 2/ 4 2k
P = [ ¥ 5 oo {&(% ﬁ)’ay(h ay)}
6 (AL { 2h Du _ 2k Dz}
+ 7 (f) ox pt. oy Dt

(2.84)

2 Dy %h
x pttsy %}

51—

-8 (B {3 @ENF R

SCE A B €22 )Y .



("’f“)z -2(2) ] (2.86)

h

P2 = - 0.4166 (£) 2= () & 2
w 2 h h

Pz = 2.500 (5) g 2% | (2.87)
Q)

20ap = 2.500 (1,) T 39—7_“ % | (2.88)

2 2h 2 2

2 = 2500 (&) e [(3)-B)] .00)
@) Q_l, h

222 = 4999 (& ) _— 2 (2.90)
. 2

2850 = i (‘1’;) [2 Vim { B¢ (2 % - %‘2‘ 3; %‘6%4' %)

St (R CEER -2 R
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0] 0] '
2Czq 1is obtained from 2330 by making the substitutions

X>Y, y=>X; u—v, v u

w [73 _! 24
i (BB B BB T 2R}
+_;_‘_ {%[r(?ﬂ av)J+ aayfv__%aw 2&)_‘[

celE @} ]

(2.95)

+7{%¢[mx )

(2.96)
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@

2Cs0 = 8.(%)2[2(\4—;{%%(%*%) +DV ’%\()}

i (B 5%}
+\:'{5a§[v“"< )]4——-%%‘-- )J}]
(2.97)
2%1 = - 0.6000 (%)am[ gh (50w, % - 2)
-F(F ) - +%)]
(2,98)
zB(:ri)l = - O.6ooo(§)a;‘—ﬁ;[%(49w 3 2)
SE(EH B (FR]
(2.99)
20;)1 - OGOOO(%)Z-':‘E‘;—[%(AFW 3ay %

(2.100)



_ h/aw | a2«
(2) Mg | '_a_( ow )
2Bs1 = - 6.000 (‘P) h{hm [ oX L ox T 2z

(2.101)
¢ 2h s aw 2v) -
@ £y 1 = ( w3z
2V 4 Ju
25(@”’4' g’;) + g‘)ih(w'fay)]
T ooy M
(2.102)
(2, )]
- vy \sp 3X
ng = - {8,000 (ﬁ) hm[a‘h( ax a:/ Y~ 2y
(2.103)
= [ B (e + B(2-3)]
) L 2h s Qu
20(21 = - 18.000 (5) i L X (S v 5) + 5y
| (2.104)
-2

'4(3 'ax)' 4( +’%ﬂ)

? a’ 9\/)] (2.105)
+ (ax 5’
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(0}

B0 = - 0.6486() [ (F+2)(%+¥)
+ (3-ax+ 4%)( %Viv)]
(2.106)
W 2
%0 = - o. 64—86(%) [(% aw*g’z
. (% +s%§-4%)<§;+g¢ﬂ
(2.107)
@
B = 3.892 —) [(BF-@)+ (%)
. » au, QV)]
'-(%‘y""az)"'?-az
(2.108)
(2} 2
240 = 3,892 (%) [(2%/’%%'%/)(%%*%(
r2 (BB +2) ]
(2.109)
@ 2
2B = 2T.24 (1‘%) [(%‘%)(%*%‘%)

(BB (%Y ]

(2.110)
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® 2

o = enea (f) [(HeB (B3

F(F-BER]

(2.111)
@) 2 2 9’—3
o = S48 (5N [(%-8)-(%-%)]
(2.212)
@) 2 qu
e = 10836 (Ef [(2-ENF3)],
(2,113 )

2.7 Discussion of the Results

The result of the preceding calculations may be sumarized as follows:

If one substitutes the values of the coefficients as given by equations
(2.41) and (2.68) to (2.113) into Burmett's form of the velocity distribu-
tion function, equation (2.39), setting all other coefficients which are not
listed equal to zero, the expression so obtained is the approximaetion to the
distribution function for Maxwell molecules which is accurate to terms of
order (—l);)z or (/g_)a .

Tt is evident from equations (2.68) to (2,113 ), that the terms of the
distribution function which are of order (g) contain only first deriva-
tives of 'Ehe meen motion variables (u,v,w, h Y ), whereas the terms of the

2

order (%) contain either second derivatives of these variables, or the

produets of two first derivatives. The reason for this lies, of course, in



the basiec strueturé of the Boltzmamm integro-differential equation. It

was seen that a consideration of the terms of order (%)o results In the

- Maxwell distribution function fo’ for a uniform gas. Terms of the order

ﬁé) will account.for "small deviations" from this basic distfibution,

and since small deviations from a uniform state of a gas, can be completely
described by the gradients of the variables of state, the inherent associa-
tion of the factor e%)'with first order derivatives is evident. The exten-
sion of this argument to the higher order terms of the distribution function
coefficients is obvious, It follows, furﬁhermorq,that the pressure regime
for which the second order terms of the distribution function are of signi-

ficance depends on the magnitude of the velocity and thermal gradients

which are present in the non-uniform gas.



PART III

THE MACROSCOPIC DIFFERENTIAL EQUATIONS

OF MOTION

The laws of the classieal dynamics are based on the concept of the
conservation of three fundamental properties of a system, its mass, momen-
tum, and energy. When these laws of econservation are applied to a contine
uum, it is found that its motion is completely described mathematically by
one vector and two scalar partial differential equations, which are referred
to as the continuity,momentum, and energy equations, respectively,

The same result can be dedueed directly from the kinetie theory of
non-uniform gases a:s was first demonstrated by J. C. Maxwell, The method
of this derivation has already been mentioned 1n Part II in commection
with Hilbert's conditions of integrability, equation (2,30), for the
Boltzmann integral equation, and the Ma:;well transport equation, equation
(2.45), which was there used for the calculation of the Burnett coefficients.,
The derivation sketched below is that given by D. Burnett, (Reference 3e1)e

3.1 Deduetion of Equations of Macrosecopic Motion from Kinetie Theory

It will be recalled that the integral on the right side of equation
(2.49) is zero for those molecular properties, Q, defined by equations
(2.47) and (2.50), which correspond to the mass, momentum components, and
kinetic energy of translation of a molecule. In particular, for case (a)
of equation (2.50), (k,r) = (0,0), one has from equations (2.47), (A.3),
and (A.54)

QR _=1 (3.1)

which is a constant and hence proportional to the mass m of a molecules



If one evaluates the expressions of the type (2.48 ), of which the left
side of the Maxwell transfer equation (2.49) is composed, one finds that
for the funetion Qoo the transfer equation reduces %o

i

£ 0t %(Vu) + %(y‘v} + %_(V’w): o) | (3.2)

By multiplying this equation by the molecular mass m, one obtains the stande
erd form of the hydrodynamic equation of comtinuity,

In similar fashion, the molecular property corresponding to equation
(2.50) (v) is
©)

R, = 2{hm W (3.3)

which is proportional to the component of moleculer momentum in the z

©)
direction. When the function Q’lO is used, the Maxwell transfer egquation

is reduced to the form

0
2 v i &) - o [ $(48)

y
+—,%(% Cai,) + 2% (Vh Bzo)] =0 (5.4)

by means of equations (2.3) and (2,58), the above can be expressed in terms

of the pressure p and density € of the gas to give
:(2. 1 u) ? n { 7
Dﬁ"f :"é' %-E" 'e’"{ax(a Bzo”P) +3‘Ty ZCao'P) *‘52(320?)} (3.5)

Since equation (3.5) has the form of the Eulerian momentum equation in

the z direction it is now possible to identify the Burnett coefficient B20
()} (

with the normal stress Tzz’ and the coefficients BZO and C;o with the shear

stress components sz and Y v of the gas, as indicated by equation (3.6 ).
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| a0
j;x =2z Bzo P
J;.z = Bao- P ' o f (3.8)
Tzy = é' Coor P

>

Fram equation (2,62) it may be seen that the first approximation of
these coefficients corresponds to the ordinary viscous stresses which are
the result of a generalizeation of the Newtonian frietion law to three
dimensions, This generalization of the Newtonian law is usually obtained
by a formal argument based on the invariance of this law under coordinate
transformations for isotropic media, However, it should be remarked at
this point that the explicit relationship between the coefficient of
viscosity and the parameters which define the law of force for a particular
moleeular model is evaluated from equations (2.62) and (3.6). For example,
for the Maxwell molecule one obtains the expression given by equation (A.96)
of Appendix IIT, Section 3. Therefore the kinetie theory does actually
give something mores The expligit relation between the viscosity coeffi-
cient and the molecular properties,

If the first approximations for the stresses are substituted into the
exact equation of motion, (3.5), one obtains the familiar Navier-Stokes
differential equation applieable to & viscous eompressible fluid, namely

2

a.f_g{("’—‘"—“ﬂ—wﬂ—w +

224 Y aw
oxt 3_)(2 ozt ( + 2y + az)} . (3.7)

{
3 22\ ox

In the previous part of this thesis, it was shown that the Burnett

)
coeffisients Bkr are approximated satisfactorily by the first approximations

@
1Byp only if (a) the velooity gradients are so small that the second derie



vatives of the velocity components may be neglected, or if (b) the pressure
of the gas is sufficiently great, so that cg)z is negligible. Consequent=-
ly, the Navier-Stokes equation, equation (3.7 ), is not applicable to the
high speed flow of a rarefied gas or to the nearly discontinuous motion,
such as exists within a shockwave, éven at atmospheric pressure. A better

approximation for the equation of motion required to deseribe such phenomena,

B(i) 0
2P20s 20209

as given by equations (2,76) to (2.78) for Maxwellian molecules, into the

is obtained by substituting the second approximations, 2320,

exa.ct momentum eguation (3,4).

If one evaluates the Maxwell transfer equation for the functicns

Q, = 2Vhm U or  2ymm V (3.8)

the momentum equations in the x and y directions, respectively, are obtain=-
ed., However, the expressions so obtained will not have as simple a form

as equation (3.4), due to the fact that the stress canponents Txx’ T . 7T

A Xy
are not proportional to a single Burnett coefficient, but are represented
. . . 0] (2) ) 2) .
by linear combinations of the coefficients B20’ BZO’ }320, 020’ CZO' This

lack of symmetry is caused by the fact that the velocity distribution func~
tion, equation (2.39), was expanded in terms of the sphe.rical harmenics Y,
for which the z-axis is a preferred direction. However, the dynamic equations
in the x and y directions and the stress camponents Txx’ Tyy’ Xy are read-
ily evaluated by cyelic substitution from equations (3.5) and (3.6) respec-
tively. The resulting equations are most eonveniently expressed in the
cartesian tensor notat.ion. Equation (3.15) below is thus the exact dynamic

equation for the motion of a gas, The best approximation available for the

stresses Tij is that ealculated by D. Burnett accurate to terms of order
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2
e%) and given by equation (3.17).
The exact expression for the conservation of energy of the gas is
obtained by evaluating the Maxwell transfer equation (2.49), for the

funetion

Q@ = I- %hmC (3.9)

ol

This function, except for an additive constant, represents the peculiar
kinetic energy of translation of & molecule, The additive constant intro-
duces into the energy equation certain terms which are eliminated from

the comtinuity equation (3.2). The energy equation is then found to be

. D 9w . v 9w _
-E B s(HH ) -

2 ))'B“ VC“ P !
£ i (BCE) - 3C6) - 20
tleB, (e%-%-%)+ 2B (%+%
+ EC:: 2+ ﬁ) + B (W") * Czo(?’ B‘J)} . (8300

The first bracket on the right side of equation (3.10) represents the net
flux of thermal energy which is transported into an element of gas from
adjoining elements hy the process of heat conduction. The second bracket

on the right side represents the viscous dissipation, that is the transfor-
mation of kinetic energy of the mean motion into kinetic energy of random
motion, or thermal energy. The terms on the left side of eguation (3.10)
state, that this total increase in the thermal energy of the element raises
the intermal energy of the gas and performs the work of expansion, according

to the first law of thermodynamics,
o w

From equation (3.10), the Burnett coefficients Bll’ Bll’ C11 are



identified with the components q,, g4, 9y of the heat flux vector as

shown explicitly by equations (3.11).

|
B, = -5 7V&" ¢

i k
w__2 L, [eTm 0 a'l_VE"_
B" - 5 PY Tk 7’)4 j cu =-7F ' _E_".“ g’y (3.121)

If one uses the first approximations for these Burnett coefficients
from equations (2.59) or (2.,61), the ordinary expressions for the heat

flux are obtained, namely

- |
Y, = -4 g? etc. (5.12)

J
According to the kinetie theory the coefficient of heat'conduction,)., for
a monatomic gas is related to the coefficient of vicosity/x by equation

(3.13) (Reference 3.2 ).

A = g-g./Acv (3.13)

¢, is the specific heat at constant volume, and the numerical constant £
has the value 1 for Maxwell molecules and 1,009 for elastic spherical mole-
cules, (see equation 2,56)

The energy equation (3.10) may be brought into a more symmetrie form
by means of appropriate reductions from the continuity and mementum equa-
tions. Thus equation (3.16) below, again in cartesian tensor notation, is
the equivalent equation of energy of a viscous compressible fluid. This
form, of the energy equation is, of course, that obtained by direct appli-
eation of the first law of thsrmodynamics to the motion of a continuum,

The exact differential equations for the mean motion of the non-uniform



gas are summarized below in the notation used by H. S. Tsien (Reference 3.3 ):

*
%;g + %‘L(? wi) = 0 (3.14)
UL ouL 2P _ 274 , (1 =1,2,3) (3015)

Q,—:ﬁ'*e“jﬁa' ’ T, 9%

5

2 _ ¢ _ 2
(eZ+rewZ)(swuvc,T)=F-2F-2 (0w, )

i L

3.2 Formulae for the Stress Tensor and Heat Flux Vector

For a particular molecular model, the components of the heat flux

vector, q,, and the components of the viscous stress tensor, j}j’ are
e
calculated from the Burnett coefficients B11 and B20 by means of equations

(3.11) and (3.6), respectively. The best approximations available for the

coeff'icients B are those caleulated by D. Burmett accurate to terms of

20°
2
order (7':7) s for both spherical and Maxwell molecules, The expressions

for Maxwell molecules are given by equations (2.76) to (2.78); those for
spherical molecules are similar but somewhat longer. The second approxi=~
mation to the stress tensor-'ng, as given by equation (3.17), may be
evaluated for both Maxwell and spherical molecules by choosing the appro-
priate values of the numerieal constants K, K2,..., K6 fran Table 3.1,
Bquation (3.17) was reduced to the Cartesian tensor notation from the
vector-dyadic-tensor notation of Chapman end Cowling (Reference 3.4), by
H, 8. Tsien (Reference 3.3 ).

Similarly, the second approximation to the heat flux vector q; cen be

* The summation convention is used; for example

V)

Wi W CLE CLY (1 =1,2,3)

L= = +



. s s )
obtained from the eccefficients 2B11s 9By7s zcn given by equations (2.70)

to (2.72), for Maxwell molecules, Equation (3.16) for the heat flux, was,
_however, deduced from the more symmetrical expressions of Chapman and
Cowling., The numeriecal constants 61,..., 65, have been celculated only

for the Maxwell molecules and are given in Table 3.1l.

2 2

p Uk _ 2 /412

aTLé = -2/«4 ei,j +[ Ky x, Q.'.J' + K, Z?; { 3%;<Q 3,4;.)
Wy 2y e T

5, gxe ~ & € axK} + Ky o7 DK%}

L 2Pt 9T oI Pdry
+ Ky fe? oxi ox; t Ks Jef-Fz v, 9% * Ke 5 €icly;
(1,i =1,2,3) (3.17)
= ous 9T K22 (rou
ja - axb [9' T ax‘, aw, t € ot { 3 ax;(T ax,")

In the above squations, the rate of strain tensor eij is defined by

(au; aua)_’é?_ﬂk_(g

3Xa X Xk ':3' 2
where éij =1if i=]
=0 if 1 #J (3.19)

The bar over any tensor Aij denctes the associated symmetrical and

non-divergent tensor defined by equation (3.20)



Ay = z (Ai,j +Ai) -7 A .5,_.#, - (3.20)

I+t should be noted thaf the form of equations (3.17) aﬁd (3.18), as
derived in a very general manner by S, Chapman, is valid for any spherically
symmetric molecular model possessing only translational kinetie energy,
irrespective of the law of force which determines the details of intermole=
cular collision. However, the only numerical values of the constants K
and & are those resulting from the calculations of D. Burnett, as given
in Table 3.1,

3.3 Discussion of Results

It is evident from equation (3.17), that the viscous stresses occur=-
ring in a gas may be caused by pressure and temperature gradients as well
as by velocity gradienmts, Similarly equation (3.18) shows that a transfer
of thermal energy by conduction may result from pressure and velocity
gradients as well as from temperature gradients, However, if the pressure
of the gas is "sufficlemtly large" and the velocity, pressure and temper-
ature gradients are "sufficiently small", then the ordinary expressions
for the viscous Stresses and heat flux, nanmely

-
= -A —375 (3.21)

b

ITLJ - a/u eb} and ﬂ’

¢
will correctly represent the state of the non-uniform gas. The above
condition can be formulated more precisely by examining the order of

magnitude of the ratid B, of a typical additional term of the stress and

heat flux to the first approximations of equation (3.21). Thus

LEow o LK
Bmpay’ P

)

-

where L and U are the characteristic length and veloeity, respectively,



which determine the velocity gradient in a particular case., The follow-

ing well known relationships are useful in transforming the ratio £ .

‘P
2 _2
£-RT = % - I¢C C (3.22)
= o0499eC L (5.23)

Here R denotes the gas constant *, ¢ the ratio of specific heats,
2 the adiabatic speed of sound propagation, T the mean peculiar speed of

the molecules, and ﬁ the mean free path of the gas, Consequently

# L - L
‘i“’%a‘ v~ Tl o~ %

so that the ratio B is given by

b4

e g Bt b o

where ¥ is the characteristic Mach number., The characteristic length L
may represent, for example, the wave length of a sound wave, the boundary
layer thickness, or the gap betweeﬁ two parallel plates which form the
boundaries for Couette flow. Since at a pressure of one atmosphere the
mean free path,ll, for air is of the order of 6 x lo“ecm., the ratio

in that case is negligibly small, in éeneral, so that the.effects of the
additional stress and heat flux terms are entirely negligible at normal
pressures even for Mach numbers of order 10, As the mean free path

is inversely proportiopal to the density P , 1t is evident that the ratio
B will have an appreciable magnitude for the high speed flow of a rarefied
gas. Hence the compliocated expressions (3.17) and (3.18) must be used

for the stresses in a rarefied gas,

* The gas constant R is that eommonly employed in engineering; its numer-

ieal vgiue depends on the molecular weight of the gas, R~ ':T{ where k is

the universal Boltzmam constant and m is the mass of one molecule,
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~

It follows from the nature of the successive approximations to the
Burnett coefflcients of the niolecular velocity distribution function that
the third approximation to the stress tensor, 5Tij will contain terms of

ﬁ 3 au 3 . .
the form (1’) (——-") in addition to the terms of equation (3.17).

oXy
Hence equation (3.17) ceases to be a valid approximtion for the stress
tensor if, for a given Mach number, the gas is so rarefied that (M -l'_g_')
is not negligible compared to unity, This limitation applies, of course,
also to the heat flux vector as given by equation (3.18).
Throughout the derivation of the equations of motion and of the ex~
pressions for the stress temsor and heat flux vector, a number of simplifye

ing assumptions had to be made, thus imposing certain restrictions on

equations (3.14) to (3.18), These limitations are summarized below:

- (1) The equation of continuity (3.14) and the dynamic equations (3,15)

can be aprlied to the motion of any non-uniform gas, (provided
only that there are enough molecules per unit volume to permit
a statistical analysis ),

(2) The energzy equation, (3.14) requires, in addition, that the gas

be a perfect gas.

(3) Equations (3.17) for the second approximation to the stress tensor,

2Tij’ and the heat flux 29y ; assume that
(2) the gas is a simple, perfect monatamic gas composed of
spherically symmetric molecules;
(b) +the length L and the Mach number M which characterize
the flow of a non-uniform gas are so related to its
mean free path , that (M % P« 1.
(4) Frém Table 3.1, the numerical values of the constants © are
knovm acourately oﬁly for Maxwell molecules; the values of the
constants K are known for both rigid elastic spheres and Maxwell

molecules,
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When equations (3.17) and (3.18) are applied to problems of high speed
slip flows in rarefied air, the cqnditions (3a) above, which deal with the
molecular structure of the gas, will, of course, be violated, The fact
that air is e gas mixture consisting principally of oxygen and'nitrogen
should not cause any appreciable errors, en account of the small difference
in the structure and molecular weight of the Nz and 02 molecules, However
both of these diatomic molecules posses effeetively two rotational degrees
of freedom and one scarcely excited vibrational degree of freedom, in addi-
tion to the three translational degrees of freedom which alone have been
accounted for by the kinetic theory, This fact may be partially accounted
for by using for the ratic of the specific heats X , the appropriate value
of g', whenever { appears explicitly in the equations. If the relaxation
time in highly rarefied air is sufficiently long, so that the rotational
energzy cannot be excited effectively, a value of ¢ intermediate to 'g
and % will be appropriate.

The above effect overshadows those inaccuracies introduced into caleu-
lations for air which arise from uncertainties in the values of the constants
K and © ., In the light of equations (2.9), (2.10) and figure (1.2) it may,
however, be appropriate to use f())r- g8 = L %.%‘ the experimental value for

Iu
air of 0,77, in an interpolation of the values of Table 3.1l.
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PART IV

PROPAGATION OF PLANE SOUND WAVES

%

IN RAREFIED GASES,

The general differential equations of macroscopic motién of a rare-
fied gas, as developed in Part III, are here applied to the solution of
a particular problem of practical interest, The one dimensional problem
of the propagation of a plane wave in a medium of infinite extent does
not involve any boundary conditions and suitably - illustrates the nature
of the differential equatiéns under geometrieally simple conditions.n

4,1 Inbtroduction

The problem of the propagation of plane sound waves in a viscous fluid
was treated as early as 1845 by G, G. Stokes, who investigated the effect
of viscous action but neglected heat conduction. The effect of viscosity
was found to consist of a frequency dependent damping of the amplitudes.
of the sound waves whose veloeity of propagation, to a first approximation,
was equal to the adiabatic propagation speed in a frictionless, compressible
fluid. As was first pointed out by G. Kirchhoff in 1866, the influence of
heat conduetion is of the same order of magnitude as that of the viscosity,
so that for a consistent solution both factors must be accounted for, This
was done in the solution of H, Lamb (Reference 4,2 ) and resulted in a more
highly damped motion than that predicted by Stokes, whereas the speed of
propagation remained approximately equal to that for the frictionless fluid,

The validity of these results is dependent, of course, on the walidity
of the fundamental Navier-Stokes equations which are the basis of these
calculations, No question needs to be raised against the general laws of

dynemics and kinematics and the only point of doubt is the correctness of

* The calculations and results of this investigation heve been published

Jjointly by Dr. H. S. Tsien and the author in Reference 4.1l.



the viscous stresses and of the heat flux used in the Navier-Stokes equa-

tions. In the Navier-Stokes esquations, the viscous stresses are taken

_as the produet of the viscosity coefficient and the linear combination of
the first order space derivatives of the velocity components, ﬁnd the heat
flux is taken as the product of the coefficient of heat conductivity and
the gradient of the temperature of the fluid, Results of calculations
using these equations agree very well with experimental observations. This
fact mey be used as the empiriecal justification of the Navier=-Stokes equa-
tions,

The results of the kinetic theory of non-uniform gases, as presented
in Parts IT and III of this thesis show, however, that the viscous stresses
and the heat flux as used in the Navier-Stokes equation are only first
”order approximations, If the number of gas molecules contained in a cube
of dimension intrinsic to the problem, such as the wave length of sound
propagation, is small, then the first order approximation is no longer
sufficient, This means that if the wave length is-very small, as in the
case of ultrasonic waves, or if the density of ga; is very low, the
Navier-Stokes equation is no longer valid, Since there are many assumptions
introduced in the kinetic theory to meke the calculation treatable, one
may question the reliability of the theoretical results., However, the
success of the kinetic theory in explaining many phenomena and the predic=-
tion of the first order viscous stresses and heat flux which agrees with
the observational date seem to indicate the reliability os such a theory,

In the present treatment the second approximations to the viscous
stresses and the heat flux of Chapman and Burnett, as given by the equations
of Section 3.2, are used to ecalculate the propagation of plane sound waves

in rarefied gases or of plané sound waves of very small wave lengths in
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gases of normal density. This investigation is prompted by the fact that

the present lkmowledge of the state of the atmosf)here at high altitudes is
almost exclusively obtained through the measurement of the anomalous sound
propagation. A knowledge of the effect of low density of the médium on

the propagation velocity and the damping of waves will be, perhaps, useful

in a critical examination of this method of obtaining data for high altitudes.
The result of this investigation is most reassuring as it shows that even
under extreme conditions, the increase in the propagation velocity from the
normal walue at high density is less than 24, In fact, the effect of the
additional terms to the viscous stresses and the heat flux tends to maintain
the constaney of the sound velocity with respect to the density of the medium,

4,2 Basic Equations

The fundamgntal differential equations required to deseribe the propaga=
tion of plane sound waves express the conservation of mass, momentum,and ener-
gy of an element of a compressible fluid which is in one-dimensional unsteady
motion, Choosing the x-axis as the direction of propagation of the plane
wave front, the differential eqﬁatiéns of motion are obtained from equations

(3.14) to (3.18) of Part III by means of the following reductions:

3 .2 2 .2 .
5%, = ox  J bx, Tk, = O

The appropriate continuity, momentum,and energy equations are then
given by equations (4.1), (4.2),and (4.3), respectively, where all of the

symbols are defined as in Part III,

%—g + %(eu} =0 (4.1)
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e % rould =- 28 - 23 (@)
(Ereuf) (v e = F - 2R- 2w @)

For purposes of subsequent calculations, it is convenient to separate the
dependent variables into their "undisturbed" and "perturbation" components
according to equations (44 ) the undisturbed quantities are denocted by the

subscript oand the perturbations by a prime:

—

= + '

P Po )4
= + ¢

T=1T +T L (4.4)

. 1

€= ¢ + %

uw

= U
Since a sound wave is by definition a disturbance of infinitesimal amplitude,
any quantities involving squares or products of the perturbation variables

or their devivatives can be neglected in comparison to these variables

themselves. For instance, from the equation of state of a perfect gas

é‘P.T- = const, (4.5)

one has .
2¢ Lo2p_ L 3T 4.6
%§=5--Qo[gat zatj. (#.6)

The general form of the heat flux vector and the stress tensor is
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given by equations (3.18) and (3.17), respectively, correct to terms of
. .

order /-% » The following equations give the expressions for A, and
_ ?-Txx appropriate to the problem at hand by neglecting second order quanti-

tites in the perturbation variables:
, : 5

| 2T Lo u
q = -A. 5z + 5(+8) T 5k (4.7)
2'x
2 1 2 1
b2 i K 32 K 2T .
Ja= SR TR BT e, Y

where i, and A, are the viscosity and heat conduction coefficients at the
temperature TO. It will be recalled that © o 94, K2, K3 are constants
whose exact numerical values depend on the intramolecular structure of the
molecules composing the gas (see Table 3.1).

Substitution of equations (4.4), (4.6), (4.7), and (4.8) into the exact
differential equations (4.1), (4.2) and (4.3), and subsequent cmmission of

all second order terms in the dependent variables, result in the linearized

partial differential equations (4.9), (4.10), and (4.11).

L2 _ 1 2T | au
gat‘fsf+sz-0 (4.9)
i z'l ?4 3__t
u _ _ 2 4,94 2,20 K op _ K 9T
. 5t =-E s Snsar 3N &p 2%’ &T kil (420
2T’ _5.’.1’.,.,121',_3_(9 e)f—ai‘i‘ (4.11)
GCC oz = o 5% ~3(6,+86) ¢ 56 . .

It is convenient to reduce the above equations to dimensionless form

by means of the non-dimensional parameters defined below:
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* P * T ;
P =5 = = o . (4012)
ﬂ J T n J u = CQ ;
¥ X * ¢ (4.13)
X = = t = T
L (Y%.)

where L is the wave length and LR the adiabatic speed of sound propagation

def'ined by

Co = \fﬁ: . (4012)

Y  here is the ratio of specific heats,

The physieal constants of the gas may be expressed in terms of the two

dimensionless parameters, P and R

— )" — ?i&'-.l;- . )
6=, re=l32-&]. s,

Lo Hele
?F = f;f- is the Prandtl number and is a measure of the relative import-
e -~

ance of the viscosity and the heat conductivity of the gas., From the point

of view of the kinetic theory, viscosity is the result of the transfer of

the momentum of the molecules, and heat conduction is the result of the transe-
fer of the energy of the molecules, Both thus must be of the same order of
magnitude, This is in agreement with experiment, because the Prandtl number
is found to be of the order of unity, The Reynold's number is & measure of
the relative importance of the inertia forces and the dissipative forces,

If the dissipative forces are very small in comparison with the inertisa
forces, the Reynold's number will be very large. Wibth increasing importe

ance of the dissipative forces, the Reymold's number decreases. In the

propagation of sound waves, the dissipative forces are
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measured by gradients of velocity and temperature and are inversely pro=-
portional to the wave length L for any given ampli‘budq. Therefore in this
~case, the Reynold's number R is direetly proportional to the wave length

as shown by equation (4.15).

| Substitution of equations (4.12) to (4.15) into equations (4.9) to (4.11)

results in the set of three simultaneous partial differential equations, (4.16)

(4.16)

ap* vy rat_ @ ot Ry
“ﬁ% Y- ):a * 7 (2mR) ax*‘] t %(92"'94)(3“]2)2 =0

If the properties of the gas are known, the values of ¢ , B, Koy Kgp ©, and
e 4 BTre fixed. Then the only remaining parameter of the problem is R wh-ich
is really a measure of the wave length, Therefore, the solutions of the
problem should be expressed as a function of R.

4,3 Solution of the Differential Equations.

The general solution of this set of linear partial differential equa=~

tions (4.16) is evidently of the form

en[Ci-0)x" - tat’]

'P* = AI € ,
T* _ A eaﬂ'[(i'b) x'- io(f*l > (4.17)
- 2

. am[Cimb) x*- i o Y]
A, e
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where the A's represent arbitrary constants, The coefficients b and & are
both real quantities, to be determined as functions of the Reynold's number
'R It follows from the definitions (4.13) and (4.14) that the damping coe-
fficient per wave length is 2nb, and the physieal welocity of-propagation
of the disturbance is given by ¢ = @o_, By substituting equations (4.17)
into equations (4.16), the following linear homogeneous equations for A

and As are obtained:

[-ia]l A+ [ialA, + [E-b] A,

[w-sk vl +[50 5 Go] A o[- ta- £ LA = 0
[ia] A, + [E{-ia-S0-}]A + [#a+)d -] A= 0

In order that the values of Al’ Az, and AS should not be simultaneously
equal to zero and thus give a trivial solution, the determinant formed

by the coefficients of the A's must be equal to zero. Thus

[-cal (L] [i-b]

[G-0-3 S ew] [ 5% a-w]-i-4Fw]

i
o

[id] [-&{ia+ g(c-bf}] [%(9594)1{-:(&—6)3]

By separating the real and imaginary parts of this determinant, one has

the following two simultaneous equations (4.18) and (4.19) from which b

and ¢ can be determined.
ALSU-9(1- b +69] + B[ &U-6b+b")]
+C[&(3-06cah] + D[ #0-67]- e[ § o]

(4.18)
+ oL(oLa+ba-l) =0
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A L% (3- 108 ¢ 3697 + BL B O-09] -C[ w0890 14546
SD[ k(-6 +bh] 4 E[&(-00] -2db =0 (819)
where
A= F0(0-006,+6,)(K,-Ky)
B = %(df—!)(92+9,+)- %XP’%V(K[K;)-%%
c= § 7Pk, | (4.20)
D= §
E= 4., /0

.J

For the complete solution of the problem it would be necessary to
£ind the nine roots of equations (4.18) and (4.19), However, fram the
nature of the classiceal solutf.on_of the problem it is known that the pair
of roots of b and & which is of the greatest significance is the one with
the least damping. In other words, for vanishing viscosity, or R~»co,
¢ ;rl and B-+>0, so that the wave should be undemped and propagate with
the normal adiabatic speed Coe Therefore, the appropriate forms for b and

¢ are the following:

b = %-1-%’, +,E‘§-|—... (4.21)
o oe 4 de ' (4.22)
o = |+ 2 + gt .

Equations (4.21) and (4.22) may be substituted into (4.18) and (4.19), and

the resuiting equations may be arranged in order of ascending powers of T'i .
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In order that the resulting equations are satisfied for arbitrary values
of R, each of the coefficients orf 'é?' must bé equal to zero, This results
in a seﬁ of algebraic equations from which the coefficients-bl, bS""’ and
qz, a4,... are determinéd successively in the following order:-bl, “2' b3,
64,... .

Equetions (4.23) and (4,24 ) give the final result of this solution.
It should be noted that each coefficient is a function only of the pree

viously determined coefficiemts and of the physical constants A, B, C, D,

and E, of aguation (4.20),
b = ';:(E"D) .
by = [-2C+2Bb +(3D-4E)b +Ed, - bz (4.23)
[3Ab, + £Ch- 2 Bb - £Db' + 2Bb, + (6D-E)bb,
+3Ed; + Edy-Eb'A, + 2Bbd, - b d, — byd, |

2
L0
|

[ £B+(2D-E)b, +3 b ]

- [iA + 3Ch, -3Bb2— 2Db; + (2D-E) by + b, by
$Bd, +2d, - 2Ebd, +3 otzbJ

d, = —[ ¥ Ap: - oCh’ + 3Bb*+ 3Ch, + £ b, +(2D-E)bs |

-6Bb,b,—6Db,ab3+b.b5*aAdz+zda+gBd4+3d4da

~Ebd-3Bbid, - 2Eb0, +E by~ 2Eb,d, + bihd,]

e
~
i

(4,24)

o
-
\

It is interesting %o note that the first order solution

b, T &
R T aR[ 5 () 8] (4.25)

-

(11

b

o

|

is identical with the solution given by H. lamb (Reference 4.2 ).



4,4 Numericeal Calculations

The constants A, B, C, D, E, appearing in equations (4.23) and (4.24),
‘depend on the two physical constants of the gas B.and ¥ and on the constants
© 5s 6,9 X, Ké' AEcording to the discussion of Section 3.2, the latter
four constants depend on the nature of the force field which surrounds the
molecule, that is on the choice of the "molecular model" utilized in the
calculations of the kinetie theory.

For monatomic gases, and also for air;the rigid spherical molecule
appears to be a closer approximation to the reality than the Maxwell molecule
(see figure 2.2 ). Hence the values of Kz and KS as given for spherical
molecules by Table 3.1 will be used, For © 5 and & 4 the only values availe
able are those given by Table 3,1 for the Maxwell molecule, As the variation
in the constants X is only of the order of 10 percent for the two limiting
cases considered, and as the variations in the constants © must be of the
same order of magnitude, it can be shown a posteriori that the results ob-
tained are not materially dependent on the precise values of the K's and

O 's.
In ascordance with the above discussion, the numerical values for the

molecular constants are then given by equations (4.26).

64-——5

o\&

(4.26)

K, = 2,028 , K = 2,418

-

Equations (4.23), (4.24) and (4.2C) will now be applied to caleculate the
damping coefficient, b, and the dimensionless velocity of propagation, @,
in the following three gaseous media, as characterised by the values of

the physical constants 4 and B



1. Air at normal atmospheric temperature, This also corresponds
closely to the theoretical diastomic gas.

2. Air at 400°C

3. Theoretical monatomic gas, This corresponds very closely to
real monatomic gases, such as helium, argon and neon, at
normel temperatures,

Table 4.1 gives the values of ¥ and P for each of the three media, as
well as the values of the derived constants A, B, C, D, E, as calculeted
from (4.,20) and (4.26), and the values of the coefficients bys b, b5, and
@y, %, O, as calculated from equations (4.23) and (4.24), respectively,
The results of Table 4,1 are then used to calcﬁlate the damping coefficient
b, and the propagation coefficient ¢ as a function of the Reynold's number R,
by means of equations (4.21) and (4,22), respectively,

The nature of the convergence of the expansions (4,21 ) and (4.22) is

shown for the typical case of medium 1 in figures 4.1 and 4,2. It should

s = Eﬂ Eé = da oy +
‘be noted that the solutions b = 7 e , @ = |+ et R4 BTe no necese .
sarily accurete to terms of order %? , and 7%4 , respectively, since the
original differential equetions (4.16) are correct only to order _]%3 .

4.5 Results
The values of ¢ and b as functions of the Reynold's number for each of
the three gaseous media considered are shown in figures(4.3)'and (4.4) the effect
of decreasing Reynold's number is to increase the damping coefficient in
nearly inverse ratio, whereas the speed of propagation, aco, increases onlyl
slightly. Figures 4.3 and 4.4 also show that the molecular structure of
the gas influences the magnitude of the propegation parameters to a much
larger extent than does the mean temperature of the gas., This is apparently

due to the fact thatequatiors (4.20) depend more critically on the value of
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Y , which occurs also as (¢ =1), than on B. Both ¢ and P depend on
the number of atoms which compose the molecule, whereas only P is signifi=-
~ecantly t.anperature dependent,

The magnitude of the damping effect is more readily ascerﬁained in
terms of the amplitude ratio, Tos which is defined as the ratio of two
= o=amb <1

successive maximum amplitudes of the sound wave, Henece r

a *

Figure 4.5 shows the amplitude ratio as a function of the Reynold's number '
for the monatomic and the diatomic ges,

For practical applications of the results, one must first calculate
the Reynold's number R corresponding to the wave length L. Since for
sound propagation problems the given physical parameter is the frequency
V" insteed of the wave length L, R should be caleulated in terms of ¥V~ in

the following way:

c IR x
- —— 4 e — —— 4.27
R co /b(o X eITV‘ . ( )
However, % = @ is very closeto unity, so that
(-]
v B, (4.28)
R 2 Fo=

To facilitate numerical celculations, Table 4,2 is constructed for R, which
gives the value of R, at various temperatures, for air at the standard
pressure of one atmosphere, for ¥ = 1,4, and for the frequency Y = 100C
cycles per second. For any other values of the pressure Po in atmospheres,

and of the frequency Y, the Reynold's number R is then given by

R= R,d (1_;_)(1%%9) = R‘(%) ("952) . (4.29)

In general, the results of this investigation show that although the

damping of the waves is greatly increased by the decrease in the Reynold's
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number R, the speed of propagation is practically unaltered, This justi=-
fies the procedure adopted in the analysis of anomalous sound propagation
where the normal adiabatiec propagation speed s is used throughout, How-
ever, one must be aware of the fact that kinetic theory uses the smooth
spherical model for the molecules and thus does not allow the interchange
betwéen translational kinetic energy with the vibrational and the rotational
energles of the molecules, Due to the greatly decreased number of molecular
collisions in rarefied conditions corresponding to small values of R, it
will be difficult to excite the vibrational and the rotational degrees of
freedom and the gas tends to behave more closely like a monatomic gas with
a corresponding increamse in the value of § . This change in the properties
of the gas is not directly taken into account in the calculations presented,
as it is beyond the framework of the usual kinetie theory. On the other
hand, this effeét can be easily accounted for by an appropriate change in

the value of ¢ as the Reynold's number decreases,



PART V

THE BOUNDARY CONDITIONS FOR SLIP FLOW

5,1 General Considerations

When the differential equations of motion, which were discussed
in Part III, are gpplied to that realm of fluid mechanics known as
gas-dynamics, the associated boundary conditions are well knowm. In
that case the general solution of equations (3.14) to (3.16) is reduced
to the particular solution which corresponds to any geometrical situa=-
tion of interest by means of the following physical conditions:

(1) If the viscous, compressible fluid extends to infinity, the
values of the pressure, temperature, and vector velocity must
be specified "at infinity".

(2) All of the "fluid particules" which are adjacent to any solid
surface have the same absolute vector velocity and temperature
as the corresponding element of the solid boundary.

The second condition requires that there be no flow normal to any solid
surface, and that there be no slipping between the fluid and the wall,

The experiments of Knudsen, Kundt and Warburg, and many others, on

the flow of rarefied gases through capillaries, have established that
this ™on=-slip™ condition is valid only if the mean free path of the gas,

)/

dimension L (such as the diameter of the capillary). Hence, for a rarefied

, is completely negligible relative to the characteristic macroscopiec

gas, the "non-slip condition" must be replaced by some relation which speci-
fies the slip velocity of the gas relative to the solid wall., Thus, for
example, the phenomenological assumption of A, Basset specifies (Reférence
5,1) that the slip velocity be proportional to the shearing stress at the

wall, Similarly, the experiments of von Smoluchowski have shown that in a
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rarefied gas there exists a "temperature jump®" between the wall temperaw
ture and the temperature of the gas layer immediately adjacent to the wall,
and that, to a first approximation, this temperature jump is proportional
to the temperature gradient, (normal to the wall) which exists in the gas
at the vieinity of the wall,

Therefore, on purely physieal grounds, one would expect thét for a
rarefied gas, the boundary conditions stated under (2) above would have
to be modified to account for the effeckts of slip and temperature jump,
but that the total number of such conditions should be the same for both
gas-dynamical or slip flows, This coneclusion appears to be at variance
with the mathematical fact, established in Part III, that for a rarefied
gas the partial differential equations of motion are of a higher order
than those of the gas dynamics. Thus, if the stresses ]_ng and the heat
flux 1935 (equation 3,21), which are appropriate for the realm of gas
dynamics, are substituted into the dynamic equation (3.15) and energy
equation (3.16), both of these equations contain at most second order
partial derivatives. For a rarefied gas the required expressions 23’ij
and ,q; , are given by equations (3.17) and (3.18), so that in this case
the momentum and energy equations are both partial differential equations
of the third order, Better approximations for the stresses and heat flux
will, of course, result in equations of motion of still higher order. It
will now be shown that the number of boundary conditions associated with
the second order differential equations of motion actually suffices for the
solution of the equations of motion of the third order, or higher order,

Suppose first that u;(x,y,2,t), p(x,y,2z,t), © (x,y,2,%), T(x,y,2,t)
represent the solutions of the "exact™ equations of motion of a rarefied
gas, and thatjgj(x,y,z,t) is the exact expression for the stresses, If

P, represents the lowest pressure, in the three dimensional flow field,
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and P o the viscosity at the same point, the exact solution can be ex=

panded as in equations (5.1).

¢ [l , A 3
e
R = R+ (%:) ae*+ (%) 3(”t oo ( (5.1)

» Heif %
Ty = Ij + (%)zTij +('€) JTLJ‘ tooe

-t

If the expressions (5.1) are substituted into the momentum equation

(3.15) one obtainsg after collecting the terms in ascending powers of (—%")

i W; P o7,
R ?-Lb-l- U, ?._'_-" 2_1_ (7]
[‘ st T oo Y T 3%

/‘0 [@ aeu: * ut U 'au*‘; @ u* alu‘;
+(€) "2 + z,e 2% u lQ' F 9,}13' + 2" K]

PRty Wy g ]
& T ax aki T 3%
2 * *

K [ 0 54, 9P 5_7_;?:3:] _

+(1=,) e =5 oot 3t 7 X; + ...=0 (5.2)

A similar form of the energy equation can be obtained from equation (3.16).
Equation (5.2) is valid for-arbitrary values of the "pressure level' Pge
In partieular, for the realm of gas dymamics, (5.2) reduces to the Navier-

Stokes equation, from which, in conjunction with the energy equation of

* The star indicates that zui* is a function of (x,y,z,t) which does not

have the dimensions of a veloéity.
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gas dynemics and the continuity equation, the general solution for 1940
1? > 1P 1T is obtained, The solution of interest is then obtained by
applying.the boundary conditions of pe. 5.1,

If the gae is rarefied such that the terms in (&) are of signifi-
canoe, but those of order GE?Z are negligible, equation (5.2) reduces to
the sum of the first two brackets squated to zero, which means that the

second bracket must itself vanish identically, It follows from equations

(5.1) and (3.17) that the quantity o T 45" is of the form

* 274" { I, M
ZJ;'J. n - /‘( axj (g“b) + Kl f‘ aXK ‘axj + o

Consequently, the highest derivative appearing in the second bracket of
3
QT

equation (5,2) is
ax._ xa’

» Which, however, is merely a known funetion

of (X,y,z,t). It follows, thereforé, that the second bracket of equation
(5+2), when equated to zero, is a partial differential equation of second

order in the dependent variables  ul, ,p: 29 ¥ 2T*. The same result can

274i? 2
be shown to apply to the energy equation by an anologons argument involving
also the heat flux 020y ©f equation (3.18),
By en extension of this argument it follows then that one requires
&s many boundary conditions to determine each group of functions (zu;, zp*,
26’*- 2T ), (gui, 3p*, 39 *, 3T*), etc,, as is required for the determinaw-
tion of (lui' 1P» 1 €5 1T) from the equations of motion of gas-dynamics,

Since however, a condition on each of 195 2u;, 5u;, ete,, is equivalent to

a single condition on the exact velocity component
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PO - I - 7 eton ,

it follows that the total number of boundary conditions required for the
complete solution of the equations of motion (equations (3.14) to (3.16))
is independent of the degree of rarefaction of the gas.

This method of solution means, essentially, that no radical change
of the flow pattern is expected when‘proceeding from viscous gas-~dynamieal
flow to slip flow, sc that one can use the iteration process as explained
above, This situation is materially different from the case of transition
from non-viscous gas~dynamical flow to viscous gas-dynamieal flow, where
a radieal change occurs in the appearance of the boundary layer, and where
an asymptotic integration process is' required with a resultant increase
in the number of boundary conditions, If it were also possible to use the
iteration process for the viscous gas-dynamical flow, then the number of
boundary conditions required would be exactly the seme as for the non-vis-
cous gas~dynamical flow,

The ﬁbove applieation of the iteration method to the solution of the
differential equations for slip-flow can be considered from another point
of view. Suppose that it were possible to obtain the complete, general
solution of the equations of motion, equations (3.14) to (3.16). This
general solﬁtion'will include solutions of the form of equations (5.1) in
addition to other solutions which represent radical departures from the
gas-dynemical flow pattern, If one imposes now the physical condition
that the flow pattern for slip-flow should go over "smoothly" into the
viscous gas-dynamical flow pattern, this requires that the appropriate

solutions must satisfy equations (5.1). Hence from this more formal point
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of view, equations (5.1) represent the additional boundary conditions
corresponding to the higher order of the differential equations for
slip flow,

It follows from the preceding discussion that the problem-of the
boundary conditions_for the high speed flow of a rarefied gas is reduced
to finding expressions for the slip velocity and the temperature jump at
a solid boundary of the gas. The degree of approximation to which these
boundary conditions are evaluated must, of course, be consistent with the
order of the approximation that is employed for the stresses ‘Tij and the
heat flux vector qi¢

5.2 Physical Aspects of the Problem

Any theoretical deduction of the boundary conditions must be based
on the kinetics of the interaction between the gas molecules and the
solid wall, This problem was first investigated by J. C. Maxwell, His
calculations are‘based on the classical concept that.even the most highly
polished solid surface appeares on a molecular scale extremely rough and
degged. In general, a gas molecule approaching a solid wall will have
many collisions with the molecules of the wall, so that the identification
of the molecule in terms of its velocity and angle of incidence is partially
or completely obliterated, Maxwell approximated this complicated state
of affeirs by assuming that a certain fraction ¢ of the incident molecules
are temporarily absorbed by the wall end are then reemitted diffusely in
all directions, whereas the remaining (1 = &) molecules reflect elastically
from the wall like light rays from a‘plane nirror. Using the notation of
figure (5.1), one readily obtains an approximation for the slip veloeity

of the gas in terms of its mean free peth (Reference 5.2 ):

(W, - u, = 0.998 (%’—f) (%D“)m-ﬁ . (5.3.)
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Equation (5.5) cen be use.d to calculate the apparent decrease in viscosity
with decrease of pressure that is obtained when viscosity measurements are
‘not corrected for slippage of the gas, This in turn permité an experimental
evaluation of the f‘ractioﬁ G for any cambination of ges and wall material.
Such experiments were performed by R. A, Millikan (Reference 5,3) and re=-
sulted in the values of & as given in Table 5.1, The percentage of mole-
cules which are reflected specularly is seen to be very small,

The values of o defined by equation (5.3 ) are average values since
no a.lle;wanee was made for a variation of ¢ with the molecular velocity
or with the angle of incidence of the molecule. In the work that follows,
the quantity o will also, be considered to have a constant value, which
depends only on the material of the wall and thé gas (Table 5.1), for
mclécules of all speeds and angles of incidence.
| Of course, Maxwell's considerations are based on the concept of class-
ical physies. More recent experiments by O. Sterm and his collaborators
on the diffraction and reflection of molecular beems by crystal surfaces
(Reference 5.4 to 5.6) have demonstrated the wave properties of such mole-
cular beams, In accordance with the De Broglie prineciple the effective wave

¢
length A of the molecular beam is given by
J h
A = — (5.4)

where m and v are the mass and speed of a molecule, respectively, and h'

is Planck's constant (6.55 x 10~27 erg. sec.,). Thus, for nitrogen at 0° C
‘the wave length ).“is of the order of 0.3 A9, which is of the same magnitude
es the lattice spacing of crystals, Hence, from the point of view of wave
mechanics a very sﬁrong diffraction of the molecular beams by the potential
field of the orystal surface is expected, PFigure 5.2, as given by Frisch

and Stern (Reference 5.,6) for the diffraction of a beam of helium molecules
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. by & lithium fluoride crystal of low helium absorbtion, shows that, even

of those molecules which are not absorbed by the solid, only a small frac=-
tion experiences strictly specular reflection. Since engineering materials
are génerally poly~crystalline with different erystels having different
orientations, the diffracted molecules originating from incident molecules
of different directions must have a distribution which is tantamount to

that of diffuse reflection. This then explains the closeness of T to unity.

Thus even the diffusely reemitted molecules do not necessarily come from
the adsorbed molecules, If they are not first adsorbed, but are simply
diffracted, then the "reemissipn" is certainly instantaneous, However, even
for the absorbed molecules, the mean life time of the molecule on the solid
wall is very short, According to the calculations of A, F. Devonshire
(Reference 5.7 ) the mean life time of hydrogen on solid surfaces is only
of the order of 10710 seconds at ordinary temperatures, Hence the incidence
and reemission process m;_ay be treated as instantaneous in all of the cases
which are of interest here.

The congtant 0 evidently represents the fraction of the tangential
momentunm of the gas molecules which is transmitted to the solid wall, Simi-
larly the problem of ehergy transfer between the gas molecules and those
composing the gas is of interest., The experiments of M., Knudsen and
von Smoluechowski on the heat transfer between gases and solid surfaces have
shown that the ¢ molecules whiech are assumed to be temporarily absorbed
by the wall are, in general, not reemitted with the temperature of the wall,
Instead the temperature of reemission is intermediate to the wall temper-
ature and the temperature of the inecident molecules, This phenomenon is
most conveniently represented quantitatively in terms of the "accomodation
coefficient", @, as defined by Knudsen (Reference 5.8)., Since it is not

possiblé to distinguish experimentally between molecules which have been
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reemitted from the wall and those which have been reflected, the coeffieient
o is defined by equation (5.5) in terms of the total energy Ei whiceh arrives

at the wall, and E., the total energy leaving the wall,

(B, -E;) = o(F, -E;) (5.5)

Here E, is the hypothetical energy which would be carried away from the
wall if all of the incident molecules were to leave the wall with the
Maxwell distribution of velocities (equa'.tion 2.6 ) that corresponds to the
temperature of the wall, Tw‘ Experiments seem to indicate (Reference 5,9)
that the accomodation coefficient o is approximately the same for the rota-
tional and translational energies of the molecules, so thatequation (5.9)
may be used to refer to the total energy of a polyatomic molecuie.

The expression for & first approximation to the temperature discontine
uity at the wall (Reference 5,10) is quite analogous to equation (5.3 ),

namely

_dy[f2T
- T, = 0998 (& f}'&)'(%&)(ﬁ)w'/@, (5.58)

where A is the coefficient of heat conduction, and o, is the specific
heat of the gas at constant volume, From equation (5.5a) one ean calcu~
late the experimentally observed decrease. in heat conduction with decreas-
ing density, and so obtain experizﬁental values of the accomodation coeffi-
cient @, sueh as are given in Table 5,2,

The expressions (5.3 ) and (5.5a) for the slip velocity and temperature
Jump in a rarefied gas are valid only when the temperature and velocity
gradients are small, that is for low Mach number gas flows., The physical
concepbs of speculai- reflection, absorption and diffuse reemission,and

thermal accomodation, as discussed above, will now be applied to & rigorous,



systema'bic deduction of the boundary conditions which are required for the
solu‘bion of the partial differential equations of motion of a non-uniform,
"rarefied gas,

5.3 Mathematiecal Formulation of the Problem

The coordinate system employed in the derivation of the boundary
conditions is shown in figure (5.3a). Let x,y,z be a cartesian coordinate
syé‘bem which is fixed in space. 'fhe figure shows & portion of a plane
well whose surface moves in the x,y plane with the absolute velocity
camponents u, and v 0* The upper half of the space (z > 0) is filled with
8 non-uniform gas which is in motion relative to the wall, As before,
(see Figure 2,1) the components of the absolute velocity of the molecules
are denoted by f,q,& respectively, The components of the mass velocity
of the gas in the X,¥,2 directions are again u,v,w, respectively. The
object of this investigation is then to determine the mass velocity
u(x,y,0), v(x,y,0), w(x,y,0) and the temperature T(x,y,0) of the gas at
the s0lid surface in terms of the velocity of the wall uo(x,y), vo(x,y)
and the wall temperature T_(x,¥ )e

The equilibrium of a stable mass of gas is defined by the l:a.ws of
conservation of mess, momentum, and energy. The differential equations
of motion express the equilibrium of any "interior" infinitesimal volume
element of the gas, that is one which is completely surrounded by other
similar elements of the gas., Consider the element of volume (dx dy dz)
represented by the rectangular parallelepiped ABCDEFGH in figure (5.3a ),
Since its face ABEF is adjacent to the éolid wall, the equations of motion
do not apply to this particular element of the gas, so that a special

form of the conservetion laws must be deduced which will be applicable to

this “sublayer" of height dz. It will be shown that the assumption that
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the height of the sublayer dz, which is much smaller than the mean free

path 1', cen be considered as an infinitesimal, leads to consistent results,
In.the derivation which follows, the element of the sublayer (dx dy dz)

is to be considered as fixed in space, Let the total number of molecules

per unit volume at the interior point (x,y, 3 dz) be V', with the distri-

bution of‘velocities among these molecules defined by the distribution

function

'F = lchtql;’f x’ylédz';{;)

in the sense of equation (2.1). The number of molecules having speecified
velocity components ( §, 1, j,) at the wvarious faces which bound the element
(dx dy dz) is proportional to the quantities indicated in figure (5.3b).
The conservations of mass, momentum and energy cen be investigated
simultaneously by means of the generalized molecular property Qj( §,q ,&),

j =1,2,0..,5, where the individual functions are defined by

-

Q, = mé Q,= mS Q:m;z r (5.6)

Fm ($rq’+ L)

o
W
\

-

The generalized conservation law then requires that the net flux in unit
time of the property Qj into the element (dx dy dz) equals the increase

in uwnit time of the total amount of Qj inside the volume (dx dy dz). It
will now be assumed that the total quantity of Qj inside the element of
the sublayer does not change with time, This means that the external con-
ditions which determine the gas flow, such as Uys Vos Ty, ect., are either
independent of time, or change very slowly relative to the time required
for a molecule to traverse thé distance dz. With this assumption, the

fundamgntal conservetion law requires then that the net flux of Qj into
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the element (dx dy dz) be equal to zero.

5,4 Deduction of "Equation of Conservation" for Sub-layer

Consider first the flux of the quantity Q; into the face AEGD of the
olement (dx dy dz), From figure (5.3 ) and equation (2.1), the number of
molecules per unit volume having velocity components "close to" §, 4, &
is |

[vé + BO9 . zdx] (d§dyod),

The number of these molecules which in unit time will flow into the

element through AEGD is given by

“§ (dyde) [ VE+ ZOrH FT (dsdqdf),
S‘ince_each of these molecules transports the quantity Qj( §, n, §£ ) into
the element, the total amount of Qj transported through the surface by
all of the molecules having all possible velocity components is given

by the integral

dx
_dydz [ Ldg[f“l.fwd; Q50,8 - H{rF 20D }] (5.7)
S.timilarly', the flux of Q‘j into the element througﬁ the face BFHC is equal to

+ dy dz(_fﬁdf_ﬂq [‘CA;-Q,m,m-g {(ré-ZrhH &} &8

The flux of Qj' through the faces ABCD, and EFGH is obtained by replacing
x by v in the expressions (5.7) and (5.8), respectively. Consequently
the net flux of Qj which is carried into (dx dy dz) through its four ver=

tical faces is equal to

—dxdy[dz I:o{fﬁq [QAL-QJ. -{§§(Vﬂ+q%(ﬁ)}] . (5.9)
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The flux of Qj through the top face CDGH, analogous to equation (5.7),

is found to be equal to

dxdy [ [wdff;vlf:lﬁ-é)j(i,q.&) L {rFe 20N Gao)

The bottom face, ABFE, of the element of the sublayer requires special
consideration, since here the interaction between the molecules of the gas
and the wall must be accounted for, This interaction will be represented
by the Maxwell hypothesis, which was discussed earlier, namely that of N
molecules which strike the wall, the number (1 -0 )N are reflected specu=
larly whereas the other 0 N molecules are temporarily absorbed by the wall
and then reemitted diffusely, relative to the wall, This means that the
velocity distribution function of the molecules which are reemitted diffu=
sely, which will be represented for the present by £'( §, v, £), is differ=
ent from the veloocity distribution of the molecules which impinge on the
wall, nemely ( |- £ dz %_) (5,1, & ). Consequently the function ( [—é—dzg-)-
£( §, 1,4 ) bas a physical significance only when { is negative, whereas
the diffuse distribution function £'( §, n, & ) is defined only for positive
values of £ . In view of the above, the net flux of the molecular property

Q. which flows into the bottom face of the element can then be written as

J
ax dy [ [ 45 Qe n.8)-£ {vE- 200 &)

¢ (1-0) _jwcu[:al»l (4. 0,6, (- 8)-{h - Zvh)- %]

v o Ldf[:qud.ﬁ- Qs ) s {r ¥} Hens]
. ° (5,11)
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The first integral above represents the emount of the property Qj whicl}
flows out of the bottom face of the element of the sublayer, whereas the
second é.nd third integrals represent the amount of Qj carried back into
the eiemen'b through the bottom face by the s pecularly reflected and
diffusely reemitted mclecules, respectively,

If the three expressions (5.9), (5.10) and (5.11) are now added, one
obtains the net flux of the quantity Q; imbo the olement (dx dy dz)
through all of its six faces, When this sum is equated to zero one obtains

for the fundamental law of conservation for the sublayer,

[ —[:%[:q[:& Q50,8 £ £ 51,8
. [:dg_f}q [;4; QSN & (S
. (-0) [:ols_fw:tq [;ou. (5,9, -8) (-5 £, 0, 6)
. - I:dfj:olq[ad,ﬁ'Qd(f,q.J—)' £EG0 |
g d[ [ as g sgend o ks B0}

- [y ["ag { Q50,8 - (-1 08, -5} £ BOPH)

= 'alfo' jwdgf:"l rvou ' QJ'(E,'?/J') - & ;l(f.'),é)] = 0 (5.22)

The above equation is valid provided the point (x,y,+dz), figure 5.3a,
is an "interior™ point of the gas, No difficulty is encountered when the
height of the sublayer is allowed to approach zero as the limiting case.
It will therefore be assumed that dz = 0; if equation (5.12) then leads to

a consistent set of boundary conditions, this assumption msy be considered
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as justified. Sinee the first two integrals in equation (5.12) may be
combined, the condition for the conservation of the molecular property

‘Qj reduces to *

f_wdf [:dvz f:lcﬁ - { Qj(f,q,ﬁ)-,ﬁ-“i,q.&)}
- (i-6) fwdi[:rvz_[adx{aéa,q,-oc).c-» FGH}

© o ®
= o [ das dq [ as {0 5500}, (5.15)
- - )
(j =1,2,3,4,55 dz—+0) ,

In order to perform the integrations indicated above for the five
functions Q4 defined by equation (5.6), the explicit form of the two
disfribution functions £ and £' must be known. The function £(§,4,§ )
which holds at the "interior point™ of the sublayer is just the general
distribution funetion for a non-uniform gas, as given in Burnett's form
by equation (2.39), evaluated at the point (x,y,2—»0)s All that can be
said about the distribution £'( §,4,§ ), is that, in accordance with

Maxwell's hypothesis, those molecules which have been absorbed by the wall

* This set of five equations is similar  in form to that deduced by

P. S. Epstein (Reference 5.11). Epstéin'é method of derivation differs

from the one used above in that he imposed one condition on each of the six
stress components of the gas instead of requiring the conservation of the
three momentum 6amponents. The eight equations so obtained lead to contra-
dictions, in general, However, for the special case of low speed flows withe
out heat transfer tq the wall, (which alone was treated in Reference 5.11)

Epstein's result agrees with that deduced here from this more general theory.



shall be reemitted from the wall uniformly in all azimuthal directions,
if viewed by an observer stationed on the moving wall., Mathematically
this means that the distribution funetion of the diffusely reemitted

molecules, £*( $.1,& ) must satisfy the conditions

i

£105,9,8) = £ [B-w),q-w), §] = £ [-(5-u) (n-w), £]

£ LG»-w), (§-ua, 4] = (‘[—(Vz-%),“-uo),&]

(o( 20). (5.14)
It is now convenient to introduce the abbreviated notations L;i Lgi Jj’
defined by equations (5.15) to (5.17)s :
a) «© © [+ 4 i
1 = Ldgl&dqfodoc. Q(5,0,8) 4 - £(5,.9) (5.15)
£ = Ldgfwaq [;{J-Qj(f.q,-oﬁ)-(—f)'ﬁ(f,n,&) (5.1 )
.= wdg O( O(J'Q(f, IJ:)’;"F\I(;:'LS) .
J;_f_c_o [@'2[ i : (5.17)

Because the funetion £1( f,q,& ) must satisfy the conditions (5.14),

there exists a convenient relation between the integrals J

3¢ Jys Bnd J

1’
as will now be shown., For the function Qs =tn§ one has

Jy = mf_wdfﬁ“z _f:li 'Jf-«c'[<§—u;),cq-w),£]

= [mfwdcg-“o)fwd(']-%)f;«ﬁ'oc (§-w) ¢ [ (5w, (r-u), 4]

o ' o0
+ mf dff a(vzfdof-,ﬂ-u,.p(g,q,&)] = Mmoo+ UJ
- - ® o
A similar result holds for the integral J, so that

3 oI 3 ‘ oy (5.18)
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The fundamental equation (5.13) which expresses the equilibrium of the

sublayer may be written more compactly as

(2) '
L‘g (1 -0) Ly =0 JJ_ s (3 =1,2,3,4,5) , (5.19)

where the various quantities are defined by equations (5.15), (5.16), (5.17)
and (5.6). -

5.5 Conservation of Mass and Energy at Wall

Thus far only the equilibrium of the sublayer has been considered,
Two additional facts must be accounted for, namely that (a) no molecules
can accumulate on the wall and (b), there exists an energy balance at the
wall which is defined by the "accomodation condition" of Knudsen, equation
(5.5), which has been discussed earlier., Fact (a) is expressed mathemat=
ically by

@ @)
L1=(1 -0) Ll+0'J (5.20)

1
which states that the total mass of gas which arrives at the wall equals

the mass of gas which leaves the wall,

The energy balance at the wall is from equation (5.5)
(B, £ )= o(B, -8 ). (5.12)

It follows from Knudsen's definition of the accomodation coefficient «,

that the various energies E;, E and EW must be evaluated in terms of the

r
molecular kinetic energy of translation relative to an observer stationed
on the wall, Thus E., the total energy which is inecident on unit area

of the wall per unit time,is given by

E; = [:df L"'Y [;“' (-4)- Em{(ulec-w s - £

By expanding the integrand of the above egquation, E; may be expressed in
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terms of integrals defined by equations (5.16) and (5.6), namely

@ @)
E =L =(ulL

(2) 2 2, &
+v 1L )+ + Lo 5,22
i 5 o3 vo 2) (uo vo ) 1l ( )

The energy carried away fram the wall, Er’ is the sum of the kinetie
energies of the (1 =) specularly reflected molecules, and that of the

0 diffusely reemitted molecules, so that

E, = (I-9)E;

N c—f di[ dqf dbe e gm-{5-u) s @-w's £} 5w, 0n-v0,4]

When the integrand is expanded one obtains in view of equations (5.17),

(5.18) and (5.6)

= - -y 2 2
E,= (1 -0)8 +afiy 0?2 +v?2) o], (5.23)
In accordance with Knudsen's definition, the hypothetical energy E r that
would be carries away from the wall if all of the molecules were reemitted

at the temperature of the wall Tw' is given by

£ = fdgf dy [ dbege bm{U-wd) v+ 2 £ 608 . (5.2)

w

The function f£t1(§, '[,&) is the Maxwell distribution function for a ges

which is uniform with respect to an observer on the wall, namely

' m _ 2 . 2 2
F"(S,m&) = A' e'.z-m[(; SAGECALS (5.25)
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The constant A  must be so chosen, that the total number of molscules

which are hypothetically emitted by the wall with the veloeity distribue

tion £r1( §,ﬂ,$ ), is equal to the total number of moleculeé‘which arrive
it

at the wall with the distribution £(§,1, § ). Hence A is found from the

equation

© e - e [(5-u)sn-w)e 6]

(@) " ds o 2kTw

L, =mA n)dé-g- €

- - e

The integral is readily evaluated in terms of the elementary integrals
1]

listed in Table A,1 of Appendix II, The value of jc is thus found to

be

2 @
# 2 m
= #m (2i@) L, (5.26)

Equation (5,25) for £11( f,q,& ) is now substituted into the integral of
equation (5.24). The integration is again performed with the aid of
Table A.1, so that one obtains for the hypothetical energy the simple

expression

2Kk Tw @

g = (851 . (5.27)

The energies Ei’ Er’ and Ew have now been expressed explicitly in
terms of the integrals defined by equations (5.16) and (5.17)s When the
expressions (5.22), (5.23) and (5.27) are substituted into the accomodation
condition (5.21), one obtains an equivalent expression given by equation
(5.34) below,

5.6 The Camplete Set of Boundary Conditions

The seven boundary conditions which have been deduced are s umarized

below:

L(:—(l -aq) L(1a>=”1 (5428)



0] . @ J | 5)
L, -l-0)L,=0 . (502

0] @ .
13 -(1 =0) 1,:5 _-G.uO%l (5.30)
()] (?J___‘ ;
L, -(1 -0) L .cr vodl (5631 )
0] @
(1 -0) 1 =0 (5.52)
(@ @) .
Ll (1 )Ll ' (5.33)
@ (2 @ 2 z (2
Cc-d) I:Ls - (e Ly # L) + s (w+v%) L,
2 kT )
-q J.f + -g:(u:-f- Vaa) J| = “d(‘-‘"mw) L‘l . (5.34)

Equations (5.28) to (5.32) are the five conditions required by the equil-
ibrium of the sublayer as given by equation (5,19), with the modification
of equation (5,18). In particular, equation (5.28) expresses the conser=
vation of mass; equations (5,29), (5.30), (5.31) are the conservation of
momentum in the z,x, and y directions, respectively; and equation (5.32)
represents the conservation of energy of the element (dx dy dz ) of the
sublayer (figure 5,3a). Equation (5.33) states that no mass of the gas
can acecumulate on the wall, and equation (5.34) expresses the balance of
energy at the wall in terms of the accomodation coefficient @,

The seven boundary conditions summarized above can be consistent only
if they involve seven unknowns, This is actually the case., It was stated
earlier that the form of the non-uniform distribution fucti;n £ ( §,q, &)
(equation 2.39) is known, so that all of the quantities Lj,‘which are de-
finite integrals of a lknowm function, are themselves known quantities.

However, the distribution function f'( §,q,j) for the diffusely reemitted
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molecules, is not known (exeept for the condition (5.14)), so that the
integrals Jl’ Yos 65 appearing above represent three unknowns of the pro=-
blem, The‘othér féur unknowns are just the values of the three mass velo=
city ﬁomponents u,v,w, and the %alue of the tmeperature T of the gas, at
the point (x,y,z —+0). The formulation of the boundary conditions (5.28)
to (5.34) thus appears to be consistent., Moreover, if the sublayer had
been assumed of finite thickness, say Az, then there would be eight unkmowns,
yet only seven physical conditions.

Since we are interested only in finding the values of u,v,w, and T,

5

the remaining unknowns Jl’ J2’ and J_ may be eliminated and the number
of equations reduced to fouf. Thus.from equation (5.33) one finds, ob=

viously, that

J =1 (5.35)

Jz appears only in equation (5.33) which may simply be omitted. From

équations (5.34) and (5.35) one obtains for Jg the equation

(2) )
o (B |7 4 (o) Ly - (o) (u, L2 s wly)

alds m

N

(5.36)

] 2 2
-z (wWew) L®
Equation (5.35) is now substituted into equations (5.28), (5.30),and (5.31),
and equation (5,36) into (5.32), This results in the four pertinent bound-
ary conditions given by equations (5.37) to (5.40),

0 @
Ip <L, =0 (5.37)

(N @ ' ()
Ly -(1 -0 ) Ls = ugly (5.38)
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0] @) (2)
L4 -1 ~-0a) L4 = d’voLl (5039)

® @ T o g 2 @)
1 - -e) £ = o { (25 4 (o Brwie W] L

@ (2
- (q‘-d)( U, L3 +V Lq,) . (5.40)

The meening of the first condition, equation (5.37), is evident without
further calculation, From the defining equations (5.,15), (5.16) and (5.6),

one obtains

L -L = m J:‘Sf‘c"qu(q.ﬁ-Fczq.i) ; m[:;ﬂ»zf:fﬁpf(s,q,;)
o e v o e w

- [mds[:m,ﬁs- LG8 = 0

The last integral is precisely w, the z~component of the mass velocity
of the gas (see equation £.11), Part II), so that equation (5.37) states
the somewhat trivial fact that the velocity of the gas is tangential to

the wall, Hence equation (5.37) reduces to
w = 0 at the point (x,y,z~+0) . (5.41)

It will now be shown, with a great deal more labor, that equations
(5.38), (5.39) and (5.40) will lead to expressions for the tangential mass
velocity components u,v, and the temperature T of the gas near the wall,
respectively.

5.7 Reduction of Boundary Conditions

The further reduction of equations(5.38) to (5.40) requires the
evaluation of integrals of the type of equations (5,15) and (5.16). As

was poinbed out before, the function f(f,*l,s') which appears in the
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integrand of these integrals is given explicitly by equation (2.39) of

Part II, Since this distribu{:ioh function is expressed in terms of the
variables C,6,¢ it is most convenient to carry out all of the inte=

grations in the spherical polar coordinates of the peculiar velocity of
the molecules, Since in the present application w = 0, the coordinate

tranformations of equations (2.12) and (2.36), (see also figure 2,1)

reduce to the form
§ =y +U=u+0C sin0® cosd
M" =v+V=v+(Csin® sin¢ r (5441)

& = W= C cos @

4

The transformation of the integrals is given by equations (5.42).

® ® 0 w © 1}
fas[dq| dé-L1- 56 = [ dof Cdc[ sine L1 F(c.0.6) de
-y - o -1 o o

® o o | » T
J ds | o La&-[]-m,w) - LTdcbfoCachfﬂsin@[J-RC,e,cb)de _

2
(5.42)
Since equations (5,15) and (5.,16) must be evalwmted for J = 1,3,4,5,
it follows from the definition of the functions Qj’ equations (5.6),
that the portion of the imtegrand indicated by the square bracket above,

will assume the various forms

F =17
£§ =wo+ ur
r(5045)
.,er =WV + W

£ (§‘+,lz+;'-) = Wee + 2uWU + 2vWV + (uz + vz) W

-~
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It is now convenient to express the peculiar velecity components appearing
above in terms of the spherical harmonic functions defined by equations

(A.6) and (A.7) of Appendix IT, Section 2, Equations (5.43) then assume

the form

£ =Y

£5

1]

(m
| |
3 Yz +u - (5.44)
0
32, + v 7Y

u

£
e EvZ, e (Y,

L) = CT Y+ 5ul,

-

The integrations are, of course, performed at a.fixed point (x,y,z—0),
so that the mass velocibty components u and v are constants., The desired
integrals, equations (5.15), (5.16) can therefore be expressed as linear

cambinations of certain basic integrals of the form

. o i '
1 = [ do [ cdc [ sinede - M, £(co0)
L - -] o | (5'45)

L

1% - f_:acp_ f&dcgsme ‘alé' .M, F(Ce,d),

n ( n (2]
where Mi—C Yk’ c Zk .

: 0
Two sample integrations of the type (5.45), for M2 = Yl and M7 =Y,
2

¢+

are reproduced in Appendix IV, Section 2, It is found, in general,

a @)
that the integrals Ii and Ii consist of an "even component™ at, and

and "odd component™® (8,; such that N
: ®

Ii= ai+ Gf_

@)
I, = a;,"' (Bi. .

i

. (5.46)
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The values of R and @, , corresponding to a number of functions Mi are
tabulated in Section 1 of Appendix IV#, The expressions (A.99) to (4.115)
are infinite series of the exact Burnmett coefficients of the distribution
function, and are appliceble to any "smooth" molecular model having spher-
ical symmetry. In the case of Maxwell molecules, however, these infinite
series reduce to finite sums. The velues of a- and @‘ given by equations
(A.118) to(A.127) are accurate to second order terms, (‘P) for Maxwell
molecules, in the sense of equation (2,66) of Part II,

It follows from equations (5.6), (5.15), (5.168), (5.44), and from
the definition of the functions Mi by equation (A.97), that the seven
integrals L(;), L;zi which are required for the evaluation of the boundary

conditions, equations (5.38) to (5.40), are expressed in terms of the

. ()] (2}
fundamental integrals I , Ii, of equations (5.45) as shown below:
i

)
L'l = -'Wl 2
)] | (U
LY m {31, +u1"}
@ - (3’
Ly ='m{§‘1 }
) N (U]
o= miszf+vI]} L (5.47)
(2)
L
L = -m{3 .Lg‘l'\/I}
o T 2 0 g U P )
L = m{~l1+§MI1+3V-L?+(“+V)Iz}
(zl_ : 2 @) 2 (2} 2 @
L,= - -a—m{ l4-3_;MI,+3\/,'.?4-(t,{+vz)1'z

¥ Only four of thsb integrals calculated in Appendix IV are required for
the present purpose of evaluating the boundary conditions., Since the re=
maining seven integrals may prove useful ir obher calculations involving
the non-uniform velocity distribution function, they have been included

here for future reference.
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When the expressions (5.47) are substitubed into equations (5.38)
to (5,40), the resulting equations may then be expressed in terms of (;

~and ®; by means of equations (5.46) and the following identity:

[0}

I

+ (I-9) I:) (2-9) d; + ¢ B (5.48)

Thus equation (5,38) becomes
(2-6) {é‘ a, + Maa} ¥ G_{% (37“'“032} ='G“°{a?—‘@a}'

Since from equation (A.100) aa’—“ 0, equation (5.38) is then equivalent to

(u-u.) B, + 3(&9aA,+ 56, =0 (5.49)
Similarly equation (5.39) resulbts in
v-v%) B, + 3 (&%) 0y + §B; =0 (5.50)

It is evident, therefore, that the slip velocities (u -u ) and (v -;_ro)
oan be caloulated from the above equations which, it will be recalled,
represent the conservation of momentum of the sublayer in the directions
tangential to the wall., Moreover, the parameter ¢ appears in the same
form as in the expression (5.3 ) which was derived from simplified oconsi=-
derations.

The energy condition of equation (5,40 ), when similarly expressed in

terms of a‘: and 03;, results in
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£ (2-d) {a,, +2ud, + Evds + (uP+v?) dz}
+g’d~{031,+§u63., v §vBs + (WP+VH @a}

= { d (EEE) + (0-§)(w's Vf)} (B,-a,)
+ (6-d) {fl Us (A7-B,) + 5 Vo (A5~ By) + (uno+ve)(&-B), (5.51)

It is now convenient to replace u, v, and (ut2 + v2 ) by identities of the

form

e le) T, (5.52)

2 42 )= (g oy 2 - P - g 2
(W +v*)=(u=-uy )+ (v ~v,) + 2u (u u°)+2v°(v -'vo)'!'(uo +v° )'

Using equations (5.52) and the fact that ({, = 0, equation (5,51) can be

brought into the following form:

‘ 2 2
z (2-a) a, + z 4 B, +['d(é";1_-'rw) +2Ld{(“'“")"'(v'v’) }J 033
+ 3(2-) {(u—uo) Ay +(v-va) a?} + é oL{(u—u.) 037 +(v-¥%) 0'37}
rou [ (wuy B, + (DA, + 58, ]

vV [ (vv) B+ 3(B9A+5B,] =0 (5.5)

Because of equations (5.49), and (5.50) the last two brackets of the

above equation vanish, In addition, the gquantities CB., and (37 may be
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eliminated from equations (5,49) and (5.50) respectively, so that equwmtion
(5.53 ) and hence the original energy condition of equation (5.,40) is re=

‘dqueed to the relatively simple form of equation (5.54).

2"'%29) a“ + 03” - {a (é_ly%l'w) + (u-u,)a+(v—v,,)a} 03,_

+ 2 {(%f)-(g)}{(u—uo)a, + (V-¥) a,} =0 | (5,54 )

As was to be expected, this condition, from which the temperature T of
the gas near the wall will be determined, is a function of the relative
velocity between the wall end the gas, The accomodation coefficient o
appears in the form (?:-—f) which is in accordance with equation (5.5).

Equation (5.49), (5.50) and (5.54) are then the exact boundary
conditions from which the slip velocities (u -uo), (v -vc), and the teme
perature jump (T -ﬂw) can be svalwated, for arbitrary molecular models,
From here on, the ealculation will be restricted to Maxwell molecules.
The second approximation to the Burnett coefficlents, 2Az,...., oBaps 88
derived in Part II will be employed.

5,8 Slip-velocity for Maxwell Molecule

We shall first derive the explicit expression for the slip veloecity

(u -uo) from equation (5.49). Substituting for B,, d,, and B, the quanti=-

ties z(Bz . zC{z and 2(]37 , = as given by equations (A,118), (A4.102) and

(A.123 ), respectively ~ , one obtains from (5.,49):

, 3
Cu- u.) Vhm [4- A, - nga + 22320 +zBa + aaBu 'an]

i 2 2 2" 30

_ '_ 4 0] 0] ) W )
+(Z'Eg) ﬁ:aBao * -a.B - é B, t B+ ‘aLzBNJ =0 (5.55)
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It is now confenient to determine the first approximation to the slip
velocity, 1(u - uo), which is to be accurate up to terms of order (év
It will be recalled that the only first order Burnett coefficients for
Maxwell molecules are those given by equations (2.61) and (2.62) of

Part II. Consequently equation (5.55) reduces as a first approximation to

(- ue) pm [ 4+28,] + (&9 % B. o - =0 . (5.56)

This given for the first approximation to the 8lip velocity

m

(“' Uo) = (2 d-) t ‘l% IF B‘n . (5.57)

With the aid of equations (2.61) and (2.62) one obtains for the above the

more explicit expression

‘(U(."“o)= @(%")V—‘ﬁ(%)(?—% -‘)- (f);'.:;;ah (5.58)

)

The first term is a slight generalization of equation (5.3 ) and agrees
with the result derived by P. S. Epstein (Reference 5,11)., The first term
of equation (5.58) thus justifies, from the kinetic point of view, the
phenomenologicael assumption of Basset.that the slip ve;ocity is propore
tional to the shearing stress at the wall, to a first approximation. The
second term of equation (5.58) represents the phenomenon known as "thermal
creep" which is the relatively slow motion of the gas over the surface of
a wall on which a temperature gradient exists. It follows from the de=
finition of h, equation (2.7), that the gas moves from the colder to the
warmer portion of ‘the wall, The numerical value for the thermal creep as
given above agrees with that derived by Kemnard (Reference 5,12) by a more
direct calculatién.

From the boundary condition (5.,50) one obtains by a similar analysis
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the following result for the slip velocity 1(v -vo):

_ _ W o () (5.59)
'|(v_v°) =7 [‘}':T (é&-@) ﬁ Coo * % \;m G

As is to be expected from the symmetry of the problem, this result can
also be obtained by interchanging x and y, and u and v in equation (5.58)
above,

In order to calculate the second approximation to the slip welocity

2(u -uo) from squation (5,55), it is convenient to use the notation of

equa.'b ion (5. 60 )o

o(u -uo) = 1(u -u,) +(2)(u ~u_) , (5.60)

2
so that all terms of order (%) are econbained in ,(u —uo). Likewise,

(2)(
those of the Burnett coefficients whieh contain both first and second

order terms may be written in a similar form as for example

2B2o = 1B20 ¥ (2B20 (5.61)

When equa.{:ion (5.55) is ‘thus expanded accurate to terms of order

one obtains

[ 4\ (w-wo + (&9 B, - B ]

| ) ]
# [ 4o (u-w) + ()T B,y + 2 (w-u) B, - B

(2) \

) f |
-4+ B, + B, +538.]=0. (5.62)

2 12 2 3 e P
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From this one obtains for the second approximation to the slip velocity,

2 (u =Yy )s

0]

"

' _ : o 2= o -'
a(l/(‘ “o) - |(u'- M’o) +(a)( U - i) 4% [ﬁ ( g )ZBBO ?—B

w w m
s 2(uwu)B, -+ B + B +43B | (5.63)

2 12 2 30 2 73

Since 1(u -uo) is known from equation (5.57), the second approximation
2(u -uo) is now expressed entirely in terms of the Burnett coefficients,
and henee in terms of the derivatives of the mean motion, density, and
temperature of the gas.:

Fortunately, it is not neeessary to substitute for the Burnett
coefficients appearing in egquation (5.63 ) the lengthy expressions given
by equations (2.68) to (2.113) of Part II, For the present application,
the expressions for the Burnett coefficients may be simplified appreciably
by considering that very close to the wall the normal velocity component
w vanishes, and that the tangential derivatives of the tangential velocity
components, i.e. %f ) ‘%5 , etc., are themselves of order 6%)
as follows from equation (5.58). The details of this simplification in the
form of the Burnett coefficients ZBEZ are carried out in Appendix IV,
Section 3, and the expressions for these coefficients which are appropriate
to the present application are given by equations (4.154) to (A,163).

One now substitubes into equation (5.63) for the quantities ZBZO’
ngi, 1(u ~uy), 18209 ZB;;’ 2ng; ZB;; from equations (4.161), (A.159),
(5.58), (2.62), (A.160), (A.182), (A.163), respectively. After some alge-

braic reductions, the following expression for the second approximation to

the slip velosciby is obtained:
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(5.64)
2 24 . Qw) Dw
+ 04312 %E 5}2—5(3 +52) tJ.

The first bracket on the right side of equation (5.64) is just the first
approximation 1(u -u_) as already found by equation (5.58). The additional
terms are again of the form %"2 a:ax (u,v,h, Y ) and represent the effect
of the second order terms in the stress tensor and heat flux veector of the
gas on itsslip velocity, When the flow conditions are steady, g% = 0,
éo that time derivative %%' contained in the third bracket of equation
(5.64) reduces to (uoé% + v, §§ ), according to equation (4.151),

It will be recalled that in the initial setting up of the boundary
conditions the assumption was made that the parameters u,v,w,T, ¢ which
describe the mean motion of the gas should change only by a negligible
amount during the time required by the molecules to traverse the sublayer,
Subsequently, however the thickness of the sublayer reduced to zero and

hence also the transit time of the molecules., Consequently no particular

restriction need be applied to the order of magnitude of the time derivatives
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% appearing in the general form of equation (5,64 ).

The expression for the slip veloeiby in the y-direction, 2(v -vo),
is, of course, easily obtained from equation (5.64) by interchanging x and
y and u and v, respectively, Furthermore ,. it is desirable %o éxpress the
slip velocity in terms of the more cammon variables of state of the gas
¢ and T, instead of ¥ and h, This transformation is readily carried
out with the aid of equations (A.166) to (A.176) given in Section 4 of
Appendix IV. The final form for the second approximation to the slip

velocity is given, in a general notation, by equation (5.79) below,

B.9 Temperature--~ Jump for Maxwell Molscule

The same me'b}1oa of calculation that was used in obtaining the slip
veloeibty from equations (5.49) and (5.50), will now be applied to the:
derivation of the second approximation of the temperature jump 2(?1' -T.)
from equation (5.54). In the evaluation of equation (5.54) it is proper

to replace terms of the form (u -uo)z B, and (u -uo) Q& , by their respece

2
tive second approximations, 1(u -uo)z ,032 and l(u - uo) &, « The first
approximation to the slip velocity is given by equation (5.57), and the
values of 0@2 and 1a o, ere obtained from equations (A.118) and (A.102) of

Appendix IV, respeotively. Thus

a)

B - fmtml 4 cRE A . 6w

o072 hm

One now substibtutes equations (5.56), and (4,104) and (A.127), for 2all

and 2(311 respectively, into equation (5.54), The equation so obtained is

%
miltiplied by [ - (hm) (] , end as by definition

h_—_.——-——

2k ’

one finally obtains
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- \7[}?{ (é.;_"‘)_(é_-_.¢)} Vom {,(u-u,) ‘B(:o + (v-¥) ‘C:i } =0  (5.68)

This equation is to be solved for the unkmown _% which, being the ratio
of the temperature of the wall to the temperature of the layer of gas
adjacent to the wall, is equivalent to the ltemperature Jump (T -Tw).
Analogous to equations (5.60) and (5.61), it is now convenient to
seperate the temperature ratio :—'r-—“" into components consisting of terms

of equal order in powers of (%) , a8 shown by equation (5.67).

(17“) = ( )+ (-.r%’) + (‘__r;.:,) (5.67)

_‘

2

By means of equations (5.67), (5.61), and a similar expression for 2811

it is now possible to rewrite equation (5.,66) by grouping together terms

containing equal powers of (—1/;‘) » This results in

[:T;V)-lj [ (2 d)ﬁr -EB‘Bzo""é'o(;rﬁl)[Bzo"'(gT":w)]
L5 24 T B {%zAz + g'aA3 + 2 B,, - 2 B.- ,%zBaz—é'zB“}

@

Tw -4 -3 L 4 3 L
+w(?) *,(‘—r%'){ A AR BaO“"‘uBac*asza’# B«o}

- (-G e Bl e w ] i )
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Since equation (5.68) must hold for arbitrary values of the parameter (%?) R

each of the three square brackets above must vanish separately. Fram the

first bracket one obtains

o(;“’) =1 | (5.69)

Hence to the zeroth approximation the temperature of the gas is equal to
the wall temperature., ZEquation (5.67) is now easily transformed into an

expression for the second approximation for the temperature jump, 2(T -1W).

Thus

Tos TP T (B T{® )

U4

From equation (5.69) this results in

- T Tw (5.70)
oT-T) = -T{ @ + (7 '}

When the second bracket of equation (5,69) is equated to zero, one readily
obtains the first approximation 0)(§é) given by equation (5.71).

(t)(j'l'%) = - -g_ (2_;'55) T B, + 4+ lBa.o . (5.72)

The above may be expressed directly in terms of the derivatives of the
mean motion of the gas., Thus, f rom equations (2.61), (2.62) and (A.153),

one obtains

Ty - By Emra=dy . L 2h _L LD
m(‘f) = ('P){:éﬁ(oc)\[‘hmh JZ ahﬁé}, (5.72)
where from equation (A,151) -
Dh _ 2h 2h 2h
Bt - ot tTUegx tVegy |



114

. The first term of equation (5.72) agrees exactly with the expression
derived by von Smoluchowski, equation (5.5a), with the value of ¢ equal
. to 'g s which is appropriate for a monatomic gas for'which equation (5.72)
was derived, The equivalence of equation (5.5a ) and thé first term of
(5.72) is readily shown by means of equations (2.7), (3.13), (3.22), and
(3.23 ). The second term in equation (5.72) represents the effect of both
unsteady temperature conditions and of thermal gradients in the plane of
a wall which is in relative motion with respect to the gas. Neither of
these effects were accounted for in the more elementary derivations of
Knudsen and von Smoluchowski,
Similerly one obtains the value of @(]5? by equating to zero the
third square bracket of equation (5.68). When the values of(K:E)
(Tw

g\T/ 1(u ~ug ), 1(v ~V,) are substituted from equations (5.69), (5.71),

(5.57), (5.59), respectively, one obtains after some algebraic reduction

(-.-T—rf") =[‘%(%d)ﬁ(;;8u+ % B + A2+;?'

20
@ @ 2

'_# (lBaO) t+ lér(ad 201B

2

o

-5 {(B ‘”)‘+(,c:1'f} L (£){2GH-CO H (Blr ()]

+ Tr@': =*){ B B, C: C(a’o}] : (5.73)

From the above one obtains the explicit relation between a( ) and the
derivatives of the mean motion variables of the gas by SJ;;tituting the
values of the various Burnett coefficients from equations (A.154) to (4.158),
(2.81), and (2.82). After a considerable amount of algebraic reduction,

equation (5,73 ) thus becomes



B = )" [{oowss « pea- FEACAM G 8]
3! ?74 (Z+ 8+ g (T (& Z) h{%‘a(—w/ﬁ[ i+ axa'])
P {E0-() = {5 L3 B0} + () (= (e B 2

2-d PIO -8 mresdy L (2w 2h
"%ﬁ(?’)ﬁm{a@(az’ ax,} 33\Fr d)hm{axiaxj}

, or

+§ &) 5= {ax, ;+e,)}+ ) 2 {5 (F ) (FieYy )}
2*h h 2

-3 {gﬁ,} + 41819 5 g{; 5 )+ 2. 7456 5 (%) - g;‘ﬁ{%

2 (L2
_’_35,? {%“4 %-(%K“—)}*‘%fﬁ%{l (%é%j)}-éﬁmfﬂ(f h’az)]

- ' 3 2-d L DhDw_ 18L 3hDw
2 ()2 2 G) + B N w5, BT ﬁpt]
(5.74)
(3=1,2); z=0

In equation (5.47) the summation convention over two indices is used.

This notation has the meaning

»
-
"
H ]
NH
1]
d

fr
[
n
-}
-
of
W
d

(5.75)

3x; 92‘/}
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so that, for example,

(B (B¥)} = {F(EFFHP] G

>

\

The time derivative, %% , is that defined by equation (A,151) of Appendix IV

which may be expressed in the above notation as

D
Dt

w

2
[ & + s %J _ (5.77)
4
The second approximation to the temperature jump, 2(T -Tw) can now be
calculated from equation (5.70) by substituting for (]Q? and (]57
oT @ T
the values given by equations {5.72) and (5.74), respectively,

5,10 Results of Investigation

The complete set of boundary conditions for the high speed flow of a
rarefied gas over & solid surface has thus been calculated, accurate to the
second approximtion. The four boundary conditions consist of equations
(5.41) for w = 0, (5.64) for gu, with a similar expression for ,v, and
(5.,70) for 5T, the temperature of the gas.

For aerodynamic apolieations it is desirable to replace the variables
.E and Y , that were used throughout the preceding analysis, by the temper=-
ature T, and density @ of the gas, respectively. The pertinent equations,
(5.64), (5.72) and (5.74) are then readily transformed by means of formulase
(A.166) to (A.174) given in Section 4 of Appendix IV, This results in the
final form of the boundary conditions which are given below by equations
(5.78) to (5.80). The index notation of equations (5.75) to (5.77) is
again employed.

w=20 _ (5.78)
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. = i‘- QW 3
2 (xy,2=>0) = o + (5)[ a,/RT RT aij
U, aw R 2
[iRTBZ< 570t 57 lo'R az"'ax)"’ a—g%

- T 9_3 9"‘3 -

RT 2T 2 T 2
R‘E{BX,£ gzéf}]

M

3
—Ea'

2 D DT
*‘(‘%) [’alﬁ:l: '512(9 axj)*’aa RT T 1t g:*gg)

Pu
-3, \RT = t % - a, \/—'(a‘;ul—) 2-(log£)

(5.79)

(3 =1,2)
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= T
2 anewo) = g, +8) [ /7% § - £ BT

NOIRAS(E 2 AR EAC-TE )+ e T (30345}
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T\IT—{T: {3 azl*‘ 977’7‘}"' e‘*‘ﬁ{:r{a.r(az +9"4)}
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2
~La, \ﬁg— {axa )} + €, RT{gxIJxJ}
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2 %]

RT (2K 2T _ L FT _ L RT
+e@fc{5)€,3xa} (4 Taz‘ !4-/“

WY
NL|

EF[es(X) + 4 - 2(194) v e, T+ T LT
+(p 9T \pt 2 pt P o T oz

U‘U

+ es (RT %‘5(%) €s \/E oz Dt (log{eVT}) + "'I

(3 = 1,2), (z=0) (5.80)

The quantities a bl’ by, €15 85eee, €1 Which appear in the above equa-

l’

tions are numerical constants whose values are given in Table (5.3 ). Many
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of these constants depend on the fraction ¢ and the accomodation coeffi-
cient o which were defined by equa’cioﬂs (5.3) and (5.5 ),respectively. In
the boundary conditions (5.79) and (5.80) it is understood, of course,
that all of the derivatives are to be evaluated at a point (x,y,z-—0)e
The peculiar symmetry of the equations (5.79) and (5.80) is a consequence
of the choice of coordinates, figure (5.3), where the z-axis, representing
the direction normal to the wall, is a distinquished direction, while the
x and y directions are completely equivalent,

5011 Discussion of Results

As was stated earlier, the two terms in the expression for the slip
velocity, equation (5.,79), which are of order (;’;—4) agree with the values
for the fist order slip velocity and thermal creep as obtained by
References (5.8) and (5.9), respectively. Likewise the first order term

% C, \ﬁﬁ' Qalz: of the temperature condition (5.80) agrees with the value
obtained by von Smoluchowski, equation (5.5). As is to be expected, how=

ever, the value of the constant ¢ Table 5.3 ) as derived here agrees with

1’
c:'L calculated by von Smoluchowski only for monatomic gases for which
y = CP/CV = 5/3 , and A/,“Cv = 5/?_ s &ccording to the kinetic
theory,.

The various assumptions which were made during the course of the
derivation of equations (5.78) to (5.80) impose certain restrictions on
the validity of these boundary conditions, as summarized below:

1, The vanishing of the normsl velocity component (equation 5.78)

holds true without limitation.

2, The expressions for the tangential velocity component uj (equation

5.,79), and for the temperature T, (equation 5.80) are applicable
provided that

(a) The gas is a simple, monatomic, perfect gas of the
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Maxwell type (f£ifth power law of repulsion);

(b) The pressure level and the motion of the gas are such
that the second approximetion to the stress tensor
(equation 3.17) and heat flux vector (equation %.18)
are applicable, This means that the Mach number M, and
linear dimension L, which characterize the flow, bear
to the mean free path £, the relation (M % P& 1.

It should be noted that most of the above restrictions arise from the
fact that the complete set of Burnett coefficients of the velocity distribue
tion funoction has been calculated only for the Maxwell molecule to terms
of order (g)L . However, the basic method used in the deduction of the
boundary conditions is valid for any "smooth" spherically symmetric moleeular
model as well as for an arbitrary degree of approximation (;g)N « Thus
equations (5.49), (5.50) and (5.54) are valid generally, whereas equations
(5.55) and (5,66) are restricted to the second approximation for the Mexwell
molecule,

However, it is possible to calculate the first approximation to the
slip velocity and temperature jump using the rigid elastic spheriecal
nolecule, since the appropriate first order Burnett coefficients are Inowmn 3
(see equations (2,56), (2.57), (2.59), (2.60) of Part II)., The fimal re-

sult of this ealculation is

= + (& % Lo 3q2T
= o 1, ) [ a, (RT + a.)+ 1.036‘41{3”] (5.81)

(3 =1,2)

T=T +E[cammZ-o098+ 2], (5.82)
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where the numerieal constants al and °y have the values given in Table 5.3,
Evidently, the effect of a change in molecular model on the first approx-
imation.to the boundary conditions is quite imsiginficant.

The validity of the first approximation to the slip velocity and tem=
perature jump has been confirmed experimentally by many observers, (Refer-
ences 5.3, 5.8, 5,10), It would seem desirable to perform similar experi-
ments, at lower pressure levels and higher relative velocities between the
gas and the solid surface, in order to test the quantitative validity of
the results obtained from the second order kinetic theory that are repre-
sented by equations (5.79) and (5.80), as well as by the additional terms
of the viscous stresses and heat flux, This seems particularly desirable,
since the first order boundary conditions contain the two experimental

constants ¢ and ¢, whereas no additional experimental constants are conw

tained in the second order terms of the boundary conditions.
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PART VI

HIGH SPEED COUETTE FLOW OF A

RAREFIED GAS

It is desirable to illustrate the applieation of the general boundary
conditions, as deduced in the preceding part, by means of a geometrically
simple exemple., For this purpose consider the situation depicted by
figure 6,1, Two flat plates of infinite extent are separated by a distance
h, the intermediate space being filled with a rarefied gas. The lower plate,
coincident with the x-axis, has the uniform temperature Two and is held
fixed in space, whereas the upper plate, having the temperature Twl moves
with the constant veloecity U in the x-direction. The problem then consists
of determining the distributions of the macroscopic velocity, tempefature,
pressure, and density of the gas as a function of the y=-coordinate.

The problem under consideration thus extends the well known results
of the Couette fiow of an incompressible, viscous fluid to a gaseous sub-
stance which is both compressible and viscous, With such a substance, the
effects of thermal conduction, which is of little consequence in the incom=-
pressible case, plays an important role. In fact, the general solution to
the problem obtained below contains the special case of thermal conduction
between infinite plane walls when the velocity U of the upper plate vanishes.

6.1 The Differential Equations of Motion

The differential equations which desecribe the gas flow of figure 6.1
are obtained from the general eguations of macroscopiec motion, equations

(3.14) to (3.16) Part III, by means of the following reductions:
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x, =x %‘ =0 ul=u(y)
x, = 2 - S u, = 0 ! (6.1)
%, =z é%; = 0 U, =0

Equations (6.1} express the restrictions that

(a) the flow is steady

(b) the flow is two-dimensional

(¢c) the mass velocity is everywhere parallel to the x-axis

(@) all of the parameters describing the flow are functions of the

transverse y-coordinate only.

In view of equation (6.1), the continuity equation, equation (3.14),
is satisfied idéntically and makes no explicit contribution to the problem.
The momentum equations in the x and y directions, which are obtained from
equation (3,15) with i = 1 and 2, similarly reduce to the simple form given
by equations (6.2) and (6.3) below, respectively. Finally, the energy re-
lation, equation (3.16), is reduced by equations (6.1) to the form of equa-

tion (6.4). The differential equations of motion for Couette flow thus are

given by
&(Te) = 0
qyl el =« (6.2)
L (peT,) =0 (6.3)

;%y'(“vz#r wl) = o0 (6.4)
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The relevant compoments 7T,,, and T,, of the viscous stress tensor
T i3 are evalué.ted to the second approximation means of equation (3.17)
of Part III with the restrictions of equations (6.1). Similarly, the
y-comiaénent, 95 of the heat flux veotor q is obtained from eéua.tion (3.18),

These reductions result in

du
272 = aa;y = - f‘d:/ (6.5)
2
i duy? 2 d°T
;_Taz = Jy = P T ‘% [(-‘;Ka*' T|EK5)(0‘;) +5K3Rdyz
R 4T R /dT)?
+%K+F§§§+%Ks?(%)] (6.6)
dT
= = A5 (6.7)
aq’e j'y AY

where the various symbols are defined as in Part III, It is to be under=-

stood, of course, that in the above expressions for the heat flux and stress
3

components, terms of order %z or higher have been neglected, Due to the

simplicity of the geometry in the present case, only the normal stress
2
component T  contains 'additional terms" of order £ .

P
By substituting the expressions for the stresses and heat flux, equa-
tions (6.5) to (6.7), into the differential equations of motion, equations

(6.2) to (6.4), one obtains the following three total differential equations:

o%(ﬂ%%i)z 0 (6.8)
itk o L y(du) LT
dlpe Gl groE) +5KR I

4TV T -
_+§K4%a%ré§ +%i<511?=(oly):[ 0 (6.9)
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- . |
o%(y(; 0 + ﬂ@% - 0 | (6.10)

The solution of equations (6.8) to (6.10) for the dependent variables
U, T, p, with the appropriate boundary conditions, to be discussed later,
represents then the desired velocity, temperature, and pressure distribu-
tions for the Couette flow., The distribution of density is, of course,
obtained from the equation of state of a perfect gas.

6.2 Solution of the Differential Equations

The differential equations (6.8) to (6.10) are evidently non-linear
total differential equations.‘ The non-linearity of equation (6.8) is due
to the fact that, in general, the viscosity of the ges, A s is a function
of the unknown temperature distribution,

In order to facilitate the first attempt to solve these equations, it
will now be assumed that the coefficient of viscosity # has a constant
value throughout the gas, independent of the local temperature. This
assumption effectively results in the linearization of the differential
equations, since the solutions for the unknowns U, T, p may be obtained
successively from equations (6.8), (6.9),, and (6,10), respectively. The
influence of this simplification will be appreciable only when the varia-
tion of temperature is relatively large. Even in the latter case, it is
believed, that the results so obtained will be of qualitative significance
since the nature of the phenomena of slip and temperature jump for a rare-
fied gas flowing past a solid boundary, does not depend directly on the
temperature variation of the viscosity. In fact, it will be recalled that
a change in the temperature dependence of the viscosity coefficient is

equivalent to a change in the molecular model assumed in the calculations
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of the kinetie theory. Since the coefficient of fhermal conduction, A ,
is proportional to the viscosity coefficient u , (see equation (3.13),
. Part III), both L and p will be treated as constants throughout the
follc&ing analysis,

Thus with K constant, equation (6.8) is easily integrated resulting

in the linear velocity distribution
u=Ay +B , (6.11)

where A and B are arbitrary constants. When the quantity é? of equation
(6.10) is replaced by the constant A of equation (6.11), one obtains a

simple differential equation for the temperature T

2
%l; - - 71& A (6.12)

The integration of equation (6.12) results in the parabolic tempersature

distribution

T=-£—A2y2+Cy+D s (6.13)
where C and D are additional constants of integration.

The pressure distribution will now be obtained from equation (6.9 ).
Since the general form of the boundary conditions (Part V) has been eval-
uated explicitly only for the Maxwell molecules, the values used for the
constants K,, Ky, Ky, K5, Kg, which appear in equation (6.9), should also
be those appropriate to the Maxwell molecule. According to Table 3.1 of

Part III, one has

-
XK =3 K. = 3x 4T - (6.14)

3 5
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where the constent KB vanishes due to the assumption of constant viscosity.
With the values of the constants X as given by eguation (6.14), and the

2
derivatives "al-'—; and Z{WE as obtained from equations (6.11) and (6.12),

respebtively, equation (6.9) yields upon. integration with respect toy

pl 14 %:{%Aa-aEfAz}J=E (6.15)

4
where E is again a constant of integration. It follows from equation (6.15)
that in the limit G%)-—ro, P~ oE = constant. Since, however, in the
o

2 2
present approximation {%L mey be replaced by g;; , this means that
-]

2
the pressure is independent of the y-coordinate up to terms of order (5;}
Thus the solution of the differential equations (6.8) to (6.10) has been

obtained, as summarized below:

-
U=Ay + B
T = —£A2y2+0y+n \ (6.16)

p = E = const.,

o

It should be noted that the speecialization of equation (6.14) for the
Maxwell molecule affects only that portion of the pressure distribution
2
which is of order Pt , and does not affect the velocity and tempera-
o

ture distributions at all.

6.3 The Boundery Conditions

The general solution, equations (6.16), of the differential equations
contain the five arbitrary constants A, B, C, D, E which will now be de-

termined by applying the boundary conditions which correspond to the

Couette flow of figure 6.l

The constent E merely defines the uniform pressure level of the flow
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and is therefore a lmown or preassigned quantity. To determine A, B, C,
D four conditions are required. These four conditions are obtained by
applying the general boundeary conditioné for the gas velocity_tangent to
the wall, equation (5.79), and for the temperature of the gas at the wall,
equation (5,80), to both the stationary plate at y = O and the moving plate
at y = h.

Because of the simplicity of the geametry of the Couette flow, equa=-
tions (5.79) and (5.80) can be reduced considerably., The reductions of
equation (6.1), when expressed in the coordinate system used in Part V,

(see figure 5.3a and equation (5.75)) are equivalent to

-
x =X _a__ - Uy =1
1 oXy 0 1
= 2 - =
x, = 2 5, ° 0 u, 0 | (6.17)
= 4 2 - 4-— =
2oy 532 = = dy w=0
D _
pt ~ 0 ]

where thé (+) sign applies to the stationary wall at y = O, and the (=)
‘sign to the moving wall at y = h, In the analysis that follows, the sub-
script o will denote that a particular quantity is to be evaluated at

y = 0, whereas the subseript 1 denotes evaluation at y = h, The four
boundary conditions thus obtained from equations (5.79), (5.80) and (6.17)

are:

(L) aty=0

ue = 0+ B)al®m (8] + GF[-Frr(gy)

- 4634 R (%), (f%). - £ % (‘é{),(ff';),] (6.18)



129

(2) aty=h
wo= U+ & [-afmm (%))
;({:)z [ -£rT (0‘?/") 4.634 R(G]) (%)
{% %-_r (;(‘?) (d ] (6.19)
(8) aty=0

+ (%)a [e| T, (‘;,%‘)f - 54902 R({f}:

2
= rT (), ] (6.20)

T, = Tw, + (—%‘) [ - c /T (&t';‘(-),]
& [en &) - swe (&)
2
- 7% RT (%D,] . (6.21)

The numerical values of the constants a 1» Bre computed from the

1’ cl’ e
formulse of Table 5.3,
The various derivatives appearing in the above boundary conditions

are readily evaluated in terms of the arbitrary constants A, B, C, D and
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the plate spacing h., The boundary conditions, equations (6.18) to (6.21)

can thus be reduced to the following four explicit algebreic relations

between the constants A, B, C, D:

B = (&) a(®% A-(5)[ 4634 RCA] (6.22)
B+ Ah = U- () aVRT A -(£) [4634R(c- £AWA]  (628)
D= Tw +& a7 C-(B) [-eT A + s4g2rC (6.24)
2
- T £ A ]
D+ cCh- &AW = Tw - (§) c(RT (c- £ AW
(6.25)

__(g)z [ -e T A+ sea2 R(C- %Azk)z- T:I RT, %A'J .

The evaluation of the constants A, B, C, D from the above set of simul-
taneous algebraic equations is carried out in the next section.

6.4 Calculation of the Constants, A, B, C, D.

The four simulteneous algebraic equations, (6,22) to (6.25) are seen

to be non-linear., The appropriate roots of the constants A, B, C, D are

again obtained most easily by expanding each of them in ascending powers

of the parameter = (%) + One may thus write

A= Ali+eA + ezzA*J
B - [B+6B + 6B ] | (6.26)
C=clivoc e c]
D ,op[ | + e’D*+ eazD*]




131

The stars indicate that a quantity such as @ 22A* is dimensionless., It
is also convenient to expand the temperature of the gas at y = h, Tl, in

-a similar marmer, namely

T = JT[i1+e ,'E*+- eza'lj*] ] (6.27)

From equations (6.,26) one obtains, accurate to terms of order 92, the

expansion

2
A= AL 1+ 2o + & (A + azA*)j, (6.28)

Similarly one obtains the expressions (6.29) which are accurate to terms

of order 8 :

(1« 46T ]

'(V—ﬁ) = ‘LB [ i+ ‘aLe,D*] (6.29)

A
u u
=

The various expansions, equations (6.26) to (6.29) are now substituted
into equations (6.22) to (6.25) and only those terms which are of order
e 2 or lower are retained. In each equation the terms are then grouped

in ascending powers of € , which results in equations (6.30) to (6.33).

[B]+ o[B- al®B.A]l + &*[B-a,(Rp AN+ED)

+ 4634 R ,COA] =0 (6430)
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[B+,Ah- u]+e[B+AAk+ a\/R ]
+ 0 [B+ A +a (kT AGK+ET)

+ 4634 RA(C- £ hgpf)] - 0 (6.31)

[D-Tw]+e[Dp'-c, T, £]
+ 92 [eDz:D"6 - CI\FR'::": cC ((C*‘i' ain:*)- e':r: AZ

2 K 2
+ 5492 R C - ,‘5; Rx I,A] = 0 (6.32)

[T-Tl+o[TT" +cVRT (c- £.40)]
@[T T+ cRT (ET - £ AW+ pct- 2 £ A AR)

2
+e, IOAZ + §.4912 R (OC-%OAZL() -ERT _/io,of]: o0 . (6.33)

Since the above equations must hold for arbitrary, small values of ¢ ,
one finds, as was observed in the preceding Parts, that each of the

square brackets above must vanish identically. Thus the vglues of oB,
dA’ o ’
of equations (6.30), (6.31), (6.32), (6.33), respectively. This yields

D, oT, are found immediately by equating to zero the first brackets
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the "zero order" solutions given by equation (6.34)

B=0 D= T =1Iw

° ° o9 © (6.34)
=0 =

A T oTl Twl

In order to determine the constant °C, evaluate equation (6.13) at the

point ¥y = h, retaining only zero order terms, On thus obbtains
2 2 . '
T = - ﬁoA h + Lh+ D (6.35)

from which, using (6.34), oL is found to be

2
C = TW;T"” + ajf\ % . (6.36)

The zero order solution of equations (6.34) and (6.36) represent
Couette flow in the pressure regime of gas dynemics where there is no
slipping of the gas on the walls, and where the layer of gas adjacent
to the wall has the temperature of the wall,

With the zero order solution determined, the first order constants
1B, 1A*, lc*, lTl* can be caloulated sucessively by equating to zero the
coefficients of © in equations (6.30) to (6.33) respectively. The re~

sult of this purely algebraic calculation is given by equations (6.37)

to (6,40),

B = &, \,‘RTW‘ % (6.37)

,A*= ‘&"{2(@4-@) (6.38)
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2

,D* = ¢I\/-%°{Eﬁl“’°+ 5 %} (6.39)
' 2
e e E AT AT (600)

The expression for 10* is obtained in a manner analogous to equation

(6435 ), the result being

: T -T
oc|c* = [_ C'C\/-R—_Two.‘- “RTWI) ‘hz °

L ®
- { (¢, + aa.)\]RTW, + (2a,~-¢) \IRTw.} 2A T\"] .

(6.41)

The expressions (6,37) to (6.41) represent the effect of the slip velocity
and temperature discontinuity at the wall to a first approximation, that
is for small values of © , and will be discussed in detail in section
6.8 below,

Finelly, the second order constants

B, 2A*, ZD* T*, remain to be

2 2

calculated. An inspection of equation (6.30) shows that _B is the only

2
unknown quantity contained in the coefficient of 92, so that 2B can be
evaluated by equating the former to zero. With 2B known, 2A* can be cal-
culated by equating to zero the coefficient of g° of equation (6.31),

Likewise oD* and ,T1* are obtained in turn from equations (6.32) and (6,33 ),

respectively. Equations (6.42) to (6.45) give the result of this calculation,

2

B- K [-a B(m+ M) -(463-fac)R{E™ 4 X1 (e.42)
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>
*
1]

2 R
[ &} 5 (VR + 7)) + (9.268-4.c) 2051 (6.43)

W

p' = [ -t (eVE) & (Tw-T

2

{e + aA BE[(3-2ac-¢7)+ (¢ _aca)ﬁ]}%a

212
(3~ 5.4912)-:%';; {CTw.—Tw.) +5 U }:I (6.44)

2 4
[C. (VRTw, + \hz'rw,) -N‘" 1:/, (18.536—aa,c.)R(‘:7\) %

2 n’
+ 30 (fRTw, ¢ {7T) & o3

2
+ {e‘ + ‘Eﬁ( 3C| - 24a,c + 22, 1077)}(1—»‘/‘-(,«0) % ] (6.45)

Returning to equation (8.26), it will be seen that it is now possible
to caleulate the constents A, B, C, D accurate to terms of order azz(gj
by use of equations (6.34), (6.36) to (6.39), and (6.41) to (6,45). Conse-
quently, particular velocity and temperature distributions may be computed
from equation (6.16) for any combination of plate veloecity U, plate spacing
h, wall temperaturgs Iw, and Twl; and pressure level p for which the expan-
sions of equation (6,26) converge sufficiently rapidly.

6.5 Frlctlon Coefficient and Slip Veloclty

It is of interest to calculate the frietion force exerted by the
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rarefied gas on the fixed and moving plates., This salculation will be
carried out in dimensionless form, The standard definition of the frice

tion coefficient CF is

T

™

\

C =

F 2 b (6046)

D
=

where from equations (6,5) and (6.8) the shear stress T at either wall

is given by

T kAL (6.47)

It is convenient to define a Reynolds number Re, based on the plate spacing

h, as

Re = /“' . 608

Equation (6,46) may then be written in the form

Cp = & A% 6449
F Re 5 ( )
where A* is defined by
* h % 2 ¥
A=A = l+oArtoA . (6.50)

The last equality of equation (6.50) results from equations (6,26) and
(6,34). Thus the parameter A* is a measure of the influence of the rare-
Paetion of the gas on the frietion coefficient,

In order to replace the plate velocity U by a dimensionless quantity,

we introduce the plate Mach number M, based on the temperature Tw, of the

1
moving plate, as

M= — 6.51)
VYRTW' . (
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The coefficients of viscosity x , and thermal conduction A are replaced

by B, the reciproecal of the Prandtl number,

_ A -
B = ic (6.52)

where Cp is the specific heat at constant pressure of the gas,

From the equation of state of the gas and from equations (6.48) and

(6.51) it is easily shown that

o B _(£) . () (6.53)

The ratio of Mach number to Reynolds number is independent of the plate
velocity U and may also be expressed in terms of the mean free path, ,e N

of the gas, Thus from equations (6.53), (3.22) and (3.23) one obtains

()= V& (£). (6.5¢)

IA* are obtained in dimensionless form by applying equa=~

tions (6.51), (6.52) and (6.53) to equations (6.38) and (6.43), respective-

The quantities

ly. The final expression for A* obtained in this mammer from equation

(6.50) is

pf e [- {0 GeVB) 7 (&)} +{af({+@-)zé’

2
£(-0 a} M
+ (4.634- a—' @C) "{3'_ M (@) . (6455 )
It is seen that to a first approximation A* depends only on the wall tem-
perature ratio T, , and the "rarefaction parameter® C%%) , whereas
wl

the second order term involves, in addition, the Mach number explicitly.
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Since the influence of the temperature ratio. 1%? in equation
i
(6.55) is a secondary one, it will suffice for illustrative purposes to
caleulate A* for the special case of equal wall temperatures and for a
particular combination of gas and wall material., Assuming thét the gas

is air and that the walls are mede of metal such as aluminum or brass,

the required physical constants have the values given by equations (6.56 ).

¥ =1.40 @ = 1.00
(6.56)
P==

e = 0,90

A

The values of the molecular reflection parameter & and accomodation coe=
fficient @ are average values obbained from Tables 5.1 and 5.2, respectively,
The constants 245 C1s and s (required later) are then calculated using

the formulae of Table 5.3, resulting in

= 1,253, = 2,377, e = (0,2507., (6.57)

*y 1
Hence, for the special case under consideration, equation (6,55) is reduced

to
AY = [ | - 2.97(%)*'{8-80 + 132 Ma}(%)a_—} . (6.58)

Equation (6,58) is plotted in figure (6.2) for several constant values of
the Mach number M, The "first approximation™ to A%, represented by
Ax =1 =2,97 fé;), is also shown for comparison. The nature and signi-
ficance of the above result will be discussed in section 6.8,

For the case of equal wall temperatures, it follows from the symmetry
of the linear velocity profile, that the "slip velocities™ between the gas
and the fixed plate and the gas and the moving plate are equal. Denoting

this relative or slip velocity by Au, it follows from equations (6.11)
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and (6,50) that

P
U _ é—(l‘A) ;. Twe = Tw, (6.59)

" .
Consequently, figure (6.2) also gives the "percent slip" as a function of

Mech number and the rarefaction parameters (%) or (‘%) .

6.6 Temperature Discontinuity at Wall and Heat Transfer

The temperature discontinuities at the two walls, (1‘wo -To) and

(Tw. =T,) may be calculated directly from equations (6.13), (6.26) and
1

1
(6.28). In the general case when Tw  # Twy and U# 0, it is found that
the temperature profile is assymmetrie with different temperature jumps
at the two walls, 1In order to illustrate the nature of the phenomenan

of temperature jump, the discontinuity in temperature, 'I'WO =Tos occurring

at the "fixed" wall, y = 0 will be calculated for the following two spscial

cases:
(a) Tw, = T U#0;  (Twy =T,) = (Twy =Typ)
(») Tw # Twy U=0 (Twy =Ty) # (Twy =T,),

Due to the complete symmetry of case (a), the temperature jumps occurring
at the two walls are equal in this instance.

From equation (6.13) one has

in view of equations (6.26) and (6,34) this may be written in the dimension=
less form

Tw-T _ _[eD'+ o°p'] (6.60)
Tw, ’
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Expressing equations (6.39) and (6.44) in terms of the dimensionless

parameters of equations (6.51) to (6.53), one obtains for case (a) above

o L [{1e7 M) (G 2aa K20 e i
2
A %‘)‘(z‘cta— 5.4912)] M"}(o%‘-e) J . (6.61)

Considering the numerical example defined by equations (6,56) and (6,57)
of the preceding section, one obtains from equation (6.61) the expression
for the temperature jump when the space between two metal plates is rilled

with air, namely

Te- 2 Tw [o 422 M (M- { .98 M + . 0840 M‘}%)Lj . (6.62)

Equation (6.62) is represented graphically for various constant values
of ¥ in figure 6.3.

We now turn to case (b), above, where both plates are at rest but
at different temperatures, This is merely the problem of heat transfer
between two infinite parallel plates by thermal conduction of a rarefied
gas. In this case it is of interest to calculate the fraction of the
total temperature difference occurring as a guasi-discontinuous "tempera-

ture jump®, Thus, from equation (6,60)

Tw-T.  _ __1_ [oD+o D (6.63)
T T, - [ 1.

Tw,
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Since in the present case the velocity U is zero; neither Mach nor Reynolds
number are appropriate parameters of the problem, so that the ratio (%) >

equation (6,54), will be used to obtain the dimensionless expressions for

D% and ,D*, Setting U= 0, equation (6.63) is reduced to the form

Twem T _ [\)};;: c, (%\-) + {-2 c.%imﬁ%)
-2 (¢’ - 5.4912)( (- %)}({—)7 , (6.64)

where ﬂ, is the mean free path corresponding to the demsity, €, , of

the gas adjacent to the wall y = O, In particular, for air and metal

plates the value of cys is given by equation (6457 ), which reduces squa-

tion (6.64) to

%&-‘_—% = [ (.90 (’%) - {3.60 C”@Z‘)
2 "
a0 (- B E) ] (6.65)
(U=0)

This equation is plotted in figure (6.3 ) for various values of the plate
Tw,

temperature ratio 0 § T, 2 1,

The heat transfer q can be calculated directly from equation (6.7).

Thus, from equation (6.13) one finds for the amount of heat transferred

from the gas to the fixed wall, at y = 0,

qQ =AC ' (6.65)

As may be seen fromequations (6.36), (6.41) and (6.45), the above will, in
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general, result in a lengthy expression, which will not be given here
explicitly., However, for the two important cases treated previously
equation (6.65) leads to simple results,

For case (é), with non=vanishing velocity U and equal wall tempera-
tures, the result is conveniently represented by the dimensionless heat
transfer qn* defined as

49 =

Ly K
a > K iy

T . (6.66)

The denominator of this expression is one half of the mechanical energy
which is converted into thermal energy by viscous action, when there is

no slip, i.e. %% —(0, The final result of this calculation is
Y-y 2 2
%,* = [l - 4a, *ﬁ(&%} + {12dal + (9.266-a.c) N M } (A%) :{.(6.67)
a

Using, for air, the values of the constants given by equations (6456) and

(6457 ), one obtains from the above

. = [1-smlB) « {264+ 2ot M () ] (6.58)

(Tw. = Tw,) .

Comparing equation (6.68) with equation (8.58) for A* one observes that the
curves of g, * versus (%%) at constant Mach number M, have the same general
shape as those shown in figure 6.2,

For case (b) of pure heat transfer between two fixed walls, the appro-

priate dimensionless quantity to deseribe the reduction in heat transfer



due to the rarefaction of the gas 3%, defined as

% 9

9 — T - (6.69)
b /1(-—,;') |

\

From equations (6.65), (6.36), (6.41), (6.45), (6.53) and (6,54) one readily

obtains the explicit result

=

c, (,“"ﬁ%,) (’%—) +2 c.z(wﬁ{)z(’%)z:} (6.70)

6 = L1-
(w=0).

6,7 Temperature Profiies

It follows from the linear velocity variation of equation (6.11), that
the velocity profile is always completely determined by the slip velocity
at both walls, In the case of the temperature distribution, however, the
shape of the temperature profile may vary between wide limits, depending
the relative magnitudes of the plate Mach number M and the plate tempera-
ture ratio 7;4//134 o This will now be illustrated by several numeri-
cal examples,

By means of equations (6.26), (6.28), (6.51) and (6,52), the tempera-

ture variation of equation (6,13 ) can be expressed in the dimensionless form

.
(-8 T M lee A+ S 2] ) o]

T
Tw,
(8 E 0B el

s {1+ 04 0" DY (6.71)

where q‘ = %&
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Equation (6.71) hes been evaluated for air by use of the physiecal

constants of equations (6.56). For all of the three cases considered

below, the air density corresponds to & value of %% = 0,10 which is
equivalent to (g&) = 0,0675:
Tw,
(1) for T, =10, M=2,0
T
T, = 1.072 + 0,462 n(1 -1) (6.72)
Tw _ -
(2) for ;”:,0—0.5, M=0
T
= = 0,919 - 0,376 7 (6473 )
Tws
(3) for _%=o.5, M=2,0
T, = 0,971 = 0,167 1 = 0,222 1% , (6.74)
(-]

The three temperature profiles, equations (6.72) to (6.74) are plotted in
figure (6.5) for camparison, The significance of these as well as the
previous results are discussed in the next section,

6.8 Discussion of Results

The geometry of the Couette flow is sufficiently simple so that the
2

terms of order % occur only in the differential equation from which

the pressure distribution is determined, i.e. equation (6.9), This means
that the form of the general solution for the velocity and temperature
distribution does not depend on the "degree of rarefaction" of the £S5
Instead, the degree of rarefaction, which enters this problem through the
boundary conditions, merely determines the explicit value of the arbitrary
constants of the general solution of the differential equations, This
result is quite independent of the assumption of constant coefficients of

viscosity M » and thermal conduction A .



145

On the other hand, the 1ine§.r form of the velocity distribubion,
equation (6.11), and the parabolic form of the temperature distribution,
equation (8413 ), are a direct consequence of the assumption of constant
viscosity coefficient, The pilysical reason for the linear velocity dis~
tribution is, of course, that the shearing stress T , as the only force
acting in the x-direction, must be a constant, Since in the steady state
case treated here the temperature at any ordinate y must also remain
constant, the gradient of the thermal conduetion, Cﬁ% , 18 Jjust equal
to the energy permit volume which is converted into heat by viscous dissi-
pation, (- %) « This fact is expressed mathematically by equation
(6.12) and accounts for the parabolic form of equation (6.13).

As may be seen from figure 6.5, the genersl temperature profils,
curve (3), is essentially a combination of the symmetric parabolic profile
(1) for equal wall temperatures, and the linear profile (2) of thermal
conduction without fluid motion, However, curve (3) of figure 6,5 cannot
be obtained by a direct superposition of curves (1) and (2), as an inspec-
tion of equation (6.71) will show; this is due to the non linearity of the
boundary conditions,

The difference in magnitude of the various temperature jumps shown
in figure 6,5 is easily accounted for by a consideration of the terms
of order (%) in the temperature boundary conditions. Thus equations
(6.18) or (6.20) show that, to a first approximation, the temperature jump
is propor‘biénal to the product of m and the temperature gradient,
at the wall. The effect of the second order corrections does not change
the above qualitatively as may be seen from the temperature jumps at m = 0
and 1 = 1,0 of curves (1), (2) and (3) of figure (6.5). By an analogous
argument, it follows that when the two wall temperatures are unequal, the

slip velocity occurring at the warmer wall will be greater than the slip
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velocity at the colder wall,

In the preceding discussion the various types of temperature and
vvelocity profiles have been compared at a fixed value of the "rarefaction
Pé.raméter" (%) or (’%) . The results of sections (6.5) and (6.6), and

in particular figures 6.2 and 6.4, show that both the relative slip-veloeity

é{f and the relative temperature jump ‘E‘.'fj;’— depend on the ratio
TWQ - TW|

of the mean free path ,ﬁ to the plate spacing h in a similar manner, From
equation (6.58), or figure 6.2, the first apﬁ)roximation to the relative slip
v does not depend on the lach number explicitly, which is a consequence
of the linearity of the first order terms of the boundary condibtions. The
term 1,82 12 Gﬁ)z of equation (6.58) can be traced back to the non-linear
term - (-,%)zR %,r Sf-;—{ which appears in the boundary condition of equation

(6.18). As mentioned above,

i—'}. ~ ¢ A aissipation ~ T % ~ Ul

which accounts for the explicit appearance of the quantity W in the second
order term of equation (6.58).

On the other hand, equation (6.62) shows that the temperature jump
is, to a first approximation, proportional %o Mz( 3% ) when the plate
temperatures are equal, This is again due to the above stated fact that
the temperature gradient at the wall is proportional to M2, The term pro=-
portional to M4( 6%. )2 in equation (6.62) is attributable to the term of
the. form (%)2(0;%’)& of the temperature boundary condition, equation
(6.20).

From equation (6,65) and figure (6,4) it appears that the wall tempera-
ture ratio .%’/:‘ s for the case of temperature jump in pure heat transfer

without gas flow, playé a role analogous to that of the Mach number in
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the case of slip velocity; that is the first approximation to equation (6.65)
depends only on the rarefaction parameter G%) whereas the second order core
rection term is in addition a function of the wall temperature ratio,.

As ﬁ consequence of the method of expansion in ascending powérs of the
"rarefaction parameter" (%‘) , (0-%_) or (-’é), all of the results obtained in
the preceding sections are valid only for "sufficiently small"™ values of these
rarefaction parameters, For this reason, the maxima and minima of the curves
of figures 6.2 to 6,4 do nothave any physieal significance, but indicate that
when the deviation of the second approximations from the fist order solutions
are large, third and higher order terms in the viscous stresses, heat flux,
and boundary conditions must be used.

The region of values of (%ﬂ or (g&) for which the second order solubtions
are inadequate is indicated by the dashed curves of figures 6.2 to 6.4, It
is evident from figures 6.2 and 6.3 that the maximum value of (%) , for which
the second order theory is adequate, decreases with increasing Mach number.
This result agrees with the more general criteria that were established in
Section 3.3, Ié was shown there from dimensional considerations that the
second approximations to the stresses and the heat flux become inadequate
when (M '% )2 is not negligible compared to unity.

Moreover, the results represented by figures 6,2 to 6.4 indicate that
in all cases calculated the second order corrections, proportional to ( g%_ )2,
diminish the values of slip-velocity and temperature jump that are predicted
by the first order theory.

6.9 Applieation of Result to Laminar Boundary layer

The calculations of Section 6.5 on the frietion coefficient and slip
velocity of the Couette flow may be utilized to obtain a rough estimate of
the effect of slip flow on the skin friction of a flat plate. If the true

velocity pfofile of the boundary layer is replaced by a linear velocity profile,
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the boundary layer thickness & 1is equivalent to the plate spacing h of
the Couette flow, the influence of the inerease of the boundary layer
thickness in the x-direction being neglected. Equation (6.49) may then be

given the more general meaning

Co(R, M) = CFO(Rx, 0) « A*(Re, M) | (6.75)

where R.X is the Reynolds number based on the distance from the leading edge

of the plate, that is

_uex
R, = — A (6.76)

The quantity Re appearing in equation (6.75) is the Reynold's number based
on the boundary layer thickmess O , as defined by equation (6.48) with h
replaced by S .

The meaning of equation (6.75) is then, that the friction coefficient
for a given slip-flow condition defined by M and R,, is obtained by multi-
plying the friction coefficient of the gas-dynamical flow at the same value
of Rx by the factor A, equation (6.55), which represents the reduction in
the skin friction camsed by the slippage of the gas over the suffaee. The
reletionship between tge two Reynolds numbers Re and R is known only in
the two limiting cases of vanishing and infinite Reynolds number. For large
values of Ri, one may use the well known law of Blasius which results in

(Reference 6,1)

Re fy

—_— F = = 3. 5 .

o X VR, 3.6 (6,77)
(R_»1)

For very small values of the Reynolds number, $ and x are of the same order

of magnitude so that



149

Re = R (Rx <1) (6.78)

It is of interest to determine the realm of Mach and Reynolds numbers
to which the value of A* as calculated from equation (6.55 )Amay be applied,
The calculations for air, figure 6.2, will be used, It will be assumed,
thet the curves of figure 6,2 give results of sufficient accuracy in the
regions where they are drawn solid, The end points of the solid curve

have been chosen, somewhat arbitrarily, such that for a given value of M,

1]

1 -A* =,§ (1 -A* First Approx. )

To every value of M there corresponds thus a maximum permissible value of
(g&) and hence a minimum value of the Reynolds number Re. The corresponds
ing value of R, is obtained from equations (6,77) or (6,78), For application
of the result to the flight of an aircraft through the rarefied atmosphere,
it is most convenient here to assume a standard chord length x of one foot,
so that the Reynolds number R, becomes a unique function of the standard
altitude H and the Mach number ¥,

The final result of this caleculation is shown in the Mach number al-
titude plane of figure 6,6, Curve (1) represents the maximum altitude at
which, for a given Mach number, the second order theory of figure 6.2 gives
valid results, the intermediate calculation being based on equation (6,78 ).
Curve (2) results when the relation (6.77) is used for the calculation.

Curve (3) has been faired in to indicate that curves (1) and (2) are more
appropriate for the low Mach number and high Mach number regions, respec-
tively.

Curve (4) of figure 6,6 represents the locus of points where the slip
veloeity, Au is equal to one percent of the free stream velocity U. At

altitudes lying below curve (4), %% { .01, so that the effects of slip
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will be negligible., Hence the region in the Mach number-altitude plane
where the present approximation leads to significant results is included
between curves (3) and (4), figure 6.6, For example, for M = 3 at an
altitude of 250,000 feet, figures 6,2 and 6.6 give approximately a 107
reduction in the friction coefficient,

Figure 6.6 emphasizes the previously established fact that for very
high Mach numbers the second order slip flow theory yields useful results

only for a small region of Reynolds numbers,
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PART VII

SLIP IFLOW BETWEEN CONCENTRIC CYLINDERS

The results obtained in the preceding part for the Couette flow of
8 rarefied gzas will now be extended to the case of slip flow beﬁween con=-
centric c¢ylinders of finite radius of curvature. This particular problem
illustrates the application of the general boundary conditioms for a curved
wall, as well as the method of solution when the pressure varies throughout
the flow field.

The notation and coordinate system to be employed are shown in figure
7.1, The two dimensional flow field is described by the plane=polar coor-
dinates r and ¢ . The gas is confined between the immer cylinder of radius
a and the outer cylinder of radius b, The outer cylinder is assumed to be
at rest, whereas the inner cylinder is rotating at constant angular veloeity
w, its surface velocity being denoted by U = aw, As for the Couette flow,
the gap between the cylinders is denoted by h, Tw, and wa represent the
wall temperatures of the inner and outer cylinders, respectively,

Due to the axial sysmmetry of this problem the tangential velocity u, ,
temperature T, pressure p and density p will be functions of the radial dis-
tance r only,

7.1 The Differential Equations of Motion

The appropriate equations of motion are obtained by expressing equations
(3.14) to (3.16) of Part IIT in plane-polar coordinates. Since the motion
is assumed to be steady, and as from the symmetry of figure 7.1 the radial
velocity component u,, vanishes everywhere, the restrictions imposed by

equation (7.1) apply to the case at hand.

u, =0, %=o, 2 =0 (7.1)
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The cooidinate transformations are performed easily, using the fore
mulae of References (7.1) and (7.2). It is found that the equation of
continuity is automatically satisfied in view of equation (7,1). The
momentum equations in the tangential and radial directions are given by
equations (7.2) and (7.3), respectively. The energy equation (3.16)
transforms to equation (7.4) below. The approﬁriate differential equations

of motion are,therefore:

I ACAIEE I N e (7.2)

X
S, LT Z‘Tf v AT + (T -Te)] = 0 (7.5)
B b e (Bu-tu) oo

In the above equations, trr¢ is the viscous shearing stress, ‘]}r and J;¢
are the normal stresses in the radial and tangential directions, respec-
tively, and qr is the radial component of the heat flux vector,

The ‘explicit expressions for the required components of the viscous
stress tensor and the heat flux vecfor are obtained by transforming the
general expressions (3.17) and (3.18) of Part III, respectively, into plane
polar coordinates and making the reductioms required by equation (7.1).

The results of this transformation are given by equations (7.5) to (7.8 )2

du
Teo = — 1+ (-

==
<&
~

(7.5)

e 2
d 4 Uo o
Tee = % [ (Eket 5x)(FY) + (3Ke-Fk) 2 G

U, 2 ( dP AT | 2 LT
+ (BK-%k) (¥) +3’K4'Q'? I dr T 3KR

| iy )
cik, B - fry ] (7.0)
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2 du gy L L Ue due
Too = 5 L(EKe-§1) (W) +(5Ke-gKk) ¥° 57

3 dve
T L., R ﬂz] (7.7)
- 3K 7 % j“? - 1K B (%)
= _ 3 4T
qr" A- dr . (7.8)

TWhen the expressions (7.5) to (7.8) are substituted into the equations
of motion (7.2) to (7.4), one obtains a set of three non~linear total dif-
ferential equations for the unknown tangential velocity, temperature and
pressure distributions. The radial density distribution is obtained from
the equation of state of the gas.

7.2 Solution of the Differential Equations

As in the case of Couette flow, Part VI, it is found that the above
differential equations are linearized effectively by the assumption that
the coefficients of viscosity u , and thermal conduction A are constants
throughout the flow field, The solution obtained below is based on this
assumpbion, whose significance has already been discussed in Section 6.2,

Substitution of equation (7.5) into the tangential momentum equation

(7.2) results in a total differential equation for the velocity u,

AU 1L dUe

ap——

- Ue
2 + r dr ’r'.z = 0 (7.9)

The general solution of equation (7.9) is found 4o be of the form

u =Ar+B-::‘-, (7.10)
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where A and B are arbitrary constants.
When the expressions f‘or'u¢ and g are substituted inbto the energy
r
equation (7.4) from equations (7.8) and (7.10), respectively, one obtains

the following total differential equation for the temperature T2

21 T oA LA
QLP++0%='4ABM' (7.11)

The general solution of equation (7.11) is

T=D+Clog r -.ﬁé B? 35 , (7.12)
r

where C and D are additional constants of integration *.

With the general form of the velocity and temperature distributions
known from equations (7.10) end (7.11), respectively,.the radial momentum
equation (7.3 ) becomes a complicated total differential equation for the
pressure distribution, In order %to simplify the application equations (7.6)
and (7.7) for the normal stresses, the numerical values of the constants
K2’ K.» K., K5, Kg as given by equation (6.14) for the Maxwell molecule
will be used here.

USing equations (7.6), (7.7), (7.10), and (7.12), one may rewrite the

tangential momentum equation (7.3) in the form

z

B RIEES SRR FIED A IS S (7.15)

)

* The arbitrary constants A, B, C, D above must be distinguished from
those of the Coustte flow, Section 6.3, The latber cammot be obtained

directly from the former by letting the radius of curvature become infinite,
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where
Y =-(4aB+3mr)L + (214 RA)R2 1L (7.14)
1 2 3 M )
Y =-(8AB+6R)L -24RARRL | (7.15)
2 ‘ — -
.3 H 5

At this point it is advantageous to obtain the solution for the pressure
distribution by the method of successive approximation in power series ex-
pansion of the "rarefaction parameter™ (-g ) o Since the pressure p is it=
self a function of the radius, it is necessary to define the rarefaction
parameter in terms of a fixed pressure, preferqbly the lowest pressure oc=
curring in the flow field., Due to the nature of the centrifugal pressure
field, the lowest pressure P, will occur at the inner cylinder, that is

at r~a (figure 7.1), We therefore define the rarefaction varameter O as

o =£ (7.18)
pe.
so that
H JPa
P 6 » (—). (7417)
P

Since the stresses and the heat flux are known only up to terms of order 32 ’

equation (7.13) will likewise be reduced to the same degree of accuracy.

Equation (7,13 ) may thus be written as

2

2
RN ORDANE MAENCE IV S PNED

° 2 )

9\‘9\
a5

i
P

where the prescript o denotes the zeroth approximation, that is the value of

the particular quantity in the gas dymamical case where & —»0.
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To obtain the zero order pressure distribution, one sets © equal to

zero in equation (7.18), whence upon integration

v 2 .
| £y _ L f L oMe g,
1og°( 1,“) = = r-ar T (7.19)

This integral may be evaluated numerically using the zeroth approximations

to the velocity and temperature distributions of equations (7.10) and (7.12).
The second avproximation to the pressure distribution can then be obtained
by means of a similar numerieal integration of equation/(7.18).

It is to be noted that the constant of integration so obtained is the
reference pressure Pa which defines the preszure level of the flow, If
desired, p, can be expressed in terms of the total mass of gas conbained in
the annuler space between the cylinders.

The general solution of the differential equations has thus been obtained.
In the following sections the slip=-flow boundary conditions are used to eval=-
‘uate the four constants of integration, A, B, C, D,

7.3 The Boundary Conditions

It was seen above that four boundary conditions, in addition to the
pressure level, are regquired for a complete determination of the varticular
solution for the coneentric cylinder gas flow, These four conditions con=
sist of the slip=velocity and temperature~jump relations applied to both ‘
ﬁhe immer and ouber cylindrical walls,

It is first necessary to express the general boundary conditions, as
given by equations (5.79) and (5.80) of Part V in the cartesian coordinate
system of figure 5.3a, in terms of the polar coordinate system of figure 7.1,
This transformation is performed with the aid of figure 7.2, ILet x and y
be the cartesian axes associated with the polar coordinates r and ¢ of

figure 7.1, The two auxiliary coordinate systems, x

a = Zg» and Xy = 2y of
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figure 7.2 represent the coordinate system of figure 5.3a, and equations
(5.79) and (5.80), as avplied to the immer well (r = a) and outer wall
(r = b), respectively. The relationship bebtween the various coordinate

systems of figure 7.2 is given by equations (7.20) and (7.12):

x=atz =rcos ¢

a (7.20)
y= xa=r31n¢
X=b~z_ =rcos @

® (7.21)
y= =x_ =rsin¢ ,

The veloelty components ug, W and Uy Wy of the auxiliary coordinate
system are related to the ta.ngentfial velocity u, as shown by figure 7.2

and equations (7.22) and (7.23).

u, = u, cos¢ , W, = -ug sin ¢ (7.22)
uy = -u4 cosd , wb= u, sin ¢ (7.23)

The partial derivatives with respect to the auxiliary coordinates are ex~
pressed in terms of the partial derivatives with respect to r and ¢ by
means of formulae (7.24) and (7.25), which are easily obtained from equa=

tions (7.20) and (7.21), respectively,

—a— = 3 -9—' s -.'— 2
K, Sin®gzy  Foeos Py 5y
2 2 .12 (7.24)
’aza’°°s¢ar "'51134"(- 50
2 P | 2
2 -sin @ 3¢ - cos = 5
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All of the first and second order partisl derivatives appearing in
equations (5.79) and (5.80) for the boundary conditions can now be trans-
fornmed into poler coordinates by means of equations (7.22) to (7.25)s After
a.ll of the differentiations with resrvect to ¢ have been perfonﬁed, ¢ is
put equal to zero in the resultant expressions,. in accordance with figure
7.2. Due to the condition of axial symmetry, equation (7.1), the partisal
derivatives of Uy 5 Ty Py P with respect to ¢ all vanish, The results of
this calculation for both the convex (r = a) and concave (r = b) eylindrical
surfaces are summarized in Table' 7.1. The transformations for the deriva-
tive %1—7 are cbtained from equations (5.77) and (7.1), using the fact that
the velocity of the wall, Ug has the wvalues U.and zero, at a and b, respece
tively.

With the substitutions of Table 7.1 one finally obtains from equations
(5.79), (5.80) and (7.17) the four appropriate boundary conditions given
by equations (7.26) to (7.29) below. As before, the subscripts a and b
denote the evaluation of a parbticular quantity at r =a, and r = b, respec-

tively:

(1) atr=a, Uy, = U+ em{ﬁ{ré’;(%")}a* & X. (7.26)

(2) at r=b _(t’(tl)) 0 + 6( )a‘dﬁ{rdr( )} (‘%fxb (7e27)

\

Tw, + 6 ¢ (RT, (5-';'—)‘z -0 7, (7.28)

(3) atr=a,6 T,

(4) atr=b, T, = wa,___g(%) T, dr) (Pa)Z (7.29)



159

The quantities X , X, Z,, and Zy are defined by equations (7.30) to (7.33)

respectively s

[ ERT (& &), + sierr () (e 1), + 2 (%),

PERT, GEL(cHM), -ERGE) CAEE,] oo

Z = E[-e‘{rﬁ(‘%‘)}: a<“¢dr{ W}) - ¢, R(+4%),

«a

R, dT dzr “liL, 18 Uey L 4T ,
'es'ﬁ (a(r)a*' 'R( _ra{(a+7u)r é—;}“](?.&)

c= Tle rd ) - E(u &I, - e RGE,

—281;(5'}: 14R( )J (7.33)

The values of the numerical constants 81, Cps ®1s €gs and eg appearing in

equations. (7.26) to (7.33) are given by Table 5,3 of Part V.
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7.4 Calculation of the Constants A, B, C, D,

Before substituting the expressions for the velocity, pressure, and
temperature distribution into the derivatives of the boundary-conditions,
it is desirable %o transform equation (7.12) for the temperature distribu-
tion. The arbitrary constants C and D may be expressed in terms of T,
and Tb, which are the)gas temperatures at r = a and r = b, respectively,

The temperature distribution can then be written in the form

2.

T = {(Tb c@ 'z)-log(‘f)-('l;+ -E-f-%-,- a‘) 109 ( )}

lo g(
_ _@: _l__z (7.34)
Cp Yoo

In the above equation,;l and f# have been expressed in terms of the specific
heat of constants pressure cp, and the reciprocal B of the Prandtl number,
according to equation (6.52).

As in the case of the Couette flow, it is convenient here to expand
the arbitrary constants ir terms of the rarefaction parameter & of equa~

tion (7.16)s Analogous to equations (6.26), we define:

— + ¥ -+ 2 * 3 ‘
A= AQ 91A 6°,A (7.35)
= + * 4 2 p* 36
B 03(1 913 e ZB ) (7.36)
—_ + % + 62 sk
Ty OT&(l elma zma )
(7.37)

- ¥ 42 o %
Ty, = oTp(1 + 6,7 + 67,1, %)

In addition, it is convenient to expand the pressure ratio (EE) and the

p
temperature gradients at a and b in powers of & , namely b

(@)—o()[l+9(ﬁ+6( ] (7.38)

Po
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and

* *
() = (20, [1e o (F) v 0t (D] (7.59)

The various derivetives occurring in the four boundary conditions are
evaluated from.equatioés (7.10) and (7.34) in terms of the expansions (7.35)
to (7.39). The resulting expressions are then substituted inko the boundary
conditions (7.26) to (7.29), which after arrangement of all terms in ascending

powers of  assume the following form:

(1)

*

[u Aa-éJ v of- AA" - 3“rhaz:}

* —
+ 6 [",AZA*'”]';??'3 - 2o RT RlznFleX] -0

(7.40)
(2)
[Ab +°B] s o[ AN+ B2 BB -Ba.\/—R—:f"—bEzo(%)J
+ ea[oAzA*+£§ - aa.\//:-g o(; {7z T +B+(%)}
2
(%) ,Xb o (7.41)

(3)

[rn-T.] «e[Zn -z (5]

v [m-orE @) 3T+ @ 3+z.] =0

(7.42)
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(4) o
[;l’b—wa] +o [ T + c.ﬁio(ﬁ)h(%)]

) ‘
+ [H T+ cVRT o(?((?'-r)b ( %) {z :T;*"-'(gg),_ +'(%;)*} -
+o(%—b)a,Zb] =0 | (7.45)

The quanbities X , X appearing in the above equations, are

Z Z
ca’” ob’ 0a’ o b’
the terms of zero order when the expressioms (7.30), (7.31), (7.32), (7.33),
respectively, are expanded in powers of & ,
Proceeding as in Section 6.4, one obtains the zero order values of the

constants A, B, T,, T, by equating to zero the first brackets of equations

(7.40) to (7,43 ). This results in

- - R./ey. L—
A= -2 (%) -er (7444)
|
B= Ua:—7z .
o U —er (7.45)
ofg = T3 T, = Tw, . (7.46)

Due to the algebraic complexity of the first and second order terms
of the various constants, it is desirable to inbtroduce dimensionless para-
meters at this point. The basic geometry (see figure 7.1) of the problem
is determined either by the dimensionless "gap" h*, or the diameter ratio k,
where by definition
W=, r=23-_1 (7.47)
a b

1 + n*

The variable radius r is replaced by the dimensionless variable § , where

.§= %_a ; ({)=|+h§ (7.48)
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such thet § always varies from zero to unity as r varies from a to b,
independent of the ratio k.
The surface velocity U is replaced by the Mach number M based on the

wall temperature Tw,, namely

M= —g—\/—ﬁ_———- . (7649
Wo

The Reynolds number of the flow, Re, is defined again by equation (6.48),
as for the Couette flow. Analogous to equation (6.53), the appropriate

rarefaction parameter, (%) is defined by equation (7.50):

RTo.
o) _B.E_“!e = % = \{_—(o&) (7.50?

It may be shown from equations (7.10), (7.35), (7.36), (7.44) and (7.45),
that the dimensionless form of the second approximation to the velocity

distribution is given by

. ¢ ¥
(»aio) - [‘ Kz(le + 0 B g P AN li (|+9‘A*+ e"'zA*)(H h §)J. (7.51)

(&)

Similarly, from equation (7.34), one finds for the second approximation to

the dimensionless temperature distribution

*

() = [ (l+ 0T + 6 T2)

log (I+ hlf)
——d-

-
{0 + 0TI + 6 (110} g

2 *
x,( 2 { * 2 * )
M {1+20B + o’(B'+2} )}

2 139(14-&3) _
. {l- (1-k7) Tog % (1+h*§)2}]. (7.52)
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The zeroth approximation to the pressure distribution, whieh is valid

in the pressure regime of gas dynamics is obtained from equation (7.19),

whence
Gyl
lo f = d§ 7453
§=0 ° (Y
o@%g) and 06%; ) are obtained by setting © equal to zero in equations (7.51)

and (7.52), respectively. Since equation (7.18) does not explicitly contain

terms of order © , the first approximation 1(2_) can be obtained from equa-
Py,
tion (7.53) by replacing the prescript o by (1), OSU =) and

evaluated from equations (7.51) and (7.52), respectively, with the terms

T .
¢ ’(ﬁa ) be ing

of order g2 ommitted. The quantity 1(25)* will be required presently,

Py
From equation (7.38) one has
¥
o (2) ={m(%) (B} -1 (7.5¢)

where “)in) and OQEE) are obtained from equation (7.53) with the upper limit
Py Pe,
of integration equal to unity.

The second approximation to the pressure distribution is obtained by
integrating equation (7.18). In view of equations (7.14) and (7.15), this

results in

g
Uy
P (ﬂ&f)
1% ﬁ [th j—UMM(§ s
fo @
eyt [y
S LS B e as ]
520

(7.55)
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where

uﬁ
( ) 2 o(a)
) - [ h§) - (R (L)

e L4t =Ky i_ ]
x{(‘ﬁk + 36,F "’97‘{) (Erey + (3- ﬁ)(lirhf) }

(7.56)

We return now to the calculation of the first and second order compon-
ents of the four constants A, B, T,, and Tb, from the four boundary condi=-
tions, equations (7.40) to (7.4%2)s Equating to zero the coefficient of O
in each of equations (7.40) to (7.43), one obtains four linear algebreic

1Im 1

known zero order coefficients. The results of this calculation are given

equations for the determination of _A*, _B*, lTa*, 1Tb*’ in terms of the

in dimensionless form by equations (7.57) to (7.60):

9|A* = -2a1\/7((%)fp{l+ ko(%)@} (7.57)
6 B = -aa.ﬁ(%&)l—ﬁ%{u < (%) '%} (7.55)
-
W, {o
6T, = ¢ V7 (%) h*[(":;l') _,_.2_%:_') z{m%)it}] (7.59)
K
o T = —cT(n | (-“::g

(7.60)
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Having determined the first order constants one similarly obtains
'- ¥ % £ 3 *
expressions for the second order constants 2A. N ZB ’ 2Ta s sz by
equating to zero the coefficients of € 2 jn the four equations (7.40) to
(7.43). The Pinal result of this calculation is given by equations (7.61)

to (7.64):

g5 2B Ex}] (7.61)

*

OB - [-2avT @) B {20T v 0
'S 3"(%)(197 reB +e(,§) }
+ { %:Xa + Ko(‘g)a -Z:OXL, }] (7.62)

b

ot = [ T @{E @2 2] o

* x 2 2\ *
T = [+ + off). (o)
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The above equations conbain several quantities which are of zero or

the first order, and for which explicit expressions will now be obtained.

The quantities oKa’ oXb? olas olp are obbtained by evaluating equations
(7.30), (7.31), (7.32), (7.33), respectively, using the zero order values
for the constants A, B, T,, Ty, as given by equations (7.44) to (7.46).

This results in equations (7.65) to (7.68), below.

2

2 2
e % o= ) W crem e )i
9.208 _ 7 -%Z-l g__lM [ - ‘—"Egl-lo‘; }
+< ‘_KZ 4-){ ’oS-IE + 2— (3 (f'Kz)
(7.65)
T,
9_,2 M_a X2 3 I t»f’f
7L = V(tﬂz) n 71?[3 log «
Tw
b 3’" ]
-9263{ + 2 @ K) (I ak‘fogf)}
(7.66)

~

£
©
b

2
2y - y%’; h* [,Kz Y- _Kz[4/e+%‘(ze+7+%ﬂwwzﬂ
4 -é 2 } £l :
- T (%_)M}‘A{%*W*("‘%F*ﬁ”)“}

- e, AZJ | (7.67)
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2 M 3 g
%/b.zﬁx;.z: C e [- B M (res (2e- 38
T 2
F e B (B M ST
~ 2 Tw Ka _
T S R
where
! wa __L’ L}:i 2 .

A= {0 - 5 M) (7.60)

The quantity (Z%_)q appearing in equation (7.83) is defined, in the
|

notation of equation (7.39), as

)

T - AT i -
Hence ‘( Y')a. , and similarly '(dr)h can be found from equation (7.52)

by differentiation. This results in the expressions (7.71) and (7.72):

()@} - [ {F or-on'}

+ 4 i(;:le (—l-t‘—;-l-},_ {] - (7.71)
&)@} - [ Iag* {en - FCT)
st 'Ma(m){" }(9 & ],

(7.72)
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All of the first and second order components of the constants A, B,
Ta’ and Tb have thus been determined from the boundary conditions., Conse=
guently, it is now possible to calculate the velocity, temperature, and
pressure distribution for the concentric cylinder flow from equations
(7.51), (7.52) and (7.55), respectively, The details of this method of
calculation are illustrated in the next section by means of a specifie
numerical example,

Due to the algebraic complexity of the formulee given above, it is
not pratical to present the results in a closed form for arbitrary values
of the four prineipal parameters, h*, M,.Efi, and (M_).

Twy, Re

For small values of the dimensionless gap h*, one may expand all func-
tions of k and h* occurring in the above equations, in powers of h*, and
by neglecting powers of h* higher than the first arrive at a solution which
is linearized with respect to the effects of curvature., It was found, how-
ever, that the application of such a linearized theory results in little,
if any, saving of labor relative to the "exact™ method presented above.
The linearized theory was used, however, to check that for the limiting
case of h* —» 0, the results of this section reduce to the Couette flow
solution obtained independently in Part VI,

In concluding this section, the significance of the constant B should
be pointed out. From equation (6.46), the friction coefficient for the

present case is defined as

2= “Tre (7.73)

From equations (7.5) and (7.10), the shear stress :Tr¢ is given by

Trp = 2HB " lZ‘ (7.74)
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Using equations (7.36), (7.45), (7.47)y (7.73) and (7.74), one obtains for
the friction coefficients at the inmer and outer walls, Cp and CFb, res=
. a

pectively, the expressions

v;

L 4 2 =¥
CFQ = &'m[w elBJ’QZBJ (7.75)

K *. 2B
CF\, - 5% T [H— o B +ezB}, (7.76)
where Re = EEE
i

Since there must be equal torgues on both the inner and outer cylinders,

CFb/CF = kz, as shown by equations (7.75) and (7.76).
a

7.5 Numerical Example

The equations of Section 7.4 will now be applied to calculate the
velocity, temperature, pressure,and density distribution when the gas is

air, and the basic parameters have the following values:

h* = 1,0 (k=%)
Moy
(-ﬁg = o035 Twy = Tw, = Tw,

The large value of h* has been chbsen, in order to demonstrate the effect

of curvature on the characteristies of the flow more clearly,
The values of the physicel and numerical constants required for this
calculation are obtained from equations (6.56) and Table 5.3, as summarized

below:
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Y =1.40 a, = 1,253 oy = 0. 2507
B =2 c. = 2,377 . e = 1,911 (7.78)
3 1 6
68 = -5.431

The zero order, or gasdynamical velocity distribution is obtained

from equation (7,51), with & = 0, which reduces to
Uy VR A (7.79)
&)= 4 -30+9)

Similarly one obtains for the zero order temperature distribution, from

equation (7.52),

T 1
(=) = [ﬁ + 2,133 { 1 -1,082 log(l + §) = e }]
<. . . 7480
o Tw { (l+§)2 (0 )
Equations (7.79) and (7.80) are shown graphically by the solid curves of
fipure 7.3, The dashed curves are the velocity and t emperature disbtribu-
tion of the corresponding gasdynamical Couette £l ow (n* = 0), as calculated
from the equations of Part V. These curves are discussed in the next sec-

tion,.

From equation (7.53 ), one obtains for the zero order pressure distribu-

tion
§
log (&) =35,8 f}#(f) oAdS (7.381)
o Pa J
§=0

where the function JY(§) is computed f rom equations (7.79) and (7.80),

and is plotted in figure 7.4, The integration of equstion (7.81) is per=

formed graphiecally., The pressure distribution Cﬁ.),'is plotted in figure
o o

Pa
7.5. The density distribution, also showm in figure 7.5, is the quotient
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. ! m
of OV%;) and oc%ﬁ)' The value of O(EE}, which is required later, is
Py,
obtained from figure 7,5 for § = 1.0, and is recorded in Table 7.2.
The first order constants are now caleculated from equations (7.57)
to {7.60), the resulbts being given in Table 7.2, The first order velocity

and temperature d istributions are obtained, by omitting all terms in ezh

from equations (7.51) and (7.53)s This results in equations (7.82) and

(7.83 )2
’l = = 4‘ l - Ly 1 ( )
(l)(—tU ) 0,8555 x 2 s 0.8374 x = (1+5) (7.82)

(&) = [1.1928 - 0,2474 log (1+$5)

+ 0,7110 x 2,133 {1 -1,082 log (1+§) '—(5-%-?)2}] (7.83)

For the calculation of the second order constants one requires the

ratio 1(23). This is obbained as follows: From equation (7.53)
D

Py
§=1.0
og (3) = 56| ¥ (r.50)
w'ta gzo '
where
Ue
w(s) = olw) (7.85)

+3)(F)

The function X(f) is plotted in figure 7,5, The value of IQEE) as obtain-
ed by o graphical integration of equation (7.84) is again lisggd in Table 7.2,
The various quantities required for the determination of the second

approximation to the velocity and temperature distributions are camputed

from equations (7.61) to (7.72) in the order indicated in Table 7.2, Using

the results of Table 7.2, one obtains for the final velocity and btenmperature
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distributions from equations (7.51) and (7.52), respectively,

(%) = o.8812 x 2 1 - 0,850z x L (1+) (7.86)
@ - 3 1+3% 3

T

-—) = - +
m(Tw) [1.0859 .0812 log (1#§)

+0.7835 x 2,135 { 1 - 1,082 log (1+5) ‘E%E)Z}] (7.57)
Equations (7.86) and {7.87) are shown graphically by the solid curves of
figure 7,5. The dashed curves represent again the equivalent results for
the Couette flow (h* = 0) at Mach number 2, and equal wall temperatures.
The pressure distribution corresponding to the velocity and tempera-
ture distributions of eQuations (7.86) and (7.87) is calculated from

equation (7.55) which reduces to the form

§
log (%) = 5.@[2’/’(006 ) (7.88)
@ §-0
The function ;ﬂ(i)is evaluated from equations (7.55) and (7.56), and is
plotted in figure 7.5, The final pressure distribution u}%_) obtained
from equation (7.88) is plotted in figure 7.7, where the cor?esponding
density distribution (zﬁ%") is also shown, Due to the presence of the
temperature jump at r = aa(see figure 7.6 at§ = 0), the density distribu=-

tien is calculated from equation (7.89),

E) = @), (w (Ta
@ Pq ®'p, (z;“fq‘) " @ T“’a) . (7.89)

The density Pa. is easily referred to the average density Ps» hased
on the total mass of gas contained in the ammular space, by means of the

formula_
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§=10
. P ' « (7.90)
& - 28 [E)edn a5

§=0 '

The values of (1), as well as the values of the friction coefficients
Pa |
CF and'CFb from equations (7.75) and (7.76) are given in Table 7.2.
a
The results of the preceding caleulation, as represented by figures
7.3, 744, 7.6, and 7,7, are discussed in the next sectione

7.6 Discussion of the Results

The basic characteristics of the flow of a rarefied gas bebween
concentric cylinders are interpreted most conveniently by considering the
deviation from the characteristics of the Couette flow that is produced
by the curvature of the streamlines, Since this curvature is the only
difference in the two cases treated in Part VI and VII, the discussion
of Section 6.8 in regard to the assunption of constant viscosity, the
general nature of the differential equations and boundary conditionms,
and the convergence of the expansion in powers of the rarefaction para-
meter, (%5), applies to the concentric cylinder flow as well as to the
Couette fl ow,

Consider first the effect of curvature on the gasdynamical velocity
profile, as showm by figurev7.5. Sinece the gas exerts equal torques on
both the imner cylinder (§ = 0) and the cuter cylinder (§= 1,0), the
shear stress J;w must be higher at § = O than at §= 1.0, as shown by
equation (7.74). This in turn requires that the slope of the velocity
profile be steeper at §= 0 than at §= 1.0, as shown by the solid curve
of figure (7.3) for h* = 1.0, Evidently, even for the large curvature
of h* = 1.0, the gasdyﬁamical velocity profile does not depart radieally

from that of the Couette flow.
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As was explained in Section 6.8, the temperature distribution, for
the special case when both wall temperatures are equal, is determined
entirely by the viscous dissipation which depends on the gquare of the
velocity gradient. Since the dissipation is greater near the inner,
rotating cylinder, than near the outer one, the effect of the curvature
tends both to increase the maximum temperature, and to shift the point
of maximum temperaturs towards lower values of § , as shown in figure
7.3,

As shown by equation (7.18), the gas-dynamical pressure distribution
is determined by the fact that the pressure gradient must balance the
centrifugal force experienced hy an element of the gas, Hence the pressure
gradient must decrease from a maximum at § = O, where the tangential velocity
u, and radius of curvature r have their respective maximum and minimum
values, to a value of zero at the stationary wall, §=1.0. The pressure
distriﬁution 0@%—) of figure 7.4 conforms to the preceding discussion, The
density distribution 06%—), also shown in figure 7.4, is an immediate conse-
quence of the shape of tge pressure and temperature distributions,

It will be recalled from the discussion of Section 6.8, that the
rapidity of convergence of the expansions in powers of the rarefaction para-
meter@%:)depends, essentially, on the product of G%%J and the maximum value
of the veloeity or temperature gradiemts. A comparison of the slopes of
the solid and dashed curves of figure 7.3, leads to the expectation that,
for a fixed Mach number M, and a given value of C%:), the rapidity of con-
vergence of the solutions decreases with inereasing values of the curvature
v*., This expectation was verified by a preliminary calculation, which
showed that the temperature solution converges more slowly than the corres-
ponding velocity'distribution.

In accordance with the above, the value of C%;) = ,035 was chosen for
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the numerical exampie of the preceding section, as this value corresponds,
for h* = 1.0, to a rapidity of convergence which is of the same magnitude
as that of the Couette flow for (%.é) = ,0675, used in the computation of
figure 6.5.

Figure 7.6 shows the velocity and temperaturé distributions, as cal-
culated from the second order theory, for both Couette flow and concentric
eylinder flow of h* = 1,0, for equal wall temperatures, Mach number 2,0,
and C%;) of ,03b., The various velocity and temperature discontinuities ak
the stationary and moving walls shown in figure 7.6 are seen to be propor-
tional, to a first approximation, to the corresvonding slopes of the gas=
dynamical velocity and temperature profiles of figure 7.3, The slip velocity
and tenperature jump at § = 0 are thus considerably larger than those at

= 1.0, 1Ir figure 7.3, the slopes of the temperature profiles at § = 1,0
are approximately the same for h* = 1,0 and h™ = 0. In figure 7.6, however,
the temperature jump at § = 1.0 for h* = 1,0 is seen to be less than that
for the Couette flow, This is caused by the fact that the second order term
of the temperature jump increases negatively with increasing values of h*.

The pressure and density distributions as calculated from the second
order thebry are shown in fizure 7.7. The shape of the curves of figure 7.7
is similar to those for the gasdynamic case of figure 7.4, It is seen that
the rarefaction of the gas decreases the pressure gradient near the inner
cylinder (§= 0) and the pressure difference across the curved channel.

This is, of course, due to the slippage of the’gas over the inner rotating
cylinder, thus resulting in a reduction in the centrifugal force.

The curves of %%-) and (aCE_) are seen to cross in figure 7.7, be=-
Pa

{
(Z)a
cause the gas temperatures at §{= 0 and §= 1.0 are different due to the
unequal temperature jumps shown in figure 7.86.

From equations (7,75) and (7.76) and the results of Table 7.2, one finds
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that the slippage of the gas over the walls reduces the friction coe-
fficients CFa and CFb by 11,9 per cent of their value in the gas-dynamic
regime, The corresponding reduction for the Couette flow, at ¥ = 2 and
Q%;) = ,035, is found to be 8.7 per cent from figure 6.2, The similarity
of these results, even for the large curvature of h* = 1,0 emphasizes
the.conclusion to be drawn from the above discussion, namely that the
Couette flow solution of Part VI will represent a very satisfactory
approximation to the conecentric cylinder flow with smsll relative curva-
ture of h* = 0,1 or less, such as would be used in tﬁe rractical design
of en apparatus for the experimental investigation of the slip phenomena,
In such an approximation, the pressure distribution may be caleculated
from equation (7.53), using fora$%ﬁ) and CE- ) the second approximation

() W,
to the velocity and temperature vprofiles of the Couette flow,
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PART VIII

GENERAL CONCLUS IONS

Using the results obtained from the solution of the three specific
pfoblams treated in this thesis as a basis for discussion, one may draw
certain conclusions concerning the nature of the slip flow realm of fluid
mechanics,

The most important physical parameter which characterizes a particular
slip flow is the magnitude of the gradient of the macroscopic veloeity per
mean free path of the gas, This parameter, whose dimensionless equivalent
is (M.%) in the notation previously employed, measures the degree of non=
ﬁniformity of the gas, that is the deviation of its molééular velocity
distribution from the Maxwell distribution of a uniform gas. The mean
free path.,eis the only distinguished linear microscopic property of the
gas, so that the macroscopic gradients must properly be referred to the
former, The characteristic macroscopic length L must always be that linear
dimension which determines the order of magnitude of the velocity gradients
in a particular case, Thus, for exemple, the "gap" h was seen to be the
characteristic length for the Couette and cylinder flows, whereas the slip
flow effects in houndary layer phenomena are determined by the relation of
the boundary layer thickness 5 to the mean free path of the gas,

In Part IV it was shown thét for the propagation of a sound wave
through a gas the characteristic length L, which determines the velocity,
temperature, and pressure gradients in the gas, is the wave length of sound.
The results of that in vestigation are therefore equally applicable to the
propagation of a sound wave qf normal wave length through a rarefied gas,
and to the propagation'of an ultrasonic wave through a gas of normal atmos-

vheric density.
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The analysis of Part IV applies only to the case of & plane wave
of infinitesimal strength., Another related case, that of a plane shock-
wave has already been treated by L. H. Thomas (Reference 9.1). In a
shockewﬁve the magnitude of the welocity, pressure, and teﬁperabure gra-
dients is determined by the thickness of the shock-wave, Thomes found
that the second order terms of the viscous stresses and heat flux, Part III,
tend to increase the value of the shock-wave thickness that is calculated
by use of the first order stresses and heat flux alone, so that the shock=
wave thickness is always of the order of several mean free paths, even
for strong shocks,

The various examples mentioned above emphasize the fact that the
concepts characteristic of the slip flow regime are by no means restricted
to rarefied gases,

Although the slip flow parameter '&/L is most useful for purposes of
visualization of the phenomena involved, the equivalent parameter M/Re is
more convenient for the application of the slip flow theory to aerodynamic
calculations, It is interesting %o note hore the dual role played by these
two basic parameters of fluid mechanics, the lMach and Reynold's numbers.
The Mach and Reynolds numbers, as individual parameters, account for the
effects of the compressibility and viscosity, respectively, of the gaseous
medium which determine the basic gasdynamical flow pattern. The ratio of
Mach to Reynolds number, on the other hand, determines the order of magni=-
tude of the deviatién of the slip flow pattern from the basic gasdynamieal
flow caused by the additional viscous stresses and heat flux, and by the
slip velocity and temperature jump at the boundaries of the gas.

The numerical calculations of Parts IV, VI, and VII indicate what
appears to be a general trend regarding the nature of the successive ap=
proximation procedure §f the slip flow theory. For the cases considered,

it appears that the second apnroximations reduce the slip flow effects
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predicted by a first order theory resulting in a flow pattern intermediate
to that of gas=-dynamics and the first order slip flow theory. From the

—nature of the curves of Part VI, it is to be expected thatf if third and
higher order approximations were calculated, the terms of the power series
solution in M/Re might have alternating signs and thatthis series might
converge very slowly, especially for high Mach numbers, In fact, the
convergence of such series has not been proven.

In view of the above, it is believed that the extremely laborious
preliminary calculation of third and higher approximation to the molecular
velocity distribution function is not worth while, Furthermore, it must
be remembered that all such caleculations are necessarily based on a number
of simplifying assumpbions which are not in accordance with all of the
physical facts, The most important such simplification is that the kinetic
theory calculations are based on classical particle mechanics, so that the
wave mechanical interactions among the gas molecules, as well as between
gas molecules and the molecules composing the solid bounding surfaces are
not considered, In addition, the kinetie theory merely accounts for the
translational motion of the molecules, so that the rotational and vibra-
tional dégrees of freedom of molecules of poly-atomic gases are but in=-
adequately accounted for by adjusting the value of the ratio of specifie
heats. The errors entailed in these approximations to the physical facts
become of increasing significance for the higher order approximations.

In validity of the first order slip flow theory has been tested ex=
perimentally by many observers, These experiments actually verify only
the relatively simple functional relationships between the first approx-
imation to the slip velocity, the rarefaction parameter'i? and the wvelocity
gradient, since the constant of proportionality involves the molecular

fraction ¢ which is determined by the experiment, The analogous situa=
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tion exists with respect to the temperature jump, where the accomodation
coefficient o is determined experimentally,

An extension of the experiments of R, A. Millikan and his collabora=-
tors on the concentric cylinder flow into the realm of higher rotative
speeds, would be valuable in order to test, at least qualitatively the
results predicted by the second order slip flow theory. For this purpose,
the solutions of the preceding parts for the Couette and concentric cylin=
der flows should be modified to include the effect of the variation of
the coefficients of viscosity and thermal conduction with temperature,

A close numerical agreement between the results of such a modified theory
and experimental tests should, perhaps, not be expected since certain
nuﬁerical constants occurring in the second order slip flow theory depend
on the choice of the molecular model of the kinetic theory; furtherﬁore,
the second order slip flow theory does not contain any constants, in
addition to O and ¢, to be determined from the oxperiment,

In conclusion, the slip flow regime will be considered briefly re-
lative to some of the other realms of fluid mechanics., For this purpose
consider only the visc&us drag or friction coefficient, characteristic of
a particular geometry. The friction coefficient may be expressed as the
product of the friction coefficient for the gas dynamic realm and a factor
A* which is a function of the basic paramneter jz as in section 6.5. The
value of A* depends on the particular realm of fluid mechanies, Figure 9.1
shows how A* decreases from a value of unity in the gas dynamic realm, ap
proaching zero in the limit of infinite mean free path in the free molecule
flow regime, for the special case of the motion of a sphere at very low
speeds. Figure 9.1 has been plotted from the experimental results of
R. A. Millikan (Reference 9,2) on the free fall of small oildrops through

rarefied air, The empirical relation given in figure 9.1, representing
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the extension of Stokes' law of gas dynamies to the other realms of fluid
mechanics, agrees with the theoretical caleulation of P. 8. Epstein for

L

the limiting cases I « 1 and% » 1o For the case of th? sphere, the
~ charscteristic length L is, of course, its radius,

For compé.rison the results of the solution for the low Maoch number
Couette flow in the slip flow regime are olso shown in figure 9.1, L being
now the plate spacing hs It is seen how the second approximation for'A*,
as obtained from figure 6.2, reduces the too rapid decrease of A* with in-
creasing % of the first order solution of the Couette flow. It is expected
that the general shape of the A* versus 'Iéi curve for the Couette flow, and

for other cases as well, should resemble that for the sphere with a point

of inflection somewhere in the "intermediate" recime,.
&



The numerous symbols used throughout the text and the suecessive

APPENDIX I

LIST OF SYMBOLS AND NOTATIONS

Appendices are summarized below, The symbols are arranged in two
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groups, the first consisting of the Roman and the second of the Greek

letters., Each group is ordered alphaletically,

The Roman numerals in brackets indicate the parts of the text or

appendix in which a particular symbol is used.

1. Roman Symbols

a

a

adiabatic speed of sound (II, III, VI)

radius of immer cylinder (VII)

constant (II)

numerical constant in boundary conditions (V, VI, VII)

coefficient,function of x,y,z,t (II)

coefficient in Sonine polynomial expansion (A II)
arbitrary constent of integration (VI, VII)
numerical constant (IV)

arbitrary constants (IV)

basic Burnett coeffieient (II, III, V)

tensor component (III)

even component of boundary condition integral (V)

damping coefficient (IV)
radius of outer cylinder (VII)
characteristic distance of molecular orbit (A III)

numerical constant in boundary conditions (V)

coefficient, function of x,y,z,t, (II)
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B ratio of terms in stress tensor (III)
B numerical constant (IV)
B arbitrary constant of integration (VI, VII)

Bk basic Burnmett coefficient (II, III, V)
r

associated Burnett coefficient (II, III, V)

B; odd component of boundary condition integral (V)

¢ propagation speed of sound wave (IV)

e adiabatic speed of sound in perfect fluid (IV)

¢_ specific heat at constant volume

¢ specific heat at constant pressure

numerical constant in boundary condition (V, VI, VII)
peculiar welocity of molecule (II, V)

C numerical constant (II;)

C arbitrary constant of integration (VI, VII)

C;:; associated Burnett coefficient (II, III, V)
Cg) coefficient, function of x,v,z,t (II)
D numerieal constant (IV)
D arbitrary constant of integration (VI, VII)
D;Z)r combination of Burnett coefficients (II)
D .
It oconvective time derivative of hydrodynamies (II, III, V, VII)
;‘% molecular convective time derivative of Boltzmann's equation (II)

[¢]

base of natural logarithm

19855000, © numerical constants in boundary conditions (V, VI, VII)

10
eij

E numerical constant (IV)

rate of strain temsor (III)
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E arbitrary constant of integration (VI)
Ei total incident emnergy (V)
E_ total reemitted energy (V)

E  hyvpothetical wall energy (V)

f non=uniform velocity distribution (II, V)

£  Maxwell distribution (II, V)

£' distribution function of reemitted molecules (v)
£  hypothetical distribution fumction corresponding to wall

energy (V)

F function of U,V,W (II)

kmown function (II)
functions of collision variable (A III)

F , F, F, components of extermal body force (II, A III)

g acceleration of gravity (A III)

g molecular collision parameter (II)

G12 molecular collision parameter (II)
h reciprocal of absolute temperature, h = -2-1];—1‘- (11, 111, V)
h plate or oylinder spacing (gap) (VI, VII)

h  dimensionless gap (VII)

h  Planck's constant (V)

H altitude (VI)

specified function of x,y,z,t (II)

H® specified function of x,y,z,t (II)

i1 summation index

i square root of minus one (IV)

K0; (2} -
I e Ii definite integrals (V)
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T Kpyeees K

sumation index
Maxwell's definite integral (A III)

boundary condition integrals (V)

sumation index

Boltzmann comstamt (II, III, V)

aiameter ratio (VII)

modulus of complete elliptic integral (A III)
constant of proportionality of force law (II)
complete elliptiec integral of first kind (A III
syrmetrical kernel of integral equation (II)

numerical constants of stress temsor (ITI, IV, VI, VII)

characteristic length

wave length of sound wave (IV)
definite integral (A III)
boundary condition integrals (V)
mean free path of gas

sumsation index

mass of molecule (II, III, V)
summation index

Mach number

molecular functions (V)

numerical constant (II)

swmation index

exponent in nmolecular force law (11)

136
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total number of molecules (II)

order of approximation

static pressure of gas
Legendre polynomial (II, V)
associated Legendre polynomial (II, V)

summation index

summation index

camponent of heat flux vector
molecular property (I11)
molecular property (II)

molescular property (V)

summation index

molecular separation (I1)

radial coordinate (VII)

radius vector for relative orbit (A III)
amplitude ratio (IV)

gas constant (III, Vv, VI, VII)

Reynold's number of sound propagation (IV)
Reynold's number based on chor length (VI)

Reynolds number based on "gap" (VI, VII)

exponent in viscosity-temperature relation
surmnation index
collision parameter (A ITI)

Sonine polyrnomial (II, ITI, V)
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time
variable of inmbegration (A II, A III)
absolube temperature of gas

absclute temperature of wall

x-component of macroscople veloelby

x=-component of macroscopic perturbation velocity (IV)
component of macroscoplic velocity vector

radial component of macroscopic velocity (VII)
tangential component of macroscopilc veloéity (Vi)
absolute wall velocity in x-direction (V)

x-component of peculiar velocity of molecule (I1I, 11, )

characteristic macroscopic velocity

absolute tangential velocity of moving wall (VI, VII)

y=-component of maecroscopie velocity

absolute wall velocity in y-direction (V)

y=component of peculiar velocity of molecule (II, III, V)
gz=component of macroscopic velocity

z-component of peculiar velocity of molecule (II, III, V

L —

cartesian coordinate of physical srpace
direction of propagation of plane wave (IV)
real variable (A IT)

sums of boundary condition derivatives (VII)
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v cartesian coordinate of physical space

Ykn generalized spherical larmoniec (II, III, V)
Y, Y;’ spherical harmonies (II, III, V)
'k

z cartesian coordinate of vhysical space

Z,. spherical harmonic (II, IT7I, V)
Zos 2, sums of boundary condition derivatives (vi1)

2. Greek Symbols

¢ dimensionless speed of sound propagation (IV)

¢ accomodation coefficient (V, VI, VII)

¢ dimensionless collision parameter (A IIT)

¢ ratio of gravitational to dynamic forces (4 111)

P reciprocal of Prandtl rumber (IV, VI, VII)

¢ ratio of specific heats

" gomma function
6 boundary layer thickness (VI)

€ numericzl constans (III1)

€ arbitrarily smell positive number (4 II)
L z-component of absolute molecular veloeiby

7 y-component of absolute moleculaer velocity (11, V)

n  dimensionless y=-cocrdinate (VI
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polar angle of peculiar velocity of molecule in spherical
polar coordinates (II, V)
angular coordinate of relative moleculsr orbit (A III)
. P -
rarefaction parameter, © = F  (VI, VII)

numerical constants in heat flux vector (IIV, IV)
coefficient of thermal conduction (III, IV, VI, VIII)
arbitrary parameter (IT)

de Broglie wave length of molecular beam (V)

n
constant of lMaxwell distribubion funetion £ (V)

coefficient of absolute viscosity

argument of Legendre polynomials (A II, A IV)

number of molecules per unit volume (II, III, V)

frequency of sound wave in cycles ver second (IV)

x-component of absolute velocity of molecule (II, V)

dimensionless radial coordinate (VIT)
mass densiby of gas
fraction of molecules diffusely reemitted

shear stress (VI, VII)

component of viscous stress tensor

azimuthal angle of peculiar velocity of molecule in spherieal

voler coordinates (I, V)
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angular coordinate in plare polar coordinates (VII)

orthogonal eigen-functions (I1)

kmown function (I )
deflection angle of molecular orbit (A4 III)

apse line angle of relative moleculer orbit (A I11)

Hilbert expansion functions (II)

eigen-functions of homogeneous integral equation (IT)
particular solutions of integral equation (II)

functions for &etermining pressure destribution by numerieal

integration (VII)

angular velocity (VII)

positive constant (A II)
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APPFRDIX II

SUIMMARY OF MATHEMATICAL FORMULAE

: o 2
1. Values of the Definite Integral Jf x" e"Lx o
o

L is a positive constant

n = 0,1’2,3,395

Table A,1l

<] 2
n J';xnefilxtxx

°
0 z V&
1 x5
2 i %%3
; Lok
: 3 &
5 %{3
6 Ak

2. The Solid Spherical Harmonies

The general spherieal harmonic function is defined by

Yen (C0.9) = B, Y (Ce a)

LY
r o 5 (;‘Kfp), {Bm Y (C e 9)+ CKnZ (e d>)} (A1)

P=1

® el
Bims Bips Cﬁ'm are constants, Bl will! be called a "basie Burnett

coefficient". Byys C’ﬁ_3 are called the Massosiated Burnett coefficients,

The indices k,n,» can take on the values:
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N

k = 1,2’3,001

n =O,1,2,3,.00 4 (A.Z)
J

The (2ktl) linearly independent harmonic functions of degree k of

which ¥, ~is composed are defined by equations (4.3} to (A.5):

YK - P, (cos o) (1.5)
) K )

yK = (") C E‘CCOS 8) + Cos (po) (A.{L)
® e K |

ZK = (-1) C PK(COS @) sin(pd) (ie5)

The Legendre volynomials Pk(cos @ ), and the associated Legendre
)
polynomials Pk(cos e ) are defined resvectively in sections 3 and 4 below.
The individual harmonic functions up to degree 4 are listed below in

terms of the cartesian veloclity components of equation (2,36 ):

for k = 1: Y=w | }{"’: U  Z'-=v. (A.6)
for k = 2: Y = 3$(3w> Cz)
2
(1) u)
Y, = 3WU | Z = 3wV
(2)
- (WYY 7, = 6UV. (&.7)

™

2
for k = 3:

Y, = t+W(sw"-3c")

W

Y, = tuswich  Z, = 2V(sw-cY

@)

Y, = 1sw(u-v’)  z

{2)

30 UVW

i

wr

3

(3) 3)

Y, = SU(U~3v) L, 15V (3U-vY , (4.8)

\w



A L(3swh- 30w’y 3¢")

YM = [Bw-gwsw—aocuu 3c) + Bn 7z (IW=3C)UW

+C:n L (Wt 3CIVW + B, - H(HEVICTW™-CP)

(2) i 2 2 ) i ( Z_ v?
# Cppr 8 UV(IW=C) + B, - 53 UW(H=3V7)

3)

v

)

boCoe dy V(Y ]
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Y = FUW(TW=3C) | ZZ]= fvw (rw’- 3¢?)
_— , ‘
y‘* = lgf(uz’Vz)(?WZ'Cz) ; ‘: = |5 MV(7WZ_ Cz)
@)
Yo o= - 108 UW (3VEI) ; Z, = -10§ VW (v E3u°)
Y¥. ros{ sk (Wt )+ (w2, = w20 RV (WYY (409)
By substituting the equations (A,6) to (A.92) into the general expression
(A.l}, the special formulae (A, 10) %o (A.l.’ﬁ) are obtained,
(i} )
=[B. W+ B R +C,V] (£.10)
Y =[B, -tGwic)+B wu+ " B LGivY
an an 2 h - WV + b7 U- (Ae11)
(2)
¢ Covtuv]
Y, = [ B - Lw(swh3ch) + B. iU (sW-c)
n in 2 &
| @)
FV(SWC) e B WK V) 4 C,r SUVW
(3 2 o) l 2 2
t BBR'Z",*L{(L{Z—3V)+ C3H'2’4V(3M’V)=]‘ (A.12)

: %}
) _21_4 VW(3M—VZ)+B‘* m{u(u 8W)+\/(V 6(1)}

(A.13)
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3. Properties of the Legendre Polynamials P, ( S )

The argument of the lLegendre polynomials is the real variable
which is restricted by -| £ # £ +|. 1In the present application,
the argument occurs as K = cos © , see equation (4.3), The following
well kmown definite integrals are useful in the interrations performed
in the evaluation of the boundary conditions (Part V ; see also Appendix vl

The indices k,q,m,n are all positive integers or zero,

|
IE:;(F) o(,,( = 0 for g > O (A.24)
0
|
¥ (2¢)! =
fo Paqu (/u) d/" = (”} a(ag;ﬂ)‘ ?'! <?+I)' (4.15)
f
J /.LK P (p) 9{/4 = 0 for kX = 0,1,2,400,n0=1, (a.16)
-1
| h 2 avm (n’)a
I‘ /M. ‘PV\(/“)D(I“ = W (A'lr")
T
2 .
fa [Rgldp = S— (a.18)
| P.(0) P,..(0) = 1 By(0) B (0)
() ) ol - M n -t m "
[Pm /'{ -Ph(/u M (WI'H) (m+n+‘) ) (m#rz) (A.lg)

"
<

if m= n,and m and n are either both

me () Fatp) ok

even, or both odd,

f K+g+! (2k)! (25+1)!
B P = ¢ ToGeeer
J Bt By 0 = ) 45 (2k-2pn(evereep(k) (gl

[

(4,20)
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P (W = i (24)!
_[ 2q4t L AP 1) 2 (o1 ()
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(A.21)

A few of the Legendre polynomials, and special values which oecur

frequently are listed bhelow.

R (px) =1
Rlp) = ¢
B = 3 (3p%-1) ,
Rw = £ (5534
B, (W z -é'(BS/A*—Bof‘% 3)
i s i
Plp) = F (63u - 70, +15K)
P, (p) = (23l pt-315ut 1 105 - 5)
_quﬂ (0)=0 for k = 2g+1 = odd
P, (0) = | RO = - &
2 ACER-"
R (o) = %
Py (1)=1 for all k

(a,22)

(4.23)
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, (2]
4, The Associated Legendre Polynomials Pk(/" )
The real variable 4 is restricted as in section 3. The index p
can assume the values p = 1,2,...,k. The associated Legendre polynomials,

(7]
Pk( H ) are derivable from the polynomials PL( # ) by successive differ-

entiation,.

‘9

® ¢ P
B = ) (I-4) jTP{ﬁ(F)} (a.26)
The formulae (A,27) to (A.29) are direct consequences of the definition
(A.26).
e |
@ ip K-f ez
_ eyl (=D 2)? { £ (k- (k-p-1)  K-F
P“ o = ek .kl (k-9 (l'//() F 2 (2K-1)
(K-@) (K-¢-)(K-P-2)(K-¢-3) K-e-# }
- .27)
2- 4 .+ (2Kk-1)(2K-3) (r.27)
03] K Iy
_ ekl (=Y _ )2 (A.28)
PK(,M)————ZK' oy (1 /u)
3] k-¢ _@
P (w) = (-1) Pw . (4.29)

The orthogonality of the associated legendre polynomials is expressed

by equation (A4.30):

O it k#m
2 (k40!

=z = — if ¥ =1 (A.30)
zk+ (k-p)! 7 "1

W

'@ ¢
fPK(Iu) P, () d/.(
2y

The functiors Pk( ) satisfy the differential equation

« 2 )

d 2 _f _ :
d—/: {(l—,u) {%APK(#)} +{K(l<+l) 4—/,12} Pk(/“) = 0 (A,31)
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Equation (A.31) is used to derive formula (A.32).

'@ ) .
[RAZRATE . (a.52)
[~

| ®} @ @)

) i p 2(— }
K(K+t) = m(m+D) {Pm(o) [d/* “"(’u)]ﬂ:o' R (O)Edﬂacﬁjﬂw

If X =m, equations (A.29) and (A.30) give

l @) 2 .
P (wl o = L (k+0) (A.33)
[L“ LA = s o -

The application of formula (A,32) requires equations (A.34) and (A.35),

) 2(P+E) -

o @} e £ G
2 (0 (0!
) if (k=-p) is odd

d 5 z(frKed) (K+¢+1)
[ZRW] =D s » (k=p) odd (4435)

K pu=0 2" (=) (Xer)]

= 0 s (k=p) even

5., Formulae involving Gamma Functions

Only Gamma functions of the real variable X occur in the calculations

of this paper., In the formulee summarized below, n is a positive integer.

o bz
My = f et (4.56)
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M(x+1) = x I"(Sc) | (4.37)

Min) = (n-1. o (4.38)

M{n+z) = ——-—-—éfn"”’ v (8.59)
,n_

The values of F(X) for common values of x are listed below,

HOERNOEN (8. 40)
T“l('B') = —f‘l—(——?) = 0 n=1,2,3,000(ha41)
(o
—I_-_-'—(:—I') = - | (A‘42)
Fed) = |
r(z)= z\m
2 2 M-3) = —a\Fr
(5= 2T
v e 4 ? (A.43) P(—%): %\/Tr e (A.44)

M) - g
M) =B

1 T4
f(z)= 5 \7

u
o
=1

M-2)=-&

(n)
6. The Sonine Polynecmials, S?m(x )

These polynomisls are defined as the coeffictien'bs of the power series
X

-_— m-

expansion in t of the generating funetion (-t , namely
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"~

X

- ——

e *

-1

(%'-t)_m = i {r(m+n+|) S':(x)} tn , (Aoda)
ns

0

In the applications in this paper, the argument x is associated with the

peculiar energy of a molecule, (see equations (2.7), (2.15)), by equation

(A.45 ).

x = 2 (m = mass of molecule) (A.45)

Therefore, x is restricted to positive values., The indices m and n ocour

as in (A,46 ),

]
m= K+3

n=0,1,2,... (A.46)

k=0,1,2,...

{r
The functions S:; (x) satisfy the orthogonality relation

w oz B ® *
X e S x)S (¥) dx = for o= 79
o mom Mimep+)- ¢!

\

(A.47)

= 0 forp?—lq

The generating function, equation (A.44),may be used to derive the

relations (A.48) to (A,49a).

A I R 0"’ s
jox e Smé(x)shg(x) dx = Fkered) sl for r:{six} (h.48)
= 0 for v#{su}
® g ) Mla+1) [(6-d+n)
X e (x) dx = (A.49)
A S@ ) M(B-&) [{n+) M(Pens+r)
d S(m( ; (n-1) (A, 492)
axX Zm o= Swiﬂ 0 -
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It was shown by D, Burnett, (Reference 2,1C, p.403) that an arbitrary

function £(x) may be expanded in a convergent series of Sonine polynemials

of the form

) oo (n
fo) = 2 Tnem+) @ S 0 (A.50)
n=0

provided only that conditions (A.52) are satisfied. The coefficients a,

are given by

o0
-t ‘
nf €57 ) e

. (A.51)
The function £{x) must satisfy the two conditions:
© _t
N -8 m
(i) fe t [ dt converges for |[s| < 1;
7]
M4 i+E
(i1) {anl'n tends to a finite limit or zero as n tends to

infinity. ( € is an arbitrarily small positive number ), (A.52)
The Sonine polynomials may be caleulated explicitly from equation (A.53)

which follows directly from (A.44).

(n

B (m+n) (Mm+n-1). e (men-{n-j- '}) (A.53)
Sm(x> f“(m+n+l) ;,( ) il (n-pl
In partiecular,
©) |
Sm = TemeD (1.5)
() |
(m+1 =) (4.55)

e
St = Tlmez) g
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APPENDIX I1II

DETAILS PERTATINING TO THE CALCULATION

OF THE BURNETT COEFFICIENTS

1, The Neglection of Gravitetional Forces

The calculation of the Burnett coefficients was based on the Boltzmamm
equation in the form of equation (2.43). In this equation, terms of the
form Fx 53'“ (V” » Which appeared in equation (2.15), were neglected,

As was shown by Burnett (Reference 2.11), the presence of body forces

s F , F , does not affect the expressions for the first order coefficients
z

y
of equation (2.61) and (2.62)., However, certain of the second order coef-

X

ficients will contain additional terms involving these body forces,

In particular, for Maxwell molecules, only four of the basic Burnett
coefficients, and their respective associated coefficients are so affected,
The coefficients ,A, (equation 2,68) and 2811 (equation 2,70} will each

. - K2 L 2b . .
contain additional terms of the form ( ) F - » The coefficients

£/ Tx h DX
2Boy (equation 2,81 ) and 5Bz will contain additional terms of the form
2 i \
; (-g) Fe Vhm (%E + %‘—;{ . From equatiorns(2,68) to (2.113) it may be
seen that a typieal term in most of the second order coefficients is of the
2 W 2
form (/%) (%i + %%/ » Consequently, the ratic & of the magnitude of

the terms neglected to those which have been retained is

Fx Vhm

(@_L_4) . (A.56)
T

In the applications of aerodynamic interest, the only body force to be

ok
considered is the gravitational acceleration, g, From the definition of
h, equation (2,7)

L (A.57)
a »
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where @& 1is the velocity of sound in the gas., Thus

3 | g L
d' ~NJ - emm— S pulSE
a (g_;() az M ]

where L and M are a typical length, and Mach number of the problem, respec=

tively. Consequently in the foot-pound-second system of units,

-5
~J X O —L=‘ . (.A.. 58 )
o 3« v

It is evident that, in general, the effect of gravitational forces on the

velocity distribution of a non-uniform gas is entirely negligible,
@)
2831

The general method used for the calculation of the second order

2. OSample Calculation of the Coefficients

Burnett coefficients was outlined in Part II of the text, For Maxwell
molecules the method essentially reduced to the evaluation of equation
(2.63 ) for various values of (k,r). This type of calculation is illus=-
trated below for the particular value (k,r) = (3,1).

Tt will be recalled that the left side of equation (2.63) resulted
from the substitution of expressions of the type (2.48) into the left side
of equation (2,45). In particular, for (k,r) = (3,1), the equations of

the form (2.48) reduce to

—_— )
5= By =0

D& 28 2Q 24 20 _

i 5-+M5-)(_+VDJ+WBZ O

D0 . 28 2 2@ 20 .

%: Gt UtV twh=0

,  (4.59)

2 Y rw, u 2 ow  ovy L L oh
+§|B||(DX+%i)+54Cuv(9y+%i)"5hhm{3.Baoaz

[ $(r7@) + 2(r70) + 2(+Wd)] = 0
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Consequently, the left side of equation (2,63 ) reduces to the expression
(A.60 )

\

[left side of equation (2.63)]K= = (%){ +V 9? rw 2 }K-g(A,ESO)
r=! v

In order to evaluate the right hand side of equation (2.63), it is

first necessary to calculate the numerical values of the eight constants

(0,0) ) ()
303 i mall ) mw J m3l?_ ) msnz J mna ; maaa ) msae ;
Lol it Ll 10 R4 tvo |1 00 100

by means of the forrmulae given by D. Burnett (Reference 2.11) for Maxwell
molecules, Because of the orthogonality properties of the Sonine polyn-
omials and of the spherical harmonies of which the distribution function

) (6=6)
(2.39) is composed, the constants m s = which are the

K K‘ Kz
rnon,
results of integrations of the form of the right side of equation (2.49) -

differ from zerc only when k = ]k2 -kll +2n, where n is a positive integer

or zero. Consequently

Q] ] ©) ) () \
m” o - -, -0 oy
34 3 322 322 32e )
i i ioo0 ioo io@
(0.0 ©} i
and for m303 n = 0, whereas for mszz and Wz:m n =1,
tol 1o o

For the particular case when n = 0, that is when k = [kz ~k4

expressions given by Burnett are equivalent to equations (A.82) to (A.64) -

(f=6)

SVT Conlon )l (ked [(K+2)-T(Kied) (KrKi+ @)
‘ = 3 vin (Kt g) :
o LD S

(K= 1K,-K/) ’ j—f{F(ﬁ- F(}=0>}-o¢ o(o(] , (A.62)



where J is a numerical constant, see eq ation (A.67), and C and F()c) are

defined by equations (A.63) and {A.64), respectively,

¢ =1 for p. = 50
- | 7%

, K@)l Ke-@)
(i+e)l (K +6)!

for - 0 (A.63)
P, P27‘

|

(x)

T + - if 1
r (}) F, (m )() if &z#lcl,ornzfnl

=Fo (¥) 1fk2=k1,and n, = n, (A.84)
where Fo(f) is the coefficient of (sn‘ %2 yT) in the power series expan-

sion of

K, . ’ K+ K,
u (sinzX .coszx)

{I— us-cose(-a'-})_ ut~sinzC§'.x)}

K+ k+3 {Pkl(o)' tank(f".})

K K(K-1) k2 | }]
- K F""H(o) tan (z)) + > E.'«a(o) tan (zx) - - Pk.+l<<o)

The quantities X and @ are equivalent to the "collision parameters"
G5, dg of equation (2.49) for Maxwell molecules. Actually X is the angle
through which a molecule is deflected by an elastic collision with another
molecule. The explicit form of the functional relation X = X (8) is
given in Section 3 of this Appendix. The guantities ‘Pk(o) are tie Legendre
polynomials of argument zerc given by equations (A.23) and (A.24) of
Appendix II,

(¢,0)

The constant maoB is obtained from eq ations (A.62) to (A.64) by
ol
making the substitutions k = 3, kl =9, k2 =3;r =1, ny = c, n, = 1;
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Pl =P, = O, Thus the expression for FO(JL) reduces to

L sin(4x) (sing L) (4 2 tan(s )}
F,(y) = % sin(zx) (singx coszx) { tan (3 X) - ztan(z X | (s 65)

The expression for F( )} ) obtained from equation (A.64) can be reduced to

the f'orm

{ F(x - F(O)} = {— %3 sin‘($x) cosz(é}) + %’gsin‘}té}) cos“(%_;)}. (A.68)

It is convenient to define the two definite integrals

J = 4rrf{5ina(—é}) coszté})} o do ) (A.67)
L, = g1 [ {sin*(d0 cos'g 0} add (r.68)

The numeriecal evaluation of the integral ¢, which was carried out
by v. C. Maxwell, 3, Chapmann and others, and of the integral L4, performed
by the author, is discussed in Section 3 of this Appendix. Substitution

of equations (A4.66) to (A.68) into equation (A.82) yields for the desired

constant

(0,0)
- L

s =8 g LINT-I0L,) (1.69)

10l

With the value of = = ,1577, as calculated in Section 3 below, one
(0,0)

obtains for the eonstant Vnsoa the value -1.5704 as given in Table (2.1),
10}
©)

a)

The constants WQ and V?Za are calculated from a formula which is
312 12
o (e

I
valid for n =1, that is %k ={k1 -k2| +2, and which is of the same form as
equations (A.62) to (4.64), although somewhat longer. The resulbs analogous

to equation (A,89) are
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{9) i {1} )

, - & 4 I . \
m3l2 - J ( L‘f 0 J) ; m;};"é = 3 m?:% R (‘l 70 )
19

The values of the eight M constants required for the evaluation of the
oefficient ,Bzy are thus given by equations (A.61), (A.69), and (4.70)
and are also sumarized in Table 2.1,
A1]1 of the gquantities which are reguired for the calculation of the

baslie coefficient 2331 from equation (2.63) have now been determined.

Thus, by means of equations (4,60), (A.59), and the constants i of Table 2.1,

equation (2.63), for (k,r) = (3,1), can be written explicitly in the form
fod -2 ow _ gu _ ¥ 2 2w yu 2 3w QL’
‘(p)[ i B (25 % vy)+ 5,“( ) + F C( ¢)

’?‘v\-‘\f—ﬁ«{:aBog—g- Bzo?)t' 1209)’}]

’ AL
= - L5704 2B3| + [-0577 B. B, - 0:72{, " la0+ C, C }}

2o
(A.71)

Equation (A.71) is now solved for 2331, and the values of the first order

coefficients are substituted from equations (2.61) and {2.62). This results

in equations (2,98) which expresses the second order coefficient 2B31 K=

plicibyly in terms of the derivatives of the mean motion variables of the

gas.
0] @)
zle’aot, 2031

will now be obbained from the basiec coefficient ZBSO’ equation (2,98), by

means of the method of robation of coordinate axes, which was discussed in

The expressions for the six associated coefficients

the text in connection with equation (2,54), For the case at hand, (k,n) =
equation (2,54) can ve evaluated by means of equation :A.12) of Appendix 11,

so that

(s,

)s
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YBI (C= W‘J (,(‘: V'= O) = B . C‘B (A.72)

2 31

where the coefficient 5Bz7 1is expressed in terms of the primed coordinates

by equations (A.73) and (4.74).

‘ua

= - = X (.73 )
By = 0.600(%) £,
where
ow' _ u' DV' +ou _D_L‘ aw', v ,
X:“ = %’E: (2 YA or ) az - 3 (9 7_) ) (4.74)

The rotation of the coordinate axes is defined by equations (A.75),

H
]

1x+ my + n,z

<
}

= 1x +myy + ngz > (4.75)

+mn v
13x mSJ nsz

-

The nine direction cosines 1.,...,n, satisfy the various orthozonalit
1 s 3 o it < 5

relationshivs of equations (4.76),

2 2 2

i
[
!
|
-
0o
-
e}

2 2 2 _

r (1.78)

+ n T = tC,
1112 mlmz nlnz 0 ete

1 + 1 + 1. te.
T Lm, 3*13 ete

t
o

4

The expressions for the transformations of the veloeity components

(u', v‘, w') and for the components of the gradients ( ?%C' , %‘, -gi )
I

are analogous to equations (A.75), The peculiar veloclity components in

the unvrimed coordinate system are given by equations {(4,77).
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U= 1,C
V = mgC c=c' r (A,77)
W= n,C

Equation (A.74) is now multiplied by ¢ and all of the derivatives appearing
in Xzq are expressed in terms of the unprimed coordinate system by means

of equations of the tyve (A.75)., By means of equations (A,76) and (A,77),

the result so obtained can be juggled into the form

- 0.600 (5){3,C} - [ B, (sW(sw™ 307

{H ()

B (st € vewte)

(2)

v B {dwatvn} v o) { s uvw)

. 23‘: { & u(=3)) 4 ZC(: {: V(auz—vz)}]

)

(A.78)

where the quantities whieh precede the curly brackets are those giwven by
equations {2.98) to (2.104). It will be seen that equation (A.78) is
identieally equal to the general spherieal harmonic function ¥

3
ed fram egquation (A.12) of Appendix II, Conseguently, the quantities given

3 as obtaine

by equations {2,98) to (2,104 ) really are the associated Burnett coefficients

which appear in the distribution fumetion, equation (2,39), when (k,r) = (2,1).
The remainder of the second order Burnett coefficients were calculated

by the suthor in a similar manner. TIn most cases the algebraic detail of

the caleulations was more com@lex than that for the case (k,r) = (3,1)

given hers, as may be seen by examining equatioms (2.63) to (2.113).



3. Evaluation of the Definite Integral L4
t was seen in Section 2, above, that the calculation of the Burnebt

o
NO Qe

O
L]
o
s
[0
g
b

inite integrals, J, and
Ly, of equations (A.87) and (4,68), respectively, The significance of
the quantities X and ¢, which describe the details of the process of
intermolecular collision, can be ascertained from a study of the molecular
orbit, |

As was shown by Maxwell, (Reference 2,12) the encounter between two
molecules A, and B is most easily described in terms of the "relative orbit®
of figure A,1, The molecule A is considered as the stationary origin of
the plane polar coordinates r and © , The relative motion of molecule B
with respect to A is then the same as that of a particle of mass m under
the influence of a central force field located at A, For Maxwell molecules,

2
the equivalent repulsive force is then 2Kv; , in view of equation (2,.8).

If X 1is the total change in the direction of the relative motion of molecule
B produeced by an elastic encounter with molecule A, the magnitude of the re-
lative velocity before and after the encounter will have the same value,
say Q. Since the orbit is completely defined in terms of the distance b
(figure A.1), and the initial relative velocity g4, the deflection angle
can be calculated from an expression of the form X = X (0,9 Je

From the laws of conservation of angular momentum and energy it is

easy to derive the differential equation of the relative orbit for Maxwell

molscules
dry? _ ¢* 2
<o(5) = 7 "Kfm - r (A.79)

' dv (A.80)
e = f th_ : K .
L\ T -5
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As was discovered by Maxwell, the squation of the relative orbit can
be changed from a two parameter curve %o one containing only one parameter

by means of the substibtutions

2 iR :
ﬁ«:% . d = b(gg;;)"* (a.81)

Fquation (A.80) then becomes

f \J eyl ' (£.82)

We are interested in finding the deflection angle JL in terms of the

dimensionléss collision parameter o, Consequently

’ dt (4.85)

where t corresponds to the intersection of the orbit with the apse line,
0
&= 4, or dr- O (see figure A.1), The denominator of the integrand of

equation (A,83) has only one real and positive root which is nemely

[+X4

b, = o[ (e - of]E (A.84)

By means of a number of transformations the definite integral (4,83)
can be reduced to the standard form of the complete elliptic integzral of

the first kind, namely

. . d¢ (A.85)
-5 = wa)’*[ [ - (V"‘“jf;—‘,i‘a)sin%]%

Finally, it is convenient to make the substitution af = s, so that

the defleetion angle X is now a funetion of the single collision parameter

s, that is



[aV]
e}
AV}

~y—

\

S
(m-x) = 2(7==)

(/) (A.88)
Vst (K .

-

™

where K(k) is the complete elliptic integral of the first kind with the
modulus k.

Values of (mn = X ) have been computed by the author for the range of
0 £ s £10. - The result of this caloulation is summarized in Table A.2.
This table also includes the values of the functions sian s siﬁ%} »
sin4.x s Which have in turn been plotted in figure A,2 as funcbions of the
collision parameter s.

In terms of the notation used above, the two integrals of egquations
(A.67) and (A.68) may be written as in equations (A.87) and (A.88) respec-

tively.

-+

J =§fsin2} ds (4.87)

o

L, = %fo sin‘t;( ds (1.88)

In view of equation (A.81), and the definition of 5, the integration over
all positive values of s amounts to the consideration of all possible orbits
of the molecule B with respect to the Molecule A, A comparison with equa-
tion (2.15) indicates that the differential ds is equivalent %o dC, dg, and
that the deflection angledx is closely associated with the encounter func-
tion GlZ’ for Maxwell molecules,

The integral J of equatibn (A.87 ) has been evaluated numerically by

several authors, as shown in Table A,3, The value of J to be used hersafter



V]
et
A

will be taken as

J =1,370 . (A.89)
Disregarding the somewhat inac;urate calculation of Maxwell, the above
should be accurate to four significant figures.

The inbtegral L4 had not been evaluated previously and was caleulated

by the author as follows., From (A,88)

30 , 80

10 .
. . &
L = E{:]S;’nlﬁx ds +f5lh4:)(0(5 +f sin X ds
* 8 o T .o +30
1,60 3.60 S
.k . 4
+j sin 'k ds + f 5|'nlix ds  + f Sin X dS] . (4.90)
- 80 160 3.60

The first five of these integrals were evaluated numerically by means of
the ordinates given in Table A,2 and Simpson's rule. For the last integral
of equation (A.90), the asymptotic expansion of the inbtegrand was used,

Thus for large values of s, equation (A.86) reduces to

3rr,_._[|_§_5.'-.,_1,9.9._l-_. ]
FA s e

(M-X) = 3 '3 2 st 7 768 (4.91)
FPram this one obtains
s 12617 14411
. b 3my ., L [ 3. : _ L ]
S|n} - (—) Sa ’ 8 s" + 1536 54 cs s 3 (A.QZ)

and finally

oo
4 Ty L 2 21T- 4T
siny ds = 7 (%) & AR TR Fr Tl O R

Equation (A.90) then reduced o

L, = g— [.018620 + ,168670 + ,301801 + .057775 + .003410

+ .000028] = 0,21610 ., (A.94)
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As was sesn in Section 2 of this Appendix, the numerical factor required

for the evaluation of the guantities M is the ratio £4"which has been

T = + 0,1577 (A.95)

Although the constant J does not appear explicitly in the expressioms
for the Burmett coefficients, equations (2.68) to (2.113), the walue of

this integral is, nevertheless, contained in the coefficient of viscosity,
Koo

As woes first shown by Maxwell, the viscosity coefficient for the

moeloular model which bears his name is given by

,..@.._“1’_ (4.96)
# =3 Km °

where k is again the Boltzmann constant and X is the constant of proportion=

ality in the force law of equation (2.8).
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APPENDIX IV

DETAILS PERTAINING TO THE EVALUATION

OF THE BOUNDARY CONDITIONS

0 @)
1, Values of the Definite Inbegrals Ii and Ii

The integrals are defined by equation (5.45 ), Part V. The functions

i, are defined by equations (A.97):

_ .2 i = ()
W =1 M, = ¢ iy = 2,
M, =Y M= Y W = 2.2
Ly 1( | 15 zu) 10 2 (4,97 )
b = ! = == 2
U, =¥ M, =Y, 1, = cY,
m, =z M, =¥
4 1 T 2

The spherical hammonic functions Yl,..., Z2 are defined by equations (A.3)
to (A.7) of Appendix IT,
From equation (5.46) Part v

)

=a£+ @‘:

t

(A.98)
I" = a; - @L

The values of (; and B, for i = 1,2,..., 11 are given by equations
(A.99) to (A.115), in terms of the exact Burnett coefficients of the veloeity

distribution function, equation (2.39).

a, = % (4.99)
@, =d,= A, = 0O (A.100)
As = 2 (A.101)



2 1o

Q)
d, = 3@3'7{,}; Bo , 4, =} = B, . A, = = Bf) (A.102)
a 3 L Cm 2L Cm (
L aw = 8 wm Ceo A,103)
s
ad, =-3 (h-'@”z B, (2.104)
, o= v (3. (29-3)(2¢-10) [(3+2) (44 n+ed)
B = = 1) : 2 A,105
1 'id %o %o 2:4... (2¢)(29+2) F(i""al) BE?“,n( )
8, - = [-3r 5. T8,
e V‘—TF m 4' T n=o
2 & g4l M(ae+n[(g+2) (3t n-3)
+ Z Z 1) ) 2% ¢ :' , ‘B‘2 (A.106 )
321 heo 2T 229+ 2) {0} TG-5) T2tn

8 - L.l i 5: (_Iw Meq) M(3+n-%)(29+3) Bo) (2.107)

27T Vom0 M2g+2) ['(4- $)[29C24-2] 2 (g 20
CBq is obtained from (4,107 ) by replacing Bm by Cm (a.108)
a%/n Zi," .

, 2o 13- [1(4+3) [(Gen-4
Bsz -‘{'—r_r..... Z Z(O 24 ... (gg)(apg)‘ F”"é) B (A.109)

Z?HJn

n
2 X Y2940 T(29+D. ['(343) [(3+n-%)
e Z Z -0 + [(4+n-3

|
= 1T ETe : , (A.110)
<B(o VT Vhm 920 n=o (22"”(2?4,4) ag {F(Q‘H)} F(CF‘E) 2941, n
it a 3+ . _ 4 )
B, = 'YBLTF 2 e [y C4e2) rl(:‘;,n 2 , (A.111)
4=0 n=o [(3?“)(2‘;*(2)-6_] .2 M(q+0 ['(3-5) " 2Hhn
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[<2] =]
o1 (2q+4) [@%) T'(§+n-4) @
038 = 3 ‘;‘L’ Z Z(’!) ggfl ) - : ‘ 'Ba ) (A.112)
T hm §=0 n=0 2 . I"(‘i.)L(Eg+:)(2g+2)-(,—‘].|"($-z) G+i,n
@q is obtained from equation (A,111) by substituting (4.113)
(D) {1
CZ‘?*’/“for Baf;u,n
@B,, is obtained from equation {4.112) by substituting (A.114)
@) (2)
Ca‘;H,for Bag-u,n
N o
(B“ - oNT (hm)z/z 4 W%:‘) "
. i i(_l)w M 29+ N'543) M(§+n- 2) B ]
tm neo 2V (24-0) (2g+2) { M40} N(3-1) “29m .
(A.115)

The above expressions are valid for any "smooth" molecule having
spherical symmetry. However, the complete set of Burnett coefficients has

been calculated only for the Maxwell molecule, and there only up to terms

2
of order (T/;)z D%“" .

and 03,; reduce to those given below,

For this case the general expressions for (.

Equations (A.99) to (A,104) for the quantities (I; remain unchanged,
except that the prescript 2 is affixed to all of the Burnett coefficients;

for example
3 B N
A, = 7 . etc. (A.116)
27

The guantities a@i reduce to the finite sums (cf, equation 2.66) given

by equwbtions (A.117) o (A.127):
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(A.117)

(a.118)

(4.119)

(A,120)

(A.121)

(A.122)

(4,123 )

(A.124)

(A.125)

(A.126)
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B, = VI_T’TI(-;(\:)’/Z[‘+‘%;A2+3;A3+Z+§B - % B

2 -4
“ b Z_Bze 2 ZBw] . (A.127)

The second approximations to the Burnett coefficients, 2A2""’ 2}340, which

appear in the above equations, are given explicitly by equations (2.88) to
(2,105 ) of Part II,

AN C R () B3|
2. Sample Calculation of the Definite Integrals I2, I,1I

2’ 77 1,
. w ® »
(a) The integrals I and I

From the defining equations (5.45) and (A.97) one has
) it I 00
0 2 x y
I, =] d¢ |sine.de| CdC-£(Ce,8)-Y , (A.128)
2 ) o J A
where £( C,0, ¢ ) is given by equation (2.39) and from equation (£.3),
Y. =C Pl (cos © ),

1
By means of the conventional change of variable

cos O = M (A.129)

one obtains

J

[E[]-sinede =£I[J du /%rwfj-sine.de =£o[]d/,< ~ (A.130)

Equation {2,39) for £( C,8,0 ) is now substituted into the integral (A.128).
The integration with respect to the azimuthal angle ¢ is performed first,
so that all those terms in £( C,9,¢ ) which contain sin(P ¢ ) or cos(p ¢ )

integrate to zero, The integral (A,128) then reduces to

th
= an'(hm) fCo(C

-

f
. n
. Z (hmC?) {Z niPken 3B - S0 (ne) | Rl By i} |

] (A, 131)

(v :
[Z ni Nn+d) . An's_,(tha)fE(,uJ du



The integration with respect to H is performed next, From equation

(A.15) of Appendix II, Sechion 3, one obtains

{

{'D/. N
IL
Jo

v o= 4
1 u\lm-;a.

{£.132)
Similarly, from equations (A.18) to (A.20), one finds
|
' £ k=0
JRC//‘)_E(F) o(/u = 3 or £
- £ for k=1
- 3
(-1)“‘ [[(2¢+D , {K=2$
2 {f‘(gﬂ)}a (2g-D(2¢+e) $21
= 0 fork=12q +1, 21 (A.133)

Equations (A.132) and (8,133 ) are substituted into (A.131), and with the
change of wvariables defined by |

x = hm C? (A.134)
the inbegral I(,‘,) becomes

[

Ia = a\!—ﬁ' [Zn‘ P(VH'?.) An er S (7(-) JX

2 0 E -X (53]
£ 85 Rt TCned B [ oo
= o E
© 2 ! M(29+1) w=;+ i
{ AV .
+ agt%on. M(2g+n+3)(-1) T 2y (2ge2) [T} Bzm fox e %ﬁ’? X (4.155)

The three integrals involving the Sonine polynomials S (x) are each eval=
m
uated from the general formula of equation (A.49), Appendix II, Section 8.

Thus one obtains

0
¥ - ()
fXZeXS(x) dx =1irn=0

o

™iw

=0 if n# 0 (4.138)
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= m o Mn-3) (A.137)
j:Xe Sé()() dx = -3 M'(3) M(ned) Min+n)

® gH _x W _ [(g+2) [(g+n-2) (A.138)
] 58 2@ T T Pleen Fasene D) |

It follows from equation (A.136) and from the fact that By, = 0, (see equa-
tion (2,41), Part II)that the second summation of equation (A.135) vanishes,

Hence when equations (A.137) and (A.138) are substituted into the expression

(£.135) the integral I_ is found to be an infinite series containing all of

2

the Burnett Coefficients which are of the forms An and B2 .
@) de

)
The only difference between the integrals Iz and Iz,

@)
from equations (5.45) and (A.130) -, is that for I, the limits of integration

- as can be seen

(1)
over the variable U = cosé are =1 and 0, instead of O and +1 for Iz.
Since in equation (A,.132) P ( K )= M is an odd funmction of K , end since
also the integral of (A,133 ) vanishes unless {ﬁr(ﬂ) . R(ﬂJ} is an odd

function of Ko it follows that

@ )
I, = -1, (A.139)

Consequently, from equations (A,98) one obtains

a)

aa =0, (Bz = T (A.140)

e .
The value of (Bz which is thus obtained from equations (A.135). to (A.138)

is given by equation (A,108) of Section 1 of this Appendix.

()]
7

W
It follows from equations (A.97) and (A.4) that the integral I,

@)
(b) The integrals I, and I,
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involves the function

N S O
M7-—Y2 -c* P, (K ) ecos ¢

The integral which is to be evaluated is, therefore,

IT i © M
I;” = - f oM’fd,u de : «CCC,ﬂ,¢)'C4, P, (#)-cos ¢ (A.141)
-7 ° 0

When the distribution function £( C, K, 9 ) is substituted into the above

from equation (2,39) and the integration over ¢ is performed, all terms

of £ will integrate to zero except those containing the factor {Bl:; cosp P;,(/l)}
as a consequence of the orthogonality properties of the eircular functions

0
sin(p® ) and cos( ¢ )» The integral I, is then reduced to

[~ 2 0 K
a 3 4 -hmC 24 2
I_I _ aw(%m)afocdce _[é(th)

7
E" n rl ‘: S K- ! 1
) { n=0 A 3). Ki-é( 2) ((KAH';! B f] (2f‘)l (’(#J ol/.t } !

The integration of the product of two associated Legendre polynomials is
performed with the aid of formulae (4.32) to (A.35) of Appendix II, Sec~-

tion 4, The result is thus found to be

4]
f?(p) (/A)ollu =-§Z— fork =2
=0 for k = 2q, g = 0,2,3,4,e4
= ( N2 | [(28+®)
TNV W [(eqen(egre)-6] Mg+ [(g+2) o (Ae143)

for k = 2q_ + 1, q = 0’1,2,3,000
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Substitution of (A.143) into (A.142) with the change of variable defined
by equation (A.134) results in

.57 _ (n)

00
O . 2 2 z
I - g [ nrined 2B, Jxe 5,00 dx

© g+t P(Zi+n+§)- [(2q+1)
+§O§ {"”“) [(2qe(24+2)-6] - 22 [(3+0 [(3+42)

0

aqu h [X e”‘s (X) Ax }J (A.144)

")
The value of the two integrals involving the Sonine polynomials Sm (x)

is again obtained from formula (4,49), so that

© o
I(X 6* S dx =1ifn=0

5

oy

= 0ifn=0 (A.145)

fxq.;ze_xs(n) o) dx = M(q+3) - r‘(i-l-n-i)

° 2444 M(3-4) - M(nenlneeg+£) . (4.146)

When the expressions (A.145), and (A,146) are substitubed into equation
(2}

(A.144), it appears that the integral I is en infinite series of all of
0}
the associated Burnett coefficients which are of the form B2 ,n end B, .. e
2) 2qtl,n

The integral I, differs from I onlj in the limits of integration of

the variable #oe Thms, the integral analogous to equation (A.143) results

in (see formulae 4,30, A,32 and A.33)

@ [{F] [¢
f B (/A) P‘(/.{ = + f .PK (W) 'Pz)(lu) (,(Iu for k = 2
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Consequently, the first summation in equation (A.144) corresponds to the
even component a7 and the second summation to the odd component 687
according to the defirition of equation (A,98), The explieit wvalues of a-,
and (BT are given by equations (A.102) and (A.111), respectively.

3« The Values of the Burnett Coefficients Close to a Solid Wall

In the deduction of the boundary conditions one requires the values
which certain of the Burnett coefficients take on close to a solid surfabe,
that is at a point (x,y,z,->0)} in the coordinate system of figure (5.3a).
The general. expressions for the Burnett coefficients, equations (2.68) to
(2,113 ), may then be simplified somewhat by the following considerations,

Consider a term of the form (%)2 _;%%‘ « This may be written as
2 2
(%) %[(u-u,)w,] 3 (Jg) a%(“’“")

Since the differentiation is in a direction parallel to the wall, one

may use for (u -uy) the first approximation, (u -uc), given by equation

(5.58), so that

B % - @ RFOmER -Him Rl2o aaw

because in the present approximation the highest order of terms retained

2
is (‘g) « By the analogous argument for the v~component of the wvelocity,

and differentiation in the y-direction one obtains,

(%)2(%/%/'%‘.%’) = 0 (z=0) (A.249)

The seme result does not hold for differentiation in the z-direction, i.e.
2 U
(g) 9Z , since equation (5.58)} is velid only at z = 0,

Many of the Burnett coefficients contain terms of the form
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+{w-u) +u,} 2+ {(V—V,).l.v,}% + W%] (4.150)

A

PR RN

t was whown, equation (5.41), that the normal velocity w is zero everywhere

on the wall, Since (u -u,) is of order g , equation (A,150) then reduces

to
K¥ Doz (A tv, 2 =0 A.151
&) 2= [Z+ufrvi] (z=0) (4,151 )
. w_w
On & plane wall w vanishes everywhere, so that 3¢~ oy = 0. OCn a curved
surface, however, %:'/‘: %’-¢ # 0, where u¢ is the tangential veloeity and

r is the radius of curvature of the wall., In order to preserve the max-
imum generality inherent in this derivation of the boundary conditioms,
w w
the derivatives %[ and %y will be retained,
X . )2 dw .
Another frequently occcurring term is of the form (1,) TZ o Agein
it is sufficient to use the zeroth approximation for %% o From the energy

equation (3.10) of Part ITIone obtains, correct to terms of zero order

Ju v, gw) . 2L Db
,,(ax* oy ¥ %) 2 P (A.152)
Taking into account equation (A.149), the above yields.
2 2
w . 3 D
(%) 76 55; (z=0), (A.153)

Equations (A.149), (A.151) and (A.153) have been used to reduce those
Burnett coefficients which are required for the evaluation of equations
(5.63) and (5. 73 ) to the form given below., Only those coefficients which

are affected by the above transformations are listed,
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,ua 2 h\2 A2 2

2ho = ['E(F) _g_bl%_;‘v + 21(%)'#& {(%i)*(%h)“'(%‘)}
2 /1 2k &’ak

B EE 25163 EF 163 5 2GR}

SCRCEREOR R IRE O

(A.154)
- lﬁ_l_—- Q__ K D 5 L Dh
2117 T2 F w2 }[iV thm?-’%)‘.lsg;\l)t%%
2w
-éh{%(m ”D*‘f’y(hm g*ayj)} ¢hy (hm[‘n w?’])
+%—-5 m%hzhm% ‘%hr{ D)l+07— ay<5§y+az)}
= oh 2
t “m‘(% %%59 %)] (A.155)

B
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(A.156 )

2721
ol ' K02, 1 Dhy?
y 28 2¥-265) (%)
- 74?7 ﬁ) {( g”’)+( +) }»]

(A.157)
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oByp = 06486 ") [(8 Dl‘) - 5(% +5—) -4 (R %?/)‘J (A.158)

n

Pn = - 35 )h\fh‘& ox T ﬁ)):t%yvt(max} -Ehm (B2

i Dh 2 2h
+5|"ax T ) 5haz( Tl 8 %) - %"""} — ,x%‘é

h A 2 M
r S A= BB - o ¥ 5
» (A.159)
® K 2h [ m
2B12 T '(75) [h b ‘15% %ch - S5+ %?/)] (4.160)
) 78
o0 ) (%) [ 5B (LERD
Ay L Db 2
v2(f) 7w B (%+%)-365) (%-%)+ 2
24 24 h
3G {5 B 24 B)]
(A.161)
{ 2 D ? b
e & (B B (FW) -2 1Y
oh 8 L 2(Y_ L Dh
- B EWEvama R
| Lo
+;'£’ Jf%(ﬁ[%*%ﬂ):’ (a.162)

o ¢ 2
2B51 = -0.600 () e [G"h e %%‘ +4%(%§"+%‘;‘)} - (A.163)
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. (1) (
The corresponding expressions for the coefficients 2011,..., 203;_ are

obtained by replacing x by y and u by v in equations (A.159) to (A.163),
respectively,

4, Formulae for Expressing the Boundary Conditions in Terms of Temperature T

and Density .
The equation of state of a perfect gas can be written in the two

alternate forms

kyT (A.164)

e
1}

= R (A.165)

|9
|

where k is the Boltzmamm constant, R the gas constant per unit mass, V the

number density and e the mass density of the gas. By definition

h = . (A.166)
2k
e=my (A.187)

where m is the mass of one molecule, From equations (A.164) to (A.167)

one has

mh = — (A.168)

Equations (A,167) and (A, 168 ) are used to derive the formulae given below,
which are in turn used in expressing the boundary conditions in terms of ©

and T,

T\';—-— 2 =-2R% (A.169)
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a2
52% + 2RT g—z‘f 5;_{[03&\(—)} (A.170)

Lok o’
) = - (2R T azax 'S’;%""”‘)} (8,171)

2T _ 128 L@
2T X e x T K ;ﬁ} (A.172)
2 /oTY
- ﬁ-’(ax)_] (A,173)
20 2T
5; 5 (A.174)

) = VzxT - = { 5(5) - 2T Beste} (a.ars)

L. DT 27 A,

etec,



(1.1)

(2.1) (a)
(b)
(z.2)
(2.3)
(2.4)
(2.5)
(2.6) (a)
(b)
(2.7)

(2.8)
(2.9)

(2.10),'
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Table 3.1

lolecular Model laxwell Rigid elastic
molecule gpherieal molecule
Exponent of force law, n, 5 @
Tk . 1
ST W dT 5
: 4 7 4 7
Kl 3 (&2- -s) 1,014 x *" (';; -5 )
X 2 1.01& x 2
2
KZS 3 0,8 x 3
k@ 0 0.681
K. 38 0,806 x 35 =0,980
KS 8 0,928 x 8
is 7
e 1 E" \'5 -
45
e 5 45
8
9 3 -3
0, 3
o 3 (5 -2)




Table 4.1
Medivm 1 2 3
1.398
g=0D 1,810
A -0, 83720 —C.glﬁéé =-1,6611
B ~1,436¢ -1, 9804 =0, 67867
¥ 2.58237 30322 363800
E 32000 38761 348333
bl 0. 9333 0. 9830 1.1667
b3 =0, 0839 w(e 2477 204253
b 3.0195 2,5156 22434
ﬂz 0. 7807 0.8B70 0, 6310
ﬁé -4,2314 =5, 7015 =4, 9838
% =2+ 3344 -6, 98062 =3¢ 5438
Table 4,2
Temperature R x 10°°
op "0
Y] 1.321
20 1,248
40 1,186
80 1,130
80 1,081
100 1,037
150 0. 947
200 0. 874
250 0.815
300 0. 766
350 0. 725
400 C. 6389
45C 0.8658
500 0.630.
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Table B.1

Values of the Moleculer Frachtion o

(Reference 5.3 )

Gas and Surface o
Adr or COz on machined brass 1.00
Air or CO2 cn old shellac 1.00
Alr on oil 0.895
COE on oil 0,92
Hydrogen on oil 0,925
Alr on glass 0.869
Helium on oil 0.874
Air on fresh shellac 0.79




Table 5,2

Values of the Accomodation Coefficient ¢ for Air

(Reference 5.13)

Surface Descripbion

Accemodation Coefficient

Minimum Maximum
Flat black lacquer on bronze 0,881 0,894
Brongze, polished 0,91 0.94
Bronze, machined .89 0.93
Bronze, etched 0.93 0.95
Cast iron, polished 0,87 0.93
Cast iron, machined 0.87 0.88
Cast iron, etched 0.89 0.96
Aluminum, volished 0,87 0,95
Aluminum, machined 0. 95 0.97

2338
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Table (5.3)

&y % {EE (;%g>
bl = .-5.167
' bZ =  0,8749

_ 5 -0l f A 2-o
°y 7 E\l—g‘—(%’) ; c,=<ﬁ'.‘p‘;)@(’f)

2

o, = - {0.31655 + (%9 - %(%—‘V)(ﬁ—?)}

o = -z E (5
e, = - F{F(&)-+(59}

4
= - 45 2-d
5 = " To VE (%)
. o7
e 56
= _?Qg
87 288
38 = "504912
= -1. 3
e9 71.83

®10 ~ %E(?)
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Equivalent Radial Derivabive ab

Derivative Convrex Surlace Conntve Surface
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Y 0 0
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Table 7.2

Results of Fumerieal Calculation
o 3 - JIAR Tw, _
for W= 1.0, M= 2,0 (&)= 035, & = 1,0
Re ™
"
Guant ity Mumerieal Computed
Talue frar squation
T o Fer pem
(3) . 3450 {7.5% )
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F A oy .

© ;5% - 1443 (7.58)
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o T -, 108% \7e B2
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o e ~ \
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Table 4,2
8 k K (n =p) sin X sinz.x_ sin4)(
0 « 707107 1.85407 ¢ . 0 0 0

0% « TOLBOR 1.85116 «311323 » 306318 »093831 + 008804

« 02 » 702090 1.84820 « 439556 + 425538 + 181083 2032791
«C3 «6859542 1.84516 «D37425 +511926 « 262068 068680
.04 » 897039 1.84228 « 819540 » 580661 « 337167 «113682
.05 » 694503 1,83942 . 691519 837708 » 406671 0165381
.06 691958 1,83645 « 756191 » 686156 +470810 221662

« 07 « 889407 1,83364 815398 0 727998 «529981 + 280880
.08 » 586848 1.83085 »870210C . 764464 +H5844CH « 341529
.09 » 684213 1.82794 « 921337 » 796411 634270 « 402298

« 100 .881713 1,82532 « 9689548 0824630 » 880015 « 462420
0125 «B7H262 1.81841 1,079128 - 881548 e 777123 « 6032320
«150 668778 1.81177 1.176810 « 9233886 352642 « 726998
«175 » 562267 1.80524 1,265249 « 953683 « 909511 827210
« 200 » 655734 1,795882 1.346323 2 974911 . 950451 « 903357
225 . 645183 1.79269 1,421198 « 988831 977787 + 956061
«250 . 652620 1.78656 1,490802 . 998802 .093614 « 987269
0 275 » 636051 1.78072 1.555982 . 998891 . 909782 « 999564
0300 +629479 1.,77490 1.617065 « 998930 . 997861 « 995727
« 350 816345 1,76382 1, 729045 « 987510 « 975176 « 950968
« 400 603256 1.753286 1.,829330 » 966766 » 934636 « 873544
« 450 590671 1,74360 1.920234 . 939564 » 882781 # 779302
« 500 «B7T7351 1.73387 2,002100 » 908422 825281 « 681006
«550 +B64B97 1.72499 2.077064 874561 + 764857 « 585006
« 600 +552012 1,71661 2,145605 839297 « 704410 « 496206
« 850 539620 1.70879 26208560 « 803430 « 845500 « 416670
« 700 . 527443 1,70133 2.266461 767628 +589253 347219
.« 750 « 515455 1.69437 2,319765 « 732392 « 536398 0287723
s 6800 « 503803 1.68781 2.369632 » 698258 + 487564 £« 237719
« 900 » 481200 1.67594 2. 456030 . 8331C9 4,00827 «160662
1,000 « 459701 1.66539 2.530847 «B73478 « 328877 » 108180
1.100 « 439340 1.65611 2.599310 516093 « 266352 . 070643
1,200 420121 1.64759 2,651093 « 471067 « 221904 . 049241
» 300 « 402053 1.64081 2,699625 427710 . 182936 . 033466
1,400 «38B01€ 1.63440 2,741755 .389269 » 151530 022961
1,500 « 3689048 1.62889 2,778886 554807 » 125888 015848
1,600 354070 1.62385 2.811219 324775 «105479 .011126




245

Table A.2 (Cont'd)

S k K (v =x) siny sin%x siﬁ%%
1.800 + 326853 1,61548 2,865070 273012 »074536 «00RRARR
2,000 «302906 1.60881 2, 907448 232012 .0538%0 . .002898
26200 « 281788 1,60346 - 2,641275 » 198981 «039593 001568
2400 2263107 1,59908 2.968523 » 172207 »029655 « 000879
2,600 0246518 1.59551 2.990816 « 150203 022560 « 000509
2, 800 « 231724 1,592588 3.008216 0131991 .017422 « 000304
36000 « 217441 1.58988 3.024178 »117146 013723 000188
3,200 . 208568 1.58797 3.037399 » 104006 010817 . 000117
3. 400 195815 1.58618 3.,048295 » 093163 008679 « 000075
3. 600 » 186069 1.58465 3,057608 »083886 , 007036 « 000050
4,000 » 169102 1.58220 3,072582 -, 068956 « 204755 000022
4,400 » 154866 1,58035 3,083965 -NB7596 + 003317 « 000011
4,800 »142771 1,57890 3,092765 +048809 002382 « 000006
5,200 «132382 1,57745 3,099118 « 042462 « 001803 + 000003
5,600 ¢ 123367 1.,57683 3.105292 » 036293 001317 000002
6.0C0 «115480 1,57607 30109819 2031769 » 001009 »0000C1
8. 400 » 108524 1,57544 3,113548 « 028041 + 000786 «00C000
6. 800 » 102345 1.57491 34118652 « 024938 000622 « 000000
74200 » 096822 1,57450 36119340 « 022251 « 000495 » 000000
7,600 »091859 1,57412 3121559 «020033 « 000401 « 000000
8,000 « 087373 1.57380 3,123480 »018112 . 000328 « 000000
8,400 « 083301 1.57353 30125247 » 016445 000270 « 000000
8, 800 . 072586 1.57329 3.126587 + 015008 »000225 « 000000
96200 .076187 1.57309 3.127886 013727 . 000188 000000
9,600 « 073085 1,57290 3.,128961 012632 » C00180 » 00CC0C

10,0C0 «070189 1.57274 30129948 .011645 . 000136 « 000000
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TABLE A,.3

[+
Values of J = 4T f { sine(é}) r.ose(é)c)} . ol ol
) ) [ .

Computed by Value of J
Jo C. Maxwell 1.3682
Aichi and Tanakadate 1.3704
Ss Chapmann 1.3700
Author 1.3696
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