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ABSTRACT

The differential equations of motion and the associatgd boundaxry
conditions for the slip-flow regime of fluid mechanics are derived
from the noint of view of the kinetiec theory of non-uniform gases.
The‘slip-flcw regime comprises the flow of gases whose molecular mean
free path is smaller than but not neglizible relative to the macros-
copic dimension characterizing the gas flow.

A systematic review is presented of the methods of Hilbert and
Burnett for obtaining a successive approximation solution to the
Boltzmann integro-differential equation, The complete second approxi=-
mation to the molecular velocity distribubtion function is calculated
for the molecular model of liaxwell., This molecular distribution func-
tion is employed for the derivation of the macroscopic differential
equations of motion and the associated boundary conditioms. It is
shown that the same number of boundary conditions are required for
slip flows as for gas=dynamical flows, although the differential equae
tions of motion for slip flows are of higher order than those of cone
tinuum gés-dynamics. Expressioniafor the second approximations to the
slip velocity and temperature Jump are obtained.

The general equations obtained are avplied to three specific pro=-
hlems: +the propagation of sound waves in farefied pases, highespeed
Couette flow of a rarefied gas,and slip-flow between concenbric cylinders
in relative robary motion, It is found that the rarefaction of a gas
increases the damping of sound waves, whereas the preopagation sveed differs
from the ordinary adiabatic sound velocity by less than two percent. The
Couette flow solution indicates that the slippage of gas and the tempera=-

ture discontinuity at a solid boundary may reduce the gas-dynamical friction



coefficient and heat transfer, respectively, by ten percent under
approximate conditionse. hen apolied to the flight of aircraft
through the rarefied atmosphere, the theory presented is apnlicable

to an altitude range from 100,000 to 300,000 feet,
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PART 1

INTRODUCTION AND SUMMARY

.In a recent paper, H, S. Tsien (Reference 1.1) pointe& out the
need for the further investigation of the mechanics of rarefied gases
in order to gain an understanding of the phenomena encountered in the
high altitude flight of aircraft and in flow processes of low density
gases,

The mechanics of rarefied gases differs from the usual gas-dy-
pamics in that the gas cammot be treated a priori as a comtinuum,
so that the effect of the random motion of individual molecules must
be considered. The parameter which measures the relative importance
of the microscopic molecular motion to the macroscopic mass motion of
the gas 1s the ratio of the mean free path of the gas,,[ s to the
smallest intrinsic linear dimenéion L, which characterizes the gas
flowe Using this parameter ,Z/ﬁu fluid mechanics is most naturally
subdivided into the following "realms" (Reference 1,1 ):z

(1) -%% <-Tl6; the molecules are so closely packed that the
gas is effectively a continuum, This is the realm of
gas=dynamics, in which the fluid adheres to any con-
taeting solid surfacs,

(2) T%)‘(S"ig‘ <1; the mean free path £ is small but not
negligible relative to the macroscopic dimension L.

The appreciable number of collisions between gas mole-
cules and a solid surface cause a slippage of the gas
flowing over such & surface., Hence this realm is called
the "slip~flow" regime,

(3) 1< f%'<'10; the collisions between gas molecules and



bounding surfaces are of the same order of frequency
as the intermolecular collisions, This region, which
has as yet been investigated only experimentally, will
be called the "intermediate™ realm,

(4) ﬁ%—) 10; intermolecular collisions are negligible re-
lative to collisions between gas molecules and solid
surfaces, hence this realm is desiénated as the "free
molecule flow",

Realms (1), (3), and (4) are also called the Poiseuille, Kundt and
Warburg, and Knudsen regions after the physicists who first investi-
gated gas flow through capillaries in these respective realms of
fluid mechanics,

The present investigation is confined entirely to the realm of
the slip=flow, the primary objective being the derivation and applica=
tion of the mathematical boundary conditions which are required for
the determination of particular flow solutions from the general differe
ential equations of motion for slip flow. The equations of motion for
slip flow differ from those of gas~dynamics only in the explicit form
the viscous stresses and the heat conduction of the zas, Various ap=
rroximate expressions for the stresses and heat conduction in a rare-
fied gas have been deduced by means of the kinetic theory of noq-uniform
gases by mathematicians and physicists, notably Maxwell, Enskog, Chapman,
and Burnett. In fact, Burnett has developed e method which may be used,
in principle at least, to deduce the stresses and heat conduction for
slip slow to an arbitrary degree of avproximation.

The boundary conditions, however, have been deduced only to a
first approximetion for certain special cases, principally by Maxwell,

Knuisen, von Smoluchowski, Basset, and Epstein. A general and more



rigorous method for deducing the boundary conditions for slip flow
to an arbitrary degree of approximation is presented in Part V of
this thesis, Quite analogous to the viscous stresses and the heat
conduction, the boundary conditions for the macroscopic motion of
the gas are obtained by a process of integration of the momentum and
energy exchange between the individual gas molecules and the solid
boundaries which confine the gas. This procedure in turn requires
the knowledge of the complete molecular velceity distribution function
which characterizes the non-uniform gas. Consequently, it is first
necessary to calculate a second aporoximation to the velocity distribu~
tion of a non-uniform gas, This is done in Part II using the method
developed by D, Burnett.,

The kinetic theory of non-uniform gases has been developed during
the past eighty years beinning with the mathematical investigations
of Maxwell and Boltzmamn., The basic method of successive approximetion
that is employed both for the solution of the differential equations
and the evaluation of the boundary conditioms for slip flow rests ul-
timately on the nature of the Bolﬁzmann integro-differential equation
whose solﬁtion is the desired molecular velocity distribution function
of the non-uniform gas. As, to the author's knowledge, there does not
exist a unified treatment of the derivation of the complete distribution
function from the Boltzmamn equation, such an exposition is presented in
Part II, where the method of solution discovered by D. Hilbert and its
adaption to a practical computation by D. Burnett are explained. The
significance of the "molecular model™ which is necessarily employed in
the calculetions of the kinetic theory is also discussed, Part II is
concluded with the results of the author's calculation of certain coef=-

ficients which completely determine the molecular velocity distribution



function, to a second approximation., Certain details of this caleulation
are given in Avpendix III,

The differential equations for the macroscopic motion of & non~uni-
form gas are given in Part I1I, The fact that only the stresses and
thermal conduction depend on the degree of rarefaction of the gas is
emphasized by means of a derivation of these differential equations of
motion due to Maxwell and Burnett. It is found that the use of the first
avproximation to the molecular velocity distribubion function in the cal-
culation of the viscous sitresses results in the equations of Navier and
Stokes of gas-dynamics, whereas the application of the higher orders of
approximation to the distribution function yields differential equations
of motion which are of increasingly higher order. The validity of the
third order vartial differentisl equations that are obtained from the
second avproximations to the stresses and heat flux, as calculated by
Burnett and Chapman, is seenr to depend on the relative values of the
mean free path of the gas, the characteristic linear dimension, and
the lach nunmber difining a particuler slip flow.

Prior to the derivation of the boundary conditioms for the slip
flow regime, Part IV of this thesis is devoted to the application of
the macroscopic differential equations of motion to the particular pro=
blem of the propagation of plane sound waves in rarefied gases, This
one~-dimensional problem, whose solution does not require any boundary
conditions, is of interest in connection with the evaluation of atmos-
pheric data at high altitudes by means of the method of anomalous sound
propagation., It is shown that the speed of sound vrovagation and the
damping coeffieient, for a partieular gas depend only on a single pars~
meter, the Reynoclds number of sound vropagation which is defined in

terms of the wave length and the adiabatic provagation svweed of the



sound wave, For decreasing‘values of this Reynolds number, a slight
increase in the propagation speed, accompanied by a pronounced increase
in the damping coefficient, is found, However, even for the extreme
conditions to which the theory of Part IV may be applied, such as core
respond to the propagation of a wave of 1000 cycles ver second at an
altitude of sixty miles, the propagation speed differs from the normal
adiabatic sound veloecity by only two per cent.

It was stated earlier that a decrease in the density of the rare-
fied gas, requiring for its mathematical description higher order approx-
imations to the viscous stresses, results in an inerease in the order of
the partial differential equations of motion., This leads one to the ex=
pectation that the number of boundary conditions required for the complete
evaluation of a slip flow problem should likewise depend on the degree of
rarefaction of the gas, However, in the first section of Part V it is
shown on hoth physical and mathematical grounds, that the number of phy-
sical boundary conditions required for a slip flow problem is effectively
the same as for the corresponding flow in the realm of gas=dynamics.

In the gas=dymamic regime, the flow of a gas over a solid surface
is specified by three boundary conditions which require that there shall
be no relative normal or tangential veloeclity between the gas and the
solid surface, and that the layer of gas adjacent to the boundary shall
have the temperature of the boundary., In the slip-flow regime, the con-
dition of zero relative normal velocity still holds. However the relative
tangential or slip velocity is no longer zero but is a definite function
of the velocity, temperaturs, and pressure gradients of the gas layer imme-
diately adjacent to the wall, Similarly the gas temperature differs from
the wall temperature by an amount, referred to as the "temperature jump"®,

which is again a function of these velocity, temperature, and pressure



gradients,

The determination of the boundary conditions for slip flow is thus
reduced to the calculation of appropriate expressions for the slip vel=-
ocity and the bLemperature jump., A general method from which such exvres—
sions may be calculated, again to an arbitrary degree of approximation,
is presented in Part V. This method anplies the laws of conservation
of mass, momentum,and energy to the infinitesimal layer of gas adjacent
to the solid surface, referred to as the "sub-layer", and uses the non-
uniform molecular wvelocity disﬁribution function as developed in Part II,

The first approximations for the slip velocity and temperature jump,
as obtained by the use of the first avproximation to the velocity disbri-
bution agree with the results deduced analytically and verified experi-
mentally by previous investigators for low speed slip flows., The second
approximation to the slip velocity and temperature-~jump, which are re=-
quired in conjunction with the second approximation to the viscous stress=
es and heat conduction for higher speed slip-flows, are also calculated
in Part V of this thesis. Certain details of these 1engthly calculations
are presented in Appendix IV, It is found, as in the case of the viscous
stresses and heat flux, thét the sccond approximations to the slip veloeiby
and temperature Jump are functions of the second partial derivatives or
products of two first order partial derivatives of the velocibty, tempera=
ture,and pressure of the gas in the immediate vieinity of the solid bound=
ary,

Once the general boundary conditions have been calculated by means
of the kinetic theory of non-uniform gases, the method of solution of a
particular slip flow problem is quite analogous to the gas-dynamical case,
in that the macroscopic velocity, temperature,and pressure fields are
obtained by solving the differential equations of motion with a given set

of boundary conditioms. This process, which does not involve the kinetic



theory explicitly, is illustrated by two related concrete examples that
are treated as Parts VI and VII of this thesis. |

The solution for the Couette flow of a rarefied gas is obtained
in Part VI, The arbitrary constants of the general solution of the
diferential equations for two-dimensional parallel motion are evalusted
from the boundary conditons by an iteration proceas. The zero order
solutionas correspond to Couette flow in the gas-dynamic realm, whereas
the first and second approximatibns represent the modification of the
basic gas-dynamic flow pattern caused by the slip and temperéture junps
ocourring at both the fixed and moving plates of the Couette flow,
These slip effects,'which_result in a reduction of both the wiscous
drag and heat transfer between the parallel plates, are seen to be
functions of the two parameters %%-and M?, where M and Re are the MNach
and Reynolds numbers of the Couette flow respectively, The parameter

£

é%, is equivalent to the rarefaction parameter-ir, by means of which the
realms of fluid mechanics are distinguished, where in the present case
the characteristic length of the problem L represents the distance be-
tween the walls of the Coustte {low.

The results of the Coustte flow computation have been used to obtain
an esfimate of the skin friection of a flat plate in high spesd flight
in a rarefied atmosphere, The caloulations indicate, for example, that
for a chord of one foot, Mach number of 3, and altibude of 250,000 feet,
the slip of the air over the plate reduces the gas-dynamic walue of the
friection coefficient by approximately 10 per cent.

The Couette flow calculation illustrates the application of the slip
flow boundary conditions to the ecase of planar walls, The boundary con=-

ditions, deduced in Part V, are however applicable to curved surfaces as

well, This is demonstrated in Part VII, where the flow is computed for a



rarefied gas confined in the amular gap between two concentric eylinders

of which the ouber one is statiomary, while the inner one is rotating at
high speed. The calculation shows that the curvature of the streamlines
‘with the resultent centrifugal pressure field tends to exaggerate the
slip and temperature jump effects which are found in the Couette flow
under squivalent cdndi’cions.

The solutions of the three specific problems, ~ as treated in
Parts IV, VI and VII, point to the conclusion that the high speed slip
flow of a rarefied gas does not differ naterially from the slip flow
at lower speeds, which is adequately calculated by means of the first
order theory. In fact, it is found, in all of the cases considered,
that the second order slip flow theory results in flow patterns which
are interﬁzediate to those caleulated from the gas-dynamic theory and
first order slip-flow theories, respectively, This coneclusion is dig-
cussed more fully in Part VIII,

An experimental check of these conclusions appears desirable, es-
peelally so since the theorstical analysis given here is based on a
number of simplifying assumptions such as are generally made in order
to make the kinetic theory treatable, One such experiment might consist
of 2 study of the concentric cylinder flow whose analytical treatment is
vresentaed in Part VII,

It should be pointed out that the methods of solution presented in
this thesis are quite gen_eral in that they are not confined to the second
order solutions which have been developed in detail, It is believed, how=-
ever, that the results to be expected from e third order theo;'y, and the
simplifying assumptions already made, do not warrant the immense effort
required for the preliminary caleulation of the third approxizrﬁa.tion to

the molecular velocity distribution function.



The symbols and notations used in the text are listed in Appendix I,
The mathematical formulae to whieh frequent reference is made in the

course of the analyses are summarized in Appendix II,
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PART II

THE MOLECULAR VELOCITY DISTRIBUTION FUNCTION

The early form of the kinetic theory of gases, as developed by
Joule and Cleusius *a;as limited by “the assumpbion that all of the
molecules composing the gas move with equal speeds. The experimental
investigations of the phenomena of heat transfer and viscosity, however,
established the existence of intermolecular collisions and hence the
finite size of the molecules, A simple argument concerning the conser-
vation of linsar momentum during an "elastic collision" of two molecules
shows that; even if at one instant of time all of the molecules are
moving with equal speeds, the process of elastic collision will immed=-
iately produce a variation in the speeds of the molecules. To describe
this state of molecular chaos involving a destribution of molecular vel-
ocity and of the direction of this velocity, statistical methods must be
employed.

2.1 Formulation of the Problem

The following notation will be employed to deseribe the state of
the gas in a statistieal manner: let x,y,z, be coordinates of a point
with respect to a set of Cartesian axes fixed in space. The velocibty
components of a molecule with réspect to these axes are § , N s £
(see figure 2.1). The velocity distribution function £( § , N £ X,¥,23%)
is then defined in such a manner, that the numbser of molecules per unit
volume, dN, which at a time t have coordinates lying between x and xhix,
y and ytdy, z and ztdz, and whose velocity components lie between the

limits § and §+df , nand n+dy , £ and S+df , is given by

dN = y(x,yz;t)- FUn, &1,y 2;¢) (dxdydz) -(dSdyold) (2.1)

where V (x,v,2;5) is the total number of molecules per unit volume at the

point (x,y,z) and at time t, PFrom the definition of V it follows that
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o L od
2,2
diquf dé - E(5,0. 60y 2,4) =1 (2.2)
- - .
If m is the mass of onme molecule of the gas, its density @ is
given by

e=m Y (2.3)
The problem of finding the mathematical conditions to which the
distribution function f must be subjected in order that it should repre-
sent the physical behaviour of the gas molecules was investigated suc-

cessfully by Boltzmamn in 1872, He showed that for a gas whose molecules

‘are subjected to the action of (a) the intermolecular forces of binary

elastic collision, and (b) an external field of force whose components

per unit mass are Fes Fy,

be a solution of the integro-differential equation (Reference 2.1)

Fz, the velocity distribution funetion £ must

X 95

o
[&+5803+s2+7 KB +53]0D

(!

= V’a [:clif_ I:o(qa I:a(fajma(g- (£, -4, £) Ga (2.4)

where

—h
u

‘F<'§‘)Q‘; §Ij x'yiz'ft)
‘cha; iné‘zl'xly/zit)
€05, 1, &', vy z;t), etc.

t

h b
ot

This so-called Boltzmamm integral equation is non-linear and has the

.following physical significance, The differentisl expression on the

left side of equation (2.4) represents the chance in the number, (V"F, )

of moleculss at the point (x,y,z) having velocity components ( § , n, s & )

as these molecules move to the point (xtdx, ytdy, zt+dz) during the infini-



1z

tesimal time dt, Since the number of molecules having prescribed
velocity components can be further altered by the process of elastie
collisions, the change in (\’ﬁ ) can also be computed by considering

the collisions of the molecules (§, , v , &) with all molecules

(s, 0,0 & ) during the same time interval dt., The net effect of all

- possible collisions is represented by the inbtegral expression on the
right side of equation (2.4). The velocities of the molecules before
collision are represented by the unprimed velocity components, whareas
the primed quantities are the values of corresponding velocity components,
after collision, The form of the quantities Gyp and dg, which represent
the effect of the orientation of the line of centers of the two molecules
at the instant of closest approach, depends on the law of interaction
between molecules, and will be discussed later., (See also Appendix IIT,
Section 3)

Fquation (2.4) was first used by Boltzmamn to calculate the distri-
bution function £ (§,4, §£) for a uniform gas in steady equilibrium and
in the absence of external force fields, For this special case the
differential expression in (2.4) vanishes and the Boltzmann equation will

be satisfied by the sufficient condition

(£ -£8)=0 (2.5)
This condition together with the laws of conservation of linear momentum
and kinetic energy for elastic impﬁcts results in the well-known Maxwell
velocity distribution

1 hm (§ D)
(60,6 = () e (2.6)
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where

f .
h=z-{—<=,'-. (2.7)
_Here T is the absolute temperature and k the Bolt;mann constant which is
the universal gas constant referred to one molecule.

By means of his "H - theorem" Boltzmann then showed that (a) equation
(2.5) is also a necessary condition, so that the Maxwell distribution is
unique for a uniform gas, and (b) that if a gas is given an arbitrary
initial velocity distribution, the gas. will return to a Maxwell digtribue
tion by means of the process of elastic collisions, if no external influence
are present. Thus, Boltzmann succeeded in showing from dynemic considera=-
tions that a perfect gas actually satisfies the statistical hypotheses upon
which Maxwell's original derivation for fo had been based.

In the general case, when the distribution function f is a funetion of
the space coordinates and the time, equation (2.5) does not hold, and for
the evaluation of the integral appearing in the Boltzmann equation the

quentities G,  and dg must be known. As mentioned above, this amounts

12
to the selection of a "molecular model" with which is associated a definite
mothematical law deseribing the interaction between molecules,

Throughout the development of the kinetic theory of gases, the
molecular models that were used have grown in complexity, ranging from
Clausius's smooth, rigid, elastic spherical molecule to models whose mass
is concentrated at the origin of a spherically symmetric force field,
Whereas %he above moleculss are "smooth"™ and capable only of interchang-
ing translational kinetic energy, the "rough" spherical molecule used by
Bryan can also account for the exchange of rotational kinetic energy when

two molecules collide, A detailed discussion of these and other molecular

models may be found in Hefereﬁce (2.2). The behaviour of actual gas
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molecules will be, perhaps, most closely approximated by the most cone
plicated molecular models, for which, however, most of the calculations
cannot be carried through in practice, Furthermore, from the point of
view of modern molecular physics, the validity of models, arbitrarily
constructed without proper consideration of the molecular structure and
the interaction according to the princiﬁles of quantum mechanics, is
highly questionable, Fortunately, Brysn's study shows that the introduce
tion of "roughness" of the molecules does not alter essentially the result
obtained from smooth molecules, In other words, the difference between
the different molecular models lies mainly in the modification of the
numerical coefficients in the final equations, but not their form, These
numerical coefficients will be, in any case, finally checked and deter-
mined by experiments, Therefore, the most fruitful results of the kinetie
theory of gases have been and can be obtained with the "smooth" molecular
model consisting of a spherically symmetric, repulsive field of force.
All of the derivations of this paper will be based on this molecular model.
If the centers of two molecules are separated by a distance r, the

force of repulsion, 7, will be given by

F(r) = Km' t n>o

, (20’

0

Y
;
7

C

where m is the mass of the molecule and X is s numerical constant, This
force law contains the rigid elastic spherical molecule as the limiting
case for n—-co. When n = 5 the molecular model is called the "Maxwellian
molegule“'which was first used by J. C. Maxwell because of its relative
mathematical s=impliecity,

It is well lmown that the exvonent n of the force law is related to

the temperature variation of the coefficient of viscosity of the gas,
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In particular, it is found experimentally that for many gases. the

coefficient of viscosity, M s can be approximated by the expression,

(/‘%) = (—%) - 0.5 £ s< I.O (2.9)

in which case (Reference 2.3 ) the relation between s and n is simply

4
2s8-1 °

Evidently the lMaxwellian and spherical molecules correspond to the limits

n = |+ (2.10)
on E_given in equation (2,9). This is also showm graphically in figure
(2.2) where F(r) is plotted to an arbitrary scale for various values of
n. The agreement between theory and experiment represented by equation
(2.9) is the principal justification for the use of the point center of
force molecule defined by equation (2.8).

2,2 Hilbert's Scheme of Solution for the Boltzmann Equation

Before proceeding with the discussion of the general solution of the
Boltzmann equation, it is convenient to transform equation (2.4) by re-
ferring the velocity components of the molescule to a set of coordinate
axes moving with the mean mass velocity of the gas. If u,v,w are the
X,¥,2 components, respectively, of the mean mass velocity of the gas, then

by the definition of the velocity distribution function

. oo © @

W(x,y,z;t) =f dff o(q[ dé-§- £(5,0,8;%,52,¢) | (2.11)
- - 00 -

with analogous expressions for v and w. The veloeity components of the

molecules relative to the mean motion of the gas will be dencted by U,7,W

(see figure 2.1), so that



3\

§ =u+1U

n=v+vV » (2.12)

F=wt+twW

The vector sum of U,7,W is called the "peculiar velocity", C, of

e molecules and is, of course, given by

=17 +v +9, (2.13)

After substituting equation (2,12) into equation (2.4), ane may write

the Boltzmamn equation in the symbolic form

f;(ﬁ.) = V‘J‘J‘(\C.'\‘;'\Cn‘a)'ﬁ.a-qLQa-dg

where

(2.14)

;Z E[% +(u+u,)%+<v+‘fl)§y+cw+w)_aai

2 2 :]
+ B 5w, +Fy%:+anw, ,

[ -rar6u sy = Jan a0 oo [ug-(E5s06, , @ao

and

!

fo= £ 00,V W', xy,z,¢), etc

The Yaxwell distribution function, equation (2.6), can be written as

3 - VW)
LmTw) = () e
s |
_ hm% - hmC (2.16)
= (7)) e ,
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because in the derivation of equation (2,6) it was implicitly assumed
that the jas he at reost on the average.

The first rigorous mathematical prbof for the existenée of a unigue
solution £(Y,V,Wsx,7,2;t) of %he Boltzmann equation (2.14) was given by
D. Hilbert (Reference 2.4) in 1912, As the fundamental ideas involved in
Hilbert's ‘proof are also reguired in obtaining the solution £, they will
be sketched helow,

Hilbert used the following expansion for the distribution funetion:

vf = f: [rexy o Pyw o 8] (217

\

where A is an arbl,rary, but constant parameter, ¥, = ¥ (U,V,¥;x,y,z:t),
for n = 1,2,..., and £ is the Maxwell distribution of eguation (2.18)e

The basic concept here is thus that of perturbation theory. The terms of
the series are perturbations or corrections to the basic Maxwell distribu-
tion. MNathematically, the essential improvement to be made is the linear=-
ization of the original non~linear integral equation., The resultant set

of linear integral equations can then be treated with the aid of the theory
of linear integral equations developed by Hilbert himself, Amalogous to

equation (2.4), the notation

will prove useful. Substitution of Hilbert's expansion (2.17) into
Boltzmann's equation (2,14 with subseguent collechion of terms in ascend-

ing powers of the parameter results in
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/"1? [ o - [J‘{;o:;o'a-pm'&z} G CLQZ dg]
+i" [ %.gl(;°‘) - fj{ 'FO'I (o;()ﬁ:‘+ lﬁal) - 'Foi (oz(lﬂr+wta)} GIZ OL.CZ ds]

* [ %:‘, (’FOI lﬂl) - ff{('{:ml Fo«; l{'{nl )ﬁz' - 1Co| Foa "#“ lﬁz)

b o for [H LT~ fuhg [H+2,1)}- 6 dC, dg)

+A[;’%z(£,4§,)-ﬁ{-»-}6,z dc,dgl+ [ ]+ ... =0 . (218

Sinee this eguation must be satisfied for arbitrary walues of A , all of
the coefficients of ).n , i.e., the quantities in the square brackets, must
vanish identically. The coefficient of ;'fz is automatically zero, since
the Maxwell distribution, fo, satisfies equation (2.5) from which it was
derived, Equating the coefficient of -)\L to zero results in an integral
equation for the unknown function Y , since the differential expression
in this coefficient is a !mown function of the velocity components, Assum=
ing that the solution for ¥ can actually be obtained, the coefficient of
/1° = 1 then furnishes ar integral equation for the unknown function ll-g .
and so on. Hence all of the unknowm functions #, of equation (2.17) can

be obhtained zuccessively orovided only thet the set of linear integral

eguations

2040 - [ (80 10} 6 de, dg = 0,

n=t2,3,.. (2.29)

has a solution W = Y ( én DIE §v\-x here represents a knowm function
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of the form § = én-uc*co;“‘f,"‘ﬁ,---,’fﬁ.-l) .
By means of & number of ingenious transformations Hildbert showed

that the set of squations (2,19) could be brought into the form *

(U w)
Fh‘((u|IV|IW;) = a e . *n(ul,‘lllw)

+JK(M‘/V‘JW‘J w,, v, W) K, (U, V,, W) dC,

3

N 123 .o (2.20)

where T 1s a known function, X is a symmetrical kernel, and a is a
constant, Equations (2.2C) are essentially non-homogeneocus, linear in-
tegral equations of the second kind with symmetrical kernel, for the
unknown functions 4& (U,v,Ww). Hilbert then showed that the associated
homogeneous equations, obtained by equating the right side of (2.20) to

. , @ G,
zero, each have the same five eigen-solutions ﬁi = HO {3 =1,2,444,5)

given explicitly by equation (2.21)

)

-E
Il
-

@)

@

% =
]
<

=Y d (2021)
&
=W

(s
R R

= =

* The dependence of the funections Fkﬂ and 4@ on the space and time coor-
dinates x,y,z,t does not affect the nature of the integral equation, and

is therefore not shown explicitly.



Physically, these five eigen-functions correspond to the mass, momenta,
and kinetic energy of a molecule. By the well lmown theorems of Fredholm
(Reference 2.5), the non-homogeneous equations (2.2C) have solutions only
for those functicms F,_, which satisfy the five asscciated conditions of

integrability (2,22).,

f‘f‘@)(K'V'W% F(KLVW) d¢ = 0

i= 12 5

)l-c)

n = i,ZI3,... (2.22)

The physical meaning of these conditions will De discussed in the next
section., The most general solution of equation (2.20,; is *hen the sum of

. ‘ ‘s . _ W .. .
a linear combination of the eigen~functions 4 of its homogeneous equation

©)
and the "particular solution namely
pa n o ® 3

(]
(R VW, x,yz,;t) = ¥ (WVW, X,y2z,t)

5 @) )
r 3 C,(xyzt) - ¥ (W, V,W)
}:l

n=+L2a,... (2'23)
Consequently, equation (2.17) is solved, in principle at least, Hilbert

also showed that the solubion (2.23) will be mique if one specifies the

values of the following five n integrals at same dofinite time + = to,

and for all voints of space x,y,z:

@® o
H (WYW) - £ (VW) - KR VW, (xy 2,8 dC

@

= Hn(X,)’,ZJ-{zfo) s 3‘2 L2, ...§

h= ,2,... (2.24)



It should be noted that Hilbert worked out the details of the above
existence proof for molecules which are rigid elastic spheres, However,

- the nature of his arguments was sxtended to other elastic smooth molecules
with spherical symmetry, such as those defined by equation (2.8), by

A. Lum and F, Pidduck (Reference 2.6 ),

2.3 Procedures of Solution

Before we exanine the physical interpretation of Hilbert's solution
of the Boltzmann equation, it will be convenient 4o transform somewhat
the pertinent aquations (2.17), (2.22), (2.23), and (2.24). The final
form of these equations, also leads directly to the methods of Enskog,
Chamman, and Burnett for the explieit calculation of the non-uniform
velocity distribution function. Substitution of eguations (2.23) into

the Hilbert expansion (2.17) results in

o © 2 n s oW -
wf) = -)'Tﬁ[H' nZn‘ln'ﬂ + g.lch g (2.25)
s =l PR .

Let dJ‘L’(U,V,T."I ) represent the complete set of orthogonal eigen~functions
associated with the symmetric kernel K(Ul,Vl,Wl;UZ,VZ,Wz) of equation (2.20).
The particular solutions Hf:o), n=1,%,..s, of equation (2.25), as continuous
functions of the velocity components, may be expanded in terms of these
eigen-functions, The eigen-functions 1{‘(‘) of equation (2.21) belong to the

]
set § , so that with the notation

03] @)
¢ = ¥ for izg = L2,...,5, (2.26)

equation (2.25) can be written in the form

izt

b= ve[1+ 220 ¢ ]

(2.27)
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()
where the coefficients @, are functions of the space and time variables,

This may again be written in the final form

Vix,yz,t) - $(UV, W, x,y2;t)

® d] .
= 'i" ‘Fa(u,v;w) [ [+ Z: b C)‘-;y,z,'f) ’ ¢“)(LI‘,V,W)J (2.28)
where
© z noo
b (X,Y,z ;‘t) = ZI A Qn (X;)’,Z.;f) . (2.29)
h=l '

The deduction of equation (2.28) requires that all of the series involved
be uniformly convergent, which fact was established in essence by D, Burnett
(Reference 2.7 ).

As was pointed out by Hilbert, the 5 n conditions of integrability,

equation (2,22), are equivalent to the 5 conditions of equation (2.30),
#) Pl
fl'u (U, V,W) Dt [V(X,Y,Z;f)' F(V,V,TA/; x,y’zii)J OLQ = 0O

for 4= 1,2,..5. (2.30)

Tt will appear later on, as first pointed out by Mexwell, that the evaluation
of equation (2,30) will result in the hydrodynamic equai':ion of continuity
for j = 1, the Tulerian equations of motion in the x,y,z directions for

J = 2,3,4 respectively, and the energy equation for a perfect gas for j = 5.
The functions ’I‘m were defined by equation {2.21). Physically this means

then that any dynamically correct configuration of discrete molecules of a

gas - that 1s one whose velocity distribution funchtion satisfies Boltzmann's



equation - must be so constituted that any macroscopic mass of this gas
will be subject to the laws of conservation of mass, momentun, and energy
.which aonly to the continuun of classical hydrodynanies,

Finally, it can be showm that the set of 5 n conditions of unigueness

equations (2.24), is equivalent to the following 5 equations:

| @)
[ wrw) £(Ruw, 2,20 de = H (nyzb)

for 4= 1,2,...,9. (2.31)

4

Actually, the values of H@) are not arbitrary, because of the restrietions
which, for convenience, have been imposed earlier on the distribution funce-
tion, and on the velocity coordinate system, namely equations (2.2) and
(2.12). Consequently, the following conditions will specify the distribu-
tion function uniquely:

0

H = {. d¢ = 1
Hm - fu”‘-‘igg ﬁ=05 H(‘ll= V:O ' H(‘”:W:O (2.32)

H(s’ = jczfd_;g = Cz(xIY,z;t).

The bar over a quantity means that this quantity has been averaged over all
velocity components of the molecules at the point x,y,z, and time £, It is
well known that for a uniform gas the absolute temperature T iz related to

the mean square of the molecular velocity by

pr 3kT 3
C — T (2.33)
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where h has already been defined by equation (2.7). It is both convenient
and logiecal to define also the temperature in a non-uniform gas by equation
(2.33 ), wheres C is now the "peculiar velocity" of a molecule defined by
equations (2.12) and (2.13). Physically speaking, this temperature is the
one that would be measured by a thermometer moving with the mean mass vel-
ocity of the gas. The above definition is evidently consistent with the
concept of the static temperature as commonly used in aerodynamics, There-
fore, the significance of equations (2,32) is that the state of the gas is
uniquely defined by equation (2,28), if five macrospic guantities, - namely
the density of the gasle , its absolute temperature T, and the three com-
ponents of the mass velociﬁy u,v,w, = are each known as a function of x,y,z,
and %,

Mothing has been said, as yet, about the choice of Hilbert's arbitrary
paraneter A , first introduced in eguation (2.17) and still present in the
final resul:, equation (2.28). It can be shovm (Reference 2.8), that a
particular choice of A merely affects the way in which the various terms
of the expansion (2.28) contribute to the sum ¥ which itself is entirely
independent of A , The fact that the importance of the deviation of the
non-uniform velocity distribution £ from the uniform distribution function
fo increased with a decrease in the density @ of the gas was discovered by
Maxwell, D. Enskog and S. Chapman (Reference 2.9) used this fact in their

selection of the parameter A , namely

| A
A=y (2.34)
where as before ) is the number of molecules per unit volume, For rarefied
gases, in which, however, the number of molecules per unit volume is still
sufficiently large, the coefficients go of the expansion (2.28) may, there=-

fore, be calculated to any desired degree of accuracy by replacing the



infinite series (2.29) by the finite sun of ¥ terms

; N ;
o (X,5,2;t) = HZI('»I’)“ G (RYZH) | (2.35)
s .
BEquation (2.35) alsc shows that the gquantities Q” can depend explicitly
only on the Space and time derivatives of the mean motion variables
u,v,w, @, T since for a uniform gas equation (2.28,; must reduce to the
Yaxwell distribution function,

3oth Enskog and Chapmann, using for the functions ¢¥Lequation.(2.28),
the products of various powers of U,V,W and 62 succeeded in evaluating the
coefficients QO, (2.35), to the first order, ¥ = 1, the labor involved in
calculating better approximations being prohibitive,

In 1935, D. Burnett (Reference 2,10, 2,11) discovered that the mathe-
matical complexity of the »nroblem can be considerably reduced by using for
+the functions q;“the product of spherical harmnonics in the peculiar velocity
and the so=called Sonine polynomials of the argument C2, This enabled
Burnett to devise a general method for the calculation of the coefficients
G” for arbitrary values of W, However, the labor involved for ¥ > 2 is
still stupendous. Consequently, Burnett calculated only those coefficients

Bw , for ¥ = 2, which were required for a calculation of the stresses in
the gas, in which Burnett was »rimarily interested,

It will be seen in Part V of this paper that for the svaluation of
the boundary conditions for the slip flow of a rarefied gas, all of the
coefficlents GP mast be known, Therefore, the first task of the present
study will be the complete computation of all these coefficients, Burneti's

form of the distribution function, will be used in the subsequent parts of

this investigation, and the method of calculating the unknown coefficients



will be outlined presently,

2,4 Method of Comnutation Devised by Burnet:

It is Tirst convenient to express the cartesian velocity components

in stherical nolar coordinates., According to the notation of fijure (2.1),

the transformation equations are
U=Csin® . cos ¢

V=Csing . sin¢ ¢ (2.36)

W=~ cos 8

-
so that the veloecity distridution may now be expressed in the form

£(U,V,W; x,v,2z,53) = £(C,e,d; x,y,23%) (2.37)

Burnett writes the expansion for £, equation {2,28),in the form

fF(C, 0,9, x,¥2;t) =

nzo

Z (n) .
‘Fo(hm CZ) {ZI ﬂ! r‘(n“'%) AH(X,.Y,Z,-f) ' Sé (th)

o0 Lg T = n}
+ 2 (lw«)E [% n P(K+n+§')'x‘n(c, 9,4’,-x,y,z,-i)~SK ,(hmcz)]}. (2.38)
k=i z0 'PE

o
]

The general solid spherical harmonic function YM is def'ined by equation
(A.1) to (A.4) in Appendix II, Section 2, The symbol S::, denotes the
Sonine polynomials, which are defined by equations (A.44)or (A,.53) of
Appendix II, Section 6, where other important properties of these poly-

nonials are given by equations (A.45) to (A.53 ).

After substitution for fo from equation (2.18) and for Ykn from equatiors
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(A.1) to (A.4), equation (2.38) assumes the more explicit form
f(C,0,0 ; x,v,2;¢t)

m 20

K

+ Z (hmcz)

K=

2 .n ct n
(b_"}.)z " [ n! ['n+ed) A, (2 y,2:8) - S(th)

vxl Miken+ 2). S (hmc) [Bm(" ¥.2,8) - R(coso)

€ e (c-8)! &) @ @
23 ED) o) {BK,‘(H,Z,-ﬁ)- cos(pP+ CKn(x,y,Z,-t)-sin@@)}ﬁ(wseil (2.39)
e

Some important properties of t he Legendre mnolynomials PK and of the asso=

¢}
clated legendre polynomials PK are sumarized in Appendix II, Section 3

and 4, respectively. A comparison of equations (2.39) and (2.28) shows
that the non-uniform distribution function £ is expanded in terms of the

. & *
funetion ¢ of the form

@ K n)
) cos(pe) 2
& (C,0,8) = P(coso -{sznw + C o SppylhmC)
(2.40)
. @ @) . N
The quantities B, , Byn , Cen » Whichwe shatl call the
"Burnett coefficients", correspond to the coefficients b (x,y,23t) of
equation (2.28)., According to the discussion leading to equation (2.35),
the Burnett coeff'icients may then be caleculated to the desired degrec of
accuracy, by choosing for N the value appropriate to the density of the
. gas, whose state is to be represented by equation (2.39)., Moreover, the

Burnett coefficients,a s functions of the space and time coordinates, will

depend explicitly only on the five "wvariables of state" of the gas,

@)
* The notation ¢ for a function will not be used hereafter, so that the

use of ¢ for the azimuthal angle will not be confusing.



(€ T,u,v,w), and their space and time derivatives, in accordance with the
discussion which followed equation (2.33 J)e In the remainder of this sjection
" the distribution function will be considered at a fixed point _(x,:f,Z) and
a definite time t; thc. Burnett coefficients can then be treated as "con-
stants", and their dependence on (x,y,z3t) will no longer be indicated
explicitly,

Equation (2.39) must satisfy the five uniqueness conditions of equation
(2432 ). As shown by Burnett, the use of the orthogonality relations (A.16),

(A.30), (A.47) reduces equation (2,32) to the five equivalent conditions

(2.41), respectively.

\
A =1

0] _

109 L

)
c. = 2,41

10=0 ( )
Byg =0
A, =0

J

In addition, the distribution funetion must satisfy the five conditions of

integrability of Hilbert, equation (2.30), As can be seenf ram the equations
@

in Appendix II, Sections 2 and 6, the five eigen-functions Y of equation

(2.21) are in Burnett's notation equivalent to equation (2.42).

-

()

¥= ¥, (c0,¢)- S;(hmcz)

3 1) (o 4 © o
e l S‘,. o Z(l)S: IFU= Yl. S‘_.’ X (2.42)
2 2 z
s} )
¥ = ¥ s, .
e ] )

Consequently, the distribution function (2.39) with the restrictions (2,41)



29

is a useful representation of the state of a non-uniform gas, provided
only that
(a) the conditions of imtegrability (2.30) are satisfied by (2.39)
and (2.42);
L. @ (9]
(b) the unknown coefficient A s Byns By Oy can be calculated as
functions of (x,y,z3t). Burnett's method for extablishing con-

ditions (a) and {b) will be outlined below,

The poiat of departure is again the Boltzmann integral equation,

which in the notation of equations (2.14) and {2.15) is *

[ (el & v (v E + e W) & ] (04)

= Va j[({‘t‘;al’ 'Ft'(z)' 6(2. 0_‘.92' ds . (2'43)

Multiply equation (2.43) by an arbitrary function Ql, of the peculiar

velocity components,

Ql = Q(U]_, Vys Wl) (2.44)
end integrate both sides of the res{zlting equation over all values of the
velocity components Uy, V,, Wl. By means of some partial integrations

the result may be written in the most convenient form

* The terms containing the body forces Fo» Fy’ F» have been neglected,

This procedure is Justified in Appendix III, Section 1.
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’ 85 95 9_:0.' 9t é:o-‘ 561 éé—..
V['BT'+ w 5;‘+v;y‘+w5-2— ‘“ax‘VSy"Waz

: 22 |, 2/viTal)e 2(viTa)s 2(vWa
- ulg_g -V g-;? - W, g—i +5;(VHIQ‘)+ay(VMQ)+ az(VWQl)

- A [ ey ah 6, de, e, g (2.45)

The notation used here is analogous to equations (2.,4) and (2.15);

as in equation (2,32 ), the bar denotes an average valus, namely

0 o
FE = f f f FCu, v, W) - (U, V, W)~ d U, AV AW ,

e (2.46)
Equation (2,45) was first derived by Maxwell and is frequently called the
Maxwell transfer equation., Its physiecal significance is entirely analogous
to the Boltzmann equation (2.4) or (2,43 ). The left hand side of equation
(2.45) represents the net change, A(Z Q) in the sum total of the property
Q for the V (x,y,z,t) dxdydz molecules during the infinitesimal time dt.
Since any changes in Q, AQ, are brought about by intermoleeular collision,
A( 5 Q) can also be determined by summing up the effects of all the eolli-
sions which ocour during the time dt; the latter idea is represented by the
integral on the right side of equation (2.46),

Burnett chooses for Q(U,V,W) functions of the type

(7]

QR = Q, = (k+ T (hm)

Ky

o~

£ P ) .
’ yk (C,6,6) SK#(th ), (2.47)
2
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which inelude the important sigen-functions lf‘mof equations (2.21) and
(2.42) as special cases. The various averages occurring on the left side
" of equation (2.45) can now be caleulated by performing integrations of
the type (2,46) by using for £(U,V,W) its value given by equation (2.39)s

The simplest examples of the expressions thus obtained by Burnett are

) ()
ke = By

———

©) ] | ( 3 ) 0]
u ri = V”'Tv; [2K+3 { K+t’+a) BK-HJY - BKH,T‘I}

()] 1) 0
- { BK'i,f - ((+1) B( J D,::

2Kt K-, #1¢
N 2Vhm qu _‘Dw 2w
Uox Qe = 31?:3—{ ok “katy-t ¥ 7 ﬁDK.:,r}“‘---
L. 2h
t % {((+2"K) DK’(. - Dk,r—l } ) (2.48)

Substitution of the expressions (2,48) into equation (2.45) reduces

the Mexwell transfer equation to the form

}

®
V[mcuncf. (u,vw,h y . 2%
K,T ’ ’ ;BX,

(%) ®) @
2
st, Cos , i((st),... E%(Ces> ; efc.)_-]

®
= y.‘a fff{(aﬂ')a - (Q(:r)n} 'F‘ (a ’ 612' oi.gl 0—(—Ca "‘3 (2.49)

2

whe - <
ore k-2 & £ £ ke2 | (-2£sbree . prsgspel.

In order to evaluate the complieated integral of equation (2.49), a

specific molecular model must be selected in order to specify the "eollisiom
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paraneters" G._ and dg., Burnett succeeded in evaluating this integral for

12
molecules which are point centers of forece, and which repel one another
according to the law of force of equation (2.8), The details,of Burnett's
calculation are involved, and even his final results are too lengthy to be
reproduced here explicitly. However, certain details of such caleulations
are given in Appendix III, in commection with the author's evaluation of
certain coefficients not previously determined by Burnett.

It can be shown that the integral on the right side of equation (2,49)
venishes for the special molecular properties GiZjU;V;W), equation (2,47),
which are definsd by
(&) ¥X=0,r=0,p=0
() k=1, r=0, p=10,1 (2.50)
(¢) k=0, r=1,p=0

@
This means mathematically, that the functions @,

as defined by
equations (2.47) and (2,50) correspond to the eigen~functions ng)of
equations (2,42) and (2.21), and that Burnett's expansion for the distri-
bution function, equation (2.59),satisfies the conditions of integrability,
equations (2.30), It will be seen that the integral of equation (2.30) is
an abbreviated notation for the right side of the Maxwell transfer equation,
equations (2.45) or (2.49),

The physical interpretation of the above result is, of course, that
the total mass, momentum (in three directions ) and kinetic energy, are not
changed by elastic intermolecular collision, Consequently, the Maxwell
tranfer equation reduces to the equations of econtinuity, momentum and
energy for the méan motion of a non-uniform gas, when values of equation
(2.50) a,b, and ¢, respectively are substituted, These fundamental equations

are stated eiplicitly; and discussed in some detail in Part III.



In the general case, however, that is for an arbitrary molecular
property Qps the integral on the right side‘ of the Maxwell transport
equation (2.49), is a non-vanishing function of the Burnett coefficients.
‘The evaluation of this integral is made much simpler by the use of Sonine
- polynomials, Burnett shows that after evaluation of this integral for

arbitrary values of k and r, equation (2,49) takes on the form

«
@ G @ ]
u 2 \
[F“nCtncu,o-t)hj axj.,.,%tb ] BISJCES ; a_x' B.ls)j"'J etc.) Kr

©)
€,6) @ @ " ¢
@)
=V [: 2 (m { Ben B+ } ‘]
KI’KZ( K) K“'KZ K‘ﬂl Kznz CKlnl Ckzng ) Kr .
nlJ nz r) n,'ﬂz
€, 6

(2.51)
The quantities M are numerical constants which differ from zero only when

its indices satisfy all of the conditions (2.52).

LITa

5

K= [Ke-Kl+ 2n , n= 0,123 .. (2.52)

In the notation of equation (2,51) it is to be understood that

) ()

J os

B

In the sense of the discussion leading to equation (2.35), the exact

equation (2.51) may be approximated as clossly as desired by neglecting all

N
terms of order higher than (’f;) + This means that the sumation on the

| \N#I
right side of equation (2.51) must contain terms of order (‘)';) or less.

From equations (2.41), (2.39), and (2.35) it follows that the coefficlent
Boo = Ao = 1 is the only coefficient of order N = O, since the term in f,

equatioﬁ (2.39), containing Ao corresponds to the Maxwell distribubion,.

Therefore,reduction of equation (2.51) to terms of order N = 0, results in



(0,)

[-Fumcﬁ ( L2 at)] = V[KZ;: ( m"‘”‘z | A"'Bkz";)]m’ . (2.53)
n, yon;
Evidently, if the transport functions ri of equation (2.47) are used for
all possible values of k and r, equation (2.53) constitutes an infinite
set of linear algebraic equations, from which the same infinite number of
unknown coefficients, 1Bk2 can be calculated. The prescript (1) denotes
the fact that the coefficient Bk ny »i8 here accurate only to terms of
N=li
order ()';') .
Equation (2.53) leads to the determination of the "basie" Burnett
)
coefficients, By s only, However, the "associmted" coeffiecients, B“’ and
@ . 1l kr
1Ckr are readily caleulated from the basic coefficient, by the following
method of rotation of coordinate exes. Since the distribution fumetion,
equation (2.39) is valid for any values of (C,8,¢ ) or (U,V,W), it must
also hold for the special case U= V1= 0, W' = C. From the equations of

Appendix II, Section 2 for the spherieal harmonics, it can be seen that

=%, v'=v' =0)=B_7v (¢c'=W, U =7 =0) (2.54)

(2.54)

1 €

If the coordinate axes are now rotated, equation (2.54) may be expressed
in terms of the new eoordi.na.tes X,¥23U,V,W with
~0'2= R +vE 4,
Equation (2.54), expressed in terms of the primed coordinates can then be
arrenged in the form of equation (A.1), Appendix II, The associated Burnett

coefficients B]m’ Ck:n are then simply the coefficients of the guantities

(K-@} k-0
e el Yf(U.V,W) and 2 (K+6’)'Z (U,I,W) respectively. The

success of this method rests, of course, on the fact that the general form

of the expression for the distribution function must be the same for any



35

system of cartesian axes., The above method is illustrated for the case
k=3, n=1 in Appendix IITI,
As all of the Burnett coefficients are thus knowm up to terms of order
, evaluate the next approximation to equation (2.51), which for N =1

is of the form

. @ W
[F“"Ct'(“""'h ; %,...,3{‘ st ) zs ; D%( BZS) etc‘)-]xr

i1

{0,0)

= V [ Z ( KOK ° ;Bkanz)

ron,_
(f=6) (01 (8) @ @
+Z(mKKK { Kanncn +|CK(n,.C«<zna} KY .
K, Ke i, n (2.55)
NN, :
Fi=6;
The only unknown quantities appearing in equation (2.55) are the second

F]
[
order, ()-;) s approximations to the basic Burnett coefficients, namely

2"kpny’
Consequently, if equation (2,55) is evaluated for all values of k and r, one
has an infinite se’c. of linear algebraic equations for the determination of
the coefficients 5B... As before, the associated coefficients ZB;:;’ 20(::'
are obtained by the method of rotation of axes.

By continuation of this process it is thus possible to calculate all
of the Burnett coefficients accurate to terms of order (—f;)NH by evaluating
the integrated form of the Maxwell transfer equation, equation (2.51), up
to terms of order (J);')N. Thus the calculation scheme of Burnett, as outlined
above, is the most convenient method yet devised for actually computing the
solution of the Boltzmann equation whose existence was Pirst established by

D, Hilberte

2.5 ZResults of Burmett's Computation

(6,6)
Actually, the formulae fram whieh thne numerical constants m K K, Kq
rnn,
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are calculated are very complicated for molecular models whose force of
repulsion varies as an arbitrary power of the reciprocal of the molecular
separation, equation (2.8)., For this reason, Burnett gives explicit for=
mulaeé only for the two limiting cases of (a) rigid spherical molecules
(n = 00) and (b) Maxwellian molecules (n =5),

For spherical molecules, Burnett found that the first order coefficients

1Bkr differ from zero only for k =1 and 2, The basic coefficients were

found to be
' AN o 2h
= x _3— - ] m— e
|Bu = - |, 009 E(P) hm 22
B. = . 048 By q (2.56)
B, = .004B,
\jB“+ = . 0002 B,
ete, -

S2E) (2 ¥-5%5)

\vs)
"

1720
feed 2.57
B, = .062 B, | (2.57)
B,, = .0043 B,,
B,, = - 0003 Bso
etc.

~J

In the above equations M is the coefficient of absolute viscosity
of the gas; its signifieance will be discussed in Part III., The parameter
‘,‘i’" is contained in % s 8ince the pressure p is related to the number density
by the equation of state

-

sz'él?f"r . (2.58)

For spherical molecules, the assoeiated first order coefficients are given



37

by equations (2.59) and (2.60):

.

- LB(E)Y L — 2h ) 34y 2k
lBll = - 1.009 -3 (?) h{pm X lC,: = - L0099« 3 (1:).., Y
_ ) {1 ()
B;z - 04’8 zBlI ‘Cl'z = 04’8 lC“ - (2'59-)
ete, ete.
A
B = -26(%+%) ¢ -GN %)
20 -~ C\P 9z X7 ~20 = 7 P/NOL " oy
@) ~ m _ v a ' Ky %
20 = T 4'(1’) ( 5 ay) ; lCao = - 4(4’)(9J MEC (2.60)
0 w
'le = . oéa I.BZO s e‘bc. ~

The rapidity of the convergence of the two sets of coefficients for
spherical molecules is apparent,

For Maxwellian molecules, the eguations for the calculation of the
constants Wl assume the simplest form, In fact for this type of molecule
the summation of the unknowm coefficients in equations (2.53), (2.55), ete.
redueesto a single term of the form m(ok A NBlcr , 50 that each coeffi=-
cient can be calculated from a single equation. Thus for Maxwell mole-
cules there are only two basic fist order czoeffioients, namely lBll and
1B20. The complete set of first order coefficients for Maxwellian mole-

cules is given by equations (2.61) and (2.62)1



B ,=-2 () Wi 92
> (2.61)
R N /A Q. 0y 3y 2h
g = "a(P) hWhm 2%, IC" = -2 (?) hfhm oY
B, = -26)2%¥-%-%)
20 X (2.62)

\

w v L w r
Do) (B, -2 (B Ty

B = -4(5(%-%), &=-46)5+%)

20 1

1

~

In physical terms, it is apparent and will be shown more expliecitly

(] (4}
in Part III, that the coefficients _B., and 1Bag represent the components

1711

of the heat flux vector and of the stress tensor used in the treatment of
the hydrodynamics of a continuum. Hence the velocit& distribution of a
non-unifeorm gas is completely determined, to a first approximation, by the
stresses and heat conduction in the gas, This fact accounts for the great
similarity in the expressions for the first order coefficients for the two
molecular models disceussed above. However, it must be remembered that the
explieit expressions for the coefficient of viscosity‘/( are different for

different molecular models, as is implied by equations (2.9) and (2.10),

2.6 Additional Coefficients Computed for Maxwell Molecule

Burnett was primarily interested in ecalculating the stress tensor
1) £)
accurate to terms of order (V) s OF 6;) » BHe therefore evaluated only
.. o {2) )

the coefficients ,B,., By, ,eees oCpq bY means of equation (2,55), for both
spherical and Maxwellian molecules. For the evaluation of the slip flow
boundary conditions, diseussed in Part V, all of the basic coefficients
2By and some of the associated coefficients are required. It was shown

by the author that for Maxwell molecules there are only a finite number

of coefficients'szr. Since the labor involved in caleulating the infinite,



though convergent set of second order coefficients for spherieal molecules
is enormous, and as both the spherical and the Maxwell molecule. represent
. the same order of approximetion to the molecule of a real gas such as
nitrﬁgen, (see figure 2,2), the author has evaluated these seclond order
coefficients only for the Maxwell molecule,

For the Maxwell molecule, the pertinent equation (2.55) takes on the

more explicit form

ey

.; [‘Funcf (u )%“”%; B(ﬂ Cu) B . B C(n

IO bt Ty 9 2000 120

(21
%(nBu))... 3%' etc )]Kr

rzo
{0,0) f:!
= [mkox 2BK|" +fz",m|;::{ ILIJ [:MJ}

e 5y (BB« (e S M (LT, e

By examining the expressions of the form of equation (2.48), of which

the left side of equétion (2,63) is composed, one finds that

[ funct. ( )j « =0 for all velues (2.64)
of (k,r) except -
(k,r) = (0,2), (0,3); (1,1), (3,2)5 (2,0), (2,1), (2,2);
(3,0), (3,1);5 (4,0)
It can be shown from the general form of the expressions vfor the
constants m, as given by Burnett for Maxwell molecules, that these constants

satisfy the sufficient conditions of equations (2.65) :



*
mKH = 0 unless (k,r) = (0,3), (2,2), (4,1), (6,0).
il
)
< m , =0 uless (k,r) = (1,2), (3,1), (5,0). (2.65)
| ,
vio
(9]
ka2 unless (k,r) = (0,2}, (2,1), (4,0).
yoo

The oalculations required for determining the numerical values of
the constants Il is illustrated in Appendix III, Section 2 for (k,r) = (3,1).
The velues of those constents lwhich according to equation (2.65) may not

(0,0}
vanish are listed in Table 2.1, The values of | ok Which are required for

the calculation of the corresponding coefficients :gkr are also included
in Table 2,1,

From equations (2.64) and Table 2,1 it follows that only the ten basic
Burnett coefficients of the second order, ZBkr’ which are included in the

array (2.66) do not vanish for Mexwellisn molecules.

ohos ofiz
2B13, 2B12
2B20s 2Bs31s 2Ba2 S (2.66)

2Bz0s 2831

.1

2Bao

o

From equation (2.63) and Table 2.1, all of the second order coefficients

(2.66) can then be expressed interms of the variables (u,v,w,h,y ), their
: @)

space and time derivatives, and the first order coefficients 1811000 1020.

By the use of equations (2.61) and (2.62), the coefficients 5By are then

finally expressed explicitly in terms of the mean motion variables (u,v,w, h,” )

&
and their space and time derivatives., The associated coefficients 2Bk'r are

again calculated by the method of rotation of axes.
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The values of the 46 second order coefficients, szZ,'which form

- the complete set for Maxwellian molecules are given on the following
pages, by equations (2.68) to (2.113). ‘A comparison of these equations
with the expressions (2.61) and (2.62) for the first order coefficients
indicates how rapi&ly the algebraic complexity of the calculations ine
creases with each successive approximation, even for the relatively simple
Maxwell molecule, For this reason the next approximation, represented by
the coefficients’sB:i has not been determined,

The following standard notation has been used to abbreviate the ex-

pressions for the coefficients:

D _[2 2 2 2

2 M2
+<%z-37v) +<%f+§;)}] (2.65)

- - B B R



2B11 (/{)h hm 37- * 7{»9— [V t(vh Thm az
-%m{c%%+%¥>% G ¥ feE R P
(B (% gD 2 (G [ ¥ )

oW _ l7_|____ aw_&_&
+ S nGmles -5 %J)}+/5hm BCE-%-2)

2y
6 L [2h 2w, U 2h (2w u
+ 3 hm{ax (5x+5) + ay(ay 81)}
(2.70)
' oh w . 2b Bw ]
* Vo (5 5K+ % %)
Q]
2811 is obtained from 2B11 by cyclic substitution,
XY, Y2, 2—X; U—V, V—W; W—ru; (2.71)
)]
oCyy 1s obtained from 2B11 by eyclic substitution,
X—>2, y—*X, 2 ¥; U—W, V—> U, W—> T, (2.72)
3 ?)W 90( 3(4 DW
2B1z = -5 r—— [2 2% ) 3 (2.73)
+3 Dy 'ai"' Y, )]
) ) M _ ¥ _ dw
2P12 = (? h e L © ax(a "3y oz 33),( (2.74)
u aw]
+ 3 az( 32T )
C(i) _ 2(_/1)2_[———- [a&(aa ) 3 Qy (2.75)
2022 = -5 (5 Wam L2y @5 - 5 - y

e
+ 3 31(3" W)]
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2B20 = (—g) (2%“'"' + [%(5)%:(% [23%-%- 9-7)

t 2 aM,Z
+‘9'(%) {2(3 55 -% - )+3(az+ax)*'3( ?y)

-6 (53 -3 W} -GS (GBI BT

P
(2.76)
oo = - o(8) (B2 [ F B (FI%F)
¢ (23
+%(’1€) { 3Z+‘5' T*ax) - 3(97—""91‘ (2%/‘32'97?)}

2ffomw v VU WY W W P4 W a_g__}
'a(f){axaz Bxaz+%731) (5 5% 5 % th oz

7m {az<sﬁ W)*'?x %‘)”

!
w
Bix

(2.77)
(1)
2Cag is obtained from 2820 by making the substitutions,

XY, Y—rX; U—>»V, T—rU (2,78)



@)
P = - #E)(2-Z) + 4B BEIE-E)
| 2 | 2 2
) {3(F %) -3(%F)
-4 (F-2)(y-¥-¥)]

ol (- @) - 23

(2.79)

(2.80)

2 2 2 a
e G {5CH-F8) (WD)

2 2u 2 e .
Sa(2-%F -2 (33} (2.51)
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-2 (2%~ g?”’ﬂ}]

(2.82)
@ . . N
2021 is obtained from 2Boy By making the substitutions,
XY, ¥ X3 U=V, v—ru, (2.83)
@ 36 l L 2h 2/ 4 2k
P = [ ¥ 5 oo {&(% ﬁ)’ay(h ay)}
6 (AL { 2h Du _ 2k Dz}
+ 7 (f) ox pt. oy Dt

(2.84)

2 Dy %h
x pttsy %}

51—

-8 (B {3 @ENF R

SCE A B €22 )Y .



("’f“)z -2(2) ] (2.86)

h

P2 = - 0.4166 (£) 2= () & 2
w 2 h h

Pz = 2.500 (5) g 2% | (2.87)
Q)

20ap = 2.500 (1,) T 39—7_“ % | (2.88)

2 2h 2 2

2 = 2500 (&) e [(3)-B)] .00)
@) Q_l, h

222 = 4999 (& ) _— 2 (2.90)
. 2

2850 = i (‘1’;) [2 Vim { B¢ (2 % - %‘2‘ 3; %‘6%4' %)

St (R CEER -2 R
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0] 0] '
2Czq 1is obtained from 2330 by making the substitutions

X>Y, y=>X; u—v, v u

w [73 _! 24
i (BB B BB T 2R}
+_;_‘_ {%[r(?ﬂ av)J+ aayfv__%aw 2&)_‘[

celE @} ]

(2.95)

+7{%¢[mx )

(2.96)
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@

2Cs0 = 8.(%)2[2(\4—;{%%(%*%) +DV ’%\()}

i (B 5%}
+\:'{5a§[v“"< )]4——-%%‘-- )J}]
(2.97)
2%1 = - 0.6000 (%)am[ gh (50w, % - 2)
-F(F ) - +%)]
(2,98)
zB(:ri)l = - O.6ooo(§)a;‘—ﬁ;[%(49w 3 2)
SE(EH B (FR]
(2.99)
20;)1 - OGOOO(%)Z-':‘E‘;—[%(AFW 3ay %

(2.100)



_ h/aw | a2«
(2) Mg | '_a_( ow )
2Bs1 = - 6.000 (‘P) h{hm [ oX L ox T 2z

(2.101)
¢ 2h s aw 2v) -
@ £y 1 = ( w3z
2V 4 Ju
25(@”’4' g’;) + g‘)ih(w'fay)]
T ooy M
(2.102)
(2, )]
- vy \sp 3X
ng = - {8,000 (ﬁ) hm[a‘h( ax a:/ Y~ 2y
(2.103)
= [ B (e + B(2-3)]
) L 2h s Qu
20(21 = - 18.000 (5) i L X (S v 5) + 5y
| (2.104)
-2

'4(3 'ax)' 4( +’%ﬂ)

? a’ 9\/)] (2.105)
+ (ax 5’
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(0}

B0 = - 0.6486() [ (F+2)(%+¥)
+ (3-ax+ 4%)( %Viv)]
(2.106)
W 2
%0 = - o. 64—86(%) [(% aw*g’z
. (% +s%§-4%)<§;+g¢ﬂ
(2.107)
@
B = 3.892 —) [(BF-@)+ (%)
. » au, QV)]
'-(%‘y""az)"'?-az
(2.108)
(2} 2
240 = 3,892 (%) [(2%/’%%'%/)(%%*%(
r2 (BB +2) ]
(2.109)
@ 2
2B = 2T.24 (1‘%) [(%‘%)(%*%‘%)

(BB (%Y ]

(2.110)
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® 2

o = enea (f) [(HeB (B3

F(F-BER]

(2.111)
@) 2 2 9’—3
o = S48 (5N [(%-8)-(%-%)]
(2.212)
@) 2 qu
e = 10836 (Ef [(2-ENF3)],
(2,113 )

2.7 Discussion of the Results

The result of the preceding calculations may be sumarized as follows:

If one substitutes the values of the coefficients as given by equations
(2.41) and (2.68) to (2.113) into Burmett's form of the velocity distribu-
tion function, equation (2.39), setting all other coefficients which are not
listed equal to zero, the expression so obtained is the approximaetion to the
distribution function for Maxwell molecules which is accurate to terms of
order (—l);)z or (/g_)a .

Tt is evident from equations (2.68) to (2,113 ), that the terms of the
distribution function which are of order (g) contain only first deriva-
tives of 'Ehe meen motion variables (u,v,w, h Y ), whereas the terms of the

2

order (%) contain either second derivatives of these variables, or the

produets of two first derivatives. The reason for this lies, of course, in



the basiec strueturé of the Boltzmamm integro-differential equation. It

was seen that a consideration of the terms of order (%)o results In the

- Maxwell distribution function fo’ for a uniform gas. Terms of the order

ﬁé) will account.for "small deviations" from this basic distfibution,

and since small deviations from a uniform state of a gas, can be completely
described by the gradients of the variables of state, the inherent associa-
tion of the factor e%)'with first order derivatives is evident. The exten-
sion of this argument to the higher order terms of the distribution function
coefficients is obvious, It follows, furﬁhermorq,that the pressure regime
for which the second order terms of the distribution function are of signi-

ficance depends on the magnitude of the velocity and thermal gradients

which are present in the non-uniform gas.



PART III

THE MACROSCOPIC DIFFERENTIAL EQUATIONS

OF MOTION

The laws of the classieal dynamics are based on the concept of the
conservation of three fundamental properties of a system, its mass, momen-
tum, and energy. When these laws of econservation are applied to a contine
uum, it is found that its motion is completely described mathematically by
one vector and two scalar partial differential equations, which are referred
to as the continuity,momentum, and energy equations, respectively,

The same result can be dedueed directly from the kinetie theory of
non-uniform gases a:s was first demonstrated by J. C. Maxwell, The method
of this derivation has already been mentioned 1n Part II in commection
with Hilbert's conditions of integrability, equation (2,30), for the
Boltzmann integral equation, and the Ma:;well transport equation, equation
(2.45), which was there used for the calculation of the Burnett coefficients.,
The derivation sketched below is that given by D. Burnett, (Reference 3e1)e

3.1 Deduetion of Equations of Macrosecopic Motion from Kinetie Theory

It will be recalled that the integral on the right side of equation
(2.49) is zero for those molecular properties, Q, defined by equations
(2.47) and (2.50), which correspond to the mass, momentum components, and
kinetic energy of translation of a molecule. In particular, for case (a)
of equation (2.50), (k,r) = (0,0), one has from equations (2.47), (A.3),
and (A.54)

QR _=1 (3.1)

which is a constant and hence proportional to the mass m of a molecules



If one evaluates the expressions of the type (2.48 ), of which the left
side of the Maxwell transfer equation (2.49) is composed, one finds that
for the funetion Qoo the transfer equation reduces %o

i

£ 0t %(Vu) + %(y‘v} + %_(V’w): o) | (3.2)

By multiplying this equation by the molecular mass m, one obtains the stande
erd form of the hydrodynamic equation of comtinuity,

In similar fashion, the molecular property corresponding to equation
(2.50) (v) is
©)

R, = 2{hm W (3.3)

which is proportional to the component of moleculer momentum in the z

©)
direction. When the function Q’lO is used, the Maxwell transfer egquation

is reduced to the form

0
2 v i &) - o [ $(48)

y
+—,%(% Cai,) + 2% (Vh Bzo)] =0 (5.4)

by means of equations (2.3) and (2,58), the above can be expressed in terms

of the pressure p and density € of the gas to give
:(2. 1 u) ? n { 7
Dﬁ"f :"é' %-E" 'e’"{ax(a Bzo”P) +3‘Ty ZCao'P) *‘52(320?)} (3.5)

Since equation (3.5) has the form of the Eulerian momentum equation in

the z direction it is now possible to identify the Burnett coefficient B20
()} (

with the normal stress Tzz’ and the coefficients BZO and C;o with the shear

stress components sz and Y v of the gas, as indicated by equation (3.6 ).
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| a0
j;x =2z Bzo P
J;.z = Bao- P ' o f (3.8)
Tzy = é' Coor P

>

Fram equation (2,62) it may be seen that the first approximation of
these coefficients corresponds to the ordinary viscous stresses which are
the result of a generalizeation of the Newtonian frietion law to three
dimensions, This generalization of the Newtonian law is usually obtained
by a formal argument based on the invariance of this law under coordinate
transformations for isotropic media, However, it should be remarked at
this point that the explicit relationship between the coefficient of
viscosity and the parameters which define the law of force for a particular
moleeular model is evaluated from equations (2.62) and (3.6). For example,
for the Maxwell molecule one obtains the expression given by equation (A.96)
of Appendix IIT, Section 3. Therefore the kinetie theory does actually
give something mores The expligit relation between the viscosity coeffi-
cient and the molecular properties,

If the first approximations for the stresses are substituted into the
exact equation of motion, (3.5), one obtains the familiar Navier-Stokes
differential equation applieable to & viscous eompressible fluid, namely

2

a.f_g{("’—‘"—“ﬂ—wﬂ—w +

224 Y aw
oxt 3_)(2 ozt ( + 2y + az)} . (3.7)

{
3 22\ ox

In the previous part of this thesis, it was shown that the Burnett

)
coeffisients Bkr are approximated satisfactorily by the first approximations

@
1Byp only if (a) the velooity gradients are so small that the second derie



vatives of the velocity components may be neglected, or if (b) the pressure
of the gas is sufficiently great, so that cg)z is negligible. Consequent=-
ly, the Navier-Stokes equation, equation (3.7 ), is not applicable to the
high speed flow of a rarefied gas or to the nearly discontinuous motion,
such as exists within a shockwave, éven at atmospheric pressure. A better

approximation for the equation of motion required to deseribe such phenomena,

B(i) 0
2P20s 20209

as given by equations (2,76) to (2.78) for Maxwellian molecules, into the

is obtained by substituting the second approximations, 2320,

exa.ct momentum eguation (3,4).

If one evaluates the Maxwell transfer equation for the functicns

Q, = 2Vhm U or  2ymm V (3.8)

the momentum equations in the x and y directions, respectively, are obtain=-
ed., However, the expressions so obtained will not have as simple a form

as equation (3.4), due to the fact that the stress canponents Txx’ T . 7T

A Xy
are not proportional to a single Burnett coefficient, but are represented
. . . 0] (2) ) 2) .
by linear combinations of the coefficients B20’ BZO’ }320, 020’ CZO' This

lack of symmetry is caused by the fact that the velocity distribution func~
tion, equation (2.39), was expanded in terms of the sphe.rical harmenics Y,
for which the z-axis is a preferred direction. However, the dynamic equations
in the x and y directions and the stress camponents Txx’ Tyy’ Xy are read-
ily evaluated by cyelic substitution from equations (3.5) and (3.6) respec-
tively. The resulting equations are most eonveniently expressed in the
cartesian tensor notat.ion. Equation (3.15) below is thus the exact dynamic

equation for the motion of a gas, The best approximation available for the

stresses Tij is that ealculated by D. Burnett accurate to terms of order
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2
e%) and given by equation (3.17).
The exact expression for the conservation of energy of the gas is
obtained by evaluating the Maxwell transfer equation (2.49), for the

funetion

Q@ = I- %hmC (3.9)

ol

This function, except for an additive constant, represents the peculiar
kinetic energy of translation of & molecule, The additive constant intro-
duces into the energy equation certain terms which are eliminated from

the comtinuity equation (3.2). The energy equation is then found to be

. D 9w . v 9w _
-E B s(HH ) -

2 ))'B“ VC“ P !
£ i (BCE) - 3C6) - 20
tleB, (e%-%-%)+ 2B (%+%
+ EC:: 2+ ﬁ) + B (W") * Czo(?’ B‘J)} . (8300

The first bracket on the right side of equation (3.10) represents the net
flux of thermal energy which is transported into an element of gas from
adjoining elements hy the process of heat conduction. The second bracket

on the right side represents the viscous dissipation, that is the transfor-
mation of kinetic energy of the mean motion into kinetic energy of random
motion, or thermal energy. The terms on the left side of eguation (3.10)
state, that this total increase in the thermal energy of the element raises
the intermal energy of the gas and performs the work of expansion, according

to the first law of thermodynamics,
o w

From equation (3.10), the Burnett coefficients Bll’ Bll’ C11 are



identified with the components q,, g4, 9y of the heat flux vector as

shown explicitly by equations (3.11).

|
B, = -5 7V&" ¢

i k
w__2 L, [eTm 0 a'l_VE"_
B" - 5 PY Tk 7’)4 j cu =-7F ' _E_".“ g’y (3.121)

If one uses the first approximations for these Burnett coefficients
from equations (2.59) or (2.,61), the ordinary expressions for the heat

flux are obtained, namely

- |
Y, = -4 g? etc. (5.12)

J
According to the kinetie theory the coefficient of heat'conduction,)., for
a monatomic gas is related to the coefficient of vicosity/x by equation

(3.13) (Reference 3.2 ).

A = g-g./Acv (3.13)

¢, is the specific heat at constant volume, and the numerical constant £
has the value 1 for Maxwell molecules and 1,009 for elastic spherical mole-
cules, (see equation 2,56)

The energy equation (3.10) may be brought into a more symmetrie form
by means of appropriate reductions from the continuity and mementum equa-
tions. Thus equation (3.16) below, again in cartesian tensor notation, is
the equivalent equation of energy of a viscous compressible fluid. This
form, of the energy equation is, of course, that obtained by direct appli-
eation of the first law of thsrmodynamics to the motion of a continuum,

The exact differential equations for the mean motion of the non-uniform



gas are summarized below in the notation used by H. S. Tsien (Reference 3.3 ):

*
%;g + %‘L(? wi) = 0 (3.14)
UL ouL 2P _ 274 , (1 =1,2,3) (3015)

Q,—:ﬁ'*e“jﬁa' ’ T, 9%

5

2 _ ¢ _ 2
(eZ+rewZ)(swuvc,T)=F-2F-2 (0w, )

i L

3.2 Formulae for the Stress Tensor and Heat Flux Vector

For a particular molecular model, the components of the heat flux

vector, q,, and the components of the viscous stress tensor, j}j’ are
e
calculated from the Burnett coefficients B11 and B20 by means of equations

(3.11) and (3.6), respectively. The best approximations available for the

coeff'icients B are those caleulated by D. Burmett accurate to terms of

20°
2
order (7':7) s for both spherical and Maxwell molecules, The expressions

for Maxwell molecules are given by equations (2.76) to (2.78); those for
spherical molecules are similar but somewhat longer. The second approxi=~
mation to the stress tensor-'ng, as given by equation (3.17), may be
evaluated for both Maxwell and spherical molecules by choosing the appro-
priate values of the numerieal constants K, K2,..., K6 fran Table 3.1,
Bquation (3.17) was reduced to the Cartesian tensor notation from the
vector-dyadic-tensor notation of Chapman end Cowling (Reference 3.4), by
H, 8. Tsien (Reference 3.3 ).

Similarly, the second approximation to the heat flux vector q; cen be

* The summation convention is used; for example

V)

Wi W CLE CLY (1 =1,2,3)

L= = +



. s s )
obtained from the eccefficients 2B11s 9By7s zcn given by equations (2.70)

to (2.72), for Maxwell molecules, Equation (3.16) for the heat flux, was,
_however, deduced from the more symmetrical expressions of Chapman and
Cowling., The numeriecal constants 61,..., 65, have been celculated only

for the Maxwell molecules and are given in Table 3.1l.

2 2

p Uk _ 2 /412

aTLé = -2/«4 ei,j +[ Ky x, Q.'.J' + K, Z?; { 3%;<Q 3,4;.)
Wy 2y e T

5, gxe ~ & € axK} + Ky o7 DK%}

L 2Pt 9T oI Pdry
+ Ky fe? oxi ox; t Ks Jef-Fz v, 9% * Ke 5 €icly;
(1,i =1,2,3) (3.17)
= ous 9T K22 (rou
ja - axb [9' T ax‘, aw, t € ot { 3 ax;(T ax,")

In the above squations, the rate of strain tensor eij is defined by

(au; aua)_’é?_ﬂk_(g

3Xa X Xk ':3' 2
where éij =1if i=]
=0 if 1 #J (3.19)

The bar over any tensor Aij denctes the associated symmetrical and

non-divergent tensor defined by equation (3.20)



Ay = z (Ai,j +Ai) -7 A .5,_.#, - (3.20)

I+t should be noted thaf the form of equations (3.17) aﬁd (3.18), as
derived in a very general manner by S, Chapman, is valid for any spherically
symmetric molecular model possessing only translational kinetie energy,
irrespective of the law of force which determines the details of intermole=
cular collision. However, the only numerical values of the constants K
and & are those resulting from the calculations of D. Burnett, as given
in Table 3.1,

3.3 Discussion of Results

It is evident from equation (3.17), that the viscous stresses occur=-
ring in a gas may be caused by pressure and temperature gradients as well
as by velocity gradienmts, Similarly equation (3.18) shows that a transfer
of thermal energy by conduction may result from pressure and velocity
gradients as well as from temperature gradients, However, if the pressure
of the gas is "sufficlemtly large" and the velocity, pressure and temper-
ature gradients are "sufficiently small", then the ordinary expressions
for the viscous Stresses and heat flux, nanmely

-
= -A —375 (3.21)

b

ITLJ - a/u eb} and ﬂ’

¢
will correctly represent the state of the non-uniform gas. The above
condition can be formulated more precisely by examining the order of

magnitude of the ratid B, of a typical additional term of the stress and

heat flux to the first approximations of equation (3.21). Thus

LEow o LK
Bmpay’ P

)

-

where L and U are the characteristic length and veloeity, respectively,



which determine the velocity gradient in a particular case., The follow-

ing well known relationships are useful in transforming the ratio £ .

‘P
2 _2
£-RT = % - I¢C C (3.22)
= o0499eC L (5.23)

Here R denotes the gas constant *, ¢ the ratio of specific heats,
2 the adiabatic speed of sound propagation, T the mean peculiar speed of

the molecules, and ﬁ the mean free path of the gas, Consequently

# L - L
‘i“’%a‘ v~ Tl o~ %

so that the ratio B is given by

b4

e g Bt b o

where ¥ is the characteristic Mach number., The characteristic length L
may represent, for example, the wave length of a sound wave, the boundary
layer thickness, or the gap betweeﬁ two parallel plates which form the
boundaries for Couette flow. Since at a pressure of one atmosphere the
mean free path,ll, for air is of the order of 6 x lo“ecm., the ratio

in that case is negligibly small, in éeneral, so that the.effects of the
additional stress and heat flux terms are entirely negligible at normal
pressures even for Mach numbers of order 10, As the mean free path

is inversely proportiopal to the density P , 1t is evident that the ratio
B will have an appreciable magnitude for the high speed flow of a rarefied
gas. Hence the compliocated expressions (3.17) and (3.18) must be used

for the stresses in a rarefied gas,

* The gas constant R is that eommonly employed in engineering; its numer-

ieal vgiue depends on the molecular weight of the gas, R~ ':T{ where k is

the universal Boltzmam constant and m is the mass of one molecule,
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~

It follows from the nature of the successive approximations to the
Burnett coefflcients of the niolecular velocity distribution function that
the third approximation to the stress tensor, 5Tij will contain terms of

ﬁ 3 au 3 . .
the form (1’) (——-") in addition to the terms of equation (3.17).

oXy
Hence equation (3.17) ceases to be a valid approximtion for the stress
tensor if, for a given Mach number, the gas is so rarefied that (M -l'_g_')
is not negligible compared to unity, This limitation applies, of course,
also to the heat flux vector as given by equation (3.18).
Throughout the derivation of the equations of motion and of the ex~
pressions for the stress temsor and heat flux vector, a number of simplifye

ing assumptions had to be made, thus imposing certain restrictions on

equations (3.14) to (3.18), These limitations are summarized below:

- (1) The equation of continuity (3.14) and the dynamic equations (3,15)

can be aprlied to the motion of any non-uniform gas, (provided
only that there are enough molecules per unit volume to permit
a statistical analysis ),

(2) The energzy equation, (3.14) requires, in addition, that the gas

be a perfect gas.

(3) Equations (3.17) for the second approximation to the stress tensor,

2Tij’ and the heat flux 29y ; assume that
(2) the gas is a simple, perfect monatamic gas composed of
spherically symmetric molecules;
(b) +the length L and the Mach number M which characterize
the flow of a non-uniform gas are so related to its
mean free path , that (M % P« 1.
(4) Frém Table 3.1, the numerical values of the constants © are
knovm acourately oﬁly for Maxwell molecules; the values of the
constants K are known for both rigid elastic spheres and Maxwell

molecules,
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When equations (3.17) and (3.18) are applied to problems of high speed
slip flows in rarefied air, the cqnditions (3a) above, which deal with the
molecular structure of the gas, will, of course, be violated, The fact
that air is e gas mixture consisting principally of oxygen and'nitrogen
should not cause any appreciable errors, en account of the small difference
in the structure and molecular weight of the Nz and 02 molecules, However
both of these diatomic molecules posses effeetively two rotational degrees
of freedom and one scarcely excited vibrational degree of freedom, in addi-
tion to the three translational degrees of freedom which alone have been
accounted for by the kinetic theory, This fact may be partially accounted
for by using for the ratic of the specific heats X , the appropriate value
of g', whenever { appears explicitly in the equations. If the relaxation
time in highly rarefied air is sufficiently long, so that the rotational
energzy cannot be excited effectively, a value of ¢ intermediate to 'g
and % will be appropriate.

The above effect overshadows those inaccuracies introduced into caleu-
lations for air which arise from uncertainties in the values of the constants
K and © ., In the light of equations (2.9), (2.10) and figure (1.2) it may,
however, be appropriate to use f())r- g8 = L %.%‘ the experimental value for

Iu
air of 0,77, in an interpolation of the values of Table 3.1l.
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PART IV

PROPAGATION OF PLANE SOUND WAVES

%

IN RAREFIED GASES,

The general differential equations of macroscopic motién of a rare-
fied gas, as developed in Part III, are here applied to the solution of
a particular problem of practical interest, The one dimensional problem
of the propagation of a plane wave in a medium of infinite extent does
not involve any boundary conditions and suitably - illustrates the nature
of the differential equatiéns under geometrieally simple conditions.n

4,1 Inbtroduction

The problem of the propagation of plane sound waves in a viscous fluid
was treated as early as 1845 by G, G. Stokes, who investigated the effect
of viscous action but neglected heat conduction. The effect of viscosity
was found to consist of a frequency dependent damping of the amplitudes.
of the sound waves whose veloeity of propagation, to a first approximation,
was equal to the adiabatic propagation speed in a frictionless, compressible
fluid. As was first pointed out by G. Kirchhoff in 1866, the influence of
heat conduetion is of the same order of magnitude as that of the viscosity,
so that for a consistent solution both factors must be accounted for, This
was done in the solution of H, Lamb (Reference 4,2 ) and resulted in a more
highly damped motion than that predicted by Stokes, whereas the speed of
propagation remained approximately equal to that for the frictionless fluid,

The validity of these results is dependent, of course, on the walidity
of the fundamental Navier-Stokes equations which are the basis of these
calculations, No question needs to be raised against the general laws of

dynemics and kinematics and the only point of doubt is the correctness of

* The calculations and results of this investigation heve been published

Jjointly by Dr. H. S. Tsien and the author in Reference 4.1l.



the viscous stresses and of the heat flux used in the Navier-Stokes equa-

tions. In the Navier-Stokes esquations, the viscous stresses are taken

_as the produet of the viscosity coefficient and the linear combination of
the first order space derivatives of the velocity components, ﬁnd the heat
flux is taken as the product of the coefficient of heat conductivity and
the gradient of the temperature of the fluid, Results of calculations
using these equations agree very well with experimental observations. This
fact mey be used as the empiriecal justification of the Navier=-Stokes equa-
tions,

The results of the kinetic theory of non-uniform gases, as presented
in Parts IT and III of this thesis show, however, that the viscous stresses
and the heat flux as used in the Navier-Stokes equation are only first
”order approximations, If the number of gas molecules contained in a cube
of dimension intrinsic to the problem, such as the wave length of sound
propagation, is small, then the first order approximation is no longer
sufficient, This means that if the wave length is-very small, as in the
case of ultrasonic waves, or if the density of ga; is very low, the
Navier-Stokes equation is no longer valid, Since there are many assumptions
introduced in the kinetic theory to meke the calculation treatable, one
may question the reliability of the theoretical results., However, the
success of the kinetic theory in explaining many phenomena and the predic=-
tion of the first order viscous stresses and heat flux which agrees with
the observational date seem to indicate the reliability os such a theory,

In the present treatment the second approximations to the viscous
stresses and the heat flux of Chapman and Burnett, as given by the equations
of Section 3.2, are used to ecalculate the propagation of plane sound waves

in rarefied gases or of plané sound waves of very small wave lengths in
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gases of normal density. This investigation is prompted by the fact that

the present lkmowledge of the state of the atmosf)here at high altitudes is
almost exclusively obtained through the measurement of the anomalous sound
propagation. A knowledge of the effect of low density of the médium on

the propagation velocity and the damping of waves will be, perhaps, useful

in a critical examination of this method of obtaining data for high altitudes.
The result of this investigation is most reassuring as it shows that even
under extreme conditions, the increase in the propagation velocity from the
normal walue at high density is less than 24, In fact, the effect of the
additional terms to the viscous stresses and the heat flux tends to maintain
the constaney of the sound velocity with respect to the density of the medium,

4,2 Basic Equations

The fundamgntal differential equations required to deseribe the propaga=
tion of plane sound waves express the conservation of mass, momentum,and ener-
gy of an element of a compressible fluid which is in one-dimensional unsteady
motion, Choosing the x-axis as the direction of propagation of the plane
wave front, the differential eqﬁatiéns of motion are obtained from equations

(3.14) to (3.18) of Part III by means of the following reductions:

3 .2 2 .2 .
5%, = ox  J bx, Tk, = O

The appropriate continuity, momentum,and energy equations are then
given by equations (4.1), (4.2),and (4.3), respectively, where all of the

symbols are defined as in Part III,

%—g + %(eu} =0 (4.1)



68

e % rould =- 28 - 23 (@)
(Ereuf) (v e = F - 2R- 2w @)

For purposes of subsequent calculations, it is convenient to separate the
dependent variables into their "undisturbed" and "perturbation" components
according to equations (44 ) the undisturbed quantities are denocted by the

subscript oand the perturbations by a prime:

—

= + '

P Po )4
= + ¢

T=1T +T L (4.4)

. 1

€= ¢ + %

uw

= U
Since a sound wave is by definition a disturbance of infinitesimal amplitude,
any quantities involving squares or products of the perturbation variables

or their devivatives can be neglected in comparison to these variables

themselves. For instance, from the equation of state of a perfect gas

é‘P.T- = const, (4.5)

one has .
2¢ Lo2p_ L 3T 4.6
%§=5--Qo[gat zatj. (#.6)

The general form of the heat flux vector and the stress tensor is
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given by equations (3.18) and (3.17), respectively, correct to terms of
. .

order /-% » The following equations give the expressions for A, and
_ ?-Txx appropriate to the problem at hand by neglecting second order quanti-

tites in the perturbation variables:
, : 5

| 2T Lo u
q = -A. 5z + 5(+8) T 5k (4.7)
2'x
2 1 2 1
b2 i K 32 K 2T .
Ja= SR TR BT e, Y

where i, and A, are the viscosity and heat conduction coefficients at the
temperature TO. It will be recalled that © o 94, K2, K3 are constants
whose exact numerical values depend on the intramolecular structure of the
molecules composing the gas (see Table 3.1).

Substitution of equations (4.4), (4.6), (4.7), and (4.8) into the exact
differential equations (4.1), (4.2) and (4.3), and subsequent cmmission of

all second order terms in the dependent variables, result in the linearized

partial differential equations (4.9), (4.10), and (4.11).

L2 _ 1 2T | au
gat‘fsf+sz-0 (4.9)
i z'l ?4 3__t
u _ _ 2 4,94 2,20 K op _ K 9T
. 5t =-E s Snsar 3N &p 2%’ &T kil (420
2T’ _5.’.1’.,.,121',_3_(9 e)f—ai‘i‘ (4.11)
GCC oz = o 5% ~3(6,+86) ¢ 56 . .

It is convenient to reduce the above equations to dimensionless form

by means of the non-dimensional parameters defined below:
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* P * T ;
P =5 = = o . (4012)
ﬂ J T n J u = CQ ;
¥ X * ¢ (4.13)
X = = t = T
L (Y%.)

where L is the wave length and LR the adiabatic speed of sound propagation

def'ined by

Co = \fﬁ: . (4012)

Y  here is the ratio of specific heats,

The physieal constants of the gas may be expressed in terms of the two

dimensionless parameters, P and R

— )" — ?i&'-.l;- . )
6=, re=l32-&]. s,

Lo Hele
?F = f;f- is the Prandtl number and is a measure of the relative import-
e -~

ance of the viscosity and the heat conductivity of the gas., From the point

of view of the kinetic theory, viscosity is the result of the transfer of

the momentum of the molecules, and heat conduction is the result of the transe-
fer of the energy of the molecules, Both thus must be of the same order of
magnitude, This is in agreement with experiment, because the Prandtl number
is found to be of the order of unity, The Reynold's number is & measure of
the relative importance of the inertia forces and the dissipative forces,

If the dissipative forces are very small in comparison with the inertisa
forces, the Reynold's number will be very large. Wibth increasing importe

ance of the dissipative forces, the Reymold's number decreases. In the

propagation of sound waves, the dissipative forces are
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measured by gradients of velocity and temperature and are inversely pro=-
portional to the wave length L for any given ampli‘budq. Therefore in this
~case, the Reynold's number R is direetly proportional to the wave length

as shown by equation (4.15).

| Substitution of equations (4.12) to (4.15) into equations (4.9) to (4.11)

results in the set of three simultaneous partial differential equations, (4.16)

(4.16)

ap* vy rat_ @ ot Ry
“ﬁ% Y- ):a * 7 (2mR) ax*‘] t %(92"'94)(3“]2)2 =0

If the properties of the gas are known, the values of ¢ , B, Koy Kgp ©, and
e 4 BTre fixed. Then the only remaining parameter of the problem is R wh-ich
is really a measure of the wave length, Therefore, the solutions of the
problem should be expressed as a function of R.

4,3 Solution of the Differential Equations.

The general solution of this set of linear partial differential equa=~

tions (4.16) is evidently of the form

en[Ci-0)x" - tat’]

'P* = AI € ,
T* _ A eaﬂ'[(i'b) x'- io(f*l > (4.17)
- 2

. am[Cimb) x*- i o Y]
A, e
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where the A's represent arbitrary constants, The coefficients b and & are
both real quantities, to be determined as functions of the Reynold's number
'R It follows from the definitions (4.13) and (4.14) that the damping coe-
fficient per wave length is 2nb, and the physieal welocity of-propagation
of the disturbance is given by ¢ = @o_, By substituting equations (4.17)
into equations (4.16), the following linear homogeneous equations for A

and As are obtained:

[-ia]l A+ [ialA, + [E-b] A,

[w-sk vl +[50 5 Go] A o[- ta- £ LA = 0
[ia] A, + [E{-ia-S0-}]A + [#a+)d -] A= 0

In order that the values of Al’ Az, and AS should not be simultaneously
equal to zero and thus give a trivial solution, the determinant formed

by the coefficients of the A's must be equal to zero. Thus

[-cal (L] [i-b]

[G-0-3 S ew] [ 5% a-w]-i-4Fw]

i
o

[id] [-&{ia+ g(c-bf}] [%(9594)1{-:(&—6)3]

By separating the real and imaginary parts of this determinant, one has

the following two simultaneous equations (4.18) and (4.19) from which b

and ¢ can be determined.
ALSU-9(1- b +69] + B[ &U-6b+b")]
+C[&(3-06cah] + D[ #0-67]- e[ § o]

(4.18)
+ oL(oLa+ba-l) =0
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A L% (3- 108 ¢ 3697 + BL B O-09] -C[ w0890 14546
SD[ k(-6 +bh] 4 E[&(-00] -2db =0 (819)
where
A= F0(0-006,+6,)(K,-Ky)
B = %(df—!)(92+9,+)- %XP’%V(K[K;)-%%
c= § 7Pk, | (4.20)
D= §
E= 4., /0

.J

For the complete solution of the problem it would be necessary to
£ind the nine roots of equations (4.18) and (4.19), However, fram the
nature of the classiceal solutf.on_of the problem it is known that the pair
of roots of b and & which is of the greatest significance is the one with
the least damping. In other words, for vanishing viscosity, or R~»co,
¢ ;rl and B-+>0, so that the wave should be undemped and propagate with
the normal adiabatic speed Coe Therefore, the appropriate forms for b and

¢ are the following:

b = %-1-%’, +,E‘§-|—... (4.21)
o oe 4 de ' (4.22)
o = |+ 2 + gt .

Equations (4.21) and (4.22) may be substituted into (4.18) and (4.19), and

the resuiting equations may be arranged in order of ascending powers of T'i .
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In order that the resulting equations are satisfied for arbitrary values
of R, each of the coefficients orf 'é?' must bé equal to zero, This results
in a seﬁ of algebraic equations from which the coefficients-bl, bS""’ and
qz, a4,... are determinéd successively in the following order:-bl, “2' b3,
64,... .

Equetions (4.23) and (4,24 ) give the final result of this solution.
It should be noted that each coefficient is a function only of the pree

viously determined coefficiemts and of the physical constants A, B, C, D,

and E, of aguation (4.20),
b = ';:(E"D) .
by = [-2C+2Bb +(3D-4E)b +Ed, - bz (4.23)
[3Ab, + £Ch- 2 Bb - £Db' + 2Bb, + (6D-E)bb,
+3Ed; + Edy-Eb'A, + 2Bbd, - b d, — byd, |

2
L0
|

[ £B+(2D-E)b, +3 b ]

- [iA + 3Ch, -3Bb2— 2Db; + (2D-E) by + b, by
$Bd, +2d, - 2Ebd, +3 otzbJ

d, = —[ ¥ Ap: - oCh’ + 3Bb*+ 3Ch, + £ b, +(2D-E)bs |

-6Bb,b,—6Db,ab3+b.b5*aAdz+zda+gBd4+3d4da

~Ebd-3Bbid, - 2Eb0, +E by~ 2Eb,d, + bihd,]

e
~
i

(4,24)

o
-
\

It is interesting %o note that the first order solution

b, T &
R T aR[ 5 () 8] (4.25)

-

(11

b

o

|

is identical with the solution given by H. lamb (Reference 4.2 ).



4,4 Numericeal Calculations

The constants A, B, C, D, E, appearing in equations (4.23) and (4.24),
‘depend on the two physical constants of the gas B.and ¥ and on the constants
© 5s 6,9 X, Ké' AEcording to the discussion of Section 3.2, the latter
four constants depend on the nature of the force field which surrounds the
molecule, that is on the choice of the "molecular model" utilized in the
calculations of the kinetie theory.

For monatomic gases, and also for air;the rigid spherical molecule
appears to be a closer approximation to the reality than the Maxwell molecule
(see figure 2.2 ). Hence the values of Kz and KS as given for spherical
molecules by Table 3.1 will be used, For © 5 and & 4 the only values availe
able are those given by Table 3,1 for the Maxwell molecule, As the variation
in the constants X is only of the order of 10 percent for the two limiting
cases considered, and as the variations in the constants © must be of the
same order of magnitude, it can be shown a posteriori that the results ob-
tained are not materially dependent on the precise values of the K's and

O 's.
In ascordance with the above discussion, the numerical values for the

molecular constants are then given by equations (4.26).

64-——5

o\&

(4.26)

K, = 2,028 , K = 2,418

-

Equations (4.23), (4.24) and (4.2C) will now be applied to caleculate the
damping coefficient, b, and the dimensionless velocity of propagation, @,
in the following three gaseous media, as characterised by the values of

the physical constants 4 and B



1. Air at normal atmospheric temperature, This also corresponds
closely to the theoretical diastomic gas.

2. Air at 400°C

3. Theoretical monatomic gas, This corresponds very closely to
real monatomic gases, such as helium, argon and neon, at
normel temperatures,

Table 4.1 gives the values of ¥ and P for each of the three media, as
well as the values of the derived constants A, B, C, D, E, as calculeted
from (4.,20) and (4.26), and the values of the coefficients bys b, b5, and
@y, %, O, as calculated from equations (4.23) and (4.24), respectively,
The results of Table 4,1 are then used to calcﬁlate the damping coefficient
b, and the propagation coefficient ¢ as a function of the Reynold's number R,
by means of equations (4.21) and (4,22), respectively,

The nature of the convergence of the expansions (4,21 ) and (4.22) is

shown for the typical case of medium 1 in figures 4.1 and 4,2. It should

s = Eﬂ Eé = da oy +
‘be noted that the solutions b = 7 e , @ = |+ et R4 BTe no necese .
sarily accurete to terms of order %? , and 7%4 , respectively, since the
original differential equetions (4.16) are correct only to order _]%3 .

4.5 Results
The values of ¢ and b as functions of the Reynold's number for each of
the three gaseous media considered are shown in figures(4.3)'and (4.4) the effect
of decreasing Reynold's number is to increase the damping coefficient in
nearly inverse ratio, whereas the speed of propagation, aco, increases onlyl
slightly. Figures 4.3 and 4.4 also show that the molecular structure of
the gas influences the magnitude of the propegation parameters to a much
larger extent than does the mean temperature of the gas., This is apparently

due to the fact thatequatiors (4.20) depend more critically on the value of
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Y , which occurs also as (¢ =1), than on B. Both ¢ and P depend on
the number of atoms which compose the molecule, whereas only P is signifi=-
~ecantly t.anperature dependent,

The magnitude of the damping effect is more readily ascerﬁained in
terms of the amplitude ratio, Tos which is defined as the ratio of two
= o=amb <1

successive maximum amplitudes of the sound wave, Henece r

a *

Figure 4.5 shows the amplitude ratio as a function of the Reynold's number '
for the monatomic and the diatomic ges,

For practical applications of the results, one must first calculate
the Reynold's number R corresponding to the wave length L. Since for
sound propagation problems the given physical parameter is the frequency
V" insteed of the wave length L, R should be caleulated in terms of ¥V~ in

the following way:

c IR x
- —— 4 e — —— 4.27
R co /b(o X eITV‘ . ( )
However, % = @ is very closeto unity, so that
(-]
v B, (4.28)
R 2 Fo=

To facilitate numerical celculations, Table 4,2 is constructed for R, which
gives the value of R, at various temperatures, for air at the standard
pressure of one atmosphere, for ¥ = 1,4, and for the frequency Y = 100C
cycles per second. For any other values of the pressure Po in atmospheres,

and of the frequency Y, the Reynold's number R is then given by

R= R,d (1_;_)(1%%9) = R‘(%) ("952) . (4.29)

In general, the results of this investigation show that although the

damping of the waves is greatly increased by the decrease in the Reynold's



78

number R, the speed of propagation is practically unaltered, This justi=-
fies the procedure adopted in the analysis of anomalous sound propagation
where the normal adiabatiec propagation speed s is used throughout, How-
ever, one must be aware of the fact that kinetic theory uses the smooth
spherical model for the molecules and thus does not allow the interchange
betwéen translational kinetic energy with the vibrational and the rotational
energles of the molecules, Due to the greatly decreased number of molecular
collisions in rarefied conditions corresponding to small values of R, it
will be difficult to excite the vibrational and the rotational degrees of
freedom and the gas tends to behave more closely like a monatomic gas with
a corresponding increamse in the value of § . This change in the properties
of the gas is not directly taken into account in the calculations presented,
as it is beyond the framework of the usual kinetie theory. On the other
hand, this effeét can be easily accounted for by an appropriate change in

the value of ¢ as the Reynold's number decreases,



PART V

THE BOUNDARY CONDITIONS FOR SLIP FLOW

5,1 General Considerations

When the differential equations of motion, which were discussed
in Part III, are gpplied to that realm of fluid mechanics known as
gas-dynamics, the associated boundary conditions are well knowm. In
that case the general solution of equations (3.14) to (3.16) is reduced
to the particular solution which corresponds to any geometrical situa=-
tion of interest by means of the following physical conditions:

(1) If the viscous, compressible fluid extends to infinity, the
values of the pressure, temperature, and vector velocity must
be specified "at infinity".

(2) All of the "fluid particules" which are adjacent to any solid
surface have the same absolute vector velocity and temperature
as the corresponding element of the solid boundary.

The second condition requires that there be no flow normal to any solid
surface, and that there be no slipping between the fluid and the wall,

The experiments of Knudsen, Kundt and Warburg, and many others, on

the flow of rarefied gases through capillaries, have established that
this ™on=-slip™ condition is valid only if the mean free path of the gas,

)/

dimension L (such as the diameter of the capillary). Hence, for a rarefied

, is completely negligible relative to the characteristic macroscopiec

gas, the "non-slip condition" must be replaced by some relation which speci-
fies the slip velocity of the gas relative to the solid wall., Thus, for
example, the phenomenological assumption of A, Basset specifies (Reférence
5,1) that the slip velocity be proportional to the shearing stress at the

wall, Similarly, the experiments of von Smoluchowski have shown that in a
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rarefied gas there exists a "temperature jump®" between the wall temperaw
ture and the temperature of the gas layer immediately adjacent to the wall,
and that, to a first approximation, this temperature jump is proportional
to the temperature gradient, (normal to the wall) which exists in the gas
at the vieinity of the wall,

Therefore, on purely physieal grounds, one would expect thét for a
rarefied gas, the boundary conditions stated under (2) above would have
to be modified to account for the effeckts of slip and temperature jump,
but that the total number of such conditions should be the same for both
gas-dynamical or slip flows, This coneclusion appears to be at variance
with the mathematical fact, established in Part III, that for a rarefied
gas the partial differential equations of motion are of a higher order
than those of the gas dynamics. Thus, if the stresses ]_ng and the heat
flux 1935 (equation 3,21), which are appropriate for the realm of gas
dynamics, are substituted into the dynamic equation (3.15) and energy
equation (3.16), both of these equations contain at most second order
partial derivatives. For a rarefied gas the required expressions 23’ij
and ,q; , are given by equations (3.17) and (3.18), so that in this case
the momentum and energy equations are both partial differential equations
of the third order, Better approximations for the stresses and heat flux
will, of course, result in equations of motion of still higher order. It
will now be shown that the number of boundary conditions associated with
the second order differential equations of motion actually suffices for the
solution of the equations of motion of the third order, or higher order,

Suppose first that u;(x,y,2,t), p(x,y,2z,t), © (x,y,2,%), T(x,y,2,t)
represent the solutions of the "exact™ equations of motion of a rarefied
gas, and thatjgj(x,y,z,t) is the exact expression for the stresses, If

P, represents the lowest pressure, in the three dimensional flow field,
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and P o the viscosity at the same point, the exact solution can be ex=

panded as in equations (5.1).

¢ [l , A 3
e
R = R+ (%:) ae*+ (%) 3(”t oo ( (5.1)

» Heif %
Ty = Ij + (%)zTij +('€) JTLJ‘ tooe

-t

If the expressions (5.1) are substituted into the momentum equation

(3.15) one obtainsg after collecting the terms in ascending powers of (—%")

i W; P o7,
R ?-Lb-l- U, ?._'_-" 2_1_ (7]
[‘ st T oo Y T 3%

/‘0 [@ aeu: * ut U 'au*‘; @ u* alu‘;
+(€) "2 + z,e 2% u lQ' F 9,}13' + 2" K]

PRty Wy g ]
& T ax aki T 3%
2 * *

K [ 0 54, 9P 5_7_;?:3:] _

+(1=,) e =5 oot 3t 7 X; + ...=0 (5.2)

A similar form of the energy equation can be obtained from equation (3.16).
Equation (5.2) is valid for-arbitrary values of the "pressure level' Pge
In partieular, for the realm of gas dymamics, (5.2) reduces to the Navier-

Stokes equation, from which, in conjunction with the energy equation of

* The star indicates that zui* is a function of (x,y,z,t) which does not

have the dimensions of a veloéity.
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gas dynemics and the continuity equation, the general solution for 1940
1? > 1P 1T is obtained, The solution of interest is then obtained by
applying.the boundary conditions of pe. 5.1,

If the gae is rarefied such that the terms in (&) are of signifi-
canoe, but those of order GE?Z are negligible, equation (5.2) reduces to
the sum of the first two brackets squated to zero, which means that the

second bracket must itself vanish identically, It follows from equations

(5.1) and (3.17) that the quantity o T 45" is of the form

* 274" { I, M
ZJ;'J. n - /‘( axj (g“b) + Kl f‘ aXK ‘axj + o

Consequently, the highest derivative appearing in the second bracket of
3
QT

equation (5,2) is
ax._ xa’

» Which, however, is merely a known funetion

of (X,y,z,t). It follows, thereforé, that the second bracket of equation
(5+2), when equated to zero, is a partial differential equation of second

order in the dependent variables  ul, ,p: 29 ¥ 2T*. The same result can

274i? 2
be shown to apply to the energy equation by an anologons argument involving
also the heat flux 020y ©f equation (3.18),
By en extension of this argument it follows then that one requires
&s many boundary conditions to determine each group of functions (zu;, zp*,
26’*- 2T ), (gui, 3p*, 39 *, 3T*), etc,, as is required for the determinaw-
tion of (lui' 1P» 1 €5 1T) from the equations of motion of gas-dynamics,

Since however, a condition on each of 195 2u;, 5u;, ete,, is equivalent to

a single condition on the exact velocity component
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PO - I - 7 eton ,

it follows that the total number of boundary conditions required for the
complete solution of the equations of motion (equations (3.14) to (3.16))
is independent of the degree of rarefaction of the gas.

This method of solution means, essentially, that no radical change
of the flow pattern is expected when‘proceeding from viscous gas-~dynamieal
flow to slip flow, sc that one can use the iteration process as explained
above, This situation is materially different from the case of transition
from non-viscous gas~dynamical flow to viscous gas-dynamieal flow, where
a radieal change occurs in the appearance of the boundary layer, and where
an asymptotic integration process is' required with a resultant increase
in the number of boundary conditions, If it were also possible to use the
iteration process for the viscous gas-dynamical flow, then the number of
boundary conditions required would be exactly the seme as for the non-vis-
cous gas~dynamical flow,

The ﬁbove applieation of the iteration method to the solution of the
differential equations for slip-flow can be considered from another point
of view. Suppose that it were possible to obtain the complete, general
solution of the equations of motion, equations (3.14) to (3.16). This
general solﬁtion'will include solutions of the form of equations (5.1) in
addition to other solutions which represent radical departures from the
gas-dynemical flow pattern, If one imposes now the physical condition
that the flow pattern for slip-flow should go over "smoothly" into the
viscous gas-dynamical flow pattern, this requires that the appropriate

solutions must satisfy equations (5.1). Hence from this more formal point
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of view, equations (5.1) represent the additional boundary conditions
corresponding to the higher order of the differential equations for
slip flow,

It follows from the preceding discussion that the problem-of the
boundary conditions_for the high speed flow of a rarefied gas is reduced
to finding expressions for the slip velocity and the temperature jump at
a solid boundary of the gas. The degree of approximation to which these
boundary conditions are evaluated must, of course, be consistent with the
order of the approximation that is employed for the stresses ‘Tij and the
heat flux vector qi¢

5.2 Physical Aspects of the Problem

Any theoretical deduction of the boundary conditions must be based
on the kinetics of the interaction between the gas molecules and the
solid wall, This problem was first investigated by J. C. Maxwell, His
calculations are‘based on the classical concept that.even the most highly
polished solid surface appeares on a molecular scale extremely rough and
degged. In general, a gas molecule approaching a solid wall will have
many collisions with the molecules of the wall, so that the identification
of the molecule in terms of its velocity and angle of incidence is partially
or completely obliterated, Maxwell approximated this complicated state
of affeirs by assuming that a certain fraction ¢ of the incident molecules
are temporarily absorbed by the wall end are then reemitted diffusely in
all directions, whereas the remaining (1 = &) molecules reflect elastically
from the wall like light rays from a‘plane nirror. Using the notation of
figure (5.1), one readily obtains an approximation for the slip veloeity

of the gas in terms of its mean free peth (Reference 5.2 ):

(W, - u, = 0.998 (%’—f) (%D“)m-ﬁ . (5.3.)
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Equation (5.5) cen be use.d to calculate the apparent decrease in viscosity
with decrease of pressure that is obtained when viscosity measurements are
‘not corrected for slippage of the gas, This in turn permité an experimental
evaluation of the f‘ractioﬁ G for any cambination of ges and wall material.
Such experiments were performed by R. A, Millikan (Reference 5,3) and re=-
sulted in the values of & as given in Table 5.1, The percentage of mole-
cules which are reflected specularly is seen to be very small,

The values of o defined by equation (5.3 ) are average values since
no a.lle;wanee was made for a variation of ¢ with the molecular velocity
or with the angle of incidence of the molecule. In the work that follows,
the quantity o will also, be considered to have a constant value, which
depends only on the material of the wall and thé gas (Table 5.1), for
mclécules of all speeds and angles of incidence.
| Of course, Maxwell's considerations are based on the concept of class-
ical physies. More recent experiments by O. Sterm and his collaborators
on the diffraction and reflection of molecular beems by crystal surfaces
(Reference 5.4 to 5.6) have demonstrated the wave properties of such mole-
cular beams, In accordance with the De Broglie prineciple the effective wave

¢
length A of the molecular beam is given by
J h
A = — (5.4)

where m and v are the mass and speed of a molecule, respectively, and h'

is Planck's constant (6.55 x 10~27 erg. sec.,). Thus, for nitrogen at 0° C
‘the wave length ).“is of the order of 0.3 A9, which is of the same magnitude
es the lattice spacing of crystals, Hence, from the point of view of wave
mechanics a very sﬁrong diffraction of the molecular beams by the potential
field of the orystal surface is expected, PFigure 5.2, as given by Frisch

and Stern (Reference 5.,6) for the diffraction of a beam of helium molecules
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. by & lithium fluoride crystal of low helium absorbtion, shows that, even

of those molecules which are not absorbed by the solid, only a small frac=-
tion experiences strictly specular reflection. Since engineering materials
are génerally poly~crystalline with different erystels having different
orientations, the diffracted molecules originating from incident molecules
of different directions must have a distribution which is tantamount to

that of diffuse reflection. This then explains the closeness of T to unity.

Thus even the diffusely reemitted molecules do not necessarily come from
the adsorbed molecules, If they are not first adsorbed, but are simply
diffracted, then the "reemissipn" is certainly instantaneous, However, even
for the absorbed molecules, the mean life time of the molecule on the solid
wall is very short, According to the calculations of A, F. Devonshire
(Reference 5.7 ) the mean life time of hydrogen on solid surfaces is only
of the order of 10710 seconds at ordinary temperatures, Hence the incidence
and reemission process m;_ay be treated as instantaneous in all of the cases
which are of interest here.

The congtant 0 evidently represents the fraction of the tangential
momentunm of the gas molecules which is transmitted to the solid wall, Simi-
larly the problem of ehergy transfer between the gas molecules and those
composing the gas is of interest., The experiments of M., Knudsen and
von Smoluechowski on the heat transfer between gases and solid surfaces have
shown that the ¢ molecules whiech are assumed to be temporarily absorbed
by the wall are, in general, not reemitted with the temperature of the wall,
Instead the temperature of reemission is intermediate to the wall temper-
ature and the temperature of the inecident molecules, This phenomenon is
most conveniently represented quantitatively in terms of the "accomodation
coefficient", @, as defined by Knudsen (Reference 5.8)., Since it is not

possiblé to distinguish experimentally between molecules which have been
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reemitted from the wall and those which have been reflected, the coeffieient
o is defined by equation (5.5) in terms of the total energy Ei whiceh arrives

at the wall, and E., the total energy leaving the wall,

(B, -E;) = o(F, -E;) (5.5)

Here E, is the hypothetical energy which would be carried away from the
wall if all of the incident molecules were to leave the wall with the
Maxwell distribution of velocities (equa'.tion 2.6 ) that corresponds to the
temperature of the wall, Tw‘ Experiments seem to indicate (Reference 5,9)
that the accomodation coefficient o is approximately the same for the rota-
tional and translational energies of the molecules, so thatequation (5.9)
may be used to refer to the total energy of a polyatomic molecuie.

The expression for & first approximation to the temperature discontine
uity at the wall (Reference 5,10) is quite analogous to equation (5.3 ),

namely

_dy[f2T
- T, = 0998 (& f}'&)'(%&)(ﬁ)w'/@, (5.58)

where A is the coefficient of heat conduction, and o, is the specific
heat of the gas at constant volume, From equation (5.5a) one ean calcu~
late the experimentally observed decrease. in heat conduction with decreas-
ing density, and so obtain experizﬁental values of the accomodation coeffi-
cient @, sueh as are given in Table 5,2,

The expressions (5.3 ) and (5.5a) for the slip velocity and temperature
Jump in a rarefied gas are valid only when the temperature and velocity
gradients are small, that is for low Mach number gas flows., The physical
concepbs of speculai- reflection, absorption and diffuse reemission,and

thermal accomodation, as discussed above, will now be applied to & rigorous,



systema'bic deduction of the boundary conditions which are required for the
solu‘bion of the partial differential equations of motion of a non-uniform,
"rarefied gas,

5.3 Mathematiecal Formulation of the Problem

The coordinate system employed in the derivation of the boundary
conditions is sh