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the {ree stresm and Y is the

maan effective free stresm kinemsabic viscosity of the fluld,
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1., INTRODUCTION

&

The present pepsr describes an lnvesbigabion into the effect of =
ity end heat conduction ceefficlent on the high speed flow
of o compressible fluid.

Because of The great difficulties which ariss in the solubicn of
the egquations of mobion of real fluids, it has been found convenient
to simplify the problem by sssuming that, the visecosity snd heat con-

2

duction coefficients, being "swmall", their effect could be neglected,

at least es o first spproximation. In that menner, an elaborate the=

?)G;

ory of idesl fluids hes bessn develcoped, and, in many cases, its pre-

tions have been found to bs in good egrsement with the results of

2

However, as will soom be sesn, the Terms néglected in the equs

.

lons

£

of mobion contain the derivatives of highest order, and should therefowse

determine the charscter of the solubtion. It is also known that if

those terms are neglected, some of the boundary conditions of the
problem cen no longer be sabisfied, sinces the order of the egquations

Y

is reduced, and the number of permissible boundary conditions is re=-
ducad as a result, It is therefore necessary to investigabe how bthe

e

QuSc

<]

solubions of the equabtions of mobtion of slightly viscous fluid
have when the coefficient of wiscosity decreases and spproaches 2ero.
In particular, do those solublons then approach sclublons of the eguse
Tions of motion of ideal fluids, end if they do, what boundary condi-
tions do those solubtlons satisfy?

In the casge of incompressible fluide, this problem wes first

a

discussed by L. Prandtl in 1904 in s peper which laid the foundstions

of boundary layer theory. (1). By investigating the order of magni-
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to the XIXth century physicists becsuse of the place which the sound

o

propagation veloeity held in the deberminetion of the fundamentsl
¥ ,

| 53 e LR 2 Revded o = T "
constent are summarized in Lord Reyleigh's "Theory of Sound" {7)
. 4 T 4 . St
and in Lamb's "Hydrodynamics" (8).

The theory of the propagabion of scund in an ideal and real

PIluid has thug & long history of research; but the investigation
of the dynemics of compressible flulds ibsell was undertsken much

later, Raonkine and Hugoniot studied shock-waves as early as 1870

and Chaplygin concerned himself with compressible jets in 1501,

o

T f, T

But modern theory is sbtill far from complete., MNost authors are ine

1,
o

terested exclusively in ides) fluids (see for

o

instance Sauer's

3

"Einfithrung in die Theoretische Gas Dynsmik"™) and it was fel®t that

the effect of viscosity was apprecieble only in a boundery layer

near o solid surfece snd in the narvow confines of shock waves.

Thile there is good experimental evidence that there is o thin layer

o

along the solid beundaries of & compressible fluid, in which large

-

velocity gradients are observed, fo

instence by H.W., Liepmean (9),

1
]

there is no proof that the effect of viscosity is negligible outside
this layer.
The present peper discusses the effect of o small viscosity and

heat conduction coelficient on the propagation of a disbrubance in

Y

o compressible fluid, It atlempts bto determine whether it remains

Cﬁ

sharply loczlized in a boundery leayer or whether it spreaés into the
entire field of flows

To isolete thig effect, the causse of the disturbance is taken
te be a sémi-infinite two-dimensional flat plete parellel to the

directicn of the undisturbed flow; an ideal Pluid would experience

no disturbance from such a £lab plete,



=B
Since the main problem is to determine whether any distrubances
spread outside the boundary 1;yefg the boundary conditions are applied
near the outer edge of the boundary layer, snd the field couhsids
the layer is invesblgated. This artifice allows the use of o line=-
arized system of equationg, since th@ veloelty along the seleclted
boundary surfece is only slightly different from the mesn sbresm

velocity,



2, THE EQUATIONS OF MOTION

A moving fluid, like sny obther physicel system, must satisfy

o

s
(]
Iy
»
&
r:p'

the fundamentel eguaitions of conservation of masgs, momentum and

energy., L1b must alsc satisfly & thermodynemic egquation of statbe.
The investigabtor thus has four equaticns aveileble to determine the

density, pressure, bemperabure sand veloclty which characterisze the
moving £luid at every insteut and p@fm te In all that follows, the
fluid will be takern as a perfect gas, so that the equaticn of sizte

will be the Charles-Bovle equation. In vector notabticn, the four

equations of motion are therefore:

E2+gi'<7u, =0

(2.1)
Q.E L = F Vza io(v-W)
Dt.+?VP F+\)[ +3 ( ] (2.2)
T DT‘ :_QE kazT+ ) (sz Qu‘ TS
9 CP f *ox.-) 2.3
P‘fRT (2.4)

S

where ths not tiou is explained on page (i). These equaticns are

¢

iy

mies"™ (11). It is immedietely spperent that the chief difficulty

of these eguations lies in the fact that they are not lineser, It

3

is to avold that difficulby thet the present paper is restricted
to problems for which it is reasonable bHo linearize the systen
(2.1 /Mff:;m This linearizaticn is carrisd oub, following = scheme
due essentially te Oseen (12), If the mean stream velocity is uo
the x axi’s is selected parallel to Wy and the veloclty components

2

are written seu -TI fU- u -u U -u where the vrimed quantitiss
% xy Uy Uyilz k q

' '/u_ &« .1 3 . 3 2
hiave the property o so that their squares and higher powers

mey be neglected, In the dimensiouless notation defined on page (i),
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The remsinder of the present investigation concerns itself with a
ution of the dimensionless linearized system (Zea/QQS)g where

the perturbation veleocities are the smell differences

stream veloeity and the velocity near the outer edge of the boundery

o
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2, FORMAL SOLUTION OF THE BQUATIONS

It may be noted that the problem discussed in this investigation

ot

1

feto

es in & two-dimensionsl space, To simplify the analysis, there-

i
fore, it will be convenient to construct only two-dimensional solu
tions of the system (2.5/2.8)., This will not restrict the mein results
of the investigation seriously, end will avoid extremely cumbersome
calcoulstions, In the snelysis, extensive use is made of the methods
of the Leplace Trensformation. A very complete discussion of that

<.

subject has been given by G. Doetsch (13) end the main results needed

futo

here are summarized in Appendiz I. The definition of the transfor-

fudo

s set down here for convenience:

;ft {‘f(x.’v');s}—.:é(x,sn{:"tcp(x.t)de (3.1)

mabion

with the condition that the integral exist.
If sppropriate initial conditions om the system (295/258} are
given, a Laplsce Tremsformetion with respect to time gives a new
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where the barred quantities are the Laplace transforms of the unbarred
quentities, The system (3.2/3.68) is & system in twc independent
variables §,47 with the parameter § ., If eppropriate (not neces-

sarily independent) boundary conditions sre given along the lines 3:0,—»’:0
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The four functions F 3 iﬁuk.v?} dapend on the inibtisl conditions and

5

on the boundery conditions of the problem. It 1s known,

thaet the guant

pnes wr o P N
complex variables

If the F;, we re

sy%cm (3.7/5,1 would have no solution, so
]
of $, N , z

must be go chosen

u.ﬁkl’i@%ﬁi 5 QN8 can wr 1 [
a ®se E & oo %
1} ¢ *

subsgtitubte this btentative sclulion inbo the system.

] 2 o 71 ¥ E- % = Py @
inds the folleowing slgebraic relations:

(s¢AM)Z +\U+ a V=0

netionsg

however,

”f S,x

el orms

'8 R&3>503R“‘>)\9

the




=10

(S+AM) W + S’;.rr- WU - : atU- 32V=0
(s+XMIV+ ST0-atV= 3NV= allag
(seAM)y @ ~(sAM)-)TT- 2 « (M4 @z 0

®-M+T =0

sPore the slgebraic egquivalent of

@
]
@

The system (3.13/3.17) is th

the originel system (2, a/?qu; end it mey be well to peause and re=

o2
L

exemine the steps taken to obtein this system, and the significence

@

7

of the terms it conteins, The system (503,5/3917) could have been

obtained formelly by postuleting solutions of the form:

STeibea
u=lle s 1

snd seeking the conditicns which § 4, \ must satis i he method of

the Laplace Trensformation used above ls merely tr*@ mathematiocally
rigorous formulation of that very process, which gives salso some
informetion on the tj,rpé of boundery conditions which mey be spssified,
as the Prize of a more eleborate snalysis, The paremeters designated

by unprimed cepitels are easily defined in terms of the initial and

boundery conditions of the problem; they are celculated as followss

oo
U:/o/ u(t§o)e -3t ')‘gdtd_{ (3.19)

C

It has therefore been possible tc transform the system of partial
differential equations (2.5/2.8) end its initial and boundary condi=
tions intoe s homageneou& system of algebraic equations, It is clear
from the analysis up to this point, that §, \ are any complex numbers,
Therefore, for the system (3,15/!3;17) considered as a system of egua~

tions in the unknowns U.V.Z.Tr. @. to have non=trivial solutions,
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must be so chosen thalt their de=

the ceoeflficients of those unknowns

terminant venishes, end that gives e relation to define the parsmeter &

a8 a Tunction of the parsmeters S,X o One will return bto the discussion

determination of m(s \)

of the boundery conditions efter this
The parsmeter @ 1is therefore determined by the relaticns

0

a) ssMA-3N-a® 0O 2 0

4 | 3 (3.20)
o 0 O (F)(ssMd)  y(s+dM)-F k(4
| 0 0 1 -t 1|

H=0

This determinant is computed out to give:

fs4mr- 308 Hormlsom - Fted] -
[s+AM) - (%aY] - (ateX?) [(s2M) -3 & ‘u‘)]} =0

which can be sabtisfied in the following two wayss

S+M) - %(X‘M‘):o L
(3. 22/

(s+MN[ts92M) - 3 Kk (P )fs A M) - O2nl)]
~(& +X‘)[($+XM)~ E(«%\]=0

Equaticns (3.22) end (3.23) can be I’@lmt@.ﬁpé eted in terms of partial

differential equations, They are made up of combinations of the

. . . ‘e - e ae
e:rtpr@smcms:(s'l')‘ﬂ); (4‘4.)3 . Bubt from the solution form {(3.18),

it follows thabs

g‘: '2%'.' Mw (serm)d ‘ (3,24)

V‘?"g ?Jf (Fed) @ (3. 25)



go that equation (3,22) is equivelent to the partial differential
equabtlon:

while equetion (3,23) is equivalent to the partial differsntisl

equaﬁi@né

N |
[-— -w] (|+2\o1?.s? -%%V‘q +2e2ps0

®
It e (3.27)
“yhere is an abbrevistion to represent amy of the functiocns Y V,@, M,

=
or

68 thus been shown that the sclution of the system 235/298) is
equivalent to the solution of the partial differentisl esquetions of
higher order (3,26) and (3, 27)., It is also possible to deduce equa=
tions (3.26) and (3,27) from the system (2.5/2.8),

The role of the soluticns of (3,26) emong tﬁe solutions of the
system can be inferred by inspection, For if Tz2W=20=20, then, the

s reduced bo:

feto

systen
V.U, =0

DU 3 23
5—.:‘;‘7 ol (3.29)

p=w=0=0 (3.30)

This part of the solution, therefors, does not involve the dyna-
mical propertiss of the fluid, It is of purely kinematic charsacter,
and can be superimposed on any sclution which satisfiss the dynamic

requirements of the problem,

A

In order Lo obtein equation (3,27) f

£

from the sysbem,; it is neces-
@
sary to carry ocu® a lengthy calculaticn which is not reproduced here.

)

To summerize the results obbained to this poinbt, it was shown
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=L an @) sTAS o 2
¢ { [§ € @ote‘-ln,‘]e ded) (8.38)

where C is the inverss Leplecs Trensformation path, end will be dis-

cussed in grester detail later. It therefore remains te determine
the number of accepteble linearly indepvendent valuves of @ which can

2

2 2 2 ) I e ~ 5 » I'4 7 N\
be substitubed inte (3.38). One notes thet equations {2.22), (3.23)

2 .

involve ouly & . One obvicus condition on o is:
Rl Famf<o (3,39)

to insure convergence of the soluticn at large distences from the

. PR
source of the disturbance. To sach value of @ therefore, corresponds
one permissible value of @® for which the boundary conditicn as 'q'ﬁ L

ig aunbomatically satisfied,

£

Equation (3.22) gives one value for @

EaS
]
@®
>
<

p—

d,z ¥ %(S*XM)-)}

while equation (3, 2%) gives two valuess

seAM[1+ R kw1 )(sAMJE
dpzt [t 3K 3 )2
X UsenM)® [0 3 ke) (seAM)) 2 "3yl Betsod) ) (saH) ~ X

2 & [v(som- 4] (3.41)

There are thus only three possible velues of @0 which may be designated
A ,0y, 3 - To each of these values @y , for a given value o W

or V. TT..‘ correspond values for the other parameters, as given by
equations (%, 32) to {(3,37). It follows that three out of the five
paremeters moy be selected arbitrarily, provi
or v » This analytical result is the confirmetion of the intuitive

1g thet the flow of a viscous heat conducting £luid is determined
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by the no-slip condition st its solid boundaries (H‘u‘,;V:O) and by

It mey be noted that in the very importanit case
non=conducting £fluid, the third condition becomes irrelevant

that only two condibions ave given {no Slip)@ Then , dz s inst

RE 1S Ch

s+aM)? (2
oy = \[V3csr2M) A



4, SPECIAL CASE OF THE INCOMPRESSIBLE FLUID

o & om e s }) a2 5 22 e P
point of the discussion for a8

L]

It may be well To pause at this

]
i..éo
o
(<3
&
=

sion

CT}

digre led te throw some light on an important festure

brought out in the formal solution aboves the split of the sclubtion
into a purely kinematic part and a dynamic part.

This is best done by studying the simpler more familiar flowm
of en incompressible fluid., The problem of the flow of an incompres=

Y

sible fluid aboub s two-dimensional s

(?\

emi-infinite flat plate parallel
to the main stream will therefore be discussed in some debalil.

°

linearized eguations of motion of an incompressible fluid

s
bt

in sbtesdy moblon ares

simple sequation:
2 3
[ A )

es can easily be verified by differentiabing equation (4,2) with
respect to x, (4.3) with respect %o y, and teking the sum of the
obtained equations., It is also known thet the veloclbty components

u,v, sabisfy the following system of equutions:

TRATR 1N (4.5)

U _ o_W 0 U
U 55=V( 5 Y (4.6)
2= an
Uz, 2t g (4.7)



sleta discussion of these resulbs iz

? o
8

P N ! S n o s {a e PR R ‘. . -
dynamics® (14) or in Oseen original paper (185, where they ars

derived in comnecblon with Stokesz flow aboubt a sphers,
- R g g e T (7 o
Now, it is clear that equation (4,6) corresponds to {3,26).

o 4 3 3 o= L 4 e
ot only can it be s2en to correspond to the case P-O in the systenm

(4.1/4.3) just ss (3,28) corresponds to the case T:M=0=20, tut

ioe ° P ° N R e JURE T - ENE NS 4 \
t 1s also idenbical in Porm. On the other hand, eguaitions (4.4,

=3

o~

4,7) corrsspond to (%, 27) end agein, the dynesmic squabions for all
the wariables take the same form,

With thess remarks in mind, consider the flat plate problem in

the following precise statement of boundary conditions:

W (%,0) = Up 0LRLD
Wy (%,0) = O -~00¢%<0 (2.8)

i, (Uind) = 0 (4.9)

i u(xy) =0 (4.10)

vix,0) =0 | (4,11)

Lim vy =0
Vo (4,12)

Lim vx.y)=0
A=DH=00

F o
N

)
-
o

L —

where observabloas are baken near the ouber sdge of the boundary

LE)

o

layer so thet the linsarized equabions have some velldibty even when

5

the free stream Reynolds number is large,

Thess boundery conditions lmply bthet the fluid is ab rest with

b
&
o
Fr J
&
[v]
&
o
[&]
©
H"
Q
o
fodo
o
s
<
o
2}

surface very nsar the flat plabe; and that
the disburbance creabed by the presence of the plate is damped oub
ab large distances away from the plate, Under those conditions, it

is

L

possible to solve the problem, as Lord Rayleigh essentially did (16).
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X -v i+ X)]U+ 2 Pa o
[trox = V)]V + %? =0

UMV N+ =0

system 1s demon

for the ca

ey b 35 - 2
obbalned by

The

F%) o D, S
of the Lazp

technigue

g

ig similar bto the system |
It is easily verified thaet the
of T, V, P, is that the parame
Uod-v(N4a¥ || a*N] = 0
which lsads to the btwo possibili

brated,

the syst

{
S

o)

7}y discussed previously,
E]

ax

non=trivial solubtlions

(4,18)

2 2%
sorresponds to equation {4,8): ands
N4d®=0 ¢
o= LS
2 " o . 3 A
which corresponds to egquation (4,7).
In this wle case, the eguivelance of vhe of




LN . - BT
ificance: +the problem

o 1
the drant K03 yp®; then in the

s (4.11) give:

({%; 20)

edqu ation of conbiau Vs QLS

has the further relations:

)u\“'d\v\ =O'

(4, 22)

)\uz "‘ dzvz 20

P
ab
&
DI
3

N

a8

whers, Trom equations (4,18), (4.19), one has:

o{.‘=~\}"-‘{;\'-"\‘ 2, 24)

dz - Lx ("3'.« 25)

s

It follows that the transformed boundery conditions in the plane

{ U.)\ } ars:

The principal part of the solubion is therefore given by an inverse
Laplace Transformetion:

#

oo el S

C~ig0
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>

The integrend of this complex inbeg

&4 s ai b

and & branch-pointd

a2t o brench-point ab )Y cuk
in the right half plane along the real 1o
difficalsy. It is thersfore possible to replece the path of integra-

tion by oume which follows the Imaginary axls with an indentabtion to
°
the right to avoid the pols at the origin, Writing (W for k s

one finda:

numbers may be considered to be large, snd only asymptotic solutiouns
Lo - -

25 X=B®D ;YD nced be found. Then, only that part of the ine-

3 o e 4

tegrand for which 'W‘-V O contributes significently to the resullb,

2 s

The asymptotic solution then comes from the W, alone and is given

gﬂa

by an integral of the form:
o Wm @m e )
Uo W -3 gp

D e ‘j:aﬂl
“s 2ni ce ¢ w )

givas the well-known asympboble solution:

Q\F&T)
21

5

et

ek

%
t
o

wh
wzw, (1= erf

whers Rx is the Reynolds Number “wme and erf represents

funebion define
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. ~Yw
It is well to poimbt out that 4o neglect exponentials of order @

~Yud
ear'

(4. 30) spproximately, is equivalent to neglecting the term ¥

]

as compared bo == in The e
DX

ag compared to , &8s was doue in evaluating the integral

€7
fde

uabions of mobion sz Prandbl did in

te]

his originel formulation of the boundary layer btheory.
The second part of the solution velid in the quadrant X<0 iz

agympbotically 0, Thus, all the boundary condiblons are asympbobieally

(4, 3¢)

and that in the disturbed region, there is no pressure gradiend, Bub

this is sxactly the wonclusion which Prandtl®s boundary layer theory

-#2

leads to. It has sssentially been shown therefore, that the kinematias
£

art of the sclution corresponds to flow in e boundsry layer, while
- - P o

the dynamiec part of the solution is, ab least some distence awsy from

the leading edge, of negligible importancse, One of the aims of this

investigebtion is to verify whether the kinemsabic part of the solution

corresponds to a boundary layer in which the fluid is slowed down

without pressure gradisnts, for a compressible fluild also. The other

aim will be to examine the dynamic part of the solultion and to determine
04 &

under whet conditions it mey be expected to play an importent role,



of the solution, 1t is well to

s

it occurs alone, One may thus

conditions under which it may be of signigicance.

One is thus led to the study of the propagation of small dlis-

spherical snd cylindrieal distrubsnces. The results obtained are for

A

LOT

€

The problem is essentielly to solve equab (3.27)3

] <.

In the discussion, only a viscous non=-conducting fluld is comsidered,
so thet K2@ . Furthermore, since the disturbance propagates in =&

£luid initielly ab rest, one has M‘=O o and the equation btekes the

This equation is the generalization of the equation derived by Stokes
3 ¢ £ o= s < s 5y
in 1857 (5) and it will be analysed in some detail. It is notable

that ecusbion (5.,1) differs from the ideal fluid equation only by the

last term. But in physicsl coordinates, equation (5.1) is:

> 2 2 g2
%-c‘V?:%V;‘cv ¢

P
<
)
AY]

-

)

Thersfore, the additional viscous bterm is smaller then the other two
terms unless there are large gradients in the solutlom. But it is

2 Fale ]

well known thaet eny disturbance travels unchenged in an ideal fluid,



&

in the regions of the tims-space domein wher

erm becomes significant., Ibs effect may be surmised qualitetively,

on both phys] mathenatical groundss For it is koown bhat
real fluld cannot support eny disconbinuibties, the mechonism of vis-

cosity being present to smoobth then out. Also, while the ideal
squabion is hyperbolic end thus implies e finite signsl veloeltby,
equation (5,1) is of parabolic type; the signsl velocity is infinite
end o diffusive process is beling place, The result of which must be
to smear oub any disconbinuities. The problem is thsrefore to debtermi
how the "smesriang" process effects the solubtion obbained in the case
of the ideal fluid, 2nd more preseisely, what role the characteristios
of the previous solutlon pléy in this case,

The first problem to be discussed is that of a distur
strength ¢, crested suddenly at the time £30 and maintained cone
gtant through the rest of time. The other problem is that of en in-
sbanteneous impulse.

Consider first a one-dimensional space such as would exist in-

side a long open straight pipe filled with fluid, The egquation here
tekes the form:
P PP _ 2
o 29 _ 29 _, .
Ve U

AT 2E MR

2

with the initial condibionsz:
Plo,%) =0 %‘5(0.3‘)” (5.4)

nd the boundary conditions:

‘m‘.o)zo ~0<T<o ’-;f*."fﬂf.ﬂua ,
p(ro)=p O<TLee :
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The transformed eguebtion 1s:

S
Y
S
N2}
A4
A
8
N
g’fﬁ
=3
j g

.
L8

EL

and the solution in the (f,t‘} plane is obtalned by an inverse Lae

Lk 2 ey S JE I I 9., I TR A
The coatour of integrebion in the s plene is thevelore the

line AB (sese Figure 1). DBut since the integrand is regular in the

AB may be replaced by the conbour G

sog
@
e
do
o
I
i3
@
==
.
&
b
o
=
&
o}
ot
=]
"3

The inbtegral along the large aves B'D and G'A is sasily evaluabed.

i®
Along those arcs, § =R®e & vwhero R9 @ . Thus, bebween B! and C,

the Lnﬁigfaﬁd is given bysz
st-$ ; §
i | = O~ ==
’e , IW{RQ (T H'Rem }l $
€ axp(Reeat 0 - Kf V)

symbol R introduced at this point to designate a very lerge
dius in the complex s pleane must not be confused with the symbol
Cor the universal gas constent or the Reynolds Number,




Hers, K is ® numerical constant which approaches 1 uniformly as R0 .
g and T are pos‘itiv@ ﬂam‘f rg. Since the conbour is on the

left of the imaginary axis, €03 eco end along B'C, the sxponenbt is
dominated Q‘J-Ar so that the integral along B'C certainly vaunishes,

A glight difficulty is sncountered in the v.icin:ity off A" where ¢08§ 60

while COS g 0 . m 1t s Lor eny given set of values é ,® end any

value of @ 1% is alwe wwe possible Lo select an R(O®) sucsh that the

o
O
[47]

integral converges to 0, Thus, the integral along the arcs B'C,

T

. N o 5 oA s
Similarly, along the segments BB', AA', s becomes Rls-t L,R .

sT
Then, sinece Rl & can be mads es small as 6.@3:13’@@ , @ can always be
dominated by a finibe constant while \j= is of order -gJK and The
integral slong BB', AA® vanishes. Thus:
Q= ?!iz e Vers Aas (

2ai 4, e s

where the contour C is CDEFG on the Pigurs,
o

<

9
Josd
&

N

Since this contour plays sn important paz'%’ here and further

[&]

elong in the snalysis, it is described in some detail., It run

from §R=-004i€ along the top of the cut to the point =P ¢ie . It

then goes along e circle of unit radius of center S:-I with sn indenta-

)

tion which lesves the pole at the origin outside the region 3 and

-

ko the point<Z={€ at the bottom of the cut, It then runs back along
the lower edge of the cut from=Q-ig to -@=i€ where it joins the are
GATY,

It is convenient to introduce at this point the following trans-

formation, which maps the s plane on the k plane:

-l ()
V‘l-fi‘-‘zk 9’“‘2(‘!(‘!3“) (5.12)
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The conbour C is mapped as followss As s runs above the cub Trom

goes from-=@® to o4 along the real k axis, with the

2 k(k-\lk‘-l)‘, The firsh gquadrent of the eircls
e . " b ‘r" £
corresponds to the segment -.<k<-ﬁ with S:-Zk‘k"’ k-ﬂ)s the

seoond quadrant maps into -L( k(O 5 the third quadrant into 0(.(( v-':
ah

) ¥l

and the fourth in < k( 1 the pobth back along the bobtom of
the cubt corresponds to 1("(“ with the transformation sbill S.-Zk(k#‘h‘ )

The inbegral (5.11) thus becomes:

:%%+ 2 fae.zk(k-wh?‘:'t)t (Sinzkf,., “: .‘?
+ & cg, -ﬂ:‘t zek(h-t/t'k‘*) (L

‘0

When the definition of the dimemnsionless wvariables {,‘l“ is recalls

S)d‘t (5.14)

&
Q

o

comes clear that except in the immediate vieinity of the origin

e
<k
o
&

of the x,% plane, their value ls extremsly large. If one tekes the
veluss ¢ 8 33,100 m/sz:tam end Ve o.l5 e /ss-c. ., Tthen, it is found

.° 2
theb o time interval of 1 second corresponds to P 9, 44 X 10  while
a distence of 1 cm, corresponds to §=l.6$x 0 . 1t is therefors
chysically reasonsble bto analvsze the solution in the asympbtobic case
by J

when T =% @® . In that case, the first integral gives a negligible

contribubion, whils the secomnd integral may be approzimated by:

o _ gt
e (1o €™ smaktgmdR] oo

1 Fal
i
do

end the result of the inbtegratlion is found to be:
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Pl \
(5.40)

:ktkﬂf»‘)
aao ¢ eftkpdh (o)

tedo
(]

43

formetion:

G(K) J‘ f pi@ e 2kpdp » F-- %(—. (cos2kp,-)+
+ 2ke, sin2kp, |

R - W5 PR L I .
¢ regulre solutbion is therefore:

o -zk(ktmt
| 7 fos 2klpefs) ¢ eos 2hlpp)- o o)
- e 2k +zkp,[so‘nzk (p+£.) - sin 2k (p-1,)] | b

)

[

8
xhe

rest of bime, and the lmpulse, can be obi ained from the solu=

eus radius

nite spherical scurce of



o iy el 3 - _°
that solubd

o -2kt
Lim ¢= ‘.%3’ %[ ] smlk(fﬁ)& 5,47)
e

limiting process @ Poin which case &I

U]
- 2klict i)t o
%f e " cos gkp ok (5:29)
[ ]

for the plene impulse, bthe spherical impulse
is defined by *’ Qo rl being now proportional ’to the surface of

emission, the solution is, in physical coordinates:

_(packi®

=
1]
T
]
5
o]
(=]
@
)
o
?
[

The scolutions in the case of spherically symmetric distu

herefore very gimilar to those found for plane disturbances, The

only difference is the presence of the factor e in the selution,

ER)

ich is introduced by ths geomebry of the three-dimensional spscs.

It is well known thet the facbor n the solution
of three-dimensicnal propagetion equations for an idesl fluid.

In the case of & btwo-dimensional space, the equation o
becomes s
X

& L@y _ ’gf +=
P 3To¢ (5.51)

z-ct (39 ? ¢ " orogt

da

where the coylindrical radius symbol carries a bar to

it from the spherical radiu

=3

o

s It is found by separating the wveriable
&
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&t
r2 distences

e
3
108

e 3 - o s ] e & 2 -
the penersl sclublien of this eguat

£ SO I £ 2 o B mn R i Lo
from the @mgi;a s 1 glven by

= f 2l e -2klkt Vi) T

The discussion of the problem, ss before,; invoives the initial cone-

Io CZkﬂdk (8.52)

~EA T 1 Gy € e
ditions:
-y

s
2@ (0¢F<R) |
@z0 (B <p<w) 08
and the function G(k) iz obbtained by mesns of the Fourier-Bessel -

spansion ‘&ﬁlg > OV Em 8

crce.o) [ 2kcL2kF) [[T2sep (51T, Cask) dis] ol
=mJ T, (2kp) T, (2k§) dke

so that the solubtion is:

* _ak{kt/iET)T N ,
?"‘Po o Jy 2” J,(zkf.)ro(l.kf)dk (5.55

S

p=t

mem
= wrdn & ey o £ - 2
n particular, if ?.—7@ s Tthe solution is obtained by using the

asymptotic expansiocns of the Bessel functionss

J.(zkas.vﬁ;—ﬁ Sin 2k, .
Jo (2hf) ~ ﬁ'—;—'?' sin 2k (5.57)

I% follows that the solubtion iss
ket T
¢p= "\/ I s:nlk(@»-&,)é"s (5.58)

or in physical coordinates:

F-~ck
‘-&r( '-'fm ) (5.59)

<
Similarly, if ro D0 . one finds that:

@ate P % .zk(k*JF)t s2kgdle (.0

W
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While these remsrks conclude the mathemstical discussion of the

propagation of small one-=dl in a viscous fluld,

it is neceseary bto indicetve, al least qualitatively, the influence
of the heat conductlon on the process, Since hest conduction is a
%

it mey be empected that the patltern Found above,

iy

Cia
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b
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et
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ot
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ive process on & sharply

radically sltered, This

rather vague physical inference can be made mors

L
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e
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95
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<
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In all thet follows, only one-dimensional plane disturt

but the conclusions ere easily extended %o other types of such

cussed,
disburbances,

In physiczl coordinates, the propagation eguetion is:

-
]

characteristic lenghth exists in the system, and e Reynolds

o e A

number based on it and the velocity ¢ ls introduced, squation (5.82)
becomas e

t (5
.‘ t?_Q (4 )@f Koy _4 e
zt' t 9” 5;7‘ v ?t" rp axl\ 3 R‘?&3év& 13 )
The ratio %; of thermomebric hesd conduction to kinematic viscosity

is a constent for any giver ges, and of order unity. For a monabomic

Mazwell gives &

<

for that constanbt, A somewhat nmore




[

K_ 9-§
'{,‘" s (5.64)

regions where ? changes ver

discussed previcusly), the last

(Y

order of magnitude smaller than the other berms and wmey be neglecte

& 3
wrthermore, it is seen tThab:
'LE > '
‘b - "i - O(,'L) =\
catl'& zx"- 4 (5. 68)
80 that 'é' 3&’. Qxﬂ-)=0(é.,),l‘c Pollows thet equation (5.83) cen
. 310 402 ; 31?P/b 7
be approximated by replecing the term ot by X o the
right hand side, the spproximaticn being valid to the order G{'/ R.l)
except inside the "shock-waves™, It then becomes:
C ty 2.:2 ﬂ ! =) (5.56)
Lo - £ 56
3? zen zxﬂ "R + xﬂ“ﬂ B
which is, alter one inbegrabtion with r exp et to L
u - ‘?“‘P ( Ve K L " {5.67)
ot 3 9&3
the consbant of inbtegration being taken as O bto sabisfy the boundsry

condition os XeP @O, Thus, it is seen thab as e Lirst approximation,

the effect of heat conduction is to replace the kinemetic viscositby

W

=

ceefficlent by an effective coefficient given by:

%V(H'% ‘%‘ %) 5,68)



= 3
The order of magnitude of this effect is = =] 80,44 . 4is Kirchhofr

hed poinbed out, it is nob negligible, But on the other hand, it

introduces no new character inbo the flow patbern and merely modifies
the numerical value of a consbtent, For insbance, the dlsplacement

are propagated diffusely; the center of

the dizburbance is slways slong the he disturbances would
0/ A=

T

heen 1f the Fluid hed besen idesl, If the equation of mobl

£

he idesl Pluid is hyperbolic, the characberisbtics of thet equation

are for the real fluid, "quasi-characteristics" along which propagabing

disturbances are centered, This makes the wave equabion such a useful

approxzimation, The effect of viscosity and hest-conduction, with

r placed far

ahead of the disturbsance,
resches him, he is eawere of a diffusion of energy, Here@ X 3
because of the locabion of the cbhserver, snd therefore, he feels a

disburbeance s

" |
‘("_g_?(t- ert \fiﬁ?) (5.70)

which is the value predicted by the sclution (5.17). On the other

(Y

hand, had the same observer been placed far behind the disturbance,

&

where the conditions esre steady again snd ’b—kao s he would have

observed c'= C& which is again the limiting value predicted by (5.17).
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much sinplers

a b R
SM;{-?MS:;‘{’(M ')ﬂ' 3._—‘.-.-(”. Hg’)[?“"'%a—-'{cm‘g

unznbities here refer to the tranaslorms of the unprined

guentities, The second shtep lnvolves a Leplace Transformation with
respect to g and here, greater care

1ine é:O are

=]

2 . Ty e h P o,
ust be exeveised, since the

B
o
[¢))

know: and must b
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APPENDIX I.

CERTATHN PROPERTIES QOF THE LAPLACE SPORMATION AND

TO THE SCLUTION OF PARTIAL DIFFERENTIAL BQUATIONS,

The methods of the Laplece Transformabtion, which gives a rigorous

besis to the Heavisicde Colculusg, are found very useful
{hJ ferential equations with coustanlt coelfi=
which are encountered in this veper., Free

ERN

use has been made of these methods, bthroughout the snalvsis, and
whils most poinbs can be clesred up by reference to G. Dostschis
standard work on the subject, a summary of the main results which

were uvsed is included here Tor the resderfs convenlence,

The Laplace Transform of w& function Cf()‘;f—) is defined as

q)(x-.:,S) = x{?(lz,f);s} = jme_StCP (. t)dE (1.1)

provided that the inbegrel is convergent for ®ls7s,. One of ths

importent properties of the Laplace transform is therefore that CID[x_;,s),

o

considered as a function of the complex variable s, is analy
end regular in a right half-plene RES>5° s

¢('X-i,5) ig the Leplece trensform of some function @&it)

ctio
1 st .
K T = . L
p(x; t) i J e @(xhs) ds | (L.2)
c-i®
¢ is a vesl coasbent so chosen thabt 211 singularities of the

functien CP lie te the left of the path of inbtegration; the exist

of ¢ is guarenbesd by the fach thatb CP is reguler and anelytic for
S 2 S, i it is a2 Laplace trunsform; it is therefore sulficlent

2 4 Foe
to have €25, . It is also shomn that the transformations (I.1/1.2

it can be shown that ¢ is obbtained by the following inversion formula:

)

¢
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Let the problem be an so that the solution
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ts defined for £L>0, Let the con

@ <lox) = "Po (b}
CPE (D ,)L) = q/l

where QGJH‘(PD will be restricted il the unsed arises, The
purpcse of the Laplace Transformation is bto replace the problem
(IQS/IHQ) in two v«si;”les (x,%) by a problem in one variasble x with
paremeter s, Indeed, spply transformation (T,1) to each term of
(1.3):

7.

© ®
g[gg, S} f -5t A dt = '5tgi:a 45/0 e—Stgi:dt =‘%+5Lwe'5tai”dt
==+sy] + s Bs)

S'Ez

f {aeax"s} [ e‘s:?ax dt - a _Stw"“' 3; (—*#,*5@] (1.7)

‘Dt(f ® _sk - _iz m—Sl‘ o d
ff{ ;s}= Le S;!i"lt’ax‘]oe . dt = Zc’g

Equation (I.5) was obtained by carrying out two integrations

N 2. RN IR I N 2 a8 ! .
end using the initial condibtions {(I,%a).
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as bherefors be

2. 5
3/I.480) h

problemv(IQS/tbg) and the two problems are completely equivalent
soause of th@‘uﬁiquﬁneﬁs of 11 the transformetions, provided thatb
the tr af@rhation frbe exist, the function ¢, re-
disturbance, it may be expected that the iuntegrals
in gensrel couverge.
It remains to solve equation {I,8) with boundary (I1.9). The

- +5 "P A £ -
@’ﬁe + e J e e [P) dF ¢ (1,10)
o
and to complete the sclubtion of the problem, it is sufficlent bo
transform the ? back into the x,t space.
Ctico
-3 32 X 2¢d
st Vi3 T %-?
AE)= — I+ s P {
o= e {Be T ve e e ™ Q(p) dfdatds  (1,31)
. o
C-i0
However, = point must be raised here: the Laplace transfomm
must be regular g in a
'3 i ° ° &) > « 3 i PR -
is a sebt of eigen-values of s for which equation (I.8), being a non-
nomogensous equabion, has no solubicns if 42 is arbitrary. One must
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