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Viruses are subcellular agents that rely on the molecular machinery of a host cell 

to replicate. They have evolved to infect almost every organism and are increasingly 

being employed in scientific research. Although viruses contain very small genomes 

encoding only a few necessary proteins, they have adapted to evade immune systems and 

transmit efficiently from host to host.1,2 While viruses come in different shapes, sizes, and 

types of genomic information, here, we are specifically interested in enveloped viruses. 

Enveloped viruses are a class of viruses that bud from the plasma or internal membrane 

of plants or animals during their replication.2 The newly budded viral particle contains 

the genomic material inside a protein capsid, which in turn is surrounded by membrane 

from the host and envelope proteins. Envelope proteins are often heavily glycosylated by 

the host machinery, and therefore are often not immediately recognized by the immune 

system. The envelope glycoproteins are usually responsible for interactions with cellular 

receptors on target host cells, triggering membrane fusion and infection.  

Enveloped viruses cause many well known diseases, including influenza, Ebola, 

chicken pox, SARS (severe acute respiratory syndrome), small pox, and AIDS.1,2 Human 

immunodeficiency virus (HIV), the virus that causes AIDS, affects approximately 33 

million people throughout the world and causes approximately 2 million HIV-related 

deaths per year.3 While current retroviral therapies have extended the length and quality 

of life of those infected with HIV, resistant strains are becoming increasingly common, 

and additional treatments and a broad vaccine are necessary to prevent additional 

infections. Although influenza does not typically cause the mortality of HIV, it is a highly 

contagious virus that can be lethal, usually in the very young and very old and in those 

with immune deficiencies. Moreover, influenza pandemics, such as the one in 1918 when 



 3 
an estimated 40 million people worldwide were killed, are capable of causing a 

significant number of deaths, including in healthy young adults.2,4  

Current treatment for viral infection varies widely for different viruses. Effective 

vaccines are available for smallpox, measles, hepatitis, and varicella-zoster (chicken pox) 

viruses, among others.2 Influenza vaccines are typically effective against the strains 

included in the vaccine, but must be readministered every year due to the rapid mutation 

rate of the virus.5 For some enveloped viruses, however, there is no vaccine and therefore 

treatment of the infection is the primary clinical goal. There are currently no vaccines 

available for Ebola virus, herpesviruses, hanta viruses, HIV, and many other potentially 

deadly viruses. For many of these diseases, treatment is administered to make the patient 

more comfortable, provide symptom relief, or decrease the viral load to allow the 

immune system to more easily fight off the infection.2,6,7 

Efforts to develop a vaccine for HIV have been met with limited success, with 

promising laboratory results thus far leading only to failures in clinical trials.8-10 

Although an effective vaccine has not yet been developed, researchers have isolated some 

broadly neutralizing anti-HIV antibodies from non-progressing patients, leading to hope 

that a vaccine may be possible.11-14 While research continues on developing an effective 

and cross-reactive vaccine, patients currently rely on antiviral drugs to decrease their 

viral load and prolong their lives. HIV antiviral therapy usually consists of three or more 

antiretroviral drugs from at least two inhibitory classes in a therapeutic regimen known as 

highly active antiretroviral therapy (HAART).1,2,10 As of 2008, 32 antivirals have been 

approved by the FDA for treatment of HIV-1 infections. These mostly small molecule 

drugs can be divided into six categories: nucleoside reverse transcriptase inhibitors 
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(NRTIs), nonnucleoside reverse transcriptase inhibitors (NNRTIs), protease inhibitors, 

fusion inhibitors, entry inhibitors, and integrase inhibitors. Although HAART has been 

quite successful at reducing the viral load of patients, the rapid mutation rate of HIV 

often eventually leads to drug resistant strains, rendering antiviral treatment ineffective.15 

New and improved small molecule and protein-based therapeutics that limit the 

development of drug resistant strains, along with the creation of effective vaccines, will 

greatly improve the outlook for currently infected patients as well as those at high risk for 

becoming infected. 

Unlike for HIV, there is a very effective vaccine for influenza.2,5 However, the 

inconvenience and cost of yearly immunization, as well as the unpredictable mutation of 

influenza, means that millions of people are susceptible to infection every year.16,17 In 

addition, the recent emergence of a highly lethal H5N1 strain (“bird flu”) has led to 

concerns that this strain could become easily transmittable from human to human or 

weaponized, creating a massive influenza pandemic.18-21 Influenza A, including H5N1 

strains, can be treated with antiviral medications, including oseltamivir (Tamiflu) and 

zanamivir (Relenza),1,22,23 although resistance to oseltamivir and other common influenza 

antivirals have already been reported in H5N1 cases.24-27 Additional anti-influenza 

therapeutics and prophylactics would be beneficial in the case of a pandemic, especially 

for medical personnel and first-line defenders. 

Cyanovirin-N (CVN), a potent antiviral lectin, is uniquely positioned to become a 

novel therapeutic and prophylactic for enveloped virus treatment and prevention. CVN is 

a small 11-kDa protein that was originally isolated from the cyanobacterium Nostoc 

ellipsosporum during a high-throughput screen intended to discover novel anti-HIV 



 5 
activities. CVN was shown to be active against various strains of HIV, including primary 

isolates of HIV-1, T-lymphocyte-tropic strains, macrophage-tropic strains, and HIV-2.28 

This study also showed that CVN specifically interacts with the HIV envelope 

glycoprotein, gp120. Because of the great potential of CVN as an antiviral therapeutic, a 

number of additional studies quickly elucidated that CVN is a lectin with two 

carbohydrate binding sites that specifically bind to α(1-2) linked oligomannose moieties 

within Man-8 or Man-9 glycosylation sites.29-32 Interestingly, high mannose glycosylation 

is very uncommon in mammalian oligosaccharides, but is often seen on the surface of 

viruses and microorganisms, creating an important distinction between the recognition of 

pathogens during potential treatment with CVN.33 The two carbohydrate binding sites in 

CVN show distinct affinities for Man-9: the “high affinity” binding site has a Ka of 7.2 x 

106 M, and the “low affinity” binding site has an approximately 10-fold lower affinity.30 

Later studies confirmed that both binding sites are important for HIV neutralization, and 

the destruction of either site renders the CVN variant inactive.34-36 These two binding 

sites provide a mechanism for high affinity and high avidity interactions with 

glycosylated envelope proteins on viruses. 

In addition to its potent activity against HIV,28,37-39 CVN has also been shown to 

effectively neutralize influenza,40,41 Ebola,42,43 hepatitis C,44 herpesvirus 6, and measles 

virus.45 In each case, CVN binds specifically to high mannose glycosylation sites on 

envelope glycoproteins and inhibits vital interactions between the virus and the host cell. 

To date, CVN has shown no antiviral activity against any non-enveloped viruses, 

including rhinoviruses and enteric viruses,40 and also appears to be inactive against some 

enveloped viruses, including vaccinia.45 
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In the case of influenza, CVN interacts with glycosylation sites on hemagglutinin, 

one of the two surface glycoproteins expressed on influenza particles. CVN showed 

highly potent antiviral activity against strains of influenza A, including H1N1 and N3N2, 

exhibited moderate neutralization against influenza B strains,40,41 and was able to protect 

mice from a highly fatal strain of influenza when administered before infection.46 

Unfortunately, there was no apparent activity against H5N1 strains (“bird flu”).41 

However, with increased understanding of the specific interactions between CVN and 

hemagglutinin, engineered variants may provide increased neutralization of H5 and other 

strains, allowing a broad and potentially successful method for preventing infection in the 

case of an influenza outbreak in the absence of an effective vaccine. 

Similarly to the mechanism for influenza neutralization, CVN inhibits HIV by 

binding to glycosylated surface proteins. In this case, CVN binds specifically and with 

high affinity to glycosylated gp12028 and with significantly lower affinity to gp41.47 CVN 

binds with approximately 5:1 stoichiometery to soluble gp120, indicating that there are 

not only multiple sites of glycosylation to which CVN can bind, but that avidity may also 

play a significant role in the neutralization of HIV.47 Additionally, studies have shown 

that CVN does not bind to a single glycan on gp120, but instead three to five separate N-

linked glycosylation sites must be mutated before CVN resistance is incurred.39,48,49 

Although CVN-treated gp120 can still bind to soluble CD4,50 membrane-bound CD4 

binding is inhibited, probably due to steric constraints.45,50 CVN also blocks the 

interaction between gp120 and the CCR5 coreceptor, adding a secondary inhibitory 

effect.45 These two mechanisms together make CVN an efficient inhibitor of the pre-

membrane fusion event of HIV infection. 
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 The structure of CVN has been extensively studied to attempt to elucidate a 

mechanism for its broad antiviral activity. CVN exists in solution mainly as a monomer, 

but a trapped, metastable domain-swapped dimer can be formed.51 In crystal form, 

however, wild-type (WT) CVN is only seen as a domain-swapped dimer (Figure 1-1). 

The monomer contains two pseudo domains that display high sequence homology. 

Interestingly, however, the gene does not appear to result from a simple gene duplication 

since the first domain contains residues 1-39 and 90-101, and the second domain contains 

residues 39-89.52 Instead, there was probably a gene duplication then rearrangement or an 

uneven recombination event that resulted in the CVN gene. Monomeric CVN also 

contains two native disulfide bridges: between residues 8 and 22, and between residues 

58 and 73. These two disulfide bridges are located near each end of the molecule and 

anchor the secondary structure. The dimer contains the same topology, but is domain-

swapped at residues 51-53.53 In the dimeric structure, the first domain of one chain (A) 

forms a “monomer-like” structure with the second domain of the other chain (B’) in an 

almost symmetric domain swapping (Figure 1-1B). The two quasi-monomers can sample 

different orientations relative to each other due to the flexibility of the domain-swapped 

region, and the orientation appears to be pH dependent in crystal structures.51,53,54  

 A number of groups have attempted to modulate the domain swapping of CVN to 

determine whether this property is a crystallographic artifact or a biologically relevant 

state. Because the domain-swapped dimer of WT CVN is metastable at physiological 

temperatures, purified dimer quickly converts to monomer during the course of a 

neutralization assay.51 Variants have been generated that stabilize both the monomeric 

state51 and the dimeric state.55,56 However, the effect of dimerization remains unclear, 
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since some groups have concluded that the dimeric state is more active than monomeric 

WT CVN55 and others have shown that monomeric and dimeric variants have the same 

antiviral activity.56 

CVN has great potential therapeutic value both as a prophylactic as well as a 

treatment for viral infection. In fact, CVN is currently in clinical trials as a prophylatic 

gel (Cellegy Pharmaceuticals, Inc.) and has been shown to be effective against both rectal 

and vaginal SIV/HIV-1 transmission in non-human primate studies when used as a 

topical microbicide.37,38 Additionally, it has been shown that CVN has limited toxicity in 

tissue culture,28,45,57 in mice,43,46,58,59 and in non-human primate models,37,38 although a 

recent study indicates that CVN can increase the levels of chemokines in treated cells and 

potentially allow much higher susceptibility for viral replication after CVN is removed.60 

Additionally, CVN can be prepared in large quantities, is stable for long periods of time, 

and is extremely resistant to degradation.28,61-63 It was also demonstrated that WT CVN 

can be specifically PEGylated to increase the serum half-life while retaining most of the 

anti-HIV activity.59 

Although the viral neutralization activity of CVN is important in the prevention of 

infection, this function may prove even more beneficial as a potential therapeutic. 

Because CVN specifically targets glycosylation on viral envelopes, escape variants will 

likely appear rapidly upon treatment with this lectin. Under evolutionary pressure by 

CVN39,41,48,49 and other carbohydrate-binding proteins,64-66 HIV and influenza have both 

been shown to eliminate N-linked glycosylation sites on their envelope proteins to escape 

neutralization. However, HIV-1 and other viruses use glycosylation to prevent 

recognition by the innate and adaptive immune systems.67 With the removal of 
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glycosylation and the exposure of antigen, these viruses may become more sensitive to 

neutralization and clearance by the immune system.68-70 In fact, Reitter et al. found this to 

be true when rhesus monkeys were infected with SIV (simian immunodeficiency virus, 

an HIV homolog) lacking various glycosylation sites. In this case, the viruses were 

significantly more susceptible to antibody neutralization.71 Additionally, glycosylation of 

these viral proteins is often necessary for their proper folding and function, and therefore 

treatment with CVN or other lectins may decrease their viability.60,72,73 

Various attempts to increase the HIV neutralization of CVN have met with some 

success. Mori et al. showed that a chimera of CVN and an exotoxin from Pseudomonas 

had enhanced cytotoxicity to HIV-infected cells.74 Another chimera between CVN and an 

allosteric peptide inhibitor of HIV-1 fusion also showed synergy between the two 

components, creating a more effective compound against HIV.75 Attempts to engineer 

CVN itself, however, have not resulted in variants with increased potency. 

Although the Mayo lab has typically used computational methods to study and 

engineer proteins, for the last few years I have worked on a non-computational project 

involving engineering CVN to create variants with increased antiviral potency. As 

described above, the information we gathered through characterizing these variants has 

led us to believe that they have potential therapeutic as well as scientific value. In 

Chapter 2 of this thesis, I describe the generation and characterization of dimeric and 

trimeric CVN variants that display increased HIV neutralization activity. Although we 

showed that these variants exhibit increased potency, a mechanism was elusive. We 

therefore solved four crystal structures of three CVN2 variants to determine whether 
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structural changes or differences in domain swapping could account for the increase in 

activity. These data and results are presented in Chapter 3. 

In Chapter 4 I discuss a chimeric CVN-Fc construct, which we have termed a 

“lectibody” because it is a fusion of a lectin (CVN) and the constant region of an 

antibody (Fc). This construct may have therapeutic value as a molecule that not only 

neutralizes free viral particles through the CVN domain, but also functions as part of the 

human immune system through the Fc, inducing immune response against infected cells 

which are budding new virus. 

While the vast amount of research has been focused on CVN projects, I also had 

the opportunity to work on some computational protein design projects that are presented 

as chapters in the Appendix of this thesis. One project involved designing calmodulin 

(CaM) to optimize the protein-peptide surface and provide specificity between two high-

affinity native CaM peptide partners (Appendix A). While this research did not ultimately 

result in a variant that displayed increased specificity, the groundwork was set for future 

CaM designs and experiments that may prove more successful. 

I also had the opportunity to collaborate with Jonathan Kyle Lassila on the design 

and characterization of various chorismate mutase variants (Appendices B, C). The goal 

of this project was to investigate the role of secondary active site residues in an enzyme 

(these residues do not directly contact substrate but instead interact with active site 

residues). We used our protein design software (ORBIT) to generate a variant that 

showed a modest increase in catalytic efficiency and to identify other mutations that were 

consistent with activity. We also performed site-saturation mutagenesis on six secondary 

active site residues and characterized each active variant. This data allowed us to 
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determine the tolerance for mutation in a natural enzyme system and use that information 

for future computational studies involving functional proteins. 
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Figure 1-1. Wild-type (WT) CVN structures. In solution, WT CVN exists mainly as a 
monomer (A),76 while it always crystallizes as a domain-swapped dimer (B).77 CVN is 
shown in green and cyan ribbons to indicate protein chains. Carbohydrates bound in the 
high-affinity site are shown with orange carbons (present only in A), and carbohydrates 
bound in the low affinity site are shown with blue carbons (present in both A and B). The 
monomer and the left half of the dimer are in approximately the same orientation. 


