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Abstract 

 Cyanovirin-N (CVN) is an 11-kDa lectin originally isolated from the 

cyanobacterium Nostoc ellipsosporum during a high-throughput screen for novel anti-

HIV activities. In addition to having anti-HIV activity, CVN has since been shown to 

neutralize a number of other enveloped viruses including influenza and Ebola. This 

antiviral activity is attributed to two homologous carbohydrate binding sites that 

specifically bind α(1-2)-linked oligomannose glycosylation sites present on many 

envelope glycoproteins. Because of its broad ability to neutralize enveloped viruses, 

CVN is a promising target as a potential therapeutic or prophylactic. 

 In this work, we oligomerized CVN to determine whether an increase in the 

number of carbohydrate binding sites has an effect on its viral neutralization activity. To 

create obligate dimers, we covalently linked multiple copies of CVN through flexible 

polypeptide linkers. Using HIV-1 as our viral system, we found that a tandem repeat of 

two CVN molecules (CVN2) increased the efficacy of HIV-1 neutralization by up to 10-

fold. An additional benefit was not seen when CVN was trimerized. We also show here 

that CVN and the CVN2 variants show extensive cross-clade reactivity and higher 

neutralization efficacy than the most broadly reactive neutralizing antibodies. To 

determine whether any major structural changes or differences in domain swapping 

occurred because of the linkage, we solved the crystal structures of three dimeric variants 

and showed that all variants are intramolecularly domain-swapped. 

 Additionally, we present in this thesis a novel CVN-Fc chimera, a “lectibody,” 

which shows antiviral activity similar to wild-type CVN. This variant is dimerized 

through the Fc region of an antibody and has the additional benefit of incorporating Fc-
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mediated effector functions, which may be therapeutically advantageous. Initial results on 

the lectibody indicate that domain swapping of CVN has an integral role in the antiviral 

function as well as in the overall folding and stability of the molecule. Future work on 

this variant to assay the effector functions as well as create a monodispersive, stable 

variant are underway. 

 Although CVN is already a promising candidate for antiviral therapeutics, we 

show here that engineering CVN to add additional functionalities or creating variants 

with an increased number of active sites can significantly enhance the potential benefit of 

these molecules. 
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