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I. ABSTRACT

The stability derivatives obtainable from dynamic free flight
tests are determined. Methods for reducing flight test data to the form
of stability derivatives using the Fourier integral and the laplace trans-

ferm are developed.
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IT. SUMMARY

Fundamentally only three 1ift derivatives and three moment de-
rivetives can be determined from a dynamic flight %test where the forward
velocity is held constant and the test is made from level flight. This

is shown in Sections 9.1 and ©¢.2.

For the generzl case of a submerged vehicle, five 1irt deriva-

tives (CL + Cp ), Cr., C, CL., and C1, and five moment derivatives
& ° *® a g s

Ot ? OL; o Oy Citz» @nd Gy are considered. To evaluate these stabil-

$

ity derivatives from flight tests, two 1ift ard ftwo moment derivatives must

be known from other sources.

ble or torpedo C;. and Gy .
Lq Mg

g four unknown 1ift and four unknown moment deriva-

For the specific case of a dirigil

are neglected, leavin

w0

y

tives. In tests with locked contrel surfaces the derivatives CL and

CM do not avpear in the equations. Thus, the three remaining 1ift and

s

three remaining moment derivatives can be determined. To perform such a
test it is necessary to disturb the test vehicle with a non-hydrodynamic
force such as that produced by a rocket fired from the test vehicle.

For the specific case of the airplane the 1ift derivatives CLck’

CL » Cp, and the moment derivative Gy, are usually neglected., In addi-

q q

tion Cp_ is small compared to Cp - This leaves two unknown lift deriva-
) -3

and C and the four unknown moment derivatives C s Cy -»
L Y M

tives CL ol

oK
CM » Cg . The derivatives Cp and Cp  can be determined from a flight
) o .3
test where a.-contrel surf:ce motion is used to disturb the test vehicle,
but only ratics of the moment derivatives can be obtained. However, by
using a non-aercdynamic disturbance Cy , Cy+ and Cy can be determined.
A
A
It is interesting to ncte that for the case of the dirigible,

measurenent ¢f the pitching velocity and the force are sufficient to de=-
(5] P4

termire the derivative C; , or the apparent transverse mass. For the air-

X
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plane, the term Ck%£ associated with downwash can be determined from the
gsame measurements and they are the only two derivatives that may be ex-
plicitly determined from these two neasurements.

The transient measurements required in flight are pitching
velocity, control surface displacement and normal acceleration. If, in
place of a control surface displacement, a non-hydrodynamic force is used
as the disturbance, the transient force must be measured. 4ngle of attack
ray be substituted for normal acceleration.

Eeasurem%nts are also required of the steady state values of the

an
forward velocity/éngle of attack. It is desirable to measure the transient
values of angle of attack so that the range of this angle may be known.

In section X it is shown that the problem of reducing the flight
test data to the form of stability derivatives is essentially that of de-
termining the transfer function constants from the flight test data. Two
methods for computing these constants are given., They are the Fourler In-
tegral lethod and the LePlace Transform lethod.

In these data analysis procedures the flight test dataare inte-
grated to perform the transformation of the variables, q, § , ag, from time
dependent quantities to quantities depending upon a new independent vari-
gble, s. This integration tends to smooth the data and avoids the diffi-
culties encountered in differentiating test data in other reduction methods.

The Fourier integral method in which the test data are trans-

forned by the unilateral Fourier integral
OO

(W) = eml@t (1) at

Q

is used for tests of dynamically stsble systems,that is, systems in which

x(t) reaches a steady state value.
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The LaPlace transform method may be used to study unsteble

systems. In this method the data &re transformed by the LaFlace Trans~

form
Y]

z(s)= § x(t)e~st at
-/
where s is taken to be a real positive quantity large enough to insure
convergence of the integral,
The finzl step in the data reduction is the computation of the
stability derivatives from the transfer function constants., This is ac-
complished by the simultaneous solution of equations 9.2, 2.3 and 9.4

for the 1ift derivatives and equations 9.5, 9.6 and 9.7 for the moment

derivatives.



I7I. IKTRODUCTICKN

This paper discusses the determinmation of the longitudiral sta-
bility derivatives of a submerged body from an analysis of the transient
notion following a disturbance in free flight. It attempts to answer
two questions: (1) What are the stability derivatives that are determin-
able from dynamic flight tests? (2) How are the flight test datu re-
duced to the form of these derivatives?

The problem here is essentially that of servomechanism synthesis,
that is, given the response of a system to a certain input, what are the
elements that comprise the system, or methematically stated, what are the
coefficients in fhe differential equations of motion?

Accordingly, the transient analysis methods of servomechanism
synthesis using the Laplace transform and Fourier integral are used here.

The transient flight testing technicue is explained in Section
V. Following this in Section 7I the stability derivatives for a sub-
nerged body are developed in terms of wind axes.

The linearized equations of motion are written in operational
form in Section VII by use of the Laplace transform. They are based on
the assumntions of constant coefficiente and small disturbances from steady
symmetric flight. The assumption of constant forward velocity is further
made and the longitudinal set reduces to two equ.tions. Since angle of
attack is difficult to messure in free flight, the equations are written
in terms of pitching velocity and normal acceleration.

-The concept of the transfer functicn is taken from servomechanism
theory and is defined as the ratio of the Laplace transform of the res-

ponse to the Laplace transform of the input to a system. The transfer
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functions are written for a submerged body in terms of the stability de-
rivetives in section VIII,

In section IX the cderivatives obtaineble from dynamic £lizht
tests are determined. Two types of disturbances are considered: (1) =
control surface displacement, and (2) a non-hydrodynemic force such as a
rocket fired from the test vehicle., The derivatives obtainsble from the
special case of the airplane and the dirigible are discussed in this
section.

In section X the the flight test data reduction procedures are
developed. The analysis procedure is outlined in section 10,1. In this
data reduction procedure the data is transformed by the Fourier integral
or the LePlace transform. In section 10,2 trensformation of test data
by the Fourier integral is explained, and in section 10,2 the transfor-
nmetion of test data by the laPlace transform is presented,

Both of these procedures zre based on the fact that the equa-
tions of motion are linear and have constant coefficients. They are used
to determine the transfer function constants from the test data.

Finally, in section 10.4 the procedure is presented for computa-
tion of the stability derivatives from the transfer function constants.

In dppendix A, the well-knowm IZuler's equations for e rigid body
in terms of moving coordinates are developed for completeness of the work;
in Appendix B, the linearized equations of motion for a submerged body are

developed from Euler's equations.



IV. NOMENCLATURE-

A3, Ap, ete, Transfer function constants

ag, Component of acceleration along z axis, ft/se02
5; LaPlace transform of a,

B Buoyancy force, lbs,

c Characteristic length, ft.

D Drag force, lbs,

e, Unit vector along z axis

F Torce, lbs,

F LaPlace transform of force

C «T"B, 1bs.

Gx; Gy, Gz Components of G slong x, ¥y, z axes respectively, lhs.
e » L i o]

g dcceleragtion of gravity, ft/sec®

H Angular momentum vector, slug ft/sec

Hx, Hy, Hz Component H along x, ¥y, 2 axes respectively

I Dyad of inertia

Toy = (y2 + 2R) 4T slug £t°
vol

Iy, - (2 + 22) aC  slug £t°
vol

(= 4 y2) aT slug ££°

NH
[\
W
\

-

iw = Iyx = - [ «y AT slug £t?
1

xz dT slug £t2

- -
-

| =

Vo

vo

- f vz 4T slug £t2
vol

[
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-—

i, j, k Unit vectors along x, y, z axes respectively
L Iift force, 1bs,.
I oment, It lbes.

By O, I J L, etc.
Ju oV

L, K, H Components of moment about x, v, 2 axes respectively, &t lbs
Iy, kg, g Components of hydrodynsmic moment about x, y, z axes, ft lbs
Iz, kg, N Components of buoyancy moment zbout x, y, z axes, ft lbs

Lp, Hp, HNp Components of thrust moment about x, y, z axes, £t lbs

e

,11, lioment vector, ft 1bs

il lass, slugs
F, 4, B Components of angular velocity sbout x, y, z axes respectively
P o= daF, é, = dq , R = & , radians/sec?
dt dt dt
Py 4, T smell pertubations of F, Q, R respectively, radians/sec
p~dp,q = dg, r = dr, radians/sec?
dt dt dt
a IaPlace transform of g
;é; Vector from center of gravity to center of buoyancy, ft

S Characteristic area, rt?
t tinme, seconds

Ugs Vg Components of velocity along x, and z, axes respectively, ft/sec

v Forward velocity, f£t/sec
u, v, W Perturbation velocities along x, y, 2 axes respectively, ft/sec

%=zdu, Y= dv, % = dw, ft/sec?
dat - dt dt

W Weight, 1bs

Xy ¥y 2 ixes fixed in body, =x, z plane is plane of symmetry
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X1, Y1, 21 Axes fixed in space, 2T is vertical

Xos Yo, 4 Axes fixed in space which coincides with x, v, z during
3 y 4“0 y J2 &

steady state flights

X Distance from center of gravity to center of buoyancy along x axis
+ for ce.ge. aft of cJb,., ft
Zy Distance from center of gravity to center of buoyancy along z axis.
+ for c.g. above c.b., ft.
Xy, Y5, 21 Components of hydrodynamic force along x, ¥, 2 axes respec-
tively, lbs
Xy = X, Z; =_9dX, etc.
u QW
LT, Y7, ZT Component of thrust along x, y, z axes respectively, lbs
o 4 Pertubation in angle of attack, radians

o

w

z

Z
yV
e
9,
¢
f)

MU

Angular velocity; frequency

Initisl angle of attack, radians

Z

Pertubation in yaw angle, radians

o + % ingle of attack, radians

FPertubation in pitch angle, radians
Initial pitch angle, radians
Pertubation in roll angle, radians
Density, slug/Tt3

m
Sc




Dimensionless Coefficients

"2
CDO,: DO//O/Z SV
o o 2 [2 s
T oow/ 2
Cp-. 0D / (2 su
%= 52/
Cpy = _3__3_/(29 sve
Cpg = _3__3/2 Se”
Cp, = _Q_D_ 2. sz
$ 28 2
Opg = Cpy = '3)’%/"5‘{ Sc
Op = Lo/__2£ SV
¢; - JL 572
*7 ) 2
cL: . 9L [ € st
9"’ aol( 2
;. = 9L [/ sve
w5 /E
C; = aL __/: SCZ
. '?9‘?1'/2
C;, = 2L ..._/: sv?
s DS 2
Cr. =0pe = ....:J...é ——/-0 Se
L Mg = 311/2
Oy = g / -56 S
Gy =_Q_i/___/_ S57Rc
14 Y4 2
oy. =35 [ £ sv?
L  Jdo [ 2
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V. DISCUSSION OF TRANSIENT FLIGHT TESTIKNG

1

The transient flight test technicques consist of applying a
sudden disturbance to 2 test vehicle and recording the subsequent tran-
sient motlion. Such a disturbance mzy be due to a control surface dis-
placement or a non-hydrodynamic force such as that produced by rocket

fired from the test vehicle,

=3

hese tests are of very short duration. The time for an en-
tire test is of the order of two or three seconds for a vehicle such as
an zirplane or torpedo. Thus, many test points may be made on one single
£1ight test.

The equations of motion assume small disturbances from steady
flight. Sy selecting the proper type of forcing function the motions can
be made small enough so that this condition is satisfied.

The flight test measurements required are the transient values
of the variables in terms of which the equations of motion are written
and the initial value of the forward velocity. It is known that the sta-
bility derivatives are functions of angle of attack. Hence, it is desir-

avle to know the average value of the angle of attack at which the test

" The eéuations of motion may be written in terms of pitching
velocity, normal acceleration, control surface deflection and time; these
sere the only trancient measurements required in flight., 4Angle of attack,
however, Wy nay be substitutec for normal acceleration,

The output of the instruments used to measure the transient
motions depends upon the frequency spectrum of the motion. Corrections
for the dynamic characteristics of the measuring instruments can be made
by the method outlined in section 10. Thus, instruments with hish natural

frequencies are not necessarily required.
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VI. THE LONGITUDINAL STARILITY DERIVATIVES IN TPRMS OF WIND AXES
6.1 Hydrodynanic Forces and Moments
DISTURBED
POSITION
o
L *
_ 5/
— - ), - ‘ d‘
nmT = D < =z 6g
S _ -7
-~ / - -
pd . - —
e _— P /\_
T — — - = STEADY STATE
V) A ,’/ ., POSITION
H L

Fig. C-1

Referring to Figure C-1
V = forward veloclity
Let Z: angle of attack = Zj+ K
Z-

oK = perturbation in angle of attack

steady state angle of attack
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X=1L sin & - D cos & (6.1)
7 = <L cos & - D sin O (6.2)

Considering e to be a small angle and sin X=&K , coseX = 1

ZH= -L-D« (6.4)

D and L are assumed to depend upon X , eg s Vy Vy G, 4, 56

L=¢C L svly4 c,.o‘.f.svf%,pc k_f sV
L 2 L L. C
0 < 2 o °

4% a _25. SVe +Cp. g L 52 (6.5)
q q 2
# O 7 S+ Cp £ svR
S 2

(6.6)

¢. q Lsvro, & L s pot Losct A -
-+ D, 5 Te” Oog L + Cps . cgg_z.av

Substituting the expressions for L and D in equations 6.3 and 6.4 and re-

taining only first order terms, the equations for X and Z becone



o "2 < 2 %% c
'CLq—’;SVc-CL. g £ sc? e, 7 L s (6.7)
g § 2 Ly p)
6 § Lowr-c. A R
+ VL SV
) 2 D, 2

(6.8)

The hydrodynamic moment (MH) is assumed to depend upon V, V, & , o{ s G,

a & .

M= Oy L ST Gy o R O -
o 2 1. 2

s (6.9)
6.2 Relatlons Between u, w, and v
Uy#+ u=V cosoX (6.10)

w=7YV sin & . | (6.11)



V= (U, W27 m U Wout ot v’

) 1 U ‘
g - ——-———0(7'11 =cos &

u__..

1 to lst crder approx.

OV . _W_ _sine
ow

to first order approx,

A =tan —_—H___ = cot
U, +u
J K 1

o [H-(Ee

=i

- 15 -

Ug+u
w

w

Ve

:%— to 1lst order approx.

L -

~—~ _1_ to lst order approx.

u=v cos® - VK sin

1
2
1 W
[+UO + W ]@O'f‘ u)

//\\//\} to lst order approx.

~ cos &K

(6.12)

(6.13)

(6.14)

(6.15)

(6.15)

(6.17)
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v@r:\ofsino(-f' V°{ cos o

. (6.18)
~,V &« to 1lst order approx.
:)Qo?v = % to 1lst order approx. (6.19)

. .
Since V2 u

6.3 The Longitudinal Stability Derivatives

The dimensional formsof the stability derivatives to first order

aprroximations are derived below:

o
B

Wia.

<t
QL

<3
NV

>
Q.

¥ = OX d v dxX = 9K r

= 29X X = - c SU
AW v AW +* 90(\ QW (CLO D ) 2 ~Yo
Xe= - CDﬁ --26- Sc where CDﬁ"’ C%

QT 4 22 2 .20 L s
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VII. THE LCHGITUDIFAL ECUATIONS O MCTION

7.1 The Linearized Fguations of llotion
The linearized equations of motion for a body moving through a
fluid such as alr or water are derived in Appendix B. These equaticns are
written for small disturbances from steady symmetric flight. Assuming con-

stant forward velocity the longitudinal set of equations listed on page

reduce to the following two equations:
(7.1)

[Zw f‘(ZV‘V-m)ﬂ w A+ E@D2+(Zq+mUo) D-Gsine;]G-l-ZéS: 0

(7.2)
. ra
My + NgD) w + EM@ - Iyy) D + MgD + Bzp cos 6p - Bxp sin @g e+ Mséz 0

where Z& - m = avparent mass, Mé - Iyy‘: apparent inertia,

The further assumption of nearly level flight ( - 15% @< 15°) is made and

the terms G sin 6_, Bxn sin 6_ considered negligible. In addition, the
B o) g g ’

foXd

distance of the center of gravity from the center of buoyancy zn is assumed

small encugh so that the term Bzy cos €, can be neglected. With these assump-

tions, the equations of motion reduce to 7.2 and 7.4 and these eguations are

considered in the subsequent analysis.

Ew + (Zy - m)ﬂ w4 Yzq + nlg) + 2;;11:3] q= -ZSS (7.3)

{MW + MV}% w + %q"" (M(‘l - yy) Ia G = -MSS : (’704>

7.2 The Onerational Form of the Longitudinal Eguationz of lotion
in Terms of G, W, &

Define oo

w(s)= g8t w(t) dt
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w(s) is the laplace transform of w(t) and is a functicn of the operator s.
The bar is used over the variable to indicate the Laplace transform.

The initial values of w and ¢ are assumed tc be zero in the deri-
vatiocn of equations 7.3 and 7.4. With these assumptions, these equations
nay be written in operational form by replacing D ='-%€ by s and w(t),
q(t), and 8§ (%) by w(s), q(s) and g(s), respectively.

The operaticnal form of the ecuaticns become

S

—~~
~1

(62

~—

7.3 The Ope atlonaT Torm of the Fousetions of Motion in Terms of
L .o .

From Section VI page 15 it is shown that to the first order ap-

proximation

o=
(7.7)
X
Define
-y
(7.¢)

I

fyy = (57'2‘%0"3
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Dividing 7.5 by f72 SU02 and 7.6 by {72 SUodc and using 7.7
I

f-to

and 7. znd the exvressions fer the stability derivatives listed on

pege |6, the operationzl form of eyuations of motion expressed in dimen-

&

sicniess form hecone

- 2 -
(G, 4+ Cp) 4 (C 24) < + (Cp -24) - 40 _c s]q
Ly ¥ "D, +'Ié(+ /“) U, % Ly /‘ UO* Ly Uoz_

=-CL8 (7.9)

=_C, -

=-TH 6 7.10)

7.4 The QOperaticnal Form of the Fouations of Moticn in Terms of
875 9, &

in accelercmeter placed at the center of gravity with its axis

pargllel to the z axis fixed in the bedy will read R

=}
1}

/\Z
az‘+-g cos z Dy

where
ZT is the true vertical
a, = the compcnent of accelerction along the z axis

= normal accelerztion



a, =S = Vot =U,0c = Uod (7.12)
. a
- Z
oL = T + q
o)
or written in operational form (7.13)

C:INSM
-~

K =
S

1)

The equations of motion 7.9 and 7.10 expresced in terms of vitch-

ing velocity and normal acceleration become

1 .7 =
= (Cq, Cp )+ (Cr .4+ 2U) =] a
Ups gt o ol A o

(%.14)
Lo(op 4 o)+ 4 0) = po. 2 ]is
s x o " O & 2 = LSS
LG o G & &
UOS * «'UO

(7.15)

M 2

c - ¢ e
LS (¢ ¥ CM ) - + CM. kﬂ:) s| 9= C‘ﬁ S
s q 0 q



VIII. TRANSFER FUNCTICONS

.1 Definition
The transfer function is defined in servomechanism theory as the
ratio of the Laplace transform of the output cf a system to the Ilaplace
transform of its inpub. The transfer function is defined here as the ratio
of the Laplace transform of the response to a disturbance to the Laplace

transform of the disturbance. For example, the transfer function §%§%

is the ratio of the Laplace transform of the pitching velocity, g, to the
Laplace transform of the elevator displacement, § .

The transfer functions are determined from the operational form

of the equations of motion by solving for the desired ratics.

q(s)

8.2 The Transfer Function !?T—T and & (
s =~1——

Solving ecuations 7.14 and 7.15 for Ei_l 2 (s) give
§ (s) §

€.1 and €.6

a Ais 44

HORR Lk (£.1)

s ¥ ABS +A4
rhere
Cyr G C
; (L L + M L
M= /‘) E) (8.2)
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where A=@Lo( + %)@Mci - kyB) - Cy. CLC;

[~

3 B
U
A = =2 }-(C Cp \C Cy CL (8.3)
2 Ac® [ "t D°> 5T T $ i

U j ' -
Ay = 0 ( 2u\Cy + [CL + © C."k‘vy> Cr. Oy
3 = _XE_ Cr, .+ /L> Mg (L D;(Mq 5 Lg “u

- (CLq - 2/,90;\{10{] (8.4)
2 ;
By = xll:? @I& + ) (Cmq) - GL‘? - 9;1») Cw(x{] (8.5)

a,(s) - A5s2+ Ags+ Ay (8.6)
(5) s° +Ag5 4 A

where

2
U :
Ar 2 =2 ‘_ - c c GWI (8.7)
5__xc_. (CMc'l kma L5+ L(l' I\ns

[ 3
A _ Yo (G .\ (g c)c (8.8)
- - I . L M
W:thwu)w Lt ) %

Ay=_UA, (8.9)



2.3 The Transfer Functions =
s

If a non-hydrodynamic force F acting in the z direction is used

to disturb the vehicle in place of a control surface motion, S , the term
Cr, § in eguation 7.14 is replaced by .._.._F_.._.__ and the term Cy, &
(/2 su.2 s

.Y
rl where A is the distance of the point of application

by
22 U %

of the force F behind the center of gravity. Making these substitutions

2.1 and €.6 become

q(s) _ _#gs + & (g.10)
F R ’
(s) s¥ + 438 + A
= 2
a,(s) _ R1057 #8118 # 4y (£.11)
F(s) 524 Ags 4 Ay
(8.12)

where

SRS Yorll NCIRE DL S

L . cm\j (8.13)

U
bz ——2— | (o1 ¢ cD)
/\/72 sc? LN ° c v S

(8.14)

U
A = ¢ [ - C -&
0= e {(Mq A
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v
A = X{—oi—s-c-g- (o, + Cu)+ @Iéi + OrLg) —“—5/—] (€.15)

Ag and A, are defined on page 24.



IX. THE LONGITUDINAL STABILITY DTRIVATIVES ORTAINABLE FRCM DYNAMIC FREE
FLIGET TISTS

9.1 Lift Derivatives

The equations of mction 7.14 and 7.15 are written in terms of

m

noermal acceleration, pitching velocity, and control surface motion. Thus,

if flight test measurements are made of these three quantities, the trans-

fer function constants 4y through A~ appearing in the transfer functions

§%§% and ??Esi can be determined from the flight test data by the methods
S(s S s

of Section X.

From eguations £.1 and 8.6

3= (a1 + &) § (8.1)
s + A3$‘+ A4
= CA 32 Ags+ A )3

32-/- ABS + A

Substituting these in the 1ift equation 7.14 and noting Av = - UAs

a (¢, 4+ Cp)# 42 (Cr. 4 O} =
+~L1(_Ié‘+ Do)fz(ra-l- Lq> Uo]

2
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Fyuating coefficients of like powers of the independent variable s, the

three equations 9.2, 9.3, 9.4 in the fiveunknowns CD-i—C » Gy .0 CL
°

Ibk 4 q

CLA’ CLS are obtained.

Thus, to determine all of the lift derivatives, two of them must
he known from other sources.

If a non-hydrodynamic force is used to disturb the test vehicle
in place of a control surface displacement, the terms CL 4o, AB’ A5, LY A7
are replaced by 75__1:__5 s Ag, A9, AlO’ All’ and AlZ’ respectively in
equations 9.2, 9.3, é?ADgﬁving three equations in five unkncwns. Thus, two
stability derivatives must be known from other sources. In most practical
cases, at least two of these stability derivatives are small enough to be
neglected and the remaining derivatives can be determined from the flight

test data,

A5 -l (C + 2%9 41 C ...9-2_/_ ¢, = O (9.2)
L - L‘ - o &
Uo2 X q U02 S

) o 0 K o q
A, C 2 o4 o2 % ocu= (9.3)
+ A2 Ly 2 1 43 %5 ﬁ; cu 743
o

AV c A2 . - 2
( T (Lod' Do) 5 (L /9#-4 CIS= 0 (9.4)
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9.2 Moment Derivative

Following the procedure of the preceding section, equaticns &.1
and 8.6 are substituted in the moment ecuation 7.15 and like powers of s
equated. The three ecuations, 9.5, 9.6, 9.7, in the five unknowns CMc{’
Cyss Cy_, Cye, Cy_ are obtained. Thus, two of the unknown stability de-

mo« \rq’ ¥ q’ UH

rivatives must be determined from other scurces such as wind tunnel tests
to evaluate the derivatives from a flight test.

If a non-hydrodynamic force is used to disturb the test vehicle,
the term Cy  1s replaced by ps and the constants AZ’ A A5, A6,

S (%/2 U Re 4

A ] A i Sy e Ml ‘ £ . 2

A by Ag, Aos Aygs Bqq, and Ay, respectively. The number of unkncwns is
reduced to four and only one stability derivative must he known from cther
sources. In most practical cases, one of these stahility derivatives is small

enough te be neglected and the remaining derivatives can be determined from
D

the flight rest data.

2
2 K wz | T g
A Ag c Aqc
'ﬁi o | TFh) 5 oLt == O

(o} Uo q

0 o v 4
02 ’ : (o ’)
Ay = ]C - A Cy = O 9.0
7" 2 Uo 5 Mq kyy + 83 Y‘é

Ag
=+ )0y 4 A2 = C, 4 Cy = O (9.7)
Uo 0(+ Uo Mq+ 4 1\5



9,2 Special Case of the Dirigible or Torpedo

The Stability derivatives Cy. and Cp, are assumed negligi-
« q
ble for the case. Gy, depends primarily uron the downwash from a for-
ward lifting surface, such as a wing. CL' is determined by the 1ift due
to angular acceleration about the center of gravity. This term would be

small compared to the term Cp , which depends upon the 1if duve to a lin-
A

ear acceleraticn normal to the longitudinal axis of the test wvehicle.

gl
The 1ift derivatives obtainabhle from tests where the foreing
functicn is a control surface displacement are determined from eqguations

8.2, ©.3, and 9.4. Since Cr,. = 0 for this case, there are only three
4
eqrations in the four unknowns (bla + CD;), Clbk’ CLq, CI&S. Only the

ratics of these derivatives can be determined from the tests.

If a non-zerodynamic force replaces the control surface deflec-
1
oy R
F/2 su,

are sufficient to determine GLo( # CD‘Q’ CLoz , CLq’ CL5' Trom AB it

is seen that if only the normal acceleration and the force are measured,

ticn, the term Cp _ is replaced by and the three ecuations

the derivative C; - or the apparent mass can he determined explicitly.

, & derivatives
The moment/ obtainable can be determined by exanmining equations

Quhy 9.5, 9.6, remembering Cy » = 0. There are only three equations in
X

q’ CMQ, CMS

atives can be determined from flight tests where a control surface motion

the four unknovns, CN%‘ » Cu and only the ratios of these deriv-
is used to disturb the test vehicle.
If a non-gzerodynamic force is used to disturb the vehicle, the

term Cy is replaced by L , & known quantity, and the deriva-
A2 sU,2c
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C can bte determined from the test, Examination of
* MM
asured,

tives G,, , C;
i M
X q
-Ag shews that if only the pitching velocity and the force are mea
the derivative Cy, or the apparent mass may be determined explicitly.
9.4 Svecial Case of the Airvlane
which depend upon the

The stability derivatives CL and CM s 7
I i o
q q
he zero for
C

o

Ix

aprarent inertia of the displaced fluid, are considered tc he
and Cp depend upon the tail 1ift, whil

an airplane. The terms CL
X q
depends mainly on the 1lift from the wings. For these reasons, the terms
¢ and G, q =£= are considered small compared to Cp oK
q U, «

C-
I, K e
X Uo

and are neglected.
The 1ift stabill

derivatives obtainable from tests where the
forcing function is a contrel surface displacement are determined from
= 0 =Cp = 0 for this case,

ty
Sin C
ince C; = .
A q q
{4?

ecuations 9.2, 9.3, and 9.4.
equation 9.2 is identically satisfied, leaving the twe equations, 9.3 and

C.4, in the two unknowns (b%x.f' CDQ) and CLé;. From these two equabtions

the unknown 1ift derivatives(CL+ﬁ91nd Cl,  can be determined.
% & b2}
by examin-

The moment derivatives ohtainable can »e determined
For this case only Cye = 0.

q
» Cp. 0 Oy s Oy o
< q S

There are

ing equations 9.5, 9.6, and 9.7.
hree equations in the four unknowns CL
A
erivatives may be determined,

o

only ©
only the ratics of the moment d
If a non-aerodynamic force is used to disturb the airplane, the

is replaced by a known force and the three equalions are suffi-

term C
M
)
, and CM-'
g

cient to determine Cy , CM
LA o~
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If only pitching velocity and the force F are measured, ex-

amingtion of the transfer function Ag shows that CN can be explicitly

Y. &

determined,



X. TRANSTIENT AWALYSIS METHCD FOR CCHMTUTING STABILITY DERIVATIVES FRCH FREE
FLIGHT TEST DATA

16.1 Analysis Procedure

1

The flight test data are usually obtained as curves of pitching

velocity, normal acceleration and control surface deflection plotted agalnst

-

is applicakle when these

time or cther similar sets of data. This method
curves represent the transient response of the test vehicle to a disturb-
ance such as a control surface motion.

The analysis method consists of two steps: (1) determining the
transfer function constants from the test data; (2) computing the stability
derivatives from these transf-r constants. Two analysis methods are con-
sidered for compubing the transfer function constants from the test data;
(1) the Fourier integral method presented in Section 10.2; (2) the Laplace
" transform method‘presented in Section 10.2. Both these methods depend unon
the assumption of linear equations with constant coefficients. The Fourier
integral method carn be applied to systems which are stable, that is, systems
in which the resvonse to a disturhance reaches a steady state. The laplace
transform method can be used with unstable systems by taking the value of s

in the integral

%(s)= | e -st x(t) dt
large encugh so that x(s) will be determined by the value of the integral
for a small value of t. Thus, the response curve can be analyzed for small
values of the response such that the assumptions of small disturbances used

in deriving the equations of motion are satisfied.
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10.2 The Fourier Integral Method for Ccemputing Transfer Function
Constants from Test Data

10.21 Outline of Method

The steps necessary to compute the transfer function constants
from the flight test dsta are listed below. EFach step is discussed in de-

tail later in this section.

(1) The flight test data are transformed from time dependent
quaﬁtities to frequency dependent quantities by the Fourier
integral transformation. For example, the pitching velocity
(), normal accelesration a,(t), and contrcl surface deflec-
tion S (t) are transformed to q(w), Ez(cu), g(w) . The
value %(&) of the Fourier transform of x(t) is complex
and is répresented by R(w)=#L ﬁ where® = real part

of x(@w) and /2) is the imaginary part of x{w).

(2) The transformed data are corrected for errors due to the

dynamic characteristics of the measuring instruments.

(3) The experimental values of the transfer functions are com-
puted from the corrected data of step 2. Since the Fourier
integral transform x(@) is complex, the transfer function

will consist of a real part E and an imaginary part 7(_ .

The values of E: Re q(co) and}t: Im 4(€) are plotted
§ ()

gl ()

as functions of ¢ .
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(4) TFrom the thecretical equations for the transfer function,
two ecuations are written in terms of g ’ )’L s (O
and the transfer functicn constants. These two eguations
are 10,15 and 10.16. The mest protable value of the trans-
fer function constants are determined by solving each of

these eguaticns using the method of least squares.

10.22 Transformation cf Test Data by the Fouriler Integral

Given a plot of a variable x(t) as a function of time. The Fourier

integral transform is defined as

xlw) = x(t) dt (10.1)

For cases where x(t) is zero for t+< 0, the integral

(4 .
AN L
ﬁ(t) . at
- a0

vanishes and the wnilateral Fouriler integral transform is defined as

w rl
- -C ‘
(W)= x(t) e @t dt (10.2)

where it is understcod that x(t) = 0 for t £ 0.
The unilateral Fourier inbtegral transform is just the special

case of the Laplace transform

o0

- gt
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Consider a function, x(t), which approaches a steady state

value, x

sgs &bt time T. Substituting this value in 10,2 the resulting

integral does not coaverge (oseillates). Hence to obtain a Fourier
Integral representation of such a function it is necessary to consider

the function

G(t) = x(t) &= "% (10.2)

where o > ©

[+

define X(zw ) = /G(t) e~iwt gy
(4

-4

T ; cw
.—./ x(t) e -(r+cw)t dt + xSs/e_(r—+ )t dt
7

o

- [T .
o/ x(t) e~ (T*C)t gy Xgg
o4 {w

- (Ttiw)t r;

T . .
- o
—/ x(t)e (7N dt’-}- Xsg © - ()T
o 04w

now let o—0 obtaining

T . .
x(w)= 1im/ x(t) e~ (TF <)t gy + lim xggq o= (7T

a0 -
OO o 4+ Cw

- jwT
Xgg®

cud

(10.4)

T .
X ('-*’)=/ x(t) e"wfdt+
(5
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writing
-twt .
e T coseot - ¢ sinwt (10.5)
T
Hw) = | x(t) cosewt dt - X858 sinw T
A (43
o
7
-c sinw t x(t) dt4 Xsg coswT (10.6)
(55

X(@) is complex and may be expressed as

xw) =& o f (10.7)
where
7
= Xss
= Re x(w) = x(t) cosco t dt = sinco T (10.8)
o
o —
7
ﬂ: In x() = - / x(t) sinwt at - X85 cosw T (10.9)
a) .
P-4

10.23 Correction of Test Data for the Dynamic Characteristics
of Measuring Instruments
Given an instrument, say a rate gyroscope, which measures pitch~
ing velocity. The relation between the output and input of the instrument
is expressed by the transfer function, which is a function only of the dy-

namic characteristics of the instrument. The transfer function F(co) may



be written as

Flw) = 232 (10.10)
q{co
where

3(60) is the Fourier integral transform of the output of

the instrument.

qle)) is the Fourier integral transform of the input to

the instrument.

F(Co) may be obtained from a dynamic calibration of the instrument by
putting a known input function, q(t) on the instrument and measuring
its output, I(t). Transforming the input and output of the instrument
by the Fourier integral, the values q(w) and I(w) are obtained and
their ratio F(co) = %%. plotted against <o, .

The data received from flight test are usually in the form of
instrument readings plotted against time. Transforming these data by the
Fourier integral transformation E((~» is obtained. From equation 10.10,
the expression for the Fourier integral transform of the input to the in-

strument becomes
o) = L@ (10.11)
Thus, 5(60) is the value of Fourier integral transform of the test data
corrected for the dynamic characteristics of the measuring instrument,
10.24 Computation of Experimental Value of Transfer

Functions

The experimental value of the transfer function is computed
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for a particular value of @ by substituting the values of the trans-
formed dsta from step 2 in the expressicn for the transfer function.
For example, the value of the transfer function _Q(a’) is obtained

) 5T@)
by substituting the value for q(w) at w=w,and § (w) atco= o,

- - - YO
in the expression g(@) . Since q(w) and § (W) are complex gleo)

) & ey

is also complex and can be represented by q(w) = E(_w)i—(: Q("—%)
s @)

Values of E and }( are conputed for a number of values of (o and
are plo*ted against €O . These curves cf Z and 7{ are used in com-

puting the transfer function constants.

10.25 Computation of Transfer Function Constants from
the Experimental Values of the Transfer Function

This procedure is explained by an example of the transfer func-

tion for als) given by equation &.1.
S(s)
q(s) _Ags 4 (8.1)

where G(s) is the Laplace transform of q(t) defired in Section VIII,

Le -4

OEN RO

o

and s is the complex variable defined by

ST o+ lWw
Similarly S (s) is the lLaplace transform of 5 ().

Letting s= cw, equation &.1 becomes

glw Alw t+ A
8w

P4
— C’ A
+ ABGJ‘P Alc—
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This is the theoretical form for the particular transfer function. Us-

ing the definition from step 3

SE_% = Erim (10.13)
£+i7[= cha+ b (10.14)

(-co %+ )¢ LA

[( FCat ) ri puls ther

Equating real and imaginary parts

-t w’:_YLABw + Fa,-4y=0 (10.15)

_.YL(,;]-(ABE - Al)(o +)'\A4= 0 (10.16)

For each value of W , sayw=<C,, a value of E and )'L is
read from the curves plotted in step 3. These values and the value
substituted in 10.15 give one linear equation. in 4,, Az and 4,. Three

such linear equations are sufficient to compute AZ’ AB’ and AA' However,

to obtain the most protable value of the A's, many values of &> are

, and A4 determined by the method of least

chosen and the values of A2, A

3
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squares. This method is outlined in detail in reference 2. Similarly

A1, A3, and 4, are determined from 10.16.

10.3 The laplace Transform Method for Determining the Transfer
Function Constants from Test Data

" This method is similar to the Fourier integral method discussed
previously. The test datz are transformed from functions of time to func-

tions of s by the Laplace transformation
-

x(s)= e -st x(t) dt

o -
In the general case s is a complex number, s= ¢~+{ &. However, for this

method, s is taken to be a real positive constant large enough to insure

convergence of the integral.

10.31 Outline of Method
(1) The flight test data are transformed by the lLaplace

transform.

(2) The transformed data are corrected for errors due to
the dynamic characteristics of the measuring instru-

ments.

(3) The experimental values of the transfer functions are
computed from the corrected data of step 2 and are

plotted as functions of s.

(4) The curve plotted in step 2 is fitted by the thecreti-

cal expression for the transfer function using the
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method of least scuares. The most probable value
for the transfer function constants are thus de-

termined.

These steps are discussed in detail below.

10,32 Transformetion of Test Data by the laplace Transform

The Laplace transform x(s) of a variable x(t) is defined by
the equaticn

(- -4

%)= e TP x(t) at (10.17)
o
Given values of the test data x(t). x(s) is computed for a particular
value sy by substituting s, in 10.17 and carrying out the integration by
grarhical methods, Simpson's rule or any convenient means. This integra-
tion gives one particular value X(So). This process is repeated for.as

many values of s as are desired.

10.33 Correction of Test Data for Dynamic Characteristics
of Instruments

This step is identical with step 2 cof the Fourier Integral method

except that the variable s is substituted forcew.
10.34 Computation of Experimental Values of the Transfer
Functions

This is illustrated for the transfer functicn é(s). Valves of

5(s)
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q(s) and ‘5(50) are selected from the corrected test data for a particu-
o

- \
lar value of (s,). The guotient Sﬁfgi is the value of the transfer func-
&(s.)
o .
tion corresponding to s,. Nany values of s are chosen and the resulting

values of a(s) plotted against the independent variable s.
S)

10.35 Computation of Transfer Function Censtants from the
Erperimental Valuves of the Transfer Functions

(s)
(s)

el

The transfer function for is according to ecuaticn £€.1

O

(€.1)

as) 2. |
HOJ 5T+ Ag8 4 A4 :@ls—g— AZ)

a(s .
For each value of s, say s, the value of %}.92 is read from the curves
s

plotted in step 3. Substitution of this value and s = s; in equations
10.1€ gives one linear equation in Al’ Az, AB, and AA' From values of s
gives four equations which are sufficient to determine the values of Al,
AZ’ A?, and A4. For the most probable value for the A's, many Values of s

are chosen and the A's determined by the method of least sguares. The

method of lezst squares is discussed in reference <.



10.4 Computation of Stability Derivatives from Transfer Function
Constants

-~
“

In Section 9 the three linear equations, 9.2, 9.3, and ¢.4,
relating the stability derivatives in the 1ift equations to the trans-
fer function constants were derived. Similarly, the three linear ecua-

ions, 9.5, 9.6, and 9.7, relate the transfer function constants to the
stability derivatives appearing in the moment ecuation. The simultan-
eous solution of 9.2, 9.3, and 9.4 yield the combinations of 1lift sta-
bility derivatives obtainable from the test and simultaneous solution of

9.5, 9.6, and G.7 the moment derivatives cttainable from the test.
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APPENDIX A
THE EQUATIONS OF MOTIONS FOR
A RIGID BODY IN TERMS OF MOVING COORDINATES
The equations of motion for a rigid body written in terms of
forces, moments, velocities, and accelerations along axes fixed in the
body are the well known Fulers equations. Their derivation is brief and

is included for the sake of completeness of this work.

The Moment Equations

Let i, 3,‘i be unit vectors along the axes x, y, 2 fixed to
the moving body.

Let'77('be the external moment applied to the rigid body

ﬁ(:;'L_L-l'EM-rkN (4.1)
where L, M, N are components of moment along the moving axes x, y, Z.

Let H be the angular momentum vector

—

H= 1.0 (4.2)
As .
where (J is the angular velocity vector
W = i, jwy-l' keo,,
and I is the dyad of inertia from Reference 3.
~/

. .. e
2| i1 Iy 15 Iy 1k Iy,

I
Mgy 33 Tyy 3k 1,

1, k1, kI,

o .
1 -[ (y2 + 2zR)PaT
= /vol
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I -[ (x2+ z2) P4t
yy—
vol

I,,. /[‘ (x?qk y2)1°d.C
vol

- atT
Ixy= Iyx xy P
vol
IXZ: IZX" - leod/l:
vol =xu
lyz = Izyz - [ yz eaT

vol

Newtonl's second

law written for inertial space states

ﬁ@ﬁ

(A.4)
where H = time rate of change of H in a coordinate system fixed in space
H:%HE+ )x H (Ref. 25)

where di .3 dHy , dH, - dH

o P

at TR
and QHy, dHy, dH,

at 4t

are the time rate of change of the components
at

of the vector H as measured in the moving coordinate system x, y, 2.

ox e P

b |
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u
Hel

(@, H, @, H)+j @, H -wy H)4 k (wy iy -@, H)

Define

o)
1
e

% = component of angular velocity about the x axis

Q £ @ = component of angular velocity about the y axis

R= @, = compoent of angular velocity about the z axis

The eguations of motion become

- . dE ol dR
L - IXX X 4 IW(E% - RP)* IXZ (E-,' +qp)

1, (F-R)+1, (@ -RI, (4.5)

- 49 4B - pg g1 af + R
M=y R+ (@ ") (&

+# 1, (BR-P)+1_ (7) - I, (4.6)

_1 & I ag p@
=L, T+ 1e (& = PP (it"'

# Ly (FB- Q) 31, (PQ) - Iy (@) (4.7)

A S

Force Equations
Let F: the external force acting on the body.

F=iX+]jY+kaz
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where X, Y, and Z are the components of external force along axes x, y,

%z fixed in the body.

Newton's second law written for inertial space states,

i )
%Io

where V = time rate of change of the velocity vector V in a coordinate

system fixed in inertial space.

\

-+C; xV

<ile
i
B2

av s dv 5 4av kqv

—— 1 x zZ
= —X ) Ly —E

dt dt dt dt

where dV,, dV,, gy, eare the time rates of change of the components

?
it 4t  at
of V along the moving axes x, y, z respectively.

Define

GxV=1 (@ =874 J (RU - WP)+ k (VP - UQ)

The force of equaticns of motions become

X= 23—2 + mQi - mRV : (A.8)
Y= ln%‘% # MRU = mWP - (4.9)

= Eg% # VP ~m UQ (4.10)

5N
1]



APPENDIX B
THE LINEARIZED EQUATICNS CF MCTION CF A SUBMERGED BODY

FOR SWALL DISTURBANCES FROM STEADY SYMVETRIC FLIGHT

Forces Acting on the Body

The external forces on a submerged body consist of the force
of gravity (mg), the buoyancy force B, the hydrodynamic forces due to
the motion of the body through the fluid, and a thrust TO from the pro-

pulsion system,

Orientation of Axes Fixed in Body with Respect to Axes Fixed in Space

The submerged body is assumed to have cne plane of symmetry.
Three sets of axes are necessary to develop the equations of motion.
Each set of axes has its origin at the body center of gravity and trans-
lates with it. The set of axes Xy, Yy, Zy are defined such that the Z;
axis is vertical and points toward the center of the earth. The Xy ¥y
plane is thus horizontal. These axes translate but do not rotate with

the body.

Z,set. The X Z, plane

The second set of axes are the X , ¥, Z,

is vertical and coincides with the plane of symmetry of the body. The XJ
axis may either point in the direction of the relative wind or along the
longitudinal axis of the body when the vehicle is in steady flight. If

the X, axis points in the direction of the relative wind, the X, Y., Zq
set are cailed "wind axes" and if the X axis points in the direction of

the longitudinal axis of the Xos Yy &g set are called "body axes". These

e}

axes translate but do rotate with the body. The equations which are de-

veloped in the following pages may be used for wind or body axes.
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The third set of axes are the x, y, z set. These ccincide with
the X, Y,» 7. axes during the steady state flight but are fixed to ihe

body and hence move with it during the disturbed motion.

The orientation of the x, y, z axes with the X, Y, 2, set is
defined by three angles 9& , 8, §. The angles are found by the follow=-
ing hypothetical rotation of the x, y, z axes from the initial X,, ¥4, 24,
position to their final position. The x, y, 2z axes fixed in the bedy are
assumed to be coincident with the X, Yg, Z,set before the disturbance.

The body first rotates about the Z, axis through the yaw angle yﬁ and

the x, y, 2 axes in this positiﬁn define a new set, the X, Y1, 41 axes.
The body then rotates about the Y, axis through the pitch angle © and the
X, ¥, 2 axes fixed in the body in this position define a second new X, Y2
22 set of axes. The third rotation is about the X, axis through the roll
angle @ and the x, y, 2 axes are then coincident with their final position.
The order of rotation defines the angles and must be carried out in the or-
der indicated for finite rotations. However, for the case of infinitesimal

rotations the order is immaterial,

Table B.,1 gives the direction cosines of the x, y, z and the Xo’
Yo, Zo axes for finite rotations and Table B.2 gives the direction cosines

for infinitesimal rotation.
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The Hydrodynamic Forces and lMoments

The hydrodynamic forces along the x, y, z axes will be desig-
nated as %, Y-, Zy and the hydrodynamic moments along the x, y, 2z axes
by Ly, Ny, M. These forces and moments will be assumed to be functions
of the velocity components U; v, W, P, 7, R and the acceleration compon-
ents ﬁ, %, %, %, b, R.

Fxpanding the hydrodynamic force XH in a Taylors series gives
Xy = Xo + Tyu # Lv # Low + Xl # ol %47

4 pr £ qu £ er + Xﬁp £ Xaq * er (B.1)

higher order terms

where

ete,

and
U=2U0,+9, Vav, W=W + w, P=p, G=4q, R=r

vhere U, V, Wy Py Gy Ty Uy v, W, D, a, r are small perturbations.
Similar expressions hold for YH’ ZH’ LH’ MH, NH.

The coefficients Xy, Xjetc., are defined as the stability de-
rivatives. There are 72 stability derivatives. Reference 4 Vol/shows by

-

reason of symmetry that Xﬁ, ZH’ MH are functions only of u, w, g, u, v, g
and Yy, Ly, Ny functions only of v, p, 7, %, é, r. Thus the stability de-
rivatives

(x, 2, M) v, p, T, ;, P, r =0

(Y, L, N) u, w, q, u, w, G,=0
The remaining stability derivatives will be considered in the equations of

motion.
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Components of Weight and Buoyancy along the x ¥ z Axes

Define G= E’ - B

(B.Z)
G is fifst resolved along the X, and Z, axes '
Component of G along X = - G sin 6, (B.3)
Component of G along Z,= G cos 6, (B.4)

Using the direction cosine table B.2 for infinitesimal rotations,

the components of the gravity force along the x y z axes become
Gy component of G along x axisz - G sin &, - G 6 cos 6, (B.5)

Gy component of G along y axis = G ')V sin 6o # G cos 65 (B.6)

G, compoent of G along z axis = = G8 sin 8, + G cos 6, (B.7)

Buovancy Moment
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Referring to Fig. B.l

Let ‘/Z’B — Vector from center of gravity (C.G.) to center of
buoyancy (C.B.)

B = Buoyancy force vector = -Béﬁ (R.8)
21

Tp= Buoyancy torque vector ‘/LB x B (B.9)

To=1lg+ ]+ kN (B.10)

Components of B along XO, Zo
along OXo B sin 6,
~along 0Y, 0

along OZO -B cos 8,

Aoz i X4 k 2y

Linearized Fquations of Wotion for Small Disturbance from Steady Symmetric
Flight

The external forces acting on the body are

X= Xy + Gy + X (B.11)
- R
Y= YH + Gy-f Ip (B.12)

Xps Yq, Zp are the components of the thrust along the x, y, 2

axes.
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The external moments acting on the body are

L=Iy+ Ly # 1

(B.14)
M= My My 4 My (B.15)
N =Ny # Ny 4 Ny (3.16)
where L N M

gy Ny Mo aTe the components of the moment along the x, y, 2z axes
respectively due to thrust,

Using relations B.5, B.6, and B.7 in equations 4.8, 4.9, 4.10,

relations B.14, B.15, B.16 in eguations A.5, A.6, A.7, the following veloc-
ity components

U= UO+ u P=p
V=v C =gq
W= Wo+ w R =7

and noting that due to symmetry I =~ 0.

=1
Xy = Vg
The eguations of motion become

X Xt 4 Xy 4 Xgd # Kb # Kyt 4 Xgd # Xy

. (B.17)
-G sin 6, - GO cos 6, = mu *mq W,

Lo+ Zyu F LW + 2.0 Zou 4 ZeW + Zac} # Zp

. (B.1€)
+ G cos 85 - GB sin 65= mw - mU,g
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Mo My + Myw 7 Moq + Mgl #Mew 4+ M5q + Mp

(B.19)
# Bzp sin Qo + B_zB 6 cos Go - BxB 6 sin ‘Go + BxB cos Oo ‘—=Iyy q
Y, #Yv +Yp+Yr+ Y;;} +Yb;'> WA 5 3 A
(B.20)
#Cf cos O - G¢¥ sin6 = mv - mi p
- v « P
Ly + Lyv +Lpp-f’1.rr-f-l.;,v -I-Li)p + Lir *1p
#(Bzg) ( # sin 0, F co8 85) = Iy B #Iyz T
No # Nov # Np + Nor ¢ N;v .,-N-I.Df; + N;_'r # Np
(B.22)
=~ (Bxg) (sbsin9+¢cosg):Izzr'ffIxz1'3
The steady state equations of motion are
Z,+ Zp +Gcos 8 =0 (B.24)
Mo * N + Bzp sin 6,+ Bxg cos 8§, = 0 (R.25)
Y #Y,=0 (B.26)
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Lo#Llp=0 (3.27)

N, + Np=0 (B.28)

: in
Using the steady state relations/the equations of motion and
senarutlng the ecuations into a longitudinal set in the variables u, w, g,
U, w, G, © and a lateral set in v, Py T v, *3, T, ¢ 55 the eguations be-

conme

Longitudinal Eguations

Xgur X o+ Xgq # gt +)L‘w 2 ¢ - 08 cos 6 = m (B.29)
B+ B+ Do+ zﬁﬁ - z{vﬁ + z@bj - G8 sin 6 = mw - mly g (B.30)
Mou -+ Mgw = Moq # Nl 4 Mew 4 qu # Bzn 6 cos 8, (B.31)

~Bxg O sin 6, = Iy G

Lateral Iquations

Tyv 4 Tpp # Yoo # T4v 7 Y8 + Yol + GF cos 6

(B.32)
- G ¢ sin 6, = nv - Wip
L,V + Lpp + L.r+ L(,\'r ~ Li)f) £ L}f f(BzB) ( ¢ sin 6, ¢ cos 6,)
. (B.33)
= IyyP # IypT
T I bt -r ¢ -
l\n_v_v.,gl\ pg N r,/_Nv.f.Ip Nyr BXB) (;bsm@ #@ cos 8,) .

= Izzr * Ixzp



