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ABSTRACT

A ten-foot-diameter water tunnel is discussed as to
feasibility and design, and consideration is narrowed to
the working section -- nozzle, throat and diffuser. A
non-cavitating nozzle shape is calculated by systematiz-
ing the method suggested by Hsue-Shen Tsien.

Structural design is approached on the basis of a six-
hundred-foot static pressure head; and an additional half-
full design loading is calculated as a Fourier expansion.
The analysis of the structure is broken down into a number
of elasticity problems.

The cylindricel throat is analyzed by membrane theory
for the high-head condition; and stresses at and in the sup-
porting rings are thoroughly investigated. More involved
methods considering transverse shéar and bending are used
to check the stability of the shell when only partially full.

Membrane theory is applied to the conical diffuser and
to the double-curved nozzle to determine the stress state in
both under the high-head condition. Shell thicknesses and

menmber sizes have been selected throughout from this analysis.
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DESIGN OF A LARGE WATZR TUNNEL

1. INTRODUCTION

Background:

Present trénds in water tunnel design are toward both
largér sizes and greater speeds, so it seems worth specu-
lating on what might be done if one were to utilize the
power avallable at one of our large western damsites. . Actu-
ally, 1t 1s not the purpose of this paéer to establish the
feasibility of such a plan. Rather, it is hoped to estab-
lish some of the more complicated anélysis procedures which
one might expect to encounter in the design of such a
structure.

Supposing the tunnel to operate as a penstdck on the
reservoir water and head for purposes of simplification,
dam height would 1imit the velocity attainable. Within the
1imit of total head obtainable, variations of velocity and
pressure head might be obtalned by installing needle vslves
both upstream and downstream of the working section. The
uostream valves would have to be at the beginning of & long
straight run of penstock to minimize turbulence at the

working-section end.



Problem:

The structural considerations in a tunnel of any size
are many and complex; and this report can be only a small
part of the complete analysis which one would have to under-
take béfore detail design could be begun. Therefore, the fol-
lowing is limited to the working venturi section -- nozzle,
throat and diffuser. Primarily, the problem is one of thin-
sheet analysis by the methods of theory of elasticity; but
other interesting problems appeared in the study.

When the nozzle shape was under consideration, no particu-
larly neat system for carrying out the calculations developed
by Heue-Shen Tsien in his paper "On thé Design of the Contrac-
tion Cone for a Wind Tunnel"(l) could be found; so a series of
tables were developed to make repetition of the process as sim-
rle as possible. Also, derivatives of the probability curve
up to the twenty-third were calculated and these .can be used
in future calculations directly. The calculations for a 13:10
reduction in diameter have been included as relevant and at
the same time useful examples.

At one point a useful Fourier expansion was indicated;
and these results are included. The calculations have been
systematized so that increased accuracy can be gbtained if de-
sired by extending the series. Further, this particular expan-
sion will be invaluable when the half-full design condition is
applied to the conical and double-curved portions of the tun-

nel.



Breakdown:

The second section is devoted to developing the physical
layout as it might be expected to be built. This is mostly
descriptive; but the Tsien analysis is included at this point.
That is, the basic equations and conclusions are presented;
but the actual calculations are given by tables in Appendix A.

In the third section, design conditions are established
with regard to expected loads. One of the design conditions
is the probable maximum static pressure head plus a factor
for the impact of closing the downstream needle valves; This
condition retains the cylindrical shape by high pressures all
around the circumference. The part-full AOndition is the oth-
er; and under this condition, the cylinder must maintain its
shape by its own stiffness. 8Since the solution of the stress
state involves infinite series solutions, the part-full leading
condition has been expressed as a Fourier series; and the re-
sult is given in the third section with actual calculations
relegated to Appendix B.

Dynamic effects have not been considered here although
they could be obtained from the fluid flow equations and would
be particularly important for anchorage. The conical and dou-
ble~-curved portions of the tunnel should be investigated for
dynamic effects. »

The fourth section contains the actual thin-sheet analysis
of the cylindrical portion of the tunnel. The high-head load-

ing condition is used to determine the overall stress state by
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membrane theory and to analyze the local conditions at sup-
porting rings by methods which consider bending stresses in
the sheet. The part-full loading condition is used to obtain
an overall stress state involving bending moments in the sheet
for pu;boses of checking buckling possibilities. Local stress-
es at the supporting rings are relatively unimportant under
the low-head loading condition.

The fifth and sixth sections contain discussions of the
conical and double-curved portions of the tunnel respectively;
and are particularly ccncerned with application of the tech-
niques of section four to problems of increasing degrees of
difficulty. The high-head membrane-theory approach has been
applied to the conical diffuser and to the nozzle; but time
did not permit of the more involved and tedious analyses of
the part-full analysis.

In the seventh sec;ion, gome conclusions are presented
as to the usefulness and accuracy of the analysis contained

herein. This is followed by the Appendix which contains calcu-

lations relative to the Tsien and Fourier analyses.
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II. PHYSICAL LAYQUT

Genersal Plan for Working Section:

The plan as presented here is no lese than grandiose;
but the problems are about the same regardless of any scale
change of several times up or down. The illustration on the
next sheet gives an idea of the magnitude of the project as
herein proposed. Obviously there are many very interesting
problems in such a design; but only the thin-sheet analysis
is possible in this paper.

The flow enters from a thirteen-foot dismeter penstock
at the left of the illustiation. The penstock should be
straight for as far as possible Dback toward the dam and the
upstream control needle valves. At (C), the flow is contract-
ed in an eighteen-foot-long nozzle of special design to smooth
out the flow and to speed it up. Ring stiffeners and supports
at either end of the nozzle are seated on concrete bases de-
signed to tazke the thrust of dynamic effects. It is almost
certain that additional stiffeners will be necessary to trans-
fer axial loads from the nozzle shell to the concentration
points of support.

Straight cylindrical portions of ten—foct diameter form
the throat of this giant venturi. Approximately six-foot
lengths are cantilevered from the smaller ends of both nozzle
and diffuser with flanges for bolting to the main working sec-

tion which is removable. It is considered more lnteresting
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for purposes of this paper to assume a removable portion

(A) which can be analyzed as a continuous cylindrical shell.
In the i1llustration of page 6, an eighteen-foot length has
been shown as mounted on a car which rune in and out on two
railsj Accesg doors would be more practical, but it 1is
desired to develop the complete cylinder analysis as prepar-
atory to the conical and double-curved anslyses.

The diffuser section (B) is conical with elements in-
clined at approximately five degrees to the axis and formg
an eighteen-foot~long frustrum. Stiffening rings similar
to those for the nozzle support the diffuser on similar
concrete bases. The next eighteen-foot section approximates
three seven-and-one-half-foot diameter pipes with their axes
inclined at five degrees to the.main tunnel axis. Actuslly,
this is a transition leading into individual pipes which
after another eighteen feet flange for attachment to the
three downstream needle valves for control of back-pressure
or simulated running-depth.

Altogether, tnis description of a genersl vlan is in-
tended only to bring out certain problems which might be
encountered in the anslysis of such a structure. Therefore,
theoretical investigations of the type undertsken herein are
advantageous at this time for the analysis techniques which
they establish for ultimate apvlication to any final design
which might be conceived. The procedure so carefullyv estab-

lished for the cylindrical portipn of the tunnel is equally
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-applicable to the penstock or to any large pipeline.

(blank)

Teglen Ansalysis of Nozzle Section:

One of the first problemsi@hysiaal layout that‘arose
was that of a suitable length and shape of the contracting
nozzle which leads into the tunnel throat. Since double-
curved surfaces are involved which Will likely necessitate

machining whether curved sheet or casting is employed, the
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shortest possible nozzle is to be desired. However, contract-
ed flows are accelerated flows and the attendant pressure drop
is fraught with cavitation dangers. This problem was attacked
by Hsue-Bhen Tsien in his paper "On the Design of the Contrac-
tion nge for a Wind Tunnel' which was published in the Febru-

ary, 1943, issue of the Journal of the Aeronautical Sciences

(vol. 10, no. 3, p. 68). No attempt will be made to repeat
his derivation here; but a recitation of steps in the procedure
will aid anyone desiring to repeat the process for some other
contraction ratio.

In this design, a contraction ratio of diameters had been
established at 13:10 and the resulting velocity ratios must
needs be 0.593:1. Dr. Tsien assumes that flow along the axis

of the nozzle can be expressed in the following form:

x 2

= Q796 O.408 / o and
U,(x) 796 + g B e Tdx
v,(x) = O by symmetry.

Consistent with this assumption are the ones of initial and

final velocity:

uroq,r) = 0592
ufoa,r) = /.00, and
r(toa,r) = 0O

These are boundary conditions on the two fundamental equations

of hydrodynamics:

_a__’{: ACI _.0

3« T on~ (irrotational condition)
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‘a%ﬂ'd) * a'a,'-("V) = 0 (continuity equation)
The boundary condition assumed along the axis is the trick
that makes the Tsien solution so very neat.

Note that the integral in the assumed velocity distribu-
tion along the x-axis is exactly the area under the probabil -

ity curve: P
X

Sﬁ _ / 2

x) = [z e

which function is tabulated in many mathematical tables to-
gether with its first few derivatives. Further, the deriva-

tives of this function have the following recurrence relation:

(x) [xS‘L (x) + (m- /)Sﬁ )(r)].

These functions have been calculated and tabulated in Appendix
A up to the nineteenth derivative; and the table can be ex-
tended readily if greater accuracy is desired in subsequent
calculations. These values are applicable to any future solu-
tion for a different contraction ratio.

The solution determined by Tsien takes the form:

ur) = ) + 0408 Z /I)z (2)Zﬂ¢(2n :)()

” 2n-] ¢ (2n-2)
vhr) = 04an ({j,),)’l(z’-') Y

o2 ) 2n o (2n)
-0.408rg067———————*6(’”)!)2(-2’1) $ (x).
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The actual streamlines are determined by calculating a grid

of values of the stream function:

Vi Y
0.398r +0204r/¢(z) dr +

r )27 g len-1)
0.204r* L 7 ,)(,,,} Si(5) P G

Yyﬁirj

The actusl calculation of these functions is to be found in
Appendix A; and the results are plotted on the next gsheet.
The following sheet shows the contour for Hb = 0.6 expanded
to the required scale; and the resultant velocities along
axis and wall have been plotted on the basis of tunnel veloc-
ity equal to one. The resultant velocity at any point in the

flow is readily calculated from:

w(x,r) = fuz/x,r) + Vixr) .
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ITI. DESIGN CONDITIONS

Maximum Static Head Plus Impact:

Inasmuch as all running conditions bring less than full
static pressure to the working section, static head plus a
factor for "hammer" has been taken as the major design condi-
tion. Total head available depends upon the damsite selected;
but a survey of possible locations reveals that some 480 feet
of head can be realized at several locations. Such high in-
ternal pressure produces very heavy hoop tension and requires
relatively thick sheet metal for tensile strength alone. That
is, the thickness of sheet required for the high-head condi-
tion is not expected to buckle under part-full loadings which
leave the upper part of the cylinder unsupported except for
its own stiffness. |

The matter of an impact factor to be added to full static
head is somewhat arbitrary; but the possible "hammer" pressure
is known to be a function of penstock characteristics and
valve closing times. Without a complete design, calculation
is of little avail but practical considerations are good enough.
The minimum closing time of a large néedle valve can be limited
by means of gearing from the handwheel or by metering in the e-
vent of hydraulic control. Therefore, it seems reasonable %o
assume that a 25 per cent impact factor can be held as a maxi-
mum in operation.

The 35 per cent increase raises the 480 feet of static
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head to 600 feet of design pressure head. This corresponds
to a design pressure of 37.5 kips per square foot or 260

pounds per sguare inch.

Part-Full Condition:

During the process of filling or emptying the penstock,
the tunnel section will be under the full range of heads from
-5 feet to 480 feet over the center-line datum. The problem
here is to investigate the most critical loading condition.

The high-head condition already discussed produces maximum
hoop tension but transverse bending moments are insignificant
except near the supporting rings. Under heads less than +5
feet, with not all of the sheet supported by internal pressure,
transverse bending stiffness becomes important over-all and the
possibility of buckling must be investigated.

It so happens that the critical hydrostatic loading has
been established. Roark,(z) in his chapter on beams, solves
the problem of an elemental length of circular cylinder sup-
ported by shears distributed sinusoidally around its circumfer-
ence and loaded by the radial pressures of a liquid only par-
tially filling the cylinder (case 37 of chapter 8). This is
exactly the condition of the elements of the working section
which might buckle; and the maximum transverse bending moment
is seen to result from having the cylinder half-full.

The nhalf-full pressure distribution is a function of the

angular position of the point being considered. That 1s, there
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is zero pressure over the upper half of the cylinder; and the
pressure over the lower half is directly proportional to the
-¢osine ¢5 (see next sheet). As can be seen in the plot given,
the first deiivative of the pressure function is discontinuous
at the two ends of the horizontal diameter -- "and there's the
rub. ! |

Two procedures of about equal difficulty in their applica-
tion suggest themselves at this point. The more usual and
seemingly the more direct approach would be to treat t he upper
and lower halves of the cylinder as two separate.problems. For
a complete answer, this method involves fitting the boundary
conditions of the two problems along the two elements they have
in common. The techniques are well established and the major
part of the work involved in solving the deflection pattern
lies in fitting these boundary conditions. Further, the prob-
lem becomes more difficult and must be repeated for the conical
and the double-curved sections. Another approach circumvents
the Workvof fitting intermediate boundary conditions and will
do much to lessen the labor of analyzing the more complicated
surfaces.

The fact that plate deflection problems are generfly ap-
proached by assuming doubly-infinite Fourier series for the so-
lution suggests a Fourier series expansion for the half-full
pressure distribution. This representation avoids the discon-

tinuities and fits into the form of the solution to be under-
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taken. The expansion has been solved in Appendix B and the
results are tabulated on page 17. The expansion was carried
to the cosine 14¢6 coefficient and circled points on the plot
of theﬁ}oading were calculated to this accuracy to indicate
the order of the accuracy. Increased accuracy can be obtained
readily by extending the series a few more terms; but the

practical problem here requires no greater accuracy.
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IV. CYLINDRICAL SECTION

When bolted into place, the eighteen-foot-long working
section becomés a continuous beém, and it is best analyzed
as having built-in ends. The actual mechanics of removing
this section and of sealing it have been given considerable
thought, but a discussion of possible procedures is out of
place at this point. The actual analysis of the cylindrical
section has been divided under the two design conditions into
(1) a determination of member sizes and (2) a check of second-

ary stresses and stability.

Maximum~-Head Condition:

Primary Shell Stresses:

The high static head design pressure makes the use of mem-
brane theory quite satisfactory everywhere except near the sup-
porting rings. The membrane theory for cylindrical shells has
been developed without too much detail by Timoshenko(52 The
basic loads are all in the surface of the shell as indicated

in the element under consideration in the following sketchi

\\Qi\ffrom vertical)

~
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The basic equations of equilibrium are given as (2234) on page

384 of the reference:

_a__/_v)‘ " I'QA/!¢

dx R 3¢ = - X,
v by = -v,
N, - -2R.

Under fluid pressure, X = ¥ s 0 and the normal force,

Z = ¥(-H + /?amsgﬂ).

This gives the partial solution:
/N; = YR/H, "/?casqg),
Np = ~¥Rx sin® + (@),
N, = Fxlacsq - X ZC@) + GP).

Note that N¢ is neither a function of X nor everywhere equal
to zero.

The fixed-end boundary ccndition requires that N¢ = 0 at
both ends but the above solution does not yield this result.
However, it is understood that the membrane theory Wil; not
hold near the supports znd local secondary stresses have been
considered in the next part of this sub-section (see p. 24).
Since the flange is not infinitely rigid, there will be some
circumferential stretching; and it turns out that the result-
ing N¢, value is more nearly correct than the zero value for

this particular design. Further, the effect of these second-
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ary stresses is shown to die out within less than two feet
of the flange.

It remains to evaluate the two constants of integration
from the boundary conditions. The condition that meximum

shears be equal and opposite at the two ends of the tube gives:

Cp) = LRL snep;

and the fixed-end condition that the lengths of element lines

remain constant yields:

V4
%/r/ﬁé = LUN@) dGr = C’ and
- LS o2
Ct#) = w[VRH, + (£ - IR)cos #].
The final expressions for the running loads are:
ﬂA/¢

WMy, = LRL(-2F) sinp (2)

it

X/Qz/l-éz’ - cos CP) (1)

. 2 2 2
N, = gz/;é—;.*é -2V K )cosp + yIRH, ()

Turning to the particular section and fluid under consider-

ation here, the following physical constants are applicable:

Density of water, ¥ = 62.4 /é/;,_e-?

5
/8 #

H, = 600 R
Y = 03 V4

it



-8

Thus, the section to be considered looks like the following:

Ends fixed

Note the directions of the x and ¢ coordinates.
Substituting the physical constants, the final stress

gtate equations are:

(/V& = /307/3'//20‘605¢);
AN, = 234 L(1-355)sind,
N, = 8424 L(Zp: - Fg + .12037)cosp + 4660 &

Investigating the critical locations, A, B, and C, indicated

on the figure, the stress state at each point is found to be:

Location A --
Ny = 130 & 120 +1) = 4573 Kes
M«P = 0;

N, = 842 H(F-4+.12)1)+ 4680% = 479 4>
Tension maX. = /qu = /573 éll.'f,e-_’

2Ny -N,) = 547 HE

Shear maX.
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Location B --

/\/¢ = /307/% //20 +0} = /56‘0-'4—;;',9_5 ~ flange effect

My = 234L(-0) = 02344

N, = 0 +9680f = 468 425 + secondary bending
Tension max. = NgN -/\/,,2+M; = /5.6/ 'k',"r;:.s -

"

Ny-Njz =, 2 ;
V) e Mg = 547 e

Shear max.

Location C --

Np = 1307 G20-1) = 15.47 %<

A4¢ = 0
Ne = 8425(7 -3 +s2)(l) + 4680 % = 4.57 4=
Tension max. = A/ = /5. 47 L5 k,s

¥

Shear max. = 2’-//V¢ '/V,,) = 545%"’

Thus it appears that the maximum running tension load of 15.73
kips per inch can be used to determine the required plate thick-
ness.

The usual allowable tensile stress for structural grade
gteel is 18 k.s.i.; so applying this‘to the given running load,

we get a plate thickness,

/S . . z.
¢ = /5'/7;’::{ = O.874 in. /say 3»1}.

To get an idea of the margin of safety this represents, the

A.I.S.C.(4) 'ives the average ultimate tensile strength as
g
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66 k.s.i. and shear ultimate as 3/4 of tensile; and the stress

ratios are:

/?t = g/—gff—:— = 27273 for tension, and
/?, = &Zihsc Q/26 for shear.

495 ksé.

.The Army-Navy-C}vil Committee on Aircraft Requirements(B) in-
dicates that the margin of safety for such loadings can be ex-
pressed as:

MS. = %=1 ={

267 in tension,

6.92 in shear.

This appears to be quite satisfactory -- particularly since
the design load is the instantaneous peak of pressure under

the impact of closing valves.

Secondary Stresses at Flanges:
Considering a flange of cross section Ag which exerts a
load P per unit of circumference on the cylinder, the methods

of section 82 of Plates and Shells(S) (p. 395 et seq.) are

found to be applicable. Consider the pipe under pressure e-
guivalent to the maximum average head, Ho, and use the nota-

tion indicated in the diagram:
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I ki “
" gpoie - 14
i i
2
! ey f
Based on circumferential stretching, the radial deflections
are:
= a = _—/.a;k_gé_‘_ . M = N
AR, F R = 29000 Fs:. 60 m. 0.0372 m.
= £‘F = ._'.D...E—z = _p_ ;ﬂ.4
A’?z E /? EA; Q/Z4Z; kips
Timoshenko uses the notation:?
. _Etc  _ 290wksi(875im) _ .

B = Et_ . e R L Y
4R°D /RE J60in. -.875in. in.

The/B corresponds to the factor Z used by Schorer(6) in his
paper on the "Design of Large Pipe Lines." The problem has

been solved by Timoshenko with the following deflections under

the ring lead point:

= g = Pin/] kip = __E_L’Li..
W 88°D B(1774)%1773 79.5 kjps
Also, W, = AR - i

_ 1oq L. in?
4K, = ao37g,w -.a./z4 B Eps from the

elastic characteristics of the pipe and the flange. Therefore:
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2.96 A, . kips

P = 9Bt A,
and from Timoshenko's derivation:
r o= B - 4/7Ac__ . in-Kips
o ~ 4/8 B 9.86‘:'”.2**/2[; in.
Furthermore, the effect of this flange dies out in a distance:
S _ 3927 n _ .
X = 4/6 777Z 22 inches

Now primary stresses at location D (see diasgram on page

232) may be:

M. 842 /. 4680 /6.
T = F = G75m 2t T FT5umt T 946 ks

Considering 18 ksi to be the allowable total stress, this

leaves 12.54 ksi for the allowable bending stress:

g, = M = M I8 - j254 ks

Therefore, the largest allowable bending moment from this con-
sideration can be equated to the M, calculated as a function
of the flange area; and the stiffest allowable flange can then

be calculated thus:

M. = 12594 in-k. = 4/68 Af . n-k.
° 7837 in. 986+ Af #.
. [6-9.86in. . . 2
v,4; = Facs &./4 in.

Hoop stresses in the flange will be given by:

4
012w EP - .
’?Af = //.09 kSt

o‘-F = kips

The problem of bending stresses in the flange will be con-
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sidered under the following loads:

E/¢ /Y thick
flange

F = $6245-785/% 18/ = 44/ kips

= 2RS,. / sii’P P = 60in T S,

S = 0234 & h ¥ - which checks.

X .
Schorer(s) has solved the bending moment problem for most ef-
ficient placing of the supporting reactions; and his solution

yields:

a = 004LR’ = 252 m.
M .= dﬂZFR' = /Zé/h."44.//k. = 55.58 I‘ﬂ.‘/él;és.
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Checking the stresses in a 6.14 in. x 1 in. flange, the sec-

tion modulus,

Z - /Ih.‘6-/4l'ﬂ 22
- )

= 6‘.3/"1.3
M 55.6 i - k.
g, = F = -%%T“ = 8.82 ksi.

Combined stresses in the flange give:

Opax. = g * 6, = /OSksi+ 882ksi. = /3. Iksc.

This is not too high since the pipe itself restrains this bend-

ing to a certain extent.

Part-Full Condition:

Primary Shell Stresses:

The part-full condition gives little’support to the shell,
so shears and bending moments across the sheet become import-
ant. Actually, circumferential shears and moments are of more
consequence than longitudinal or torsional moments; but all of
these effects have been included. The problem of whether the
secondary effects of local deformation are negligible or not
is to be established; and Timoshenko(3) (p. 439) states that
they are negligible if Ny, N¢; and ny are small in comparison
with their critical buckling valuwes for the shell.
| To establish the negligibility of local deformations, con-

sider the following over-simplified analysis:
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weight / ft. = 624 K% 39.27#% « 3574 H42h = 3577%F

. s _

laX. moment = ——12’2 = 3-/\;7Zf;',g5//8fz)z = 9645 fhmkijos
A o

liax. shear = -"ZL - 3572 kips

ks jp st = 32/5 kjps

Approximate maximum stresses over supports:

Compression = %7? ;‘%%; = /7 psé.
_ 235351/ 3535 - 32./5 kip - .
ghear = - iﬁé&ﬂdﬂ?}jﬁi = 25%?/msa
Approximate buckling stresses:
" lLe L3
DV, = E[olE) +06R)°] = 291055005 = 3040000
(8) _ 92357E /417 _ . F_ :
Tcr- = my/;’ y=) = 7335,(’51[0/46') = /2 934 psc.

Obviously the approximaste stresses are very much lower than the

probable minimum buckling stresses, particularly since the max-
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imum shear indicated 1s at the ring supports where buckling
is not a problen.

The shears and moments to be considered in addition to
those in the surface of the shell (see figure on p. 19) are

indicated in the following illustration:

Section 88 of Theory of Plates and Shells (p. 433 et seq.)
deriveg the general equilibrium equations for this element;
and equations (255), page 440, are the form they take with

the simplification of small deflectlons:

(R Y o = - XR =0
3_%,9 . R-%ﬁ}éﬂ -Q, = -YR = -1785% sin

3 2
R + 82 . Ny = -2R
oq
+-A56C7ﬁ%=4gg ég*cvs4ﬂ49.

/785 % cos P+

i

M, M, = -
/ngr-!f - 55‘” - P@¢ = MR =0
\—aaA—zﬁ* + E%’}:—" - P&x = M'l? = ﬂ

¥See nage 1¢ and Appendix B for values of'bn to be used.
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dx and Q¢ cen be eliminated from the above equations; and
the remaining forces and moments can be expressed in terms
of the displacements u, v and w. That is, elastic consider-

ations given in Plates and Shells, pages 354 and 439, equa-

tions (207), (208) and (254), yield:

N, = 22/24 , li.é?r'.. ;%.U{)

t?2 {dx " R op
No = “8(v% + %35 - %)
No = Nw = GRS 5E)
M, = "z, (Gj Qr'*' Ei * ié! j%%g)
M ’5? ,;%;zéw % 0 20 3)
M,“,,/ = My = é//Z//? )// S B—z'q')

The given equations are combined on page 440 to three equations

(357) in three unknown displacements:
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s
Zaxzaﬁz * g 3+

130 z; Z b, cos ne.

FPixed ends and symmetry about the vertical center line
give the displacements the following forms; which are now as-

sumed 28 solutions with the coefficients to be evaluszted:

ZZ A mp COS NP sin 2’2”1
ZZ B... sin ng sin ’”[

w = 2;2: C;w, cos nf S .j;

u

8|

v

Also, the physical constants which appesr in the various equa-
tions must be introduced to reduce the problem to a numerical

one; and these constants are:
V=03 t=00729/, R=5#, 4= /8
_if = .ééétléz . & ﬂ9~7’f£

D = tF S 29" /6.

. 494 _ r?

The relations of the preceding paragraph substitute into

the three displacement equations to give for solution:

S 1634 (m? « 114972 A, cos ne sin 255 + L& mlC,, -

-2/667n B, )cos NP cosj,,j)q =0 (1)



G P N

228403 mr 4,,,, s nd cos _—f—%—f; + 22[7.9744/,”2 +3 75/,7'3) Bnm
_,75”€L740Z¢vuizaﬂiﬁvC;djdiv/wﬁ sinfZ2 =

= O/5200 5 sind® (2)

3 50934 m A, cosnd cos 225 + 3822350 (m’ + 43592
+ 0.7725n%)8B,, - (m"+ 26255mn% + L7237+ 97278)C,, ]

cos n sinF%Z = F.(05552 - 107/7 cos & +
O.370/5 cos PP — 07403 cos 4dF + 003178 cos 6P -
O0/763 cos B8P + O0/N22 cos /OFP - Q00776 cos /2P +

Q00574 cos /4P - - ) (3)

These equations have been solved in Appendix C and the values
of the coefficients are tabulated on the next sheet. The
values in the table are in billiocnths of a foot; and in order
to get an idea of the cumulative effect, the transverse de-

flections of the shell were calculated at the four points in-

dicated in the figure below!

0.0013 in.

0.0020 in. (inward)

0.0013 in. (outward)
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The necessity for zero u-displescement at the ends
(fixity) and in the middle (enti-symmetry) results in zero
throughout the length under the trigonometric expznsions
of the loading as sines of odd multiples; that is, all A

coefficients are zero. Thus it can be stated tnat transverse

plane sthions remain plane and vertical That sections re~
mein plane is a basic essumption of simple beam theory,; but
to keep those planes vertical requires restraints which nulli-
fy the axial bending stresses without necessarily disturbing
the shear distribution. Therefore, the. axial bending stresses
calculafed from simple theory must be added %o the following
results for Ng; and Poisson effect of these étresses must be
combined with the N¢,'results. The ny results should check
reasonably well with simple theory and their accuracy should
be indicative of accuracy of the solution generally.

Since all of the A coefficients are zero and the x-dis-
placements are restﬁaned to u(x,¢) = 0, the expressions for
the stress (actually running-load) state throughout the shell

can be simplified to the following form:

. 29D f3v _
M. = 222035 -w),

Ny = ,%QZ(Z;?}?‘W),

2
/~£¢' = /v/x = '%é?{?"PO §§j)

= _ZQQ é!‘ /?ﬁ ;ﬁv - Bﬂw
M, 2 (3 * v 5a8 29/
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z 2
ng = - ‘kgz /ﬁ + ﬂ’?zag:; * ;gz
i} - D d _ dw
M¢ -7 gx 7?_ //-7}/ ox Jx o,

From the previous discussion, it cen be seen thst the chief
contribution of these determinations in comparison with sim-
ple beam theory will be the hoop tensions and the transverse
bending moments. Since no exact theory of buckling exists
for these loadings, dnly the order of magnitudes are necessary
to verify their insignificance.

Substituting the final‘soiutions for v and w into the a-

bove equations, the expressions for Tunning load become:

R

2175 Lips ZZ B, Cmﬂ) cos ngd sin ZF=,

mz=| n=0

7250 ,,, Z'Z (/7 ”m) C05ﬂ¢ SmT

RS

/V’4> = 22/4 k'fs Z:¢ET mB,, sin n@ czzs-gﬁﬁzi

mel n=

X

1779 =54 Z f [-nB,, +(2538m"+n’) c,,,,,]-
mz=| n=0

mux

rcos nP sin — g,
) oq oq.
/W¢ = 5.930 "',”;:'i' ZZ [""an + /02284mz+ HZ)C,,,,,]'

. mrx
*cos nP sin 7




oq
/V7¢, = 34522?1%f£“§i2: rﬂ(?im'vvc;n)5b7n49cas‘ﬁ%z.

x
m=zt nz0

Meximun, stresses at the previously investigated locations
(i.e., at points investigated under the high-head condition)

are as follows:

Location A--

N, = 20255 F [Gu-B,+Cos 3 (080-Cor)]5in BT

]

436 7/7?’ , or 0, = -/z-v" = DSOpsc. /f' S9pse.
from simple bgnding);

Ny = 7250 45 T [-Coom B+ Cou* (0B Gl 5in FF
= /45:4;",6,‘: ; or Op = —/f!‘f = [66 ps:. /— /8 psi.

from silmple bending);



Me

_58_

= chp = 0;

oq
= [7794ips Z;{}3518nf(;,*éa,’ﬂ2£38»f+[)c;,'*
¥

f[(f-ﬁﬁm‘w’)cm-n&n)} sin BX = -0/94 2%,

n=2

M, ,
or 0;_" = Gtz = % .52 P35

' 4
= JiQEﬂ?kﬁnf3;;{022&54'wQ;m *4Bm;'ﬂ&3&54”f;éA2Q +
o

+ n'ZZ [@-2254;7724 né)(mn - ’75,.",]} sin %—n: = 065 m”;/L

M, ,
or G, = —6—?74’ = * 05/ psi.

Location B--

M,

M, ¢

-
- z2i44es ) mB, = /5%, or
Z;p = ‘Aégg = /89 psi.

= M¢ .—_0}_

i (= ¢]
= -Mq” = 36'22/&/,‘055 m/Bm,—C,,,,)

o ’ 0.
- 743 Irt."”./é. 5 or 7;‘p - M 3+0.9¢

"
S
©

R
o
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Location C--

N = 217552 ) ) (4B, -Cn)sin 2T = -49% , o

o = F = "5/9.5"./-5.9,05:'. from simple bending);
o9 oq -
N, = 7250 4 Z (2 B,y-C,,)5in B = -125L o
P m) oo in. J
- Ne . : .
0:?9 = F = —/7,051./"-/5/95‘. from simple bending);

A/xﬁ.—-x:ﬂ:ai

9 eq
/778 kips MZ’ZD /:;75",,+(2538m’+ ~*)C,, ] sim X =

BN

,H-M &N,

= /6 ——— or 0';_)‘ = —t—z-“ = 0..9//051'.,-
My« 5930 kpe 22, [ -8, " es360%r)Ceu5 57 -
= 42739 L',';l/é- , or G, = -6—:,{4’ = Z/8psé.

All of these stresses are seen to be extremely low and of 1it-
tle concern from a practical standpoint; but some comments are
in order.

The maximum shear stress of 189 psi is off from the more
accurate (for this shear determination) result from simple
beam theory of 216 psi by only twelve per cent and this is a

fair measure of the overall accuracy of the series solution
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given here. Greater accuracy could be obtained by extending
the series solutions further but no practical advantage would
obtain. The calculations of transverse bending moments are
somewhat less accurate because of the slow rates of converg-
gnce of\their series. However, these moments are so small
that there is no doubt about the needlessness of extending

theilr series. The cylindrical section as proposed is defin-

itely stable even under the part-full condition.
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V. CONICAL SECTION

The conical diffuser section (B on page 6) is an eighteen-
foot frustrum; and the end-conditions are such that they are
properly considered fixed. The elements of the cone are in-
clined at only five'degrees to the axis; so one would hope to
apply the techniques used for the cylindrical sébtion without
too much difficulty. Actually, membrane theory nhas been ap-
plied for the high-head design condition without any addition-

2l simplifying assumptions.

Maximum-Head Condition:

Primary Shell Stresses:

The high design pressure for this condition again makes
the use of membrane theory quite satisfactory everywhere ex-
cept near the supporting rings. The only conical cases devel-

oped by Timoshenko(3) in his Plates and Shells (pp. 363-364)

are not applicable to this particular problem. However, the
basic equations can be set up by considering the following

element of the surface with the notation as indicated:




;B

Equilibrium of the element in the X, y and z directions

respectively gives the three equations which follow:

Sl cheodg) » Noate(Boke) + St pete - Npdhe(Eokg) -
~XRIp = O,
2t che ) + o e Eot) + Yip Sl = -V Ritpds = 0,
cosoc-Ng Fxodf = -ZRIpole = yRApdx(H-Feos d).

These simplify to the following expressions if R is replaced

by x*sin oC:
fx-;)%_*/\/, +5Ih’“-%gx4’- Ny = 0, (1)
4 ,.%/_er + Ny + s,.”'“-%%{a =0, (2)
::;”““ (He - x.cos ). (3)

Substituting equation (3) into (R) gives a partial dif-
ferential equation which is "exact"; so the integration is

performed quite readily, to give:

N"‘P = —3?'7"ano('lz"$;ﬂﬂ + E,C:(ﬁ
The boundary condition which evaluates the constant of integra-
tion here is that the total»shear deflection from cne end of
an element to the other shall be zero. This is equivalent to

saying in terms of the loading:

%2
[ Neg dx = O, which yields :
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3.3
C(®) = 3): +an oc % sin P.

Therefore, the final expression for the shear state is:

3
(; ﬁmﬂcﬁﬁﬂz if;é;f:i sin P. (4)
Substituting equations (3) and (4) into equation (1) gives
another Yexact! differential equation of somewhat greater com-
plexity. The solution is straightforward, however; and the

result is:

N,

5255;-/;ﬁ0%3am€f)-‘éﬁ*"Q 12%/5v599 +
+ (?gi'ﬁwaaa)X' + é;c;ﬂ#?.

The boundary condition here is that the elements shall have
no net elongation over their length. This is expressed in

terms of running loads as:

///V Z//ng) dx = o, which yields:

-G(F) = écosor)( % Z __z.)[ - sin'ec(733) - an %1)]
cos P + /—2—° -/'anof)(;n 2::)(2‘_’”)-

Therefore, the final expression for longitudinal running

load turns out to be:

/%( = (g:ﬁg;%){JEVO'u3sboﬂx) - -— Ji)/:é%.z: + -L -
- (1-33)sinec ~ ”"“f% )j}wscp + (Ko ton o).

[x- "IJ Z—:)j (5)




W,

It is to be remembered here that although the distance between
end rings has been maintdned constant, no provision has been
made in the equations for tsking out the axial thrust result-
ant. Therefore, this might be considered as being similar to
the conical end of a boiler where the tension increases as one
moves away from the apex.

The correction for boiler effect can be taken directly

from Timoshenko(3), Plates and Shells (p. 363, fig. 143a & b).

As indicated there, the cases to be superimposed upon (i.e.,

subtracted from) the equation for Nx can be pictured as fol-

lows: ///////ad\ N,
A,

Regultant
pressure

NI

It can be seen that the "S" component is negligible and that
. 2

the other component is AP = b’/-/oﬂ"(x, smo() . Therefore, the

correction to the Ny expression is:

. 2 2
YRR 7. X2 M T P W

2m (x sin oc)cos o<

and the final corrected longitudinal load beconmes:

3
N, - (-—-9“5«){x"//-3sf~%r) -4 ﬁiﬁ-)[ﬁ»x . 3—‘ -
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The particular section and fluid under consideration here

gives the following physical values for the constants in the

egquations:
J = 03 - 624 s X, = 5734 #
oc = 50° H, = 600~ X, = 75.41 f+

Note the origins and directions of the x and ¢’coordinates.
Substituting the physical constants, the final stress state

equations become:
(Np = 00397 % (688] - 7 cos £) 7

Nep = 04517 f& (2223008 _ X))

.

N, = 0567 %[5 - 280628/, o — 40125)cosp +

\ * /35.5,_;,‘-’7{{_;_' - 2’%3__&)
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The values of these running loade have been calculated along
the critical elements and plotted on the following sheet.
It can be verified that the values of Np vary directly with
x and the curves extended pass through.the origin; The curves
of Ny have the characteristic curvatures for top and bottom
of fixed-end distributed-load beanms, bﬁt the effect of axial
thrust is to appreciably rotate the curves. The values of Ny
are typical for a beam with distributed load.

Applying the allowable tensile stress for structural
grade steel to the maximum hoop tension load, the necessary
thickness is found to be:

20.82 kips/in. .
¢ = LELhrsin o 57, (say [Ein).

Actually, an appreciable saving of material could be made by
using tapered sheet so as to go from 7/8 thickness at the
smaller end to 1-3/16 thickness at the larger end. Such a
procedure would alter the forms of C3(¢P) and C3(¢) since
they are based on deflection considerations and were simpli—
fied by converting to the N's. That is, the integrals on
pages 42 and 43 would have to be:

x,

J/ﬁﬁYQEZ%%ZM%a)ciz = 0.

Since thickness would be proportional to x, that quantity has

been used in place of t. The result would be to change the
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forms of pr and Ny; but these are not large enough to make

their changes significant in the selection of sheet thickness.

Secondary Stresses at Flanges:

The procedure for calculating local bending and ring
stresses is virtually the same as that employed in Section
IV, pages 24 -38, for the straight cylinder. In fact, the
hoop stresses vary directly as the radius; so applying a
scale factor of 1.38:1 directly, the flange at the larger

end should be proportional thus:

8/2°% (/9" thick

flange

Actually, the reactions F will be smaller than the scale fac-
tor predicis because of the decreasing cross-section upstream
and the approximately constant cross-section in the branch
downstream. The flange at the smaller end can be exactly the -
same as that for the cylindrical sections because,.although
the weight-per-foot increases along the cone, a short (six-

foot) cylindrical section precedes the diffuser.
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Part-Full Condition:

The techniques of page 239 and sequence can be applied
to the conical shell if the conical coordinate system of
this section is used. That is, moments would nhave to be
added to the demental surface illustrated on page 30; and ex-
actly the same series solutions for the displacements would
be applied. In this case,.[ would be replaced by @g-xl) as
far as constants are concerned. |

The differential equations of equilibrium would be com-
plicated by additional terms as/were those for conical mem-
brane theory. However, the algebraic equations for evaluat-
ing coefficients would be very little different and the work
of solving them would be no more difficult. This is the par-
ticular beauty of having set up the Fourier expansion of the
loading (pressure) eéuation.

No attempt has been made to carry through this solution
because stresses would be of the same order as those found
for the cylindriceal section. Therefore, the negligibility
of buckling considerations has been established and the shell
as proportioned is assumed to be stable under all part-full

loadings.
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VI. DOUBLE-CURVED SECTION

As with the other two sections previously considered,
the double-curved nozzle section is eighteen feet long and
has virtual ly fixed ends. Further, the range of diameters
from ohe end to the other is the same as that for the conical
ditrfuser. The curvature of the element lines complicates the
analysis; but some very important conclusions can be drawn
from the two previous analyses.

Heavy enough sheet is required for such high design
pressures that stability of the sheet under part-full condi-
tions is not a problem. Further, the high-head hoop tensions
detefmine the sheet thickness rather than any of the other
stresses; and the N¢ equation is much the easiest to write.

Consider the following element of the double-curved sur-
face under membrane stresses only; i.e., neglect tragnsverse

bending moments:
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This is seen to be very much like the conical element shown
on page 43; and equilibrium in the Z-direction yields the
hoop tension with the additional difficulty that curvature
along the elements brings the Ng loads into the equation.

This same effect is to be noted in Plates and Shells(s), &=

quation (Jj) on page 358, even though the different coordi-
nate system complicates the comparison. For this case, equi-

librium in the Z-direction yields:

(Caso()'/vqa?‘s\dé + {F’)'N,r?é}@clz = - prdfds
= Jr Zéﬁiéi./24 -f‘casqe).

Checking the trigonometry of the element orientation will

show that:
cos o< = [1-&)]",
2
7ot l-G) 5

Substituting these into the equilibrium equation and simplify-

ing, one gets:

N, = ﬁ—%;%—F/m-r.@,¢)-rp—ﬁ—@7Z4;f7M ()

Note the similarity between the first part of this expression
and the equations for the cylindrical section (1 on p. 21)
and the conical section (3 on p. 41). The maximum is likely

to occur for largest radius, r, steepest slope, %2, or largest
8
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-2
cr

negative second derivative, —— .
s

For this nozzle shape, slopes and curvatures are zero

at the ends; and hoop tension at the bigger end is:

m.

; t
The steepes, slope, %ﬁ = 0.171, occurs at the hoop where radius,

r = 6.0 ft. and curvature is zero again; so circumferential

tension is:

16,
_ D2 infe _ kios
Nop = Trgsg  ©OFt (600f% «672) = /9.8 TFF

2
The largest negative second derivative, %ﬁ% = -0.l16 , occurs
8

at r = 6.4 and %% = 0.06 ; so these values give:
52 e
Ny = [7—20¢ 6.4 ft (6007 + 64F) + 6.4 (1-.003¢)

Nw

(- 16)N, = 2ozz%2 - ,02A,

"n,

Obviously the last term of this expression does not contribute
enough to the total for consideration, particularly since the
previous studies have shown Ng to be appreciably smaller than

N¢;. Therefore, the proper sheet thickness appears to be:

_ 20.5 kips . _ . ,
t = ZOSLER = 1739 in (eay 1§ in).

This does not decrezse linearly as one approaches the smaller
end; so the entire nozzle should maintain this wall thickness
as a minimun.

The other equations are somewhat more involved and might

be too difficult of solution for purely analytical means.
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However, grephical integrations may be the way to a good ans-
wer. Note that the expression for Nf’ involves the radius, T,
and the sine of the wall angle, %ﬁ, a2s the unknowns. If these
two additional variables are used? the equilibrium equations
in the Y- and S-directions can be written by comparison with

those for the conical section at the top of page 43:
N,
So ds(rotg) + Nyos(KAp) + G5 #pds = ~Vrtpds =0
L ds(ratp) + N, (S o) + L5t dpds - Nyos(H /)

Simplifying and substituting the value of N¢,from equation (1),

the differential equations becone:

r32 s (#)Ny » 7w sind = 0 (2)
DN’ /)N ———‘i W—,/# treosd) =0 (3)

Obviously, T is an extra varisble but dependent upon the shape
of the nozzle and hence upon the length along the eleuments, s.

First step of an analytical solution would be t0 express
r as some function of s and to determine its derivative,.%g.
The vadidity of the solution will depend upon how close to the
actual nozzle shape one can approximate with some analytiéal
function. The ease with which a solution can be obtazined de-

pends upon the simplicity of the function and its derivative.

We have already shown by the cone analysis that the straight-
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line approximation with its constant derivative gives "exact®
differential equations which were solved quite readily. Pro-
bably a cubic, trigonometric or exponential function can be
made to give a satisfactory approximstion even if the integra-
tions have to be done graphically. The lack of symmetry about
the point of inflecticn in the Tsien nozzle curve makes it
very difficult to get a particularly close fit from simple ana-
lytical expressions.

The establishment of lengths along the elements as one of.
the variables, &, gives in effect a curvilinear set of orthe-
gonal coordinates which neatly define the double-curved sur-
face. Thus it would be possible to carry out the part-full
analysis, but only with considerable labor. In fact, the e- -
quilibrium equations involving the moments would be particular-
1y difficult to write. |

No further elaboraticn is necessary for preliminary de-
sign purposes. Cne canrsay that sheet of 1-1/4 inch thickness
is required for the nozzle section. Further, the discussion
of ring support design given on page 46 for the conical sec-

tion can be applied directly at this point.
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VII. CONCLUSIONS

The water tunnel design considered herein is structurally
feasible and the analysis can be carried through to the last
detail without any insurmountable difficulties. As far as
this paper can go, the more involved analyses have been estab-
lished and the techniques are readily applicable, not only to
this problem but to numerous similar problems.

The Tsien nozzle calculations discussed in section two
and developed in Appendix A neatly systematize the procedure
and point the way for future investigatorse. The é’s, ocs and /5'5
tabulated in the appendix wiil be useful to future calculators
directly,; and the typical calculation for the final step makes
a good tabular method available.

The Fourier expansion of the half-full loading condition
is most noteworthy for its usefullness in circumventing dis-
continuities which so often plague the analyst with extra boun-
dary conditions and complex solutions. The Fourier expansion
of loadings is particularly useful in plate and shell problems.

Membrane theory has been applied successfully to shells
of revolution about & horizontal axis which are loaded by
gravity and internal pressure. Shells of revolution about
vertical axes are analyzed more simply under these same loadings
and they have been treated in some detail by Timoshenko(3) on

page 383 of Plates and Shells. Solutions of these problems are

quite direct when the elements are straight lines; and simpli-
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fied methods of handling surfaces with curved elements have
been indicated herein. While precise analysis is possible
for cylinders and cones, the accuracy (and probable difficul-
ty) of the double-curved analysis is dependent upon the quali-
ty of the approximation to the actual surface by some simple
analytical function.

Analysis which involves transverse bending of shells
has been completed for one simple part-full case and the meth-
ods are extremely tedious. Further, accuracy is increased on-
ly by extension of the series sdlutions, all of which do not
converge very rapidly. The transverse bending monment expres-
sions are particularly bad offenders in not converging with
any rapidity. However, much can be learned from this analy-
8ls in estimating the amount of labor involved in obtaining
a certain degree of accuracy in this and similar solutions.

Fortunately, this design cells for significant accuracy
only in the membrane theory analysis. This will be true for
other problems where relatively thick sheet results from ex-
tremely high internal pressures. The involved part-full analy-
sis served only to prove the negligibility of transverse bend-
ing and direct loads for that condition. Had they been higher,
i.e. had they threatened buckling, the problem of curved sheet
buckling under complicated loadings would nave been raised;
and that problem has not been brought to anything like a prac-

tical analytical solution.
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A. TSIEN CALCULATIONS

Calculation of ¢B(x):

Remember that $(x) is the probability function which is

tabulated in many mazthematical handbooks:

’ ~ / "5

P (%) Er e

Also given in the tables is the area under the curve zs well
as the second, third and fourth derivatives. The first de-

rivative is just:
£
$6) - e’ - xzdm

Above the fourth derivative, the derivatives are evaluated

by the recurrence relation:
I (m- g =
7 = - [x ") + (1) 7).

Tnese derivatives are basic to the Tsien calculation.
The tables which follow give values required in the cal-
culation up the nineteenth derivative. Since the nozzle will
normelly lie between x = -3.5 and X = 3.5, the functions have
been evaluated for every halfﬁunit between these limits. The
curves of some of these functions have been‘plotted on page
A-5 to indicate their nature. Iﬁ the tables originally used
for this calculation, it was found convenient to intersperse
columns for x¢£m'1) and.&kl)-¢(m_2)between ¢(m—1) and ¢(m)
columns, thus making the checking back over calculations more

direct.
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Calculation of ¥, u and v:

The equations given for ¥, u and v on pages 10 and 11

of the text can be simplified into the following forms:

¥(er) = 020377%[19545 + [ b o+ f o, 7],

- h an 2
maere OC-,,//‘)‘= {;:/)(7%7/2':) = —4n(r,?‘+/) o, ;
ulr,r) = a4074[1.9545 ,,/"45 e o gﬂ” &,
i1+ LT+

vlxr) = -02037r Z X,

i}

L

/ 2 2n
where X,,(r} = /”*//;’:/}z [;} = o, (r).

Note particularly the recurrence relation for the coefficients
of the @ series terms.

Especially important to this étandardized procedure is
the introduction of the cr,/S and ¥ coefficients which were
not established in the Tsién paper. These can be used on any
nozzle calculation if the flow to be investigated falls in the
particular range of the radii used here. The following tables

have been worked out for r = 0.8, 1.2, 1.8, 3.0, 2.4 and 2.8.
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Calculation of 99, u, v and w!

The tavle used for calculating the values of #ﬁ u, v
and w at a particular point in the flow being investigated
has been set up on the next page; and a typical computation
hes been carried out on the following page to give an idea
of the rate of convergence. The point illustrated is |
(x,r) = (~2.0,1.2) which is plotted in the middle left-hand
side of the diagram on page 12 of the text. ‘3& converges
more rapidly than do the velocities in all cases; and fre-
quently functions did not have to be tabulted asfar as they

were known for consistent accuracy.
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B. FPOURIER ANALYSIS

The prescure Cistributicon adboubl the cilrcunference gf the

: - ‘o = . a T o 3
half-full cylinder is zero for 0 € g <= and for ﬁéi <

[N
A
)

znd 1t can be exvoregssed as:
/6. S
P#) = c24/% R(-cos P) ror § < ¢ < 2,

Therefore, the problen Lo ve underitsken nere ig the exXnancion

-~
N
R
N

n

N

.k

&
\
I
0O
)
W
N
4
(@]

H
STEY
)
L 8
N
an [N
\v!:

znd ecual to zero elsewinere 1n the intervel Q <€ @ < 241,
f

The loading condition and the curve of f{f) have been

1)

=)

r

siven on page 17 of the text. The shigpe of thie curve noint

cut the significant terms ir the genersl Fourier expension:

i eQ
() Z @, smaf + Z b, cos nd.
= |

Complete symmetry indicsteg that all an's are zero. Further,
eltihough 1t wae not lmuecdlately apparent o the author, inte-
graetion showed that sll ocdd bn's above bl are &lso zero.

Values of tne bn's were obltained from the well-known

Fourler formulae:

2
b = Zf He)dp e
é%/// /Q%Q)Casw449 aﬁ72

Thnese were broken cown intc three intervals of integration

i

bﬁ
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thus?

iy

O~
!

(]

.-l /coscﬂa/q? ]jwcfz
fgﬁ %?cosqg dd

i

3T
n -.T’T[ cos (‘P cos ﬂCP C/CP

N\
f

The first few integrals will be evaluated here:

3n

3w
b, = g cor P M = 27 [sin h; i
= _.Z'_nt[-l-l] = = = 0318 309 3
i g k>
b, = —;’,—/_{ cos P df = 1@*};«4@}%
= --z'—ﬂ[?zlr—f—{] = -4 = =-0500

6, = -+ Z s cos 20 IF = -T'T/ leosd) = 2eaid)) df
= s - Z“su«cp-—f'"ﬂﬂ w(+-5-%]

= = = pzIZz0C6S
The result of combining the three curves thus given have been
plotted on page 17 of the text to show how the series con-
verges on the required curve. The process can be continued
resdily as far as expansions of cos ng are given in the hand-
books along with integrale of poweres of cos Z.
For higher velues of n, the cosline product can be ex-

oressed in the following manner:



- .27 n n-3 ”-|
cos P cos n = 27 cos P ~ T 2 eos L +

ﬂ(n 3) Z COS”- & 7 C” l4 ”:___._—-'5—)2”-7 "'5-¢ +

“z7

2 (r- -G ) rr- n-3 n-?
&sﬁ(f )=2) 27 pos” D~ ---

.- until the coefficient = 0.

It will be noted that, since even values of n are to be con-
sidered,vall of the powers of cos  are odd. Therefore, the

integrals becone:

[ cos"p o0 / (o) e 40) -
J//;?-Zi)aﬁi/% ;

and these are readlly evaluated after the power has been ex-

iy

£

panded long-hand or oy uweans of pinomlal coefflclents. This
procedure was continued up to m = 15 for eclutions of b, up
to blé'

The results have been tabulated on page 17 of the text;
and the circled points plotted on the curve are the result

of calculations sumning the first eight terms. The aporox-

imation is seen to be very good.
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C. EQUATION - SOLUTIONS

The infinity of eimultaneous equations (1), (2) and (3)
on pages 32 and 33 of the text are solved here in groups of
three by evaluating the constant coefficients according to
regular algebraic procedures. First step 1s to select a
particular value of n and equate the coefficients of sin ng
or cos nf on the two sides of each equation. It can be seen

. . . . . . .. mix
thet the left sides still involve infinite series of sin 7

and cos g%i while the right sides are just constants. The

next step is to expand the constahlts as the long-established

series: o .
4k Z S/n mﬂ ﬁ x
kK = —= m whe re =
7r mg/'gls".'. ]

is exactly what is needed 1n tnis solutlon. The subsequent
evaluation of coefficients is from simple slgebraic equations.
The form of the original equations on pages 32 anc 33
) mfrx Lo
shows that only even values of =7~ can yield resulte for Apns
but all such terms when collected have zeros on the right-

hand sides and can yield only Ar

an = 0. Therefore, three equa-

tions with only two unknowns result; and one of these equetions
must be discounted if conflicting results are to be avoided.
Since Ay, = u = O represents a distribution of constresints in
the X~-direction, it is obvious that the summation of forces in
that direction (which neglected these constraints) is incorrect
ené that the resulting equation (1) is incomplete and must be

é¢isregarded for the remaining calculations.
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The ecuations solved and the actusl numerical results are
precented here. The numerical results are to be found in one

tabular collection on page 34 of the text.

(2) yields nothiing.

4 . miTx
(5) -3 (5727 +m*)C,,, sin “F= = 0555 214 #
=9 [ I T
- omEszs L @ s g
m=/35-.
From wiilch,
-0.706 92
Bmo =0 J Cma = m(37 276 +m4}
9 . -
Results: m C o= 107 in feet
1 - 7260
3 - 2 420
5] - 1 444
7 - 1 013
9 - 764
11 - 527
13 - 432
15 - 319
17 - 230
19 - 163
21 - 115
23 - 2
25 - &

For n = 1:

o7
= 0152004 = 193532/ 5. Fsin TG

mzl, 3[5"...

(3) Z [2.25/5/43 592+ m? B, -(97278 + 26255 m* + m‘yc,,,,]'



Results:

For n =

D

&y

5/77 %5?5

s

O~ H

-C

gml

[Al )
Qe

2

= L0 PH= -/3C452F Zﬂ_%""
[ LY ANE
- 10° C.1_ 0% in feet
046 76 570
311 6 979
496 3 279
178 2 127
81 1 533
42 1 141
23 849
621
442
314
200
157
112
80
58

-E=

(2) '25129872t2(§724w@ﬁ003é)5;2

77X
S %%—

= J

od

mid7 X
£

-(2”24-7%€Zéuij;hq;z].

(5) 2 [#4630(m"+ 43595 VB, - (on®+ 10.502ms 97304)C, ]

nyx

Resulis:

JM /'

a
=~

- 57
-1

od
D3TOI LR = OFWZBERD &

. 10%

536
347
286
101
46
25

= [';'{’...

ng_L_lQE in feet

79
4
1

491
300
930
871
585
418
303
218
159
109

77

o4

< I



For n = 4:

(2) 2[4-93’6,//540/4+m’}3,,,4 -(74599.z+m‘)(,’,,4j°

muE

“Srer 7 = 2

(5) 3 [2.926(736044 +mY)B,, ~ (377193 + 42.00Bm™+ m*¥)C, 4 ] '

e _ « 1 . X
5in PG5 = 0074 OTR= ~00H 25K T 5 G

m:['gl f...

9

Recults: ju Bpe_s 10 Crs® 10° in feet
1 17 268 69 715
3 0533 2 432
o 11l 625
7 32 280
2 17 158
11 101
13 87
19 46
For n = 5

2y 2[32007036052+m)B,, ~(75 2654 + m)Coui [

mirx

‘S —7—- = 2

(z) S [13.38943620+ m*)B.g ~(GI5U.S + 34.518m+ m4)C,.,J-

o1
m7TX ' I . mTx
s Tgo = 203|722t = 2040 390 > w3t 7
hr:/lgls‘...
2
Resulte m Bug_ 107 Spet 107 in feet
1 - 4779 - 28 428
3 - 278 - 1 752
5 - 6l - 426
7 - 21 - 171
9 - g7
il - 50



e
Q
o]
o

"

w

(3)

Resulte:

wCmBem

2 [z2c805/240.06 + m*) B, ~ (76 174.2 + mﬂcmsj-

., MTX -
‘S / -~ 0

S [17852(436414 + m) B, ~ (104 338 + 168,052 + m*) G, |-

eq
sinZZE = -00/7626H= -0022 442 O mn g

M=43, g
) 'Y 9 fat 'Y 9 3 £ .
o Bg - 10 Com L0° in feet
1 605 4 721
3 29 798
5 34 296
7 101
9 50

(2) 2[/.974.44(375.03 *mz)B”,,a - (77355.6 *m?C,./a]'

s m}l‘ = J

(3) 2&2.5/5/43659,2 +mz)3,,m - ///45/5*25?.55»17'4 M%’/o]'

Fesults:

o
<, miTX _ - _/_ . 7T
sin ZF = DN e F aa/lzg/ﬁ;’é _m sior 75
m 5+ 10° ¢ . » 10° in feet
- =ul0 “nlo-———
1 - 112 -1 077
3 - 28 - 271
5 - 109
7 - 52
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(2) O [1¢45.37(520.05+mY8B,,, - (76 799.4 +m*)C,,, |-
-:/n-?-‘ =

() Z[zc.778 (43 703.2+ m¥) B, - (13302 + 378.07:m"+ m?)C, /z]-

o7 .
310 ZFE = - 0007 7= -0009 884K [ 7 sim TG
. ’"__,'315;...
: . . 10° . 10°
Results: m §m12 10 Coio 10” in feet
1 12 331
3 96
S 495



