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Abstract

Filter banks find many applications in signal processing. This thesis deals with four different problems
in filter banks.

First we find a new application of filter banks: Filter bank convolver. We prove two filter bank
convolution theorems which tell us how to do the convolution in the subbands. Applying the multirate
technique to the problem of convolution, we obtain a significant improvement in the accuracy of the
convolutional result when the computation is done with finite precision. The derivation also leads to a
low sensitivity robust structure for FIR filters.

In the second part, a new class of two-channel biorthogonal filter banks is proposed. We success-
fully design IIR filter banks which achieve the following desired properties simultaneously: (i) Perfect
reconstruction (PR); (ii) causality and stability; (iii) near linear-phase; (iv) frequency selectivity. Two
classes of causal stable maximally flat IIR wavelets are derived and closed form formulas are given. We
also provide a novel mapping of the proposed 1D framework into 2D. The mapping preserves: (i) PR; (ii)
stability in the IIR case and linear phase in the FIR case; (iii) frequency selectivity; (iv) low complexity.

In the third part, the theory of paraunitary (PU) filter banks is extended to the case of GF(q) with
prime g. We show that finite field PU filter banks are very different from real or complex PU filter banks.
Despite all the differences, we are able to prove a number of factorization theorems. All unitary matrices
in GF(q) are factorizable in terms of Householder-like matrices. The class of first-order PU matrices,
the lapped orthogonal transform in finite fields, can always be expressed as a product of degree-one or
degree-two building blocks.

Finally the theory of conventional LT filter banks is extended to the time-varying case. We develop
a polyphase representation method for time-varying filter bank (TVFB). Using the proposed polyphase
approach, we are able to show some unusual properties which are not exhibited by the conventional LTI
filter banks. For example, we can show that for a PR TVFB, the losslessness of analysis bank does
not always imply that of the synthesis bank, and a PR TVFB in general will only generate a discrete-
time frame, rather than a basis, for the class of finite energy signals. The class of lossless TVFB is
studied in detail. We show that all lossless linear time-varying systems are invertible and provide explicit
construction of the inverse. The interplay between invertibility, uniqueness and losslessness of the inverse
is investigated. The factorizability of lossless TVFB is addressed and we show that there are factorizable

and unfactorizable examples.
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Introduction

Multirate systems and filter banks find many applications in signal processing [Vai93]. For example, they
have been applied successfully to the compression of video/image signals [Wo091, Tek95], to the problems
in communication [Vet86, Xia95a], to the processing of audio/speech signals [Jay84], to the encryption
of voice data [Cox87], to the problem of data rate conversion [Ans83], to the sampling of nonbandlimited
signals [Wal92, Djo94a, Vai95a, Vai95b], and to the robust implementation of convolution [Vet88, Vai93a,
Lin94, Pho95]. Some textbooks on the topic of filter banks are [Mal92, Vai93, F1i94, Vet95, Str96]. For
a brief history of filter banks, the readers are referred to Chapter 1 of [Vai93].

Consider the M-channel filter bank in Fig. 1.1.1. In a filter bank, the input signal z(n) is split into
subband signals yi(n) by a set of filters Hy(z) (called the analysis filters) at the analysis end. A typical
magnitude response of these analysis filters is shown in Fig. 1.1.2. Hence yi(n) can often be regarded
as the content of z(n) at different frequency locations. Depending on the applications, these subband
signals are first processed and then transmitted or stored. At the receiving end, the processed subband
signals §x(n) are recombined by using a set of filters Fy(z) (called the synthesis filters) to get the output
signal Z(n). In the absence of subband processing (i.e., §x(n) = yx(n)), if the output Z(n) = z(n) for all
possible input z(n), then the filter bank is said to have perfect reconstruction (PR). All the filter banks
considered in this thesis have the PR property.

To explain the advantages of multirate filter banks, we take subband coding as an example. Subband
coding technique is widely used in the compression of audio, image and video signals. Some of the
advantages are listed below:

1. The perceptual properties of human visual/auditory systems can be incorporated easily in the process
of coding [Woo91, Tek95]. By exploiting the fact that human eyes/ears have different sensitivity at
different frequencies, high quality coded signals can be obtained at a moderate bit rate.

2. The idea of multiresolution analysis [Mal89] can be easily implemented in the subband coding tech-
nique. In a filter bank, the subband signal at the lowpass channel can be viewed as a low resolution
approximation of the original input while the subband signals in other bandpass channnels can be
regarded as details of the original input. By successive splitting of the lowpass channel, one obtains

a coarser approximation.
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Fig. 1.1.1. M-channel filter bank.
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Fig. 1.1.2. Typical magnitude response of the analysis filters.

3. Compared to the discrete cosine transform, filter banks provide better frequency separation and hence
can achieve a higher compression ratio for a given SNR criteria. Moreover blocking effect (which is

very serious in discrete cosine transform coder) is in general reduced significantly in subband coding.

1.1. SCOPE AND OUTLINE

This thesis consists of five journal papers which deal with different aspects of filter banks. The five main

results will be presented in Chapters 2—-6. We shall give a summary of these results below.

1.1.1. Application of Filter Banks to Convolution Problem (Chapter 2)

Convolution plays a central role in digital signal processing. In some applications, due to the hardware
limitation, we have to quantize the sequences to a low bit rate. Therefore it is important to develop
a robust convolution algorithm for this purpose. The filter bank convolver is such an algorithm. It is
well-known [Vai93] that in subband coding, we can exploit the energy distribution of a signal to obtain
a more accurate representation of the signal with a fixed number of bits. In the problem of convolution,
we have two sequences. If the convolution is done with finite precision, we will show how the energy
distribution of both sequences can be exploited to obtain a more accurate convolution result compared to
direct convolution. We will prove two filter bank convolution theorems which tell us how the convolution
result can be obtained from the subband signals. Optimal bit allocation and coding gain over the direct
convolution are derived. In the case of orthonormal filter banks, the convolutional coding gain is shown
to be always greater than unity. Experiments demonstrate that coding gain of more than 20 dB can be

achieved.
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In most cases, one of the sequences is the impulse response of a digital filter. In this case, the ideas of
filter bank convolvers can be used to implement FIR filters. As the filter bank convolvers produce a much
more accurate result than the direct convolution, this implementation is robust against the coeflicient
quantization. Therefore the derivation of filter bank convolvers leads to a novel low sensitivity structure
for FIR filters. The proposed structure is particularly attractive when the filter is frequency selective
and has a long impulse response, or it has some special time-frequency relation. Examples show that
the subband filter coeflicients can be quantized to an averaged bit rate of 2 bits without degrading the

frequency response. The results of Chapter 2 have been reported in [Pho93, Vai93a, Pho95].

1.1.2. Two-Channel PR Filter Banks with Causal Stable lIR Filters and Linear Phase FIR
Filters (Chapter 3)

The special case of two-channel filter banks (Fig. 1.1.3) is probably the most studied case in the literature.
What makes two-channel filter banks so attractive is the following reason. By cascading two-channel filter
banks in a tree-structured manner, one can generate discrete-time wavelet transforms [Vai93, Som93].
These nonuniform filter banks have the advantage that the supports of the analysis/synthesis filters match
the critical bands in the perceptual models of human visual and auditory systems. Thus they are widely

applied in subband coding of audio, video/image signals [Woo91, Tek95].

X(—?)——lHo<z>H Vo A R @
1
—{H, @H Y2 —{A2HFR @

Fig. 1.1.3. Two-channel filter bank.

In Chapter 4, we shall restrict ourself to the special case of two-channel filter banks as shown in Fig.
1.1.3. In FIR filter banks, all the four filters Hy, H;, Iy, and Fy, are FIR filters while in the case of IIR
filter banks, some or all of these filters are IIR filters. The following are the desired properties of an IIR
filter bank: (i) PR; (ii) stability; (iii) causality; (iv) frequency selectivity. The earliest good designs for the
IIR case were such that the analysis bank was paraunitary and the polyphase components of Hq(z) and
Hi(z) were allpass [Vai87b]. Some other design techniques for PR filter banks with non causal IIR filters
have also been reported [Ram88, Mit92, Her93]. However, none of these technique achieved Properties
(i)—(iv) simultaneously. Recently the authors in [Bas95] proposed an IIR PR technique providing causal
stable solutions, but no satisfactory design method was given.

In Chapter 3, we propose a novel framework for a class of two-channel PR filter banks [Pho94,
Pho95a]. The framework covers two useful subclasses: (i) causal stable IIR filter banks; (ii) linear phase
FIR filter banks. The proposed IIR filter banks achieve Properties (i)—(iv) simultaneously. There exists

a very efficient structurally PR implementation for such a class. PR is attained even when all the filter
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coefficients are quantized. Filter banks of high frequency selectivity can be achieved by using the proposed
framework with low complexity. The design of the four filters Hy, Hy, Fp, and F; reduces to the design of
a single transfer function. Very simple design methods are given both for FIR and IIR cases. In addition
to these advantages, a number of other useful properties will be elaborated in Chapter 3.

Moreover, our proposed construction can easily impose zeros of arbitrary multiplicity at the aliasing
frequency, for the purpose of generating wavelets with regularity property. In the lIR case, two new classes
of IIR mazimally flat filters different from Butterworth filters are introduced. Closed form formulas are
given for the coefficients of these maximally flat filters. We also generate the wavelet bases corresponding
to the PR filter banks and show that smooth wavelets can be obtained.

We also introduce a new design method of 2D nonseparable filter banks in Chapter 3. We will
provide a novel mapping of the proposed 1D framework into 2D. The mapping preserves all the following
desired properties: (i) PR; (ii) stability in the IIR case; (iii) linear phase in the FIR case; (iv) zeros at
aliasing frequency; (v) frequency characteristic of the filters. The results of Chapter 3 have been reported

in [Pho94, Pho95a, Pho95d].

1.1.3. Theory of Paraunitary Filter Banks over Finite Fields (Chapter 4)

In real and complex fields, unitary and paraunitary (PU) matrices have found many applications in
signal processing [Vai93]. What makes PU filter banks so attractive in the application of subband coding
is that both the analysis and synthesis banks have the energy preservation property. Therefore any
error introduced in the subbands will not be amplified. Moreover for the class of PU matrices, a useful
factorization theorem can be proved [Vai88, Dog88, Vai93]. The theorem gives a complete and minimal
characterization of PU matrices in terms of their delays and free parameters. The structure that is derived
from the theorem is very valuable in both the design and implementation of PU filter banks [Vai93].

In Chapter 4, we will extend the theory of PU filter banks to the case of GF(q) with ¢ prime [Pho96a,
Pho95f]. Various properties of unitary and PU matrices in finite flelds will be studied. In particular, a
number of factorization theorems will be given. We will show that: (i) All unitary matrices in GF(q) are
factorizable in terms of Householder-like matrices and permutation matrices; (i) the class of first-order
PU matrices, the lapped orthogonal transform in finite fields, can always be expressed as a product of
degree-one or degree-two building blocks. If ¢ > 2, we do not need degree-two building blocks. While
many properties of PU matrices in finite fields are similar to those of PU matrices in real or complex
fields, there are a number of differences. For example, unlike the conventional PU systems, in finite fields
there are PU systems that are unfactorizable in terms of smaller building blocks. Even though the case
of GF(q) with prime g > 2 shares some similarities with the GF(2) case, there are many differences. The
results of Chapter 4 have been reported in [Pho96a, Pho95f].

1.1.4. Basic Principles of Time-Varying Filter Banks (Chapter 5)

Filter banks have been successfully applied in the compression of video/image signals. In most applica-

tions, the conventional linear time-invariant (LTI} filter banks, where all the analysis and synthesis filters
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are LTI, are used. The video/image signals coded by using such LTI filter banks suffer from ringing effect,
and their edges become blurred, especially for low bit-rate coding. These problems can be solved by using
a time-varying filter bank (TVFB) as shown in Fig. 1.1.4. A TVFB is a filter bank with time-varying
analysis filters k¢ (n) and time-varying synthesis filters fi(n). TVFBs have the ability to adapt to the
characteristics (such as edges, textures, smooth regions, etc.) of different regions of an image. Filters of
different properties can be applied to different regions of an image in a time (or space) varying manner.
By exploiting this flexibility of TVFBs, we can achieve good quality images (with sharp edges, little
blocking effect, and small ringing effect) at a low bit rate [Smi95, Chu93]. As the performance of TVFBs
is better than the conventional LTI filter banks, it is worthwhile studying their theory.

x(n) W] X(n)

L ]
[

Fig. 1.1.4. Time-varying filter bank.

In Chapter 5, we study the fundamentals of TVFBs [Pho95b, Pho96]. As there is no z-transform
in the linear time-varying (LTV) case, the study of LTV filters is in general based on time domain
techniques. Here we introduce a transform domain description for LTV filters. We also develop a
polyphase representation method for TVFBs. Using the proposed polyphase approach to TVFBs, we are
able to show some unusual properties which are not exhibited by the conventional LTI filter banks. For
example, we can show that for a PR TVFB, the losslessness of analysis bank does not always imply that

I'in an implementation of a lossless LTV system with

of the synthesis bank, and replacing the delay 2~
2~ for integer L in general will result in a non lossless system. Moreover, we show that interchanging
the analysis and synthesis filters of a PR TVFB will usually destroy the PR property, and a PR TVFB
in general will not generate a discrete-time basis for the class of finite energy signals.

Furthermore we show that we can characterize all TVFBs by characterizing multi-input multi-output
(MIMO) LTV systems. A useful subclass of LTV systems, namely the lossless systems, is studied in
detail. All lossless LTV systems are invertible. Moreover the inverse is FIR if the original lossless system
is FIR. Explicit construction of the inverses is given. However, unlike in the LTI case, we show that the
inverse system is not necessarily unique or invertible. In fact, the inverse of a lossless LTV system is not
necessarily lossless. Depending on the invertibility of their inverses, the lossless systems are divided into
two groups: (i) Invertible inverse lossless (IIL) systems; (ii) non invertible inverse lossless (NIL) systems.
We show that a NIL PR TVFB will only generate a discrete-time tight frame with unity frame bound.
However if the PR FB is IIL, we will have an orthonormal basis for the class of finite energy signals. The

results of Chapter 5 have been reported in [Pho95b, Pho95g, Pho96].
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1.1.5. Factorizability of Lossless Time-Varying Filters and Filter Banks (Chapter 6)

In the LTI case, we know that all PU filter banks are factorizable [Vai93]. In Chapter 6, we shall
study the factorizability of LTV lossless filters and filter banks [Pho95¢c, Pho95g]. We give a complete
characterization of all degree-one lossless LTV systems. This is useful for both building and factorizing
higher order lossless LTV systems. The traditional lapped orthogonal transform (LOT) [Mal92] is also
generalized to the LTV case [Pho95¢]. We identify two classes of time-varying LOT (TVLOT), namely the
invertible inverse lossless (IIL) and non invertible inverse lossless (NIL) TVLOTs. We show that all IIL
TVLOTSs can be factorized uniguely into the proposed degree-one lossless building block. The factorization
is minsmal in terms of delay elements. For NIL. TVLOTs, there are factorizable and unfactorizable
examples. Both necessary conditions and sufficient conditions for factorizability of lossless LTV systems
are given. These conditions lead to simple testing methods for the factorizability of lossless systems.

In control theory, the concepts of reachability, observability and minimality were proved to be very
valuable in the study of LTI systems [Kai80, Deca89]. In Chapter 6, we will introduce the concepts of
strong eternal reachability (SER) and strong eternal observability (SEO) of LTV systems. The SER and
SEO of an implementation of LTV systems imply the minimality of the structure. Using these concepts,
we are able to show that the cascade structure for a factorizable Il LTV system is mingmal. That
implies that if an IIL LTV system is factorizable in terms of the lossless degree-one building blocks,
the factorization is minimal in terms of delays as well as the number of building blocks. The results of

Chapter 6 have been reported in [Pho95¢, Pho95e, Pho95g].

1.2. NOTATIONS AND PRELIMINARIES

Notations: Throughout this thesis, we shall use the following notations:

1. Boldfaced lower case letters (such as u, v) represent vectors and boldfaced upper case letters (such
as U, V) represent matrices. The symbol I is reserved for the identity matrix.

2. The notations AT and A* denote the transpose and the complex conjugate of A respectively. The
notation A denotes complex conjugation followed by transposition, i.e., AT = (A*)T.

3. A rational or polynomial matrix is denoted by A(z). One useful operation in the study of filter
banks is the tilde operation. The tilde of A(z) is X(z) = AT(1/2%).

4. The transfer functions Hy(z) and Fy(z) represent the k-th analysis and synthesis filters respectively.

5. The notations {(V{(z)),p and (V(2));a denote the AM-fold decimated and A/-fold expanded versions

of the signal v(n) respectively.

Order and Degree: Consider a causal polynomial (i.e., FIR) matrix E(z) = Zszo e(k)z7* with e(N) # 0.
The order of E(z) is N, whereas the McMillan degree (often called just degree) is the smallest number of
delays with which we can implement the system. For example, if E(z) = e(0) 4+ z7'e(1) with (1) # 0,

then its order = 1, whereas its degree is equal to the rank of the matrix e(1).
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Polyphase Representations: The polyphase representations were first introduced in [Bel76]. It was later
proved to be valuable in both the theory and design of filter banks [Vet86a, Swam86]. Consider a set
of filters Hy(2), k =0, 1, ... M — 1. They can be uniquely written in terms of their M polyphase
components as Hp(z) = Zfi o 1z“’Ekl(zM ). This is known as Type 1 polyphase representation and
Eji{z) is called the I-th polyphase component of Hy(z). The M x M matrix E(z), with its kl-th element
[E(2)]t = Eri(z), is called the Type 1 polyphase matrix of the filters Hy(2). Similarly, Fi(z) can be
written in terms of their Type 2 polyphase components as Fp(z) = Zﬁgl 2'Rip(2™). The Type 2

polyphase matrix R(z) of the filters Fy(z) is defined as [R(2)]ix = Ri(2).

Perfect Reconstruction (PR) Filter Banks: Consider Fig. 1.1.1. In the absence of subband processing, if
the output z(n) = z(n) for all possible input z(n), then the filter bank is said to have PR. All the filter
banks considered in this thesis have the PR property. Using the polyphase representations introduced
above, Fig. 1.1.1 can be redrawn as Fig. 1.2.1. So the PR condition reduces to

R(z)E(z) = L (1.2.1)

In other words, the filter bank has PR if and only if R(z) = E7!(z). Given that E(z) is a FIR matrix, in
general R(z) will be IIR. It is not difficult to see [Vai93] that R(z) is FIR if and only if det[E(z)] = c2™™,

for some nonzero constant ¢ and integer n.

x(n) Yo(M) _
b ™ >
z )f1(n)=
AT ea [ TRe
L ]

ua ) ——>{ +‘M }——1

Fig. 1.2.1. Polyphase representation of the filter bank in Fig. 1.1.1.

Paraunitary (PU) Filter Banks: Within the class of PR filter banks, there is a useful subclass called PU
filter banks [Vai93]. For a PU filter bank, the analysis polyphase matrix satisfies

E(2)E(z) =1, (1.2.2)

where the tilde notation is defined above. In this case, PR can be obtained by simply taking R(z) = EN](z)
This in particular implies that: (i) The synthesis filters are FIR if the analysis filters are FIR; (ii) the
synthesis and analysis filters are related as Fi(z) = Hy(z) (hence |Hi(e7)] = |Fr(e?*)]). So in the
design, we have to optimize one set of filters only. Another reason why PU filter banks became popular

in various applications is because they enjoy the following energy conservation property [Vai93]:

M1
Dolzm)P = luk(m)l?, (1.2.3a)
n =0
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M1
STEEP =Y G, (1.2.3b)
n k=0
for all finite energy signals. Hence PU filter banks are also known as lossless filter banks.

Biorthogonal and Orthonormal Bases: Consider Fig. 1.1.1. Assume that the filter bank has PR and there
is no processing in the subbands so that Z(n) = z(n) and Zk(n) = yi(n). Then the output signal z(n)

and the subband signals yi(n) can respectively be expressed as

M1
w(n) =Y > uk(m)fe(n — Mm), yi(n) =Y a(O)hx(Mn - 1). (1.2.4)
k=0 m 12

If we define the families of the double index functions 7., (n) and 8z,,(n) respectively as
Mem(n) = fu(n — Mm), 0 (n) = he(Mm —n), (1.2.5)

where 0 <k < M —1 and —oo < m < oo, then (1.2.4) can be rewritten as

M1
z(n) = Z Zakmnkm(n), where ogm = Zx(n)@,’;m(n) (1.2.6)

k=0 m n
The functions 9gm, (n) and iy, (n) are respectively called the synthesis and analysis functions in [Che94].
Hence we can view the subband splitting as the decomposition of signal z(n) in terms of the basis functions
Mem(n). The coefficients azm can be computed as the inner product defined in (1.2.6). However the basis
functions are not arbitrary. All the analysis and synthesis functions, 8gm(n) and ngm{n) for a fixed k,
are respectively shifted versions of 0xo(n) and ngo(n). That means for all m, 8xm(n) and 7xm (n) have the
same shape as fro(n) and ngo(n) respectively. By taking this signal decomposition viewpoint, it is known
[Che94, Djo94] that a filter bank has PR if and only if the corresponding analysis/synthesis functions
satisfy the following biorthogonality property:

> ki ()8, (1) = (k1 — k2)6(my — ms). (1.2.7)

Therefore a PR filter bank is sometimes called a biorthogonal filter bank. In the special case of PU or

lossless filter banks, the analysis and synthesis functions are identical [Che94].
Brem (1) = 1 (n). (1.2.8)
The synthesis functions satisfy the following orthonormality property:
D iy ()l g (1) = 8(ky — k2)8(my — my). (1.2.9)
n

The synthesis functions form an orthonormal basis for the class of finite energy signals. Therefore a PU
filter bank is also known as an orthonormal filter bank. In this thesis, we will use the terms PU, lossless,

orthonormal equivalently.
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Factorization of PU Filter Banks: In addition to the advantage of energy conservation property, PU filter
banks allow a factorization theorem. Every causal FIR PU matrix E(z) can be decomposed into a cascade
of simple building blocks D(z), as shown in Fig. 1.2.2. The factorization has the following features [Vai93]:
1. Each building block D(z) has a simple form. PU property can be preserved by simply making
v,tvk == 1 (which can be obtained by the implementation using the planar rotations). Hence PR is
attained even when all the coefficients are quantized.
2. The factorization is complete. The cascade structure in Fig. 1.2.2 captures all FIR PU matrices.

3. The factorization is minimal. The number of delay used in the cascade structure is the McMillan

degree of the PU matrix, which is the smallest number of delay required to implement the system.

E(1)
(a) ---—» DN—I(Z) —>->
"I -1 Vi D.(2) =1-vvi+z vyl
__D - K~ k'k k'k
(b) = >I> +
Vvt
D

Fig. 1.2.2. Factorization of PU matrix and the degree-one building block.

Due to Feature 1, the PR condition is significantly simplified. Because of the above three features, the
cascade structure in Fig. 1.2.2 is very useful in the design of filter banks [Vai93]. To summarize the

results, we present the factorization theorem below [Vai93]:

Theorem 1.2.1. Factorization of M x M FIR PU Matrices: Let E(z) be a M x M causal FIR matrix.
Then E(z) is PU with det[E(z)] = cz™" if and only if it can be expressed as:

E(z) = E(1) Dy.1(2) Dy-2(2) ... Do(z), (1.2.10)
where E(1) is some unitary matrix and Dy(z) is a degree-one PU matrix of the form I — v;{,v}; + z‘lvkv};

with v,iv;c = 1. The implementation of the cascade structure is given in Fig. 1.2.2. =

Remark: Other types of factorization have also been reported in the literature. In [Ngu89], the authors
derived a lattice structure for the class of two-channel linear phase filter banks. In [Som93b], a complete

and minimal factorization theorem was derived for a subclass of M-channel linear phase filter banks.
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2

One- and Two-Level Filter Bank Convolvers

2.1. INTRODUCTION

Convolution plays a central role in digital signal processing. Many well-known algorithms are proposed
to reduce the computational complexity of convolution [Bla85]. In this chapter, our aim is not to find an
algorithm that is faster than existing fast algorithms. Our goal is to find a more accurate way to compute
the convolution when the convolution is implemented with finite precision. For this we use filter bank

techniques.

2.1.1. Previous and Main Results of this Chapter

Consider Fig. 2.1.1, where a nonuniform filter bank (FB) is shown. Suppose that the filters Hy(z)
and Fi(z) form a perfect reconstruction (PR) system. It was shown [Vai93a] that we can obtain the
convolution of z(n) and g(n) by simply convolving xx(n) and g,gi)(n) and adding the results. No cross-
convolution between the subband signals is involved. When the computation is done with finite precision,
it was also shown in [Vai93a] how the energy distribution in the subbands of z(n) and g(n) can be exploited
to obtain a more accurate (compared to direct convolution) result. In this chapter, we further generalize
the subband convolution theorem. We will also show that the coding gain for the generalized convolver
is always greater than that derived in [Vai93a]. We will refer to the convolution theorem derived in
[Vai93a] as one-level FB convolution theorem and the generalized theorem in this chapter as two-level FB
convolution theorem.

In [Vai93a), only the quantization in the subbands of z(n) was considered. In this chapter, we will
address the case when the subband of filter g(n) is quantized. In the process of quantization, the filter
coeflicients are treated as deterministic parameters instead of random variables as done in [Cha73]. Thus
overflow of subband coefficients is completely avoided. The derivation leads to a novel low sensitivity
structure for FIR filters. The new structure is particularly attractive when the filter g(n) is frequency
selective and has a long impulse response, or it has some special time-frequency relation, e.g. the matched

filtering of a chirp signal in radar application [Ste91].
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Fig. 2.1.1. Maximally decimated filter bank: (a) With input z(n); (b) with input g(n — ).

In this chapter, we also explore the relationship between the convolver and the digital block filtering
[Bur71, Mit78, Bar80]. We show that both the one-level and two-level FB convolvers are generalizations
of the conventional block filtering. The subband convolvers have both the advantages of coding gain and
parallelism. In the view of generalized block filtering, the structure used in [Gil92] can be regarded as a
simplified version of the two-level FB convolver introduced in this chapter.

The filter bank techniques have been used in [Vet88, Lin94] to implement FIR and IIR filters. In
[Lin94], the authors applied the low cost nonmaximally decimated DFT filter banks and cosine modulated
filter banks to the problem of FIR filtering. It was shown [Lin94] that the complexity can be reduced
significantly but the result suffered from some minor aliasing error. A different subband convolution
theorem which leads to computational saving is derived in [Vet88]. The subband convolution theorem
proposed is applied to the digital pulse compression in radar application in [Ste91]. Our subband con-
volution theorems differ from that derived in [Vet88, Ste91, Lin94] in the sense that the convolution is

‘perfect’ regardless of filter responses of the filter bank.

2.1.2. Chapter Outline

Our presentation will go as follows: In Section 2.2, we will generalize the subband convolution theorem. A
pictorial proof of the theorem is provided to give a clearer insight into what is going on in the convolution
theorem. In Section 2.3, we consider the quantization of the input signal z(n). The optimal bit allocation

and coding gain for the two-level FB convolver are presented. A low sensitivity structure is derived in
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Section 2.4. Several numerical examples are included in Section 2.5 to demonstrate the usefulness of
the low sensitivity structures. In Section 2.6, We will discuss the relationship among conventional block
filtering, and one-level and two-level FB convolvers. In Section 2.7, we will give a low sensitivity structure
for linear phase filters which can simultaneously exploit the advantage of the coefficient symmetry and
coding gain of the FB convolvers. In the last section, we will relate the IFIR filter to the subband

convolver and consider the problem of implementing IIR filters using FB convolvers.

2.1.3. Preliminaries

Quantizers: By b bit quantizer, we mean that the output signal of the quantizer is represented by b bits

plus a sign bit. The weight on the most significant bit is fixed for a fixed quantizer.

Maximal Decimation: An M-channel nonuniform multirate system is said to be maximally decimated if

E?ial ;3: = 1. In the uniform case where all nj are equal, this translates to ni = M for all k.

Generalized Polyphase (GPP) Representations [Vai90, Som94]: GPP was introduced in [Vai90] and used in
[Som94] to enhance the coding gain of subband coding. Instead of expressing a signal v(n) in terms of the
functions {27%} as in the conventional polyphase representation (Section 1.2), we express v(n) in terms

of the functions {U;(z)} as follows:

M1

V(z)= > Vi(z")Ui(2). (2.1.1)

g

Eq. (2.1.1) is said to be a valid GPP representation if the functions {U;(2)} (called a “polyphase basis”)
satisfy the conditions [Som94]: (i) Every rational function V(z) can be expressed as (2.1.1), where V;(2)
are rational; (ii) V(z) is FIR if and only if V;(2) are FIR. Let U(2) to be the conventional polyphase
matrix of {U;(z)}, these conditions reduce to det[U(z)] = cz*, for ¢ # 0 and integer k. We will call V;(z)
the i-th GPP component of the signal v(n) with respect to the polyphase basis {U;(2)}.

Orthonormality and Biorthogonality [Vet86a, Vai93a, Som93, Djo94]: For a uniform filter bank, the
biorthogonality and orthonormality are explained in Section 1.2. For a nonuniform filter bank as shown

in Fig. 2.1.1(a), the z-transform of the output is
R M—1
X(2)= Y Xi(z"™)Fe(z). (2.1.2)
k=0

If Z(n) = z(n) for all z(n), then the system is called a biorthogonal or PR filter bank. The biorthogonality
of the filter bank translates to the following condition on the filters Hy(z) and Fg(2):

[Hk(z)zrm(z)} = 6(k —m), (2.1.3)

Nk,m

where ny m = ged(ng, nm). The set of filters { Fi;(2)} is said to be orthonormal if (Fk(z)lﬂf‘n(l/z*))Lmc =
5(k —m).
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2.2. ONE- AND TWO-LEVEL FB CONVOLUTION THEOREM

2.2.1. Review of One-Level FB Convolution Theorem

Consider the two maximally decimated filter banks as shown in Fig. 2.1.1 (ignore the quantizers in the
discussion of this section). Assume that the system has PR. Then we have the following biorthogonal

convolution theorem:

Theorem 2.2.1. One-Level FB Convolver [Vai93a]: Consider Fig. 2.1.1. Assume that the system has PR.
Define the integer pg = L/ng, where L = lem{n,}. Let xx(n) and g( )( ) be the subband signals defined
in Fig. 2.1.1(a) and (b) respectively. Then the i-th polyphase component, y;(n) of z(n) * g(n) can be

written as
M-

wiln) = (al(m) x gln =) = (ax(m) v gl’(m)) . (2.2.1)

P lpk

»—s

u

The advantage of the subband convolution is that we can compute the result more accurately when

the convolution is implemented with finite precision. It was shown in [Vai93a] how we can quantize the
subband signals x(n), and reduce the quantization noise by optimally allocating the bits in the subbands.
By exploiting the subband energy distribution, the optimal bit allocation scheme and the coding gain

over direct convolution were derived in [Vai93a].

Complexity: Notice that the subband convolution theorem holds even when the analysis and the synthesis
filters are IIR filters. But if we consider computational cost, the FB convolver is useful only when Hg(z)
and Fy(z) are FIR filters. Thus in this chapter, we will consider FB convolvers with FIR analysis and
synthesis filters only. Also note that the computation of zx(n) involves filtering. Since g(n) is a fixed
filter, the subband signals g,(:)(n) can always be precomputed and stored. Thus the complexity of the
subband convolution is approximately equal to that of direct convolution plus the cost of implementing an
analysis bank, assuming that no fast algorithm for convolution is used. If the complexity of the filter bank
is low (compared to the length of the sequences z(n) and g(n)), then the computational cost of zx(n) is
negligible compared to that of the convolution. In this case the complexity of subband convolution and

that of direct convolution are approximately the same.

2.2.2. Two-Level FB Convolution Theorem

Theorem 2.2.2. Two-Level FB Convolver: Let Hy(2), Fr(z), nk, pr and L be the same as in Theorem
2.2.1 and let {H(z)} and {F}(z)} be respectively the analysis and synthesis filters of a “L-channel”
uniform biorthogonal system. Let x;(n) and g( )( ) be respectively the k-th subband signals defined
in Fig. 2.1.1{a) and Fig. 2.2.1. Then the i-th GPP component y;(n) of xz(n) x g(n) with respect to the

polyphase basis {F/(2), :=0, 1, ..., L — 1} can be written as
M—1 »
i(n) = ’ : 2.2.2
vilm) = 3 (axlm) = 7)) (22.2)

k=0
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Fig. 2.2.1. Subband signals in two-level FB convolver.

|
Proof: From the definition of Xj(z) and Gg)(z) and using the biorthogonality (2.1.2) of the filters { Hi(z)}
and {Fr(2)}, we get

M-1 M1
X(2™)Fy(z), and G(z G (2™ H)(2). (2.2.3)
k=0 =0

Multiplying the above two equations and decimating both sides by L, we have

M—-1M-1
[X(Z)G( ] kZO g [ch /MK G(z)( ny/n, z)] . {Fk(z)Hl(Z):l L
-5 [Xk(z)czgj>(z)] o (2.2.4)
k=0

where ng; = ged(ng, 7)) and the integer py; = L/ni ;. The second equality follows from (2.1.3) and the
fact that [V(z)]u} = [(V(z))lnk,z]ipk,z' Applying the biorthogonality of the filters {H/(z)} and {F;(2)}
the left hand side of (2.2.4) is by definition the i~th GPP component of X (2)G(z) with respect to the
polyphase basis {F/(z)}. The proof is complete. [

Eqn. (2.2.2) gives only the i-th GPP component of x(n) x g(n). The convolution output y(n) can be
synthesized from the GPP components as follows:

L—1 M-—1 M-—1 i
Y(2)= Y FYi(e") = Y Fl(z) Y Xelz")GP (z™). (2.2.5)
=0 1=0 k=0

Remark: Notice that even for the nonuniform case, the second-level filter banks with filters {H} (2)} and

{F(2)} are constrained to be uniform filter banks with decimation ratio L = lem{n}.

Comparison of One- and Two-Level FB Convolvers: Theorems 2.2.1 and 2.2.2 give us respectively the
implementations of one- and two-level FB convolvers as Fig. 2.2.2(a) and (b). Since g(n) passes through
two levels of filter banks, we call the subband convolver in Fig. 2.2.2(b) two-level FB convolver. From
these figures, the two-level FB convolver is clearly a generalization of the one-level FB convolver. By
taking Hj(z) = 27" and Fj(z) = z*, the two-level FB convolver reduces to the one-level FB convolver.

The two-level FB convolver usually computes the convolution much more accurately than the one-level
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k-th channel (b)

Fig. 2.2.2. Implementation of filter bank convolvers: (a) One-level FB
convolver; (b) two-level FB convolver. Asterisk * denotes convolution.

FB convolver, for the same average bit rate. The corplexity of the former is that of the latter plus
the cost of an additional synthesis bank F}(z) (since g,(:)(n) can be precomputed and stored). Thus if
the complexity of the filter bank {F{(z)} is low, then the complexity of the new subband convolution is

comparable to that of direct convolution.

2.2.3. Pictorial Proof of the Subband Convolution Theorems

The above subband convolution theorems can be proved easily by using a sequence of figures. The
pictorial proof of Theorem 2.2.1 leads us naturally to the two-level FB convolution theorem. It also gives
a clear insight into what is going on in the subbands, and why perfect convolution is perserved when we
pass from the one-level FB convolution theorem to the two-level FB convolution theorem. By using the
same technique, the subband convolution theorems have been generalized to the most general case of the
multidimensional nonuniform filter banks with rational decimation ratios [Che94].

Consider Fig. 2.2.3(a), where we want to compute z{n) * g(n). Clearly, any two identity systems I;
and Iy can be inserted before and after the filter G(z) without changing the convolution output, as shown
in Fig. 2.2.3(b). If we choose the identity systems to be filter banks with PR, then we can utilize the
frequency splitting property of the filter banks and quantize the subband signals according to the energy
distribution in each subband. We may also select other identity systems, depending upon the task we
want to perform. If we choose I; to be the PR system shown in Fig. 2.1.1(a), and I to be an L-channel
delay chain, then we can show that the equivalent system shown in Fig. 2.2.3(c) is the same as that
depicted in Fig. 2.2.2(a). By using the fact that L = ngpy, i. e. an L-fold decimator is equivalent to an
ng-fold decimator followed by an py-fold decimator, the i-th branch of the system in Fig. 2.2.3(c) (i. e.,
the system from z(n) to y;(n)) can be redrawn as Fig. 2.2.3(d). Applying the identity in Fig. 2.2.3(e),
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(a) (b)

y(n) y(n)
HO(Z)H*"OH;MO F 2

x(n)
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v

LlH @ H*nM_J_»HnM_, 7' £, @ ¥, VR }—*

u(n} w(n)

(d)
u{n) w{(n)
A ¥
v(n)

Fig. 2.2.3. Pictorial proof of Theorem 2.2.1: {a) Convolution of z(n
and g(n); (b) two identity systems inserted; (c ) 1dent1ty systems chosen
to be two multirate systems; (d) i-th branch of (¢); (e) an identity.

the system in Fig. 2.2.3(d) is equivalent to the i-th branch of the system in Fig. 2.2.2(a). This is the
one-level FB convolver in Theorem 2.2.1.

Similarly, to prove Theorem 2.2.2, we select Iy to be an L-channel PR filter bank instead of a trivial
delay chain. By carrying out exactly the same procedure as above, we can arrive at the result proved in

Theorem 2.2.2.

Remark: In [Pho93a), the authors chose I; to be a differential pulse coded modulator combined with error
spectrum shaping and I, to be the corresponding differential pulse coded demodulator. In this case, I;
and Iy are not identity systems but the product I;1y is. Perfect convolution is achieved because all the
operations involved are LTI. The authors also showed that high coding gain can be obtained by using

such convolvers.

2.3. CODING GAIN OF TWO-LEVEL FB CONVOLVERS

In this section, we will consider the coding gain for the quantization of the input signal z(n) only. The
filter g(n) is not quantized. For the case of one-level FB orthonormal convolver, the optimal bit allocation

and coding gain were discussed in detail in Section 3.2 and 3.3 of [Vai93a] respectively. Since the uniform
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convolver is strictly a special case of the nonuniform convolver, we will only derive the result for the
nonuniform case.

Consider Fig. 2.2.2(b). Assume that all the signals and filter coefficients are real so that the quantizer
operates on real inputs only. Let b; be the number of bits per sample of zgx(n), allocated to Qy;, the

quantizer in the k-th channel in the i-th branch. Therefore the average bit rate is

L—-1M-— 1b
iy (2.3.1)

k

MH

i=0 k=0

Since g( )( ) usually have different energy for different 4, by; vary greatly with respect to ¢ (as we will see

later). Therefore, we use double index for the bit rate.

2.3.1. The Noise Model

The error due to the quantizer Qy; is defined as
A
ai (M) =2} (n) — zi(n), (2.3.2)

where ﬁgcz)(n) is the quantized version of zx(n) in the i-th branch. The quantization error can be modeled
as an additive noise source. Thus the quantizer Q; can be replaced by the broken line as shown in
Fig. 2.2.2(b). To analyze the convolution error, we make the following assumptions:

1. z(n) is zero mean wide sense stationary (WSS) with variance ¢2. Then z;(n) are also WSS, with

variance )
>
. . dw
o= [ Seale) )P, (233)
0 T

where S, (e’*) is the power spectrum of x(n).

2

2. g(n) is a deterministic sequence. We define a useful parameter af; as

oty =M Z 198 (n) (2.3.4)

where o2, /M can be interpreted as the energy of the subband signal g(i)(n).

2

2
2.; 18 Telated to o3

3. gri(n) is zero mean white with variance o2 , where under certain conditions, o

Qi ?
as

ngi = co—ﬂ%k 2720k, (2.3.5)

See Chapter 4 of [Jay84] or Appendix C of [Vai93]. Here ¢ is a constant which depends only on the
probability distribution of the subband signals zx(n). We have assumed that ¢ is independent of k&
which is true only if all zx(n) have the same probability distribution.

4. The cross-correlation of gg;(n) is

E{qki(n)gmi (1)} = 02, ,6(k — m)6(n — 1), (2.3.6a)
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i. e., gri(n) is uncorrelated to gm;(l) for k % m and for all 4, n, I. Notice that E{qr;(n)qr;(n)} need
not be zero for 1 # j. We also assume that qg;(n) is uncorrelated to the subband signals z4(l), that
is

B{er(l)gu(n)} = 0. (2.3.6)

2.3.2. Optimal Bit Allocation and Coding Gain for the Two-Level FB Convolver

To derive the optimal bit allocation and coding gain formulas for the two-level FB convolver, we assume
that the second set of synthesis filters F(z) are orthonormal. Consider Fig. 2.2.2(b). The error in the

subband convolution output y;(n) is

M—1
(z)
E J(n) * ) 2.3.7
gy, (m 2 (Qk g ( )) ™ ( )

By using (2.3.4)-(2.3.6) and the fact that the decimator will not change the variance, the variance of

qy;(n) can be expressed as

k=

o

M1
E 27Wrig? o2, for 0<i< L -1 (2.3.8)
k=0

Since the synthesis filters F/(z) are orthonormal, the average variance over L samples, agy of the output

error is simply the average of agy., for 0 <4 < L—1, see Section C.4.2 of [Vai93] or [Som93a]. So we have

1 L—1 L—1M—1
=T > = Z > 272 of. (2.3.9)
=0 =0 k=0

To obtain the optimal bit allocation, we minimize the average output noise variance under the constraint
(2.3.1). We form the Lagrangian
) | LoiM-t b
¢=aqy-x<b_ii§ kZO -n_k_) (2.3.10)

By setting 0¢/0bg; =0 for all 0 << L—1,0<k <M ~1and 3¢/0X =0, we get
ng2 g2 o, =D for 0<i<L-1,0<k<M-1 (2.3.11)
where D is a constant independent of 7 and k. Let ’y,% be the geometric mean of a%i over the index %, that

is

N2 = H JYE. (2.3.12)
By using (2.3.1), (2.3.11) and (2.3.12), we find that
o 2 2\ l/m
D=2 H (nkaxkyk) . (2.3.13)

k=0
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Substituting (2.3.13) into (2.3.11), we find that the optimal number of bits allocated to the quantizer Qg;
at the k-th channel in the ¢-th branch is

bi; = b+ 0.5logy (nko?, af;) — 0.5 %:1 log, (njozj'yf)l/nj. (2.3.14)
§=0

Periodically Time-Varying Bit Allocation: Intuitively, we would assign more bits to those quantizers in
branches where g(n) * h;(n) has higher energy and in channels where z;(n) has higher energy. (2.3.14)
tells exactly how this should be done according to the energy distribution. In the case of the one-level FB
convolver, since g,(f)(n) is simply obtained by time-shifting g(n) (see Fig. 2.2.2(a)), we would expect that
a2, will have very little dependency on i. In this case, by; are the same for all 7 and (2.3.14) reduces to
(3.32) in [Vai93a]. However in the case of the two-level FB convolver, a2, may differ greatly for different
1, especially when the filter g(n) is a frequency selective filter (which is usually the case). Then bg; may
vary greatly with respect to 4. In this case, not all branches are equally important as in the case of

the one-level FB convolver, and the coding gain may increase significantly by using this “periodically

time-varying” bit allocation scheme.

By using (2.3.11), (2.3.13) and the fact that the filter bank is maximally decimated (224:31 ;3: = 1),

we find that the average output noise variance under optimal bit allocation is

M-1

cD c 1/ng

Ggy,opt = MQ % H (nkaﬁ,ﬂ%) . (2.3.15)
k=0

If z(n) is quantized to b bits, then in the direct convolution the output noise variance due the quantization

is found to be

Tdirect = 27202y " g(D). (2.3.16)
!
Under optimal bit allocation, the coding gain of the two-level FB convolver over the direct form is

output variance|girect conv

G:c, two = T
output variance|sybband conv

- % N V1 )l (2:3.17)
5 (02)"™ " %Iy (ne?) ™

The “x, two” in the subscript in (2.3.17) indicates that the coding gain is obtained by using the two-level
FB convolver and quantizing the signal z(n). This subscript is used to distinguish (2.3.17) from the
deterministic coding gain which is obtained by quantizing g(n) in the next section. From the right-hand
side of (2.3.17), we see that the variation of subband energy of both z(n) and g(n) contributes to the
coding gain. The first term is the gain contributed by xz(n) and the second term is the gain contributed
by g(n).

If the filters {Fi(2)} are orthonormal, then we can prove that the coding gain for the two-level FB
convolver is always greater than unity, regardless of the quality of the filters {Hy(2)}, {Fr(2)}, {H,(2)}
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and {F{(z)}. Moreover, we can prove that this coding gain is never smaller than that of the one-level
FB convolver derived in Section 3.3 in [Vai93a]:

Lemma 2.3.1. The coding gain G two of the two-level orthonormal FB convolver (i. e. FB in both levels
are orthonormal) is never smaller than that of the one-level orthonormal FB convolver, regardless of the

choice of PU filters {H(2)}, provided that :z:( ), g(n), {Hi(2)} in both cases are the same. Moreover,

they are equal if and only if the sequence g (n) has the same energy for all 0 <i < L —1. [ ]

In [Vai93a], it was shown that under optimal bit allocation, the coding gain of the one-level FB

convolver is

o w2 lg(m)l? (2.3.18)

Gw,one: - e )
25 e2)7™ A I (me?)”

where o is defined as

ap = % ZZ!gk ) el (2.3.19)
=0 n

where the “one” in the subscript is used to denote that g,gflne(n) are the subband filters of the one-level
FB convolver (see Fig. 2.3.1). Comparing (2.3.18) with (2.3.17), we find that the coding gain formulas
for both the one-level and two-level FB convolvers are very similar, except that o} is replaced by ~2.
Therefore in the following proof of Lemma 2.3.1, we need to establish the relation between o3 and ~2.

Proof of Lemma 2.3.1: By defining h'(z) = [H{(2) H{(z) ... Hj_,(2)]", ande(z) = [L 2~} ... 2=~ UT]
we have h'(z) = E'(2%)e(z), where E'(z) is the L x L polyphase matrix of h’(z). From the definition
of g(’>( ) and g,(f;zme( ), it is clear that g(z)( ) can be obtained by passing g,(f;zme(n) through E'(z%%) as

shown in Fig. 2.3.1. Since E/(z) is PU, we have [Som93a]

IL—1
> le ) Z S 19 () 2. (2.3.20)

=0 n =0 n
By using (2.3.4), (2.3.19) and ({2.3.20), we find the following important equality

L-1
1
al = 7 Z o2, = arithmetic mean of ;. (2.3.21)

By taking the ratio of Gy two t0 Ggone, We find that the ratio of the coding gain of the two-level FB
convolver to that of the one-level FB convolver is

M-1

R =] (%2’“—)1/”". (2.3.22)
i=0 'k

Using (2.3.12) and (2.83.21) and applying the AM-GM inequality, each term in the product in (2.3.22) is
greater or equal to unity with equality if and only if af, = o} for all 5. So we conclude that R, > 1,
with equality if and only if o2, = a2 = 42 for all i. Or equivalently, the sequences g( )( ) have the same

energy forall 0 < <L - 1. [ ]
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Fig. 2.3.1. Relationship between the subband signals of the one-level and two-level FB convolvers.

Corollary 2.3.1. G 1wo = 1 for the two-level orthonormal FB convolver, regardless of the choice of the

2

orthonormal sets of filters {Hy(2)} and {H}(2)}. Equality holds if and only if both ¢2, and nxa?; are

independent of k and i. n

2.4. LOW SENSITIVITY STRUCTURE FOR FIR FILTERS

Ignore the quantizers in the subbands of z(n) for the discussion of this section. Very similar to the idea
of quantizing z(n), we can quantize the filter coefficients gi(n) in the subbands based on the input signal
variance and maximum amplitude of the subband filter coefficients. However, the coefficients have to
be treated as deterministic parameters so that overflow is avoided completely. In this implementation,
the convolution error due to the coefficient quantization is much smaller than that in the direct form
implementation. Let A(Z)( ) be the quantized version of g](j)(n). Then we can redraw Fig. 2.2.2(a)
and (b) as Fig. 2.4.1(a) and (b) respectively. The implementations in Fig. 2.4.1(a) and (b) can be
regarded as low sensitivity implementations of the filter g{(n). For a preview of the advantage of the
implementation, compare Fig. 2.5.2 and Fig. 2.5.3. When the same average number of bits is used to
quantize the filter coeflicients for direct convolution (Fig. 2.5.2) and subband convolution (Fig. 2.5.3), the
improvement shown in these figures is significant. In the following, we will translate this improvement

into a mathematical formula.

2.4.1. Low Sensitivity FIR Filter Structures Using the One-Level FB Convolver

With the quantizers inserted in the subbands of g(n) as in Fig. 2.2.2(a), let by be the number of bits per

sample of gx(n), allocated to the quantizers Q. Then the average bit rate b is defined as:

(2.4.1)

3[(?

The Noise Model: Define the deterministic quantization error to be

¢ ()20 (n) — ¢ (), (2.4.2)
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X(n Filter with

] impulse
] Hk(z response

a%n)

Xk(n) Filter with

X(n) impulse
Hk(z) +n K res;i);)nse
gin)

Fig. 2.4.1. Low sensitivity structures for FIR filters: (a) With
one-level filter bank convolver; (b) with two-level filter bank convolver.

where g(l)(n) is the quantized version of g( )( ). To avoid overflow in the filter coefficients, we assume

that the weighting of the most significant bit assigned to the quantizer () is greater than gy ,nqez, Where
g g k )

9k, max = max [g(z)( )I (243)

Under this condition, the stepsize in the k-th quantizer would be A, = ¢ gk7ma$2’b’° and the mean

square value of the quantization error q,(:)(n) is

Lg, ~1
O’i}(ﬂ,;) = 1/LQk Z: ]ql(cl)(n)[ =C2 9 maw2—2bk (244)

where ¢; and ¢y are constants independent of k and 4, Lg, is the length of the subband filter g@ (n). In
practice, ¢; and ¢o will depend on g(z)( ), but the bit allocation and coding gain is insensitive to the
variation of these constants. To carry on the analysis, we assume that they are constant. We further
assume that:

1. z(n) is WSS.

2. The deterministic cross-correlation of the quantization error q( )( ), approximately satisfies

Lo —1

= 2 4 ©)q (p+m)~ 026k = §)8(m). (2.4.5)
gk p=0

This is of course never exact because q(l)( ) is FIR.
3. The length L, of g(n) is much greater than that of the analysis filters. So Ly, =~ L,/ni. This is

usually the case if the filter bank is of low complexity.

The Optimal Bit Allocation and the Deterministic Coding Gain: Counsider Fig. 2.4.1(a). The error of the
subband convolution output y;(n), due to quantization of g( )( ), can be expressed as

M—1

a(m) = 3 (artm) + () (246)

k=0



23

Using the noise model and carrying out the same procedure in Section 2.3, we find that the optimal

number of bits used to quantize the subband filter g( )( ) is

M-1

1/n;
by = b+ 0.510g, 02, gp oz — 0.5 Z 1025 (02,97 maz) - (2.4.7)
=0

Under this optimal bit allocation, the average output variance is

/n
Ogpopt = cLg2™ H ( 9219k, mam)l " (2.4.8)

In contrast, suppose we have convolved directly (i. e., without any filter bank). If g(n) is quantized to b

bits and without coefficient overflow, then the output error variance is

U(%irect = Cngﬁgbgrznamag (249)

where gmae = maxy, |g{n)|. Therefore, from (2.4.8) and (2.4.9), we find that the deterministic coding gain

of the one-level FB convolver over the direct form is

Gy one = % x Grmas (2.4.10)
g, one Mml( 9 )1/nk M..l( 2 )l/nk o
k=0 Zk k=0 k,max

A Lower Bound for the Coding Gain: In the above derivation, orthonormality property of the filter bank
is not required, biorthogonality is sufficient. However the deterministic coding gain cannot be proved to
be always greater than unity. The likelihood that the deterministic coding gain is less than unity is very
low. In fact, in all the examples we encountered in numerical experiments, the coding gain is quite large.
However, if the analysis and synthesis filters have unit energy, we can obtain a (very pessimistic) lower

bound for the coding gain. From Appendix 2.A, we have:

Gk, mazx < Y4 LH;C Gmazx, (2411)

where Ly, is the length of the filter Hi(z). Substituting (2.4.11) into (2.4.10), we find that the coding

gain is lower bounded as

o2

Gy, one = = (2.4.12)
’ M 1/
Hk ol(LH'zc a:k> -

2.4.2. Low Sensitivity FIR Filter Structures Using the Two-Level FB Convolver

We can implement FIR filters using the two-level FB convolver instead of the one-level FB convolver.
This will give a lower sensitivity. Or equivalently, we can afford to quantize the subband filters gL )( )
to a much lower bit rate for a fixed accuracy. Again for a preview of the advantage of the two-level
FB convolver over the one-level FB convolver, compare Fig. 2.5.3 and Fig. 2.5.4. The equivalent filter
responses for both the cases are comparable even though b = 2 in the two-level FB convolver and b = 4

in one-level FB convolver.
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Consider Fig. 2.4.1(b). Let by; be the number of bits used to quantize the subband filter g( )( ).
Then the average bit rate b is defined as in (2.3.1). The noise model assumed here is the same as that in

Section 2.4.A except that (2.4.4) is replaced with

Qk“"l
02}(:’) = 1/L9k Z: [q,(;)(n)IQ = C2 gi%i,maz2ﬁzbki7 (2413)
where
A
ki max= maX lg(Z:’( )l (2414)

Optimal Bit Allocation and Deterministic Coding Gain: The error at the location y;(n) in Fig. 2.4.1(b) can
be expressed as (2.4.6). To carry on the analysis, we will assume that the filter bank {F/(2)} is PU. By
using the same technique as in the previous section, we find that the optimal bit used to quantize g( )( )

is

M-1
bis = b +0.510850%, g% 10w — 05 3 logy (02, 82)"™, (2.4.15)
4=0
where
2 (e YL : 2
Br = H <gki7mw) = geometric mean of gi; ..., (2.4.16)
=0

The average output noise variance under optimal bit allocation is

Ogyopt = ¢ Lg2™ H o, BY). (2.4.17)
k=0

From (2.4.9) and (2.4.17), we find that the deterministic coding gain of the two-level FB convolver over

the direct form is

Gy, two = M~1U% f X M_‘i%az e (2.4.18)
k=0 (U%k) k=0 (ﬁk)

By taking the ratio of (2.4.18) to (2.4.10), we find that the ratio of the deterministic coding gain of the

two-level FB convolver to that of the one-level FB convolver is

H (g’“ ""““”)l/m“. (2.4.19)

A Lower Bound for Coding Gain: Again we cannot show that the coding gain is always greater than
unity. From Appendix 2.A (with hg(n) replaced with hg(n) = h[(n)), we can obtain the following (very

pessimistic) lower bound: )
Gy two > £ (2.4.20)

— i/n
M (L, + L — )02, )™

where Ly is the length of the analysis filter H](z), assumed to be the same for all :.

Comparisens of Results: Comparing the coding gain formulas in all the cases (G one, Gz twos Gy one and
Gy two), we find that all of them have the following form:
0.2 A2
1 /nz M—1 1/ns’
( Hz =0 (A2>

(2.4.21)
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All of them have a common first factor which is always greater than unity when the filter bank is
orthonormal. They differ only in the second factor. All of them can be obtained by substituting A? and
A? with the corresponding parameters. The only difference is that unlike in the case of the statistical
coding gain in Section 2.3, for the deterministic coding gain we cannot prove a result similar to (2.3.21).
That is, we cannot prove that gz’mw is the arithmetic mean of g,%i’mm,, even if the filter H/{z) is PU.
So the ratio of the deterministic coding gain, R, in (2.4.19), cannot be proved to be always greater than
one. Nevertheless, in practice, we will find that ﬂ,% is usually much smaller than gimam for a frequency
selective filter g(n). The reason is that under usual situations the arithmetic mean of g,%i’mam would
not differ much from givmm. But g,%i’mm may vary considerably with respect to ¢ if g(n) is frequency
selective. Thus, we may expect that the coding in (2.4.18) would be much larger than that in (2.4.10) as

we will see in the numerical examples.

Coding Gain When Both Input Signal x(n) and Filter g(n) are Quantized: When quantizers are inserted
in both the subbands of x(n) and g(n), the coding gain is not the product of G, and G,. To obtain
the coding gain, we apply the optimal bit allocation formulas in {2.3.14) and (2.4.15) respectively to the

quantization of z(n) and g( )( ), and ignore the second order effect. The coding gain is

po— {O(‘I?Iy,opt}m + {o-gy,opt}g

G = , 2.4.22
{ogirect }1' + {ogirect}g ( )

where the subscript “z” is used to denote the case when only xz(n) is quantized, and “g” is used to denote
the case when only g(n) is quantized. We see that the largest error term in (2.4.22) will dominate the

coding gain.

2.5. NUMERICAL EXAMPLES

In this section, only gg(n) are quantized, but not zx(n). In the presence of quantizers in the subbands of
g{n), the LTT system with impulse response g(n) is effectively replaced with a periodically time varying
system (LPTV) with period L (see next section for the discussion). To describe the system, we have
to characterize all L transfer functions Tyx(z) as shown in Fig. 2.5.1. In all the following examples, we

therefore show all transfer functions.

Fig. 2.5.1. Representation of an LPTV system.
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In the first four examples, g(n) is an equiripple lowpass filter with Ly = 132. The stopband attenu-
ation &, = —60 dB and the passpand ripple size §, = 0.010. The frequency responses of g(n) with direct
quantization to 4 bits and without quantization are shown in Fig. 2.5.2, the stopband attenuation reduces

to —17 dB and the passband ripple size increases to 0.049 after quantization.

o,
-0.0 .
. ——Unquantized
------- Quantized

Magnitude Response (dB)

@/2m

Fig. 2.5.2. Magnitude response (and passband detail) of g(n)

without quantization and with direct quantization to 4 bits.

Example 2.5.1. Four-Channel PU Filter Bank (One-Level FB Convolver): L = M = 4, and b = 4 bits.
The 4 channel filter bank in Fig. 2.4.1(a) is taken to be a tree-structured PU filter bank obtained by using
two-channel PU filter bank in a symmetric tree. The two-channel PU system uses Filter 8A in [Vai88]. If
we implement the analysis bank {H(2)} in lattice form, we need only 8 multiplications per input sample.
The corresponding optimal bit allocation is by = 10, by = 5, by = 1, b3 = 0 bits. As shown in Fig. 2.5.3,
the stopband attenuations of all the 4 filters T;(z) are more than 42 dB, i. e., more than 25 dB better
than that of the direct quantization. The passband ripple 6, = 0.013. The effect of quantization on the
ripple size is negligible. To visualize the effect of the quantization on the phase response, we show the
phase responses of 2°T}(2) in Fig. 2.5.4. From the plots, we see that the phase distortion in the passband

is negligible. ]

Magnitude Response (dB)

Fig. 2.5.3. Example 2.5.1-Magnitude response (and passband detail) of
g(n), with subband quantization to 4 bits by using one-level FB convolver.
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Fig. 2.5.4. Example 2.5.1-Group delay of g(n), with subband
quantization to 4 bits by using the one-level FB convolver.

Example 2.5.2. Four-Channel PU Filter Bank (Two-Level FB Convolver): L = M = 4, and b = 2 bits.
Both the filter banks formed by {Hy(2)} and {H](z)} are taken to be the filter bank used in Example
2.5.1. The corresponding bit allocation is shown in Table 2.5.1. As we would expect, by; are large for
i = 0 because most of the energy of G(z) is in the first branch. As shown in Fig. 2.5.5, the stopband
attenuations (44 dB) are comparable to that obtained in Example 2.5.1 but the average bit rate b is

reduced to half. The passband ripple é, = 0.015. n
k= 0 1 2 3
i=0 11 7 2 0
i= 4 0 0
i= 0 0 0
1= 0 0 0

Table 2.5.1. Example 2.5.2.~The number of bits b, allocated to @,

Magnitude Response {(dB)

wl2r

Fig. 2.5.5. Example 2.5.2-Magnitude response (and passband detail) of
g(n), with subband quantization to 2 bits by using two-level FB convolver.

Example 2.5.3. Four- and Fight-Channel DCT Coders (One-Level FB Convolver): b = 4 bits, we use the
DCT filter bank, shown in Fig. 2.4.1 in [Vai93a]. In a transform coder filter bank, the polyphase matrix

E(z) of the analysis filters is a constant matrix T. In this example, two cases of T are considered: (i)
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4 x 4 DCT matrix and (ii) 8 x 8 DCT matrix as defined in Eq. (12.157) [Jay84]. DCT has the advantage
that the analysis filters have linear phase and there exists fast algorithm for the computation of DCT.
The corresponding bit allocations are shown in Table 2.5.2. For each case, we show only one transfer
function Tp(z) in Fig. 2.5.6 for simplicity. We see that for M = 4 , the stopband attenuation is 32 dB
and 6, = 0.022. For M = 8, the stopband attenuation is 38 dB and 6, = 0.012. ~

k= 0 1 2 3 4 5 6 7
4x4DCT 7 6 3 0 - - - -
8 x 8 DCT 9 9 6 3 3 1 1 0

Table 2.5.2. Example 2.5.3-The number of bits by allocated to Q)

20 - 0.0 ANSNAKANSNAY e 4X4DCT
— 8X8DCT
0

a £
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Fig. 2.5.6. Example 2.5.3-Magnitude response (and passband detail) of
g(n), with subband quantization to 4 bits by using one-level FB convolver.

Example 2.5.4. Four- and Eight-Channel DCT Coders (Two-Level FB Convolver): b = 2 bits. The filter
bank used here is the same as Example 2.5.3. And {H}(2)} is identical to {H(z)}. The optimal bit
allocation for 4 x4 DCT is shown in Table 2.5.3. The corresponding optimal bit allocation for 8 x 8 DCT
is shown in Table 2.5.4. For simplicity, we show only Tp(z) in Fig. 2.5.7. The stopband attenuations for
M = 4 and M = 8 are 27 dB and 30 dB respectively. The passband ripple size increases to 0.035 and

0.026 respectively for M = 4 and M = 8. ]
k= 0 1 2 3
1=0 7 6 3 0
7= 5 5 2 0
1=2 2 2 0 0
1=3 0 0 0 0

Table 2.5.3. Example 2.5.4(i)~The number of bits by; allocated to Qj,
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Table 2.5.4. Example 2.5.4(ii)-The number of bits by; allocated to @1,

200 T N e A [ 4X4DCT
—SXBDCT

Magnitude Response (dB)

o2n

Fig. 2.5.7. Example 2.5.4-Magnitude response (and passband detail) of

g(n), with subband quantization to 2 bits by using two-level FB convolver.

Example 2.5.5. Coding Gain (One-Level FB Convolver): M = 4 and b = 8 bits. The filter bank used here
is the same as that used in Example 2.5.1. The input signal z(n) is taken to be an AR(5) process with
autocorrelation coefficients R(k) obtained from Table 2.2 of [Jay84] (lowpass speech source). The first two
rows of Table 2.5.5 show respectively the coding gain obtained from (2.4.10) (G one) and that obtained
from experiment (G, expt,one) for five different filters g(n) (Filter 1 is the g(n) used in the previous 4
examples). In most cases the theoretical value obtained from (2.4.10) is very close to the experimental

result, in spite of the many statistical assumptions used. ]

Example 2.5.6. Coding Gain (Two-Level FB Convolver): We take Hj(z) = Hy(2) and other conditions are
the same as those in Example 2.5.5. The coding gain obtained from (2.4.18) (G, tw,) and that obtained
from experiment (Gy ezpt two) for the same set of five different filters g(n) are shown in the third and
fourth rows of Table 2.5.5 respectively. Again the theoretical values are very close to the experiment
results. The performance of the two-level FB convolvers is much better (8.7-17.4 dB or equivalently
1.5-3 bits approximately) than that of one-level FB convolvers for all the five cases. The ratios of the
coding gain for the two-level FB convolver to that of the one-level FB convolver, R, (theoretical) and

Ry czpe (experimental) are shown in the last two rows of Table 2.5.5. u

Table 2.5.6 summarizes all the results of Examples 2.5.1-4. From the table, we notice that the
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Filter No. 1 2 3 4 5
G one (dB) 3321193176264 | 36.6
G expt one (AB) | 335 | 19.8 | 15.5 | 20.9 | 34.5
Gy two (dB) 47.6 | 28.0 | 26.5 | 38.7 | 54.3
G expt two (dB) | 49.5 | 28,5 | 25.8 | 36.7 | 51.9
R, (dB) 144 | 8.7 | 89 | 123|177
Ry copt (dB) 160 87 | 103|158 | 174

Table 2.5.5. Example 2.5.5 and 2.5.6-Comparison of coding gain.

b §s (dB) p
No Quantization - —60 0.010
Direct Quantization 4 —-17 0.049
4ch PU Bank: 1-level 4 —42 0.013
4ch PU Bank: 2-level 2 —44 0.015
4 x 4 DCT: 1-level 4 —-32 0.022
8 x 8 DCT: 1-level 4 —38 0.012
4 x 4 DCT: 2-level 2 -27 0.035
8 x 8 DCT: 2-level 2 -30 0.026

Table 2.5.6. Summary of Examples 2.5.1-4.

performance of the DCT coder is not as good as that of the PU FB convolvers in Examples 2.5.1 and
2.5.2. The reason is that the analysis filters of the DCT coder have a smaller stopband attenuation. The
leakage from the adjacent band is quite large. In the last two examples, we see that the deterministic
coding gain for the two-level FB convolver is much larger than that of the one-level FB convolver although
we cannot prove theoretically that this is always true. By using the two-level FB convolvers, we get a

much higher accuracy at the expense of the cost of one filter bank.

2.6. RELATION TO BLOCK FILTER AND ALIASING EFFECT

2.6.1. Convolvers in the View of Block Filter

It is well-known [Bur71, Mit78, Bar80, Vai%0] that block filtering is a technique to implement a scalar
filter G(z) in such a way as to increase the parallelism. In this section, we will explore the relationship
between the FB convolver and the conventional block filtering technique. It was shown in [Hoa89] that
the nonuniform system of Fig. 2.1.1 can be expanded as an L-channel uniform system. Therefore we will

discuss the uniform case only.

Conventional Block Filtering: Given any scalar filter G{z), we can implement it by using block filtering
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technique as shown in Fig. 2.6.1(a). The matrix G(z) in Fig. 2.6.1(a) is a pseudocirculant matrix:

Go(z) Gi(z) ... Gu-1(2)
Z~IGM_1(Z) Go(z) . GM_Q(Z)
G(2) = : : : , (2.6.1)
271G (2)  271Ga(z) ... Go(2)

where G;(z) is the i-th polyphase component of the scalar filter G(z). In fact, the multirate system in
Fig. 2.6.1(a) is a LTI system if and only if G(z) is a pseudocirculant matrix [Vai88a]. From (2.6.1), we
have the following relationship between [G(z)];, the elements of the matrix G(z) and the filter G(2):

M1

27G(2) = Z z—k[G(zM)]ik. (2.6.2)

k=0
Moreover, G(z) is PU if and only if the filter G(z) is an allpass filter [Vai93]. When G(z) is FIR, this is

impossible unless G(z) is a delay.

.
-
.

Hy, {2} ¥M

Fig. 2.6.1. Unified view of block filtering and FB convolvers: {a) Conventional

block filtering; (b) one-level FB convolver; (c) two-level FB convolver.

Relation of One-Level FB Convolver to Conventional Block Filtering: In the case of one-level FB convolver

with uniform decimation ratios, the i-th Type 2 polyphase component of z(n) * g(n) can be written as
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(2.2.1) with L = M and all p;, = 1. We reproduce the equation here for convenience:
Yi(z) = ( ~iX(2)G ) Z Xi(2)G9(z), 0<i<M 1, (2.6.3)

where G’S)(z) is defined in Fig. 2.1.1(b). By writing (2.6.3) for all ¢, we obtain:

Yo(2)
Yi(z)
. = Gone(2)x(2), (2.6.4a)
YM_l(z)
where the column vector
x(2) = [Xo(2) Xi(2) ... Xm-1(2)]", (2.6.4b)
and the matrix Gone(2) is defined as:
=  OE G%{y_l(z)
(1 (v )
Gone(2) = GO.(z) Gl.(z) Mfl(z) . (2.6.5)
GM D) EMIGE) L ()

Using Type 2 polyphase representation (Section 1.2), y(n) can be written as:

ya(zi‘j
Y(2) =¢(2) Yl(:z b |- &(2)Gone (=" )x(2"), (2.6.6)
Vi1 ()
where &(2) is the row vector [1 z ... 2M~1]. From (2.6.6), we immediately get the implementation in

Fig. 2.6.1(b), by using the fact that Xy(z) = [X(z)Hk(z)]iM

Comparison Between One-Level FB Convolver and Conventional Block Filtering: Comparing Fig. 2.6.1(a)
and (b), we discover that the one-level FB convolver is a generalized version of block filtering. Instead of
decomposing z(n) and g(n) into their conventional polyphase components, we decompose z(n) and g(n)
into their GPP components respectively with respect to two separate sets of polyphase basis, namely
{H;(z)} and {F;(z)}. The delay chain before the block filter is replaced by a more general analysis bank
with filters { Hy(2)}. Therefore, we can view the convolver as a generalized block filtering technique, which
provides not only the advantage of parallelism, but also the advantage of coding gain when implemented
in finite precision. Of course, the coding gain is obtained at the expense of the cost of one filter bank.
This generalized block filtering technique provides a good tradeoff between the coding gain and the
complexity. By using GPP representation, a relationship similar to (2.6.2) between [Gone(z)]i , and G(z)

can be interpreted nicely as:
M1

27G(2) = Y [Gone(z™)], Hi(2)- (2.6.7)
k=0
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It also can be proved (see Appendix 2.B) that the matrix Gepe(z) is PU if and only if the filter G(z) is
an allpass function, provided that the set of filters {Hy(2)} is PU.

Relation of Two-Level FB Convolver to Conventional Block Filtering: For two-level FB convolver with uniform
decimation ratios, the i-th GPP component of z(n) * g(n) with respect to the polyphase basis {F/(z)} is:

M-—1
Yi(z) = Y Xp(2)GPV(2), 0<i<M -1, (2.6.8)
k=0

where Gg)(z) are defined in Fig. 2.2.1. By writing (2.6.8) for all values of k, we get the equations similar to
(2.6.4) and (2.6.5), except that the matrix Gone(2) is replaced by Giwo(2), Where [Giwo(2)],, = G (2).
By defining the row vector f(z) = [F4(2) Fi(z) ... Fj;_1(2)], the output of the convolution y(n) can
be reconstructed from the GPP components Y;(z) (as defined in (2.6.8)) as:

M1
Y(z)= Y Yi(z")Fi(2) = £'(2) Guwo (2" )x(z"), (2.6.9)
k=0

where the column vector x(z) is as defined in (2.6.4b). From (2.6.9), we get the implementation of the

two-level FB convolver as in Fig. 2.6.1(c).

Comparison of One- and Two-Level FB Convolver in the Light of Block Filtering: Comparing Fig. 2.6.1(b)
and (c), clearly the two-level FB convolver is a generalization of one-level FB convolver. In two-level FB
convolvers, the “advance chain” in one-level FB convolvers after the block filter is replaced by a more
general synthesis bank with {F/(z)}. The relationship between [Gtwo(z)]i , and G(z) can be written as:

M-—1
H{(2)G(2) = Y [Giwo(2™)], Hr(2)- (2.6.10)

£=0
Similarly, we can prove (Appendix 2.B) that the matrix Giwo(2) is PU if and only if the filter G(2) is an
allpass function, provided that the sets of filters {H(z)} and {H/(z)} are PU.

2.6.2. Aliasing Effects and the Equivalent LPTV Filter in the Presence of Quantizers

In the presence of quantizers in the subband of g(n), the equivalent system is no longer a LTI system. It
is a LPTV system. Let QS)(z) be the z transform of qg)(n), where q,(:)(n) is defined in (2.4.2). Define
the matrix Q(z)

Qéoi(z) Q%O;(z) %‘;;ﬁl(z)

1 1 1

Q(z) = Qo (z) Q3 .(3) M—‘1(Z) (26.11)
(g NGy L Ui,

Let @one(z) be the quantized version of Ggpe(z). Then @one(z) = Gone(2) + Q(2). The system in
Fig. 2.6.1(b) can be drawn equivalently as that in Fig. 2.6.2(a). The upper path gives the desired output
and the lower path represents the error. By using the polyphase representation, Fig. 2.6.2(a) can be
redrawn as Fig. 2.6.1(b) where

P(z) = Q(z) E(z), (2.6.12)



X (n) Upper path

Lower path

(2)

Upper path
x(n)

Lower path

Y
Z‘

(b)

i1 Y

Fig. 2.6.2. (a) Equivalent representation of Fig. 2.6.1(a), and (b) block filter representation of (a).

and E(z) is the polyphase matrix of the analysis filters Hy(z). From Fig. 2.6.2, we see that the lower
path is an LPTYV filter and it is an LTI filter if and only if P(2) is pseudocirculant [Vai93]. For the case
of the two-level FB convolver as in Fig. 2.6.1(c), a similar result holds except that the matrix P(z) is
replaced by
P(z) = R'(2) Q(2) E(z2), (2.6.13)

where R/(z) is the Type 2 polyphase matrix of the synthesis filters F/(2).

Let d(z) = [do(z) di(z) ... du—1(2) |7 =P(zM)e(z), where e(z) = [1 2! ... z=(M-UJT and
let T;(2) = 27*G(z) + d;(z). Then the system in Fig. 2.6.2 can be redrawn as Fig. 2.5.1. The aliasing
components A;(z) (see Eq. (5.4.7) of [Vai93]) can be expressed as:

M-1
Ai(z) = EIZ kZ:O Fdp(zW), for 1<i<M -1 (2.6.14)
and
1 M-1
Ao(z) = G(z) + i kz:(:) di(2). (2.6.15)

G(z) is the desired response, - }:ﬁigl di(z) represents the distortion and for 1 <7 < M — 1, A;(z) are
the aliasing components. The error due to the aliasing and distortion can be written as

M-—1 - 4 -
e = |A()] + |Ao(e) - G(e?)

i==1
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The magnitude responses of di(2) for Example 2.5.1 are shown in Fig. 2.6.3. All the magnitude responses

are under 40 dB even though the coefficients are quantized to b = 4 bits only.

.30 =

Magnitude Response (dB)

/2n

Fig. 2.6.3. Magnitude responses of the aliasing components.

2.6.3. Subband Implementation of LPTV Filters

From the earlier discussion, it is natural to ask if the subband convolver can be modified to implement
an LPTV filter. The answer is in the affirmative. The implemenation leads to a low sensitivity structure
for LPTV filters.

Given an LPTV filter with period L, we can characterize the filter by a set of L transfer functions
{T;(2)} as shown in Fig. 2.5.1. Notice from the figure that the i-th polyphase component y;(n) of the
output of the LPTV filter is completely determined by the transfer function T;(z). By Theorem 2.2.1,

y;{n) can be obtained as:

M—1

= 6.17
= (26.17)

k)
Lo

where x4 (n) are defined in Fig. 2.1.1(a), and t;1(n) are the subband signals obtained by replacing g(n —1)
in Fig. 2.1.1(b) with ¢;{(n). The periodically time varying bit allocation can be employed to achieve a low
sensitivity structure for LPTYV filters.

2.7. FB CONVOLVERS FOR LINEAR-PHASE FILTERS

Suppose that g(n) has linear phase. In the direct form implementation, the symmetry of the impulse
response can be exploited to reduce the complexity by one half. Furthermore, the phase remains linear
even in the presence of quantization. In the previous discussion, the FB convolvers do not take advantage

of the symmetry. In the following, we will see how to preserve the advantages of linear phase and at the
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same time achieve high coding gain for FB convolvers. Since the method works for PU filter banks only,
we will assume that {H(2)} and {Fy(z)} are PU. Assume that the length of the filter N = 5L, where L
is the lem of ng shown in Fig. 2.1.1. We will derive the case where g(n) is symmetric with even length

(derivations for other cases are very similar).

N/2—1 N—1
G(z) = Z g(n)z"" + Z g(n)z"". (2.8.3)
n=0 n=N/2
G(2) 2= NG(z-1)

By using the GPP representation, we decompose X (z) and G(z) respectively as:

M-—1 M-—1
X (2™ ) Fr(z Z X1 (2" ) H(z), (2.8.4a)
k=0 k=0
M-—1
G(z) = Gr(2™ ) Hy (). (2.8.4b)
k=0

If the filter bank formed by Hy(z) and Fi(z) is PU so that Hi(z7!) = Fi(z), then we can write
M1
NG =Y 2 NGz F(2). (2.8.5)
k=0

By using the relations in (2.8.3)-(2.8.5), the decimated output of the convolution z(n) * g(n) can be

written as:
M—1M-—1 B M—-1M-—1
X, = | X X aumx (z”@)Hk(zm(z)} XX NGl X R HR)
k=0 i=0 k=0 =0 L
M- B 'M~1 B
= <Gk(z)Xk(z)> + 279 Z (Gk(z-l)X,;(z)> , (2.8.6)
k=0 1pe k=0 lpe

where p, = L/ny,. Since Gi(z) and Gy(z71) are time-reversed versions of each other, their multipliers
can be shared. We have sucessfully reduced the complexity to one half and preserved the phase linearity
of the overall filter even in the presence of quantizers. However the implementation in (2.8.6) may not
give high coding gain because in general the filter G(z) is not frequency selective due to the artificial
discontinuity introduced by truncation. A technique was proposed in [Pho93a] to solve this problem.
Instead of partitioning G(z) in a non overlapping manner as in (2.8.3), if we allow some small overlapping
in the partition (which would introduce some computational overhead), then it was shown in [Pho93a]
that good coding gain can be achieved by using a raised-cosine function to shape the overlapping region.
Therefore there is a tradeoff between the complexity and the coding gain. Experiments [Pho93a] showed

that an overlap of less than 10 taps can provide high coding gain.

2.8. OTHER CONSIDERATIONS
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2.8.1. IFIR Filter as a Special Case of Subband Convolver

IFIR filters were introduced in [Neu84] to design narrowband filters. In lowpass case, if the stopband

edge is smaller than 7/M, then G(z) can be approximated by a cascade of two filters as:
G(z) = GO M) I(2), (2.8.1)

where I(z) is a low cost filter. The number of coefficients in G(%)(z) is roughly equal to 1/M of that in
G(z). Fig. 2.8.1(a) shows the implementation of an IFIR filter.

G(O) (ZM )

Fig. 2.8.1. Relationship between convolver and IFIR filter: (a)

Implementation of IFIR filter; (b) implementation of convolver.

From Fig. 2.1.1(b), G(z) can be decomposed into its GPP components as

M~

= 3" G M Hilz). (2.8.2)

k=0

,_‘

The decomposition is exact. Fig. 2.8.1(b) shows the implementaion. If G(z) has passband smaller than
/M, then only Gg)) (z) in (2.8.2) has significant energy. By dropping all the other unimportant channels
in Fig. 2.8.1(b) corresponding to G;O)(z) (k=1,2,..., M — 1), Fig. 2.8.1(b) reduces to Fig. 2.8.1(a)
(with Ho(z) and Fy(z) regarded as I(z) and J(z) respectively). Therefore, more generally, if G(z) is a
multiband filter, the subband convolver can be used to approximate G(z) by retaining the channels which

contain most of the energy.

2.8.2. Low Sensitivity Structures for IIR Filters

The application of the FB convolvers in the implementation of IIR filters is not very useful because of
the following reasons:
1. The FB convolver for 1IR filters involves the implementation of an LPTV system in the feedback

loop, and it is very difficult to ensure the stability in the presence of quantizers.
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2. A causal FB convolver will introduce some delay for the output in the feedback loop and this will
make the overall system noncausal.
3. IIR filters seldom have an order N > 10, so it is not efficient to implement IIR filters with FB

convolvers.

2.9. CONCLUSIONS

In this chapter, we have generalized the subband convolution theorem in [Vai93a]. We have derived
the coding gain for the generalized convolver, and it was proved that this coding gain is always greater
than that of the one-level FB convolver in [Vai93a]. We also unified the subband convolvers, GPP
representation, block filtering, LPTV filters, and IFIR filters under one framework. This framework
provides us a better understanding of the subband convolvers. As an application of the convolution
theorem, a low sensitivity structure for FIR filters is proposed. We have defined the deterministic coding
gain of the low sensitivity structure and demonstrated that the coding gain is high. Even when the filter
coefficients are quantized to a very low bit rate, we can get filters of small passband ripple and large

stopband attenuation.

2.10. APPENDICES

Appendix A. Proof of (2.4.11)

By definition of gg maz, We have

gimaz = max|g, (n)] = max|(g(n — i) » hx(n)) |, |

Ly, —1
= max |g(n) * hi(n)| < gmaz Y, |he(n)] (2.4.1)
n==0

The third equality follows from the fact that (g(n ~1)* hk(n)) N is one of the polyphase components of

in
g(n) = hp(n). The last inequality follows directly from triangular inequality. Applying the facts that: (i)
| v 1< VN || v ||l2, where || - ||; and || - ||2 denote 1-norm and 2-norm respectively; (i) hx(n) has unit

energy (2-norm is unity), (2.4.11) follows immediately.

Appendix B. Proof of Some Facts in Block Filtering

Lemma 2.B.1. One-Level FB Convolver: Suppose that the set of filters {Hy(2)} is PU. Then the matrix

Gone(#) defined in Fig. 2.6.1(b) is PU if and only if the filter G(z) is an allpass function. n
Proof: By writing (2.6.7) for all values of i =0, 1, ..., M — 1, we have the following matrix equation:
G(2) Ho(2)
271G (z) Hy(z)
, = Gone(2M) , = Gone(zM)E(zM)e(2), (2.B.1)

MHLG() Hy1(2)
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where the matrix E(2) is the polyphase matrix of the filters {Hx(2)} and e(z) = [L 271 ... z—M“]T.
Substituting z with zW ™% for i =0, 1, ..., M —1 into the above equation, we get
A(YWS4(2) = Gone M E(zM)A(2)W, (2.B.2)

where A(z) is the diagonal matrix diag[l 27! ... 2~ M|, &c(2) = diag[G(z) G(zW) ... G(zWM~1)]
and W is the M x M DFT matrix with [W] = W*. Since A(z), W and E(2) are PU matrices,
Gone(2) is PU if and only if ®4(2) is. n

Lemma 2.B.2. Two-Level FB Convolver: Suppose that the sets of filters {Hy(z)} and {H(z)} are PU.
Then the matrix Giwo(2) defined in Fig. 2.6.1(c) is PU if and only if the filter G(z) is an allpass function.
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3

A New Class of Two-Channel
Biorthogonal Filter Banks and Wavelet Bases

3.1. INTRODUCTION

Fig. 1.1.3 shows a two-channel maximally decimated filter bank. For the convenience of discussion, we
reproduce the two-channel filter bank in Fig. 3.1.1 (where its polyphase form is also shown). A number of
PR or nearly PR two-channel systems have been reported before [Cro83, Joh80, Ram84, Smi87, Min85,
Vai87b, Ngu89]. In this chapter we develop several new results for two-channel biorthogonal filter banks

based on a useful class of polyphase matrices.

A
x(n) x(n)  x(n)
H, @ | V2 | A2 HF @ Yo+ P HAe
7 E?)| [R@) £
Hy (@) Y 2 ol A2 HF @ Vo e A
A
B S e A ——— \ / x(n}
analysis bank (@) synthesis bank (b) polyphase matrices

Fig. 3.1.1. (a) Two-channel analysis/synthesis filter bank;
(b) redrawing of (a) by using the polyphase representation.

3.1.1. Previous Work

In FIR filter banks, all the four filters Hy, Hy, Fo, and Fy, are FIR filters while in the case of IIR filter
banks, some or all of these filters are IIR filters. The earliest good designs for the IIR case were such that
the analysis bank was PU and the polyphase components of Ho(z) and H;(z) were allpass [Vai87b]. Even
though all the IIR filters are causal stable, the reconstructed signal suffers from phase distortion. IIR
PR filter banks typically have noncausal stable filters or causal unstable filters [Ram88, Her93, Mit92].
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Recently the authors in [Bas95] proposed a IIR PR technique providing causal stable solutions, but no
satisfactory design method was given.

In earlier design of 2D filter banks, separable filters have been considered because of their advantage
of low complexity. However nonseparable filters offer more freedom in the design and hence in general
will give better performance. Recently, some results on the nonseparable filter banks have emerged. In
[Lin95a, Lin95b], the authors present some break through works on the theory and design of nonseparable
M-channel filter banks. A number of important issues in the design of 2D M-channel filter banks are
studied thoroughly. In particular, the authors show that for the class of two-parallelogram filter banks
(M > 2), it is not possible to obtain PR filter banks with good filters [Lin95a]. The PR conditions for
2D cosine modulated filter banks are derived for the first time. For the class of four-parallelogram filter
banks, the authors successfully design PR filter banks with good filters [Lin95b]. In [Vis88], a design
method based on space domain approach is given. In [Kar90], a subclass of 2D PU systems (which
can be represented as a cascade of 1D PU systems of degree one) is considered. However in both of
the polyphase approaches above, the optimization in the designs involves a large number of nonlinear
constraints. Thus other approaches, such as 1D to 2D mapping, have been considered [Sha92, Ans87,
Che93, Coh93, Tay93]. In [Sha92], even though PR property is preserved by the mapping, the frequency
responses of the filters will change. In [Ans87, Che93], a mapping of 1D filter banks to 2D filter banks
is given. The authors apply the technique on a 1D two-channel orthogonal IIR system to achieve a 2D
IIR filter bank. The resulting systems have either phase distortion or stability problem. In [Coh93], the
authors employ McClellan’s transformation on the 1D maximally flat FIR halfband filters to obtain a 2D
biorthogonal filter bank. However because of the lack of factorization theorems in the 2D case, one of the
lowpass filters is constrained to have all its zeros at the aliasing frequency. And there is no simple way
to ensure the frequency selectivity of all the filters. In [Tay93], the authors introduce a mapping which
can be viewed as the generalization McClellan’s transformation. 2D two-channel PR systems with good
frequency selectivity can be obtained by judiciously designing the mapping. However, the mapping works
for the FIR case only and the resulting filters usually have a large number of coefficients. For an excellent

review of various design techniques for two-channel filter banks, the readers are refered to [Lin96].

3.1.2. The New Idea and its Merits

In this chapter, we constrain the polyphase matrix E(z) such that det[E(z)] is a delay. Furthermore we
consider E(z) and R(z) to be either (i) both causal stable IIR or (ii) both FIR. In each case, the following
properties can be simultaneously satisfied.
1. PR is preserved structurally and the structural complexity is very low.
2. All analysis and synthesis filters are designed by controlling a single transfer function 3(z) [allpass
in the IIR case, and Type 2 (i.e., odd order symmetric linear phase FIR) in the FIR case]. So the
design procedure is very simple. It is very easy to design 5(z) so that all filters have good responses

{lowpass or highpass as the case may be).
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3. In the IIR case, all the analysis and synthesis filters are causal and stable.

4. In some applications such as image coding, the linear phase property of the analysis and synthesis
filters is desired. In the FIR case, the filters are exact linear-phase. In the IIR case, we can force the
phase response of the filters to be nearly linear in the passband, as we shall explain and demonstrate.

5. The lowpass analysis filter Hg(z) can be forced to have arbitrary number of zeros at w = n. Fur-
thermore the lowpass synthesis filter Fy(z) is guaranteed to have the same number of zeros at = as
Hy(z). In both of the IIR and FIR cases, we give closed form expression for the filter coefficients
that provide maximum number of zeros at .

A new class of biorthogonal wavelet bases can be generated from the above filter bank. The regularity
property can be directly controlled by imposing multiple zeros at = as desired. In the IIR case, since
all filters are causal (in addition to being stable), the basis functions are all causal. In the FIR case,
the linear phase property ensures symmetry of the wavelets, while at the same time providing a simple

control on regularity (because the number of zeros at 7 is trivially controlled).

A 1D to 2D Mapping: Furthermore, we also provide a novel mapping of the proposed 1D filter banks into
the 2D quincunx case, preserving all the desirable properties. In particular, there is the following:

1. The PR property is preserved.

2. In the IIR case all the analysis and synthesis filters remain causal and stable. In the FIR case the
linear phase property is preserved.

3. Even though the filter bank is nonseparable, the complexity is that of a separable filter bank, growing
linearly with the filter order.

4. The frequency response supports for the filters are the diamond and diamond-complement as desired
for the quincunx case [Ans87, Vai93]. Moreover the filter frequency responses are ensured to be good
simply by designing the 1D filter having a good frequency response. Any desired specifications can
be met by designing a 1D transfer function 3(z) appropriately as we shall demonstrate.

5. If the 1D lowpass filter Hy(z) has k zeros at 7, then the resulting 2D lowpass filter will have its i-th
order total derivative equal to zero at {m, ), for i =0, 1, ..., k — 1. See Section 3.5 for details.

We also provide a design example to show that the mapping can be easily applied to any dilation matrix

(i.e, decimation matrix} with determinant 2.

Relation to Other Results in the Literature: All the designs proposed in this chapter are based on a single
class of polyphase matrices, to be described in Section 3.2. However some of the filter banks reported
by other researchers are related to our work. In [Kiy92}, the authors derive a class of biorthogonal linear
phase FIR filter bank which turns out to be a special case of our two-channel framework. In the IIR
maximally flat halfband case, our solution is different from the traditional IIR Butterworth design and
has approximately linear-phase in the passband. In the FIR maximally flat halfband case, the solution
agrees with the classical FIR maximally flat design [Her71]. But our construction is different from those

in [Ans87, Dau88] since the analysis filters are factors of maximally flat halfband filters in [Ans87, Dau88]
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while our analysis filters are themselves maximally flat halfband. The 2D mapping proposed earlier in
[Ans87, Che93] is different from ours because it is known that the earlier mapping will not preserve the

PR property in general.

3.1.3. Chapter Outline

Our presentation will go as follows: In the next section, we will derive a framework for the two-channel
biorthogonal filter banks. Some properties of such class will be described in detail. In Section 3.3, we
will discuss both the IIR and FIR filter banks which are covered in the proposed framework. In Section
3.4, wavelet basis functions generated from the proposed filter banks will be presented and imposition of
zeros at aliasing frequency will be considered. Two new classes of IIR maximally flat solution are given
in closed form. In Section 3.5, we will first introduce a novel 2D mapping for the quincunx case. Some
properties of the mapping are discussed. Then both the IIR and FIR cases are considered. Furthermore

numerical examples will be provided throughout the discussion to demonstrate the idea.

Definition. Halfband Filters: Consider Fig. 3.1.1. Using the polyphase representation described in Section
1.2, the filters {H(2), Fi(2)} are related to the polyphase matrices E(z) and R(z) as:

Hk(z) = Ekyo(zz) + ZmlEkyl(ZQL and Fk(z) = z_lRO,k(zQ) + Rl,k(ZQ), (311)

where F; ;(z) and R; ;(z) are respectively the ij-th elements of the matrices E(z) and R(z). A filter
Hy(z) is halfband if either one of its polyphase components Ey o(2), F, 1(z) is a delay.

3.2. AFRAMEWORK FOR 1D BIORTHOGONAL FILTER BANKS

Consider Fig. 3.1.1. The system has PR if and only if R(2) = E7!(2). It is not easy to constrain

[det E(2)] to be minimurmn phase for stability of R(z); therefore, let us make it a delay. An example is

-N
E(z) = (ZO f_(fv),) . (3.2.1)
With this we obtain
Ho(z) = 272N 4+ 2715(27), (3.2.2)

but Hi(z) = 2~ ¥ *+1 which is a delay. Thus even though Ho(z) can be designed to be a good lowpass
filter (as we will show), H;(z) is allpass and this is not useful for subband coding applications. We can

modify H1(z) without affecting Hy(z) by taking the polyphase matrix to be

Bl=) = (-O%i(z) ?) <ng ,;8-(?’) = <-o.05'z532(z) 0500 z“N/>' (3:2:3)

Then we get the following expressions for the analysis filters:

(-2 + 2 1B(2)
2 ?

Ho(z) = Hi(z) = —a(2?)Ho(z) + 272V, (3.2.4)
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3.2.1. Obtaining Ideal Responses

First notice that the filter Hy(z) can be made an ideal lowpass filter if 8(2) has the following magnitude
and phase responses:
B =1, Vw (3.2.5a)

ooy | (=2N + Nw, for w € [0, 7/2];
LB(e) = { (-2N + 1w xm, forwe (n/2,x].

From (3.2.4), we see that in the high frequency region, H;(e’*) has unity gain since |Hy(e/“)| = 0. The

(3.2.5b)

function a(z) does not affect Hg(z) and can be freely chosen to shape the response of Hi(z). It should
be chosen such that in the low frequency region, a(z2)Hp(z) cancels with 2~ 2Y' =1 For exact magnitude
cancellation, (e )| must be unity. Since Hg(z) is linear phase, it is necessary that c:(2) has linear phase
in the low frequency region. Comparing these two requirements and the conditions in (3.2.5), we realize
that 3(z) is a suitable candidate for a(z). Indeed, if N' = 2N — 1, H(z) is an ideal highpass filter. In

this case, we have an ideal filter bank, and the polyphase matrix E(z) in Fig. 3.1.1(b) is

B(z) = (——0.%[53(2) (1)) (z;)N z“ﬁf'f(f’ll) - (-—O%if;];(z) —0.5ﬁ2()(5)6§—zi~2N+1> - (329)

With this we get the following expressions for the analysis filters, which we will repeatedly use in this

chapter.

(=N + 27 18(2%))
2 )

PR can be achieved by choosing R(z) in Fig. 3.1.1(b) to be:

R (75 ) (oo ) (RS S e

Hy(z) = Hi(2) = —B(z%)Ho(z) + 274V +1, (3.2.7)

The corresponding synthesis filters can be verified to have the following form:
Fy(z) = —Hy(~2), Fi(z)= Hg(-2). (3.2.9)

This choice of synthesis filters in (3.2.9) ensures that {Fp(z), F1(z)} will be a lowpass/highpass pair if
{Ho(z), H1(2)} is a lowpass/highpass pair. From (3.2.6) and (3.2.8), we have the implementation of the

filter bank shown in Fig. 3.2.1. The structure is similar to a ladder network structure [Bru92].

Remark: Of course, the a(z) in (3.2.3) can be taken as functions different from $(z), as in the case of
[Kim91, Kim91a, Kiy92]. This will provide more freedom in the design. However, by taking them to be
the same, the biorthogonal systems can have some additional useful properties. Therefore, we will only

consider the case when a(z) = 4(z).

3.2.2. Two Useful Approximations

The ideal choice of 8(z) as in (3.2.5) requires infinite complexity. Therefore, we have to design 3(z)

to approximate the conditions in (3.2.5). However the approximation will not change the PR property
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Fig. 3.2.1. Implementation of the proposed biorthogonal filter bank.

because E(z) in (3.2.6) and R(z) in (3.2.8) satisfy R(2)E(z) = 0.5273¥ 11, regardless of the choice
of 3(z). Fig. 3.2.1 shows that the frequency responses of all the analysis and synthesis filters depend
on one single function ((z) only. The frequency selectivity of all four filters depends on how well 3(z)
approximates conditions (3.2.5). This makes the design procedure simple. In the next section, we will
provide two simple but useful approximations which correspond to the following two cases:

1. Stable IIR case: Here, 3(z) is chosen to be a causal stable allpass function so that (3.2.5a) is met
exactly. We design the phase response of the allpass filter so that (3.2.5b) is approximately satisfied.
This leads to a biorthogonal system with causal stable IIR analysis and synthesis filters.

2. Linear phase FIR case: To satisfy the condition (3.2.5b), 8(z) can be chosen as a Type 2 linear phase
function [Vai93] (filter with a symmetric impulse response of even length). The magnitude response
of B(z) is optimized to be as close to unity as possible so that (3.2.5a) is well-approximated. This

leads to a linear phase biorthogonal system.

3.2.3. Additional Properties of the Proposed Filter Banks

In Section 3.1, we have outlined some properties. Properties 1-4 mentioned at the begining of Section
3.1.2 are clear from the above discussion and Property 5 will be discussed later in the Section 3.4. In
addition to these five properties, we have:

1. Double halfband property: In all previous constructions of two-channel PR filter banks, Hy(2)Fy(z)
is a halfband filter, where Hy(z) is not necessary halfband but a factor of a halfband filter. However
in our construction above, one can verify that not only the product Ho(z)Fp(z) but also the filter
Hy(z) is halfband.

2. Poles of filters: In the IR case, notice from Fig. 3.2.1 that there is no feedback loop in both the
analysis and synthesis ends in the ladder network. Therefore the filters have the same poles as those
of B(2?) and stability depends solely on the allpass function 3(z). Moveover in the IIR case if the
allpass filter 3(z) is implemented by using the robust lattice structure [Vai93], the filter bank is
stable even when it is realized with finite wordlength.

3. Robustness to round off noise: The ladder structure shown in Fig. 3.2.1 is similar to the structure

considered in [Bru92]. By using the same reasoning in [Bru92], it can be verified that the round
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off noise in the analysis end is compensated by that in the synthesis end. Combining this with the
structurally PR property, we conclude that the implementation in Fig. 3.2.1 preserves PR even when
all the coefficients are quantized to a finite percision and all the intermediate results are rounded off.
However, if the subband signals are quantized (which is usually the case), this property is lost.

4. Zeros of the filters: We can verify that Fy(z) and Hy(2) in (3.2.9) and (3.2.7) can respectively be

rewritten as:
Fo(2) = (2272VF! = B(22)) Ho(2), Hi(2) = (227241 + (=) Fi(2). (3.2.10)

These factorizations give the filter bank an interesting structure shown in Fig. 3.2.2. From (3.2.10),
it is clear that if B8(z) is FIR, the zeros of Hp(z) are also zeros of Fy(z). Even when 3(z) is an
irreducible TIR transfer function, this is true since Hp(z) is in the form of (3.2.7) and the zeros of
denominator of 3(z?) cannot cancel the zeros of Hp(z). Moreover if |3(e)| < 2, both Fp(e?*) and
Hy(e?*) have the same set of zeros on the unit circle. The same is true for the pair of Hi(z) and
Fi(z). In particular, if Ho(2) has r zeros at z = —1, this implies that Fp(z) has no fewer than r zeros
at the same point. This property is important in the generation of wavelets since for biorthogonal
wavelets, we need both of the analysis and the synthesis wavelets to be regular. By increasing the
number of zeros of Ho(z) at z = —1, our construction ensures that Fy(z) has at least the same
number of zeros at z = —1. This is the property which does not appear in the previously existing

constructions of biorthogonal filter banks.

x(n) ~2N+1

H,@ -——»Vz (A2 27 —B(zz) —H, @

Sy

F@ 2z ) HY?2 = A »IF, (2)

Fig. 3.2.2. Redrawing of Fig. 3.2.1, where Ho(2) = 0.5(z72" + 2713(2?)), and Fy(z) = Ho(-2).
5. Ripple sizes of the filters: Since Hp(z) is a halfband filter and Ho(z) + Fi(z) = 27", we have the
following relationship between the passband ripple 6, and the stopband ripple &,:
bp(Ho) = 65(Ho) = bp(F1) = 65(F1). (3.2.11)
Moreover by using (3.2.10) and the fact that 3(z2) ~ —z~2¥*1 in the high frequency region, we get
8s(Fo) = 365(Ho), 65(Hy) ~ 36,(F1), (3.2.12)

where 20 log3 = 9.5 dB. This property ensures that by designing Hg(z) to have sufficiently high
stopband attenuation, we can ensure that all the other three filters will also have good frequency

selectivity.
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6. Complexity: From Fig. 3.2.1, it is very clear that the analysis and synthesis banks have the same
complexity. Assume that 3(z) has order N. For the IIR case, by using the one multiplier lattice
structure for allpass function [Vai93], we need approximately 2N multiplications, 6N additions, and
5NV delays. For the FIR case, by exploiting the symmetry, we need approximately N multiplications,
2N additions and 3.5N delays. All the operations are at a lower rate. So the analysis (or synthesis)
bank requires N and 0.5N multiplications per input sample for the IIR and FIR case respectively.

7. Near linear phase in the IIR cases: From (3.2.7), since in the passband the magnitude response of
Hoy(z) is approximately one, the transfer function 3(2?) ~ 2~2V+1. Therefore Hy(2) has approxi-

mately linear phase in the passband. Similar arguement is true for H;(z).

3.3. DESIGN PROCEDURES FOR THE TWO CLASSES OF PR FILTER BANKS

In this section, we will discuss the two cases of the approximations of (3.2.5) given in the last section.

Simple design procedures will be given for both cases.

3.3.1. Causal Stable IIR Biorthogonal Filter Banks

In this section, 8(z) in (3.2.6)—(3.2.9) is taken to be the causal stable real allpass function:

Ny —k
An, (2) = 2k=0 AN N k7 (3.3.1)

Ny —k
2 k0 ANy k2

where an, 0 = 1 and ap, & are real. In this case, Ho(z) is a sum of a delay and an allpass function. See
Eq. (3.2.7). It is an IIR halfband filter and has been studied by some researchers [Ans83, Ren87]. Ho(z)
can be made lowpass with large stopband attenuation and small passband ripples by designing the phase

response of the allpass function to approximate (3.2.5b) [Ngu94].

Choice of Ny: From the monotone decreasing phase property [Vai93] of a causal stable allpass function,
we know that the phase of Ay, (22) spans a range of 4Ny7 when w spans a range of 27. But from (3.2.5b),
B(2?) spans a range of 4N or 4(N — 1)7. To make the range spanned by both of the functions equal, we
set N; = N or N — 1 and this results in two classes of causal stable IIR filter banks. Since the derivation
and properties of both of the classes are very similar, in the rest of the chapter, we consider only the case
N; = N (we will point out at those places where the second class has a different property). With this
choice, the analysis filters can be written as

(=2 + 21 A(2)

Hy(z) = 5 . Hy(z)= —An(zD)Hy(z) + 274N+ (3.3.2)

The relationship between the synthesis and analysis filters is the same as (3.2.9).

Additional Properties of the Above IIR Filter Banks:
1. Preservation of zero at aliasing frequency: Substituting z = -1 into the expression of Hy(z) in

(3.3.2), we find that Hy(z) always have a zero at z = —1, independent of the coefficients ay . In
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particular, the zero is preserved even when all ay ¢ are quantized coarsely. This means that one zero
at z = —1 is structurally imposed. This is important in the generation of wavelet bases since one
zero at z = —1 is a necessary condition for the existence of the wavelet functions [Dau88]. Note also
that Hy(z) will always have a structurally imposed zero at z = 1.

2. Low sensitivity: Since there exists low sensitivity lattice structure for allpass function [Vai93], the
filters have low passband sensitivity. Since the halfband property of Hy(z) is structurally imposed,
it has low stopband sensitivity as well.

3. Bump in the transition band: Substituting w = 7/2 into the expression for Hi(e’*) and Fy(e/v)
and using the fact that Ay(—1) = (=1)", we find that |H;(e/)| = |Fo(e?*)] = V2.5 at w = 7/2,
independent of the allpass function Ay(z). This means that |H;(e*)] and |Fy(e’*)| always have
a bump of approximately 4 dB at w = #/2, no matter how we design Ay(z). The width but not

amplitude of the bump can be reduced by increasing the complexity of Ay(z).

Example 3.3.1. 1D Causal Stable IIR Filter Banks: In this example, N = 3. So An(z) is a third order
allpass function. The filter bank has very low complexity: To implement the analysis (or synthesis)
bank, we need only 3 multiplications per input sample! By using the eigenfilter approach for allpass
functions [Ngu94] we optimize the coefficients as such that maximum attenuation in the stopband of
Hy(z) is achieved. The coefficients are obtained as as; = 0.473, a3 o = —0.094, and a3 3 = 0.025. For the
filter Ho(z), the passband edge w, = 0.47 and the stopband egde ws = 0.6m. The stopband attenuation
6,(Ho) = 41.9 dB. The magnitude responses of the all four filters are shown in Fig. 3.3.1(a). From the
plots, relations of ripple sizes in (3.2.11) and (3.2.12) can be verified and it is clear that Hy(z2) and Fp(z)
have the same set of zeros on the unit circle. The bump of approximately 4 dB around 7/2 is clearly
seen. The group delay for Hy(2) and H;(z) is shown in Fig. 3.3.1(b). The filters are approximately linear
phase in the passband and the stopband. u

=3
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Fig. 3.3.1. Example 3.3.1-Frequency responses of the causal stable IIR filter bank: (a)

Magnitude responses of the analysis and synthesis filters; (b) group delays of Ho(z) and H;(z).
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3.3.2. Linear Phase FIR Biorthogonal Filter Banks

In the linear phase FIR case, since Ho(z) is a linear phase halfband filter, it can be designed by employing
the trick developed in [Vai87], viz, by taking 3(z) in (3.2.5)—(3.2.8) to be a Type 2 filter [Vai93] which
has a symmetric impulse response of length 2/N;. In this case, the number of multiplications required to
implement 3(z) is Ny, the same as the Ny-th order allpass function Ay, (2) in (3.3.1). More precisely, let

B(z) have the following form:
Ny
Viz) = vak x (z7 Ntk Nkl (3.3.3)
k=1

where the coeflicients vy, satisfy:
Ny
D =05, (3.3.4)
k=1

so that V(e/%) = 1 and Ho(e’®) = 1. It is well-known that a Type 2 linear phase filter always has a zero
at z = —1. In order to satisfy the condition (3.2.5b) exactly, it can be verified that N; should be equal
to N. By employing the trick in [Vai87], the coefficients v; can be optimized such that the amplitude
response of V(e%) is as close to unity as possible. In this case, the analysis filters are:

(2N + 571V (z%)

Ho(z) = 3 ,

Hi(z) = =V (22)Ho(z) + 24N+, (3.3.5)

Example 3.3.2. 1D Linear Phase FIR Filter Banks: N = 6. To implement the analysis bank, we
need 6 multiplications per input sample, double the number in Example 3.3.1. The Type 2 linear phase
function V(z) is designed by using McClellan-Park algorithm. The coefficients are obtained as v; = 0.630,
vy = —0.193, v = 0.0972, vy = —0.0526, v5 = 0.0272 and vg = —0.0144. For the filter Hy(z), the
passband edge w, = 0.47 and the stopband edge ws; = 0.6n, same condition as Example 3.3.1. The
stopband attenuation 8, (Hy) = 39.2 dB and §,(H1) = 30 dB. The magnitude responses of all four filters
are shown in Fig. 3.3.2. The relations of ripple sizes in (3.2.11) and (3.2.12) can be verified. "

Mognitude Response (dB)

Fig. 3.3.2. Example 3.3.2-Magnitude responses of the linear phase FIR filter bank.

Comparison with Johnston’s Filters: For comparison, we will consider Johnston's design [Joh80] with
nearly the same specifications. The Johnston’s filter 24C in Appendix 7.1 of [Cro83] has §, = 30 dB and
ws = 0.5867. For Johnston’s filter 32D, 6, = 38 dB and w, = 0.586%. To implement the analysis bank,
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we need respectively 12 multiplications and 16 multiplications per input sample for the above two cases.
Thus as compared to 6 multiplications in our filter bank, the Johnston’s design has more complexity than
our design. Moreover, there is reconstruction error (0.1 dB for 24C and 0.025 dB for 32D) in Johnston’s
filter bank.

3.4. IMPOSITION OF MULTIPLE ZEROS AT =

The relation between continuous-time wavelet and discrete-time PR filter bank is well known. A way
to construct the scaling and wavelet functions from the filter coeflicients was first given by Daubechies
in [Dau88]. Starting from the impulse response coefficients ho(n) and hi(n), a pair of continuous-time

functions ¢y, (x) and ¢ g, (x) are constructed such that they satisfy:

b, (z Z ho(n) ¢, (2x — n), (3.4.1a)
b, (z Z hy ()¢, (2x — n). (3.4.1b)
n=0

Here ¢, (x) and ¢y, (x) are respectively called the analysis scaling and wavelet functions. For the
synthesis end, we can write similar expressions for the synthesis scaling and wavelet functions, ¢, ()
and ¥ g, (z). The conditions for the existence of such limit functions were given in [Dau88]. It is always
desirable to have smooth or “regular” limit functions. It was shown that in order to achieve limit functions
of high regularity, we need to have a sufficient number of zeros at the aliasing frequency n. Therefore in

the rest of this section, we will show how to impose zeros at # for the proposed filter banks.

3.4.1. Causal Stable lIR Wavelet Bases

For the purpose of achieving regularity, we impose multiple zeros of Hyp(z) at n. Since the denominator
does not provide any zeros, we consider only the numerator of Ho(z). Except for a delay, the numerator

of Hy(z) can be written in terms of ay  as follows:

N
= aycos(2k —1/2)w. (3.4.2)
k=0
To obtain r zeros at z = ~1, we set
POmed p =0, for i=1, 2 1 3.4.3
e R(w))w:ﬂ_ .o for i=1,2 ..., r—1. (3.4.3)

Note that when ¢ is even, Pg )(7r) is always equal to zero. This proves that Pr(w) always has an odd
number of zeros at w = w. Therefore, we can write r = 2rg + 1. In this case, we obtain a set of r¢ linear
constraints as follows:

N
D anp(l —4k)* 1 =0, fori=1, 2, ..., 0. (3.4.4)
k=0
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The set of linear constraints in (3.4.4) can be satisfied ezactly in the optimization of the phase response

of the allpass function Ay (z) by using the efficient eigenfilter approach [Ngu94], [Che91].

Maximally Flat IIR Wavelets: To obtain a maximally flat solution, i.e., maximum possible number of zeros
at 7 consistent with the constraint that Ho(z) = 0.5(272N 4 271 Ay(2?)), we set o in (3.4.4) as large as

possible. However if rq > N + 1, then we can list the first (N + 1) linear constraints given by (3.4.4) as

follows:
1 1 1 o anp 0
I SR y an,1 0
=11, (3.4.5)
. gV o2V Y TN an.n 0
Vandermonde

where x = 1 — 4k. Since all the x;, are nonzero and distinct, the two matrices on the left hand side
are nonsingular and hence invertible. We get [aypan ... an, N]T = 0 which violates the requirement
that ay o = 1. This proves under the constraint that Ho(z) = 0.5[z72" + 271 Ay(2?)], the filter Ho(z)
can have at most 2N + 1 zeros at 7. Indeed we can show that the maximally flat IIR filter has exactly

2N + 1 zeros at w. To see this, we set ro = N and rewrite the set of N linear equations given by (3.4.4)

as follows:
1 1 e 1 T an,1 1
2 2 2
zi 3 e Ty ) anN,2 1
=—1.1, (3.4.6)
ON-2 _2N-2  _aN-2 ’ .
xl x2 e mN xN aN,N 1

where x5, = 1 — 4k and the fact that ay o = 1 has been imposed. These equations fully determine Ay (z)
(hence all the filters) and there is no further parameter to be optimized numerically. As the matrices are
invertible, the solution for ay ; always exists and it is unigue. Furthermore, it is shown in Appendix 3.A

that an  has the following closed form solution:

N .
(-1)1 /N (20 —1)
P A— — <k<N 4.
CNEZ Tk —1 \k g(2k+2i—1)’ 0k, (347)
where (IZ ) = Zz—vé\%)w The frequency responses of Hy(z) corresponding to N =1, 2, ---, 10 are shown

in Fig. 3.4.1. Note that although these filters have a numerator of degree 4N — 1 (excluding the trivial
delay factor), they have only 2N + 1 zeros at z = —1. This implies that some of the zeros are not
at z = —1 for N > 1 and therefore these IIR maximally flat filters are different from the Butterworth
halfband filters. Moreover they have nearly linear phase in the passband, as justified at the end of Section
3.2 and demonstrated in Fig. 3.3.1(b). For the case of N = 1, one can verify that the solution is a third
order Butterworth filter.

Remarks:
1. If the function 3(z) is taken as (N — 1)-th order allpass filter (ie. N; = N — 1), then we will

get a second class of causal stable IIR wavelet. In this case, under the constraint that Ho(z) =
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Magnitude Response (dB)

L
0 0.1 0.2 0.3 0.4 0.5
Normalized Frequency

Fig. 3.4.1. Magnitude responses of the IIR maximally flat filters of the form
0.5[272N + 271 AN (22)] where Ay(2) is a N-th order allpass function, for N = 1, 2, ..., 10.

05[22 + 271 AN _1(2?)], the process of imposition of zeros at 7 is very similar to the derivation
above. The maximally flat TIR filter Ho(z) of this second class will have 2N — 1 zeros at . The

closed form solution for ay_1,x is given as:

(—_1)_’ji< )f“ (2i+1)

AN-LE= okt 1 ©Ck+2i+1)

1<k<N-1, (3.4.8)

i=1
and ay_10 = 1.

2. Notice that for a PR system, if we interchange the analysis and synthesis filters, the PR property
is retained. In many applications such as coding, compression, storage and approximation, the
regularity of the synthesis functions is more important [Coh93]. Thus we can choose the wavelet
with higher regularity among ¥y, (z) and ¥ g, (x) as the synthesis wavelet.

3. As the proposed IIR wavelets are generated from rational transfer functions, there is an efficient

recursive way to compute the limit functions [Pho95d].

Example 3.4.1. Causal IR Wavelets: We generate the limit functions, ¢m,, ¥u,, ¢r,, and ¥p, corre
sponding to the filter bank in Fig. 3.1.1(a). To generate the analysis/synthesis scaling and wavelet
functions, we use the cascade algorithm in [Dau88] for eight iterations. We consider the following two
cases:

(i) No linear constraint is set, Hg(z) has only one zero at w. The analysis and synthesis filters are the
same as those in Example 3.3.1. For the analysis bank, the scaling and wavelet functions, ¢y, and
¥, , are respectively shown in Fig. 3.4.2(a) and (b). The scaling and wavelet functions corresponding
to the synthesis bank, ¢z, and ¢, are shown in Fig. 3.4.2(c) and (d).

(ii) As a comparison, we also generate the scaling and wavelet functions corresponding to the IIR max-
imally flat filters {(@mae and Y¥pma,) for N = 3. In this case, the filter Hy(z) has seven zeros at =.
The limit functions are shown in Fig. 3.4.3. For a better comparison on smoothness, in Fig. 3.4.4
we show a zoom-in for Fig. 3.4.2(a) and Fig. 3.4.3(a). We see that the limit functions in Fig. 3.4.3

are more regular than the functions shown in Fig. 3.4.2. ]

3.4.2. Linear Phase FIR Wavelet Bases
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Fig. 3.4.2. Example 3.4.1(i)-Limit functions generated by using the IIR filter bank in
Example 3.3.1 (Hy(z) has one zero at ): (a) Analysis scaling function; (b) analysis

wavelet function; (¢) synthesis scaling function; (d) synthesis wavelet function.

To impose multiple zeros at n for the linear phase FIR case, the procedure is very similar to that
given above. Another set of linear constraints can be obtained and incorporated in the procedure of

optimization. It can be verified that for this case, Ho(z) always has an even number of zeros at .

Maximally Flat Linear Phase FIR Wavelets: The FIR maximally flat filters have been studied by a number
of researchers [Her71, Gum78, Dau88, Ans87]. In [Dau88, Ans87], a maximally flat halfband FIR filter is
used to construct compactly supported maximally flat wavelets. In our linear phase FIR filter bank, if all
the freedom is used to impose zeros at 7, we will arrive at the same solution as that in [Dau88, Ans87].
The closed form solution for FIR maximally flat halfband filters was in [Gum?78, Ans87] as:

(=NFRTR(N + 1/2 =)

TN —RI(N -1+ R)(2k—1)° (3.4.9)

Vg

Differences Between Our Construction and Those in [Ans87, Dau88]: In [Ans87], Hy(z) is taken to be a
factor of a maximally flat halfband filter. In [Dau88], power spectral factorization is considered. However,
in our linear phase structure, Hy(z) is taken to be this halfband filter itself, and not a factor. Since the
Hy(z) constructed in [Dau88] is a power spectral factor of the Hy(z) in our structure, our linear phase

scaling function ¢rp(z) is related to that constructed by Daubechies in [Dau88], ¢p(z) as:

¢rp(z) = ¢p(z) * ¢p(—x), (34.10)
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Fig. 3.4.3. Example 3.4.1(ii)-Limit functions generated by using the IIR maximally
flat filter bank (Hg(z) has 7 zeros at 7): (a) Analysis scaling function; (b) analysis
wavelet function; (c¢) synthesis scaling function; (d) synthesis wavelet function.

1.1 F

0.7 1 1 L . ! . T
45 4.7 4.9 5.1 53 55

Time

Fig. 3.4.4. Example 3.4.1-Zoom-in for Fig. 3.4.2(a) (solid line) and Fig. 3.4.3(a)

(dotted line) demonstrating the improved “regularity” obtained by imposing zeros at .

where * denotes convolution and ¢}, denotes the complex conjugate of ¢p. From (3.4.10), it is clear
that the regularity of ¢pp(x) is twice that of ¢p(xz). However the order (and the number of zeros at
7) of Hp(z) in our construction is twice that of Hy(z) in the construction in [Dau88]. Comparing the
complexity, both of the constructions have approximately the same number of multiplications (because

in our construction, linear phase property can be exploited).

Example 3.4.2. FIR Symmetric Wavelets: In this example, we construct the limit functions corresponding

to the filter bank in Fig. 3.1.1(a) for the linear phase FIR case. The cascade algorithm is used for eight
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iterations. We consider two cases:

(i) First, Ho(z) is designed such that no linear constraint other than (3.3.4) is satisfied, therefore it has
two zeros at 7. The analysis and synthesis filters are the same as those in Example 3.3.2. The limit
functions (¢n,, ¥u,, ¢r, and Y ) are respectively shown in Fig. 3.4.5(a), (b), (¢) and (d).

(ii) For a comparison, we show the limit functions of the maximum flat case {@may and V¥, ) for N = 6.
In this case, Ho(z) has twelve zeros at 7. The plots are shown in Fig. 3.4.6. It can be verified that

the limit functions in Fig. 3.4.6 are smoother than those in Fig. 3.4.5. ]

1.5

1.5

-1.0

(@)

T

Time

(b)

15 25

Time

-1.0

(c)

15

Time

(e

10

20 30

Time

Fig. 3.4.5. Example 3.4.2(1)-Symmetric limit functions generated by using the FIR filter
bank in Example 3.3.2 (Hy(z) has 2 zeros at 7 ): (a) Analysis scaling function; (b)
analysis wavelet function; (c) synthesis scaling function; (d) synthesis wavelet function.

3.5. MAPPING INTO 2D QUINCUNX PR FILTER BANKS

In this section, we will generalize the 1D framework discussed in Section 3.2 to the 2D case. We will
focus on the quincunx subsampling case which has the subsampling lattice shown in Fig. 3.5.1. Notice
that the dilation matrix has determinant 2. The corresponding maximally decimated filter bank has only
two channels. Furthermore it represents the simplest nonseparable subsampling lattice.

In the 2D case, we know that the desired passband supports of the filters depend not only on the

lattice but also on the choice of dilation matrix M [Vis88]. In the rest of this section, we will consider

M = G _11> . (3.5.1)

ko = (8) Ky = (é) (3.5.2)

The coset vectors are respectively:
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Fig. 3.4.6. Example 3.4.2(ii)-Symmetric limit functions generated by using the FIR
maximally flat filter bank (Ho(z) has 12 zeros at 7): (a) Analysis scaling function; (b)
analysis wavelet function; (c¢) synthesis scaling function; (d) synthesis wavelet function.

With this M, the ideal supports for alias free decimation, SPD(mM~T) [Vai93] is shown in Fig. 3.5.2,
where the diamond and diamond-complement, Qg and 4, correspond to the low frequency and high
frequency regions respectively. One can verify that M defined in (3.5.1) has its eigenvalues \; equal to
++/2 and M? = 2I. It has a dilation in both the directions. Therefore, M satisfies the conditions for a
well-behaved matrix defined in [Kov92]. Given the dilation matrix M as in (3.5.1) and the coset vectors
in (3.5.2), the simple delay chain system and the noble identities are shown in Fig. 3.5.3(a) and (b)
respectively. Although the discussion in this chapter is mainly on the quincunx subsampling case with
the dilation matrix M and the coset vectors k; defined above, we will provide a design example in the
last section to show that the method discussed in this section can be easily generalized to any 2D system

with decimation matrix M having [det M] = 2.
3.5.1. A 1D to 2D Mapping

In this subsection, we will first give a 2D mapping and then apply the mapping to the framework developed
in Section 3.2. Given any 1D bijorthogonal systems with the polyphase matrices of the form in (3.2.6)

and (3.2.8), we will use the following transformation on the polyphase components:
1. First replace the 1D transfer function 3(z) with the separable 2D transfer function 8(z0)8(z1).
2. Replace all the remaining 1D delay z~! with the 2D delay 25 lzf L

This results in nonseparable analysis and synthesis filters as we will see. Under this transformation,
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Fig. 3.5.1. Quincunx subsampling Fig. 3.5.2. Ideal supports for alias-free

lattice. decimation in quincunx case.

x(n oh )

D—VM h*M

—»*M fzpz) o — W f(zz ,1 —-—-VM—»

(b)

| 2,2, ) V7] S — A fzz,2,2) e

Fig. 3.5.3. Some details for the quincunx decimator: (a) Delay chain; (b) noble identities.

the polyphase matrices E?P(zg, z1) and R?P (29, z1) of the 2D system can be written respectively as:

(
0 (z021)™N  B(20)8(z1)
o #1) —0.58(20)B(z) 1 0 (z02) 72N *1
( 0.5(2021)" N 0.58(20)B(21)

) ) (3.5.3)
—0.5(2021) "N B(20)B(z1) —0.58%(20)3%(21) + (2021) 2N F1

R2D| ) ((2021)_2N+1 ‘ﬂ(zo)ﬂ(zl))( 1 0)
» 0 (Zozl)-N O5ﬂ(z0)ﬁ(z1) 0.5

((Zozl)—w+1 —0.58%(20)8%(21) —0-5%3(20)/3(21))

0.5(z021) N B(20)8(21) 0.5(zpz1) ™
From the above two equations, we have the implementation of the 2D PR filter bank as Fig. 3.54. By

(3.5.4)

using the noble identities in Fig. 3.5.3, we can write the analysis and synthesis filters as:
Nt 2582021 )B(2021)
2 ¥
Hy(20,21) = —B(z021 ") Bl2021)Ho(20, 21) + 25 *V T, (3.5.5a)

Hy(z0,21) =
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Folzg,21) = —Hi(~z20, ~21), Fi(29,21) = Ho(—20, —21). (3.5.5b)
x(ngn,) *M N TN
— (z,2,) ? - + - T(Z"Z‘) —{—-P*M
z_; Blzy) Bz ) -Blzo) Bz} | |B(z) B(zy) ~Blzy) Blzy) Z—;
A4 ————i» ez L —L—>—i>(zoz1)‘“’ - AM
A
= E®(z,.2,) - = Rz, z,) = o)

Fig. 3.5.4. 2D biorthogonal filter bank obtained from Fig. 3.2.1 by mapping.

Comparison of our Transformation with Those in [Ans87, Che93, Coh93, Tay93]: McClellan’s transformation
is used in [Coh93, tay] to obtain a FIR maximally flat halfband filter. The transformation proposed in this
chapter differs from McClellan’s transformation in the sense that the former operates on the polyphase
components while the latter operates directly on the filter. In [Ans87, Che93], the authors obtain a 2D

filter bank from 1D by employing the following transformation:
E7 (20, 21) = Ei(20)Eij(21), (3.5.6)

where E; ; is the ij-th element of E. We see that in our transformation E%g(zo, 21) # By 1(20)E1,1(21).

Therefore our mapping is different from that in (3.5.6).

3.5.2. Properties of the Proposed 2D Filter Banks

Properties 1-5 in Section 3.2 continue to hold after minor modifications to suit the 2D context. In

addition, the 2D filter bank satisfies the following properties:

1. Double halfband property: 1t is easy to see that Hy(zo, z1) satisfies Ho(zo, 21) + Ho(—20, —21) = 20—21\7
and Hy(zo, 21 )Fo(z0, z1) satisfies a similar property. This is the extention of the 1D double halfband
property in the 2D quincunx case.

2. Stability of the 2D analysis and synthesis filters: If the 1D transfer function £(z) is causal then so
are the functions 3(z9)8(21) in Fig. 3.5.4. That is 8(20)8(z) is a first-quadrant filter (the impulse
response is zero unless ng > 0 and ny > 0). If B(z) is BIBO stable, then so is 3(z0)8(21) so that
the polyphase matrix in Fig. 3.5.4 is also BIBO stable. Since the analysis filters are obtained
from this stable structure, these filters are guaranteed to be BIBO stable. However we see that the
term B(zozfl) has entered the expressions for the analysis filters because of the noble identities,
see Fig. 3.5.3(b). It can be shown that this violates the condition for the so-called first-quadrant
stability (pp. 166 of [Bos82]). This is explained by the fact that the analysis filters are not first-

quadrant filters, even though BIBO stable. This is consistent with the observation that the quincunx
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decimator M in (3.5.1) has the negative entry —1. Indeed, the expression y(n) = xz(Mn) means
y(no,n1) = z(ng + ny,np — ny) so that there is a time-reversal operation buried in the decimation
process. The same remarks apply for the synthesis filters, that is the 2D synthesis filters Fp(zo, 21)
and Fy(zg, z1) are BIBO stable even though they are not first-quadrant filters.

. PR is preserved.

. If the 1D lowpass filter Ho(z) has k zeros at =, then the frequency response of Hy(e/“°, e3“1) can be

written as
Ho(er“’O’ ej“’l) = (1 -+ e_jw zw]‘)kpl(wo, wy) — (1 + e"jw —p s )kpg(wo,wl), (3.5.7)

where |Pi(m, )| and |Py(mr, 7)| are finite quantities. The proof of (3.5.7) is given in Appendix 3.B.
Notice that both of the factors [1 + e 0-5/(wotwi)] and [1 4 ¢~ 0-33(Wo—w142mM)] are zero at (m,7).
Furthermore one can verify that all the mixed partial derivatives satisfy

8i+l

—————Hy(e?*°, e7*1)
3 l ?
Jw§ows

I 0, for 1+1<k. (3.5.8)

From (3.5.8), we conclude that the total derivatives [Lan87]

k3

d"Ho(m,m) = ; (?)dwédw?‘i%—%?:?Hg(w,w) =0, for n<k. (3.5.9)
According to [Dau93], (3.5.9) is a necessary condition for the regularity of 2D wavelet. The necessary
and sufficient condition is still unknown.

. In the FIR case the linear phase property of the analysis and synthesis filters is preserved.

. In the IIR case, the 2D analysis and synthesis filters have a line of zeros in the frequency plane at
wo =0 or at wy = 7.

Proof: Substituting zp = —1 into the expression for Hp(zp, z1) in (3.5.5a) and using the fact that
B(z021) is allpass, one immediately finds that Ho(—1,2z1) = 0, V 2. Since Fy(zo,21) contains
Ho(z0,21) as a factor, Fy(—1, 21) = 0. Similarly, we can prove that Fy(1,2) = H{(1,2;) =0, V 2;.

. The lowpass/highpass characteristics of the frequency responses of the filters are preserved.

Proof: Assume that 3(z) satisfies the ideal conditions in (3.2.5). Then we have

—2N+1 w w B
B(z021) = (20%1) v for == € [0,m/2]; (3.5.10a)
—(Z()zl):%, for ﬂ)—;ﬂ < (7(/2771'}.
1\ —2N+41 o —a .
Bl = § Goer )TE L for S e 0,m/2) (3.5.106)
! ~(z027 )T, for £ € (n/2, 7).
By using the above equations, we find that 3(z021)8(z027 ") is equal to z5 >V ™! when (wo,w;) € €0

~2N+1

and equal to —z; when (wp, wy) € §25. This proves that Hy(zp, 21) has the ideal diamond support

9. Similarly it can be shown that Hi(zp, z1) will have the support of ideal diamond-complement.
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Thus when the conditions in (3.2.5) are well-approximated by the 1D transfer function 8(z), the
response of the 2D filters will be good.

8. Low Complexity: Though the 2D analysis and synthesis filters are nonseparable, the polyphase
components are separable. Hence the complexity of the 2D filter bank is comparable to that of a

separable filter bank. More precisely, it is equal to twice the complexity of the 1D transfer function

B(z).
3.5.2. Examples

Example 3.5.1. 2D IIR Filter Banks: In this example, we transform the 1D filter bank in Example
3.3.1 into the 2D case by using above mapping. Since N = 3, the allpass function As(z) needs only 3
multiplications. Since the complexity of the 2D analysis (or synthesis) bank is equal to twice that of
As(z), we need only 6 multiplications per input pixel to implement the analysis (synthesis) bank. The
responses of Hg(zo,21) and Hi(zp, z1) are shown in Fig. 3.5.5(a) and (b) respectively. The supports of
the two filters are diamond and diamond-complement respectively as desired. The stopband attenuation
6s(Hp) ~ 42 dB and 8,(H;) ~ 32 dB. Again, we see that H; is about 10 dB worse than Hy in the
stopband. The line of zero of Hy at wp = 0 is clearly seen in Fig. 3.5.5(b). [ |

Fig. 3.5.5. Example 3.5.1-Magnitude responses of the PR IIR analysis
bank: (a) Ho(zo,21); (b) Hi(20,21). The normalized frequency f; = w;/2m.

Example 3.5.2. 2D FIR Filter Banks: In this example, the 1D filter bank in Example 3.3.2 is transformed
into the 2D case. To implement the 2D analysis (or synthesis) bank, we need 12 multiplications per
input pixel. The magnitude responses of Ho(zo, 21) and Hi(zo, z1) are shown in Fig. 3.5.6(a) and (b)
respectively. The stopband attenuation 6,(Hy) =~ 40 dB and §,(H;) ~ 30 dB. m

3.6. CONCLUDING REMARKS

In this chapter, we have derived a framework for a new class of two-channel biorthogonal filter banks.
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Fig. 3.5.6. Example 3.5.2-Magnitude responses of the
PR FIR analysis bank: (a) Ho(zo,21); (b) Hi(z0,21).

The filter banks under the framework allow a structurally PR implementation as in Fig. 3.2.1. It is
interesting that we can arrive at precisely the same ladder in Fig. 3.2.1 by using the novel approach in
[Bru92] developed for a totally different application, namely cancellation of roundoff error. The proposed
systems have very low complexity. Filter banks of high frequency selectivity can be achieved by controlling
a single transfer function 3(z) in Fig. 3.2.1. Two different choices of 3(z) lead to causal stable IIR and
linear phase FIR. filter banks respectively. The properties of the proposed filter banks were discussed in
detail. We showed that zeros at aliasing frequency can be imposed. Two new types of I[IR maximally flat
filters were derived and the solutions were given in closed form. In addition to PR property, these IIR
filters have nearly linear phase in the passband. Furthermore, we also mapped the 1D filter banks derived
in this chapter into 2D cases. The design of a 2D biorthogonal (stable ITR or linear phase FIR) filter
bank reduces to the design of a single 1D transfer function. The new transformation preserves many of
the properties of the 1D systems. Before we conclude the chapter, we would like to provide an example
to demonstrate that the mapping in Section 3.5 can be easily generalized to arbitrary dilation matrix M

with determinant equal to 2.

Generalization of Ladder Structure to the M-Channel Case: In [Pho%94a], we generalize the robust ladder
structure in Fig. 3.2.1 to the more general M-channel case. Some successful design examples are given
for the FIR case. However in the IIR case, the resulting filters will always have bumps in the stopband

which is undesirable in most applications.

Example 3.6.1. 2D IIR Filter Banks: The 1D prototype filter bank is taken to be that in Example 3.3.1.

The dilation matrix and the coset vectors are respectively:

M—_—G’ 1) k0=<8> k1=<f>. (3.6.1)

With the above matrix and coset vectors, the ideal passband support for Ho(zo,21) is SPD(zM~T),

which is shown in Fig. 3.6.1 (shaded area). By using the transformation introduced in Section 3.5, we
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find that the polyphase matrices in this example are the same as those in Example 3.5.1. Thus it also
has very low complexity. The only differences are the dilation matrix and the coset vectors. With the M
and k; chosen as (3.6.1), the responses of Hy(zp, z1) and Hi(zq, 21) are shown in Fig. 3.6.1(a) and (b).
We see that Hy and Hi have approximately the desired support. ]

Fig. 3.6.1. Ideal supports for alias-free decimation for M defined in (3.6.1).

Fig. 3.6.2. Example 3.6.1-Magnitude responses of the PR analysis bank
with the decimator M defined in (3.6.1): (a) Ho{z0,21); (b) Hi{z0,21)-

3.7. APPENDICES
Appendix A. Maximally Flat IIR Solutions

In the following, we will prove that the coefficients of the maximally flat IIR solutions are given in (3.4.7).
It is shown in [Gum?78] that there exists closed form solution for ay i satisfying system of linear equations:
N

14+ ) anpzim =0, for r=1,2 ..., N. (3.4.1)
k=1
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With some modification, the solution to (3.4.6) can be written as:

1 k—1 l‘% N 2_1
—i j
Nk = —;;; II x3 - 22 II z? — 2%’ (3.42)

k=i gyl 7

where z; = 1 — 4k. Substituting the value for z; into the equation, we find that

k—1 2 P
1= Tk et (2i—1)
e H 4k % 1) (3.4.3a)
N 2 N .
z; —1 (N) H (2 - 1)
Il o=~ BEx2 1) (3.A.3b)
j=kt1 T3 T %k k Pl 2k +25 —1)

Combining (3.A.3a) and (3.A.3b), we get (3.4.7).

Appendix B. Preservation of Zeros at Aliasing Frequency

We will prove the Property 4 in Section 3.5.1 in this appendix. Supposing that the 1D filter Hy(z) has k

zeros at 7, then we have
&7 Ho(e?) = e(—2N+1jw B(e9) = (1 + ej“’)kp(ej“’), (3.B.1)
where |p(—1)| is a finite nonzero constant. From (3.5.5a), we have
e Hy(ew0, e71) = el 2N+ 1)jwo ﬁ(ej(w0+w1))ﬁ(ej(‘*’O’“wl)). (3.B.2)

From (3.B.2), e/“° Hy(e?“?, €7*1) can be rewritten as

wo twi
2

e30 Fy (630, 1) = (edlwo—n)) <e(—2N+1)j I 5(€j(wo+w1>))
(a1 g (ﬁ(ej(wo—m ) — e(-2N+ 1) ) (3.B.3)

By using (3.B.1) and the fact that 3(e’*) is of period 2w, we get (3.5.7).
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4

Paraunitary Filter Banks over Finite Fields

4.1. INTRODUCTION

Filter banks (FB) have found many successful applications in the subband coding of audio, image and
video signals [Woo091, Mal92, Vai93, Fli%4, Vet95, Tek95]. Figs. 1.1.1 and 1.2.1 show respectively an
M-channel FB and its polyphase representation. For the convenience of discussion, we reproduce these
figures in Fig. 4.1.1. Despite the success of real or complex FBs in various applications, little attention has
been paid to the case of finite fields. Even though in most of the applications the input is a digital signal
which has a finite number of quantization levels, FBs from real or complex field have been used. FBs over
finite fields have the advantage that all the roundoff error and the coefficient quantization error can be
eliminated completely. In addition, FBs in finite fields have the potential applications in cryptography,
in the theory of error-correcting code, and in the coding or analysis of halftone images [Vai90a, Co094,
Swan95]. While these applications still remain to be explored, the immediate purpose of this chapter is

to study the theory of PU FBs in finite fields.

4.1.1. Previous Work on Finite Field Filter Banks

The generalization of PU FBs to the case of GF(2) was first done in [Vai90a]. The author showed that
even though many properties of PU FBs in complex field continue to hold in the case of GF(2), there
were some unexpected properties. Unlike the conventional PU FBs, it was shown that there are PU FBs
over GF(2) that cannot be decomposed into degree-one building blocks. In [Co094], the authors used
the alias cancellation (AC) matrix approach to study the theory of FBs over finite fields. In order to
obtain PR FBs in finite fields using the AC matrix approach, the authors needed the existence of M-th
root of unity in GF(q) for a M-channel FB over GF(q) (which is not always possible}. Because of this
limitation, the authors in [Co094] are unable to obtain M-channel PR FBs over GF(q) when M > ¢. In
[Swan95], the authors proposed a new binary field transform as an alternative to the DFT over GF(2).
Using the new transform, the authors were able to define bandwidth, vanishing moments, and spectral

content in the filters over GF(2). The application of FBs in G'F(2) to the analysis of binary images
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Fig. 4.1.1. (a) M-channel maximally decimated filter bank and (b) its polyphase representation.

was also demonstrated. In [Xia95], the author related the theory of finite field filter bank to the theory
of error correcting codes. The application of finite field filter banks to the problem of partial response

channel was also studied.

4.1.2. Chapter Outline

Our aim in this chapter is to study theoretical aspects of FBs in finite fields. Our presentation will go as
follows: In Section 4.2, we will discuss some basic properties of unitary matrices in GF(2). The GF(2)
case are shown to be very different from the complex case. Despite all the unusual properties, we can prove
that all unitary matrices can be expressed as a product of permutation matrices and Householder-like
matrices. PU matrices in GF(2) are studied in Section 4.3. In Section 4.4, we will derive the most general
degree-one building block for PU matrices in GF(2), and derive the conditions under which arbitrary PU
matrices in GF(2) can be factorized into these building blocks. A degree-one reduction algorithm will
be given. We will also show that there are PU systems in GF(2) that cannot be expressed in terms of
these building blocks! We will establish new factorization theorems for PU matrices in Section 4.5. The
new theorems involve a building block of degree two. However there are PU systems which cannot be
decomposed into any combination of these degree-one and degree-two building blocks. The conventional
lapped orthogonal transform (LOT) has been studied in detail [Mal92]. In Section 4.6, we will study the
LOT in GF(2). We will show that LOTs in GF(2) can always be factorized in terms of the degree-one
and degree-two building blocks. State-space representation of PU systems in GF(2) will be considered in

Section 4.7. The implementations based on the factorization are shown to be minimal in terms of delay
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elements. Moreover we will show that the well-known LBR lemma [Vai93] cannot be extended to the
GF(2) case. In the last section, the theory of PU systems in GF(2) will be extended to the case of GF(q)
for prime ¢ > 2.

Ty = 0, the vector space

Chapter Related Definitions: In finite fields, since a nonzero vector v can have v
of all M-dimentional vectors is not an inner-product space. Hence orthogonality is not well-defined.
However for simplicity, in this chapter we will borrow the jargon from the theory of convolutional codes
[For70, McE95]. Two vectors that satisfy u’v = 0 are said to be orthogonal and matrices that satisfy
ATA =1 will be called unitary matrices. A rational matrix in finite fields that satisfies ET (2 "1E(2) =1

is called a PU matrix. In this chapter, the vector e; denotes the i-th column of the identity matrix 1.

4.2. UNITARY MATRICES OVER GF(2)

For simplicity, we assume that all the matrices in this section are M x M square matrices. The result for
rectangular matrices can be obtained in a similar manner. In the first part of this section, we will study
some basic properties of unitary matrices over GF(2), which we are going to use throughout the chapter.
In the second part, we will show that all unitary matrices can be factorized by using some basic building

blocks similar to the Householder transformation.

4.2.1. Basic Properties of Unitary Matrices

In GF(2), a matrix A is said to be unitary if
ATA =1 (4.2.1)

One important property of unitary matrices which we are going to use repeatedly later is:
Fact 4.2.1. None of the column (or row) vectors of a unitary matrix in GF(2) can have an even number
of 1. n

It is not difficult to see that if A; and Ay are unitary, so is the product Aj;A,. Post-multiplying
(4.2.1) by A~!, we obtain that A~' = AT. Thus if A is unitary, its inverse is simply its own transpose.
Pre-multiplying A~! = AT by A, we get AAT = I. Summarizing the results, we have shown that the
following are equivalent: (i) A is unitary, (i) ATA =1, (iii) AAT =1, and (iv) A~! = AT,

From the above discussion, we see that unitary matrices over GF(2) enjoy many properties similar
to unitary matrices over the real or complex field. However there are some differences. For example, it is
well-known that in real or complex field a matrix is unitary if and only if it has the property of energy
conservation [Vai93]. That means, A is unitary if and only if uTATAu = u'u for all u. In GF(2), there

are non unitary matrices that satisfy ufATAu = u'u for all u. To explain this, note that

uTBu = Eululbu -+ Zuiuj (bij + bﬂ) (4.2.2)
!

i>j
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For any symmetric matrix B over GF(2), the above equation reduces to u’Bu = >, wby. Thus any
symmetric matrix with b;; = 1 will satisfy u” Bu = uTu. If A is such that all columns have odd number
of nonzero elements, then AT A is symmetric with diagonal elements = 1. Even though A is not unitary,
we have uT AT Au = uTu for all vectors u. For unitariness of matrices in GF(2), we need a stronger
condition as follows:

Fact4.2.2. If uT ATAv = u”v for all possible vectors u and v, then A is unitary. ]
Proof: Let u and v be respectively the unit vectors e; and e; defined in Section 4.1. If el AT Ae; = e?ej

for all ¢, 7, then we have

e e
el r el
. A A[e() e ... eM_l] = . [eo e; ... eM_l]. (4.2.3)
elr-1 ehr_1
Since [ep e; ... ep_1]=1, it immediately follows from the above equation that ATA = 1. [ ]

Fact 4.2.3. If A is a unitary matrix over GF(2), then none of the columns (or rows) can have all elements
equal to unity.
Proof: Let A =[ayp ay ... ap-_1] Suppose agis a column vector with all elements equal to unity.
Since alag = 0 for i # 0, we conclude that a; must have an even number of unit elements, which is a
contradiction to Fact 4.2.1! [
Combining Facts 4.2.1 and 4.2.3, we conclude that for any M x M unitary matrix with M < 3, the
column has only one nonzero element. Therefore any M x M unitary matrix with M < 3 must be a
permutation of the identity matrix. As we will see later in this section, Fact 4.2.3 is very useful in the
factorization of unitary matrices. Before we derive the factorization theorem for unitary matrices, we
would like to introduce the following building block:
Fact 4.2.4. The matrix U =1 + uu”? with u”u = 0 is unitary. ]
The above fact can be proven by direct computation of UTU. Moreover it can be verified that U
is its own inverse. As we will see next, the building block in Fact 4.2.4 has a similar function as the

Householder transformation.

4.2.2. Factorization of Unitary Matrices over GF(2)

In this section, we will show how to parameterize all M x M unitary matrices. In the real field, all unitary
matrices can be written as a product of planar rotations. Since the planar rotations involve sines and
cosines, we cannot attempt the same approach in the finite field. Instead, we will use an approach similar
to the Householder factorization. In real or complex field, the Householder transformation is a matrix

of the form (I — 2\}’}’:) [Hor85]. In GF(2), since all the computations are performed modulo 2, there is

no such Householder transformation in GF(2). However, we will show that we can capture all unitary
matrices using the building block U introduced in Fact 4.2.4. As we have pointed out above, all M x M

unitary matrix with M < 3 must be a permutation of the identity matrix, so only M > 3 is of interest
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in the discussion of this section. Before we derive the factorization theorem for M > 3, we will show two

lemmas which are crucial in this context.

Lemma 4.2.1. Let v be a vector over GF(2) such that vI'v =1 and vp = 0. Then
I+wwiv=ey, and vII+wwl)=el, (4.2.4)

where w =v +ep, andeg = [10 ... 0]7. =

The above lemma can be proved by direct substitution. Note that the vector w has w’w = 0 so that
(I + ww7) is unitary (by Fact 4.2.4). The function of (I + ww7) is similar to the Householder matrix
in the real or complex case. The matrix (I + ww?) will transform the vector v into the vector eg. It is
not difficult to generalize the result of Lemma 4.2.1 as follows: If v is a vector such that vI'v = 1 and
v; = 0, then it can be shown that the matrix (I + ww’) with w = v + e; transforms the vector v into

e;. As a consequence of Lemma 4.2.1, we have the following:

Lemma 4.2.2. Let A be M x M unitary over GF(2) with Ago = 0. Define the vector w = ag + eg where
ag is the 0-th column of A. Then w”w =0, and

1 0
A=(T+wwl) [0 B} , (4.2.5)
where B is (M — 1) x (M — 1) unitary. u
Proof: Since A is unitary with Agp = 0, the vector ag satisfies the conditions in Lemma 4.2.1. Applying
the result of Lemma 4.2.1, we have (I + ww )ag = e;. Thus
(I+wwh)A =[e C], (4.2.6)

where C is M x (M — 1). Since both A and (I+ww7) are unitary, the right hand sight of (4.2.6) is also
unitary. Thus the first row of C contains only zeros. Inverting (I +ww?) in (4.2.6), we immediately get
(4.2.5). =

With the above two lemmas, we are now ready to prove the main factorization:

Theorem 4.2.1. Factorization of Unitary Matrices in GF(2): An M x M matrix A over GF(2) (with

M > 3) is unitary if and only if it can be factorized as:
A=PyUyPu_1...PsU4P;3, (4.2.7)

where the unitary matrices U; = I +w;u’ with u/u; =0, and P; are permutations of identity matrix. m
Proof: The ‘if’ part is self-evident. To prove the ‘only if’ part, assume that A is unitary. If Ag # 0,
we can apply a row permutation such that the (0,0)-th element is zero. This is always possible because
of Fact 4.2.3. Then the factorization in Lemma 4.2.2 can be applied. Repeat the permutation and

factorization operations on the smaller unitary matrix B. Continuing the process, we can successively
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generate unitary matrices of smaller and smaller size until we get a 3 x 3 unitary matrix, which itself is a

permutation of the identity matrix. Note that the permuta