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Abstract 

Organic species are important constituents of tropospheric particulate matter in 

remote, rural, and urban areas. Such aerosol can be primary (emitted in the particle phase 

as solids or liquids) or secondary (formed in situ as condensable vapors) in nature. 

Secondary organic aerosol (SOA) is formed when products resulting from the gas-phase 

oxidation of a parent organic species partition to the particle phase. This partitioning can 

occur via condensation onto existing inorganic aerosol (heterogeneous-heteromolecular 

nucleation), absorption into an existing organic aerosol, dissolution to the aerosol 

aqueous phase, or homogeneous-heteromolecular nucleation. 

SOA yield is defined as the amount of SOA formed per the amount of a parent 

organic species that is oxidized. This yield depends functionally on stoichiometric and 

partitioning coefficients for each of the oxidation products formed and the total amount 

of organic aerosol mass available to act as absorptive media. Appropriate yield 

parameters are developed for a series of parent organics using smog chamber 

experiments. The effects of parent organic structure and the oxidizing species on SOA 

yield are also examined during the smog chamber experiments. Such yield parameters 

are used to model SOA formation from the oxidation of biogenic organic species on a 

global and annual scale. Yield parameters can also be used to define a new concept, the 

incremental aerosol reactivity for parent organic species, which is a convenient way of 

ranking parent organics in terms of their SOA-forming potentials. 

Efforts to improve the simulation of SOA formation in the California Institute of 

Technology three-dimensional air quality model are also described. The Caltech 

Atmospheric Chemistry Mechanism was designed to predict concentrations of the highly 
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functionalized secondary organic oxidation products capable of leading to SOA. A 

module that treats formation of SCiA thermodynamically is used to predict the 

distribution of these products between the gas- and aerosol-phases. The new mechanism 

and thermodynamic module will used to simulate a smog episode that occurred in 1993 in 

the South Coast Air Basin of California. 
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Introduction 
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The troposphere is a complex mixture of both naturally occurring and 

anthropogenic species in both the gas- and the aerosol (liquid or solid particles dispersed 

in the background gas) phases. While species such as molecular oxygen, molecular 

nitrogen, and a few noble gases dominate the composition profile of the troposphere, 

many trace species are also constituents of the mixture called air. Urban, regional, and 

global air quality issues are of interest to atmospheric scientists because of the 

detrimental effects associated with many of these trace constituents of the tropospheric 

system. Methods used to increase our understanding of atmospheric chemistry can be 

laboratory-based, field-based, theoretical, or computational. While laboratory-based 

studies allow for investigation of the fundamental physical and chemical processes that 

occur in the atmosphere, field-based studies allow for identification of the species and 

phenomena that are dominant in the real world environment. Theoretical studies attempt 

to explain some of the laboratory and field observations based on new or expanded 

concepts. Computational studies allow atmospheric scientists to include laboratory 

measurements in an air quality model to see if the model can match field observations at 

a given location and time. 

Trace gases in the atmosphere have a variety of molecular components. Nitrogen- 

containing species include the oxides of nitrogen (NO and NO2), peroxy acyl nitrate 

compounds (PANS), ammonia (NH?), nitrous oxide (NzO) and organo-nitrate compounds. 

Nitrogen-containing species can have both anthropogenic and biogenic primary sources 

and can be secondary in nature. The sulfur-containing species in the atmosphere include 

sulfur dioxide (SO2, which is oxidized to sulfur trioxide, SO3, and quickly hydrolyzed to 

form sulfuric acid, H2S01) carbonyl sulfide (OCS), dimethyl sulfide (CH3SCH3), and 



s 

hydrogen sulfide (H2S). Like the nitrogen-containing species discussed previously, 

sulfur-containing compounds are both primary and secondary and both anthropogenic 

and biogenic. Carbon-containing species include carbon monoxide (CO), carbon dioxide 

(COZ), and organic molecules of both an anthropogenic and a biogenic nature. Organic 

species include alkanes, alkenes, aromatics, carbonyls, alcohols, and carboxylic acids. 

Many of the functionalized organics are both primary and secondary. As noted 

previously. these organic species can also contain sulfur or nitrogen. Other important 

gas-phase species include ozone (OR, a photochemical pollutant) and water, which is the 

most abundant and perhaps the most important trace gas species in the atmosphere. The 

processes that govern the concentrations of these species include wind, mixing height, 

emission rate, formation rate, and consumption rate. Concentrations vary temporally 

(diurnal and seasonal variations) and spatially. Concentrations of some common gas- 

phase species are shown in Table 1.1 [Seiqfeld arzd Pandis, 19981. The effects of the 

trace gases of the troposphere are varied. They include material damage for ozone, health 

effects on humans for ozone and some of the carbonaceous species, and visibility 

degradation for NO?. Many are considered greenhouse gases as well. 

In contrast to gas-phase trace constituents of the atmosphere are those that reside 

in the aerosol phase. These species can be either solid or amorphous/liquid. Species that 

contribute to the aerosol burden include sulfate (sod'), nitrate (NO?), ammonium 

(P4H4+), water, soil dust, sea salt, elemental carbon, and organic species. As with gas- 

phase trace constituents of the troposphere, there are many processes that govern the 

concentrations of particulate matter, including mixing height, emission rates, formation 

rates, temperature, humidity, wind, and deposition to the earth's surface. Typical 
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concentrations of atmospheric particulate matter are shown in Table 1.2 [Seir!feld and 

Palidis, 19981 for a variety of times and locations. It is crucial to understand the 

formation of atmospheric aerosols because of the well documented effects of these 

particles. First, increasing aerosol concentrations are statistically linked to regions with 

increased rates of mortality, pointing to the significant detrimental human health effects 

of particulate matter. Aerosol particles also participate in radiative forcing. The direct 

effect of aerosols on the radiative balance of the earth is a result of the reflectance or 

absorption by aerosol particles of incident sunlight. The indirect effect of aerosols on the 

radiative balance of the earth results from the change in albedo because of aerosol effects 

on cloud droplet size and lifetime. Finally, it has been seen in both urban and rural areas 

that atmospheric particles contribute to visibility degradation because of their light 

scattering properties. 

Of specific interest in the work presented here are the organic aerosol (OA) 

components of atmospheric particulate matter (PM). OA can have primary (emitted to 

the atmosphere in the aerosol phase) or secondary (formed in situ as condensable vapors) 

sources. Primary sources of OA include all combustion processes [Schauer, 19981. 

Secondary organic aerosol (SOA) is formed when highly functionalized organic 

oxidation products are absorbed into an organic aerosol phase because of their low 

volatility [Odum et ul., 19961. Secondary organic products can also partition to the 

aerosol phase via aqueous dissolution (Henry's law) [Suxerza and Hildemann, 19961. 

Only those parent organic species with 6 or more carbon atoms are considered capable of 

forming SOA via the absorptive mechanism. The two groups of compounds that have 

been investigated the most in terms of their SOA formation potentials are the aromatics 
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that are constituents of gasoline and the biogenic monoterpenes. The work presented in 

this thesis discusses each of these compound groups. Previous studies investigating SOA 

formation from a variety of parent organics are described in Table 1.3. 

In contrast to those studies shown in Table 1.3, the work presented here will 

investigate SOA formation in the context of an absorptive equilibrium theory. The 

absorption of secondary oxidation products into an absorbing organic aerosol phase is 

defined by an equilibrium partitioning coefficient, K,,,,,i (m3 This coefficient is 

defined as 

where A,,,,,, is the absorbing organic aerosol phase concentration of species i, G, is its gas 

phase concentration, M,, is the total amount of organic aerosol (in mass concentration 

units of pg m-') available to act as the absorptive media, R is the ideal gas constant in 

appropriate units, T is the temperature in Kelvin, MW,,,, is the average molecular weight 

of the mixture (g mol-I), i, is the activity coefficient of i in the mixture, and poL,, is the 

vapor pressure (torr) of i at temperature T. If one combines the definition of K,,,,,,, with a 

mass balance and stoichiometry, it can be shown that the total SOA yield for a parent 

hydrocarbon (defined as the amount of SOA formed per amount of parent organic that 

reacts) is given by 



where ai is the mass-based stoichiometric factor describing the formation of species i 

from the parent organic of interest. 

Chapter 2 discusses a series of outdoor chamber photooxidation experiments that 

has been used to establish and characterize the significant atmospheric aerosol-forming 

potentials of 14 biogenic organic species. The effect of stmcture on aerosol yield for 

these types of compounds has also been investigated. For bicyclic alkenes (a-pinene, P- 

pinene, a3-carene, and sabinene), experiments were also carried out at daytime 

temperatures in a dark system in the presence of ozone (03) or nitrate radicals (NO3) 

alone. For ozonolysis experiments, resulting aerosol yields are less dependent on organic 

mass concentration, when compared to full, sunlight-driven photooxidation. Nitrate 

radical experiments exhibit extremely high conversion to aerosol for P-pinene, sabinene, 

and &carene. The relative importance of aerosol formation from each type of reaction 

for bicyclic alkene photooxidation is elucidated. 

The results from this series of outdoor chamber experiments have been used to 

estimate the annual amount of SOA formed globally from compounds emitted by 

vegetation. This modeling effort is described in detail in Chapter 3. Because oxidation 

by NO3 under ambient, remote conditions is likely to be negligible, parameters describing 

aerosol formation from hydroxyl radical (OH) and O3 reaction only are developed. 

Chamber results, temporally and spatially resolved, compound-specific estimates of 

biogenic hydrocarbon emissions, and OH and O3 fields are combined to lead to an 

estimate for atmospheric SOA formed annually from biogenic precursors of 18.5 Tg, a 

number considerably smaller than the previously published estimates. 
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The concept of incremental aerosol reactivity (IAR) is introduced in Chapter 4, 

and the IARs of a number of important anthropogenic and biogenic organics are 

investigated for four ambient scenarios. The IAR, defined as a change in the SOA mass 

produced (in pg nY3) per unit change of parent organic reacted (in ppb), is a measure of 

the aerosol-forming capability of a given parent organic in a prescribed mixture of other 

organic compounds. The base case scenario is a mixture of both aromatic and biogenic 

organics. Reactivity values depend on the choice of the initial organic mixture, so cases 

are also examined in which all biogenic hydrocarbon concentrations are set to zero and 

all aromatic concentrations are set to zero. The influence of additional organic aerosol is 

also investigated. 

A new atmospheric chemical mechanism, the Caltech Atmospheric Chemistry 

Mechanism (CACM), is presented in Chapter 5. CACM is designed to represent current 

ozone chemistry as well as formation of individual surrogate organic oxidation products 

that are believed to be capable of forming SOA. CACM is used to simulate gas-phase 

concentrations in the South Coast Air Basin (SOCAB) of Southern California for August 

27-29, 1987. Simulated concentrations are compared to those measured as part of the 

Southern California Air Quality Study (SCAQS). The results for CACM are also 

compared to previous SCAQS simulation results using the previous chemical mechanism 

used within the California Institute of Technology three-dimensional atmospheric model 

(CIT); by doing so, CACM has been validated. Chapter 6 exhibits a module that predicts 

SOA formation based on the thermodynamic equilibrium partitioning of secondary 

organic oxidation products to the aqueous phase via Henry's law or to an absorbing 

organic phase. The modules described in Chapters 5 and 6 will be incorporated into the 
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next generation of the CIT, which will be applied to the smog episode of September 8-9, 

Finally, the Appendices contain papers that describe other areas of work in this 

field in which the author has been involved. Appendix I describes work investigating the 

formation of SOA from aromatic species and highly complex mixtures such as gasoline. 

Appendix 11 and Appendix HI describe respectively field and laboratory observations of 

the highly functionalized secondary oxidation products of biogenic organics. 
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Table 1.1. Concentrations of atmospheric gases. 



10 

Table 1.2. Properties of atmospheric aerosols. 

PMI represents those particles with diameters of lpm or less; species that dominate this 
mode include sulfate, ammonium, nitrate, and organics. PMlo represents those particles 
with diameters of 10 pm or less; species that dominate this mode include calcium, 
sodium, and chloride. 
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Table 1.3. Previous studies of secondary organic aerosol yield''. 



Table 1.3. (continued) Previous studies of secondary organic aerosol yield'. 

I COMPOUND ( YIELD (%)"' I FAC (%)*':' 1 REFERENCE 

I 18.3' I Hutakeyunza, rt al. [ 19891 1 

a-~inene 

10.8' 5.3 I Zhang, et al. 1; 19921 1 

55 
38-55 

[I9971 as those works are discussed in the text in detail. 
% 7 

Yield reported for photooxidation in the presence of NO, 
* t >  

FAC: fractional aerosol coefficient (1 00"ratio of aerosol formed to initial parent 

0 'Brien, et al. 1; 19751 
Hooker, et al. / 19851 

limonene 
isoprene 

organic concentration) 
a in terms of aerosol light scattering units 

Does not include the work of the author or of Odunz, et al. [I9961 or Hoflkann, et ill. 

>SO 
0 

b as fraction of initial carbon present 

Sclzuetzle nrzd Ka,smusserz / 19781 
, 

Pnndis, et al. 199 11 

c assuming aerosol density of 1.0 g ~ m - ~  
d in terms of carbon mass fraction 
e assuming aerosol density of 1.3 g crn-' and accounting for chamber wall losses 
f from reaction with ozone only 
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Chapter 2 

Organic Aerosol Formation from the Oxidation of Biogenic 

Hydrocarbons 

Reference: R.J. Griffin, D.R. Cocker III, R.C. Flagan, and J.H. Seinfeld, J. Geophys. Res., 
104,3555-356'7, 1999. 



2.1 Introduction 

A variety of organic compounds are emitted to the atmosphere from both natural 

and agricultural plants [Isidorov et ul., 1985; Arey et al., 199 1b; FelzserZfeld et al., 1992; 

Winer e f  al., 1 992; Arey et al., 1 9951. Isoprene (C,H,), monoterpenes (C ,,,Hi ,), and 

sesquiterpenes (C,,H,,) comprise the majority of these emissions, although oxygenated 

and sulfur-containing species have also been identified [Arey et al., 199 1 a; Kiilzig et a/., 

1995; Puxbaum and Kiilzig, 19971. Estimates of biogenic organic emissions have been 

made on global, national (e.g., the United States), and regional (e.g., the South Coast Air 

Basin of California or the Mediterranean region) bases. Total annual global biogenic 

organic emissions are estimated to range from 49 1 to 1 150 TgC, greatly exceeding the 98 

TgC of total organics estimated to be emitted from anthropogenic sources [Miiller, 1992; 

Guenther et cll., 19951. Averaged over the United States. biogenic emissions are 

estimated to be of the same order of magnitude of those from anthropogenic sources 

[Lamb et al., 19931. 

Significant uncertainty exists concerning the atmospheric reaction mechanisms of 

biogenic organics. The presence of unsaturated carbon-carbon bonds in these molecules 

leads to high reactivities [Atki~zson et al., 1995; Shu and Atkinson, 1995; Atkilzson, 19971. 

Because of the large quantity of emission and because of their atmospheric reactivity, 

biogenic nonmethane hydrocarbons (NMHCs) are predicted to play an important role in 

tropospheric chemistry [Chameides et al., 1988; McKeerz et al., 199 1 ; Roselle et a/. , 

199 1 ; Felzsenfeld et a1. , 19921. Numerous studies investigating the nature of both gas- 

phase and aerosol-phase products formed from the reactions between biogenic NMHCs 

and the hydroxyl radical (OH), ozone (O,), the o('P) atom, and the nitrate radical (NO,) 
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have been performed [Stephanou and Str-atignkis, 1993; Hakola et al., 1994; Calogirou et 

al., 1995, 1997; Berndt et al., 1996; Grosjearz and Grosjearz, 1997; Hallq~tist et dl., 1997; 

Shu et al., 1997, Vinckier- et a]., 1997; Warzgberg et al., 1997; Alvarado et al., 1998; 

Asclzmanrx et al., 1998; Griesbaunz et al., 1998; Y L ~  et al., 19981. 

Went [I9601 was apparently the first to suggest the role of biogenic hydrocarbons 

in the formation of tropospheric aerosols. Higher molecular weight tropospheric 

hydrocarbons have been shown, upon oxidation, to produce semivolatile products that 

partition between the gas and aerosol phases [Pandis et al., 199 1 : Zhang et al., 1992; 

Odum et al., 1996, 1997ab; Hofianrz et al., 19971. In the aerosol phase, these products 

are referred to as secondary organic aerosol (SOA). Among anthropogenic NMHCs, 

aromatics are the most important source of SOA [Odum et al., 1996, 1997abl. Among 

biogenic hydrocarbons, isoprene, because of its small size and the high volatility of its 

oxidation products, has been shown not to produce SOA at atmospheric levels [Pmzdis et 

al., 19911. Biogenic NMHCs larger than isoprene, however, are effective sources of 

aerosol [Pundis et cil., 1991; Zhang et al., 1992; Odum et al., 1996; Hvffinann et al., 

19971. 

The importance of biogenic NMHCs in tropospheric aerosol formation will vary 

from area to area depending on climate, amount and nature of vegetation, and other 

environmental factors. In a Canadian forest, formation and growth of new particles have 

been attributed to oxidation of biogenic organics [Leaitclz et al., 19991. It has been 

estimated that under peak photochemical conditions, anywhere from 20-80% of the 

organic aerosol burden in the South Coast Air Basin of California is secondary in nature 

[Turpin and Huntzicker, 1995: Schauer et al., 19961 and that 16% of the SOA during a 

specific high-smog episode could be attributed to biogenic precursors [Pandis et nl., 



18 

19921. Moreover, Kaplan and Gordon [I9941 showed that a significant fraction of 

organic carbon associated with fine particulate matter in the Los Angeles area is not 

derived from fossil fuel precursors. 

Previous experiments have provided limited information on the yields of SOA 

from a-pinene and P-pinene [Pandis et al., 1991; Zhang et al., 19921. Hofltnzulzn et crl. 

[ 19971 reported the aerosol-forming potentials of a few other biogenic hydrocarbons, but 

too few experiments were performed to completely and quantitatively describe resulting 

aerosol formation. This study reports comprehensive outdoor chamber experiments on 

aerosol formation from 14 of the most prevalent biogenic organics. Differences in 

observed aerosol yields among compounds will be addressed on the basis of structural 

characteristics of the parent hydrocarbon. In sunlight-irradiated chamber experiments, 

OH, 0,, and NO, all contribute to hydrocarbon consumption and subsequent aerosol 

formation. To determine the individual contribution of each oxidant to aerosol formation 

for a parent hydrocarbon, gas-phase chemistry is modeled, from which the fraction of the 

parent hydrocarbon reacting with each oxidant can be determined. This is coupled with 

experiments in which O3 or NO3 is the only available oxidant. By deriving the 

quantitative parameters describing aerosol formation in these 0,-only or NO,-only 

systems, it is possible to unravel the contribution to aerosol formation from each oxidant 

in full photooxidation experiments. An explanation of the mechanism of SOA formation, 

a derivation of the functional expression for aerosol yield, an expanded and specific list of 

the experiments performed, and a detailed experimental protocol all precede the 

presentation of data from these experiments and the corresponding analysis and 

discussion. 
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2.2 Mechanism of Secondary Organic Aerosol Formation 

Consider a parent hydrocarbon, HC, reacting with OH, O,, and NO,. A variety of 

products form: 

(RI) HC + OH 4 n,P,+a,P,+ ... 

(R2) HC + 0, 4 a3P3+a4Pq+ ... 

(R3) HC + NO3 4 C Z ~ P , + ~ P , +  ... 

(R4) P, + OH -b Products 

(R5) P, + 0, + Products 

(R6) Pi + NO3 -b Products 

While only two products are indicated for each reaction here, the actual number of 

products is much greater. (Later, a two-product model is used to quantitatively describe 

aerosol formation in full photooxidation experiments or ones in which a single oxidant is 

available.) The parameter at represents a stoichiometric factor relating the total amount 

of product i formed to the total amount of hydrocarbon that reacts. Later, this constant 

will be expressed on a mass basis, rather than the usual molar basis. As shown in (R4)- 

(R6), any of these products can, in principle, further react with any of the available 

oxidants, creating an even more complex and diverse mix of oxidation products. 

For parent hydrocarbons containing roughly six or more carbon atoms, these 

products are semivolatile and, in the presence of sufficient organic aerosol, will partition 

between the gas and aerosol phases. The fraction of each product that partitions to the 
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aerosol phase can be described on the basis of an equilibrium coefficient K,,,,, ,. In 

principle, if the molecular nature of each product, as well as that of the aerosol organic 

phase, were known, could be calculated from first principles. In practice, such 

molecular-level information is not available, so K,,,,, values are determined 

experimentally. 

2.3 Fractional Aerosol Yield 

Secondary organic aerosol formation has been determined experimentally through 

investigation of the fractional aerosol yield Y [Pandis et nl., 1991; Zhnl~g et al., 1992; 

Odunz et al., 1996, 1997ab; Hoffnanrz et al., 19971. Because identification and 

quantification of individual oxidation products, for example, all the individual products in 

(R1)-(R6), are difficult, this yield is a convenient overall measure of the aerosol-forming 

potential of the secondary products of atmospheric oxidation of a parent organic 

molecule. This yield is defined as the ratio of the amount of SOA formed from the 

oxidation of a given parent compound to the amount of that compound that reacted: 

where AM, (pg m-') is the organic aerosol mass formed after the consumption of AHC 

(pg m-') of the given parent. The extent of gadparticle absorptive partitioning depends 

on the amount of the condensed organic phase into which the products can be absorbed. 

Thus aerosol yield depends on the amount of organic matter present, M,,, into which the 

semivolatile products may partition. An outcome of this mechanism is that a secondary 
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product can be absorbed into an organic phase, even if it exists in the gas phase below its 

own saturation concentration [Prrrzkow, 1994ab; Odum et ul., 1996, 1997ab; H o f i c m r ~  et 

al., 19971. Puakow [ I  994abl has defined an absorption equilibrium coefficient K,,,, (mi 

pg-') for the partitioning of such a semivolatile component between the gas and particle 

phases as 

where Fi, ,,,,, (ng m-') is the mass concentration of compound i in the absorbing organic 

matter (om) phase. Ai (ng m-') is its gas-phase mass concentration, TSP (pg rn-') is the 

total suspended particulate concentration, R is the ideal gas constant, T (K) is the 

temperature,f,,,,, is the fraction of the TSP that is absorbing om, Mot,, (g rnol-') is the mean 

molecular weight of the absorbing phase, Li is the activity coefficient of species i in the 

om phase, and poLi (torr) is the vapor pressure (subcooled, if necessary) of compound i at 

temperature T. If only the absorbing organic phase is considered, a similar equilibrium 

constant can be defined as 

simply by dividing K,,,i byf,,,,,. Equation (3) indicates that this new equilibrium constant 

is a function of the mass of the available organic phase into which a semivolatile product 

can be absorbed. Thus more of each product partitions to the organic aerosol phase as the 

total organic aerosol concentration increases. As a result, a parent compound that has 



undergone a certain amount of photooxidation, AHC, will exhibit a range of SOA yield 

values depending on the value of M,. For the experiments described in this paper, 

M,,=M,,, since all organic aerosol mass is generated by the oxidation of the parent 

hydrocarbon. By combing the definitions of Y and KO,,,,,, a total mass balance, and a 

stoichiometric constraint, Y can be expressed as a function of M,, by [Odurn et ul., 19961 

where M , , ,  K,,,,, and a, are defined as above. Yield data for over 30 individual parent 

compounds obtained in the Caltech outdoor chamber have been fit to (4) using a two 

product model, that is, with parameters, a,, q, K ,,,,, and K ,,,,,,, [ H ~ f i c m n  et d . ,  1997; 

Odum et al., 1996, 1997abI. While it was given earlier that many products result from 

the atmospheric oxidation of a parent hydrocarbon, it has been shown that a two-product 

model is needed for most compounds to accurately describe the shape of the yield curve 

described by (4). Use of three or more products in the model has been proven to be 

superfluous. The four parameters derived in the two-product model can be seen as an 

adequate description of the stoichiometry and volatility of the complex mix of oxidation 

products. 

It must be noted that this theory assumes that secondary products are unable to 

form a solution with existing seed aerosol. Accounting for the interactions between the 

organic compounds themselves allows it to be shown that such products can condense 

onto seed aerosol at concentrations lower than those predicted by saturation theory alone 

[SeirEfrld and Pandis, 19981. In this case, the threshold amount of the parent compound 



that must react to form SOA in the chamber is defined as AHC*'. After consumption of 

AHC', products condense onto seed aerosol to form an initial amount of SOA, which can 

then act as an absorptive medium. At this point, absorption becomes the dominant 

mechanism governing the partitioning of secondary products and, therefore, determining 

SOA yield, as in the atmosphere. 

2.4 Chamber Studies 

In this study the results of extensive outdoor chamber experiments on aerosol 

formation from 14 biogenic organic compounds are reported. These compounds include 

monoterpenes of chemical formula C , ,H , ,: a-pinene, P-pinene, A'-carene, and sabinene, 

bicyclic olefins that differ in the location of the double bond and the number of carbons 

associated with the secondary ring; limonene, a-terpinene, y-terpinene, and terpinolene, 

cyclic diolefins that differ only in the location of a second double bond; and myrcene and 

ocimene, acyclic triolefins that differ only in the location of a third double bond. In 

addition. two sesquiterpenes of structure C,,H,, (P-caryophyllene and a-humulene) and 

two oxygenated terpenes (linalool and terpinene-4-01) are investigated. The structure of 

each of these compounds is shown in Figure 2.1, and their reaction rate constants at 298K 

with OH, 0,, and NO, are given in Table 2.1. 

As noted above, full sunlight-irradiated photooxidation experiments will have, in 

general, all three of OH, O,, and NO, present, and, therefore, in general, aerosol yields 

will be the result of products generated in all three oxidation pathways. Experiments 

performed in a dark system with 0, or NO, as the only available oxidants, in conjunction 

with results from gas-phase modeling, can then be used to determine the individual 
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contributions to SOA formation from each oxidant. Experiments involving NO, as the 

only oxidant need be performed only for bicyclic olefins, as they are the slowest reacting 

of the compounds studied and will persist long enough for NO, to build up in the 

chamber. The other compounds are consumed completely by OH and 0, in the sunlight- 

driven photooxidations prior to significant formation of NO,. 

2.5 Experimental Procedure 

All experiments were performed in a sealed, 50-133' Teflon chamber that has been 

described in detail previously [Odunz et ul., 1996, 1997ab; Hofizunn et al., 19971. This 

chamber was normally divided in the center so that two experiments could be run under 

identical environmental conditions. Each resulting chamber had an estimated volume of 

20 m3. Instruments for monitoring gas-phase components and a computer for acquiring 

aerosol data were operated from a laboratory adjacent to the chamber. Aerosol sampling 

instruments were operated directly next to the chamber in a closed cart that was 

maintained at a temperature of approximately 25°C. Between experiments, the chamber 

was continuously purged with compressed air and allowed to bake in sunlight for at least 

a day. The compressed air was purified to remove organics, particulate matter, water, and 

NO, species. Air in the chamber prior to the experiments contained no detectable 

hydrocarbons or particles and less than 5 ppb NO,. Before entering the chamber, the air 

was passed through a rehumidifier containing distilled and deionized water so that the 

relative humidity during the experiments was approximately 5%. 

At this time, it has not been determined how an increase in humidity influences 

the formation of SOA. Possible effects include differences in the chemical and physical 



nature of the absorbing phase such as a shift from an organic mixture to an aqueous- 

inorganic-organic mixture, a variation in the mean molecular weight of the absorbing 

phase, and a change in the activities of secondary products in the absorbing mixture. 

Deviation in any or all of these factors would affect the equilibrium partitioning 

coefficient of each product, thereby affecting the overall SOA yield. These issues are 

currently under study. 

Gas-phase concentrations of the parent hydrocarbons in the chamber were 

monitored using a Hewlett Packard (Palo Alto, California) 5890 gas chromatograph (GC) 

equipped with a DB-5 column (J&W Scientific, Davis, California) and a flame ionization 

detector (FID). The temperature program for the GC began at -60°C, held for 1 min, 

ramped from -60°C to 150°C at a rate of 40°C min-', and then held for 1.5 min. Prior to 

each experiment, known volumes of a solution of the parent hydrocarbon and methylene 

chloride were vaporized into a small, 60-L Teflon bag filled with compressed air. 

Measurements from these bags were then used to calibrate the GC. 

Following the GC calibration, seed particles of (NH,),SO, were injected into the 

chamber to obtain initial particle concentrations of approximately 5,000- 10,000 particles 

em-'. (Seed particles were not used in nitrate radical experiments.) The particles were 

generated by atomizing a solution of (NH,),SO, salt in deionized water. The particles 

flowed through a heated copper tube and a diffusion dryer, resulting in crystalline 

(NH,),SO,, and were then passed through a " ~ r  neutralizer before being injected into the 

chamber. The initial size distribution of the seed aerosol was centered around a diameter 

of approximately 100 nm. 

Once the number concentration of particles on each side of the chamber had 

equilibrated, the chamber was divided and covered with a black polyethylene tarpaulin in 
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order to prevent sunlight from irradiating the contents of the chamber. Propene, NO, 

NO2, hexafluorobenzene (C,F,), and hydrocarbon were then injected into each side of the 

chamber through Teflon lines. Propene was used as a photochemical initiator to provide 

sufficient levels of OH, and C,F, was used as a nonreactive internal standard. NO and 

NO7 are added primarily to facilitate the basic photochemical cycle involving 0, and to 

participate in the reaction converting peroxy radicals (RO,) to alkoxy radicals (RO). 

Therefore, it is expected that the NO, level in the chamber will have little effect on 

aerosol yield except through the formation of 0, and NO,. Propene and NO, were 

injected from certified cylinders of approximately 500 ppm in nitrogen. The target initial 

mixing ratio of propene in each chamber was 250-300 ppb for each photooxidation 

experiment, and the amount of NO, (NO, = NO + NO,) injected varied depending on the 

initial concentration of the parent hydrocarbon. The average hydrocarbon to total NO, 

ratio (ppbC/ppb) was approximately 5 to 1, whereas the average ratio of NO to NO, was 

1.5 to 1 .  The parent hydrocarbon and the C,F, were injected by vaporizing microliter 

quantities in a heated glass bulb that was diluted with compressed, purified air that 

flowed directly to the chamber. 

After all of the injections to the chamber had been made and sufficient time had 

passed to allow mixing within each side of the chamber, measurements of hydrocarbon, 

O,, NO,, and particle concentrations were taken in order to obtain initial values and to 

ensure that the contents of the chamber were well mixed. Typically, three hydrocarbon 

readings using the GC method described above were taken from each side of the 

chamber. Ozone was measured using a Dasibi Environmental Corporation (Glendale, 

California) Model 1008-PC 0, analyzer that was calibrated at the beginning of the series 



of experiments by Dasibi. The estimated uncertainty in these readings is &4%; a drift of 

only a few percent in the monitor readings was seen over the course of several months. 

NO, NO,, and total NO, concentrations were monitored using a Thermo Environmental 

Instruments (Franklin, Massachusetts) Model 42 chemilluminescence NO, monitor. Prior 

to each experiment, zero and span checks were performed on this instrument using 

certified cylinders of NO, NO,, and N,. The estimated uncertainty in NO, monitor 

readings are &4% for NO and &7% for NO,. After the initial readings were complete, the 

black tarpaulin was removed, exposing the chamber to sunlight and starting the 

experiment. During the experiments, 0, and NO, were sampled continuously from each 

side of the chamber in intervals of 10 min, and hydrocarbon samples were taken 

throughout the experiment from alternating sides of the chamber. Temperature was also 

tracked continuously throughout the course of each experiment. 

Aerosol data included size distributions and total number concentrations for each 

side of the chamber at a 1-rnin frequency. Aerosol instmmentation consisted of a TSI (St. 

Paul, Minnesota) Model 307 1 cylindrical scanning electrical mobility spectrometer 

(SEMS) to measure the size distribution of particles and a TSI Model 3760 condensation 

nucleus counter (CNC) to count particles. SEMS voltages were ramped exponentially 

from 40 to 8500 V, and the classifier flows were 2.5 L min-' for sheath and excess flows 

and 0.25 L min-I for inlet and classified aerosol flows. This allowed for the measurement 

of particles in the diameter range of approximately 30-850 nm. A complete and detailed 

description of the SEMS operation that includes a description of data analysis techniques 

has been published previously [ Wcrrzg and Flagm, 19901. 
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Experiments in which O3 or NO3 is the primary oxidant were performed at night 

to eliminate the possibility of photolysis of secondary products to form OH. (This also 

avoided high temperatures caused by keeping the chamber covered with the black 

tarpaulin in direct sunlight, as in the experiments of Hofiarzn et al., [ 19971 .) In 

ozonolysis experiments, an appropriate concentration of 2-butanol was used to scavenge 

any OH formed in the hydrocarbon-O3 reaction and to ensure that 0, was the only oxidant 

present in the system [Chew and Atkinson, 19961. 

To compare aerosol formation under the different conditions, it is important that 

the temperature in the chamber during the dark experiments be close to that of a typical 

afternoon smog chamber experiment because the partitioning coefficient K,,,,,,, is a 

function of temperature. To achieve this, the entire chamber was covered with an 

insulating cover as well as the black tarpaulin, neither of which was removed during the 

course of the experiment. This was done after the seed particles had been injected and the 

chamber had been divided as described above. In addition, four Holmes (Milford, 

Massachusetts) Model HFH-501FP space heaters were placed in the open area underneath 

the chamber. By varying the number of heaters used and their power settings, daytime 

temperatures of approximately 30"-35°C could be achieved and maintained throughout 

the course of an experiment. 

Injections of hydrocarbon, C,F,, and 2-butanol (if needed) were then made to each 

side as described above. Once initial readings for both sides had been completed for 

ozonolysis experiments, 0, was injected to each side using an Enmet Corporation (Ann 

Arbor, Michigan) Model 04052-01 1 0, generator until the Dasibi 0, monitor read 

approximately 4 times the initial hydrocarbon concentration on the appropriate side. For 
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NO, experiments, sufficient NO, was generated via the thermal decomposition of N,O, 

synthesized by the combination of 0, and NO2 [R. Atki~zson, personal communication, 

19971. Continuous aerosol, GC, and temperature readings were taken as described above. 

Initial conditions and resulting data are given for all experiments in Table 2.2. 

2.6 Yields of Biogenic Organics in Photooxidation Experiments 

Figures 2.2-2.5 show aerosol yields as a function of organic mass concentration 

for photooxidation experiments with the 14 biogenic compounds tested. Figures 2.2-2.5 

also show the theoretical yield curves fit using (4) for each biogenic hydrocarbon. The 

parameters resulting from the fit of these curves are given in Table 2.3. As seen in 

Figures 2.2-2.5, there exists a wide range of aerosol yields for biogenic hydrocarbons. 

Sesquiterpenes have the highest yields of the compounds tested. This behavior is a 

consequence of the high carbon number of the parent compounds. Limonene, P-pinene, 

and sabinene are among the compounds with the highest yields, clearly indicating the 

effect of the presence of a =CH, group in a cyclic rnonoterpene structure. The yields of 

limonene, A'-carene, a-pinene, and the terpinene isomers also indicate the significance of 

double bonds that are internal to ring structures. When oxidants attack unsaturated 

bonds, carbon atoms may be lost as a result of the decomposition of the resulting radical 

species [Atkinson, 19971. However, the two trends noted above suggest that fewer carbon 

atoms are lost by oxidant attack on =CH2 double bonds or double bonds that are internal 

to ring structures. The lower yields of ocimene, myrcene, linalool, and tespinolene also 

support this hypothesis since three or more carbon atoms can be cleaved by oxidant attack 

on these molecules. However, tespinene-4-01, which has an OH group replacing the 
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second double bond of the terpinene isomers, does not adhere to this trend, in that its 

yield is significantly lower than that of the terpinene isomers. This is likely a result of the 

fact that the OH group replaces the more reactive double bond. 

For the bicyclic olefins, the number of carbon atoms associated with the 

secondary ring also seems to have an effect on SOA yield. A'-carene and a-pinene have 

an identical structure, outside of a difference in the number of carbon atoms in the 

secondary ring, yet A'-carene has a higher aerosol yield than a-pinene (Figure 2.2). Since 

many of the products of the oxidation of these parent hydrocarbons are expected to be 

similar and retain their secondary ring structures [Yu et al., 19981, this difference in yield 

can be explained by the less volatile nature of A-'-carene (boiling point 168"- 169°C) 

compared to a-pinene (boiling point 155"- 156°C). However, sabinene (boiling point 

163"- 164"C), which has an exocyclic methylene group and a secondary three-carbon ring, 

has lower yields than P-pinene (boiling point 165"-167"C), which has an external 

methylene group and a secondary four-carbon ring. This is the opposite of the trend seen 

with A'-carene and a-pinene. This difference cannot be explained by the slight difference 

in boiling point of the parent compounds. However, it can possibly be explained by a 

mechanism that results in the cleavage of both rings in sabinene since open-chain 

compounds tend to be more volatile than cyclic ones. This mechanism, adapted from the 

H atom abstraction mechanism of Aschnunrz et al. [1998] for a-pinene, is shown in 

Figure 2.6. For illustrative purposes, only OH radical reaction is shown. The 

corresponding mechanism for P-pinene is much less likely to result in the cleavage of 

both rings. 
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2.7 Yields of Biogenic Organics in Ozonolysis and Nitrate Radical Experiments 

In general, aerosol yields in ozonolysis of the biogenic hydrocarbons are less 

dependent on organic mass concentration when compared to those under sunlight- 

irradiated photooxidation, in which the parent hydrocarbon is oxidized by OH, 0,. and 

NO,. This indicates that ozonolysis leads to secondary products that are less volatile than 

those in the full photooxidation system [Hofizun~z et al., 19971. O3 reactions with P- 

pinene and sabinene, however, produce significantly lower aerosol yields than the 

corresponding full photooxidation experiments. The opposite behavior is seen for a- 

pinene and A'-carene (Figure 2.7 and Table 2.4). This indicates that compounds with 

double bonds internal to ring structures are more likely to form condensable products 

when compared to compounds with external double bonds. (These results cannot be 

compared to those of Ho.ffman et al. [1997], since those experiments were performed 

without an OH scavenger and at considerably different temperatures.) Large yields of 

aerosol result from NO, reaction with P-pinene, ~"carene, and sabinene, indicating 

possible formation of nitrated products in large yields (Figure 2.8 and Table 2.4). The 

olefin a-pinene shows insignificant aerosol formation from NO, oxidation. This can be 

explained by the creation in high yield of pinonaldehyde, which is too volatile to partition 

significantly to the aerosol phase [Wiirzgberg et ul., 19971. 

Some scatter can be seen in the data sets associated with each type of experiment. 

This is most likely linked to the uncertainty regarding charging of the aerosol generated in 

the chamber and slight variations in temperature between experiments. 



2.8 Contribution of Individual Oxidants to Aerosol Formation 

To identify the amount of parent hydrocarbon consumed by each of the three 

available oxidants in sunlight-driven photooxidation experiments, the SAPRC90b 

mechanism [Curter, 19901 was used to model the gas-phase chemistry of the 

photochemical smog chamber experiments for a-pinene [Odrrrn et al., 1996; Hqff'mclntz et 

al., 19971, P-pinene, sabinene, and &carene. By using initial concentrations of 

hydrocarbon, NO,, and propene and vasying model parameters such as sunlight intensity 

and temperature, it was possible to simulate experimental concentration profiles of 

hydrocarbon, NO,, and O,, from which it was also possible to infer the amount of 

hydrocarbon consumed by each oxidant. A sample output is shown in Figure 2.9, and the 

results for the four hydrocarbons tested are summarized in Table 2.5. As shown in Table 

2.5, the fraction of the parent hydrocarbon consumed by each oxidant varies among 

compounds and within a set of experiments for a single compound depending on initial 

concentrations of hydrocarbon and NO,, sunlight intensity, and temperature. In addition, 

it is confirmed that OH is the primary oxidant for all compounds studied under full 

photooxidation conditions in the chamber. 

The fraction of parent hydrocarbon consumed by each oxidant in each 

photooxidation experiment has been determined for a-pinene, P-pinene, A'-carene, and 

sabinene. Using experimental data from photooxidation experiments (total amount of 

organic mass formed and total amount of parent hydrocarbon reacted), yield parameters 

from ozonolysis experiments, and yield parameters from nitrate radical experiments in 

conjunction with these data, the contribution of each oxidant to aerosol formation in 

biogenic photooxidation experiments can be estimated. 
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By adding the contribution of OH, 0,,  and NO, to organic aerosol formation in 

equation ( 1 ), 

Y = a M ( ? , O H +  + aM<i,o4 + M 0 , N O 3  

AHC AHC AHC 

where OH+ represents OH reaction in addition to any cross reactions (e.g., the reaction of 

OH with products of initial 0, reaction). By recognizing that 

with i representing each oxidant, it can be shown that the overall yield is 

y = 
<,,OH+ 

+ z fly 

AHC 1 

where-f, represents the fraction of the parent consumed by oxidant i (AHCJAHC) for O, 

and NO,, which has been determined from the gas-phase modeling. By applying (4) to 

each oxidant, it can be shown that 

where j now represents each product in the two-product model. Therefore, the overall 

yield is 



with the only unknown being the amount of aerosol organic mass formed from OH 

reactions and cross reactions, which can be determined for each experiment. The fraction 

of aerosol derived from the reaction of the parent with each oxidant in photooxidation 

experiments can then be determined from (6), (8), and (9). The results for each 

experiment are given in Table 2.6. It can be seen that the contribution of each oxidant 

varies among compounds and within a set of compounds for each oxidant. This variation 

can be explained mechanistically by differences in temperature (affecting kinetics and 

gas-particle partitioning of secondary products), incident sunlight intensity (affecting 

photolysis of NO,). and initial concentrations (affecting the rate of 0, and NO3 

fom~ation). 

2.9 Conclusions 

The atmospheric aerosol forming potential of 14 of the most prevalent terpenoid 

biogenic hydrocarbons has been elucidated. Yield parameters for each compound tested 

show that these compounds have a greater potential to form secondary organic aerosol 

than typical aromatic constituents of gasoline. Although some degree of grouping of the 

biogenic hydrocarbons based on structural characteristics in terms of their aerosol 

forming potentials is possible, this is not uniformly the case at this time. As a result, it 

will be necessary to account individually for most biogenic hydrocarbons when modeling 

secondary organic aerosol formation in the ambient atmosphere. 



3 5 

Separate ozonolysis and nitrate radical experiments were performed for bicyclic 

olefins to investigate aerosol formation from reaction with individual oxidants. Yields in 

ozonolysis experiments are less dependent on organic mass concentration when compared 

to those in full sunlight-inadiated photooxidation. Sabinene and P-pinene have 

significantly lower yields from 0, reaction alone than the corresponding sunlight-driven 

photooxidation experiments. However, the opposite behavior is seen for a-pinene and 

A'-carene. Reaction between NO, and P-pinene, A'-carene, or sabinene leads to high 

conversion to aerosol, indicating probable ambient aerosol formation at night when 

monoterpenes continue to be emitted and NO, accumulates. 

It has been confirmed that OH, O,, and NO, each contribute to parent 

hydrocarbon consumption and aerosol formation in chamber photooxidation. Gas-phase 

chemistry modeling, combined with yield parameters from individual oxidant 

experiments, allows for the determination of the contribution of each oxidant to aerosol 

formation. 
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Table 2.1. Reaction rate constants for the oxidation of biogenic hydrocarbons. 

Parent 

Lirnonene 17 1 200 12.2 

Linalool 159 430 11.2 

Myrcene 215 470 11 

Ocirnene 252 540 22 

a-Pinene 53.7 86.6 6.2 

Sabinene 117 86 10 

a-Terpinene 363 21 100 140 

Terpinolene 225 1880 97 

Units are cm3 molecule-' s-'. Data are from Atkinson et rrl. 
[ I 9951, Shu and A tkinsori [ 19951, and A tkinsori [ 19971. 
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Table 2.2a. Initial conditions and data for photooxidation experiments. 

Date Parent 71 K AHC AMo Y NO NO, 

ppb CL8 ppb P P ~  

0710 1 197a A3-carene 3 10.0 

0710 1/97 b ~ ' - ~ a r e n e  3 10.0 

0812 1/97 b ~ " ~ a r e n e  3 12.8 

0811 5197b ~ " ~ a r e n e  308.8 

0811 9197b ~Il"-~arene 3 12.0 

091 1 819% P-Caryophyllene 308.3 

091 1 6197 b P-Caryophyllene 306.6 

091 17198b P-Caryophyllene 308.6 

091 1 8197a a-Hurnulene 308.3 

09/ 1 5197b a-Humulene 309.3 

091 16197a a-Hurnulene 306.6 

091 17/97a a-Humulene 308.6 

08126197b Lirnonene 3 13.4 

08126197a Limonene 313.4 

081 1 7197b Limonene 309.4 

081 17197a Lirnonene 309.4 

08128197b Linalool 3 12.4 

091 1 9/97a Myrcene 31 1.1 

091 1 0/97 b Myrcene 31 1.9 

08124197a Ocirnene 313.2 

07123197a Ocimene 3 15.7 

07123197b Ocirnene 315.7 

Read 091 1 8197 as Scpternber 1 8, 1997. 
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Table 2.2a. (continued) Initial conditions and data for photooxidation experiments. 

Date Parent T, K AHC AM,, Y NC) NO, 

ppb Pem-' P P ~  P P ~  

081 15197a P-Pinene 308.8 

077 1 5197a P-Pinene 313.6 

071 1 7197a P-Pinene 3 16.2 

07127197a P-Pinene 3 13.3 

071 1 5197b P-pinene 3 13.6 

081 1 9197a P-Pinene 3 12.0 

07/21 197a P-Pinene 3 13.5 

0712 1 197h P-Pinene 313.5 

07109197a Sabinene 3 16.0 

07107197a Sabinene 3 10.3 

07105197a Sabinene 3 12.9 

08124197 b Sabinene 3 13.2 

07105197b Sabinene 3 12.9 

07107197b Sabinene 3 10.3 

07109197 b Sabinenc 3 16.0 

09104197a a-Terpinene 3 16.0 

09108197a a-Terpinene 3 14.7 

09106197a a-Terpinene 313.3 

091 1 11Wa y-Terpinene 3 12.4 

091 1 0197a y-Terpinene 31 1.9 

09/06/97 b Terpinene-4-01 313.3 

Read 0911 8/97 as September 1 8, 1997. 
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Table 2.2a. (continued) Initial conditions and data for photooxidation experiments. 

Date Parent AHC AMi, Y NO NO1 

ppb Pg rn-' ppb P P ~  

09/02/97a Terpinolene 312.6 25.0 1.9 0.015 47.7 47.3 

09/02/97 b Terpinolene 312.6 46.9 5.2 0.021 42.4 64.7 

08/28/97a Terpinolene 3 12.4 60.1 9.9 0.031 54.7 56.3 

091 1 1197b Terpinolene 312.4 92.3 17.8 0.036 128.0 88.8 

09/04/97 b Terpinolene 316.0 133.2 28.9 0.04 1 190.5 122.7 

Read 0911 8/97 as September 18, 1 997. 
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Table 2.2b. Initial conditions and data. 

Date Parent Z K AHC hMo Y 

ppb pg rn-' 

Nitrmtc. Rlldical E,rperinlents 

05120198a ~"Carene 

06103198a A3-carene 

05128198a ~"ca r ene  

0511 8198a P-carene 

0610 1198a P-Pinene 

05/09/98 b P-pinene 

06/0 1198b P-Pinene 

0511 3/%b P-Pinene 

05120198b Sabinene 

06103198b Sabinene 

05128198b Sabinene 

0511 8198b Sabinene 
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Table 2.2b. (continued) Initial conditions and data. 

Date Parent T. K AHC Y 

ppb pgrn*' 

Ozone Exper.inzer?ts 

061 1 9198b ~"carene 308.6 1 1.8 5.5 0.086 

0611 9198a Sabinene 308.6 12.5 1.4 0.02 1 

0612 1198a Sabinene 309.3 34.0 5.1 0.028 

06123198a Sabinene 307.0 51.6 9.1 0.033 

0611 5198a Sabinene 306.2 92.4 17.9 0.036 
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Table 2.3. Aerosol yield parameters for the photooxidation of biogenic hydrocarbons. 

Parent a1 a2 KO,,,. I KO,,,,? 

m3 pg-' rn3 pg-I 

Sabinene 0.067 0.399 0,258 0.0038 

a- & y-Terpinene 0.09 1 0.367 0.08 1 0.0046 

Terpinolene 0.046 0.034 0.185 0.0024 

* 
Includes data from HqfSnzann et al. [1997]. 
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Table 2.4. Aerosol yield parameters for the ozone and nitrate radical oxidation of bicyclic 

hydrocarbons. 

Parent a1 a2 KO,?,, 1 KOtIl.2 

m3 pg-I m' pg-I 

Ozone 

3 A -Carene 0.128 0.068 0.337 0.0036 

a-pinene 0.125 0.102 0.088 0.0788 

P-Pinene 0.026 0.485 0.195 0.0030 

Sabinene 0.037 0.239 0.819 0.0001 

Nitrate Radica E 

3 
A -Carene 0.743 0.257 0.0088 0.0091 

P-Pinene 1.000 0.0 163 

Sahinene 1.000 0.01 15 
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Table 2.5. Simulations of gas-phase chemistry. 

Date Parent AHC foH f AHCOH A H C ~ ,  A H C ~ ~ 3  

ppb % o/, Y/c P P ~  P P ~  P P ~  

a-Pinene 

p-P' lnene 

p-P' lnene 

p-P' inene 

p-P' lnene 

p-P' inene 

p-P' inene 

p-P' lnene 

p-P' inene 
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Table 2.5. (continued) Simulations of gas-phase chemistry. 

Date Parent AHC f , ~  f o 3  . ~ N O ?  AHCW A H C ~ 3  A H C ~ ~ 7  

ppb % % P P ~  PPb P P ~  

07109197a Sabinene 13.9 69.4 13.5 16.5 9.6 1.9 2.3 

07107197a Sabinene 34.9 78.1 14.1 6.5 27.3 4.9 2.3 

07105197a Sabinene 53.3 72.4 14.8 10.9 38.6 7.9 5.8 

08124197 b Sabinene 74.0 73.6 14.7 8.4 54.5 10.9 6.2 

07105197 b Sabinene 75.3 7 1 .0 14.7 12.7 53.5 11.1 9.6 

07107197b Sabinene 77.7 74.5 16.9 5.3 57.9 13.1 4.1 

07109197b Sabinene 83.3 71.1 15.0 1 1.3 59.3 12.5 9.4 



Table 2.6. Individual contributions to aerosol formation. 

Percent Contribution 

Date Parent AMo OW 0' NO, 
pp ,-3 

111'-Carene 

A3-~arene 

A3-~arene 

A3-~arene 

A'-~arene 

a-Pinene 

a-Pinene 

a-Pinene 

a-Pinene 

a-Pinene 

p-P' inene 

inene p-P' 

inene p-P' 



Table 2.6. (continued) Individual contributions to aerosol formation. 

Percent Contribution 

Date Parent 
M o  OW 0 3  NO, 
pg m-' 

07/09/97a Sabinene 1.9 74.08 12.01 13.91 

07/07/97a Sabinene 14.3 81.75 6.35 1 1.90 

07/05/97a Sabinene 23.9 65.98 6.25 27.77 

08/24/97b Sabinene 48.7 71.35 4.41 24.24 

07/05/97b Sabinene 5 1.4 58.94 4.28 36.78 

07/07/97h Sahinene 53.4 79.33 4.91 15.76 

07/09/97 b Sabinene 65.2 62.67 3.92 33.40 



Myrcene Ocimene L,inalooI Terpinene-4-01 

A'-Carene a-Pinene p-I'lnene Sabinene 

Lirnonene a-Terpinene y-Terpinene Terpinolene 

Sesquiterpenes 99- 
Figure 2.1. Chemical structures of the biogenic hydrocarbons investigated. Bonds 

between carbon atoms are shown with vertices representing carbon atoms; hydrogen 

atoms bonded to carbon are not explicitly shown. 



Figure 2.2 Figure 2.3 

Figure 2.2. Secondary organic aerosol yields for the bicyclic olefins tested as a function 

of organic mass concentration in photooxidation experiments. Data are shown as 

filled triangles, plus signs, open circles, and filled diamonds for a-pinene, sabinene, 

A'-carene, and P-pinene, respectively. The a,, q, K ,,,,,,,, and Ki,rri.2 values used to 

generate the two-product model fitted curves are given in Table 2.3. Some data were 

taken from Ho&urzn et ul. [ 1 9971. 

Figure 2.3. Secondary organic aerosol yields (data and fitted curves) for the cyclic 

diolefins tested as a function of organic mass concentration in photooxidation 

experiments. The a,, a_, K ,,,,,,, and K ,,,,, values used to generate the two-product 

model lines are given in Table 2.3. Some data were taken from Hqfi~ttrnrt et r r l .  

[1997]. 
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Figure 2.4. Secondary organic aerosol yields (data and fitted curves) for the 

sesquiterpenes tested as a function of organic mass concentration in photooxidation 

experiments. The a,, R, KO ,,,, and K ,,,,,,, values used to generate the two-product 

model lines are given in Table 2.3. Some data were taken from Hoffnzunr~ et nl. 

[1997]. 

Figure 2.5. Secondary organic aerosol yields (data and fitted curves) for the acyclic 

triolefins and oxygenated terpenes tested as a function of organic mass concentration 

in photooxidation experiments. The a,, a2, K ,,,,,.,, and values used to generate 

the two-product model lines are given in Table 2.3. Some data were taken from 

Hoffmcrrzrz et al. [1997]. No curve is shown for myrcene as only two experiments with 

myrcene were performed. 



Figure 2.6. Possible ring-opening mechanism for the reaction between OH and sabinene. 
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Figure 2.7. Secondary organic aerosol yields for the bicyclic olefins tested as a function 

of organic mass concentration in ozonolysis experiments. Data are shown as filled 

triangles, plus signs, open circles, and filled diamonds for a-pinene, sabinene, A'- 

carene, and P-pinene, respectively. The a , ,  %, K ,,,, and Kol17.2 values used to 

generate the two-product model fitted curves are given in Table 2.4. 

Figure 2.8. Secondary organic aerosol yields (data and fitted curves) for the bicyclic 

olefins tested as a function of organic mass concentration in NO, experiments. The 

a , ,  q, and q,ra.2 values used to generate the two-product model lines are given 

in Table 2.4. 
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Figure 2.9. Example output (solid curves) from the SAPRC90b [Carter, 19901 gas-phase 

chemical mechanism. Data (dashes) are shown for the P-pinene experiment 

performed on July 15, 1997. 



Chapter 3 

Estimate of Global Atmospheric Organic Aerosol from Oxidation of 

Biogenic Hydrocarbons 

Reference: R.J. Griffin, D.R. Cocker 111, J.H. Seinfeld, and D. Dabdub, Geoplzys. Res. 

Lett., 26,272 1-2724, 1999. 



3.1 Introduction 

Biogenic hydrocarbons emitted by vegetation play an important role in the 

chemistry of the urban- and regional-scale atmosphere [Fehsenfeld et al., 19921. These 

compounds are among the most reactive in the atmosphere as measured by their reaction 

rate constants with ozone (O?) and the hydroxyl (OH) and nitrate (NO?) radicals 

[Atkinsorz et al., 1995; Slzu and Atkinso~z, 1995; Atkinsorz, 19971. Biogenic hydrocarbons 

contribute to tropospheric ozone formation in regions of extensive vegetation [Clzcrmeides 

et al., 1 988; Roselle et al., 199 11 and yield relatively non-volatile secondary oxidation 

products that form aerosols [Hqffmann et al., 1997; Griffin et ul., 19991. 

The aerosol-forming potential of biogenic hydrocarbons was first noted by Went 

[1960]. However, a quantitative understanding of aerosol formation from these 

molecules was lacking until recently [Hoffinantz et al., 1997; GrifSirz et al., 19991. Grifin 

et al. [1999] investigated the predominant aerosol-forming compounds emitted by 

vegetation [Arey et ul., 199 1, 1995; Guenther et ul., 1994, 1996; K 'nig et ul., 19951, the 

majority of which are monoterpenes that apparently function as defensive agents against 

herbivory [Lerdau, 199 1 1. Understanding the aerosol-forming potential of these 

compounds is imperative to assess the contribution of biogenically derived aerosol to 

regional particulate levels and the global aerosol burden. 

Lioussr et al. [I9961 included formation of organic aerosol from biogenic 

precursors in their global study of carbonaceous aerosols; they employed a constant 

aerosol yield of 5% for all biogenic species except isoprene, which does not form aerosol 

upon oxidation. Based on previous chamber data, Andreue and Cr~ltzen [1997] provided 

an estimate of the global amount of aerosol formed annually from biogenic precursors of 
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30 to 270 Tg y i l .  Recent work has expanded greatly the understanding of secondary 

organic aerosol (SOA) formation beyond that available to Alzdreue and Crutzen [ 19971. 

Accounting for new data on the aerosol-forming potential of biogenic organics, spatially 

and temporally resolved, compound-specific global emissions profiles, and the nonlinear 

nature of SOA formation allows for a sharpening of this estimate. 

3.2 Secondary Organic Aerosol Formation 

Experiments investigating the aerosol-forming potential of 14 biogenic 

compounds have been described previously [Hoffmunn et nl., 1997; Grifirz et al., 19991. 

SOA forms through adsorptive and/or absorptive condensation or nucleation of products 

of gas-phase hydrocarbon oxidation [Pankow, 1994; Odum et al., 19961. The SOA yield, 

Y, defined as the dimensionless ratio of the mass concentration of SOA formed, Ail&,, to 

the mass concentration of the parent hydrocarbon reacted, measures the aerosol-forming 

potential of a compound. Gas-aerosol partitioning of oxidation products depends on the 

mass concentration of an absorbing organic phase. As a result, Y is a function of the final 

equilibrium organic mass concentration of this absorbing phase, M,, (pg m-'). For the 

experiments considered, M,, equals AM,, as the absorbing medium is generated completely 

by the parent hydrocarbon oxidation. The relationship between Y and M,, is 

where a; is the mass-based stoichiometric yield of oxidation product i and (m3 pg-') 

is the gas-particle equilibrium coefficient that describes the partitioning of oxidation 
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product i between the absorbing organic aerosol phase and the gas phase [Punkow, 1994; 

Odunl et al., 19961. Yield data for over 30 individual aromatic and biogenic parent 

hydrocarbons have been fit to equation (1) on the basis of a two-product model, that is, by 

parameters ai, a2, KO ,,,, 1, and KO ,,,. [Odum et trl., 1996, 1997; Hi?flnzanr~ et al., 1997; 

Griflifz et rrl., 19991. Many products capable of partitioning into the aerosol phase are 

formed during the atmospheric oxidation of such hydrocarbons [Yu et al., 19981. 

However, the remarkably close fit of yield data to equation (1) for the compounds studied 

indicates that two generic products approximate well the stoichiometry and volatility of 

the final product mix. While yield scales linearly with M,, in the range of atmospheric 

applicability (small M,,), experiments must be performed over the entire range of organic 

mass concentrations to obtain the yield parameters for each parent hydrocarbon (See 

Table 3.1 .). Calculated yields are also shown in Table 3.1 for values of M,, between 5 and 

40 pg m-'. These yields encompass the range of 5-40% used by Atzdretze und Crutzen 

[ 19971. 

3.3 Individual Oxidant Contributions to Aerosol Formation 

The unsaturated carbon-carbon bonds inherent to the monoterpene structure 

induce a high level of reactivity with OH, NOz, and 03.  At NOx levels characteristic of 

chamber photooxidation experiments, NO3 contributes significantly to oxidation if a 

sufficient amount of NO3 forms prior to complete consumption of the hydrocarbon by OH 

and 0'. Of the compounds of interest, this is the case only for a-pinene, P-pinene, A'- 

carene, and sabinene. 

In remote areas, NO3 concentrations are expected to be vesy low as there is little 

impact from anthropogenic NOx sources. Therefore, in order to extrapolate smog 
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chamber data to ambient conditions for these four bicyclic alkenes, the contribution of 

NO3 to chamber aerosol formation must be removed from that measured. To do so, the 

amount of parent hydrocarbon that reacted with each oxidant in each experiment must be 

determined. Despite the complexity of the gas-phase chemistry in these experiments, it is 

possible to simulate hydrocarbon consumption patterns using the SAPRC90b chemical 

mechanism of Carter [ 19901. 

In order to assess the importance of each oxidant to aerosol formation for the 

bicyclic alkenes, experiments in which either O1 or NO3 was the only available oxidant (a 

scavenger was used to consume any OH formed in the 03-alkene reaction) were 

performed in the dark, but at daytime temperatures. On the basis of the resulting yield 

information for single-oxidant systems and the gas-phase simulations, it is possible to 

determine the amount of organic aerosol formed from reaction with each oxidant in full- 

photooxidation experiments [HofSlnun~z et a]., 1997; Griffin et a]., 19991. By subtracting 

the NO3 contribution, yield parameters for aerosol formation in the absence of NO3 for 

bicyclic alkenes have been developed (Table 3.1). 

In order to extrapolate chamber data to the ambient, it is important to determine if 

the relative hydrocarbon oxidation by OH and 0 3  observed in the chamber is consistent 

with that expected in the ambient. Global average estimates of 50 ppbv for O1 and 

2 . 6 ~  10holecules cm-' for OH do lead to relative hydrocarbon consumption patterns 

similar to those observed in the smog chamber for bicyclic alkenes [Griffin et ul., 19991 

(Table 3.2). Therefore, we assume that relative consumption patterns for the other 

biogenic parent compounds studied in the chamber will approximate those expected in 

the ambient. Because the hydrocarbon oxidation consumption patterns seen in 

experiments are similar to those derived using global-average oxidant concentrations, 
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further oxidation of first-generation products in the chamber should mimic appropriately 

such reactions occurring in the ambient. Yu et crl. [I9981 have shown evidence of these 

reactions in our chamber. Thus, it can be assumed that the aerosol yield parameters in 

Table 3.1 can be used to describe ambient aerosol formation even though experimental 

conditions do not mimic exactly ambient conditions in all situations. While it is expected 

that aerosol yield will decrease with increasing temperature, there are currently no 

quantitative data available to describe this phenomenon. Therefore, the parameters given 

here (derived for an average temperature of 3 10K) are used in all cases. Given that the 

majority of biogenic emissions occur in hot, tropical regions, this assumption may not 

induce a large amount of error. 

3.4 Compound-Specific Emissions Inventory for Biogenic Compounds 

Because the biogenic species considered exhibit a wide range of SOA yields, it is 

necessary to assess global-scale emissions of the most important monoterpenes and other 

reactive volatile organic compounds (ORVOC) in order to estimate the amount of global, 

biogenically derived SOA formed annually. The global emissions of monoterpenes and 

ORVOC have been estimated by ecosystem [Guentlzer et al., 19951. By determining the 

predominant plant species associated with these ecosystems and identifying and 

quantifying the specific monoterpene and ORVOC emissions from these individual 

species [Arey et al., 199 1, 1995; Guerzther et dl., 1994, 1996; K -nig et nl., 19951, the 

contributions of individual compounds to emissions of monoterpenes or ORVOC on a 

global scale can be inferred (Table 3.3). Less important compounds are grouped with 

others expected to have similar aerosol-forming potentials. 
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By applying the contributions of each species listed in Table 3.3 to the emissions 

in each 5" x 5" horizontal cell in a global model, a compound-specific and temporally and 

spatially resolved emissions profile for monoterpenes and ORVOC is established. These 

emissions are converted to concentration units by using appropriate reactive layer heights 

specific to each compound. These heights are derived from an estimate of vertical eddy 

diffusivity [Seirzfeld and Pandis, 19981 and appropriate time scales inferred from reaction 

rate constants and OH and O3 concentrations simulated by IMAGES [M ller and 

Brasseur, 19951. IMAGES oxidant concentrations are given for specific times and, if 

needed. are scaled by factors ranging from 3 to 10 to reflect values at times when 

oxidation, and therefore aerosol formation, is expected to be maximum [Mount et al., 

19971. Because biogenic emissions are given as hourly averages for each month, diurnal 

oxidant concentration is neglected, and each scaled value is used for an entire day. 

Vertical cells are thus defined by increasing values of the scale heights for the compounds 

of interest. For example, the lowest three-dimensional cell, in which all compounds are 

present and well mixed, has a height equal to the scale height of the most reactive 

compound. The second cell will then extend from the top of the first cell to the scale 

height of the second most reactive compound. In this second cell, all compounds except 

the most reactive are present. This development of vertical cell heights is extended until 

the scale height of the least reactive compound is reached. These vertical cell heights are 

derived for each surface cell since OH and O3 levels vary spatially. For simplicity, 

ground level concentrations of OH and O3 are used. NO3 is assumed not to contribute to 

oxidation. 

Since the formation of organic aerosol depends on the relative amounts of 

monoterpenes and ORVOC emitted, a second emissions scenario was constructed by 
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using the other major biogenic inventory of Cuenther et al. [1995]. In the second 

scenario, emissions of each species in each cell were found simply by using the ratio of 

emission values predicted by M B ller (19921 and Guentlzer et al. [I9951 (See Table 3.3.). 

The major difference between these two estimates is that Guerztlzer et ml. [I9951 predict 

almost three times as much ORVOC emission as M r$ ller [ 19921. Arzdreae and Crutzerz 

[I9971 considered an annual emissions rate of 300-500 Tg C yr-l, which is greater than 

that predicted by M ller 119921 and essentially equal to that predicted by Guerzther et rrl. 

1 19951 (See Table 3.3 .). 

3.5 Global Aerosol Formation from Biogenic Hydrocarbons 

Individual a, and KO,,,, values have been shown to simulate the amount of SOA 

formed from mixtures as complex as evaporated gasoline [Otlurn et a[., 19971. MOT, the 

mass concentration of SOA formed from the oxidation of the mixture of n hydrocarbons, 

can be found by solving 

where AHCj is the concentration of parent compound j reacted. To estimate the MOT in 

each cell from biogenic compounds, equation (2) is used with the yield parameters from 

Table 3.1 and the daily biogenic concentrations derived in each cell. The yield 

parameters of sabinene were used for ten-carbon, bicyclic terpenoid ketones because each 

species exhibits an exocyclic double bond. Yield parameters for aromatics with multiple 

methyl groups were employed for aromatics [Odum et ul., 19971. First, the compounds 
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listed in Table 3.1 and these aromatics and ketones are considered. If the left-hand side is 

greater than unity for MOT equal to zero, equation (2) is solved iteratively to find the 

appropriate MOT for the cell of interest. (Otherwise, MOT is set to zero for that cell.) In the 

non-zero cases, additional SOA formation from straight-chain olefins and carbonyls is 

considered. For these two classes, a flat yield of 5% is assumed for SOA formation 

[Wang et al., 199 11. The concentration of SOA formed in each cell is thus calculated on 

a daily basis, converted to mass using cell volume, and summed spatially to provide the 

global daily amount of SOA formed. At the end of each day, it is assumed that the SOA 

is released to the free troposphere. The amount of SOA generated from the oxidation of 

biogenic species annually is found by summing the results of each day of the year. 

Using the emissions profiles of both Guenther et al. [I9951 and M ller [I9921 to 

account for possible differences in the distribution between monoterpenes and ORVOC, 

the estimated range of global biogenically derived SOA is 13-24 Tg y i l .  In the absence 

of additional information, the best estimate can be taken as the average, 18.5 Tg yr-I. The 

range estimated here is likely a lower bound since products of biogenic oxidation will 

partition to primary organic aerosol mass and anthropogenic SOA. 

The ma~ority of this biogenically derived SOA will be formed in forested regions. 

However, because of their extensive conversion to aerosol, biogenic hydrocarbons can 

also contribute substantially to aerosol burdens in any areas with significant vegetation. 

On average, if a one-week lifetime is assumed, the predicted burden of SOA from 

biogenic oxidation is 0.36 Tg, which is slightly less than but of the same order of 

magnitude as the predicted burdens for primary carbonaceous aerosols from biomass and 

fossil fuel burning [Liousse et al., 19961. This burden is smaller than those predicted for 

sea salt, soil dust, and sulfate aerosols but is the same order of magnitude as those 
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predicted for black carbon, nitrate, and ammonium aerosols [Tegerl et ul., 1997; Adams et 
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Table 3.1. Aerosol yield parameters for biogenic organics. 

Parent al a? &,?I. I K0,11,2 Yield 
.A I-~arene 0.057 0.476 0.063 0.0042 2.3- 10.9% 
P-Caryophyllene 
a-Humulene 
Lirnonene 
Linalool 
M ycene ' 
Ocimene 
a-pinene2 
P-I'e inene 
Sabinene 
a -  & y-Terpinene 
Terpinene-4-01 
Terpinolene 

1 These values are an estimate as only two experiments were performed. 'SOA formation 
by NO3 oxidation is negligible [Griflin et a]., 19991. 

Table 3.2. OH and O1 oxidation patterns for bicyclic 
alkenes. 

Chamber Global Average 
Parent 0 3  OH 0 3  OH 
,A3-Carene 18.0% 82.0% 16.2% 83.8% 
a-Pinene 41.1% 58.9% 42.5% 57.5% 
D-Pinene 12.6% 87.4% 8.0% 92.0% 
Sabinene 16.9% 83.1% 25.2% 74.8% 



Table 3.3. Estimated species contributions to global emissions. 

MONOTERPENES ORVOC 

~onoterpene I 

a-Pinene 
Cj-P' lnene 
Limonene 
Myrcene 
Sabinene 
A'-Carene 
Ocimene 
Terpinolene 
a -  & y-Terpinene 

Contribution ORVOC' Contribution 
35% Terpenoid 9% 
23% C7-CI0 PI- 7% 
23% Aromatics 6% 
5% Sesquiterpenes 5% 
5% Terpenoid Ketones 4% 
4% Higher Olefins 1% 
2% 
2% 
1% 

I Guelzther et nl. [ I  9951 estimate a total rnonoterpene emission rate of 127 TgC yr-' ; 
1 M a ller [I9921 estimates 147 Tg yr- . 'Only those capable of forming aerosol are 

included: Guenther et al. [I9951 estimate an ORVOC emission rate of 260 TgC yr-'; 
M r ller [ 19921 estimates 94 Tg yr-' . 
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Chapter 4 

Incremental Aerosol Reactivity: Application to Aromatic and Biogenic 

Hydrocarbons 

Reference: R.J. Griffin, D.R. Cocker III, and J.H. Seinfeld, Erzvir~rz. Sci. Tec*lzrzol., 33, 

2403-2408, 1999. 



4.1 Introduction 

Urban fine particulate matter is comprised of a complex mixture of both primary 

and secondary organic and inorganic compounds and emanates from a wide variety of 

sources. An important component that can significantly contribute to the fine particulate 

burden, especially during severe urban smog episodes, is secondary organic aerosol 

(SOA). Like ozone, secondary organic aerosol results from the atmospheric oxidation of 

reactive organic gases (ROGs), but whereas the oxidation of most ROGs results in ozone 

formation, SOA is generally formed only from the oxidation of ROGs comprised of six or 

more carbon atoms. This is because oxidation products must have vapor pressures that 

are sufficiently low to enable them to partition into the aerosol phase. 

The atmospheric chemical reaction pathways of ROG molecules sufficiently large 

to lead to SOA are complex, and resulting oxidation products are both numerous and 

difficult to quantify analytically. The chemical process of organic aerosol formation can 

be depicted in general terms. Consider the production of semi-volatile organic gases, S 1, 

S2, ..., from the gas-phase reaction of a parent hydrocarbon, HC, with the OH radical, 

where kOH is the OH reaction rate constant, and a , ,  a?, ... are the stoichiometric product 

coefficients. (Later these stoichiometric coefficients will be expressed on a mass basis, 

rather than the usual molar basis.) If the parent hydrocarbon is an alkene, reactions with 

O3 and NO3 radicals are also possible, providing additional pathways for semi-volatile 

product formation, 



The first-generation products, S I ,  Sz, . . . may subsequently undergo gas-phase 

reaction themselves, creating second-generation condensable products, S I,,, S lb,  ... and 

SLr, Szo, ... etc., 

where k,,,.,, and koH,s2 are the OH-reaction rate constants for the products, Sj and S?, 

respectively. 

Secondary organic aerosol yields have been measured for many individual ROGs 

by a number of researchers over the last decade or more [Izurni and Fukuyamu, 1990; 

Prrrzdis et al., 199 1, Wang et al., 1992ab; Zharlg et al., 1992; Odum et ul., 1996; Odum ct 

al., 1997ab; Hofiman~z et al., 1997; Forstrzer et ul., 1997ab; Griflirz et al., 19991. Initially 

it was believed that each ROG should possess a unique value of its SOA yield [Grosjearz 

cmd Seiqfeld, 1989; Pnndis et al., 1992; Parzdis et al., 19931, but measured yields for an 

individual ROG exhibited a degree of variation that could not be reconciled in terms of a 

single, unique SOA yield for each parent ROG. Following Parzkow [1994ab], Odurti et 

al. [I9961 formulated a framework for explaining observed SOA yield data. They 
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suggested that secondary organic aerosol formation is best described by a gas/aerosol 

absorptive partitioning model. Within that framework, semi-volatile products from the 

atmospheric oxidation of an ROG can partition into an absorbing organic aerosol phase at 

a concentration below their saturation concentration, analogous to the partitioning that 

occurs between the gas and aqueous phases of a water-soluble atmospheric constituent. 

4.2 Theory of Secondary Organic Aerosol Formation 

Assuming that absorption is the dominant mechanism describing SOA formation, 

the equilibrium gas-particle partitioning of a semi-volatile organic species i between the 

gas phase and an organic phase can be described with the vapor pressure relation 

[Bowman et a E., 19971 

where pi (torr) is the gas-phase partial pressure of species i, x, is the mole fraction of 

species i in the organic aerosol phase, i, is the activity coefficient of species i in the 

aerosol-phase organic mixture, and pj '  (torr) is the vapor pressure of species i as a pure 

liquid (subcooled, if necessary). In this scenario, the organic and inorganic portions of 

the aerosol remain in separate phases. Assuming ideal behavior for air, the gas-phase 

partial pressure, p,, can be converted to the gas-phase mass concentration, Gi (pg by 

the relationship 
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where m,.i (g mol-I) is the molecular weight of species i, R (=6.2 x lo-* torr m' mol-' K' = 

8.3 14 J mol-' K-') is the ideal gas constant and T (K) is temperature. The factor 10' 

accomplishes the appropriate unit conversions. For organic species with similar 

molecular weights (i.e., m,,,; = m,,, the mean molecular weight of the absorbing organic 

matter) the aerosol mole fraction, Xi., is given by 

where A, (pg m-') is the aerosol mass concentration of species i and M,, (=E Ai)(pg me3) is 

the total aerosol mass concentration of all the individual semi-volatile organic species. 

Equations (4) and ( 5 )  can be substituted into equation (3) and rearranged to yield 

where K, (mi pg-') is defined as the absorption partitioning coefficient of species i 

[Ptmkow, 19942th; O h m  et ul., 19961. The absorption partitioning coefficient 

incorporates vapor pressure, activity coefficient, and molecular weight, providing a single 

equilibrium parameter for each compound. K, is analogous to a Henry's law coefficient 

in relating gas-phase concentration of species i to the mass fraction of species i in the 

aerosol phase. An important implication of equation (6) is that, since, at a pa~ticular 

temperature, K, is a constant, a greater fraction of each product must partition to the 

organic phase as the total organic aerosol concentration increases. 
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4.3 Experimental Determination of SOA Yields 

The approach that has been most successful to estimate the SOA forming 

capability of an ROG involves the direct measurement of secondary organic aerosol 

yields. The SOA yield for a given product i, Yi , is a measure of the mass of aerosol of a 

species that is produced from the atmospheric oxidation of an ROG and is defined as 

A. 
Y 

A ROG 

where AROG (pg m-3) is the reacted amount of the ROG. By this definition, the total 

SOA yield is just the sum of the individual product yields, 

In the study of secondary organic aerosol forrnation, typically a smog chamber is 

initially filled with a mixture of NOx, inorganic seed particles, and an aerosol-producing 

hydrocarbon. The chamber is then exposed to sunlight, or other UV sources, that initiates 

photooxidation. (Dark experiments can also be conducted when O1 or NO3 is the 

oxidizing species.) As the hydrocarbon reacts it forms semi-volatile products that 

condense on the seed particles. If mass transport to the available particles cannot keep up 

with the rate of product formation or when a seed aerosol is not initially present, the semi- 

volatile products accumulate in the gas phase until supersaturation is reached and 

nucleation occurs. Studies show that the amount of aerosol produced for a given amount 

of reacted ROG is independent of whether a seed aerosol is present or not [Bowrna~~ et crl. ,  

19971. Reactions are ordinarily run until the entire initial amount of ROG is consumed. 
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the SOA yield is directly proportional to M,, and that in the limit of large M,, or low 

volatility of the products 

the total yield is independent of M, and is just the sum of the mass-based stoichiometric 

coefficients of the products. 

It is important to distinguish between aerosol yield, Y, and stoichiometric 

coefficients, a,. Stoichiometric coefficients depend on the gas-phase chemical 

mechanism and represent the total amount of semi-volatile product formed, in both gas 

and aerosol phases, per amount of parent hydrocarbon reacted. The yield, on the other 

hand, which measures only the semi-volatile products that have partitioned into the 

aerosol phase, depends on both the gas-phase reaction mechanism as well as the amount 

of organic mass available as an absorption medium. Stoichiometric coefficients, by 

themselves, are therefore not sufficient to predict the amount of aerosol formation (except 

in the limits discussed previously, as in equation (13)). Partitioning coefficients, 

stoichiometric coefficients, and organic aerosol mass are required in general to determine 

the SOA yield. 

Ozone-forming potential of organics is determined based on atmospheric reaction 

mechanisms [Carter, 1994; Carter et al., 19951. In principle, aerosol-forming potential 

could be calculated based on a similar atmospheric oxidation mechanism that includes all 

significant semi-volatile product species. The relative aerosol-forming potential of a 

group of organics could, this way, be determined based on their oxidation products and 

the thermodynamic properties of these products. This ab inifio approach represents a 
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goal that is not yet attainable because of incomplete knowledge of the semi-volatile 

oxidation products of the important aerosol-forming compounds. Thus, it is necessary to 

rely on experimentally measured aerosol yields. Aerosol yields, Y, are expressed 

theoretically as a function of the available M,, through equation (1 1). Observed aerosol 

yields as a function of M, can be fit to equation (1 1) by specifying the stoichiometric 

coefficients, cx,, and gas-particle partitioning coefficients, K,, of each of the semi-volatile 

products of oxidation of the parent organic. 

Over the last several years, SOA yields for over 30 aromatic and biogenic 

organics have been measured in the California Institute of Technology outdoor smog 

chamber (Table 4.1). In these experiments, M,, is generated completely by 

photooxidation of the parent. In order to fit the observed yields to equation (1 1 ), the mix 

of semi-volatile oxidation products for each parent compound has been represented by 

two empirical products, characterized by parameters a , ,  K1, a?, and K2. It has been 

determined that observed yields cannot be fit by assuming only a single product and that 

use of three products is superfluous [Odum et al., 19961. (An exception is those 

compounds with extremely large yields, which can be represented by a single product.) 

Roughly speaking, one of the empirical semi-volatile products tends to represent a 

relatively lower vapor pressure compound and the other a relatively higher vapor pressure 

compound. In Table 4.1, low-yield aromatics (those with multiple methyl substituents) 

represent those species that fall on the lower of two curves of Y versus M,, described by 

Odunz et (11. [1997ab]. Correspondingly, high-yield aromatics (those with only one 

methyl substituent) represent the species falling on the higher of the two curves. 

It must be noted that this theory assumes that secondary products are unable to 

form a solution with existing inorganic seed aerosol. Accounting for the interactions 
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among the organic compounds themselves allows it to be shown that such products can 

condense onto seed aerosol at concentrations lower than the saturation concentration of 

the compound [Sei~zfrld and Parzdis, 19981. There is a threshold amount of parent 

compound that must react to form secondary organic aerosol by absorption, defined as 

AROG'kj; after consumption of AROG*,, products condense onto seed aerosol to form an 

initial organic layer that can then act as an absorptive medium. At this point, absorption 

becomes the dominant mechanism governing the partitioning of secondary products and, 

therefore, determining yield, as in the atmosphere. Adsorption of products is not 

considered here as it has been shown that absorption is the dominant mechanism 

associated with SOA formation in the ambient [Lialzg et al., 19971. 

O h m  et al. 11996, 1997al showed, moreover, that aerosol formation from the 

photooxidation of a mixture of parent hydrocarbons can be predicted simply from the 

SOA yields for the individual parent compounds. This suggests that, at least for the case 

of a pure organic absorbing phase, oxidation products of different parent hydrocarbons 

are as soluble in a mixed organic product phase as in an organic phase consisting 

exclusively of their own oxidation products. 

The experimentally determined SOA yields reported by O d ~ m  et al. [1996, 199'7a1 

and Grifin et al. [I9991 have been measured at relative humidity (RH) less than 5%. At 

this level of RH, the seed aerosol, (NH4)2S04, is dry and the resulting organic aerosol is 

water-free. Because organic products will likely be most soluble in their own liquids, 

SOA yields measured at essentially 0% RH can be expected to represent an upper limit to 

the aerosol partitioning that will result. While many SOA products are water soluble 

[Suxenu arzd Hildenznrzn, 19961, they are not expected to be more soluble in an aqueous 

mixture than in a pure organic phase. 
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4.4 Threshold Concentration for SOA Formation 

For the purpose of illustration, assume that two semi-volatile products are formed 

from the parent organic ROG,: 

ROG + oxidant -+ a, + a2 

where a ,  represents the mass-based stoichiometric factors described earlier. Therefore 

by a mass balance, 

where G, and A, represent the gas- and aerosol-phase mass concentrations of product i, 

respectively, and AROGi represents the amount of ROG, consumed. As shown earlier, 

their gas phase concentrations would be defined by 

where xi represents the mole fraction of the first compound in the binary solution. If it is 

assumed that nz$,,, is approximately equal to w , ~ ~ ,  this mole fraction is given by 



Combining equations (15)-(17), replacing vapor pressure with the expression for the 

equilibrium partitioning coefficient given in equation (6), and setting each 5, equal to 

one, since an ideal solution is assumed, results in a quadratic expression for x.1 in terms of 

a,,, Q,,. Kl_,, Kz i  and AROG,. This expression has real and positive roots. When solved 

subject to the constraints that A l  and A2 are greater than or equal to zero, it can then be 

shown that the threshold value of the parent organic that must be oxidized to form 

aerosol, AROGj" (pg m-'), is (2 1) 

Using the a;,., and K i ,  values for the organics given in Table 4.1, it is possible to calculate 

AROG,* for each compound. These values will be used to define a base case scenario 

and are described later. 

4.5 Formation of Organic Aerosol from a Mixture of Hydrocarbons 

Otlur9z et al. [ 1996,1997abl showed that the amount of organic aerosol produced 

from a mixture of parent hydrocarbons can be predicted as long as each AROG, and the 

appropriate a,,, and K,:, values are known. For a given MOT (where the subscript T denotes 

total), the total yield for a parent hydrocarbon j can be calculated from equation ( 1  I), 
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The amount of aerosol formed specifically from that parent of interest can then be 

calculated using this yield by 

Summing the amount of aerosol generated by each parent in the mixture and adding any 

initial aerosol, Mi,lit, gives the total amount of organic aerosol or 

Finally, combining equations (19)-(2 1) results in 

in which MOT can be found iteratively if is known. In this expression, AROGj is 

actually equal to xj[ROGj lo where X, is the fraction of the parent hydrocarbon that reacts 

and [ROG,], is the initial concentration of ROG,. For this study, it is assumed that X, is 1 

for all species due to the high reaction rates of the species of interest and to avoid the 

need for complicated gas-phase modeling. 

4.6 Incremental Aerosol Reactivity 

The incremental ozone reactivity of a parent compound is defined as the ratio of 

the incremental change in the amount of ozone formed (relative to the ozone formed from 

oxidation of a base case mixture) that results from an incremental change in the 
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concentration of the compound of interest in the mixture to the change of the compound's 

concentration itself [Carter, 19941. Such measurements are useful when ozone control 

strategies require some sort of numerical ranking of the parent compounds of interest. 

Analogously, incremental aerosol reactivity for a parent organic ROG, and a given initial 

mixture of organics and NO,, IAR, (pg rn" ppb-l), can be defined as, 

the ratio of 6MOT (pg m-3), the incremental change in total organic aerosol mass that 

results from an incremental change in the amount of parent hydrocarbon j that reacts, 

GAROGj (ppb), to 6AROGj itself. 6MoT is calculated as the difference between the total 

amount of organic aerosol mass formed when the amount of parent J in the mixture is 

varied incrementally and the total amount of organic aerosol formed in the given initial 

case (base, base plus initial aerosol, zero-biogenic, or zero-aromatic case in the present 

situation). Because the initial amount of ROG, is assumed to react completely, 6AROG, 

is just the difference between the initial concentrations of parent reacting in the two 

scenarios. IARj values are then simply found as the slope of a plot 6M1,7 versus GAROGj 

if this ratio is linear. 

The challenge in actually computing values of the incremental aerosol reactivity 

lies in specifying the gas-phase organic parent concentrations. (Since complete 

consumption of each parent compound is assumed and yield parameters are 

experimentally determined, the need for gas-phase mechanisms is obviated.) A first 

choice one might make is a set of typical ambient concentrations in, say, an urban area. 
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While such a choice can certainly serve to define conditions for the calculation, such an 

approach lacks the generality desirable in computing IAR, values. In addition, aerosol 

formation parameters are available only for a select few of the compounds that are part of 

the complex mixture of gas-phase organic precursors in the atmosphere. Because the 

presence of additional organic aerosol precursors increases the potential for aerosol 

formation, simply using the ambient concentrations of those compounds for which yield 

data is available would significantly underpredict a compound's ability to form aerosol. 

However, a unique parameter associated with each organic is its threshold concentration 

for SOA formation, AROG,' as defined in equation (1 8), suggesting specification of the 

initial mixture based on AROG~' values. Because less parent is required to react to form 

aerosol in the presence of other aerosol-forming compounds than when the compound 

exists by itself, however, the individual AROG,' values need to be reduced in order to 

produce an initial mixture that leads to a concentration level relevant to ambient 

conditions. If AROGjX are not reduced, the base case would lead to a prediction of 

organic aerosol concentration that is greater than 650 pg m-'. The degree to which the 

AROG,' values should be reduced to define the initial mixture introduces, however, an 

unavoidable element of arbitrariness into the specification of the mixture for the IAR 

calculation. The goal is to select a fraction of the AROG,' that leads to predicted aerosol 

levels that are in the range of those observed in ambient atmospheres. By using 

AROG,/~  for the anthropogenic compounds (the aromatic species listed in Table 4.1) and 

AROG,'/~ for the biogenic compounds, we find that these values are the smallest whole 

fractions that lead to aerosol formation in the cases when all biogenics equal zero and 

when all aromatics equal zero, respectively. 
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Since the biogenic species are more efficient aerosol precursors than the aromatic 

species, the concentrations of the biogenics need to be decreased from the individual 

threshold values by a factor of 8, rather than 4. This approach produces a base-case 

scenario that may be atmospherically realistic for a polluted urban area receiving some 

influence from biogenic species. These base-case mixing ratios (ppb) that result from this 

choice of conditions are given in Table 4.2 for 308K (approximately the temperature at 

which the aerosol yield parameters for each of these compounds were derived). In the 

base case, anthropogenic species contribute approximately 75% of the total amount of 

carI3on (ppbC,,,,, ,a,, , /(ppbC,,,,,,,,s + ppbCb,,,,,,,,,*s)). Since the incremental aerosol 

reactivities are expected to be dependent on the initial case chosen, to investigate 

reactivities for a range of scenarios, two additional cases are defined. The first is the so- 

called zero-biogenics case, in which all biogenic concentrations have been set to zero; 

correspondingly, in the zero-aromatics case the concentrations of all aromatic species are 

set to zero. For these cases, Mi,,,, is assumed to be zero. A fourth case uses base-case 

7 

concentrations and assumes that Mi,,,, is equal to 10 pg m-'. 

Solving equation (22) for the four cases results in values of MOT of 37.43 pg me', 

5.3 1 pg rn-', 6.39 pg m3, and 54.97 pg m-3 respectively. The base case result is not 

unrealistic for a polluted area during a smog episode. In this base case, 5 1.1% of the 

organic aerosol formed is attributable to the oxidation of aromatics, with the remainder 

resulting from the biogenic precursors. It is interesting to note that simply adding the 

zero-aromatic and zero-biogenic cases together does not produce the base case value, 

indicating the nonlinearity associated with SOA formation and the increased potential for 
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aerosol formation when the products of one parent hydrocarbon interact with products of 

the oxidation of other compounds. 

For each parent organic in each case, individual initial organic concentrations 

were varied by k5% and +.lo%. Equation (22) was used to calculate the total mass of 

organic aerosol formed in each situation, and IAR; values were then calculated using 

equation (23). For example. in the base case, MOT is 37.43 pg m-.'. The MOT values that 

result from equation (22) if the concentration of rn-xylene (base case concentration of 

46.67 ppb j is decreased by 10%, decreased by 596, increased by 5%. and increased by 

10% are 36.37 pg nY3, 36.90 pg rn-', 37.96 pg nY3 and 38.50 pg respectively. The 

corresponding 6MOr values are thus -1.06 pg rn-3, -0.53 pg m-', 0.53 pg rn-', and 1.07 pg 

rn? These are associated with SAROG, values of -4.667 ppb, -2.334 ppb, 2.334 ppb, and 

4.667 ppb. The slope of the plot of 6MOT versus 6AROGj is IARj. For m-xylene in the 

base case, this slope is 0.228. 

There exists a wide range of IAR, values for the compounds of interest in each 

case (Table 4.3). For the base case, IAR, values range from 0.228 to 0.761 pg ma' ppb-' 

for the aromatics considered and from 0.459 to 10.352 pg m-' ppb-' for the biogenic 

compounds investigated. These ranges are 0.234 to 0.694 pg m%nd 0.399 to 9.446 pg 

m-' respectively when initial organic aerosol is present. Because these represent only 

small changes (-13 to 5%) compared to the base case, is assumed to be zero for the 

zero-aromatics and zero biogenic cases. In the zero-biogenic case, the IARj values for the 

aromatics exhibit a range of 0.133 to 0.801. It is interesting to note that all of the 

compounds except diethyl benzene have lower IARj values in the zero-biogenic case than 

in the base case. Diethyl benzene exhibits a 5% decrease in its IAR; value between the 



zero-biogenic and base cases, whereas the other aromatics show a 26-7296 increase going 

from the zero-biogenic to the base case. In the zero-aromatic case, the IAR, of the 

biogenic compounds range from 0.456 to 6.923. Similar to the behavior of the aromatics 

in the zero-biogenic case, all the biogenics except one, terpinolene, have lower IAR, 

values in the zero-aromatic case than in the base case. Terpinolene exhibits an IAR, value 

that is '7.5% lower in the base case when compared to the zero-aromatic case. The other 

biogenic compounds exhibit an increase of 10- 129%. It should be noted that the R' 

associated with each plot of 6MOT versus GAROGj was essentially unity. 

The contrary behavior of diethyl benzene and terpinolene is best explained by 

considering Y as a function of M,,. While Y increases as the amount of material reacted 

(and therefore M,,) increases (a positive effect on IARj), it becomes less dependent on M,,. 

This means that dY/d M,, decreases as M,, increases (a negative effect on IAR,). However, 

because of the link to cq and Ki values, the dependence of these effects on M,, varies 

considerably among the compounds of interest. Diethyl benzene and terpinolene are the 

two compounds with the fastest decreasing dY/d M,, values, meaning that the negative 

effect is greatest for these species. For diethyl benzene and terpinolene, this negative 

effect is greater than the positive effect of increasing M,,, and IAR, decreases when 

comparing the zero-biogenic and zero-aromatic cases, respectively, to the base case. 

Basically, the increase in yield due to increased amount of reaction, and therefore, 

increased amount of material available to act as an absorptive medium, is not large 

enough to counteract the change in dY/d M,, as it is for all other compounds. This 

behavior is also linked to the fact that diethyl benzene and terpinolene are present only in 

small amounts in the scenarios defined in this study. 
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4.7 Relative Incremental Aerosol Reactivity 

One may also define relative irzcrernental aerosol reactivities, where IAR, is 

reported relative to that of a reference compound. We can select a single reference 

compound for the entire mixture of aromatics and biogenics studied, or we can choose 

one compound from each category as the reference compound. We choose to do the latter 

because these compounds are emitted from different sources, although one can clearly 

report all relative incremental aerosol reactivities with respect to a single compound if so 

desired. m-Xylene and a-pinene, compounds that are prevalent in ambient air and that 

have been investigated extensively experimentally, are convenient reference compounds 

for aromatics and biogenics, respectively. With these reference compounds, relative 

incremental aerosol reactivities are defined as either 

I AR 
RIAR =- 

I IAR,t?-x,,rl$ 

IAR, 
RIAR, = 

IAR a - [>,?,( ,lcJ 

for aromatics and biogenics, respectively (Table 4.4). From this definition, RIAR,,,,,~,,,,, 

and RIAR,,, ,,,,,,,, are equal to 1.0. It should be noted that the ratio of IAR,, ,,,,,,,, to IAR ,,,. 

,,.i,,,,, under the base case conditions considered here is 3.535. 

For the base case, RIAR, values range from 1.153 for low-yield aromatics up to 

3.338 for diethyl benzene and from 0.569 for terpinolene up to 12.843 for a-humulene. 

In the zero-biogenic case the range of values shifts compared to the base case to 1.349 for 
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the low-yield aromatics up to 6.032 for diethyl benzene. In the zero-aromatic case, RIARj 

values range from 0.882 for linalool up to 13.385 for a-humulene. The RIARi value of 

each aromatic increases in the zero-biogenic case when compared to the base case. This 

simply means that the other aromatic compounds will form aerosol more readily than nz- 

xylene and that this difference is more pronounced at lower values of M,,. The RIAR, 

values of these aromatics also retain the same rank when comparing the base and zero- 

biogenic cases (i.e., low-yield aromatics < high-yield aromatics < methyl propyl benzene 

< diethyl benzene). The same cannot be said for the biogenic species. Of the compounds 

investigated, six have RIARj values that decrease in the zero-aromatic case when 

compared to the base case (A' -carene, P-caryophyllene, lirnonene, linalool, P-pinene, and 

the terpinene isomers) and five have values that increase (a-humulene, ocimene, 

sabinene, terpinene-4-01, and terpinolene). This shows that relative to a-pinene, the 

tendency of the biogenic compounds to form aerosol is more strongly dependent on M,,. 

This is supported by the fact that the relative rank of the RIAR, values of these 

compounds varies significantly between the two cases. These differences can be 

explained using arguments similar to those presented earlier regarding yield as a function 

of M,,, the behavior of the derivative of this function, and the amount of each compound 

present in these scenarios. 

Because of the link between IAR, values and the chosen initial conditions, RIAR, 

values depend on this choice as well. However, significant changes (a decrease of 20% 

or an increase of 33%) in the concentrations in the base case chosen here result in small 

changes (average of 5% and -8%, respectively) in the associated RIARi values, indicating 

the robustness of the methodology used to determine the incremental aerosol reactivity. 
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The relative ranks of these values in the altered base cases remain virtually unchanged, as 

well. Only in the case in which concentrations are increased by 33% is there a slight 

discrepancy; sabinene and -carene, which have very similar RIARi values in the base 

case, switch places in the ranking in this scenario. 
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Table 4.1. Aerosol formation parameters ai and Ki (rn' pg-') values obtained in the 

Caltech smog chamber [Odum el al., 1996, 1997ab; Hqfi tana et nl., 1997; Grifirz et 

nl., 19991. 

Hydrocarbon ai KI az Kz 

- - 

Aromatic Coi-r-tpounds 

Low-yield aromatics 0.038 0.042 0.167 0.00 14 

High-yield aromatics 0.07 1 0.053 0.138 0.00 19 

nl-Xyiene 0.030 0.032 0.167 0.00 19 

Diethylbenzene 0.083 0.093 0.220 0.001 0 

Methylpropylbenzene 0.050 0.054 0.136 0.0023 

A'-~arene 

P-Caryophyl lene 

a-Humulene 

Limonene 

Linalool 

Ocin-tene 

a-Pinene 

p-P' inene 

Sabinene 

a -  8L y-Terpinene 

Terpinene-4-01 

Tcrpinolene 
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Table 4.2. Base case mixing ratios (ppb) for the hydrocarbons of interest. 

Hydrocarbon Mixing Ratio 

Aromatic Compounds 

Low-yield aromatics 32.58 

High-yield aromatics 17.06 

NZ-Xylene 46.67 

Diethylbenzene 5.94 

Methylpropylbenzene 1 5 -65 

i13-~arene 

P-Caryophyllene 

a-Hunlulene 

Limonene 

Linalool 

Ocimene 

a-Pinene 

P-Pinene 

Sabinene 

a -  & y-Terpinene 

Terpinene-4-01 

Terpinolene 
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Table 4.3. Incremental aerosol reactivities (pg m" ppb-') for parent organic compounds. 

Hydrocarbon Base Case Base Case 23x0-biogenic Zero-aromatic 

with Initial Aerosol Case Case 

Aromatic compounds 

Low-yield aromatics 0.263 0.260 0,179 na 

High-yield aromatics 0.4 10 0.39 1 0.326 na 

is-Xylene 0.228 0.234 0.133 na 

Dieth ylbenzer~e 0.76 1 0.694 0.801 na 

Methylpropylbenzene 0.466 0.450 0.358 na 

Biogenic Compounds 

A'-~arene 

P-Caryoph y l lene 

Limonene 

Linalool 

Oc imene 

a-Pinene 

P-Pinene 

Sabinene 

a -  & y-Terpinene 

Terpinene-4-01 

Terpinolene 
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Table 4.4, Relative incremental aerosol reactivities. 

Hydrocarbon Base Case Zero-biogenic Zero-aromatic 
Case Case 

Aromatic Compounds (basis: m-xylene) 

Low-yield aromatics 1.153 1.349 na 

High-yield aromatics 1.799 2.453 na 

Dieth ylbenzene 3.338 6.032 na 

Methylpropylbenzene 2.046 2.693 na 

Lirnonene 

Linalool 

Ocirnene 

Sabinene 

a- & y-Terpinene 

Terpinene-4-01 

Terpinolene 

(basis: a-pinene) 

1.373 

1 1.997 

12,843 

2.929 

0.932 

0.775 

1 .000 

1.894 

1.446 

1.626 

0.690 

0.569 
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Chapter 5 

Secondary Organic Aerosol: I. Atmospheric Chemical Mechanism for 

Production of Molecular Constituents 



5.1 Introduction 

Atmospheric urban and regional scale gas-phase chemical mechanisms describe 

the formation of oxidants such as ozone (Os), the hydroxyl radical (OH), and the nitrate 

radical (NO?), the consumption of reactive organics, and reactions of the resulting 

organic peroxy radicals with species such as the oxides of nitrogen (NO, = NO + NO?). 

Mechanisms that have been used in urban and regional atmospheric models include that 

of Lurmanrz et al. (LCC) [1987], the Carbon Bond IV Mechanism (CB-IV) [Grry et al., 

19891, the Regional Acid Deposition Model (RADM2) [Stockwell et al., 19901. the 

Regional Atmospheric Chemistry Model (RACM) [Stockwell et al., 19971, and the 

Statewide Air Pollution Research Center Mechanism (SAPRC-97) [Carter et al., 19971. 

In addition, Jenkin et al. [I9971 have presented a master chemical mechanism consisting 

of 120 parent organic compounds, 2500 chemical species, and approximately 7000 

reactions. 

Secondary organic aerosol (SOA) is formed in two steps. First, a sufficiently 

large parent organic is oxidized, resulting in products that have vapor pressures 

significantly lower than that of the parent. If their vapor pressures are low enough, these 

products can partition to the aerosol phase via condensation (adsorptive or absorptive) or 

homogeneous nucleation. Because low-vapor pressure products are needed to form SOA, 

in general, only those parent organics with six or more carbon atoms are capable of 

producing oxidized products that form SOA [ O h m  et al., 19961. Existing gas-phase 

atmospheric chemical mechanisms do not include the detailed organic chemistry 

necessasy for prediction of SOA formation. It should be noted that one reason for this is 

that much of the chemistry of the larger organics that leads to semi-volatile products is 

not known. 
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This paper describes a new chemical mechanism, termed the Caltech Atmospheric 

Chemistry Mechanism (CACM), that has two goals: (1) to include state-of-the-art 

treatment of ozone forrnation chemistry; and (2) to explicitly describe organic chemistry 

to predict the concentrations of secondary and tertiary semi-volatile oxidation products 

that have the potential to act as constituents of SOA. In the treatment of O3 formation 

chemistry, CACM relies on the recent work of Stockwell et rrl. [1997], .Tenkin et ul. 

[ 19971, and Carter [ 199'7, 19991. The new mechanism contains a significant expansion 

of organic product chemistry in order to predict the forrnation of multi-functional 

products of sufficiently low vapor pressure that they can partition between the gas- and 

particulate phases. In addition to the extension of the mechanism to include more 

detailed organic chemistry, additional experimental and empirical information on rate 

constants and product yields (e.g., alkyl nitrate formation versus NO to NOr conversion) 

have been implemented in CACM [Carter and Atkinsorz, 1989; Atkinson 1990, 1994, 

1997; Goumri et al., 1992; Lay et al., 1996; Alvarado et al., 19981. While specific 

organic chemical mechanisms have been developed to model smog chamber SOA data 

(See, for example, Barthelmie and Pryor [1999].), we present here the first detailed 

atmospheric chemical mechanism that is directed toward explicit prediction of formation 

of the semi-volatile products that could constitute observed SOA and that is designed for 

use in a three-dimensional air quality model. Because much of this chemistry has yet to 

be firmly established, the product distributions in the mechanism to be presented are 

based either on limited observed product data or on extrapolation of the behavior of 

smaller organics. We recognize, of course, that precise product specifications are likely 

to change as more is learned about the mechanisms of SOA formation. 
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CACM includes a total of 19 1 species: ( 1) 120 fully integrated species (Fully 

integrated species have concentrations that are solved for numerically based on kinetics, 

emission, and deposition.) [15 inorganic, 7 1 reactive organic, and 34 unreactive organic]; 

(2) 67 pseudo-steady state species [2 inorganic and 65 organic]; and (3) 4 species that 

have concentrations that do not change. In comparison, the extended LCC mechanism 

used by Harley et al. [I 9931 in the California Institute of Technology three-dimensional 

urban/regional air quality model (CIT) included a total of 46 species: 32 fully integrated 

species, 9 pseudo-steady state species, and 5 species with concentrations that do not 

change. Detailed secondary organic oxidation products were not predicted. 

Table 5.1 shows a complete list of the species that are included in CACM. Table 

5.2 gives the reactions included in CACM with appropriate Arrhenius rate constant 

expressions. The following text describes the inorganic and organic chemistry in CACM, 

presents simulations of gas-phase concentrations in the South Coast Air Basin of 

California (SOCAB) for August 27-29, 1987, and compares these results with observed 

data and other simulations for this episode. The goals of Part I, therefore, are to present 

the mechanism and to evaluate its performance in simulating gas-phase chemistry during 

a well-studied episode in the SOCAB. Part I1 will derive a module to predict SOA 

formation based on thermodynamic equilibrium. Future work will include complete gas- 

and aerosol-phase simulations in the SOCAB for a 1993 episode. 

5.2 Inorganic Chemistry 

Inorganic chemistry within CACM (Reactions 1-42 in Table 5.2) is derived 

primarily from the SAPRC-99 mechanism of Carter [1999]. Only a brief overview of the 

inorganic chemistry need be given here. Photolysis rate constants are given in Table 5.3, 
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and rate constants determined by three-body kinetics are listed in Table 5.4. Additional 

rate constants not falling into one of the previously mentioned categories are shown in 

Table 5.5. 

Tropospheric inorganic chemistry is driven by a few relatively well understood 

reactions acting in a cycle. The first step is the emission of NO and organic species from 

anthropogenic or biogenic sources. NO is converted to NO2 primarily via the reaction of 

NO with O3 (reaction 5), hydroperoxy radicals (HO?) (reaction 26), or alkylperoxy 

radicals (ROz) (multiple reactions). These peroxy radicals are formed by the reaction of 

OH with organic species (multiple reactions), CO (reaction 24). 0 3  (reaction 25), or HzOz 

(reaction 37). Photolysis of NO2 (reaction I) results in the formation of o(~P) and NO, 

with o(~P) combining with Oz to form 0 3  (reaction 2). Photolysis of O3 (reactions 15 

and 16) leads to some formation of both o(~P) and o('D) with 02, and o('D) can then 

react with water (reaction 17) to form OH, the primary tropospheric oxidant. o('D) can 

also be collisionally stabilized to form o('P) (reaction 18). Other reactions that produce 

OH and that are included are the photolysis of HONO (reaction 20), the reaction between 

0 3  and H02 (reaction 30), and the photolysis of H202 (reaction 36). HONO is formed by 

the reaction of OH and NO (reaction 19) or by the reaction of NOz and H20 (reaction 2 I) ,  

and H202 is formed by the self-combination of HOz (reactions 3 1 and 32). 

The nitrate radical, NO3, is formed primarily by the combination of NO2 and 0 3  

(reaction 6). NO3 is relatively unimportant during the day because of its high rate of 

photolysis (reactions 13 and 14) to either NO and O2 or NO2 and o('P). Other sources 

include the reaction of NO2 with o(~P)  (reaction 4) and the oxidation of HN03 by OH 

(reaction 23). HNOi is formed in the reaction of NO2 with OH (reaction 22), by the 
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combination of H02  and NO3 (reaction 33), or by the hydrolysis of N205 (reaction 1 1). 

The kinetics of reaction 22 [Dransfeld et al., 19991 have been significantly updated as 

compared with those in the extended LCC mechanism used by Harley et trl. (19931. 

HN04 is formed by the reaction of NO2 with H 0 2  (reaction 27). Sinks for HN04 include 

decomposition back to NO2 and H 0 2  (reaction 28) and reaction with OH (reaction 29). 

Oxidation of SO2 by OH to form SO3 (reaction 35) must be included in any gas-aerosol 

mechanism since SO3 rapidly forms sulfuric acid (H2SO4) which, in turn, transfers to the 

aerosol phase (Seiqfeld and Pmdis, 19981. 

5.3 Organic Chemistry 

In existing gas-phase mechanisms, organic chemistry has been focused primarily 

on predicting the total concentration of peroxy radicals that are generated as a result of 

hydrocarbon oxidation. In an effort to address the computational demands of gas-phase 

mechanisms to be used in three-dimensional atmospheric models, parent organics are 

often lumped into surrogate groups so that both the number of species and the number of 

reactions are reduced. Recently, Stockwell et al. [I9971 developed a detailed lumped gas- 

phase mechanism (RACM) that tracks the formation of 18 highly aggregated organic 

products. Specific multi-functional products needed for SOA prediction are not tracked. 

Prediction of specific products is important because gas-particle partitioning, through the 

link to vapor pressure, is highly dependent on molecular size and degree of functionality 

[YLI et ul., 19991. 

In CACM, primary organic compounds are lumped in a manner similar to that 

described by Stoch~el l  et al. [1997]. The result is a set of surrogate compounds designed 

to represent the entire array of gas-phase organic species emitted to the atmosphere. 
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Oxidation reactions of the surrogate parents are tracked individually, with multiple 

pathways being represented by the dominant reaction [Kwok and Atkinson, 1995; 

Atki~zson, 19971. Reactions of the resulting alkyl peroxy radicals are also included. From 

the reactions of these alkyl peroxy radicals, it is possible to predict the formation of 

surrogate oxidation products. If a product is considered reactive, it can go on to form 

tertiary (and so on) oxidation products. Concentrations of the seconda~y, tertiary, etc., 

oxidation products then allow for prediction of the partitioning of organic molecules 

between the gas- and aerosol phases (Part 11). 

In CACM, the lumped model compound corresponding to a given individual 

parent hydrocarbon is determined by considering the size of the molecule, its structural 

characteristics (e.g., branched versus cyclic versus straight chain), its functionality (both 

location and type), its reactivity, and its experimentally determined potential for forming 

SOA, if available. Taking the 'average' structure of the compounds within a group (a 

group being appropriately defined) yields the surrogate for each group. Twenty-three 

individual groups, either surrogates or those described explicitly, are used (See Table 

5.1). Instead of generating an aggregate rate constant for the surrogates as described by 

Stockwell et al. [1997], the rate constant for the model parent (either based on 

experiinental data or calculated using structure-reactivity relationships) is used. (See 

Tables 5.2 and 5.6.) 

5.3.1 Alkanes 

Alkanes are found in significant quantity in urban atmospheres [Fruser et a/., 

1997; Schnuer, 1998; Schauer et al., 1999abl. Methane chemistry is included explicitly 

in CACM, but because of its large mixing ratio, the concentration of methane remains 
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unchanged. The main tropospheric loss process for methane is the well documented 

oxidation by OH (reaction 43) to form the methyl peroxy radical (R02 1). R 0 2  1 can then 

react with NO (reaction 110) in the presence of 0 2  to form H02, formaldehyde (HCHO), 

and NOz, with other peroxy radicals (represented henceforth as R02T) (reaction 1 1 1) to 

yield HCHO and H02, or with H 0 2  to form HCHO (reaction 112). Throughout CACM, 

alkyl peroxy radical reactions with ROzT are assumed, for simplicity, to form the same 

products as the NO reaction that results in the conversion of NO to NO2. In addition, 

reactions with H02 are assumed to form the degradation products of the corresponding 

intermediate hydroperoxide in an effort to limit the number of fully integrated species 

since hydroperoxides are relatively reactive and often form very similar products 

[Seiqfeld nnd Pn~zdis, 19981. The main purpose of including alkyl peroxy radical 

reactions with R02T and HOz is to capture accurately alkyl peroxy radical concentrations 

using the pseudo-steady state approximation. Both H 0 2  and R02T are fully integrated 

species in CACM. To account accurately for R02T (which is formed along with every 

individual R02i species) concentrations, its reactions with NO, H02, and itself are also 

included in CACM (reactions 94-96). 

5.3.1.1 Short Chain Alkanes 

Short chain alkanes (ALKL) are considered as those with between 2 and 6 carbon 

atoms. Based on the structural aggregation, 2-methyl-butane is used to represent these 

compounds, as shown in Table 5.1. In general, alkanes with more than one carbon atom 

are oxidized by OH abstraction of an H-atom with the subsequent addition of 0 2  to form 

the alkyl peroxy radical [Atkijzson, 19971. As discussed above, the alkyl peroxy radical 

further reacts with NO. HOz, or R02T. In the case of ALKL, oxidation by OH (reaction 
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58) results in the formation of RO25, which is a lumped alkyl peroxy radical formed by 

other parent hydrocarbons as well. RO25 is treated as a primary peroxy radical with three 

carbon atoms. Upon reaction with NO (reaction 122), RO25 can form the corresponding 

alkyl nitrate or NO2, H02, and the corresponding aldehyde. The yield of alkyl nitrate 

formation versus NO to NO2 conversion is calculated based on Carter and Atkiuzson 

[ 19891. The HOZ and R02T reactions also form HOz and an aldehyde (ALD2) (reactions 

123 and 124). In this case, the alkyl nitrate formed in the NO reaction is treated as 

ALKL. When reactive small chain compounds that are not expected to contribute to 

SOA (either by dissolving in an aqueous phase or by absorption into an organic phase) 

are formed, they are reclassified within parent groups according to their size and most 

reactive functional group. 

5.3,1.2 Medium Chain Alkanes 

Medium chain alkanes (ALKM) are taken as those with between 7 and 12 carbon 

atoms and are represented by 3,5-dimethyl-heptane. Initial OH oxidation of this species 

forms R0220 (reaction 78). Like the corresponding RO25, R0220 is formed by more than 

one parent species and is represented by a lumped structure, 3-methyl-4-heptyl-peroxy 

radical. ROz20 also reacts with NO (reaction 176), H 0 2  (reaction 178), and ROIT 

(reaction 1 77). Reaction 1 76 forms an alkyl nitrate (AP3). The alkoxy radical formed in 

reactions 176- 178 has sufficient chain length that the dominant mechanism involving this 

radical proceeds by isomerization through a 1,5-H shift [Atkinson, 19971. The result is 

R02 18, a hydroxy alkyl peroxy radical. R 0 2  18 can react via the NO pathway or with 

HOZ and ROIT (reactions 170-172) to form a hydroxy alkyl nitrate (AP2), HO?, and a 

hydroxy ketone (UR16). (Products that are considered nonreactive or whose oxidation 
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products do not have vapor pressures estimated to be an order of magnitude less than the 

first product itself are labeled as unreactive, URi, in CACM). In this case. the alkyl 

nitrate products (denoted as APi) have sufficiently high carbon number that they or their 

oxidation products could potentially participate in SOA formation. The oxidation of such 

alkyl nitrate products proceeds by OH abstraction of the H-atom closest to the nitrooxy 

group. Subsequent decomposition reactions and reactions with 0 2  result in the release of 

NOz and formation of functionalized products. In the case of AP2 (reaction 35 1 ), UR16 

is assumed to form. In the case of AP3 (reaction 352), a ketone (UR32) is formed. 

5.3.1.3 Long Chain Alkanes 

Long chain alkanes (ALKH) are represented by 12-hexadecane since hexadecane 

exhibits the approximate average number of carbons of those long chain n-alkanes that 

reside at least partially in the gas-phase. Oxidation proceeds as above (reaction 93) and 

results in the formation of R0232. R0232 is formed only from the oxidation of ALKH; 

therefore, the structure of R0232 is 8-hexadecyl peroxy radical. Reaction of R0232 with 

NO (reaction 2 15) fosms either 8-hexadecyl nitrate (API I)  or NO2 and R024 1 (8- 

hydroxy- 1 1 -hexadecyl-perox y radical) via the 13-H shift. The reaction of R0232 with 

HOr and R02T (reactions 2 16 and 2 17) also results in the formation of RO24 1 . Similarly, 

Ro24 1 and NO combine (reaction 2 18) to form either 8-hydroxy- I 1-hexadecyl nitrate 

(AP 12) or NO2, H02, and 1 I -hydroxy-8-hexadecanone (UR20) via a second 

isomerization followed by reaction with 02. The H 0 2  and R02T reactions (reactions 219 

and 220) also result in the formation of UR20. Oxidation of AP 1 1 and AP12 (reactions 

360 and 36 1) results in the formation of 8-hexadecanone (UR34) and UR20, respectively. 
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5.3.2 Non-biogenic Alkenes 

5.3.2.1 Ethene 

Despite their high reactivity [Atkirzsorz, 19971, alkenes are still found in high 

concentration in the ambient [Fruser et al., 19971, which is indicative of significant 

emissions [Sclzauer, 1998; Sc.hnuer et al., 1999abl. Ethene (ETHE) is the smallest 

alkene. Given that its atmospheric chemistry is relatively well understood and that this 

chemistry is unique [Atkirzson, 19971, ETHE is treated explicitly. Reaction of alkenes 

with OH, N O ,  03, and o('P) (reactions 49-52 respectively for ETHE) are taken into 

account. In the case of ETHE, reaction with OH results in the formation of R022, a 

lumped 2-hydroxy, 4-carbon, primary peroxy radical. R022 can undergo peroxy radical 

reactions similar to those described in the alkanes section above (reactions 1 13- 1 15). 

However, in the case of the NO reaction, an alkyl nitrate product is not formed because of 

the small carbon number [ C a r t ~ r  and Atkinsorz, 19891. Products of these reactions are 

HCHO, ALD2, and H02. Reaction of ETHE with NO3 leads to the formation of RO23 

via addition of NO3 to the double bond. R023 is a lumped radical similar to R022 with 

ONOz replacing the OH group. Similar to the reactions of R022, those of R023 

(reactions 1 16- 1 18) create HCHO, ALD2, and HOz. In addition, NO2 is liberated from 

R023 upon reaction. The reaction of ETHE with O3 is initiated by O1 attack of the 

double bond in the well known bridging mechanism. The decomposition of this highly 

energetic intermediate leads to formation of a short chain n-carboxylic acid (ACID), H02, 

CO. OH, HCHO, and H20. Yields of these products are shown in Table 5.2 and are 

derived from Jenkiri et al. [1997]. The final reaction of ETHE is that with o('P), leading 

to formation of R02  1, CO, HOz, and R024, where R024 is an aldehydic 2-carbon peroxy 
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radical. The yields of these products are also shown in Table 5.2 and are derived from 

Atkirzsn?? [1997]. As with previous organic peroxy radicals, RO24 can further react with 

NO, R02T, and HOz (reactions 1 19- 12 1). Radicals that exhibit an a-carbonyl are 

assumed not to form alkyl nitrate products [Jerzkin et al., 19971. Thus, the products of 

reactions 1 19 through 12 1 include HCHO, CO, H02, and NO2 (in the NO reaction only). 

5.3.2.2 Short Chain Alkenes 

Short chain alkenes with between 3 and 6 carbon atoms (OLEL) are represented 

by 1-pentene because of the high occurrence of straight chain a-alkenes in this group. 

Similar to ETHE, OLEL is consumed by OH, NO3, 01, and o('P) (reactions 54-57). As 

with ETHE, OH and NO3 reaction lead to R022 and RO23, respectively. OLEL reaction 

with O3 leads to formation of HCHO, ALD2, ACID, GO, OH, carbon dioxide (C02). 

H02, ALKL (a reclassified reactive product), and R025 in yields shown in Table 5.2 and 

derived from J m k i ~  et al. [1997]. The OLEL reaction with o('P) leads to ALKL (a 

reclassified reactive product), ALD2, RO24, and R025 in yields also shown in Table 5.2 

and derived from AtkirzIson [ 19971. 

5.3.2.3 Long Chain Alkenes 

Longer chain alkenes (OLEH) are taken as those with more than 6 carbon atoms 

and are represented by 4-methyl- 1 -octene because of the high occurrence of branched a -  

alkenes. As before, OH, NO3, 03 ,  and o('P) can react with OLEH (reactions 74-77 

respectively). Reactions with OH and N O  lead to R 0 2  18 and R 0 2  19, respectively. 

ROz18 is represented by a lumped structure exhibiting a 7-carbon chain, a methyl group 

in the 2-position, a hydroxy group in the ?-position, and the peroxy radical group in the 
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5-position. Its reactions are described above. R02  19 is formed exclusively by OLEH 

and is the corresponding radical with the nitrooxy group in the 1-position and the peroxy 

radical at the 2-position. Reactions of R0219 (reactions 173-175) result in the formation 

of HCHO and 3-methyl-heptanal (RPR1) (Reactive products that are capable of 

participating in SOA formation and that do not exhibit a nitrooxy group are labeled RPRi 

or RPI'.). The reactions typical of RPRI will be discussed in the next section. Oxidation 

or photolysis of RPR1 (reactions 300-302) leads to formation of R0220 or the 

corresponding acyl peroxy radical (R0255). The corresponding peroxy nitrate compound 

(PAN7), R0220, and 3-methyl-heptanoic acid (UR1) are formed in the reactions of 

R0255 (reactions 303-307). Details of acyl peroxy radical reactions will be given in the 

next section. The reaction of OLEH with O3 leads to the formation of HCHO, RPR1, 

ACID, UR 1, CO, OH, H02, C02,  ALKM (a reclassified reactive product), and R0220 in 

yields described in Table 5.2 and derived via Jenkin et al. [1997]. The OLEH-o('P) 

reaction forms ALKM, RPRI , R024, and R0220 in yields described in Table 5.2 and 

derived via Atkinsol? [ 19971. 

5.3.3 Aldehydes 

Unlike alkanes and alkenes, aldehydes are both emitted in large amounts and 

formed via atmospheric chemistry. Aldehydes contribute significantly to the overall 

reactivity of the urban atmosphere [Guosjean et al., 19961. 

Formaldehyde is the only aldehyde with one carbon atom; its atmospheric 

chemistry is well understood. Degradation of HCHO occurs by photolysis (reactions 44 

and 45) and oxidation by OH (reaction 46) and NO3 (reaction 47). Higher rz-aldehydes 

(ALD2) are represented by n-pentanal. Because of the importance of aldehyde reactions 
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(with respect to RPR species leading to UR species capable of forming SOA), a general 

aldehyde mechanism is discussed here. Like HCHO, higher aldehydes are degraded by 

OH, NO3, or photolysis. OH and NO3 degradation proceed via abstraction of the 

aldehydic H-atom and result in the formation of an acyl radical (RC(0)02*) after the 

subsequent addition of 02. Photolysis is assumed to form a primary alkyl radical, CO, 

and an H-atom radical. The alkyl radical and the H-atom radical each react immediately 

with Oz to form an alkyl peroxy radical and a hydroperoxy radical, respectively. 

The acyl peroxy radical can then undergo reaction with NO, NO2, HOz, and 

R02T. In the NO reaction, NO is converted to NO2, resulting in decomposition of the 

remainder of the original radical to form COz and a primary alkyl radical which 

immediately forms an alkyl peroxy radical upon addition of 02. C 0 2  and a primary alkyl 

peroxy radical are also formed in the R02T reaction. NO2 adds to the radical to form a 

peroxy acyl nitrate species (denoted as PANi) that can thermally decompose back to 

RC(0)02* and NO2. Acyl peroxy radicals are converted to organic acids in the reaction 

with H02. This pathway is less likely to occur relative to the NO or NO? reactions under 

high NOx conditions typical of urban atmospheres [Niki et al., 1985; Moor-tgat rt  al., 

19891 but accounts for one path of secondary formation of the organic acids observed in 

the atmosphere [Fr-aseu et al., 1999: Nolte et al., 19991. At present, the known routes of 

organic acid formation in the atmosphere cannot account for measured ambient 

concentrations and are not well understood [Jacob nrzd Wo.fSj1, 1988: Seir?frld ar2d Pnndis, 

1 998). 

The photolysis of ALD2 (reaction 59) leads to the formation of RO25, CO, and 

H02. The reactions with OH (reaction 60) and with NO3 (reaction 61) result in the 
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formation of R026, the corresponding acyl radical. R026 reacts with NO or R02T 

(reactions 125 and 129) to form NO2 (in the NO case), C02,  and RO25 and with NO2 

(reaction 126) to form the corresponding PAN compound (PAN 1, which thermally 

decomposes in reaction 127). The reaction between R026 and H02  (reaction 128) yields 

ACID and 03 .  

5.3.4 Ketones 

Atmospheric ketones are less abundant than aldehydes [Fraser et ~ l . ,  19971, but 

like aldehydes, they have both primary [Schauer, 1998; Schcluer et al., 1999bl and 

secondary sources. Ketones in CACM are broken down into two groups: short chain 

ketones with between 3 and 6 carbons (KETL) and long chain ketones with more than 6 

carbons (KETH). Sinks of ketones include photolysis and reaction with OH. 

Ketones (for example, RlCH2C(0)R2) either photolyze or are oxidized by OH 

[Atkinson, 19941. It is assumed that the OH reaction proceeds via abstraction of the H- 

atom in the position a -  to the carbonyl functionality. After addition of 0 2 ,  this results in 

the formation of RICH(02*)C(0)R2, a keto-alkyl peroxy radical. Photolysis yields 

cleavage of the carbon-carbon bond adjacent to the carbonyl. After addition of 02, the 

results are RICH2O2*, a simple alkyl peroxy radical, and R2C(0)02*, an acyl peroxy 

radical. The keto-alkyl peroxy radical, of course, reacts with NO, H02, and R02T to 

form an alkoxy radical in the position a -  to the carbonyl. This radical will decompose to 

form a higher aldehyde (RIC(0)H) and the acyl peroxy radical described above. 

In CACM, KETL is represented by 2-pentanone because of the frequent 

occurrence of small chain ketones that have the functional group in the 2-position. 

Following the mechanism described above, the reaction of KETL with OH (reaction 62) 
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yields R027? a keto-alkyl peroxy radical that is represented by a lumped structure with 4 

carbons, the keto group in the 2-position, and the peroxy radical in the 3-position. 

Analogously, the photolysis of KETL (reaction 63) results in RO25 and a 2-carbon acyl 

radical, R028. Because R028 is formed in so many reactions in CACM, it is treated as a 

fully integrated species. RO27 follows the reaction patterns (reactions 130- 132) 

discussed earlier for alkyl peroxy radicals with carbonyls in the a-position. The resulting 

products include NO2 (for the NO reaction only), ALD2, and R028. R028 follows the 

reaction patterns (reactions 133- 137) discussed earlier for acyl peroxy radicals. The 

resulting products include NO2 (for the NO reaction only), COz, R02  1, and peroxy acetyl 

nitrate (PAN2). Similarly, 2-heptanone represents KETH. Photolysis of KETH (reaction 

71) also yields RO25 and R028. Oxidation of KETH by OH (reaction 70) results in the 

formation of R02  16,2-keto-3-heptyl peroxy radical. Further reactions of R 0 2  16 

(reactions 164-166) also result in NOz, ALD2, and R028. Because the final products 

formed by KETL and KETH are similar, separating them into two groups is based solely 

on kinetics. 

5.3.5 Alcohols 

Alcohols have both anthropogenic and biogenic sources [Harley et ul., 1992; 

Goldar2 et al., 1993; Shurkey, 19961. Hydroxyl groups, which characterize alcohols, are 

also present in multi-functional secondary organic oxidation products [Yu et ul., 19991. 

Methanol (MEOH) and ethanol (ETOH) have well understood atmospheric 

chemistry [Atkinson, 19941. Degradation of these compounds proceeds via OH 

abstraction of an H-atom from either a C-H or 0-H bond. For MEOH (reaction 48), the 

resulting intermediates react instantaneously with Or to form HCHO and H02. For 
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Aromatic species are aggregated depending on their reactivity, their degree and 

nature of substitution, and their potential for SOA formation, as determined by Odum et 

crl. [ 1996, 1 9971. Low yield aromatics (AROL, represented by 1,2,3-trimethylbenzene) 

ane those with two or more methyl side groups and no functional side groups (such as 

phenols, aldehydes, acids, or nitro groups); high yield aromatics (AROH, represented by 

3-n-propyl-toluene) have one or fewer methyl side groups and no functional side groups. 

Phenolic species (AROO, represented by 2,6-dimethyl-phenol) may have one or more 

alkyl side groups and one or more phenolic substituents. Aldehydic aromatics (ARAL, 

represented by p-tolualdehyde) have one aldehydic functional group; acidic aromatics 

(ARAC, represented by p-toluic acid) have one carboxylic functional group. Gas-phase 

polycyclic aromatic hydrocarbons (PAHs, represented by 1.2-dimethyl-naphthalene) have 

multiple aromatic rings. Generally, only PAHs with two aromatic rings remain in the 

gas-phase; those with more partition between the gas- and aerosol-phases [Frrrser et ul., 

19991. 

5.3.7.1 Low Yield Aromatics 

AROL chemistry is initiated by reaction with OH (reaction 79), which can occur 

either by addition to the aromatic ring (to form a phenolic product, AROO, or a 

cyclohexadienyl radical, RAD3) or abstraction of an H-atom from a methyl group (to 

form R022 1). The yields of these products are described in Table 5.2 and are derived 

from Atki~zson [ 1 990, 1 994). Like other organic peroxy radicals, ROr2 1 reacts with NO 

(reaction 179) to forrn a methyl nitrooxy substituted aromatic (AP4) or NO2 and an 

aldehydic aromatic product (ARAL). Upon OH oxidation (reaction 353), AP4 is 

assumed to form ARAL as well. The reactions of R022 1 with H 0 2  and ROzT (reactions 
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180 and 18 1) also lead to the formation of ARAL. RAD3 can react either with NO: 

(reaction 105) to forni nitro-trimethylbenzene (UR 12) or predominantly with O2 (reaction 

98) to form a cyclohexadienyl peroxy radical (R0234). R0234 can then isornerize 

(reaction 228) to form a bicyclic peroxy radical (R0243) or react with NO, H02, and 

ROzT (reactions 229-231) [Klotz et al., 19971. If R0234 reacts, as opposed to isomerizes, 

the dominant product is represented by 4,5-dimethyl-6-keto-2,4-heptadienal, RP I 1. 

R0243 can also react with NO, H02, and R02T (reactions 232-234) to form ring cleavage 

products such as methyl glyoxal (MGLY). The remaining unreactive ring cleavage 

products in this second pathway do not contribute to SOA formation so they are grouped 

together for all aromatic parents except PAH. They are represented by 2-methyl- 

butenalic acid, RP10. In an effort to account for acid formation in aromatic oxidation 

(and the subsequent formation of SOA), RP1 1 reacts with OH (reaction 334) to form 

directly the corresponding acid (UR26) and O3 with the loss of H 0 2  (as in the acyl radical 

reaction mechanism described in detail above), instead of undergoing the full range of 

aldehyde reactions. RP10 can either react with OH (reaction 332) to form the 

corresponding anhydride (UR24) or photolyze (reaction 333) to form the corresponding 

furan (UR25). MGLY is modeled to behave as an aldehyde, and follows the reaction 

pattern described earlier. Photolysis of MGLY (reaction 265) leads to formation of 

R028, CO, and H02  while H-atom abstraction by OH (reaction 263) or NO3 (reaction 

264) leads to R0248, a 3-carbon, keto-acyl radical. R0248 follows the acyl radical 

reaction pattern described above and forms NOZ (NO reaction only), (202, and R028 

upon reaction with NO (reaction 266) or ROIT (reaction 270). Upon reaction with NO? 

(reaction 267), R0248 forms keto-peroxy-propionyl nitrate (PAN4), which thermally 
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decomposes (reaction 268). The reaction between R0248 and H02  (reaction 269) forms 

keto-propanoic acid (UR2 I),  which is considered capable of forming SOA because of its 

solubility in the aqueous phase. The chemistry of AROL is shown in Figure 5.1. 

5.3.7.2 High Yield Aromatics 

OH also initiates AROH oxidation (reaction 80). However, because of the degree 

of substitution, only ring addition is taken into account [Atkinson, 19941. The products of 

this first step are AROO, H02, and a cyclohexadienyl (RAD4) radical similar to that 

formed in AROL oxidation. Yields are given in Table 5.2. Upon reaction with NO2 

(reaction 106), RAD4 forms the nitro-form of AROH (UR13). However, RAD4 

predominantly reacts with 0 2  (reaction 99) to form RO235, another cyclohexadienyl 

peroxy radical. RO235 can isomerize (reaction 235) to form RO244 or can react with NO, 

HOz, or R02T (reactions 236-238) to form primarily RPl 1. RO244 reacts with NO, H02, 

or R02T (reactions 239-241) to forrn MGLY and RPIO. The yield of the ring 

fragmentation products and kinetics are the only differences between the chemistry of 

AROL and AROH. 

5.3.7.3 Phenolic Species 

In contrast to AROL and AROH, both NO3 and OH can initiate oxidation of 

AROO. NO3 abstracts the H-atom from the phenolic functional group (reaction 72) to 

forrn RAD 1, a dimethyl-benzoxy radical. In an effort to account for observed 

concentrations of nitro-phenols [Fucrser et ul., 19991, it is assumed that RAD 1 reacts only 

with NOz (reaction 103) to form dimethyl-nitro-phenol (RPR4). OH oxidation of AROO 

(reaction 73) proceeds via side chain abstraction (R021 7) or addition to the ring to reform 
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in Table 5.2. ROz17 reacts similarly to other organic peroxy radicals with the primary 

products including a nitrooxy derivative of AROO (API) and NO2 from the reaction of 

NO. Reaction with NO, H02, and R02T (reactions 167- 169) lead to formation of 

hydroxy-tolualdehyde (RPR2). As before, RAD2 reacts predominantly with 0 2  (reaction 

97) to form a cyclohexadienyl peroxy radical (R0233) or can react with NO2 (reaction 

104) to form RPR4. R0233 can isomerize to R0242 (reaction 221) or can react with NO, 

H02, or R02T (reactions 222-224) to form primarily 4-hydroxy-3,5-dimethyl-2,4- 

hexadiendial, RPR9. RO242 will react (reactions 225-227) to yield MGLY and RPl 0. 

Upon oxidation (reaction 350), APl will yield RPR2. Similarly to RP11, RPR2 reacts 

with OH (reaction 308) to form directly the corresponding acid (UR2) and O3 with the 

loss of HOz. RPR9 also forms directly the corresponding acid (RP17) (reaction 33 l), 

which further reacts to form the corresponding diacid (UR29) (reaction 347). 

5.3.7.4 Aromatic Aldehydes 

The degradation of ARAL by NO3 (reaction 8 1) proceeds via abstraction of the 

aldehydic H-atom, resulting in the formation of HN03. In an effort to account for 

ambient concentrations of aromatic acids [Rogge et al., 1993; Fraser et ul., 19991, it is 

assumed that the resulting acyl radical immediately reacts with HO? to form the 

corresponding aromatic acid (ARAC) and 03.  Degradation of ARAL by OH (reaction 

82) can proceed via three distinct pathways: abstraction of the H-atom from the aldehyde 

group, abstraction of an H-atom from the methyl side group. or ring addition. The split 

between these is determined kinetically assuming that OH adds directly to the ring to 

form a phenolic compound in the same yield as discussed previously. As with the NO3 
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reaction, abstraction of the aldehydic H-atom leads directly to acid formation. 

Abstraction of an H-atom from the methyl group leads to the formation of R0222 which 

can proceed to react with NO, R02T, and H02  (reactions 182-184) and form primarily an 

aromatic compound with either one aldehyde and one nitrooxy-methyl side chain (AP5) 

or two substituent aldehyde side groups (RPR6). Upon oxidation (reaction 354), AP5 is 

converted to RPR6. Again in an effort to account for ambient formation of aromatic 

acids and diacids [Rogge et nl., 1993; Fraser et al., 19991, the aldehyde groups of RPR6 

are converted directly to acids with formation of O3 and loss of H02  (reactions 320 and 

321). RPR7 describes an aromatic ring with one aldehyde and one acid substituent 

group. ADAC describes the aromatic species with two acid groups. (The URi notation is 

not used with ADAC, as aromatic diacids are also constituents of primary aerosol.) As 

with the other aromatic species discussed so far, addition of OH to the aromatic ring in 

ARAL results in the formation of a cyclohexadienyl radical, RAD5. As before, RAD5 

can react with NO2 (reaction 107) to form the corresponding nitro-tolualdehyde (RPR5) 

or with O2 (reaction 100) to form the cyclohexadienyl peroxy radical, R0236. The 

aldehyde group of RPR5 can be converted directly to the acid (reaction 3 19) to form 

methyl-nitro-benzoic acid (UR 1 4). Similar to the radicals formed from other aromatic 

species, R0236 can isomerize (reaction 242) to Ro245 or undergo reaction with NO, 

R02T, and HO? (reactions 243-245) to form 2-methyl-5-formyl-2,4-hexadiendial, RP 12. 

R0245 reacts (reactions 246-248) to form MGLY and RP 10. The three aldehyde groups 

of RP12 subsequently can be converted directly to acids forming, in order, RP13, RP 18, 

and UR30 (reactions 335,336, and 348). 
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5.3.7.5 Aromatic Acids 

Because the carboxylic acid moieties in CACM are considered unreactive, the 

degradation of ARAC is driven by reaction with OH (reaction 83) via either side chain H- 

atom extraction (R0223) or addition to the ring (UR2 or RAD6). Reactions of R0223 

(reactions 185-1 87) yield either the methyl-nitrooxy derivative (AP6) or RPR7. When 

oxidized by OH (reaction 355), AP6 yields RPR7. Similar to other cyclohexadienyl 

radicals, RAD6 reacts predominantly with 0 2  (reaction 101) to form the corresponding 

cyclohexadienyl peroxy radical (RO237) but can also react with NO2 (reaction 108) to 

form the nitro derivative of ARAC (UR14). Isomerization of RO237 (reaction 249) leads 

to the formation of R0246, which reacts (reactions 253-255) to fosm RP 10 and MGLY. 

Reaction of RO237 (reactions 250-252) leads to the formation of RP13. 

5.3.7.6 Polycyclic Aromatic Hydrocarbons 

The final lumped aromatic compound considered in CACM is PAH. The sink for 

PAH is reaction with OH (reaction 92), which can lead to R023 1 (H-atom abstraction 

from the side chain), UR 1 1 (hydroxy-PAH), or an aromatic cyclohexadienyl radical 

(RAD7) similar to those formed by monoaromatic compounds. RO23 1 reacts (reactions 

2 12-2 14) as before to form the methyl-nitrooxy derivative (AP10) and the aldehyde 

derivative (UR19). APlO forms UR 19 upon oxidation by OH (reaction 359). RAD7 

reacts with 0 2  (reaction 102) to form R0238 or with NO2 (reaction 109) to form nitro- 

PAH (UR15). RO238 can isomerize (reaction 256) to R0247 or react (reactions 257-259) 

to form ?-(dimethyl propenal)-benzaldehyde (RP14). The aldehyde groups in RP14 can 

be converted successively to acids, RP19 and UR31 (reactions 337 and 349). The 



125 

reactions of Ro247 (reactions 260-262) lead to MGLY and 2-fomyl-acetophenone 

(RP15). The aldehyde group in RP15 can be converted to acid (reaction 338) resulting in 

the formation of 2-carboxy-acetophenone (UR27). 

5.3.8 Biogenics 

Biogenic organics play an important role in atmospheric chemistry [Lnmb et drl.. 

1993; Gumtlzer et al., 19951. (In the SOCAB, anthropogenic emissions of organic 

carbon are expected to be approximately an order of magnitude greater than those from 

biogenic sources [Berz~amin et ul., 19971 .) Isoprene (ISOP) and the monoterpenes are 

considered in CACM; sesquiterpenes are ignored because of their low emission rate 

relative to those of isoprene and the monoterpenes and since little is known about their 

oxidation patterns. 

5.3.8.1 Isoprene 

Because its structure (2-methyl- l,3-butadiene, C5Hs) is unique compared to other 

biogenic species, ISOP is treated explicitly in CACM. The atmospheric behavior of 

isoprene has been studied in detail [Pnulsorz et ul., 1992ab; Yu et al., 1995; Kwok et nl., 

1 9951. ISOP does not contribute significantly to SOA formation [Pnrzdis et al., 1 9921. 

Like other unsaturated molecules, ISOP is oxidized by OH, NO3, 0 3 ,  and o('P) 

(reactions 64-67). The mechanism in CACM assumes that OH and NO3 addition to the 

double bonds occurs only at the two most probable spots, as determined by the stability 

of the resulting radicals [Atkirzson, 19971. The split between these locations is 

determined kinetically. The most preferred OH attack occurs first (approximately 2/3) in 

the 1-position and second (approximately 1/3) in the 4-position, resulting in a tertiary 
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peroxy radical, RO29, and a secondary peroxy radical, R02  10, respectively. The 

reactions of R029 (reactions 138-140) are assumed to result in the formation of methyl- 

vinyl-ketone (MVK), HCHO, H02, and NO2 (NOz in the NO case only). 

Correspondingly, the reactions of ROZ 10 (reactions 14 1 - 143) result in the formation of 

methacrolein (MCR), HCHO, HOz, and NO2 (NO2 in the NO case only). The NO3 

oxidation pattern is analogous, with R02 1 1 and ROz 12 having a nitrooxy group instead of 

an OH group. Upon reaction (reactions 144- 146), R02  1 1 liberates NO2 and forms MVK, 

HCHO, H02, and NOz. Similarly, R02 12 reactions (reaction 147- 149) liberate NOz and 

form MCR, HCHO. HOz, and NO2. The ISOP-O3 reaction forms MVK, MCR, HCHO, 

OLEL (a reclassified small product), C02, ACID, CO, OH, HO2. ROz 13, and RO214 in 

yields shown in Table 5.2 and derived from Jenkin et a[. [1 9971. R02  13 is a 4-carbon, 

unsaturated peroxy radical with a keto group; the unsaturated bond is in the 1-position, 

the keto group is in the 3-position, and the peroxy radical is in the 4-position. The 

reactions of R02  13 (reactions 150- 152) lead to HCHO and a 3-carbon, unsaturated acyl 

radical (R0239); NOr is also formed in the NO reaction. Ro239 follows the previously 

discussed reaction pattern for acyl radicals and results in the formation of R0214 and COz 

(NO and R02T reactions; reactions 153 and 157), an unsaturated peroxy nitrate 

compound, PAN3 (NO2 reaction; reaction 154), which thermally decomposes (reaction 

155), and OLEL, ACID, and O3 (H02 reaction; reaction 156). Ro214 is a 2-carbon, 

unsaturated peroxy radical that is converted to OLEL or R027 upon reaction (reactions 

158- 160). The ISOP-o(~P) reaction yields OLEL (reclassified) and ALD2 in yields 

shown in Table 5.2 and derived from Atkinson [ 19971. 
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MCR and MVK are major oxidation products of ISOP, and their chemistry is 

described explicitly in CACM. MVK reacts with OH, 03, and o('P) (reactions 27 1-273); 

the NO3 reaction is not considered because of its comparatively small rate constant 

[Carter, 19991. OH reaction leads to the formation of RO249, a 4-carbon, 2-keto, 3- 

peroxy, Chydroxy radical. Reactions of RO249 (reactions 274-276) lead to MGLY, 

HCHO, and H02 (and NO2 in the NO reaction). The MVK-03 reaction results in the 

forn~ation of MGLY, HCHO, ACID, UR21, ALD2, GO, COz, HO., OH, water, and R028 

in yields shown in Table 5.2 and derived from Jenkin et ul. [1997]. Reaction between 

MVK and o(~P) leads to KETL (reclassified), RO24, and R028 in yields shown in Table 

5.2 and derived from Atkinso11 [1997]. MCR can also react with OH, NO3, 03,  and o(~P)  

(reactions 277-280). The OH and NO3 reactions can proceed via addition to the double 

bond 1 and RO25? respectively) or via H-atom abstraction from the aldehyde group 

(R0250). RO250 behaves similarly to the acyl radicals that have been described 

previously (reactions 28 1-285). Products include NO2, C02, and ROz 14 (NO or R02T 

reaction), PAN5 (NO2 reactions), and ACID and OLEL (HOz reaction). Similarly to 

R0249, RO25 1 and Ro252 (reactions 286-288 and 289-291 respectively) lead to the 

fomation of HCHO and MCLY. Reaction between MCR and O3 leads to HCHO, 

MGLY, OH, CO, HO?, ACID, and RO253 as shown in Table 5.2 with yields derived 

from Jenkin et al. [1997]. RO253 is a primary, 3-carbon, dicarbonyl peroxy radical. Its 

reactions (reactions 292-294) lead to the formation of R0254, an aldehydic, 2-carbon acyl 

radical. RO254 follows the reactions characteristic of acyl radicals (reactions 295-299). 

Products include NOz, C02, CO, and H02 (NO and R02T reactions), glyoxalic acid 

(RP 16; H02 reaction), and the corresponding peroxy nitrate compound (PAN6). 
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Degradation of RP 1 6 proceeds via photolysis (reaction 34 1 ) which leads to OH, HOz, and 

CO or abstraction of the aldehydic H-atom by OH or NO3 (reactions 339 and 340, 

respectively). The abstraction pathway leads to the formation of the corresponding acyl 

radical (R0258). As before, R0258 will react with NO, NOz, H02, or R02T (reactions 

342-346) to form products that include NOz, C02, CO, OH, the corresponding peroxy 

nitrate species (PN lo), and the corresponding acid (oxalic acid, UR28). 

5.3.8.2 Monoterpenes 

Despite evidence that monoterpenes are not easily aggregated according to SOA 

formation potentials [Griflin et al., 19991, we lump them in this way in CACM because 

the uncertainties associated with monoterpene chemistry preclude representation at any 

greater level of detail. a-Terpineol, which represents relatively low yield monoterpenes 

(BIOL), encompasses the carbon number, structural characteristics, and reactivity of the 

group members as well. BIOL is oxidized by OH, NO3, 03, and o('P) (reactions 84-87). 

OH addition to the double bond leads to R0224, a dihydroxy, tertiary peroxy radical 

(NO3 addition results in the analogous radical, R0225, with NOz replacing the hydroxy 

group in the 2-position). Reaction of NO with R0224 (reaction 188) results in the 

nitrooxy product (AP7) or the keto-aldehyde (2-hydroxy-3-isopropyl-6-keto-heptanal, 

RPR3) caused by ring cleavage. The reactions between R0224 and R02T or HOz 

(reactions 189 and 190) also result in RPR3 formation. Upon oxidation (reaction 356), 

AP7 forms RPR3 as well. The reactions of R0225 (reactions 19 1 - 193) liberate NO2 and 

form RPR3. Oxidation of BIOL by 0('P) is assumed to result in two products (epoxide, 

UR5, and carbonyl, UR6) in yields estimated from Alvarado et al. [I9981 and shown in 

Table 5.2. The attack by O1 and resulting decomposition result in the formation of UR3, 
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UR4, CO, RPR3, H02, H202, OH, and R0226 in yields shown in Table 5.2 and derived 

from Jenkin et al. [1997]. UR3 and UR4 are the resulting hydroxy-keto-acid and keto- 

aldehyde respectively. RO226 is a trisubstituted (hydroxy group, aldehyde, and ketone) 

organic peroxy radical. The reactions of ROz26 (reactions 194-196) lead primarily to the 

formation of R028 and UR17, a hydroxy dial. Reactions of RPR3 follow the reaction 

pattern assumed for aldehydes, as it assumed that the aldehyde is the most reactive 

moiety within RPR3. These reactions (reactions 309-31 1) result in the formation of the 

corresponding acyl radical (R0256) or UR4. The acyl radical reaction pattern followed 

by Ro256 leads to formation of NO?, CO?, and UR4 (NO reaction; reaction 3 1 3 ,  PAN8 

(NOz reaction; reaction 3 13) which thermally decomposes (reaction 3 14), UR3 and O3 

(H02 reaction; reaction 3 15), or COz and UR4 (R02T reaction; reaction 3 16). 

CACM also incorporates a class (BIOH) for those monoterpenes that have 

relatively high SOA yield parameters [Grifin et a[., 19991. The structure chosen to 

represent this group is y-terpinene because of its high reactivity and large SOA formation 

potential. As with all other unsaturated compounds, BIOH is oxidized by OH, NO3, 03 ,  

and o(~P)  (reactions 88-91 ). OH addition is assumed to occur so that the peroxy radical 

is at the most stable possible location. The result is a cyclic, unsaturated, hydroxy peroxy 

radical (R0227). NO3 oxidation occurs analogously to form the corresponding nitrooxy 

peroxy radical (RO228). Reaction of Ro227 with NO (reaction 197) results in either the 

corresponding nitrooxy compound (AP8) or the keto-aldehyde ring cleavage product 

(UR7). The H02  and R02T reactions (reactions 198 and 199) also result in the formation 

of UR7, as do the reactions of R0228 (reactions 200-202). The R0228 reactions also 

liberate NO2. UR7 is also formed by the reaction of AP8 with OH (reaction 357). In the 
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o('P) reaction, UR9 (epoxide) and URlO (ketone) are formed in yields shown in Table 

5.2 and derived from Alvavndo et al. [ 19981. The 03-BIOH reaction leads to UR7, UR8, 

CO, OH, H202, R0229, and R0230 in yields shown in Table 5.2 and derived from Jerzkir~ 

et al. [1997]. UR8 is the corresponding keto-acid ring cleavage product. Ro229 is a 

primary peroxy radical with an unsaturated bond and a ketone moiety. Its reactions 

(reactions 203-205) lead to the appropriate nitrooxy product (AP9) or another peroxy 

radical (RO240). RO240 is formed by isomerization and exhibits an unsaturated carbon- 

carbon bond, a hydroxy group, a ketone, and the peroxy radical in a secondary position. 

Upon oxidation (reaction 358), AP9 yields the corresponding unsaturated keto-aldehyde 

(UR33). The reactions of RO240 (reactions 206-208) lead to decomposition and the 

formation of R028 and an unsaturated hydroxy aldehyde (RPR8). The corresponding 

reactions of Ro230 (reactions 209-21 I) ,  which exhibits an unsaturated bond, a ketone 

group, and an aldehyde, lead to the formation of UR18 (an unsaturated dial). Two 

photolysis pathways (reactions 324 and 325) are given for RPR8, one in which CO, HOz, 

and RO29 are formed and another in which the corresponding acyl radical, R0257, is 

formed. (This is due to the a-position of the aldehyde relative to the unsaturated bond.) 

R0257 is also formed by the OH and NO3 abstraction of the aldehydic H-atom from 

RPR8 (reactions 322 and 323 respectively). Following the behavior of other acyl radicals 

(in reactions 326-330), R0257 leads to R029, COz, and NO2 (NO reaction), the 

corresponding peroxy nitrate compound, PAN9 (NOz reaction), the corresponding acid 

(UR23) and O3 (H02 reaction), and COz and R029 (R02T reaction). 
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5.4 Gas-Phase Simulation of the SCAQS Episode of August 27-29,1987 in the 

SOCAB 

Up to this point we have presented a chemical mechanism for urbadregional 

atmospheric chemistry of ozone and SOA precursors. In its ozone formation chemistry, 

the mechanism builds upon previous work of Stockwell et al. [ 19971, Je~zkin et al. [1 9971, 

and Curter [ 1997,19991. The mechanism is intended for use in three-dimensional 

urbadregional atmospheric models, where both ozone formation and SOA production are 

to be predicted. As a prelude to these comprehensive simulations, it is of importance to 

establish the performance of the mechanism in ozone prediction, to ensure that that 

performance is consistent with the current state-of-the-art in ozone simulation. 

Consequently, we present here a simulation of gas-phase chemistry in the SOCAB of 

California. We will evaluate ozone predictions of the new mechanism against both 

observed data and the earlier simulations of Harley et al. [1993]. The CIT model will be 

used as the basic three-dimensional model [Harley et al., 1993; Meng et al., 19981. The 

CIT model conforms with the latest three-dimensional model structure, such as that 

embodied in the U.S. Environmental Protection Agency's Models 3 [United States 

Etzvirorzmentnl Protection Agency, 19991, so modules presented in the present series of 

papers can be used in that framework as well. 

5.4.1 August 27-29,1987 SCAQS Episode 

During the summer and fall of 1987, an intensive monitoring program known as 

the Southern California Air Quality Study (SCAQS) took place in the SOCAB [Lawson, 

19901, which is shown graphically in Figure 5.2. The meteorological and air quality 

measurements made during this program provide a detailed ambient data set that has been 
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used a number of times to evaluate atmospheric models. Previous simulations of the 

episode of August 27-29, 1987 include those of Harley et (11. [1993], Harley and Cass 

[I 9951, J~zcobson et al. [1996], and Meng et al. [ 19981. We will consider this episode as 

well. Htrrley et al. [I9931 give emissions and boundary and initial conditions information 

for this episode. Therefore, only summary tables need be given here. Table 5.7 shows a 

highly aggregated emissions profile for one of the days simulated, and Table 5.8 gives the 

upwind boundary conditions. Harley et al. [I9931 also describe the deposition module 

and meteorology used in CIT. 

5.4.2 Ozone Simulation 

Predicted (solid) mixing ratios of O3 (green), NO (blue), and NO2 (red) in 

Pasadena and Riverside are compared to data observed (dashed) at those locations in 

Figures 5.3 and 5.4, respectively. For Pasadena it is seen that O3 is underpredicted on 

each day and that NO2 is both under- and overpredicted depending on the time of day. 

NO simulations match observed data reasonably well except on the third day, when NO 

is significantly overpredicted at rush hour times (even though the third day is a Saturday). 

In Riverside, O3 is underpredicted on the first day and matched well on the second and 

third days. Peak NO is underpredicted, but NO is slightly over predicted at night. NO2 is 

generally overpredicted. These trends typify locations throughout the SOCAB. Pasadena 

and Riverside are chosen because they are downwind of major emissions sites and, thus, 

represent locations that are expected to display secondary species in higher 

concentrations. 

A statistical analysis of simulated results versus observed data has been 

performed for NO2 and O3 (Table 5.9). Statistics considered include bias, normalized 
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bias, standard deviation, gross error, and normalized gross error. The methodology for 

these calculations is described in Harley et al. [ 19931. It is seen that these numbers are 

comparable to those of Harley et ul. [I9931 and, moreover, are typical of the level of 

agreement achieved in current three-dimensional modeling studies [Harley and Ctrss, 

1995; Jacobson et ul., 1996; Merzg et al., 19981. CACM predictions (solid) compared to 

those of Harley et a1. [ 19931 (x) are shown for Pasadena and Riverside in Figures 5.5 and 

5.6, respectively (using the same color scheme as Figures 5.3 and 5.4). In each case, O3 

and NO2 CACM predictions usually exceed those from Harley et al. [1993]. 

Correspondingly, NO predictions are generally lower. Since the emissions, meteorology, 

and model structure are identical to those of Harley et (11. [1993], the differences seen in 

Figures 5.5 and 5.6 can be ascribed solely to changes in the chemical mechanism. 

5.4.3 Total Semi-volatile Species 

A principal goal of CACM is to predict concentrations of those surrogate organic 

products that have the potential to partition to the aerosol phase. Based on known or 

estimated vapor pressures or solubility, a product is considered to have the potential to 

partition to the aerosol phase if it meets one or more of the following criteria: ( I )  it is 

known to be partially soluble; (2) it is an aromatic acid; (3) it is an aromatic with two 

functional groups that are not aldehydes; (4) it has 12 or more carbon atoms (excluding 

primary gas-phase emission of ALKH and PAH); (5) it has at least 10 carbons and two 

functional groups; (6) it has at least 6 carbon atoms and two functional groups, one of 

which is an acid; or (7) it is trifunctional. The products considered capable of forming 

SOA based on these criteria are marked with a plus sign in Table 5.1. The total 

concentration of those products in the base case (solid) is compared in Figure 5.7 to 
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observed concentrations of SOA (x) for August 28, 1987 in Claremont [T~trpin and 

Huntzicker, 19951. Figure 5.7 shows that the predicted temporal behavior of the total 

mass available to partition to SOA tracks well the pattern observed for SOA in the 

ambient. Figure 5.7 also shows that the base case predictions result in sufficient mass to 

account for the observed SOA concentrations. 

Reliable techniques for estimating/measuring ambient concentrations of SOA lag 

behind those for inorganic aerosol. Therefore, it must be noted that observed SOA data 

do have associated uncertainties. The data of Turpin and Hurztzicker [ 19951 presented 

here were generated by a technique that delineates organic carbon (OC) and elemental 

carbon (EC) aerosol concentrations under conditions when production of SOA should be 

low. The assumption made with this technique is that EC and primary OC have the same 

sources, so that a representative ratio of primary OC to EC for a given region exists. In 

order to determine this ratio, ambient measurements of the OCEC ratio are made on days 

when photochemical activity is expected to be low or an average ratio is obtained by 

determining the ratio at individual emissions sites. Subsequent ambient measurements 

are then made during times when photochemical activity is expected to occur, and it is 

assumed that if the ambient value of OCEC is greater than the characteristic primary 

OC/EC value, the excess OC consists of SOA [Turpin and Huntzicker, 19951. The main 

advantage of this approach is its simplicity; however, there are associated problems. 

First, the primary OC/EC ratio varies from source to source and may be dependent on 

factors such as meteorology, time of day, and season. It must also be noted that obtaining 

an average primary OClEC ratio is a difficult task because of problems associated with 

sampling of semi-volatile organics, and it has been shown that different sample collection 
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and analysis techniques result in different values for this ratio at the same location and 

time [McM~crr)~, 1989; Turpirz and Huntzickev, 19951. Finally, even on days when there 

is little potential for photochemical activity, previously formed SOA may be present 

because it has remained in the region from prior days. 

5.4.4 Uncertainty Analysis 

Historically, when conducting three-dimensional urban/regional atmospheric 

simulations, the largest uncertainties are those associated with the emissions inventory. 

From a chemical mechanism perspective, uncertainty lies in the rate constants, the 

product yields, and the mechanisms of degradation of second-, third-, and fusther 

generation products. These issues have been discussed in detail previously [Harley et ul., 

1993; Jncobsolz et ul., 1996; StockLt?ell et al., 19971. While there are a number of areas of 

uncertainty in the chemical mechanism that one might select for analysis, space does not 

permit a lengthy analysis of such uncertainties, especially with regard to ozone formation. 

However, it is informative to investigate aspects of the chemical mechanism to which 

prediction of semi-volatile products might be especially sensitive. Because aromatics are 

known to be an important source of anthropogenic SOA [ O h m  et ul., 19961 and because 

uncertainties in aromatic chemistry have been well documented [Atkinson, 19941, an 

issue is the sensitivity of SOA predicted from aromatic precursors to key aspects of 

aromatic photooxidation. One particular rate constant that has the potential to be 

especially influential is that which describes the isomerization of radicals formed in 

aromatic-OH chemistry (reactions 221,228,235,242,249, and 256) [Lay et ul., 19961. 

This rate constant affects SOA formation because slower isomerization will lead to less 

MGLY and RPlO formation and more formation of semi-volatile products. Because 
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earlier models generally underpredicted organic aerosol [Meng et al., 1997, 1 9981, we 

consider only the effect of halving the isomerization rate constant in an uncertainty 

analysis. Changes between the two cases are very small for NO, NOz, and 03 .  General 

trends are a slight decrease in 03, a slight increase in NO, and mixed results for NO2. 

Figure 5.7 also compares the total amount of organic material available to partition to 

SOA in Claremont on August 28, 1987 in the base case (solid) and that in which the 

bridging rate constant is halved (b/2 case, +). It is seen that decreasing the bridging rate 

constant results in a significant increase in the amount of organic mass with the potential 

to form SOA, especially in the early morning and early afternoon. 

A second source of uncertainty in the chemical mechanism is the direct 

conversion of aldehydes to acid groups in certain reactive products. Although the exact 

mechanism of this conversion remains elusive, such a step attempts to account for 

observed ambient concentrations of semi-volatile organic acids [Rogge et al., 1993; Nolte 

et al., 19991. Since assuming 100% conversion certainly overestimates the acid 

formation, this yield is also halved (reactions 8 1, 82, 308, 3 19, 320, 321, 33 1, 336, 337, 

338, 347, 348, and 349). Figure 5.7 also shows the results for this scenario (acid case, 

dashed) for August 28, 1987 in Claremont. While there are essentially no changes in the 

simulations for O3 and NOx in this case, predictions of total SOA material are seen to 

decrease as expected. However, the magnitude of these changes is not as large as that of 

the b/2 case (+). Figure 5.8 shows the percentage of the total SOA precursor 

concentration that must partition to account for the observations of Turpin and 

Huntzicker [I9951 in the base case (solid), the bf2 case (+), and the acid case (dashed). It 
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is seen that in each case, sufficient concentrations of SOA precursor material are 

predicted to account for the observations of Turpin and Hurztzicker [1995]. 

5.5 Conclusions 

Previous gas-phase mechanisms describing urbanhegional atmospheric chemistry 

have focused primarily on describing the formation of ozone with reduced attention to 

organic chemistry beyond the initial consumption of the parent organic. This paper 

describes a new chemical mechanism, the Caltech Atmospheric Chemistry Mechanism 

(CACM), that describes explicitly organic chemistry in an effort to predict the 

concentrations of secondary and tertiary organic oxidation products that can act as 

constituents of secondary organic aerosol. Parent organics in CACM must be aggregated 

into lumped surrogate structures. In total, CACM includes 19 1 species: 120 fully 

integrated species (I 5 inorganic, 7 1 reactive organic, and 34 unreactive organic), 67 

pseudo-steady state species (2 inorganic and 65 organic), and 4 species that have 

concentrations that do not change because of reaction. These species participate in over 

360 reactions. 

CACM has been used to predict gas-phase concentrations in the South Coast Air 

Basin of California for August 27-29, 1987. As part of the Southern California Air 

Quality Study, ambient measurements were taken during these dates, providing data to 

which the model results can be compared. As shown in this paper, the mixing ratios of 

03, NO, and NO2 predicted by CACM are statistically comparable to those predicted by 

the extended mechanism of Lurmanrz et al, [1987], which has been used in the California 

Institute of Technology three-dimensional air quality model previously [Htirlpj7 et czl., 

19931. In addition, CACM predicts secondary and tertiary organic oxidation products. 
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Concentrations of those products capable of forming secondary organic aerosol will be 

passed to a model designed to predict equilibrium gas-aerosol partitioning of organic 

oxidation products (Part 11). The development of CACM is a first step in allowing for 

more rigorous treatment of secondary organic aerosol formation in atmospheric models 

than has been possible previously. 
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Table 5.1. Chemical species represented in CACM. 

Inorganic, Fully Integrated Species 
NO Nitric oxide NO-, Nitrogen dioxide 
0 3  Ozone HONO Nitrous acid 
HN03 Nitric acid HN04 Pernitric acid 
N20s Nitrogen pentoxide NO? Nitrate radical 
HOz Hydroperoxy radical CO Carbon monoxide 
CO-, Carbon dioxide H202 Hydrogen peroxide 
SO2 Sulfur dioxide so3 Sulfur trioxide 
OH Hydroxyl radical 

Reactive, Fully Integrated Parent Organic Species ('denotes those that are also formed in 
CACM) 
ETHE 
OLEL 
OLEH 
ALKL 
A L r n  
ALKH 
AROH 
AROL 
AROO 
ARAL 
ARAC+ 
PAH 

HCHO 
ALD2 
E T L  
KETH 
MEOH 
ETOH 
ALCH 
ISOP 
BIOL 
BIOH 
MTBE 

Ethene 
Lumped alkenes C3-C6 (1 -pentene) 
Lurnped alkenes >C6 @-methyl- 1 -octene) 
Lumped alkanes C2-C6 ' (2-methyl-butane) 
Lumped alkanes C7-C I -, ' (3,5-dimethyl-heptane) 
Lumped alkanes >C 2 (12-hexadecane) 
Lumped high SOA yield aromatic species (3-n-propyl-toluene) 
Lumped low SOA yield aromatic species (l,2,3-trimethyl-benzene) 
Lumped phenolic species (2,6-dimethyl-phenol) 
Lumped aromatic monoaldehydes* @-tolualdehyde) 
Lumped aromatic monoacids (p-toluic acid) 
Lumped gas-phase polycyclic aromatic hydrocarbons ( l,2-dimethyl- 
naphthalene) 
Formaldehyde ' 
Lumped higher aldehydes' (n-pentanal) 
Lumped ketones c3-Co' (2-pentanone) 
Lumped ketones >C6 (2-heptanone) 
Methanol 
Ethanol 
Lumped higher alcohols (2-hexanol) 
Isoprene 
Lumped low SOA yield monoterpene species (a-terpineol) 
Lurnped high SOA yield monoterpene species (y-terpinene) 
Methyl-tert-butyl ether 



Table 5.1. (continued) Chemical species represented in CACM. 

Non-reacting, Fully Integrated Organic Species 

ADAC+ 
ACID 
UR l 
U R ~ "  
U R ~ '  
UR4 
URS' 
U R ~ '  
UR?' 
U R ~ '  
UR9 
URlO 
URI 1' 
uR.12 
UR13 
UR I 4' 
UR I s+ 
UR16 
UR 17' 
URl8 
UR 1 9' 
LTR.20' 
U R ~  1' 
17~22' 
U ~ 2 3 '  
UR24 
UR25 
LTR26' 
UR27' 
UR.28' 
UR29' 
UR30' 
UR3 1' 
UR32 
UR33 
UR34* 

Lumped aromatic diacids (terephthalic acid) 
Lumped organic acids <C6 
3-Methyl-heptanoic acid 
3-Hydroxy-4-methyl-benzoic acid 
2-Hydroxy-3-isopropyl-6-k&o-heptanoic acid 
2-Isopropyl-5-keto-hexanal 
1 -Methyl-3-hydroxy-4-isopropyl- 1,2-cyclohexane epoxide 
2-Hydroxy-3-isopropyl-6-methyl-cyclohexanone 
3, 7-Dimethyl-6-keto-3-octenal 
3 -1sopropyl-6-keto-3-heptenoic acid 
1 -Methyl-4-isopropyl- 1,2-cyclo-4-hexene epoxide 
3 -1sopropyl-6-methyl-3 -c yclohexenone 
1,2-Dimethyl-3-hydroxy-naphthalene 
1,2, 3-Trimethyl-5-nitro-benzene 
3-n-Propyl-4-nitro-toluene 
2-Ni tro-4-methyl-benzoic acid 
1, 2-Dimethyl-3-nitro-naphthalene 
2-Methyl-2-hydroxy-5-heptanone 
2-Hydroxy-3 -isopropyl- hexadial 
3-Isopropyl-2-pentendial 
1 -Methyl-2-formyl-naphthalene 
1 1 -Hydroxy-8-hexadecanonr 
Keto-propanoic acid 
2,6-Dimethyl-39-dinitro-phenol 
3-Isopropyl-4-hydroxy-2-butenoic acid 
Maleic anhydride 
3H-Furan-2-one 
4, 5-Dimethyl-6-keto-2,4-heptadienoic acid 
2-Carboxy-acetophenone 
Oxalic acid 
4-Hydroxy-3,5-dimethyl-2,4-hexadiendioic acid 
2-Methyl-5-carboxy-2,4-hexadiendioic acid 
2-(Dimethyl-propenoic acid)-benzoic acid 
3-Methyl-4-heptanone 
2-Isopropyl-5-keto-2-hexenal 
8-Hexadecanone 



Table 5.1. (continued) Chemical s~ec ie s  re~resented in CACM. 

Reactive, Fully Integrated Secondary Organic Species 

PAN 1 
PAN2 
PAN3 
PAN4 
PAN5 
PAN6 
PAN7 
PAN8' 
PAN9 
PN 10 
MGLY 
MVK 
MCR 
RPR I 
RPR2 
R P R ~ '  
RPR@ 
RPRS 
RPR6 
RPR~ '  
RPRS 
R P R ~ "  
RP 10 
RPl 1 
RP 12' 
RP 1 3' 
RP 14+ 
RP15 
RP16 
RP 17' 
RP 18' 
RP 19' 
AP I +  
AP2 
AP3 
AP4 
APS 
APG' 
A P ~ '  
AP8' 
AP9 
AP I o+ 

Peroxy pentionyl nitrate 
Peroxy acetyl nitrate (PAN) 
Unsaturated peroxy propionyl nitrate (PPN) 
Keto-PPN 
Methylene-PPN 
Peroxy nitrate derived from glyoxal 
Peroxy 3-methyl-heptionyl nitrate 
Peroxy 2-hydroxy-3-isopropyl-6-keto-heptionyl nitrate 
Peroxy 3-isopropyl-4-hydroxy-2-butenionyl nitrate 
Peroxy nitrate derived from glyoxalic acid 
Methyl glyoxal 
Methyl-vinyl-ketone 
Methacrolein 
3-Methyl-heptanal 
3-Hydroxy-4-methyl-benzaldehyde 
2-Hydroxy-3-isopropyl-6-keto-heptanal 
2,6-Dimethyl-4-nitro-phenol 
2-Nitro-4-methyl-benzaldehyde 
Benzene- 1,4-dialdehyde 
4-Formyl-benzoic acid 
3 -1sopropyl-4- hydrox y-2-butenal 
4-Hydrox y-3, 5-dimethyl-2,4-hexadiendial 
2-Methyl-butenalic acid 
4,5-Dimethyl-6-keto-2,4-heptadienal 
2-Methyl-5-formyl-2,4-hexadiendial 
2-Carboxyl-5-methyl-2,4-hexadiendial 
2-(Dimethyl-propenal)-benzaldehyde 
2-Fomyl-acetophenone 
Glyoxalic acid 
4-Hydroxy-3,5-dimethyl-2,4-hexadienalic acid 
2-Methyl-5-forrnyl-2,4-hexadiendioic acid 
2-(Dimethyl-propenal)-benzoic acid 
2-Nitrooxymethyl-6-methyl-phenol 
2-Methyl-2-hydroxy-5-heptylnitrate 
3-Methyl-4-heptylnitrate 
1, 2-Dimethyl-3-nitrooxymethyl-benzene 
4-Nitroox ymethyl-benzaldehyde 
4-Nitrooxymethyl-benzoic acid 
1 -Methyl- 1 -nitrate-2, 3-dihydroxy-4-isopropyl-cyclohexane 
1 -Methyl-4-nitrato-4-isopropyl-5-hydroxy-cyclohexene 
5-Isopropyl-6-nitrato-4-hexen-2-one 
1 -Methyl-2-nitrooxymethyl-naphthalene 



Table 5.1. (continued) Chemical species represented in CACM. 

Reactive, Fully Integrated Secondary Organic Species 

APl 1' 8-Hexadecylnitrate 
AP 12+ 8-Hydroxy- 1 1 -hexadecylnitrate 
ROzT Total organic peroxy radical 
R028 Acetyl peroxy radical 

Reactive, Inorganic Pseudo-Steady State Species 

OSD 0 ('D) 0 0 ('P) 

Reactive. Organic Pseudo-Steady State Species 

RO-, 12 

Methyl peroxy radical from oxidation of CH4 
Hydroxy alkyl peroxy radical <C6 from oxidation of ETHE, ETOH, 
OLEL, and ALCH (C4, 1-peroxy, 2-hydroxy) 
Nitrato alkyl peroxy radical <C6 from oxidation of ETHE and OLEL (C4, 
1 -nitrate, 2-peroxy) 
Aldehydic alkyl peroxy radical from oxidation of ISOP and ETHE (C2) 
Alkyl peroxy radical <C6 from oxidation of KETL, ISOP, ALKL, BIOH, 
and OLEL (C3, 1 -peroxy) 
Acyl radical from aldehydic H abstraction of ALD2 
Keto alkyl peroxy radical <C6 from oxidation of ISOP and KETL (C4, 2- 
keto, 3-peroxy) 
Branched hydroxy alkenyl peroxy radical from oxidation of ISOP (C4 
chain, 1 -hydroxy, 2-methyl, 2-peroxy) 
Branched hydroxy alkenyl peroxy radical from oxidation of ISOP (C4 
chain, 2-methyl. 3-peroxy, 4-hydroxy) 
Branched nitrato alkenyl peroxy radical from oxidation of ISOP (C4 chain, 
1 -nitrate, 2-methyl, 2-peroxy) 
Branched nitrato alkenyl peroxy radical from oxidation of ISOP (C4 chain, 
2-methyl, 3-peroxy, 4-nitrato) 
Keto alkenyl peroxy radical from oxidation of ISOP (C4, 3-keto, 4-peroxy) 
Alkenyl peroxy radical from oxidation of ISOP (C2) 
Ether alkyl peroxy radical from oxidation of MTBE (C5, accounts for 
attack on both sides of the ether bond) 
Keto alkyl peroxy radical from oxidation of KETH (C7, 2-keto, 3-peroxy) 
Aromatic peroxy radical from side chain oxidation of AROO 
Branched hydroxy alkyl peroxy radical >C6 from oxidation of OLEH and 
ALKM (C7 chain, 2-methyl, 2-hydroxy, 5-peroxy) 



Table 5.1, (continued) Chemical soecies re~resented in CACM. 

Reactive, Organic Pseudo-Steady State Species 

Branched nitrato alkyl peroxy radical from oxidation of OLEH (Cx chain, 
4-methyl, i -nitrate, 2-peroxy) 
Branched alkyl peroxy radical >C6 from oxidation of OLEH and ALKM 
(C7 chain, 3-methyl, 4-peroxy) 
Aromatic peroxy radical from side chain oxidation of AROL 
Aromatic peroxy radical from side chain oxidation of ARAL 
Aromatic peroxy radical from side chain oxidation of ARAC 
Cyclic dihydroxy alkyl peroxy radical from OH oxidation of BIOL (C6 
cycle, l -methyl, 1 -peroxy, 2, 3-dihydroxy, 4-isopropyl) 
Cyclic hydroxy nitrato alkyl peroxy radical from NO3 oxidation of BIOL 
(C6 cycle, 1 -methyl, 1 -peroxy, 2-nitrato, 3-hydroxy, 4-isopropyl) 
Branched keto hydroxy aldehydic peroxy radical from oxidation of BIOL 
(C7 chain, 2-hydroxy, 3-isopropyl, 5-peroxy, 6-keto) 
Cyclic hydroxy alkenyl peroxy radical from oxidation of BIOH (C6 cycle, 
1 -methyl, 1 -ene, 4-peroxy, 4-isopropyl, 5-hydrox y) 
Cyclic nitrato alkenyl peroxy radical from oxidation of BIOH (C6 cycle, 1 - 
methyl, 1-ene, 4-peroxy, 4-isopropyl, 5-nitrato) 
Branched keto alkenyl peroxy radical from oxidation of BIOH (C6 chain. 
1 -peroxy, 2-isopropyl, 2-ene, 5-keto) 
Branched keto aldehydic peroxy radical from oxidation of BIOH (C7 
chain, 3-isopropyl, 3-ene, 5-peroxy, 6-keto) 
Aromatic peroxy radical from side chain oxidation of PAH 
Alkyl peroxy radical from oxidation of ALKH (8-peroxy) 
Peroxy radical from addition of 0 2  to RAD2 
Peroxy radical from addition of O2 to RAD3 
Peroxy radical from addition of O2 to RAD4 
Peroxy radical from addition of 0 2  to RAD5 
Peroxy radical from addition of Oz to RAD6 
Peroxy radical from addition of 0 2  to RAD7 
Unsaturated acyl peroxy radical from oxidation of ISOP (C3) 
Branched hydroxy keto alkenyl peroxy radical from oxidation of BIOH 
(C6 chain, 1-hydroxy, 2-isopropyl, 2-ene, 4-peroxy, 5-keto) 
Hydroxy alkyl peroxy radical from oxidation of ALKH (8-hydroxy, 1 1- 
perox y ) 
Bicyclic peroxy radical from the 0? bridging in RO23 1 
Bicyclic peroxy radical from the 0 2  bridging in R0232 
Bicyclic peroxy radical from the O2 bridging in RO233 
Bicyclic peroxy radical from the 0 2  bridging in R0?34 
Bicyclic peroxy radical from the 0 2  bridging in R0235 
Bicyclic peroxy radical from the Oz bridging in R0236 
Acyl radical from aldehydic H abstraction of MGLY 
Peroxy radical formed from OH oxidation of MVK 



Table 5.1. (continued) Chemical species represented in CAGM. 

Reactive, Organic Pseudo-Steady State Species 

RO2% 
R02SS 
R0256 
RO257 
R0258 
RAD 1 
RAD:! 
RAD3 
RAD4 
RADS 
RAD6 
RAD7 
RAD8 

Acyl radical from aldehydic H abstraction of MCR 
Peroxy radical from OH addition to double bond in MCR 
Peroxy radical from NOi addition to double bond in MCR 
Dicarbonyl peroxy radical from MCR/03 reaction (C3 chain, i -peroxy, 2- 
keto. 3-aldehydic) 
Acyl radical from decomposition of RO253 
Acyl radical from aldehydic H abstraction of RPRl 
Acyl radical from aldehydic H abstraction of RPR3 
Acyl radical from aldehydic H abstraction of RPR7 
Acyl acid peroxy radical from aldehydic H abstraction of RP 16 (C2) 
Radical from NO3 oxidation of AROO 
Hexadienyl radical from OH oxidation of AROO 
Hexadienyl radical from OH oxidation of AROL 
Hexadienyl radical from OH oxidation of AROH 
Hexadienyl radical from OH oxidation of ARAL 
Hexadienyl radical from OH oxidation of ARAC 
Hexadienyl radical from OH oxidation of PAH 
Radical from NO3 oxidation of RPR4 

Species with Concentrations not Affected by Reaction 

H20  Water vapor 0 3  Oxygen 
M Third body cH4 Methane 
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Table 5.2. Reactions contained in the Caltech Atmospheric Chemistry Mechanism. 

Reaction Reactants Products Rate Constants (ppnl- References, 
min units) Comments 

1 NO2 + hv N O + O  See Table 5.3 1 

13 NO3 + IZV NO + 0 2  

14 NO3 + hv NO2 + O 

15 o7 + hv C> + 0 2  

16 O3 + /ZV OSD + O2 

17 OSD+H20  2 0 H  

3.328+ 1 8/TEMPA4.8 

2.86E+h/TEMP*EXP 

( 1 1 9.8mEMP) 

See Table 5.4 

7.92E+S/TEMP:@EXP 

(- 1 368.9/TEMP) 

6.16E+4/TEMP*EXP 

(-247 1 . I /TEMP) 

7.92E+6/TEMP:@EXP 

( 1 10,7/TEMP) 

2. 24/TEMPA2 *EXP 

(528.41TEMP) 

See Table 5.4 

See Table 5.4 2 

1.14E-4/TEMP 2 

1.98E+4/TEMP*EXP 2 

(- I 258.2rTEMP) 

See Table 5.3 1 

See Table 5.3 1 

See Table 5.3 I 

See Table 5.3 1 
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Table 5.2. (continued) Reactions contained in the Caltech Atmospheric Chemistry 

Reaction Reactants Products Rate Constants (ppm- References, 
rnin units) Comrnen ts 

18 OSD+M O + M 9.2E+ 1 2/TEMP*EXP 2 

19 NO + OH + M HONO + M See Table 5.4 2 

20 HONO + /zv 0.9 NO + 0.1 NO2 + 0.9 OH + See Table 5.3 I 

2 1 NO2 + H20 HONO - NO2 + HN03 1.76E-6/TEMP 1 

22 N 0 2 + O H +  H N 0 3 + M  See Table 5.4 3 

27 NO2 + HO? + HNOj + M 

M 

28 HN04 NO2 + HO? 

29 HNOj + OH NO2 + 0 2  + H20 

Set: Table 5.5 2 

See Table 5.5 2 

8.36E+5/TEMP*EXP 2 

(- 100 1 .S/TEMP) 

I .5E+6/TEMP*EXP 2 

(27 1,8/TEMP) 

See Table 5.4 2 

See Table 5.4 2 

6.6E+5/TEMP:kEXP 2 

(362.4/TEMP) 

6. I 6E+3/TEMP*=EXP 2 

(-598.9REMP) 

See Table 5.5 2 

See Table 5.5 3 
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Table 5.2. (continued) Reactions contained in the Caltech Atmospheric Chemistry 

Mechanism. 

Rcaction Reactants Products Rate Constants (ppm- References, 
min units) Conlmen ts 

33 N 0 3 + H 0 2  0.8 NO2 + 0.2 HN03 + 0.8 OH + O2 1.76E+6/TEMP 2 

35 SO2 + OH H2S04 (via SO3) + H02 See Table 5.4 2 

36 Hz02 + hv 2 OH See Table 5.3 1 

38 0 +NO+M NO2 + M  

39 HONO + OH NO? + H20 

44 HCHO+ Izv C O + 2  HO2 See Table 5.3 I 

45 HCHO + /zv +Hz See Table 5.3 I 

46 HCHO + OH CO + HO? + Hz0 

47 HCHO + NO3 HN03 + CO + H02 
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Table 5.2. (continued) Reactions contained in the Caltech Atmospheric Chemistry 

Mechanism. 

Reaction Reactants Products Rate Constants (ppm- References, 
~nin units)" Comments 

48 MEOH + OH H02 + HCHO + H20 2.64*TEMP*EXP 4 

49 ETHE + OH R022 + ROzT 8.62E+5/TEMP*EXP 5 

50 ETHE + NO3 R023 + R02T 2.1 5"TEMP"EXP 5 

5 1 ETHE + O3 0.3 15 CO + 0.06 H02 + 0.06 OH + 4.02E+3REMP*EXP 5 

0.185 ACID + 0.5 HCHO + (-2580.3D"EMP) 

53 ETOH + OH CF(1) H02 + CF(1) ALD2 + CF(2) 2.72*TEMP*EXP 4 

54 OLEL + OH R022 + R02T 2.5 8E+6/TEMP*EXP 4 

55 OLEL + NO3 R023 + R02T 4.4E+4/TEMP*EXP 5 

56 OLEL+ 0 3  0.56 CO + 0.2 C02 + 0.36 OH + 0.28 4.4/TEMP 5 

H02 + 0.5 HCHO + 0.5 ALD2 + 0.24 

ACID + 0.1 ALKL + 0.28 R025 + 
0.28 R07T 

57 OLEL + 0 0.5 ALKL + 0.4 ALD2 + 0. I R024 + 2.05E+6/TEMP 5 

0. I RCI2S + 0.2 ROzT 

58 A L U  + OH RC)25 + ROzT + H20 1.72E+6/TEMP 4 
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Table 5.2. (continued) Reactions contained in the Caltech Atmospheric Chemistry 

Mechanism. 

Reaction Reactants Products Rate Constants (ppnl- Ref'crenccs, 
min units)' Cornmen ts 

59 ALD2 + izv CO + H02 + R0.5 + R02T See Table 5.3 I 

62 KETL + OH R027 +R02T + H20 2.1 6E+06/TEMP 6 

63 KETL + izv R025 + R028 + 2 R0.T See Table 5.3 I 

65 ISOP + NO3 0.66 R02 1 1 + 0.34 RO. 12 + ROzT 1 .33E+6/TEMP'kEXP 5 

ESOP + 0 

MTBE + OH 

ALCW + OH 

KETH + Izv 

AROO + NO3 

AROO + OW 

0.068 CO? + 0.461 GO + 0.5 HCHO 3.46Et-3mEMP"EXP 5 

+ 0.664 OH + 0.366 HO-, + 0.054 (- 19 12.9rTEMP) 

OLEL + 0.12 1 ACID + 0.389 MVK 

+ 0.17 MCR + 0.271 R0213 + 0.095 

R02 14 + 0.366 R02T 

0.925 OLEL + 0.075 ALD2 1.54E+7/TEMP 5 

RO. 15 + R02T + HIO I .4 I E+h/TEMP 7 

R022 + R02T+ H20 See Table 5.6 8 

ROz 1 6 + R02T + HIC> See Table 5.6 8 

R025 + RO.8 + 2 ROzT See Table 5.3 1 

HN03 + RAD 1 1.66E+6/TEMP 2 
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Table 5.2. (continued) Reactions contained in the Caltech Atmospheric Chemistry 

Mechanism. 

Reaction Reactants Products Rate Constants (ppm- References, 
min units) Comments 

74 OLEH + OH R02 18 + R02T See Table 5.6 8 

75 OLEH + NO3 R02 1 9 + R02T k74*ksslk5.1 Estimated k 

76 OLEH+03  0.56 CO + 0.2 C02  + 0.36 OH + 0.28 k74*k5dk5J Estimated k 

H07 + 0.5 HCHO + 0.5 RPR 1 + 0.12 

ACID+0.12 URI +0.I ALKM + 
0.28 R0220 + 0.28 RQ2T 

77 OLEH+O 0.5 ALKM + 0.4 RPR 1 + 0.1 R024 + k73*k571k53 Estimated k 

78 ALKM + OH R0220 + ROzT t H70 See Table 5.6 8 

79 AROL + OH 0.16 H02 + 0.16 AROO + 0.06 1.44E+7lTEMP 4 

80 AROH + OH 0.16 H02 + 0.16 ARQO + 0.84 See Table 5.6 8 

8 1 ARAL + NO3 HN03 + O3 - H02 + ARAC 6.16E+S/TEMP*EXP 2 

82 ARAL + OM (0.16-CF(39)) HO, + CF(39) O3 + 5.68E+06/TEMP 2 

CF(39) ARAC + CF(45) R0222 + 
CF(40) RADS + CF(45) R02T + 
(CF(39) + CF(45))H20 

83 ARAC + OH 0. I6 H02 + 0.16 UR2 + 0.1 RO223 + See Table 5.6 8 

84 BIOL + OH R0224 + R02T 7.48E+7lTEMP 9 

85 BIOL + NO3 R022S + R02T 6.42E+6/TEMP 9 
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Table 5.2. (continued) Reactions contained in the Caltech Atmospheric Chemistry 

Mechanism. 

Reaction Reactants Products Rate Constants (ppm- References, 
min units)" Cornrnents 

86 BIOL+ O3 0.445 CO + 0.055 H202 + 0.445 H02 I .  1 E+2ITEMP 9 

237 BIOL+O 0.75 UR5 + 0.25 UR6 k84:"ks7/kS4 Estimated k 

88 BIOH + OW R0227 + R02T 7.79E+7lTEMP 5 

89 BIOH + NO3 R0228 + R02T 1.28E+71TEMP 5 

90 BIOH + O3 0.445 CC) + 0.055 H207 + 0.89 OH + 6. I6E+ IITEMP 5 

0.055 UR7 + 0.055 IJR8 + 0.445 

R0229 + 0.445 R0230 + 0.89 R02T 

91 BIOH+O 0.75 UR9 + 0.25 URlO 3.78E+71TEMP 5 

92 PAH+OH 0.16 H07 + 0. I6 IJRI 1 + 0.1 R023 1 3.39E+7lTEMP 6 

93 ALKH + OH R0232 + ROzT + H20  See Table 5.6 13 

96 ROIT + R02T R02T 

97 RAD2 + C)? R0233 + R02T 

98 RAD3 + 0 2  R0234 + R02T 

99 RAD4 + O2 R0235 + R02T 

100 RADS + 0 2  R0236 + R02T 

101 RAD6t-02 R0237 + RC&T 
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Table 5.2. (continued) Reactions contained in the Caltech Atmospheric Chemistry 

Mechanism. 

Reaction Reactants 

RAD7 + O;? 

RAD I + NO2 

RAD2 + NO;? 

RAD.3 + NO2 

RAD4 + NO2 

RADS + NO2 

RAD6 + NO2 

RAD7 + NO;? 

R02 1 + NO 

Products Rate Constants (ppm- References, 
min units) Comments 

R0238 + RO;?T k97 

RPR4 + H 2 0  

UR12 + H 2 0  

UR13 + H20  

RPRS + H20  

UR14 + H 2 0  

UR1S + H 2 0  

NO;? + HO;? + HCHO 

HO;? + HCHO + R02T + O;? kg(, 

H02 + OH + HCHO k94 

NO2 + H02  + HCHO + ALD2 1.08E+6/TEMP*E=SP I I 

HOz + HCHO + ALD2 + R02T + 0 2  kg6 

OH + H02 + HCHO + ALD2 kg3 

2 NO;? + HCHO + ALDZ k113  

NO;? + HOz + HCHO + ALD2 + 02+ kgh 

ROzT 

NO;? + H02  + OH + HCHO + ALD2 kV4 

NO2 + CO + H02 + HCHO I .52E+6/TEMP*EXP 1 I 

CO + HO;? + HCHO + R02T + O2 kofi 

CO + H02 + OH + HCHO k93 
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Table 5.2. (continued) Reactions contained in the Caltech Atmospheric Chemistry 

Mechanism. 

Reaction Reactants Products Rate Constants (ppm- References, 
min units) Comments 

122 R0,5 + NO CF(3) ALKL + CF(4) NC)? + CF(4) 1 .28E+6/TEMP:kEXP I 1 

127 PAN1 NO2 + R026 + R02T 

128 R076 + H02 O3 + ACID 

( 1 80.2/TEMP) 

See Table 5.4 12 

See Table 5.4 12 

k g 4  

134 R078 + NO? + PAN2 + M k 126 

136 R028 + H02 O3 + ACID h 4  

138 R029 + NC) CF(5) OLEL + CF(6) NO2 + CF(6) 9.14E+S/TEMP*EXP I I 

HO? + CF(6) HCHO + CF(6) MVK ( 180.2/TEMP) 

139 R029 + R02T HO? + MVK + HCHO + R02T + 0 2  kq6 

140 R029 + H02 HOz + OH + MVK + HCHO k g 4  
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Table 5.2. (continued) Reactions contained in the Caltech Atmospheric Chemistry 

Mechanism. 

Reaction Reactants Products Rate Constants (ppm- References, 
rnin units) Comments 

14 1 R02 10 + NO NO2 + HC)? + HCHO + MCR k ~ i l ;  

142 R02 10 + ROzT H02  + HCHO + MCR + R02T + 0 2  kgg 

143 R0210 -i- H02  H02  + OH + HCHO + MCR kg4 

144 R021 1 + NO 2 NOz + HGHO + MVK klis 

145 R02 1 1 + R02T NO2 + HCHO + MVK + R02T + 0 2  k9(, 

146 R02  1 I + H02  NO2 + OH + HCHO + MVK k94 

148 R02 12 + R02T NO2 + HCHO + MCR + R02T + 0 2  k9h 

I SO R02 13 + NO NO2 + HCHO + R0239 + R02T k11.3 

15 1 R02  13 + R03T HCWO + R0239 + 2 R02T + 0 2  k90 

152 ROzl 3 + H02  HCHO + OH + Ro239 + R02T k94 

156 R0239 + H02  0 3  + 0.5 OLEL + 0.5 ACID k93 

158 ROJ 4 + NO CF(7) OLEL + CF(8) NO? + CF(8) kl72 
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Table 5.2. (continued) Reactions contained in the Caltech Atmospheric Chemistry 

Mechanism. 

Reaction Reactants Products 

I 6 1 R(C)? 1 5 + NO NO2 + H02  + CF(9) ALD2 + CF( 10) 

HCHO + CF( I 1 ) KETL + 
CF( 1 2) ALKL 

1 62 R02  1 5 + R02T H02 + CF( I 3) ALD2 + CF( 1 4) 

HCHO + CF( 1 5) KETL + CF( 16) 

ALFZ + R02T + 0 2  

1 63 R02 15 + H02  OH + H02 + CF( 1 3) ALD2 + CF( 14) 

HCHO + CF( 15) KETL + 
CF( 1 6) ALKL 

164 R07 16 + NO NO2 + ALD2 + R028 + ROzT 

Rate Constants (pprn- References, 
min units)' Corrlmen ts 
k138 
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Table 5.2. (continued) Reactions contained in the Caltech Atmospheric Chemistry 

Mechanism. 

Reaction Reactants Products Rate Constants (ppm- Refkrences, 
min units)' Cornn~ents 

174 R02  19 + R02T NO2 + HCHO + RPR 1 + R O T  + 0 2  kg(, 

179 R0221 + NO CF(23) AP4 + CF(24) NO2 + CF(24) 

H02  + CF(24) ARAL 

180 R022 1 + R02T HO-, + ARAL + R02T + koc, 

182 RO222 + NO CF(4 1 ) APS + CF(42) NO2 + CF(42) k i b 7  

H02 + CF(42) RPR6 

183 It0222 + R02T H02  + RPR6 + R02T + O2 kg6 
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Table 5.2. (continued) Reactions contained in the Caltech Atmospheric Chemistry 

Mechanism. 

Reaction Reactants Products Rate Constants (ppm- References, 
min units) Comments 

193 R0225 + H02 NO2 + OH + RPR3 k9.4 

OH + RPRX + R028 + R02T 
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Table 5.2. (continued) Reactions contained in the Caltech Atmospheric Chemistry 

Mechanism. 

Reaction Reactants Products Rate Constants (ppm- References, 
min units)' Comn~ents 

214 RO231+HO2 H 0 2 + O H + U R 1 9  k9-1 

225 R0242 + NO NO? + H 0 2  + RPlO + MGLY kl61 

226 RO242 + R02T H02 + RPlO + MGLY + O2 + R02T kq6 

227 R0242 + H 0 2  H 0 2  + OH + RP I0 + MGLY k94 

229 R0234 + NO NO2 + H 0 2  + RPl I k173 

230 I20234 + ROzT H 0 2  + RPl I + R07T + O7 

232 R0243 + NO NO2 + HO? + RPl 0 + MGLY k173 

233 R024R + RCl2T H 0 2  + RPlO + MGLY + 0 2  + RO2T kg6 
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Table 5.2. (continued) Reactions contained in the Caltech Atmospheric Chemistry 

Mechanism. 

Reaction Reactants Products Rate Constants (ppm- References, 
min units)' Comments 

234 R0243 + H02  H02  + OH + RPlO + MGLY kw 

236 R0235 + NO NO2 + HO-, + RPl I k188 

238 R0235 + HO-, H02 + OH + RPI I kg4  

239 R0244 + NO NO2 + H02  + RPI O + MGLY h t i x  

240 R0244 + R02T HO-, + RP I O + MGLY + 0 2  + R02T kg(, 

24 1 R0244 + H02  H02 + OH + RP I0  + MGLY kg4  

246 R0245 + NO NO2 + HO-, + RPlO + MGLY kg67 

247 R0245 + R07T HOz + RPlO + MGLY + O2 + R02T ks6 

248 R0245 + H02 HO-, + OH + RPIO + MGLY h.04 

253 R024h + NO NO2 + HO-, + RPlO + MGLY k167 

254 R0246 + R02T HO-, + RPIO + MGLY + + R02T k')6 

255 RO-,46 + H02  HO? + OH + RPIO + MGLY kct~ 
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Table 5.2. (continued) Reactions contained in the Caltech Atmospheric Chemistry 

Mechanism. 

Reaction Reactants Products Rate Constants (pprn- References, 
min units) Cornmen ts 

25 8 R023 8 + R02T HO? + RP 14 + ROzT + 0 2  kg6 

260 R0247 + NO NO2 + H02 + RP 15 + MGLY k212 

26 1 R0247 + R02T H02 + RP15 + MGLY + 0 2  + ROzT ks6 

262 R0247 + H02 H02 + OH + RP15 + MGLY k9.r 

263 MGLY + OH R0248 + R02T + H20  7,57E+6/TEMP 5 

264 MGLY + NO3 HNOl + R0248 + R02T 6.16E+S/TEMP*EXP 2 

(- 1 897.3REMP) 

265 MGLY + Izv CO + HO:! + R028 + ROzT See Table 5.3 I 

27 1 MVK + OH R0249 + R02T 1.82E+6/TEMP*EXP 2 

(45 2.9/TEMP) 

272 MVK+ 0, 0.56 CO + 0.2 C02  + 0.28 H02  + 3.3E+2/TEMP*EXP 2 

0.36 OH + 0.5 MGLY + 0.5 HCHO (- 15 19.9REMP) 

+ 0.12 ACID + 0.1 ALD2 + 0.12 

UR21 + 0.28 R028 + 0.28 R02T + 
0.2 H20 

273 M V K +  0 0.85 IWTL + 0.1 5 R024 + 0. I 5 R028 I .9E+6/TEMP 2 

+ 0.3 R02T 
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Table 5.2. (continued) Reactions contained in the Caltech Atmospheric Chemistry 

Mechanism. 

Reaction Reactants Products Rate Constants (ppm- References, 
min units) Comrnents 

274 R0249 + NO NO:, + H02 + MGLY + HCHO k113 

275 R0249 + R02T HO:! + MGLY + HCHO + R02T + kg(, 

0 2  

276 R0249 + H02 HOz + OH + MGLY + HCHO 4 

277 MCR + OH CF(46) R0250 + CF(46) H70 + 8. I $E+G/TER/IP*EXP 2 

278 MCR + NO3 CF(46) HNO3 + CF(46) R0250 + 6.6E+S/TEMP*EXP 2 

279 MCR + 0 3  0.41 GO + 0.4 1 H02  + 0.82 OH + 0.5 5.98E+21TEMP*E:EXP 2 

HCHO + 0.59 MGLY + 0.09 ACID (-2 1 13.7REMP) 

+ 0.4 1 R0253 + 0.4 1 R02T 

280 MCR + 0 0.15 CO + 0.15 H02 + 0.85 ALD2 + 2.79E+6/TEMP 2 

0.15 R027 + 0.1 5 R02T 

28 1 R0250 + NO CO? + NO2 + R02 14 + RO?T k~zs 

282 R0750 + NO2 PANS + M 

+ M  

283 PAN5 NO2 + R0250 + R02T 

284 R0250 + H02 O3 + 0.5 ACID + 0.5 OLEL k94 

286 R025 1 + NO NO2 + H02  + HCHO + MGLY h.113 

287 R025 I + H02 H02 + HCHO + MGLY + R02T + kgd 

0 2  

288 R025 I + R02T H02  + OH + MGLY + HCHO 

289 RO252 + NO 2 NO2 + MGLY + HCHO k113 
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Table 5.2. (continued) Reactions contained in the Caltech Atmospheric Chemistry 

Mechanism. 

Reaction Reactants Products Rate Constants (ppm- References, 
rnin units) Cornrnents 

290 R0r52 + HO:! NO-, + MGLY + HCHO + R02T + k94 

291 R0252 + R02T NO2 + OH + MGLY + HCHO k90 

292 R0253 + NO NO:! + WCHO + RQ54 + R O T  k 122 

293 R0253 + H02 HCHO + R0254 + 2 R02T + 0 2  k94 

294 R0253 + R02T OH + HCHO + R0254 + R02T kg6 

300 RPRl + OH R0255 + R02T + H20 

30 1 RPR 1 + NO3 HN03 + R0255 + R02T 

See Table 5.6 8 

k i  I *k3a-tlkbo Estimated k 

302 RPRl + liv CO + H02  + R0220 + ROIT See Table 3 I 

309 RPR3 + OH R0256 + R02T + HrO See Table 5.6 8 

3 1 0  RPR3 + NO3 HN03 + R0256 + R02T kh i *k309/kb0 Estimated k 
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Table 5.2. (continued) Reactions contained in the Caltech Atmospheric Chemistry 

Mechanism. 

Reaction Reactants Products Rate Constants (ppm- Rekrences, 
~nin units) Cornrnents 

311 RPK3+Izv CO + 2 HOz + UR4 See Table 5.3 1 

32 1 RPR7 + OH O3 - HOz + ADAC + H20 kg2 

322 RPR8 + OH R<I257 + ROzT + Hz0 See Table 5.6 8 

324 RPR8 + hv GO + H 0 2  + R029 + R02T See Table 5.3 I 

325 RPR8 + hv E1O2 + RO257 + R02T See Table 5.3 I 

331 RPR9+OH 03-HO:!+RP17+H20 See Table 5.6 8 
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Table 5.2. (continued) Reactions contained in the Caltech Atmospheric Chemistry 

Mechanism. 

Reaction Reactants Products Rate Constants (pprn- References, 
mi11 units)' Comments 

332 RP10 + OH H02 + UR24 + H20  See Table 5.6 8 

333 RPlO+Izv UR25 See Table 5.3 1 

334 RPI 1 + OH 03- H02  + UR26 + H20  See Table 5.6 8 

335 RP12+OH 03 -H02+RP13+H20  See Table 5.6 8 

336 RP13+OH 0 3 - H 0 2 + R P 1 8 + H 2 0  See Table 5.6 8 

337 RP14+OH 03-HOz+RP19+H1?0 See Table 5.6 8 

338 RP15+OH 0 3 - H 0 7 + U R 2 7 + H 2 0  See Table 5.6 8 

341 RP16+ hv 2 C O + O H + H 0 2  See Table 5.3 1 

342 R02S8 + NO CO + CO-, + NO2 + OH 125 

343 R0258 + NO:! PN 10 + M 

+ M  

344 PNlO NO2 + R0258 + R02T 

347 RP17+OH 0 3 - H 0 2 + U R 2 9 + H 2 0  See Table 5.6 8 

348 RPIX+OH 0 3 - H 0 7 + U R 3 0 + H 2 0  See Table 5.6 8 

349 RP19+OH 03- H02  + UR31 + H20  See Table 5.6 8 

350 API + OH NO2 + RPR2 + H70 See Table 5.6 8 

351 AP2 + OH NO-, + UR16 + H20 See Table 5.6 8 

352 AP3 t- OH NO2 + UR32 + H70 See Table 5.6 8 

353 AP4+OH NO2 + ARAL + H20  See Table 5.6 8 

354 AP5 +OH NO2 + RPR6 + H20  See Table 5.6 8 



Table 5.2. (continued) Reactions contained in the Caltech Atmospheric Chemistry 

Mechanism. 

Reaction Reactants Products Rate Constants (pprn- References, 
min units) Cornrnents 

355 AP6+OH NO2 + RPR7 + H;!0 See Table 5.6 8 

356 AP7 +OH NO? + RPR3 + H20 See Table 5.6 8 

357 AP8+OH NO2 + UR7 + H20  See Table 5.6 8 

358 AP9 +OH NO2 + UR33 + H20 See Table 5.6 8 

359 APIO+OH NO2+UR19+H70 See Table 5.6 8 

360 API 1 + OH NO2 + UR34 + H 2 0  See Table 5.6 8 

361 AP12+OH N02+UR20+H70  See Table 5.6 8 

-I 

If reaction rates depend on concentrations of 02, these rate constants already take this 
into account by being multiplied by 2. ~E-I-5. The CF(i) factors represent product 
stoichiometric yields estimated or determined kinetically [Carter and Atkinsop? et ul., 
1989; J q a r  et al., 1990; Kwok and Atkipzsorz et al., 19951. Rate constant references: 
1. Hurlej) et al. [ 1993]/hrmanrz et ul. [1987]; 2. Curter [ 1997, 19991; 3. 
Dr-arzsfield et cil. [I9991 ; 4. Atkirzson [ 1 9941 ; 5. Atkirtson [ 19971 ; 6. Atkirlson 
[1990]; 7. Japar et al. [1990]; 8. Kwok and Atkirzsorz [1995]: 9. Hqfrnanrz et ul. 
[1997]; 10. Gounri et. ul. [1992]; 1 1. Jerzkin et a/ .  [1997]; 12. Stockwell et ul. 
[1997]; 13. Lc~y et ul. [1996]. 
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Table 5 -3. Photolysis rate  constant^'^. 

Photolyzed Products 
Species 

Typical Comments 
Value of j, 

(Reaction #) (min- ' ) 
NO? (1) NO+O 4.01E-I 

0 3  (16) OSD + 0 2  9.96E-4 

HONO (20) 0.9 NO + 0.1 NO2 + 0.1 H02 + 0.9 OH 7.77E-2 

HCHO (44) HOz + CO 

HCHO (45) CO + H2 

ALD2 (59) CO + H02 + R02S + R02T 

KETL (63) R025 + RO28 + 2 RO2T 

KETH (7 I )  RO25 + R028 + 2 KOIT 

1.18E-3 

2.03E-3 

2.67E-4 

5.62E-5 

5.62E-5 assumed equal to jKErLd 

MGLY (265) CO + H02 + R028 + ROzT 7.89E-3 

RPRl (302) GO + HOz + R0220 + R02T 2.67E-4 assumed equal to jALD2 

RPR3(311) C O + 2 H 0 2 + U R 4  2.67E-4 assumed equal to jALIIL 

RPR8 (324) CO + H02 + R029 + R02T 2.67E-4 assumed equal to jAlaDz 

RPR8 (325) 1302 + RO257 + R02T 2.67E-4 assumed equal to, jALnz 

2.67E-4 assumed equal to jnrdD2 

7.89E-3 assumed equal to ,jM(;ly 

' Photolysis rate constants as a function of zenith angle are calculated by integrating over ultraviolet 
wavelengths the product (actinic irradiance * absorption cross section * quantum yield). 
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Table 5.4. Three-body kinetics rate constant calculations'. 

React ion x,,?" n znt rn F k "1 

In equilibrium with 

reaction (9) 

7.0E-3 1 

In equilibrium with 

reaction (27) 

4.1 E-3 1 

In equilibrium with 

reaction ( 1 26) 

3.6E- 1 1 0.1 0.6 

3.13E-11 0 See 

below 

4.7E- I2 0 0.6 

Three-body rate constants at temperature T (IS) and pressure corresponding to [MI (molecule cm-') arc 
found via the following formulae: 

3 0 0  k, ,  ( 7 )  = k,; ( T )  - (cm6 molecule-' s-') ( 3bO ) 
k 7 = k ( T  - (cm' molecule-' s-') 

3oo [ ; o r  

To convert to ppm-' m i d  units. multiply by (4.4E+ 17/7') 

'The rate constant expression for reaction 22 has srnall correction factors incorporated into it. It is found as 
in Dmnsfield et nl. [ 19991. 



Table 5.5. Other rate constant calculations. 

Reaction Expression- k l  
23 a 7.2E- 15 

"EXP(7 85. I /TEMP) 
24 b 1.3E-13 
3 1 b 2.2E- I3 

*EXP(S 9 8.9EEMP) 
32+ b 3.08E-34 

"EXP(2798.21TEMP) 

Three-body rate constants at temperature TEMP (K) and pressure corresponding to [MI 
(molecule cm') are found via the following formulae: 

a) k (cm' molecule-' s-l) = ki + k2[M] or b) k (cm' molecule-' s-') = k l  + k3[M](I + k3[M]/kz) 
'Reaction 32 is third order. 
To convert to pprn*' min-' units, multiply by (4.4E+ 17/TEMP); to convert to ppm-' min-I, multiply 

by (3 .23E+33/TEMPA2). 



Table 5.6. Hydroxyl radical rate constants calculated using a structure-reactivity 
relationship [Kwok and Atkinson, 19951. ' see below for a simple example 
calculation. 

Reaction k (ppm- ' min- ' ) Reaction 
at 300 K 

69 (ALCH) 
70 (KETH) 
73 (AROO) 
74 (OLEH) 
78 (ALKM) 
80 (AROH) 
83 (ARAC) 
93 (ALKH) 
300 (RPR1) 
309 (RPR3) 
322 (RPR8) 
33 1 (RPR9) 
332 (RPlO) 
334 (RPI 1) 
335 (RP12j 
336 (RP13) 
337 (RP14) 

338 (RP15) 
347 (RP 17) 
348 (RP18) 
349 (RP19) 
350 (AP1) 
35 1 (AP2) 
352 (AP3) 
353 (AP4) 
354 (AP5) 
355 (AP6) 
356 (AP7) 
357 (AP8) 
358 (AP9) 
359 (APlO) 
360 (AP1 1) 
361 (AP12) 

As shown in Kwok and Atkinsolz [1995], the rate constant for OH oxidation of an organic 
species is dependent on the number and type of structural components and the 
location of these groups relative to other groups. For example, ALKH is represented 
by n-hexadecane. There are three types of structural components associated with this 
molecule: -CH3 positioned next to -CH2- (2), -CH2- positioned between -CHI and 
-CH2- (2), and -CH2- positioned between other -CH2- (14). The rate constant of 
ALKH is found from kALKH = 2k,.,,3fcH2 +2kcH2 fcH3fcH2 +14k,,2f:H2 where ki 

represents a rate constant for group i and.f; represents a temperature dependent 
substituent factor. In this case, k,; = 4.49*1 0-18 ~ ' e - ' ~ ' ' ~  (cm3 molecule-' s-I), 

7 -751IT E, IT - 4.50 * 1 0 - ' 9  * e  - - (cm3 molecule- s-l ), f ,  = e (dimensionless), EcH3 = 0 kC-11~ - 

(K), and E,,? = 61.69 ( K ) .  The parameters for ki a n d j  for unsaturated bonds and 

most functional groups also exist. To convert to ppm-l min-l units, multiply by 
(4.4E-t- 17/73. 



Table 5.7. Emissions summary in 10' kg/day used in CIT for August 27, 1987. 

NMHC NO, CO 
On Road Vehicles 1229 678 4743 
Other Mobile Sources 60 1 244 730 
Ground-level Point 379 123 139 
So~rrces 
Biogenic Emissions 110 - - -- 
Other Elevated Point 6 60 8 
Sources 
Power Plants 
Total 

Non-methane hydrocarbons 

Table 5.8. Upwind boundary condition concentrations (ppb). 
Species 
CO 
NOz 
NO 
HCHO 
ALD2 
KEZTL 
0 3  

NMHC (ppb C) 
speciation' : ALKL 

ETHE 
OLEL 
AROH 
AROL 0.0 16 

Speciation in ppbv per ppb C of NMHC 

Table 5.9. Statistical analysis of CACM performance on August 28 for O3 and NOz. 
Statistical Measure 01 NO2 

Bias (pphm) 1.5 0.03 
Normalized Bias (96) 2 1 13.8 
o of Residuals (pphm) 5.6 2.8 

Gross Error (pphm) 4.0 2.1 
Normalized Gross Error (%) 4 1 52 



Figure 5.1. An illustrative example of a degradation mechanism for a parent 

hydrocarbon. That of AROL is shown. 
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UTM Easting (km) 

Figure 5.2. A map of the SOCAB. Cities for which data is given are indicated, as is 

downtown Los Angeles for reference. 
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Figure 5.4 

Figure 5.3. Simulated (solid) versus observed (dashed) NO (blue), NO2 (red), and O3 

(green) mixing ratios for Pasadena for August 27-29, 1987. 

Figure 5.4. Simulated (solid) versus observed (dashed) NO (blue), NO2 (red), and O3 

(green) mixing ratios for Riverside for August 27-29, 1987. 
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Figure 5.6 

Figure 5.5. Mixing ratios simulated by CACM (solid) versus those simulated by the 

extended LCC mechanism (x) [Harley et al., 19931 for Pasadena for August 27-29, 

1987. See the caption for Figures 5.3 and 5.4 for color scheme explanation. 

Figure 5.6. Mixing ratios simulated by CACM (solid) versus those simulated by the 

extended LCC mechanism (x) [Harley et al., 19931 for Riverside for August 27-29, 

1987. See the captions for Figure 5.3 and 5.4 for color scheme explanation. 
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Figure 5.7. Comparison of total predicted SOA precursor concentration in the base .case 

(solid) versus observed SOA data (x) in Claremont on August 28, 1987. The data of 

Turpin and Hulztzicker [ 19951 were converted from pgC/m3 to pg/m' by multiplying 

by a factor of 1.2. Also shown is the sensitivity of the total predicted SOA precursor 

concentrations to the aromatic radical isomerization rate constant and to the yield of 

direct conversion of certain aldehydes to acids. b/2 (+) represents the case in which 

the base case aromatic radical isomerization rate constant is divided by 2; acid 

(dashed) represents the case in which the yield of direct conversion of certain 

aldehydes to acids is divided by 2. 

Figure 5.8. Percentage of the total SOA precursor concentration that must partition to 

account for the observations of T~upirz arzd Hu~ztzicker [I9951 for the three cases 

investigated. Solid represents the base case, + represents the b/2 case, and dashed 

represents the acid case. 



Chapter 6 

Secondary Organic Aerosol: 11. Thermodynamic Module for 

Gas/Particle Partitioning of Molecular Constituents 



6.1. Introduction 

In both urban and rural atmospheres, organic aerosol (OA) is a significant 

constituent of particulate matter (PM) [Stevens et al., 1984; White and Mucius, 1989; 

Perzner, 1995; U~zited States Environmental Protection Agency, 1996; Murphy et al., 

19981. For example, in major cities such as Philadelphia, Los Angeles, and Chicago, OA 

has been observed to make up 14-44% by mass of the measured PM in summer [United 

States Environrnentul Protection Agency, 19961. Understanding the sources and 

formation of OA is crucial to our ability to model the atmospheric aerosol. OA can be 

both primary (POA, emitted as aerosol) and secondary (SOA, formed in situ in the 

atmosphere as condensable vapors). Sources of POA include all types of combustion 

[Schauer, 1998; Sclrauer et al., 1999abI. SOA is formed as a result of the oxidation of 

both anthropogenic and biogenic organic species [Odum et al., 1996, 1997; Hoffnlcrrirz et 

ul., 1997: Griflin et al., 19991. Oxidation of these species leads to the formation of 

products that often contain a high degree of functionality, including hydroxy-, carbonyl, 

carboxy-, nitrooxy-, and nitro groups (See, for example, Atkinson, [1994, 19971 and 

references therein, Smith et ul. [1999], and Yzr et nl. [1999]). Those products with 

sufficiently low vapor pressures will partition between the gas- and aerosol phases, 

forming SOA and contributing to the overall PM burden [Pankow, 19941. Some of these 

products may also partition to the aerosol aqueous phase [Saxena and Hildemclnn, 19961. 

Inorganic thermodynamic equilibrium models have reached a state where they are 

now incorporated in atmospheric models. (See, for example, Jucohsori et al. [ 19971, 

Arzsari and Pundis [1999], and Zluzng et al. [2000] and references therein.) However, 

because of the large number of organic compounds in the atmosphere and because 
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methods to predict their thermodynamic properties in complex organic-water mixtures 

pose significant theoretical challenges, current gas-aerosol thermodynamic models for 

organic atmospheric species do not include the same level of detail as those for inorganic 

species. Experimentally based gas-particle distribution factors for complex mixtures 

generated by the photooxidation of aromatic and biogenic hydrocarbons are available 

[Odum et al., 1996, 1997; Hofmunr2 et a]., 1997; Griffin et [dl., 19991. However, for 

atmospheric models one requires a fundamentally based thermodynamic model that 

predicts the phase partitioning of individual organic compounds between the gas phase 

and complex organic-inorganic-water mixtures. Such a model would afford a first- 

principles prediction of the amount of OA formed from secondary species in the 

atmosphere and is the subject of this paper. 

This paper focuses on a module that predicts the equilibrium partitioning of SOA 

and that is designed for use in a three-dimensional atmospheric model. Concentrations of 

secondary organic oxidation products are predicted by a gas-phase chemical mechanism 

(Part I). The equilibrium partitioning module will be incorporated in a comprehensive 

gas- and particle-phase air quality model for simulations of a 1993 smog episode in the 

South Coast Air Basin of California (SOCAB). The following text first reviews the 

methods used previously to predict SOA in three-dimensional atmospheric models and 

then presents the new module developed to predict aerosol formation. 

6.2 Review of Previous Techniques to Model SOA 

The development of source-receptor relationships for secondary PM formation 

requires the use of three dimensional air quality models with comprehensive treatment of 

the relevant physical and chemical processes [Seigrzeur et al., 19991. Several models 
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have been developed that include some treatment of SOA formation [Jacobson et al., 

1997; L~~rmclrzn et ul., 1997; Meng et ul., 1998; Sun and Waler, 1998; Pui et trl., 20001. 

However, as discussed below, the approaches used to model SOA formation fail to 

provide a realistic treatment of the gaslpartitioning processes over a wide range of 

conditions. On the other hand, detailed mechanisms for SOA formation have been 

developed but have been limited to chemical systems studied in smog chamber 

experiments [Barthelnzie arzd Pryor, 1999; Kamens et al., 19991. 

6.2.1 Fractional Aerosol Coefficient 

The simplest method that attempts to account for the conversion of a given parent 

species from the gas phase to products in the particle phase via oxidation is based on the 

fractional aerosol coefficient (FAC). The FAC is defined as the ratio of the SOA formed 

from a parent organic to the initial amount of that parent species present in a chamber 

experiment [Grosjearz, 19921. Because the technique considers no kinetics, SOA can be 

treated as if it were emitted. There are a number of problems with the FAC method. 

Most importantly, it does not take into account the time needed to form SOA in the 

atmosphere. Also, concentrations of available oxidants, and, therefore, the amount of the 

parent species that reacts, are not treated explicitly. As a result, the FAC only apply to 

conditions for which they were derived. In addition, the FAC values do not take into 

account temperature, relative humidity, or initial particle concentrations. Thus, FAC 

values cannot provide realistic SOA estimates for air quality modeling and are not 

currently used in three-dimensional air quality models. 



6.2.2 Fixed Aerosol Yield 

A second method for estimating SOA formation based on the concentrations of 

precursors is to assume a fixed SOA yield for a given parent organic. In contrast to the 

FAC, this approach takes into account the time needed to form SOA and is defined as the 

amount of organic aerosol mass that forms per amount of the parent organic mass that 

reacts [Pnrzdis et nl., 19921. Thus, this method takes the reactivity of the parent organic 

and the availability of oxidants into account. The limitations associated with estimating 

SOA formation using this method are that there is no dependence of the yield on the 

existing particle phase, temperature, or relative humidity. In addition, measured yields 

for a given parent organic are highly variable because of changes in temperature and 

initial concentrations between experiments [(ldum et ul., 1996, and references therein]. 

Given this variation, it is difficult to determine which experimentally determined yield is 

the most appropriate to use when conditions vary temporally and spatially and deviate 

significantly from smog chamber conditions. 

6.2.3 Saturation of Oxidation Products 

The fixed aerosol yield approach is generally used in conjunction with a 

gas/particle partitioning calculation based on saturation vapor pressure. It is assumed that 

one product condenses into the particle phase only when its saturation vapor pressure has 

been reached [Pandis et al., 19921. The amount of SOA from a given organic parent is 

thus defined as the difference between the amount of the product that forms and that 

product's saturation concentration. Attempts have been made to account for the 

dependence of the product's saturation vapor pressure on temperature through the 
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Clausius-Clapeyron equation and an estimated heat of vaporization that must be 

determined experimentally [Stvcrder et al., 19991. Therefore, this approach has limited 

usefulness. 

6.2.4 Dry Absorptive Partitioning 

Recent experimental studies have shown that the formation of organic aerosol 

under dry conditions is best described by a dynamic equilibrium for species that exist in 

both the gas- and aerosol phases [Odum et al., 1996, 1997; Ho;Yinu~?n et crl., 1997; Gviffiill 

et al., 19991. Multiple products are formed in constant stoichiometric yield from the 

oxidation of a parent organic and then partition between an absorptive organic aerosol 

phase and the gas phase. Based on the premise of an ideal solution in the aerosol phase, 

the phase distribution of the products is determined by an experimentally-derived 

partitioning constant that is independent of the composition of the organic aerosol phase. 

Because of the equilibrium established between the gas and particle phases, species can 

partition to the absorbing organic phase at concentrations below their individual 

saturation vapor pressures [Pnnkow, 19941. The partitioning of an SOA constituent is 

enhanced by the presence of additional SOA. It has been shown that two surrogate 

products (described by two mass-based stoichiometric parameters and two equilibrium 

partitioning coefficients) adequately represents observed aerosol formation from the 

complex mixture of products resulting from oxidation of a given parent organic [Odum et 

ul., 19961. A problem with this technique is that these parameters are derived using smog 

chamber experimental data, which may not be extended to the atmosphere with complete 

accuracy. Smog chamber concentrations usually exceed ambient concentrations, and the 

effects of increased humidity and variable temperature have yet to be parameterized. 



6.2.5 Henry's Law 

One approach used to approximate the formation of SOA in n~odels describing 

regional air quality is to assume that the secondary organic compounds associated with 

PM are absorbed only into an aqueous phase. This absorption is governed by Henry's 

law [Jacobson et al., 1997; Aunzont et d . ,  20001 and activity coefficients of organic 

solutes are assumed to be unity. In this manner, only water-soluble organic species are 

accounted for; those that partition via condensation (absorption into an organic media or 

adsorption to aerosol surfaces) are ignored. Once the liquid water content (LWC) of an 

existing aerosol is assumed or calculated, the amount of OA present in the particle phase 

is calculated using Henry's law. If the Henry's law coefficient has not been measured, it 

can be derived using a group contribution method once the structure of the organic 

compound of interest is determined [Him? and Mookerjee, 1975; Suzuki et ul., 19921. In 

addition to considering only those organics that are water-soluble, a limitation associated 

with this technique is that Henry's law, without activity correction, applies only for 

solutions that are dilute, which is not a relevant situation for ambient aerosols. 

6.3 Partitioning Module Description 

The numerous constituents of atmospheric aerosol undergo many processes 

(reaction, partitioning, etc.) that affect the behavior of the other species present (Figure 

6.1). The purpose of this work is to describe a model to account for the phase- and 

composition distribution of these aerosol constituents. The major feature of this model is 

the distinction between those organic oxidation products that are considered hydrophilic 

(water-soluble organic compounds, WSOC) and those that are considered hydrophobic. 
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Because of the large number of atmospheric organic compounds that fall into each of 

these categories, it is necessary to choose surrogate compounds to represent species in 

each group. 

Hydrophobic OA constituents partition via absorption into an organic phase 

(condensation due to low volatility). As shown in Figure 6.1, hydrophilic OA 

constituents interact with inorganic aerosol constituents such as nitrate, sulfate, 

ammonium, etc. Therefore, the module that has been developed to predict dissolution of 

WSOC is used in conjunction with an inorganic gas-aerosol equilibrium model such as 

SCAPE2 [Kim et al., 1993; Mrng er a]., 19951 or ISORROPIA [Nenrs et al., 19981. 

These models are used to predict the equilibrium distribution of inorganic aerosol 

constituents and the corresponding aerosol LWC and pH. Figure 6.2 shows the ambient 

constituents, inorganic and organic, modeled in the hydrophilic module. Just as 

molecular and ion solutes are treated in SCAPE2 or ISORROPIA, the hydrophilic group 

of organic compounds is divided into two subgroups: those that are electrolytes and those 

that are molecular solutes. However, because experimental data describing the 

equilibrium in a mixed inorganic/organic/aqueous system do not exist, the inorganic and 

organic fractions are treated separately at the moment, united only through the LWC and 

pH of the aerosol. LWC is used as an iterative variable between the models of the two 

fractions. 

6.3.1 Hydrophobic Module Description 

Pankow [I9941 gives a detailed derivation of expressions governing the 

partitioning of organic species between the gas- and particle phases. The partitioning of 
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compound i between the gas- and particle phases can be described by defining a 

partitioning coefficient, Ki (m' pgel ), 

where A, (pg m-' air) is the concentration of the compound in the aerosol phase, G, (pg ni 

' air) is the concentration of the compound in the gas phase, and TSP (pg m-' air) is the 

concentration of total suspended PM. This partitioning coefficient describes the 

equilibrium phase distribution of compound i when both adsorptive and absorptive 

partitioning occur. It has been demonstrated that absorption is the dominant mode of 

partitioning for organic species in the urban environment [Limng et ul., 19971. To derive 

an expression for an equilibrium coefficient in which only absorptive partitioning is 

considered, only that aerosol mass that is part of an absorptive organic mixture is taken 

into account, 

where the subscript om represents the absorbing organic phase, and M,, (pg m-' air) is the 

total concentration of the absorptive material, primary and secondary, in the om phase. 

M,, is assumed to be equal to the product of,f;,,,, and TSP, where*L,,,, is the fraction of the 

PM that is part of the absorptive media. 
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To develop a thermodynamic expression for Ki,,,,, consider each of the three 

terms on which it depends functionally. First, the mass concentration of compound i in 

the om phase is simply given by 

where c,,,,,, is the molar concentration of compound i in the om phase (pmol m' air) and 

M, is the molecular weight of species i (g mol-'). Similarly, the gas-phase mass 

concentration of i is given by 

where c , ,  is the molar concentration of compound i in the gas phase (pmol m-' air). 

Finally, the mass concentration of the om phase is given by 

- 
where c,,,,,, is the total molar concentration of the om phase (pmol m-' air) and M ,,,,, is 

the average molecular weight (g mol-I) of the om phase. 

For a given air-parcel volume, the mole fraction of compound i in the on7 phase, 

x,, is defined by 



Assuming ideality, the molar concentration (pmol m-7 of compound i in the gas phase is 

given by 

where p (atm) is the total pressure, y, is the mole fraction of compound i in the gas phase, 

(the partial pressure of compound i in the gas phase, pi, is defined as the product of p and 

y,), R is the ideal gas constant (0.82 m' atrn prnol-I K-I), and T(K) is the absolute 

temperature. The final expression required is Raoult's law, which is derived from the 

fact that the activity of compound i in the gas phase must be equal to its activity in the 

absorptive om phase: 

where f'., isthe activity coefficient of species i in the om phase (pure solvent reference 

state) and poLi (atm) is its sub-cooled liquid vapor pressure at the temperature of interest. 

Combining equations (2)-(8) yields a thermodynamic expression for the absorptive 

partitioning coefficient: 



It is seen in equation (9) that the absorptive partitioning of a compound between 

an onz phase and the gas phase is strictly a function of temperature (explicitly and 

implicitly through vapor pressure) and the composition (through both the average 

molecular weight and the activity coefficient) of the om phase. Assuming vapor 

pressures are known or can be estimated for a given temperature and that activity 

coefficients can be estimated, e.g., by a group contribution method such as UNIFAC 

[Fredenslund et ul., 19771, it is possible to predict the fraction of each compound ( i  = 1 to 

1 2 .  where n is the number of condensable compounds) that resides in each phase. This is 

done by solving iteratively a set of implicit simultaneous equations that includes equation 

(Z), equation (9), a mass-balance for each compound (the set total concentration of 

compound i is equal to the sum of its gas- and particle phase concentrations), and the fact 

that the sum of Ai,,,,,, values (and primary organics) must equal M,,. These constraints 

make modeling SOA formation via thermodynamic principles feasible as the number of 

equations reduces to n, with n unknowns (each A,,,,,). 

The hydrophobic module is shown in more detail in Figure 6.3. Required inputs 

include the concentration and composition of any non-volatile POA and the total 

concentrations of the hydrophobic OA constituents. An initial distribution of the 

hydrophobic organics is assumed, to obtain a first approximation for the mass 

concentration and composition of the absorbing OA (denoted M,,J in the Figure 6.3). The 

initial guess for the distribution is determined based on the volatility of the condensing 

product. From this composition, it is straightforward to calculate the average molecular 
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weight of the absorbing phase. This composition is also used in UNIFAC to calculate the 

activity coefficients of the partitioning hydrophobic species. With temperature and a 

vapor pressure (experimentally determined or estimated using a group contribution 

method) defined, the next step is to calculate an absorptive partitioning coefficient as in 

equation (9) for each condensing species. Using these partitioning coefficients with M,,,, 

and each individual total concentration (c, in Figure 6.3), it is possible to calculate G, and 

A,,,,,,, (using equation (2)) and compare them to the initial guess. The n A,,,,,,, values are the 

iterated variables. Once the series of A,,,,,,, values no longer changes by more than a 

prescribed small value, the calculations of the hydrophobic module are complete. It is 

also ensured that the gas-phase concentrations of all compounds do not exceed their 

saturation vapor pressures. 

6.3.2 Hydrophilic Module Description 

Partitioning of WSOC between the gas- and aqueous phases is governed by 

where f f H L ,  (pM atm-l) is the Henry's law constant of species i, determined, for example, 

by a group contribution method, c,,:, is its aqueous phase concentration (pmol L-' (of 

water)), LWC in this case has units of L of water per rn3 of air, and f L ,  is its activity 

coefficient in the aqueous mixture (infinite dilution reference state). Note that p, and 

p, are related through p, at c~,~,,  =O. For organic acids, solubility is enhanced by the 

dissociation into ions, which is governed by equilibrium acid dissociation constants, 



where K,,,, is the acid dissociation constant of organic species i (ORG,) and the { } 

notation represents the activities of the species of interest. Acid dissociation constants 

can also be estimated by structure-activity relationships. 

As shown in equation (10) above, the partitioning of WSOC depends on the 

activity coefficient of the species in the aqueous mixture. Such activity coefficients 

measure the deviation from ideality, which is usually significant for highly concentrated 

ambient aerosols. Various methods can be used to calculate the activity coefficients of 

ions (See Kinr et ul. [I9931 for more detail.), each of which considers only inorganic ion- 

ion interactions. Limited data for inorganic-organic ion-ion interactions are available. 

For molecular solutes, UNIFAC can be used to estimate activity coefficients. While 

UNIFAC was not designed for use with highly polar compounds such as those that are 

constituents of SOA, it is assumed that the UNIFAC group contribution parameters for 

functionalities such as COOH, CHO, CH2, etc., can be applied to the surrogate 

molecules. Some parameters are available to treat the interactions between molecular 

groups and inorganic ions within the UNIFAC framework (e.g., Kicic et al. [I99 11 and 

Yun et al. [ 19991). Unfortunately, key inorganic components in the atmosphere, such as 

ammonium and sulfate, are not included in these studies. 

Ideally, the aerosol system would be treated as an interacting mixture of 

inorganics, organics, and water. Because of the lack of experimental data, however, 

traditional methods of estimating activity coefficients can not be used for interactions 
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between inorganic and organic ions. Therefore, a number of assumptions must be made. 

First and foremost, it is assumed that inorganic and organic solutes do not interact. This 

allows for the decoupling of the organic partitioning of WSOC from the inorganic model 

(e.g., SCAPE2), in terms of calculating activity coefficients. Also as a result of this 

assumption, the formation of organic-inorganic salts is not modeled. Second, it is 

assumed that the activity coefficients of organic ions are equivalent to those of the 

corresponding molecular solute. These are clearly approximations, the validity of which 

future work will address. At this point, they are deemed appropriate for development of 

an atmospheric model. 

The LWC of the aerosol is also a key parameter in determining the Henry's Law 

partitioning of WSOC. Because of its simplicity, the Zdanovskii-Stokes-Robinson (ZSR) 

method is used in three-dimensional atmospheric models to determine the water content 

of the aerosol solution (See, for example, Melzg et czl. [1998].). The basic assumption of 

the ZSR method is that the water associated with each solute is additive. Therefore, 

LWC (pg water m-' air) is defined by 

n? [ 
LWC = C 

? ~ , o ( ~ + ,  ) 

where rn, is the molar concentration of species i (mol i m b f  air) and mio(a,) is the 

molality of species i (mol i pg-' water) in a binary mixture at the water activity of interest 

(N,,). Polynomial fits for inorganic solute concentrations as a function of water activity 

have been developed by Kim et  al. [I9931 and Merzg et  ul. [I9951 based on experimental 

data. However, this approach is not possible for organic solutes due to lack of activity 
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measurements. An estimation method must be used to determine water activities for 

binary or multicomponent organic systems. UNIFAC can be used in this regard to 

determine the molality of organic solutions at specific water activity, which is equal to 

the relative humidity at equilibrium [Saxmu and Hikdemunn, 19961. The water 

associated with the inorganic and organic components is then considered and used in 

equation (12) to determine the LWC of the aerosol of interest. 

The hydrophilic module is shown in more detail in Figure 6.4. As shown, the 

required inputs for the hydrophilic module include the SCAPE2 output (LWC and the 

concentration of hydrogen ions) and the total concentrations of the hydrophilic organics. 

The first step in the hydrophilic module is to determine the type of calculation that must 

be performed. As shown in Figure 6.4, if there is no existing aqueous phase, a 

calculation using both hydrophilic and hydrophobic species in the hydrophobic module is 

performed. If the relative humidity (RH) is below the deliquescence relative humidity 

(DRH) of all WSOC species present, the organic phase remains dry. If RH is greater than 

the DRH of any of the hydrophilic species, a new aqueous phase is formed. If an 

aqueous phase exists at the start of the calculation, a saturation calculation is performed 

only if RH is less than the DRH of all species. Otherwise, if RH is greater than the DRH 

of any species, an aqueous equilibrium calculation is performed. The equilibrium 

calculation is performed by simultaneously solving mass balance (total concentration, c,, 

is equal to the sum of the concentrations in the gas- and aqueous phases), Henry's law 

(equation (lo)), and acid dissociation equations for each species (both ions and 

molecules) (equation ( 1 1)). 
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Iteration (using a Newton line search method) is required because the activity 

coefficients are a strong function of the aerosol composition. Once equilibrium values 

based on the input LWC are reached, an organic-water system is considered so as to 

calculate the additional amount of water that is taken up as a result of the presence of the 

hydrophilic organics. The new total LWC and the concentrations of organic ions are 

passed to SCAPE2 to see if the distribution of the inorganic aerosol constituents is 

affected. (When a new aqueous phase is formed, the output is not passed to SCAPE2 as 

the effect of organics on the DRH of inorganic aerosol is currently not known.) If this 

change in LWC is zero, the output from the hydrophilic module includes the phase 

distribution of inorganic aerosol constituents, the phase distribution of hydrophilic 

organic aerosol constituents, and the LWC of the aerosol. 

6.3.3 Example Case Studies 

6.3.3.1 Hydrophobic Module 

In order to demonstrate the hydrophobic portion of the model, both a surrogate 

SOA compound and a prescribed mixture of POA constituents must be defined. 

Representative POA constituents have been determined based on measurements made in 

the Los Angeles Basin [Rogge et crl., 19931 and the San Joaquin Valley of California 

[Schczuer and Cciss, 19981. Major classes of organic compounds resolved in the analysis 

of OA include fatty acids, substituted phenols, aromatic acids, alkanes, and, for the San 

Joaquin Valley, levoglucosan and other sugar derivatives. Surrogate POA constituents 

are chosen from this group, excluding those that were shown to have affinity toward the 
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aqueous phase (Table 6.1). Octadecanoic acid is selected as the surrogate hydrophobic 

SOA constituent. 

The first variable investigated in the evaluation of the hydrophobic module is TSP 

(withji,,, set to 0.1 for this study in order to match that estimated by P~nzkow. [1994]). For 

a set amount of octadecanoic acid present (1 pg m-'), increasing initial TSP (from 10 to 

100 pg rn-3) and, therefore, the mass of each POA constituent, results in an increase in the 

amount of octadecanoic acid that partitions to the aerosol phase from approximately 0.35 

to 0.8 pg m-? (Figure 6.5). The resulting changes in average molecular weight and 

activity coefficients lead to a decrease in the partitioning coefficient of octadecanoic acid. 

The total concentration of octadecanoic acid was also varied while holding the 

total TSP constant (50 pg m-'). Naturally, increasing the concentration of octadecanoic 

acid leads to an increase in the amount of the species that partitions to the aerosol (Figure 

6.6). The changes in the average molecular weight of the absorbing medium and the 

activity coefficients lead to increases in the partitioning coefficient as the total acid 

concentration is increased. 

6.3.3.2 Hydrophilic Module 

In order to demonstrate the hydrophilic module, malic (COOH-CH2-CHOH- 

COOH) and glyoxalic (CHO-COOH) acids were chosen as surrogate WSOC. The 

properties of these compounds are given in Table 6.2. Malic acid is k7ery soluble; 

glyoxalic acid is only sparingly so. Table 6.3 shows the input conditions and predictions 

from the hydrophilic module. Because of its high solubility, all of the malic acid 

partitions to the aqueous phase, with the ions being the dominant forms. Glyoxalic acid 
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tends to remain in the gas phase. For what little amount partitions to the aqueous phase, 

the ion is again the dominant fom~.  

Sensitivity studies show that the change in LWC as a result of the hydrophilic 

organics increases as RH increases (Figure 6.7). The change in LWC associated with 

changes in RH is especially important for malic acid, which exhibits deliquescence 

behavior at approximately 79% RH. Below this humidity, no additional water is 

associated with the organic aerosol because of the presence of malic acid. Because malic 

acid is much more soluble, the amount of water associated with malic acid is orders of 

magnitude greater than that associated with glyoxalic acid, even though both compounds 

are present at the same total concentrations. 

Sensitivity studies also show the importance of the pH obtained from the 

inorganic thermodynamic module (Figure 6.8). A lower aerosol pH affects the 

dissociation of acids, resulting in molecular solutes being favored over the ionized forms. 

An increased pH results in a higher effective Henry's law constant for the acids, yielding 

higher organic concentrations. This increase in the organic concentration also leads to an 

increase in the change in LWC. These changes are especially important for glyoxalic 

acid. Because of the rnalic acid's high solubility, pH has little affect on the amount of 

water associated with this species. 

The hydrophilic organic module was also evaluated in conjunction with SCAPE?,, 

using both inorganic and WSOC constituents. The input and simulation results are 

shown in Table 6.4. The simulation results indicate two main effects of the organic 

solutes. First, the extra water associated with the WSOC encourages additional 

partitioning of the inorganics to the aqueous phase. Second, the decrease in pH favors 
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the dissolution of basic gases (e.g., ammonia) as opposed to acidic gases (e.g., nitric 

acid). For example, in the case shown in Table 6.4, the final concentration of NH4+ is 

0.0'78 pmol m-', while in the absence of organics, the concentration of NH4+ would be 

0.064 pmol m-'. 

6.4. Implementation in Three-Dimensional Atmospheric Models 

The integration of the aerosol module in a three-dimensional atmospheric model 

is shown in Figure 6.9. The first set of inputs includes total inorganic concentrations, 

relative humidity, and temperature. This information is passed to the inorganic 

thermodynamic equilibrium model, the output from which includes the phase and 

composition distribution of the inorganics and the LWC and pH of the inorganic/water 

aerosol. If the LWC is zero, a calculation using the hydrophobic module is performed 

first, with the resulting WSOC causing formation of a new aqueous phase under most 

conditions. The LWC and the pH are then passed to the hydrophilic module, along with 

total concentrations of the hydrophilic organic oxidation products. The water taken up as 

a result of the absorption of these organics is calculated, and the total LWC is passed 

back to SCAPE2 to determine if the additional water affects the distribution of the 

inorganic species. Once the LWC is internally consistent between the inorganic 

calculation and the hydrophilic organic calculation, the results are passed to the 

hydrophobic module, along with total concentrations of the POA constituents and the 

hydrophobic organic oxidation products. Upon completion of the hydrophobic module, 

predictions include the LWC, the distribution of all organic oxidation products, and the 

distribution of the inorganic species. 
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As discussed above, this module has been tested using simple two or three 

component mixtures and set concentrations. However. for use in a three-dimensional 

atmospheric model, the partitioning module is linked to a chemical mechanism that 

predicts the concentrations of semi- or non-volatile organic oxidation products. As 

described in Part I, there are 42 compounds specified in the Caltech Atmospheric 

Chemistry Mechanism (CACM) that are considered capable of forming SOA because of 

their solubility or low vapor pressures. Predicting the partitioning of that many species 

(into 8 primary organic species) is deemed at present to be too computationally 

demanding, especially in light of the lack of thermodynamic data for multi-functional 

organic species. Therefore, these secondary products are further lumped into one of five 

hydrophilic groups or into one of five hydrophobic groups. Obviously, the first 

separation is made on the basis of affinity for water. An organic is considered water- 

soluble based on the length of the carbon chain (8 7 carbons), its solubility (solubility * 

Ig solute/lOOg water), and its effective Henry's law coefficient (* 1 x lo6 M atrn-'). 

Additionally, those species with 7 or more carbon atoms and three functional groups are 

considered water-soluble because these compounds exhibit such a high degree of polarity 

[Suxena and Hildemann, 19961. Compounds meeting these criteria are defined as 

hydrophilic and can be further subdivided by size (low or high carbon number), source 

(anthropogenic or biogenic), and dissociative properties. This process results in five 

hydrophilic surrogates. The products from CACM that fall into each group are 

structurally averaged (number of carbon, number and type of functional groups, etc.) to 

determine the structure of the five surrogates to be used in the hydrophilic module. Five 

surrogates for the hydrophobic module were determined similarly. The hydrophobic 
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compounds are divided based on source (anthropogenic versus biogenic), structure 

(aliphatic versus benzene-based versus naphthalene-based for anthropogenic species), 

and volatility (for benzene-based anthropogenic species). Reduction of the 42 

compounds into 10 (the properties for which are determined using group contribution 

methods) allows for a substantial reduction in the computational demands of the 

partitioning module. The 10 compounds are given in Table 6.5. In some cases, the 

structure of a surrogate was difficult to determine because the averaging technique 

predicted a fractional number of certain functional groups. This is most important in 

surrogate B2, in which the aldehyde group could be replaced by either a hydroxy- or a 

nitro group. 

When this module is employed in a three-dimensional application, specification 

of the composition of the POA and using a set value of*fi,,,, will be unnecessary. By 

incorporating the composition of POA emissions in the area to be simulated, these values 

can be easily calculated. In the studies of the air quality in the SOCAB, for example, it 

has been determined that the organic fraction of aerosol emissions can be classified into 8 

categories: n-alkanes, polycyclic aromatic hydrocarbons (PAH), oxygenated PAH, 

diacids, aliphatic acids, substituted monoaromatics, cyclic petroleum biomarkers (e.g., 

hopanes), and unresolved organic matter (characterized by highly cyclic and branched 

petroleum biomarkers) [Schauer, 19981. 

6.5 Discussion 

Because experimental data on thermodynamic properties of mixed organic- 

inorganic aqueous solutions are sparse, many necessary assumptions have been made in 

the development of this partitioning module. First, the module does not account for the 
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behavior of those organic species that show affinity for both the aqueous and organic 

phases. If a compound exhibits such behavior, it is chosen as one or the other, which 

may result in the underprediction of its amount in the aerosol phase. Once additional 

experimental data are available, compounds that display this behavior can be accounted 

for explicitly. Second, it is assumed that there is no interaction between aqueous phase 

inorganics and organics. As thermodynamic data become available, such interactions 

will be incorporated. Third, the ability of certain hydrophobic organic species to limit 

water uptake has not been taken into account. Uncertainty associated with UNIFAC and 

other group contribution methods for estimating thermodynamic properties add to the 

uncertainty associated with the partitioning module. Predictions of the partitioning 

module depend, of course, on the input from the gas-phase chemical mechanism, which 

has inherent uncertainties, as discussed in Part I. Despite these issues, the current module 

represents the state-of-the-art model for describing SOA formation in a three-dimensional 

atmospheric model. Of the many improvements that could be made to this module, the 

most important is the ability to describe the effects of the interactions of the molecules 

and ions in a mixed inorganic-organic-aqueous aerosol. Current work of the authors is 

directed toward this goal. 

6.6 Conclusions 

An organic-inorganic, gas-aerosol module that predicts thermodynamically the 

formation of secondary organic aerosol (SOA) for use in three-dimensional atmospheric 

models has been presented. The gas-phase chemical mechanism described in Part I 

predicts the concentrations of SOA precursors. which are assigned to one of ten surrogate 

groups based on water affinity, size, source, structure, and volatility. The total 
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concentrations of these ten surrogates are then passed to the module described here to 

predict gas-aerosol partitioning. As discussed in Section 2, techniques used previously to 

predict SOA concentrations in three-dimensional models have been limited in theory or 

depend on experiments that are specific to a certain set of conditions. The new module 

represents an improvement over these techniques in that it is theoretically sound, is not 

based on data specific to one set of experiments, and accounts for different ambient 

conditions (temperature, oxidant and precursor concentrations, relative humidity, etc.). 

Like the CACM model described in Part I, the organic gas-aerosol partitioning module 

conforms with the U.S. Environmental Protection Agency's Models-3 framework [United 

States Envirunmentul Protection Agency, 19991 so that it can be used in that setting. 
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Table 6.1. Assumed primary organic aerosol composition for validation of the 

hydrophobic module. 

Fatty Acids Substituted Phenols Alkanes Aromatic Acids 

acid) 

Table 6.2. Properties for malic and glyoxalic acids. 

' Henry's Law coefficient. Saxma and Hildemann [ 19961 
'Acid dissociation constants, CRC Handbook qf Physics and Chemistry 

represents dissociation of the second acid group of malic acid 
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Table 6.3. Input and output for the evaluation of the hydrophilic module. 
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Table 6.4. Input and output for the evaluation of the hydrophilic module used in 

conjunction with SCAPE2. 

Input to SCAPEZ 

Output of SCAPE2 

Additional Input to Hydrophilic Module 

I Total organic ions (aq) 

Output of First Pass of Hydrophilic Module 

Total organic molecules (aq) 

LWC (organic) 

Output of SCAPE2 and Hydrophilic Module After Iteration 

14.4 pg rn-' 

/ LWC (inorganic) 



Table 6.5. Surrogate organic oxidation products to be used in the partitioning module. 

(a) attached to the aromatic ring as opposed to a side chain alkyl substituent 



Figure 6.1. Species that partition into the aerosol phase and the processes that affect 

them. Other factors that influence partitioning include, for example, temperature and 

mixing height (which affects concentrations). 



/ Aerosol 1 

Figure 6.2. Breakdown of aerosol constituents based on their atomic nature, water 

affinity, and dissociative properties. 
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Figure 6.3. Flowsheet for the calculation of the partitioning of hydrophobic organic 

aerosol constituents between the gas- and aerosol-phases. 
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Figure 6.4. Flowsheet for the calculation of the partitioning of hydrophilic organic 

aerosol constituents between the gas- and aqueous- phases. 
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Figure 6.5. Particulate concentrations of octadecanoic acid (pg m-') and its partitioning 

coefficient (m' pg-') as a function of TSP. Total condensable material = 1 pg d. 

Figure 6.6. Particulate concentrations of octadecanoic acid (pg m-') and its partitioning 

coefficient (m3 pg-') as a function of the total amount of condensable material. TSP = 
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Figure 6.7. Sensitivity of the water associated with WSOC (ng rn-') at varying RH. 

Initial LWC = 1 pg d', pH = 5, total solute = 1 ng m-'. 

Figure 6.8. Sensitivity of the water associated with WSOC (ng rn-') at varying pH. 

Initial LWC = 1 pg m-', RH = 0.8, total solute = 1 ng m-'. 
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Figure 6.9. Overall flowsheet for the calculation of aerosol water content and the phase 

distributions of both inorganic and organic aerosol constituents. 
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Conclusions 
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As discussed, the troposphere is a complex system constituted by species that 

reside in both the gas- and aerosol-phases. These species are either natural or 

anthropogenic and can be primary or secondary in nature. 

Of specific interest in the work presented here are the secondary organic aerosol 

(SOA) constituents of atmospheric particulate matter. SOA is formed when a volatile 

parent organic species is oxidized, resulting in products with decreased vapor pressures 

or increased solubilities because of the functional groups that form as a result of 

oxidation. These functional groups lead to partitioning to the aerosol phase and may 

include alcohols, acids, carbonyls, nitro- groups, and nitrooxy- groups. The phase 

distribution of these species is governed usually by absorption into an organic aerosol 

phase or by Henry's law if the oxidation product is soluble. While the yields (Y ,  defined 

as the amount of SOA mass formed per the amount of parent organic mass reacted) of 

many parent species have been investigated previously, the two groups of compounds 

that have been investigated in the context of an absorptive partitioning theory are the 

aromatics that are constituents of gasoline and the biogenic monotespenes. 

The work presented in this thesis discusses each of these compound groups and 

how the appropriate yield parameters (stoichiometric factors and equilibrium partitioning 

coefficients) for a given parent organic are developed using smog chamber experiments. 

These parameters are used to estimate SOA formation on a global and annual basis from 

the oxidation of biogenic organic species. In addition, such parameters are used to 

introduce a new concept, the incremental aerosol reactivity of a parent organic. Finally, 

methods to simulate SOA formation using this partitioning theory in a three-dimensional 

atnlospheric model are described. 



This thesis represents the current state of the art of both laboratory and 

computational work aimed at understanding the formation of SOA. While a large amount 

of information is contained within this thesis, there are still many unanswered questions 

with regard to SOA formation. Subjects currently or soon to be under investigation in the 

Seinfeld laboratory include the effects of relative humidity (RH) and temperature on SOA 

yields and the SOA yields of those species that are semivolatile in nature upon emission. 

The RH study will attempt to quantify the effects of both gas-phase and aerosol-phase 

water on the partitioning of oxidation products from both biogenic and anthropogenic 

species. Because temperature must be carefully controlled in order to control relative 

humidity, the effect of temperature on partitioning will be quantified as well. 

Because the field of atmospheric organic chemistry is still relatively young, there 

are many topics on which work may be focused in the future. First, nucleation of new 

particles in forest atmospheres has been observed at a number of sites and is temporally 

correlated to organic aerosol precursor concentrations. However, no quantitative data 

exist describing the kinetics of the formation of new organic aerosol particles. Variables 

of interest include composition of the organic mixture to be nucleated, RH, and 

temperature. The competition between heterogeneous and homogeneous nucleation will 

need to be investigated in order to develop a parameterization of SOA nucleation for 

global models from the new data. A second issue that remains open to question is 

organic acid formation in the atmosphere as current known sources cannot account for 

observed concentrations. In addition, little is known about the atmospheric behavior of 

these acids in terms of reactions, solubility, and partitioning to the aerosol phase. Third, 

further improvements to regional air quality models will need to be made in order to 
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improve the simulation of SOA. These include incorporation of fog chemistry (which 

affects sulfate aerosol chemistry and aerosol acidity, thereby affecting partitioning of 

hydrophilic organic species), inorganic-organic interactions in the aqueous phase, and 

wet deposition of particles (e.g., incorporation of aerosol into water droplets). In 

addition. air quality models should find applications in areas other than Los Angeles, as 

more and more focus is being placed on regional air quality issues in regions outside 

California. Other topics may include the effects of SO2 on SOA yields (aerosol-phase 

sulfate effects on partitioning of organics and gas-phase SO2 effects on the product 

distribution resulting from the oxidation of a given parent organic). surface reactions that 

may occur at the organic aerosol surface (reaction of unsaturated bonds or aldehydes and 

isomerization of biogenic aerosol components upon exposure to acidic conditions), 

organic aerosol toxicity (stmcture effects on toxicity and establishment of a toxicity 

potential based on the probable oxidation products of a parent organic), and statistical 

mechanical approaches to describe reactions and molecular properties that affect 

partitioning of semivolatile organic oxidation products. 



Appendix 1 

The Atmospheric Aerosol-Forming Potential of Whole Gasoline Vapor 

Reference: J .R. Odum, T.P.W. Jungkamp, R.J. Griffin, R.C. Flagan, and J.H. Seinfeld, 
Science, 2 76,96-99, 1997. 
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Abstract 
A series of sunlight-irradiated, smog-chamber experiments confirmed that the 

atmospheric organic aerosol formation potential of whole gasoline vapor can be 

accounted for solely in terms of the aromatic fraction of the fuel. The total amount of 

secondary organic aerosol produced from the atmospheric oxidation of whole gasoline 

vapor can be represented as the sum of the contributions of the individual aromatic 

molecular constituents of the fuel. The urban atmospheric, anthropogenic hydrocarbon 

profile is approximated well by evaporated whole gasoline, and thus these results suggest 

that it is possible to model atmospheric secondary organic aerosol formation. 

Several recent epidemiologic studies have consistently reported increased daily 

mortality associated with exposure to fine particulate air pollution [Schwart; et ul., 1996; 

Shprerltz, 1996; Pope et ul., 19951. Fine particulate matter, also known as (that is, 

particles of diameter less than 2.5pm), is the respirable fraction of atmospheric 

particulate matter. An important contribution to the atmospheric fine particulate burden, 

especially during severe urban smog episodes, is secondary organic aerosol (SOA) 

[Turpirz and Huntzicker, 199 1; Turpin et nl., 199 11. Like ozone (03), SOA is formed 

from the oxidation of organic compounds. Whereas the oxidation of most hydrocarbons 

contributes to O3 formation, SOA is generally formed only from the oxidation of 

hydrocarbon molecules containing seven or more carbon atoms [Grosjean, 1992; 

Grosjean and Seirgeld, 19891. To form SOA, oxidation products must have vapor 

pressures that are sufficiently low to enable them to partition into the particulate phase. 

In an effort to achieve urban and regional O3 abatement through the reduction of 

mass emissions of nonmethane hydrocarbons, the 1990 amendments to the U.S. Clean 
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Air Act mandate the use of reformulated gasoline in motor vehicles. Several recent 

studies have suggested that a more effective approach to controlling urban O3 associated 

with emissions from gasoline usage is to target the emissions of specific fuel components, 

rather than total nonmethane hydrocarbons, because of the extreme differences in the 03- 

forming potential of the hundreds of individual compounds that constitute gasoline 

[Bowraarz urzd Seiizfeld, 1995; Russell et al., 1995; Calvert et ul., 1993; Hoekmurz, 19921. 

Considering the common link between urban O3 forniation and SOA formation, this 

approach may also be an effective way to control SOA formation associated with 

emissions from gasoline usage. 

Organic aerosol formation potentials depend on two factors: reactivity of the 

parent compound and volatility of the product species. The reactivity of the parent 

species can be directly measured by reaction rate constants. However, because 

atmospheric chemical reaction pathways for large hydrocarbon molecules are complex 

and the resulting oxidation products are both numerous and difficult to quantify 

analytically, a more indirect measure of product volatility, the SOA yield Y, has been 

used. Traditionally, Y has been defined as the fraction of a reactive organic gas (ROG) 

that is converted to aerosol by means of atmospheric oxidation processes: Y = 

aMo/AROG, that is, the total mass concentration of organic aerosol, AM,, produced for a 

given amount of ROG reacted, AROG. Yield data have been obtained for dozens of 

ROGs in controlled smog chamber studies [Parzdis et (11.. 1991 ; Wung et al., 1992; 

Hat~lkryrna et ul., 199 1 ; lzumi arzd Fukuyamu, 1990; Sterrz et al., 1987; Gery et al., 

1985; Lrorze et a]., 1985: Grosjean, 19771. 
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The mixture of hydrocarbons that compose gasoline is representative of the 

atmospheric distribution of anthropogenic hydrocarbons in an urban airshed in terms of 

both complexity and composition [Harley et al., 19921, and, therefore, determining the 

atmospheric aerosol-forming potential of whole gasoline vapor is of significant interest. 

In general, gasoline contains four classes of reactive organics - oxygenates, alkanes, 

alkenes, and aromatics - which vary widely in their atmospheric reactivity and in the 

volatility of their atmospheric oxidation products. Our hypothesis is that the atmospheric 

aerosol-forming potential of whole gasoline vapor can be quantitatively accounted for in 

terms of the aromatic content of the fuel. 

The outdoor smog chamber system used in this study has been described in detail 

previously [Odum et ul., 19961. It consists of a 60-m%ealed, collapsible 

polytetrafluoroethylene (Teflon) bag. Experiments are performed by (1)  injecting into 

the bag (filled with humidified clean air) appropriate concentrations of seed aerosol 

[(NH4)2S04, about 5,000 to 10,000 particles per cubic centimeter, an initial aerosol 

volume of about 5 to 10 per cubic centimeter of air], a photochemical initiator 

[propene, about 150 to 300 parts per billion (ppb)], NO and NO2, and the single 

hydrocarbon or hydrocarbon mixture of choice and then (2) allowing the mixture to react 

under sunlight for 6 to 8 hours. Initial hydrocarbon concentrations ranged from 400 to 

5000 pg m-' for the individual aromatic experiments and from 2700 to 7000 pg m-3 for 

the gasoline experiments. Concentrations of NOx (NO + NO:) were selected so that 

HC/NO, ratios typical of those in an urban environment (5 to 10 ppbC/ppb NOz) were 

achieved. The ratio of NO/N02 was always set at 2. During the course of the 

experiment, the concentration of each ROG species is either measured with the use of gas 
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chromatography or is calculated on the basis of relative rates of reaction, in order to 

determine AROG. Particle number and size are measured continuously throughout the 

experiment by scanning electrical mobility spectrometers (SEMS) to determine M(, 

[W~r~zg et dl., 19921. SEMS were used to obtain complete particle number and size 

distributions with a 1 -minute frequency. Time-dependent particle volume concentrations 

were calculated from these distributions. The time-dependent cumulative organic volume 

concentration was calculated by subtracting the volume concentration at time t (corrected 

for deposition) from the initial volume concentration. Total organic mass concentrations 

were calculated from the total cumulative organic volume concentration assuming the 

density of the condensed organic phase was 1.0 g cm-'. 

Because the oxidation products responsible for forming SOA are semivolatile and 

partition themselves between the gas and absorbing organic aerosol phases [Odum et rrl., 

1996; Pankow, 19941, SOA yields for individual ROGs (Y) are a function of M,,. This 

dependence is represented by [Odum et al., 19961 

where a, and KO,,,, are the mass-based stoichiometric coefficient and absorption 

equilibrium partitioning coefficient of product i, respectively. Parameter KO,,, is an 

equilibrium constant describing the partitioning of semivolatile organics between the 

vapor phase and an absorbing organic condense phase: K,,,,, = (F/M,,)/A, where F and A 

are a semivolatile compound's concentration in the absorbing organic and vapor phases, 
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respectively, and M,, is the concentration of the absorbing organic aerosol. Yield data for 

individual hydrocarbons can be fit well to equation (1) assuming a two-product model 

(that is, by choosing appropriate values for a j ,  az, K, ,,,,, 1, and K, ,,,,. z) [Odum et a]., 19961. 

Organic aerosol yields were measured as a function of AM,, for 17 aromatic species that 

represent the predominant mass fraction of aromatics present in gasoline (Figure A. 1.1). 

Most of the data can be fit with only two curves. Curve 1 corresponds to propylbenzene 

and to those species having one or fewer methyl substituents plus one or fewer ethyl 

substituents, and curve 2 fits species that contain two or more methyl substituents. 

Curves 3 and 4 fit the only diethylbenzene and methyl-12-propylbenzene species that were 

studied. There is little variation of the yield for different isomers. For example, o-, nl-, 

andp-xylene all exhibit yields that are described by the same curve. It is likely that 

parent species that are sufficiently similar in nature generate, upon photooxidation, 

semivolatile products that have similar gas-aerosol partitioning behavior. 

From yield curves for individual parent hydrocarbons, like those shown in Figure 

A. 1. 1, one can account for the aerosol that is formed from the oxidation of a mixture of 

two species as the sum of the yields of the individual parent species present in the 

mixture [Odum et al., 19961. To ensure that the aerosol formed in a more complex 

mixture could be accounted for in such a manner, we performed an experiment in which a 

mixture of five different aromatic species (toluene, m-xylene, m-ethyltoluene, 

propylbenzene, and 1,2,4-trimethylbenzene) was photooxidized. The total organic 

aerosol concentration produced in the chamber was 28 pg m-'. Using the curves from 

Figure A. 1.1, an appropriate yield value (Yi) for each of the five aromatics, corresponding 

to a total organic aerosol mass concentration M,, = 28 pg rn-', is obtained, and each 



value is multiplied by the respective reacted ROG concentration (AROG,) to produce an 

estimate of the amount of SOA attributed to each of the five species. Summing these 

values yields a total of 29.7 pg m-3, which is very close to the observed value of 28 pg rn- 

' (Table A. 1.1). Thus, by using SOA yields for the individual ROGs in conjunction with 

equation (1). one can account for the aerosol that is produced from the oxidation of a 

mixtuse. 

We performed 20 smog chamber experiments with 12 different refornlulated 

gasolines obtained from the Auto/Oil Air Quality Improvement Research Program 

(AQIRP) (Table A. 1.2). AQIRP was a cooperative program whose members included 

three domestic auto companies and 14 petroleum companies, the objective of which was 

to develop data on the potential improvements in vehicle emissions and air quality, 

primarily 01, from reformulated gasoline, various other alternative fuels, and 

developments in automotive technology [Burns el al., 199 1 ; Hochhausrr et al., 199 1 1. 

Molecular speciation of the AQIRP fuels was used to calculate the amount of each ROG 

(AROG,) in the fuel mixture [Puhl and McNally, 199 11. We accomplished this procedure 

by quantifying the initial concentration of six to eight calibrated species present in each 

fuel using gas chromatography. Knowing the initial concentrations of these species, on 

the basis of the relative mass fractions of all the components in the fuel, we could 

calculate the initial concentration of every other species present. During the course of 

each experiment, the concentration time profiles of each of the calibrated species were 

measured and used along with their hydroxyl radical (OH) rate constants to determine the 

concentration time profile of OH in the chamber. Hydroxyl radical and O3 rate constants 

were taken from review literature [Atkinson, 19941 and the National Institute of Standards 
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(NIST) chemical kinetics database [NZST, 19941 or, when experin~entally not known, 

were estimated with the structure activity relations (SARs) [Kwok and Atkinsou, 19951. 

The SAR expressions for alkanes and alkenes were used unchanged; we modified those 

for aromatics by deriving a new Hammet constant for metn- substituents (o,,,'). We 

optimized o,,: for the ring addition rate constant (kadd) of 15 alkyl-substituted aromatics. 

The expression derived for use with S AR was log1 ()(kadd) (cm' molecule-I s- ' ) = - 1 1.89- 

1.82C o+, where o+ = o,,,' + o,,,', with o,,: = -0.190 for all nletcr-alkyl substituents and 

Hammet constants for ortho and para substituents (o,,') as used in Kwok trrzd Atkinson 

[1995]. The quality of the fit for the overall OH rate constant estimates for aromatics was 

improved to 30% maximum error, compared to 1 10% using the parameters in Kwok and 

Atkinsor? [ 19951. Typical OH concentrations were 10' molecules per cubic centimeter. 

This information, together with measured O3 concentrations and the OH and O3 rate 

constants for all other species, allowed us to determine the reacted amount of each 

species present in the fuel mixture during the course of an experiment. 

The results of these experiments strongly support the hypothesis that aromatics 

play the predominant role in SOA formation associated with atmospheric oxidation of 

unburned gasoline. Plotting the ratio of the total SOA concentration produced from a 

given fuel to the reacted concentration of a fuel's aromatic constituents (M,,lAaromatic) 

versus M , ,  (Figure A. 1.2), we see that points for all fuels other than RF-L fall within the 

range specified by the yield curves that describe the majority of SOA yields from the 

individual aromatic studies (curves 1 and 2 from Figure A. 1. 1). If significant amounts of 

the SOA that was produced originated from species other than the aromatics, then most 

points would lie above the envelope specified by these two curves. The value of 



Aaromatic was calculated by summing the reacted amount of each aromatic species in a 

fuel for a given experiment. The ratio of AM,,/Aaromatic is a measure of the SOA yield 

of a fuel in terms of its aromatic fraction only. For the individual aromatic experiments, 

M,JAaromatic = Y. For most fuels, 92 to 99% of the mass was speciated in AQIRP 

[Pahl and McNrrlly, 19911. Only 83% of the mass of fuel RF-L, which was the only high 

Tg0 AQIRP Phase I fuel used in this study, was speciated in AQIRP. Temperature TYo is 

the distillation temperature at which 90% of the fuel evaporates. It relates to a fuel's 

heavy-end volatility: Fuels with high Tgo contain a significant fraction of heavy 

components. In Phase I of AQIRP, only 143 compounds were speciated, and many of the 

heavy components (including the aromatics) were not accounted for. In Phase 11, 320 

compounds were speciated, and many of the heavier aromatics were accounted for. Thus, 

more than 94% of the carbon, on average, was accounted for in all Phase I1 fuels (both 

high and low ?'go). 

Using the curves for the 17 species shown in Figure A. 1.1, and assuming that all 

isomers of a given compound behave similarly, we obtained yield curves for 19 of the 26 

aromatics speciated in Phase I of the AQIRP study. These 19 species represented, on 

average, 96% of Aaromatic for all fuels other than RF-A and RF-L. Of the 57 speciated 

aromatic compounds for the AQIRP Phase 11 fuels, yield curves were available for 28, 

representing, on average, 95% of Aaromatic. Obtaining a yield value, corresponding to 

the amount of SOA formed in an individual experiment, for an individual aromatic (Y,)  

and multiplying that value by the reacted amount of the respective aromatic (AROG,) 

produces an estimate of the amount of SOA attributable to that given aromatic species. 

Summing these values for all aromatics gives a quantitative estimate of the amount of 
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SOA (AM, = XiAROGiYi) that was produced by the aromatic fraction of each fuel (Figure 

A. 1.3). These results quantitatively support the hypothesis that aromatic content controls 

a fuel's SOA formation potential. The average ratio of the SOA concentration predicted 

to be formed from a fuel's aromatic constituents to the observed SOA concentration for 

all fuels, excluding RF-L, is 1 .OO -c 0.16 ( lo) .  Thus, it is evident that aromatics dominate 

the process of SOA formation associated with the atmospheric oxidation of whole 

gasoline vapor. Given the chemical complexity of whole gasoline, the results of this 

study suggest that SOA formation in an urban airshed can be modeled using yield data 

such as those presented here. 
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Table A. 1.1. Estimation of the contributions by individual species to the SOA formed 

from the photooxidation of a five-hydrocarbon mixture. Values of yield Yare taken 

from the curves shown in Figure A. 1.1 at a value of AMo = 28 pg m-'. 



Table A. 1.2. Properties of AQIRP reformulated gasolines. MTBE = the fuel additive 

methyl tertiary butyl ether; the fuel identification code is derived A(a) = high (low) 

aromatics, M(m) = high (low) MTBE, O(o) = high (low) olefins, T(t) = high (low) 

Tgo, RMH = medium and heavy reformate cut (predominantly Cg- and Clo- 

aromatics), and AH = heavy alkylate cut (heavy paraffins). 
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Figure A. 1.1. Secondary organic aerosol yield as a function of total organic aerosol mass 

concentration (AhfCJ) for 17 individual aromatic species. Each point represents an 

individual experiment. Curves were fit to the data using a two-product model in 

conjunction with equation (1) by minimizing the weighted squared residuals. Curve I 

is fit with values 0.071,0.053,0.138, and 0.001 9 for a,, K,,,,J, R, and 

respectively. The corresponding values are 0.038,0.042, 0.167, and 0.00 14 for curve 

2, 0.083, 0.093, 0.22, and 0.001 for curve3, and 0.05, 0.054, 0.136, and 0.0023 for 

curve 4. 



Figure A. 1.2. Plot of M,/Aaromatic as a function of M,, for 12 different AQIRP 

gasolines (Table A. 1.2). Curves 1 and 2 are taken from Figure A. 1.1 . Nc,/Aaromatic 

is equivalent to the SOA yield if Aaromatic is equal to AROG. Each point represents 

an individual experiment. Changes in AA4, for an individual fuel were obtained by 

varying fuel initial concentrations. 



M e a s u r e d  M ,, (e l  g/ni') 

Figure A. 1.3. Comparison between observed total SOA concentrations produced from 

the oxidation of whole gasoline vapor and total SOA concentrations predicted to be 

formed solely from the fuel's aromatic components. 
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Appendix 2 

Observation of Gaseous and Particulate Products of Monoterpene 

Oxidation in Forest Atmospheres 

Reference: J .  Yu, R.J. Griffin, D.R. Cocker 111, R.C. Flagan, J.H. Seinfeld, and P. 

Blanchard, Geophys. Res. Lett., 26, 1145-1 148, 1999. 



Abstract 

Atmospheric oxidation of biogenic hydrocarbons, such as monoterpenes, is 

estimated to be a significant source of global aerosol. Whereas laboratory studies have 

established that photochemical oxidation of nlonoterpenes leads to aerosol formation, 

there are limited field studies detecting such oxidation products in ambient aerosols. 

Drawing on prior results of rnonoterpene product analysis under controlled smog 

chamber conditions, we have identified organic aerosol components attributable to 

monoterpene oxidation in two forest atmospheres, Kejimkujik National Park, Nova 

Scotia, Canada, and Big Bear, San Bernardino National Forest, California, U.S.A. The 

major identified aerosol products derived from a-pinene and P-pinene oxidation include 

pinic acid, pinonic acid, norpinonic acid and its isomers, hydroxy pinonaldehydes, and 

pinonaldehyde, concentrations of which in the aerosol phase are in the sub ng rn-' range. 

Identification of oxidation products in atmospheric aerosol samples serves as direct 

evidence for aerosol formation from monoterpenes under ambient conditions. 

A,2.3 Introduction 

The atmospheric aerosol-forming potential of biogenic hydrocarbons was noted as 

early as 1960 [Went, 19601, and laboratory studies have established that atmospheric 

oxidation of monoterpenes and sesquiterpenes leads to aerosol formation [Hoflnzunn et 

ul., 1997; G r i ~ i n  et al., 19991. Production of biogenic secondary organic aerosols on a 

global basis is estimated to range between 30 and 2'70 Tg year-', a magnitude comparable 

to the production of biogenic and anthropogenic sulfate aerosols [Andrerre and Crut,-en, 

19971. 
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Monoterpenes are important constituents of aerosol-forming biogenic compounds 

[Grifin et al., 19991. Despite numerous field measurements of gas-phase monoterpenes 

[e.g.. Roberts et al.. 1983; Zimmemar? et dl., 1988; Clement et ul., 1990; BirLserztlznl et 

al., 19981, there are few field studies in which their oxidation products have been 

measured. Recent advances in analytical methods have now made it possible to detect 

and identify such secondary organic aerosol components, which generally have multiple 

polar oxygenated functional groups [Yu et al., 1998; 19991. Ambient measurements of 

biogenic hydrocarbon oxidation products in the atmospheric aerosol provide the link that 

establishes the importance of this source to global tropospheric aerosol. We present here 

measurements of monoterpene-derived aerosol components in two forest atmospheres, 

Kejimkujik National Park, Nova Scotia, Canada, and San Bernardino National Forest, 

California, U,S .A. 

A.2.2 Ambient Sampling and Analysis 

The measurement site in Kejimkujik National Park (44'26' N, 62'1 2' W) is 

situated in the Atlantic province of Nova Scotia. The park is in a forest consisting of a 

mixture of two-thirds coniferous and one-third deciduous trees [Bottelzheim et rrl., 19941. 

Ambient mixing ratios of a-pinene and P-pinene were determined on-line using a 

Hewlett-Packard GC/MS [Biesentlzul et crl., 19981. Aerosol samples were collected in 

July, 1996, over a period of two to three days at a flow rate of 10 L m i d  on 47 mm 

quartz fiber filters. Since the aerosol samples were collected in a field campaign that did 

not include characterizing semivolatile organics as one of its goals, adequate sampling 

devices were not implemented to minimize sampling artifacts for semivolatiles. 

Collection of two filter samples analyzed in this work commenced on July 5 and July 8, 
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based on a sampled air volume of 26.94 and 44.72 m', respectively. The diurnal 

temperature during the sampling period ranged from 1 1 to 21°C, and the relative 

humidity from 13% to 50% [Leaitch et al., 19991. 

The measurement site in the San Bernardino National Forest is located in Big 

Bear Valley (34" 13' N, 1 16'49' W), CA, at an elevation of 2 150 meters. Lodgepole 

pines, pinion pines, oaks, and Douglas firs are major tree species in this area. Hourly 

measurements of gas-phase rnonoterpenes were achieved by collecting 300 L of air on 

Tenax tubes, and were then analyzed by a Hewlett-Packard GCIMS following thermal 

desorption using a Tekmar AeroTrap Desorber 6000. Two types of aerosol sampling 

devices were deployed, one consisting of one or two denuders followed by a Teflon 

impregnated glass fiber filter, and the other one consisting of two 47 mrn filters--a Teflon 

impregnated glass fiber filter followed by a glass fiber filter. Two sampling trains were 

set up for each type of sampling device. The sampling train with two denuders was used 

to quantify denuder collection efficiency. Samples were collected from 19:00 PDT Aug. 

3 1 to 13:00 PDT Sep. 1, 1998, at a flow rate of 22 L min-'. The back filter in the two- 

filter set-up was used for assessing filter adsorption of gaseous semivolatile organics. 

Ambient temperature during the sampling period varied from 18 to 32"C, and relative 

humidity ranged from 20% to 59%. 

Denuder samples were extracted on-site, and all samples were stored at O'C 

before analysis. The procedure for extraction, subsequent processing, and analysis of 

denuder and filter samples has been described elsewhere [Yu et cil., 19991. The extracts 

of denuder and filter samples were derivatized by (2,3,4,5,6-pentafluorobenzyl) hydroxy 

amine (PFBHA) and N, 0-bis (trimethylsily1)-trifluoroacetamide. By this procedure, 
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carbonyl functional groups of the oxidation products were converted into oximes, and 

carboxyl and hydroxyl function groups were converted into trimethylsilyl (TMS) groups. 

The resulting derivatives were then analyzed by GC/MS, using both electronic ionization 

(EI) and chemical ionization (CI) modes for identification and quantification. Blank 

filters in both studies were treated and analyzed following the same procedures applied to 

the sample filters. Quantification of products for which authentic standards do not exist 

was achieved by using surrogate compounds that have the same functional groups and 

approximate carbon numbers [Yu el al., 19991. 

A.2.3 Results and Discussion 

A.2.3.1 Identification of Monoterpene Oxidation Products 

Oxidation products of a-pinene and P-pinene in the ambient samples were 

identified by comparing GC chromatograms and mass spectra of the ambient samples 

with those obtained from controlled chamber experiments. Table A.2.1 lists the chemical 

structures of the monoterpene oxidation products observed. 

Established products from oxidation of a-pinene and P-pinene include pinic acid, 

norpinic acid, pinonaldehyde, norpinonaldehyde, hydrox y pinonaldehydes, pinonic acid, 

norpinonic acid, hydroxy pinonic acid, hydroxy pina ketones, and nopinone. An 

unidentified product (denoted XI), having two carbonyl groups and a molecular weight of 

198 as determined from its EI and CI mass spectra, is observed in both laboratory 

generated aerosol in the a-pinenelo? system and ambient aerosols at both sites. Besides 

oxidation products derived from a-pinene and P-pinene, a compound denoted X?,  

detected in samples from both sites, is identified as a C9 dioxo mono-carboxylic acid, 
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having a molecular weight of 186. Figure A.2.1 displays the CI mass spectmm for the 

PFBHA and TMS derivative of this compound Xz. The molecular weight and some 

structural information can be determined from the mass spectsum [Yu et a/., 19981. 

Ozone oxidation of limonene could lead to the formation of a C9 dioxo mono-carboxylic 

acid, 3-acetyl-6-0x0-heptanoic acid, as illustrated in Figure A.2.2 [Horir et al., 1994; 

Neeh et nl., 199'71. The mass spectrum shown in Figure A.2.1 is consistent with that 

expected for this compound. 

A.2.3.2 Kejimkujik Samples 

Table A.2.2 lists mixing ratios of three monoterpenes and concentrations of 

various monoterpene oxidation products in the aerosol phase in two filter samples 

collected in Kejimkujik National Park. All the identified oxidation products are detected 

at the sub-nanogram mm3 level. The presence of monotespene oxidation products in filter 

samples correlates with the observation that aerosol volume increased with the decrease 

in a-pinene and P-pinene during the same sampling period at this same site [Leaitch et 

al., 19991. 

A.2.3.3 Big Bear Samples 

Table A.2.3 lists the mixing ratios of six monoterpenes and the concentrations of 

various monoterpene oxidation products detected in both the gas and aerosol phases in 

the San Bernardino National Forest of California. The denuderlfilter set-up at this site 

allowed simultaneous determination of semi-volatile compo~inds in both gas and 

particulate phases. Species collected by the denuder represent those in the gas phase. 

Denuder collection efficiencies for the products in Table A.2.3 range from 0.88 to 1 .O. 
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Gas-phase concentrations as determined from denuder samples have been corrected for 

the denuder collection efficiency for each product. As evident in Table A.2.3, the 

monotespene oxidation products at this site predominately exist in the gas phase. A 

number of oxidation products were detected solely in the gas phase due to either their 

high volatility (e.g., nopinone, hydroxy pina ketones, and norpinonaldehyde) or to such a 

low concentration in the air that the amount partitioned to the aerosol phase is below 

detection limit (e.g., norpinonic acid and hydroxy pinonic acid). 

Comparison of filter samples in the presence and absence of a denuder in front of 

the sampling train indicates that the filter-only technique suffers a positive sampling 

artifact. Semivolatile products are also detected on the back filter in the filter-only set- 

up, which is evidence for filter adsorption of gaseous semivolatile organics. 

Concentrations obtained via the filter-only technique are 120%- 137% higher than those 

obtained using the denudedfilter sampling device for sampling conditions employed at 

the Big Bear site. McDow and Huntzicker [I9901 observed a significant increase of 

positive artifact with decreasing filter face velocity for a quartz fiber filter. They 

estimated that at low organic carbon concentrations, the correction factor due to 

adsorption could exceed 50% at a sampling face velocity of 40 crn s-'. Considering the 

lower face velocity (-20 cm s-I), the positive artifact observed at the Big Bear site is in 

general agreement with the results of McDow arzd Huiztzicker [1990]. Therefore, the 

filter-only technique is not adequate for measurements of biogenic oxidation products in 

the aerosol phase. Concentrations derived from the two Kejimkujik filter samples likely 

overestimate the actual aerosol concentrations for this reason. 



A.2.4 Comparison with Prior Field Studies 

Previous field measurements of particulate-phase terpene oxidation products have 

been limited to pinonaldehyde, pinonic acid, and nopinone. A recent study has also 

measured ambient concentrations of pinic acid and norpinonic acid [Kavourcrs et al., 

19991. Yokouchi and Amhe [ 19851 measured pinonaldehyde concentrations of 2-3 ng m-' 

in aerosol samples collected in the cedar forest at Kiyosumi and in the pine forest at 

Tsukuha in Japan in summer time. Satsunzuhc~pshi et ul. [ 19901 detected pinonaldehyde 

at 30 ng m-' and 100 ng m-' at two mountainous sites in central Japan. Culogirolr et trl. 

[I9971 observed pinonaldehyde near Ispra. Italy, at 90 ng m-' using DNPH-coated 

cartridges. Since an ozone scavenger was used in this study, which also collected 

particles, this concentration reflects that in the gas-phase. Ktrvourcrs et ($1. [I9981 

reported aerosol concentrations for pinonic acid, nopinone, and pinonaldehyde ranging 

from 9- 140,0.3- 13.2, and 0.17-32.1 ng m-', respectively, at a forest site in Portugal. In 

the most recent study, Kavouras et al. [1999] deployed a denuder/filter sampling device 

to measure monoterpene oxidation products in both gas and aerosol phases in a conifer 

forest located in Pertouli in Central Greece. They reported diurnal particulate 

concentrations for pinonic acid, pinic acid, norpinonic acid, pinonaldehyde, and nopinone 

to be 1.0-25.7,0.4-4.4,0.2-5.4,0.2- 1.2, and 0-0.4 ng m-', respectively. In this study, 

simultaneous measurements of Aitken nuclei also provided evidence that the 

photooxidation products from biogenic precursors play a role in forming new particles. 

Considering the many factors influencing concentrations of aerosol-phase 

monoterpene oxidation products, the wide variability of ambient concentrations among 

the six studies is not surprising. Pinonaldehyde, for example, was measured in all six 



studies with concentrations ranging from under detection limit to 100 ng m". 

Concentrations of precursor monoterpenes and atmospheric oxidants govern for~~iation 

rate of the products. The higher mixing ratios of a-pinene (0-3.2 ppbv) and P-pinene (0- 

1.4 ppbv) may partly account for the more plentiful oxidation products in the aerosol 

phase in the study of K~lvouras et al. [1999]. The aerosol-phase fraction of a semi- 

volatile organic compound, such as any of the monoterpene oxidation products, is known 

to be controlled by available organic aerosol mass and the compound's gas-aerosol 

partitioning coefficient, which, in turn, is a function of temperature and the overall 

aerosol chemical composition [Odum et crl., 1996; Jang et ul., 1997; Jarzg and K~?r?zerrs, 

1999; Yu et al., 19991. Besides these factors intrinsic to aerosol formation, sampling 

artifacts can also introduce variability in the reported concentrations. For example, as 

noted earlier, the filter-only technique suffers a positive artifact from adsorption of gas- 

phase semi-volatiles onto the filter surface, whereas volatilization of aerosol-phase semi- 

volatiles introduces a negative artifact, which depends on sampling rate and filter area 

[McDow~ and Huntzicker, 19901. In addition, a number of products (e.g., pinonaldehyde 

and norpinonic acid) do not have available commercial standards, and different surrogate 

compounds have been used to estimate their concentrations. 

A.2.5 Conclusions 

We have detected in two forest atmospheres a number of gas- and aerosol-phase 

products from oxidation of a-pinene and P-pinene, including pinic acid, norpinic acid, 

pinonic acid, norpinonic acid and its isomers, pinonaldehyde, norpinonaldehyde, hydroxy 

pinonaldehydes, hydroxy pinonic acid, and nopinone. In addition, a C9 dioxo carhoxylic 

acid, detected at both sites, is postulated to be 3-acetyl-6-0x0-heptanoic acid, a product 
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expected from ozone oxidation of limonene. Identification of monoterpene oxidation 

products in aerosol samples serves as direct evidence for aerosol formation from 

monoterpenes under ambient conditions. 
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Table A.2.1. Monoterpene oxidation products detected at forest sites. 

Name Structure note 

norpinic acid 

pinic acid 
COOH 

C9H140 * 

nopinone 

MW= 138 

c9H1402 

hydroxy pina 

ketones 

MW=154 

norpinonic acid 

& its isomers CHO 

COOH 

C10H1603 * 

pinonic acid 

MW= 184 



Table A.2.1. (continued) Monoterpene oxidation products detected at forest sites. 

& COOH 

N ame Stn~cture note 

Cl0H1604 

hydrox y 

pinonic acid 

MW=200 

C9H I 401 

norpinonaldehyde 

MW= 154 

Cl0Hl602 

pinonaldehyde 

MW= 168 

cl0H1603 

hydroxy 

pinonaldehydes 

MW= 184 

two carbonyl 
g, d 

groups 
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Table A.2.1. (continued) Monoterpene oxidation products detected at forest sites. 

identification confirmed with an authentic standard. 

a known product of O1 oxidation of a-pinene and P-pinene. 

detected in Kejimkujik samples. 

known product of O3 oxidation of a-pinene, P-pinene, sabinene and .A3-carene. 

detected in Kejimkujik and Big Bear samples. 

known product of O3 oxidation of P-pinene. 

f detected in Big Bear denuder samples. 

"nown product of O3 oxidation of a-pinene. 

h detected in Big Bear denuder and filter samples. 

' possible product of O1 oxidation of limonene. 



260 

Table A.2.2. Monoterpene oxidation products in filter samples collected in Kejin~kujik 

National Park, Nova Scotia. 

monoterpene 

mixing ratio (pptv) 
conc. (ng rn-3) 

product 

-- 
a-pinene 88-283 147-642 norpinic a c i d b . 3 4  0.34 

P-pinene 69-40 1 209-864 pinic acid 0.48 0.59 

camphene 60-442 156-56 1 norpinonic acid 
0.24 0.04 

& its isomersC 

pinonic acid 0.39 0.13 

hydrox y 
0.12 ND " 

pinonaldehydes 

Dates when aerosol samples commenced 

Quantified using the calibration factor and recovery for pinic acid. 

Quantified using the calibration factor and recovery for pinonic acid. 

Quantified using the calibration factor and recovery for 5-methyl-cyclohexane- 1,3- 

dione. 

"ot detectable. 
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Table A.2.3. Gaseous and particulate monoterpene oxidation products in samples 

collected in San Bernardino National Forest, California. 

monoterpene 

mixing ratio (pptv) 
conc.(ng m-')" 

product 

range avg. gas aerosol 

a-pinene 22 -1 19 63 pinic acid 11.5 0.5 

norpinonic acid 
12.3 

& its isomers 

limonene 13 - 63 27 pinonic acid 202.4 0.8 

carnphene 7 - 76 36 norpinonaldehyde 4.7 ND 

A'-carene 2 - 2 1 10 pinonaldehyde 280 I .O 

hydroxy 

pinonaldehydes 

X I  3.3 0.2 

hydroxy pinonic 9.0 ND 

acid 

hydroxy pina 18.0 ND 

ketones 

nopinone & 132.9 ND 

isomersC 

" average values of two samples. 

Not detectable. 

' Possible isomers include primary carbonyl products from ozone oxidation at the 

external C=C bond in limonene and camphene. 



Figure A.2.1. Chemical ionization mass spectrum for the derivative of a Co dioxo 

carboxylic acid compound detected in aerosol samples. 

Figure A.2.2. Formation pathways for a C9 dioxo carboxylic acid product from oxidation 
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Appendix 3 

Gas-phase Ozone Oxidation of Monoterpenes: Gaseous and Particulate 

Products 

Reference: J. YLI, D.R. Cocker 111, R.J. Griffin, R.C. Flagan, and J.H. Seinfeld. J. Atmos. 

Cher~. ,34, 207-258, 1999. 



Abstract 

Atmospheric oxidation of monoterpenes contributes to formation of tropospheric 

ozone and secondary organic aerosol, but their products are poorly characterized. In this 

work, we report a series of outdoor smog chamber experiments to investigate both 

gaseous and particulate products in the ozone oxidation of four monoterpenes: a-pinene, 

P-pinene, A'-carene, and sabinene. More than ten oxygenated products are detected and 

identified in each monoterpene/03 reaction by coupling derivatization techniques and 

GC/MS detection. A denudedfilter pack sampling system is used to separate and 

simultaneously collect gas and aerosol samples. The identified products, consisting of 

compounds containing carbonyl, hydroxyl, and carboxyl functional groups, are estimated 

to account for about 34-50%, 57%, 29-67%, and 24% of the reacted carbon mass for P- 

pinene, sabinene, a-pinene, and A'-carene, respectively. The identified individual 

products account for >830/0, -loo%, >90%, and 61% of the aerosol mass produced in the 

ozone reaction of P-pinene, sabinene, a-pinene, and A'-carene. The uncertainty in the 

yield data is estimated to be - 250%. Many of the products partition between gas and 

aerosol phases, and their gas-aerosol partitioning coefficients are determined and reported 

here. Reaction schemes are suggested to account for the products observed. 

A.3.1. Introduction 

Emissions of biogenic organic compounds have been estimated to dominate over 

those from anthropogenic sources on a global basis [Guentl~er et al., 19951. As important 

constituents of biogenic VOC emissions, the CloHlb monoterpenes contribute to 

formation of tropospheric ozone and secondary organic aerosol (SOA) [Knrnejzs r t  trl., 
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198 1 ; Chameidees et al., 1988; Parzdis et al., 199 1 ; Zhang et al., 1 992; Hqfinunrz et al. , 

1997; Grifif et al., 19991. Whereas the rate constants of monoterpenes with OH 

radicals, N O  radicals, and O3 are reasonably well established, the reaction products are 

less well understood [Atkirzson, 1997; Ccllogiro~( et al., 19991. Information on both 

gaseous and particulate products is important to elucidate the mechanism of oxidation 

and to understand the formation of secondary organic aerosol. 

In a previous paper, we reported the identification of ozone oxidation products of 

a-pinene and ~l-carene (see below for chemical structures) [YU et al., 19981. In this 

work we have investigated ozone oxidation products of two additional bicyclic 

rnonoterpenes, P-pinene and sabinene, for which little product information is known. 

a-pinene A~-carene P-~inene sabinene 

At an initial P-pinene mixing ratio of several ppmv, nopinone is the only product 

that has previously been clearly identified from O3 oxidation of P-pinene, besides low- 

molecular products such as formaldehyde, CO, and C 0 2  [Hatclkeyarncr et al., 1989; 

Grosjrurr et (dl., 1993; Hclkola et al., 19941. For the sabinene/03 reaction, sabina ketone 

is the only known product [ H u ~ o ~ L ~  et al., 19941. 

Few studies have been carried out to determine yields of gaseous and particulate 

products from ozone oxidation of the monoterpenes, and to our knowledge, no study has 

been reported to examine gaseous and particulate oxidation products simultaneously. 

The semi-volatile nature of many of the oxidation products dictates that they partition 
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between the gas and aerosol phases. The filter-only technique, which is the most 

common aerosol sampling method, results in positive artifacts from adsorption of gaseous 

semi-volatile compounds on the filter [McDow anti Huntzicker, 1990; Hurt m d  Pnnko~~ ,  

19941. We have employed a denudedfilter pack system to separate gaseous and 

particulate semivolatile compounds and to minimize sampling artifacts. Using this 

sa~npling device, we have measured the product yields from the ozone oxidation of the 

four monoterpenes in both gas and aerosol phases and determined their gas-aerosol 

pxtitioning coefficients. 

Detection and identification of products from oxidation of biogenic hydrocarbons 

are hindered by the fact that many contain functional groups such as carbonyl and 

carboxylic acids that are poorly resolved by standard gas chromatography. We have 

recently reported a method to detect and identify organics containing -C=O (aldehyde and 

ketone), -OH (hydroxy), and -COOH (carboxyl) groups [Yu rt  a]. , 19981. In this method, 

-C=O groups are derivatized using 0-(2,3,4,5,6-pentafluorobenzyl) hydroxy amine 

(PFBHA) and -COOH and -OH groups are derivatized using a silylation reagent, N.0- 

bis(trinlethylsily1)-trifluoroacetamide (BSTFA), to give trimethylsilyl (TMS) derivatives. 

The resulting derivatives are easily resolved by a GC column and identified by their 

chemical ionization (CI) and electronic ionization (EI) mass spectra. The CI mass spectra 

of these derivatives exhibit several pseudo-molecular ions, allowing unambiguous 

determination of molecular weights. The EI mass spectra allow functional group 

identification by exhibiting ions characteristic of each functional group: m/z 18 1 for 

carbonyl and ndz 73 and 75 for carboxyl and hydroxy groups. In addition, each 

functional group is associated with a unique set of pseudo-molecular ions in CI spectra. 
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The PFBHA-carbonyl derivatives give rise to pseudo-molecular ions at m/z M+18 1, M- 

18 1 and M- 197, whereas the TMS derivatives of OH/COOH containing compounds have 

pseudo-molecular ions at d z  M+73, M-15 and M-89. We refer the reader to Y L ~  et (I[. 

[1998] for a detailed description of the mass spectra fragment patterns. 

A.3.2. Experimental Section 

A.3.2.1 Smog chamber experiments and sample collection 

Samples were collected from a series of P-pinene/03, sabinene/03, a-pinenelO3, 

and a3-carene/03 experiments conducted in the dark in a 60-mZ Teflon reactor, which has 

been described previously [Ho&unn et nl., 1997: GrifSin et al., 19991. When fully 

inflated, the reactor has a surface to volume ratio (S/V) of 1.8 n1-' . This reactor was 

normally divided in the center so that two experiments could be run under identical 

environmental conditions. The temperature in the reactor was maintained between 305 

and 3 10 K to approximate that of a typical afternoon smog chamber experiment. To 

achieve this, the entire reactor was covered with an insulating cover as well as a black 

tarpaulin. In addition, four Holmes (Milford, MA) Model HFH-501FP space heaters 

were placed in the open area underneath the reactor. In a typical experiment, seed 

particles of (NH4)?S04 were injected into the chamber to obtain initial particle 

concentrations of approximately 9,000- 17,000 particle cm? The initial size distribution 

of the seed aerosol was centered around 100 nm. The aerosol size distribution and total 

number concentrations of each side of the reactor were monitored at a one-minute 

frequency using a TSI (St. Paul, MN) Model 307 1 cylindrical scanning electrical mobility 

spectrometer (SEMS) and a TSI Model 3760 condensation nucleus counter (CNC). 
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Particle losses in the SEMS, SEMS response functions, particle charging efficiencies, 

CNC charging efficiencies, and particle deposition in the reactor have been taken into 

account in the analysis of the aerosol data [Warzg et nl., 19921. The initial nionoterpene 

mixing ratio ranged from 50 to 1 10 ppbv, and an appropriate amount of 2-butanol was 

also added to the reactor to scavenge >95% of OH radicals produced from the 

monoterpene-0; reaction [Chew nntl Atkinson, 1996; Atkinson, 19971. Finally, ozone 

was injected to the reactor using an Enmet Corporation (Ann Arbor, MI) Model 04052- 

0 1 1 0; generator until the 0; mixing ratio reached approximately four times that of the 

initial hydrocarbon for all experiments except one a-pinenelO; and one P-pinene/03 

experiment, in which excessive hydrocarbon was established in the reactor. Table A.3.1 

summarizes the initial conditions of each experiment. 

Reactor air was withdrawn through a sampling system consisting of a glass 

annular denuder (University Research Glassware, Chapel Hill, NC) followed by a 47 rnm 

Pallflex Teflon impregnated glass fiber filter at a flow rate of 25 L min-' for 1 h. The 

denuder is 40 cm long and consists of 5 annular channels with 2 mm space between 

channels. The sand-blasted denuder walls were coated with sub-micron XAD-4 particles 

beforehand using the procedure described by Gundel et ul. [1995]. 

A.3.2.2 Sample treatment and analysis 

Denuder and filter samples were spiked with 10 pL of 40 ng/ pL tricosane in 

dichloromethane (DCM) immediately after sample collection. Filters were soxhlet- 

extracted with 160 n1L 1: 1 acetonitrile and DCM solvents for 12- 16 hrs. Before 

extraction, 150 pL of 19 niM PFBHA acetonitrilelaqueous solution (a minimum amount 

of water was used to dissolve PFBHA.HC1) was added to the soxhlet extractor along with 
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the extraction solvents. Denuders were extracted with 4 x 40 mL of a solvent mix made 

of DCM, acetonitrile, and hexane (50%: 38%: 12%) by manually inverting the denuder 

40 times. After addition of 150 pL of 19 mM PFBHA solution, the denuder extracts 

were left at room temperature overnight. Then both the filter and denuder extracts were 

reduced to ca. 5 mL by rotary evaporation. The extracts were blown to nearly dryness 

under a gentle N2 stream, followed by reconstitution with 280 pL 1 : 1 hexane and DCM 

solvent mixture, and addition of 20 pL of BSTFA and 10 pL of 3 ng/pL 1- 

phenyldodecane (injection internal standard). The mixtures were then heated at 70°C for 

2.5 hrs. After cooling briefly, 20 pL of the mixture was injected for GC/MS analysis. 

A Varian Saturn 2000 gas chromatograph/ ion trap mass spectrometer was used 

for both EI and methane CI analysis. The GC temperature was programmed at 60°C for 1 

min, to 250°C at 1O0C/min, to 300°C at S0C/min, and held at 300°C for 10 min. Samples 

were injected in the splitless injection mode. The injector was switched to split mode 1 

min after an injection was made. The injector port temperature was programmed at 60°C 

for 1 min, ramped to 320°C at lRO°C/min, and held at 320°C until the end of the analysis. 

The mass range was 50 - 650 amu. A 30m x 0.25 mm x 0.25 prn DB-5 fused silica 

column was used for all samples. 

A.3.2.3 Denuder and filter collection efficiencies 

The collection efficiency of the 40-cm long denuder was determined by 

connecting this denuder and a 20-cm long denuder in series (the limited space between 

the sampling port and the ground can only accommodate a 20-cm long denuder). The 

collection efficiency was calculated as Ad(AL+As), where AL and As represent the 
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amounts collected by the long and the short denuders, respectively. Semi-volatile 

products can volatilize from a filter due to changes in gas/particle equilibrium conditions 

as a result of the denuder stripping off gas-phase semi-volatiles. The filter "blow-off " 

was collected by a pre-baked glass fiber filter placed downstream from the Teflon filter. 

The filter collection efficiency was then calculated as F,I(F,+F,), where F, and F,g 

represent the amounts collected by the front Teflon filter and the rear glass fiber filter, 

respectively. The collection efficiencies were computed using the photooxidation 

products of a-pineneINO, in the outdoor reactor under sunlight irradiation. The reaction 

mixture contained pinic acid, pinonic acid, norpinonic acid, 2,2-dimethyl-3-formyl- 

cyclobutyl-methanoic acid, pinonaldehyde, and norpinonaldehyde. Table A.3.2 lists the 

denuder and filter collection efficiencies for each individual product. The results indicate 

that a 20-cm long denuder is sufficient to collect any breakthrough from the first denuder. 

A.3.2.4 Recoveries of denuder and filter samples 

Recoveries of select compounds were determined by spiking on filters and 

denuders known amounts of liquid standards and the recovery standard tricosane. The 

same extraction and concentration procedures as those described in Section A.3.2.2 were 

then applied. 

Relative recoveries for select multifunctional compounds versus the recovery 

standard tricosane are given in Table A.3.3. 2-Hydroxy-cyclohexanone is included to 

serve as a surrogate for hydroxy pina ketones and hydroxy sabina ketones, and the two 

dicarbonyls, 5-methyl- l,3-cyclohexanedione and 5-isopropyl- l,3-cyclohexanedione, act 

as surrogates for dicarbonyl compounds, such as pinonaldehyde and norpinonaldehyde. 

Two dicarboxylic acids, heptanedioic acid and octanedioic acid, and one keto acid, 7- 
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functional groups exhibit similar recoveries. Comparison of the recoveries of 

heptanedioic and octanedioic acid with that of pinic acid, a C9 cyclic dicarboxylic acid, 

shows that the three dicarboxylic acids exhibit similar recoveries for both denuder and 

filter samples. The two keto acids, 7-0x0-octanoic acid and pinonic acid, also have 

similar recoveries. This adds confidence to the assumption that the recoveries for those 

compounds without available standards can be approximated with those of known 

standards that have similar functional groups. 

For each compound tested, the denuder samples show lower recovery than filter 

samples. This indicates the mouth washing extraction technique performed on denuders 

is not as efficient in extracting the polar compounds as the soxhlet extraction method 

performed on filter samples. The large standard deviations associated with the recoveries 

are likely a result of a number of factors including extraction efficiency, volatilization 

during rotary evaporation, and losses from transfer and surface adsorption. Absolute 

recovery of a given compound is obtained by multiplying its relative recovery by that of 

tricosane in individual samples. All the denuder and filter samples have been corrected 

with the recoveries determined here. 

A.3.3 Product Identification 

The newly developed analytical derivatization method [Yu et ul., 19981 allows for 

detection and identification of three types of products: (1) those containing only carbonyl 

group(s) (e.g., simple aldehydes, ketones and dicarbonyls), (2) those containing only 

OH/COOH groups (e.g., dicarboxylic acids), and (3) those containing both carbonyl and 

OHlCOOH groups (e.g., oxoacids and hydroxy carbonyls). Here OH/COOH denotes the 



presence of hydroxy or carboxy functional groups since the mass spectra for the TMS 

derivatives often can not differentiate between these two functional groups. Two types of 

ion chromatograms are constructed: m/ .  18 1 ion chromatogram and nl/: 73 and 75 ion 

chromatogram. Type (1) compounds show peaks only in the 18 1 ion chromatogram, type 

(2) compounds exhibit peaks only in the 73 and 75 ion chromatogram, and type (3) 

compounds show peaks in both chromatograms. The classification for each product is 

further substantiated by the unique pseudo-molecular ions in the CI mass spectra. 

A.3.3.1 Products from ozone oxidation of P-pinene 

Figure A.3. 1 a is the reconstructed m/z 18 1 ion chromatogram, showing carbonyl- 

containing products from the P-pinene/03 reaction. Figure A.3.1 b is the reconstructed 

m//z 73 and 75 ion chromatogram, displaying all products bearing OH/COOH groups. 

Table A.3.4 lists molecular weight (MW), chemical structuse, and the pseudo-molecular 

ion fragments in the CI mass spectra that are used to obtain molecular weight for the 

products. Product names are derived using the newly proposed nomenclature for terpene 

oxidation products by Lurserz et ul. [ 19981. 

Among the products, compounds PI and P2 are type (2) products, i.e., only contain 

OH/COOH groups. Compound PI is tentatively identified as norpinic acid (2,2-dimethyl- 

cyclobutane- l,3-dicarboxylic acid). The CI spectrum shows ions at m/z 389, 3 17, 301, 

227, and 1 17, corresponding to M+73, M+ 1, M- 15, M-89, and M- 1 17 (Figure A.3.2- PI). 

The m/z M+73 ion is an adduct ion resulting from the addition of the 

[Si(CH3)3]+,fragment ion to a neutral molecule. The nz/z M+1 ion is the protonated 

molecular ion. The ions at m/z M-15, M-89, and M-117 are fragment ions resulting from 

loss of CHi, OSi(CH3)? and C(0)OSi(CH3) from the neutral molecules. Compound P2 is 
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identified as pinic acid, which has been confirmed by comparison with an authentic 

standard obtained from Aldrich (Figure A.3.2-P2). 

Compounds P3, Plo, and PI I have carbonyl groups, but no OH/COOH groups 

(type 1 compounds), as indicated by their presence in Figure A.3. l a  and absence in 

Figure A.3. lb. Compound P3 is positively identified as nopinone (pina ketone) by 

comparison with an authentic standard. There are two GC peaks corresponding to 

nopinone, as PFBHA forms two geometric isomers with a given nonsymmetrical 

carbonyl [Le Lacheur et a]. , 1993; Y L ~  et al., 19951. The relative intensity of the pseudo- 

molecular ions from two isomers of a PFBHA derivative may vary, but the mass 

fragment patterns are similar. Therefore, only one spectrum is given to illustrate the 

identification of a given carbonyl-PFBHA derivative. Figure A.3.2-P1 shows the CI 

spectmm of the second nopinone peak, with pseudo-molecular ions at m/l5 14, 362, 334, 

152 and 136, corresponding to M+18 1, M-t-29, M+l, M- 18 1, and M- 197. The m/z 

M+18 1 ion is an adduct ion formed between a neutral molecule and the fragment ion 

[C6~5CH2]+. The m/z M+29 ion is an adduct ion resulting from the addition of the 

methane reagent ion [CzH51+'to a neutral molecule. The ions at m/z M- 18 1 and M- 197 are 

fragment ions arising from loss of C6FSCH2 and C6FsCH20 fragments from the neutral 

molecules. Compound Plo  is tentatively identified as 2,2-dimethyl-cyclob~~tane- 13-  

dicarboxaldehyde, with a MW of 530 for its PFBHA derivative (Figure A.3.2-Plo). 

Compound PI  I is tentatively identified as 3-0x0-pina-ketone, a diketone (Figure A.3.2- 

PI ,). Its PFBHA derivative has a MW of 542 when both carbonyl groups are derivatized. 

In addition, two peaks in Figure A.3. l a  are ascribed to the mono-derivative of 3-keto- 

nopinone, with a MW of 347. For a dicarbonyl, PFBHA may derivatize only one of the 
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two carbonyl groups and leave the other intact if unfavorable derivatization conditions 

occur. Among unfavorable conditions are steric hindrance and insufficient amount of 

derivatization agent and reaction time. 

Compounds P4, PS, PO, P7, P8, and PI, have both carbonyl and OH/COOH groups 

(type 3 compounds), indicated by their presence in both Figures A.3. l a  and A.3. lb. 

Compound P4 is tentatively identified as a hydroxy substituted nopinone, 3-hydroxy-pina 

ketone or 1-hydroxy-pina ketone. The derivatized form of P4 has a MW of 421 (See 

Figure A.3.2-P4 for its CI mass spectrum.). Compound Ps is tentatively identified as 2,2- 

dimethyl-3-formyl-cyclobutyl-methanoic acid, having a MW of 423 for its derivatized 

form (Figure A.3 .2-Ps). Three peaks, labeled P6 in Figure A.3.1, are identified to have a 

MW of 437, indicated by the presence of several pseudo-molecular ions in their CI 

spectrum at n l / i  5 10,438, 348,256, and 240, corresponding to M+73, M+ 1, M-89, M- 

18 1, and M- 197 (Figure A.3.2-PO). The observation of three peaks indicates that at least 

two isomers with the same number and type of functional groups are present. The 

following three isomers are possible candidates with structures consistent with the EI and 

CI mass spectra fragment patterns: 

norpinonic acid pinal ic-4-acid pi nal ic3-acid 

(%acetyl-2,2-dimethyl (2,2-dimethyl-3-fom (2,2-dimethyl-3-fomylmet hyi 
cyclobutylmthamic acid) qclobwethamic acid) cydobut$methanoic acid) 

Further differentiation among the three isomers is impossi'nle on the basis of CI and EI 

mass spectra. Figure A.3.2-P6 shows ion fragment patters using pinalic-4-acid as an 



example. Compound P7 is identified as cis-pinonic acid, and the identification has been 

confirmed by comparison with an authentic standard. The CI mass spectrum of its 

derivative is shown in Figure A.3.2-P7. Compound P8 is tentatively identified as hydroxy 

norpinonic acid, with a MW of 525 for its derivative (Figure A.3.2-P8). Con~pound P9 is 

tentatively identified as hydroxy pinonic acid, with a MW of 539 for its derivative 

(Figure A. 3 .2-P9). 

Some of the products observed here have been reported in previous studies. 

Nopinone has long been identified as a major product in the P-pinenel03 reaction [Hull, 

198 1 ; Hatukeyamcr et al., 1989; Grnsjearl et al, 1993, Hukola et al., 19941. Using 

GC/MS and nuclear magnetic resonance (NMR) analyses, Hull [I98 11 also positively 

identified 3-hydroxy-pina ketone and 3-0x0-pina ketone and had indirect evidence for the 

formation of 1-hydroxy-pina ketone. Products that are reported here for the first time 

include pinic acid, norpinic acid, 2,2,-dimethyl-3-formyl-cyclobutyl methanoic acid, 

norpinonic acid and its isomers, pinonic acid, hydroxy norpinonic acid, hydroxy pinonic 

acid, and 2,2-dimethyl-cyclobutane- 1,3-dicarboxaldehyde. 

11.3.3.21, Products from ozone oxidation of sabinene 

Carbonyl bearing products of the sabinenelOi reaction are shown in Figure 

A.3.3a, and OHICOOH bearing products are shown in Figure A.3.3b. Table A.3.5 lists 

the MWs and chemical structures of these products. Most products are analogous to 

those identified in the P-pinenel03 reaction, and their methane CI mass spectra are 

similar to those in the P-pinenel03 reaction. The CI mass spectra are given only for the 

products unique in the sabinenelo? reaction (Figure A.3.4). Interested readers can get 

from us the mass spectra data for those analogous products. 
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Among the products, compound S 1 ,  S2, and S j  contain only OH/COOH groups 

(type 2 compounds). Compound SI is tentatively identified as norsabinic acid on the 

basis of that it shows a MW of 3 16 for its derivative, and elutes at an earlier retention 

time than that of norpinic acid. The CI spectrum of compound S2 indicates a MW of 330 

for its TMS derivative. S2 elutes from the GC column earlier than pinic acid. It is 

tentatively identified as sabinic acid, the analogue of pinic acid derived from sabinene. 

Compound S3 is pinic acid, confirmed by authentic standard. The observation of pinic 

acid as a product in the sabinenelOi reaction is also reported by Glasius et al. [1 9981. It 

is not likely that pinic acid is a residue resulting from the previous chamber experiment, 

which was a P-pinene/03 experiment. Between chamber experiments, clean air of more 

than 15 times the bag volume passes through the reactor. More experiments are needed 

to verify this observation. 

Compounds S4 and S 1 are found to contain only carbonyl groups (type 1 

compounds), indicated by their presence in Figure A.3.3a and absence in Figure A.3.3b. 

Both EI and CI spectra indicate a MW of 333 for compound S4. It is tentatively 

identified as sabina ketone. This product is identified as a major product by Hakola et (11 

[ 19941. Compound S I is tentatively identified as 3-0x0-sabina ketone. The mono- 

derivative of this diketone is also present. 

Compounds SS, Sb, S7, SX, S9, SIO, and S12 have both carbonyl and OH/COOH 

groups (type 3 compounds), indicated by their presence in both Figure A.3.3a and Figure 

A.3.3b. Compound Ss is tentatively identified as 2-(2-isopropy1)-2-fomyl-cyclopropyl- 

methanoic acid, as its CI spectrum shows a MW of 423 for its PFBHA and TMS 

derivative. Three peaks are ascribed to S6, and their CI spectra indicate a MW of 42 1. S6 



is therefore tentatively identified as hydroxy sabina ketones (3-hydroxy and 1 -hydroxy 

sabina ketone). Four peaks are assigned to S7, which has a MW of 437. Similar to the P7 

peaks in the P-pinene/Oi samples, S7 could be two of the three isomers listed in Table 

A.3.5. Further differentiation is not possible based on the mass spectra data. Peak Sx 

shows a MW of 495 (FigureA.3.4-S8). Table A.3.5 lists one of the possible candidates 

that matches the MW and functional group types. Three peaks, with a MW of 525 

determined from their CI mass spectra, are assigned to S9. Three of all possible 

structures are listed in Table A.3.5. S l o  is determined to have a MW of 539 for its 

derivatized form. Two peaks are ascribed to compound S z, with a MW of 590 for its 

derivatized forms. One EI spectrum is given in FigureA.3.4-SI2. Their CI spectra are 

weak, but the protonated molecular ion is present. One postulated structure is listed in 

Table A.3.5. 

A comparison of the products from P-pinene1Oi and sabinene/03 reveals that 

there are nine analogous product pairs in the two reaction systems: norpinic 

acid/norsabinic acid, pinic acidlsabinic acid, nopinone/sabina ketone, PSIS5, hydroxy pina 

ketoneslhydroxy sabina ketones, Ph/S7, P8/S9 P9/S and 3-0x0-pina ketonel3-0x0-sabina 

ketone (Tables A.3.4 and A.3.5). These analogous products suggest that they are derived 

from a common moiety between the two parent reactants, i.e., an external unsaturated 

bond to the six-member ring. The sabinene/03 reaction also produces two unique 

products (S8 and Sp),  correspondents of which are not observed in the P-pinene/03 

reaction. 
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A.3.3.3 Products from ozone oxidation of a-pinene 

Identification of ozone oxidation products of a-pinene, based on a collection of - 

0.36 m3 reactor air in an impinges, has been described by Yu et a1.[1998]. The collection 

of a larger air volume (1.5 m3) by the denuderlfilter system in this work allows detection 

of six additional minor products. For completeness, Table A.3.6 shows the structures of 

all the identified products. The six additional products identified include norpinic acid 

(Al), (2,2-dimethyl-3-acety1)-cyclobuty 1 formate (A3), hydroxy pinonic acid (A7), A 1 ,  

Ai3,  and A14 (See Table A.3.6.). Figures A.3.5a and A.3.5b are the GC chromatograms 

for carbonyl and COOHIOH bearing products, respectively. Some of the products in the 

a-pinenel03 reaction are also observed in the P-pinenel03 system, apparently as a result 

of the common moieties shared by a-pinene and P-pinene. Unique products in the a -  

pinenel03 reaction include A3, and A9-All. Their CI spectra are displayed in Figure 

A.3.6. 

The tentative identifications of (2,2-dimethyl-3-acety1)-cyclobutyl formate (A3), 

norpinonaldehyde (A9), pinonaldehyde (Alo), and hydroxy pinonaldehydes (Al2) are 

based on their mass spectra and reasonable postulation of the gas-phase a-pinenel03 

reaction mechanism [Yu et ul., 19981. A possible structure for Al l  is suggested based on 

its mass spectrum. For AI and AI3, only their MW and some functionality information 

are given in Table A.3.6, as it is difficult to suggest possible candidates. 

A number of recent product studies of the a-pinenel03 reaction have also 

revealed some of the products observed in this work [Hoffnzunn et ul., 1998; Gl~rsius et 

al., 1998,s 999; Julzg and Kamens, 19981. Using HPLCI atmospheric pressure chemical 

ionization (APCI) mass spectrometry, Hq&~?unn et 01. [I9981 reported the observation of 
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pinic acid, norpinic acid, pinonic acid, and evidence for an adduct of pinic acid and 

norpinic acid. Such a binary diacid adduct, if existing, would likely dissociate when 

undergoing the heating treatment (70DC for 2.5 hrs) used for the silylation derivatization. 

Cl~isius et ul. [ 19991, using HPLC/ electrospray ionization and APCI mass spectrometry, 

reported observation of pinonic acid, pinic acid, norpinic acid, hydroxy pinonic acid, and 

pinalic-4-acid. Jang and Kamens [1998], using derivatization techniques and GC/MS 

detection similar to this work, tentatively identified norpinic acid, pinic acid, norpinonic 

acid, pinonic acid, 2.2-dimethyl-3-formyl-cyclobutyl-methano acid, norpinonaldehyde, 

pinonaldehyde, pinalic-3-acid, hydroxy pinonic acid, and A 4. Compounds A?, AI 1 and 

Al i  are reported here for the first time. 

A.3.3.4 Products from ozone oxidation of p-carene 

Identification of ozone oxidation products of A'-carene based on impinger 

samples has been described by Yu et ul. [1998]. Using the denudedfilter pack collection 

system, we have identified additional products in small yields. Figures A.3.7a and 

A.3.7b are the GC chromatograms of the derivatized products in a denuder sample. 

Table A.3.7 lists the structures of these products and the pseudo-molecular ions in their 

CI mass spectra, which are used to determine MWs. Due to lack of authentic standards, 

all the products are tentatively identified on the basis of their mass spectra and possible 

reaction mechanism. Many of the products in the A'-carene/o3 reaction are analogous in 

structure to those in the a-pinene/03 reaction. The CI mass spectra of the products that 

do not have analogous products in the a-pinene/O reaction are given in Figure A.3.8. 
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The CI mass spectra for C7 and C8 have been shown in the previous paper [Yu et al., 

19981. 

Additional products identified in the denuder sample include nor-caric acid (C I), 

pinic acid ((23). C4, CS, and Clo. For C4, CS, and Clo, we are not currently able to suggest 

possible chemical structures, so only their MW and the presence of functional group 

types are given in Table A.3.7. These three products do not have corresponding 

analogues in the a-pinenel& reaction. On the other hand, four products, A?, A, 1 ,  A,;, 

and A14, are found unique to the a-pinenelo; reaction. This is not unexpected as minor 

reaction pathways may take place at locations other than the C=C bond. 

The observation of pinic acid in the A3-car en el^^ reaction is not expected. 

Glasilts et al. [I9981 also observed trace amount of pinic acid in their A'-carene/~~ 

reaction systems. 

A.3.4. Product Yields 

Yields of the above-identified products have been determined or estimated. For 

products with standards, the calibration factor, extraction recovery, and collection 

efficiency have been determined using the standards. For products that do not have 

available authentic standards, their yields are estimated using the calibration factor, and 

the recovery and collection efficiency of surrogate compounds. The surrogate 

compounds are chosen to have the same type of functional groups and approximate 

carbon numbers as the products that the surrogates represent. Table A.3.8 lists the 

available standards and the products for which the standards serve as surrogates. For 

example, pinic acid serves as the surrogate for norpinic acid, 3-caric acid, nor-3-caric 

acid, sabinic acid, and norsabinic acid. Carbonyl bearing products (type 1 compounds) 
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are quantified using the m/: 18 1 ion, products bearing COOHIOH groups (type 2 

compounds) are quantified using the m/z 73 and 75 ions, and for those products that 

contain both carbonyl and COOHIOH groups (type 3 compounds), the sum of three ions 

at 1n/l 18 1,73 and 75 is used for their quantification. The selection of surrogates on the 

basis of functional group types is justified by the use of the above functional group 

specific ions for quantification. The estimated calibration factors have a -230% 

uncertainty. The other sources that contribute to the uncertainty associated with product 

yields include uncertainties for collection efficiency ( - ~ 4 % ) ~  extraction efficiency 

(-21 5%) and sample volume (25%). After considering all contributing sources, the 

uncertainty associated with product yields is estimated to be - 250%. 

Our calculation of gaseous product yields ignores wall loss processes, as we 

estimate that the loss of an oxygenated product resulting from wall loss processes is 

likely less than 15% at 300 min after its formation. Grosjean [I9851 measured the wall 

loss rates for five oxygenated species, biacetyl, pyruvic acid, o-cresol, benzaldehyde, and 

benzoic acid, in a Teflon chamber with a S/V of 3.8 m-'. The first three compounds had 

an unmeasurable wall loss rate while benzaldehyde and benzoic acid had wall loss rates 

of 3.4 x lo-' and 10.8 x lom4 min-', respectively. Hallquist et a].  [I9971 measured the wall 

loss rates for pinonaldehyde and caronaldehyde to be (2.4-4.2) x lo-' rnin-' in a borosilica 

glass reactor with a S N  of 14.3 m-'. If one assumes wall loss processes are similar on 

borosilica glass and Teflon surfaces, one could calculate that the two dicarbonyls have a 

wall loss rate of (3-5) x mine', comparable to that for benzoic acid (5 x min-I), in 

the present Teflon reactor with a SIV of 1.8 m-'. Using the wall loss rate for benzoic 

acid, which has the highest wall loss rate among all the tested oxygenated species, we 
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estimate that about 86% of an oxygenated product remains in the gas phase at 300 min 

after its formation, if we assume that wall loss is the only loss process. A more detailed 

study of gas-phase product yields needs experimentally determined wall loss rates for 

each product, which unfortunately can not be readily accomplished as many products 

lack commercially available standards. 

The organic aerosol mass generated in each experiment was obtained from the 

aerosol volume measured by SEMS/CNC and assuming a SOA density of 1 g cm-'. The 

SOA yield (Y) was then calculated by 

where M,, is the organic aerosol mass concentration (pg m-') produced for a given 

amount of hydrocarbon reacted, AHC (pg m'). The estimated uncertainty in the 

measured SOA yield is roughly + 12%, with SOA density uncertainty assumed to be 

~ 1 0 % .  

Table A.3.9 shows yields of individual products in gas and aerosol phases, as well 

as the total yields in two P-pinene/Oi experiments. The yield of nopinone in the gas- 

phase is determined from measurements made by an on-line GC/FD, as GC/FID 

provides more accurate and frequent measurements of nopinone. As an example, Figure 

A.3.9 shows the amount of nopinone formed against the amount of P-pinene reacted for 

the experiment carried out on June 1 1, 1998 (side B). The gas-phase yield of nopinone 
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was determined to be 17.0% and 15.8% in the 611 1198b and 6117198b experiments, 

respectively. Nopinone resides almost exclusively in the gas phase; trace amounts were 

detected in the filter samples. Previously reported nopinone yields vary from 22% 

[Grus~eun et nl. 19931 and 23 f 5% [Hukolu et al., 19941 to 40 f 2% [Hatakeyumtr et (I[., 

19891. The much higher nopinone yield in the study by Hntakeyuma et al. [I9891 is 

possibly due to the presence of other carbonyl products that were reported as nopinone, 

as their measurement of nopinone was based on FTIR absorption spectroscopy at the 

1740 cm-' -C=O stretch frequency. 

Only one study in the literature [Hull, 198 11 reported yields for individual 

products other than nopinone in the P-pinenel03 reaction. In this study, Hull [I9811 

estimated the total molar yields of three major products: nopinone ( 10%), 3-hydroxy- 

pina-ketone (28%), and 3-oxo-pina-ketone (7%). The total molar yield for 3-hydroxy- 

pina ketone in the present work is estimated to be 7.3% and 9.0% in the two experiments, 

lower than HullfL~ [198 11 result. Our yield for 3-oxo-pina-ketone is estimated to be 1.8% 

and 7.7%. In his study, Hull [I 98 11 used high mixing ratios for P-pinene (275 to 440 

ppmv) and ozone (179 to 270 ppmv), and no OH scavenger. The very different reaction 

conditions may account for the different product yields. 

The identified products account for 34% and 50% of the reacted P-pinene carbon 

mass in the 611 1198b and 6117198b experiments, respectively. Products with a yield 

exceeding >1% include nopinone (15.8-17.0%), hydroxy pina ketones (7.3-9.0%), 3-oxo- 

pina-ketone (1.8-7.7%), norpinonic acid and its isomers (5.9-16.5%), and pinic acid (2.6- 

3.7%). The identified products are estimated to account for 98% and 83% of the organic 

aerosol mass formed in the two P-pinenel03 experiments. Norpinonic acid and its 
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isomers, pinic acid, and hydroxy pina ketones are SOA components that contribute to 

more than 10% of the organic aerosol mass. 

The 6/17/98b experiment has a much higher percentage of reacted P-pinene 

accounted for by the identified products than the 6/ 1 1/98b experiment, as two major 

products, norpinonic acid and its isomers and 3-0x0-pina-ketone, were observed to have 

much higher gas-phase yields in the 6/17/98b experiment (Table A.3.9). The two P- 

pinene/03 experiments were conducted under different initial conditions, i.e., ozone was 

present in an excess amount in the 6/11/98b experiment whereas P-pinene is in excess in 

the 6/ 1 7/98b experiment (Table A. 3.1). The variation between the two experiments can 

not be accounted for by measurement error alone. It is possible the different initial 

reaction conditions are responsible for the variation, but a satisfactory explanation is not 

possible without further experiments designed to systematically examine the effects of 

different reaction conditions on product yields. 

The functional group distribution of SOA components from the P-pinene/03 

experiments is comparable to results obtained by Palen et crl. [I9921 using Fourier 

transform infrared spectrometry (FTIR). Pulen et al. [I9921 analyzed aerosol samples 

generated from an experiment with 8 ppmv Q and 14.5 ppmv P-pinene. Their results 

indicated that an average aerosol-phase product molecule contained one ketone group, 

0.7 alcohol groups, and 0.4 carboxylic groups. For the 6/ 17/98 P-pinene/03 experiment 

where excessive P-pinene was used, our GCMS analysis showed that the average aerosol 

molecule contained about one ketone group, 0.2 alcohol groups, and 0.8 carboxylic 

groups. 

A.3.4.2 Sabinene 
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Table A.3.10 shows yields of individual products in the gas and aerosol phases, as 

well as the total yields of both phases in the sabinene/03 experiment. ldentified products 

in both the gas and aerosol phases account for 57% of the reacted sabinene carbon mass. 

Products with a molar yield exceeding 1% include sabina ketone (47%), hydroxy sabina 

ketone (793, norsabinonic acid and its isomers (5%), pinic acid (l%), and sabinic acid 

( I  %). 

All the products added together account for 100% of the organic aerosol mass 

formed. The 100% yield is rather fortuitous, and it is associated with an uncertainty 

factor resulting from the approximations made for response factors and SOA density. 

Aerosol components that make up more than 10% of the aerosol mass are norsabinoic 

acid and its isomers, hydroxy sabina ketones, sabinic acid, sabina ketone, and pinic acid. 

The estimated yield of sabina ketone in this work is in agreement with that, 

5Ok9%, measured by Hakolcr et ul. [1994]. Glasius et al. [I9981 reported molar yields of 

sabinic acid and pinic acid in aerosol phase at 1.1 % and 1.4%. Our yields for the two 

dicarboxylic acids in the aerosol phase are 0.4% and 0.3%. As we will discuss in section 

A.3.5, the absolute aerosol yield of a particular product depends on the temperature and 

the organic aerosol mass concentration in each system in which SOA is generated. 

Without the knowledge of the temperature and organic aerosol mass concentration in the 

system of Glusius et al. [1998], it is difficult to make a meaningful comparison. 

Table A.3.11 shows yields of individual products in the gas and aerosol phases, as 

well as the total yields of both phases, in three a-pinene/03 experiments. Identified 

products in both the gas and aerosol phases account for 29-67% of the reacted a-pinene 



286 

carbon mass. Products with a molar yield exceeding 1% include pinonaldehyde (6- 19%). 

norpinonic acid and its isomers (4-13%). hydroxy pinonaldehydes (2-1 1 %), pinonic acid 

(2-8%), pinic acid (3-6%), hydroxy pinonic acid (1-4%), (2,2-dimethyl-3-acetyl)- 

cyclobutyl formate (1-4%), and norpinonaldehyde (1-3%). 

In the 61 17198a experiment, a much higher percentage of reacted a-pinene is 

accounted for by the identified products, as the four major products, pinonaldehyde, 

hydroxy pinonaldehydes, pinonic acid, and norpinonic acid and its isomers, are measured 

to have much higher yields than those in the experiments 6/9/98a and 619198b. While 

measurement enors may account for part of the variation, the different reaction 

conditions also likely contribute to the variation. The 6117198a experiment is different 

from the experiments 6/9/98a and 6/9/98b in two aspects: 1) excessive a-pinene was used 

in the 6117198a experiment while excessive ozone was present in the prior two 

experin~ents, and 2) the denudedfilter sample was started 53 rnin after the initiation of the 

a-pinene/03 in the 61 19198a experiment while in the other two experiments denuderlfilter 

samples were collected more than 290 rnin after ozone oxidation of a-pinene started. 

One explanation is that the polar nature of the products makes them susceptible to be lost 

to the reactor wall by adsorption, as demonstrated for pinonaldehyde and caronaldehyde 

by Hallguist et al. [I9971 in their experimental chamber. Actual product yields may be 

higher after accounting for wall loss, but wall loss does not account for all the yield 

variation. It is noted that for both the a-pinene/03 and the P-pinene/03 experiments, 

higher gas-phase yields were measured when excess monoterpene was present in the 

reaction systems. Presently we do not have a satisfactory explanation for this 

observation. 
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Four previous studies have reported yields of some of the above products. The 

gas-phase yield of pinonaldehyde was measured to be 14.3f2.496 [Alvcircrdo et al., 19981 

and 19f4% [Hclkola et al., 19941. In this work, the yield is estimated to be 5.7-18.196, in 

general agreement with the values reported in the two previous studies. Hull [ 198 1 1 

reported total yields in both phases for four major products: pinonic acid (27%), 

pinonaldehyde (15%), hydroxy pinonaldehyde (7%), and norpinonic acid (7%). We have 

measured or estimated the yields in both phases to be 2.1-7.9%, 6.5-19.0%, 1.8-1 1.2%, 

and 4.2-12.696, respectively. The yield of pinonic acid measured by Hull [I98 11 is much 

higher than our yield. In Hullt,r [I98 11 study, no OH scavenger was added, and the 

mixing ratios of a-pinene used ranged from 110 to 509 ppmv, which is more than 1000 

times higher than those in this work. It is difficult to make meaningful comparisons 

considering the very different reaction conditions investigated in the two studies. In the 

absence of OH scavengers, Hatakeyamu et al. 119891 measured aldehyde yield in the gas- 

phase to be 5 l f  6% by FTIR absorption spectroscopy. In this study we have identified 

ten products with aldehyde functional group(s), i.e., pinonaldehyde, norpinonaldehyde, 

hydroxy pinonaldehydes (Al2), norpinonic acid and isomers (As), A4, A8, A, 1, Alz, A13, 

and A14. The sum of yields for all these aldehyde products in the gas phase ranges from 

14-45%. If one considers that the absence of OH scavenger would increase yields of 

aldehyde products such as pinonaldehyde, yield data from this study may be consistent 

with the result obtained by Hatakeyrrma et al. [l989]. 

All the products added together account for 90-1 11% of the organic aerosol mass 

formed. The larger than 100% aerosol yield reflects the uncertainties associated with the 

estimated response factors for those products without available standards, and the 
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assumption that SOA has a density of 1g cm-'. At 306-308 K, major aerosol components 

that make up more than 10% of the organic aerosol mass include pinic acid, hydroxy 

pinonaldehydes, pinonic acid, norpinonic acid and its isomers, and hydroxy pinonic acid. 

Among all the monoterpenes, ozone oxidation of a-pinene is the most frequently 

studied reaction for its aerosol products. In previous studies, the molar yield of pinic acid 

and pinonic acid in the aerosol phase was measured to range from 0.2% to I%,  and 0.1- 

0.3%, respectively [Clzristoflersnz et al., 1 998; Glasius et ul., 19981. The temperature 

and organic aerosol mass in their systems were not reported. 

Table A.3.12 shows the gas and aerosol phase yields of the individual products, as 

well as the total yields of both phases in two A3-car en el^^ experiments. Identified 

products in both the gas and aerosol phases account for 24% of the reacted A3-carene 

carbon mass. Products with a molar yield exceeding 1% include caronaldehyde (8%), 3- 

caronic acid (4%), hydroxy caronaldehydes (3%), nor-3-caronic acid and isomers (2%). 

Cs (2%), 3-caric acid (2951, hydroxy-3-caronic acid ( 1 %), and pinic acid (1 %I). 

Caronaldehyde has been identified as a major product in a previous study with a yield of 

28% in the gas phase [Hakolcr et al., 19941. Here the gas-phase caronaldehyde yield is 

estimated to be 7.8%. 

All the products added together account for 61% of the organic aerosol mass 

formed. Major aerosol products that contribute to >lo% of organic aerosol mass are 3- 

caronic acid and 3-caric acid. Glasi~ls et al. [I9981 reported three aerosol products, 3- 
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caric acid. 3-caronic acid, and nor-3-caric acid, with aerosol phase yields of 0.5-5%, 0.1- 

0.796, and 0.08-0. I %, respectively. 

A.3.5 Gas-Particle Partitioning 

Many products identified in this study are detected in both gas and aerosol phases. 

Gas-particle partitioning for semi-volatile organic compounds has been successfully 

described by the equilibrium relation: 

where K,,,,,i is the gas-particle partitioning coefficient of species i, Ai is the gas phase 

concentration (pg me') of compound i, and Fi is the concentration of compound i (pg m-') 

in the aerosol phase [Odum et nl, 19961. A, and F, can be determined directly from 

denuder and filter samples, and AM,, is obtained from aerosol size distribution 

measurements. Table A.3.13 lists the gas-particle partitioning coefficients of aerosol 

components generated in the ozone oxidation of the four monoterpenes. 

Gas-particle partitioning coefficients of semi-volatile compounds depend on their 

vapor pressures [Pankow, 19871: 
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where R is the ideal gas constant (8.206 x lo-' m3 atm mol-' K'), T is temperature (K), 

MW,,,,, is the number-averaged molecular weight of the organic matter (om) phase (g mol- 

'), is the molar fraction scale activity coefficient of compound i in the om phase, and 

poL,, is the sub-cooled liquid vapor pressure (mrn Hg) of compound i. Sub-cooled liquid 

vapor pressures of the major products in the P-pinene/03 and a-pinene/03 systems have 

been estimated using a modification of the Clausius-Claperyron equation 

[Schwar~enbach et al., 19931 (Table A.3.14). Measured K,,ttl,i values versus the estimated 

poLTl are shown in Figure A.3.10. As Figure A.3.10 illustrates, the lower the vapor 

pressure, the higher the corresponding KO,,,<,. For example, hydroxy pinonic acid, as a 

result of the presence of three polar functional groups, has the lowest vapor pressure (- 

lo-' mm Hg ) among all identified products, and consequently exhibits the highest KO,,,,, 

value. On the other hand, the vapor pressure of pinonaldehyde and 3-0x0-pina ketone are 

higher than the -COOH bearing products, which corselates with the lowest K,,,,,, values 

(Table A.3.13). Nopinone has an even higher vapor pressure than 3-0x0-pina ketone and 

is, as a result, expected to reside mainly in the gas-phase. Only trace amounts of 

nopinone were detected in any filter samples, confirming the influence of vapor pressure 

on the partitioning between the gas and aerosol phases. Similar trends are observed for 

SOA products in the ozone oxidation of the other two rnonotespenes. 

The aerosol phase fraction (Ii of a semi-volatile product is given by 



29 1 

As equation (4) indicates, $i is controlled by the aerosol organic matter concentration 

AM, available for absorption and the gas-aerosol partitioning coefficient KO,,,, ,, which is a 

function of temperature and compound-dependent. Consequently, SOA chemical 

composition is a function of organic matter concentration and temperature. Figure 

A.3.11 illustrates the dependence of @, on M,,? using pinic acid as an example. The 

temperature dependence of SOA chemical composition was demonstrated by Jaizg and 

Krrnrerls [1998], who observed that for SOA generated in the a-pinene103 reaction, the 

more volatile SOA components reside in the particle phase to a much greater extent under 

cold conditions than warmer conditions. When reporting aerosol yield of an individual 

product and composition of SOA, it is necessary to include the organic aerosol mass 

concentration and associated temperature. 

The yield of an individual product i in the aerosol phase (Y,) can be expressed as: 

where a, is the individual mass-based stoichiometric coefficient of i. The overall SO14 

yield Y is then just the sum of the individual yields, 

Using equation (6), a two-product model has successfully described the overall SOA 

yield Y as a function of stoichiometric coefficient rr, and partitioning coefficients K,,,,,,i of 
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two hypothetical products, and AM,, the total organic aerosol mass concentration [Odum 

et ul., 1996, 1997ab; Hoffrnan et a1. , 1997; Griffin et al., 19991. 

One of the major assumptions underlying the derivation of equations ( 5 )  and (6) is 

that the total amount of a product is proportional to the amount of the parent hydrocarboll 

reacted. If this assumption holds, the SOA yield at any time Y(t), should be described by 

equation (6). Figure A.3.12a shows the Y(t) values as a function of organic aerosol mass 

for the 6/09/98a and 6109198b a-pinenelo? experiments. The experimentally determined 

time-dependent yield curves for both experiments can be closely represented by using 

equation (6) and assuming two hypothetical products with a, = 0.262, K,,,,, 1 = 0.030, = 

0.062, and K<jrli,2 = 0.0028 (Figure A.3.12a). On the other hand, a yield curve can also be 

constructed for each experiment by using equation (6) and the experimentally determined 

a, and KO,,,, , values for the individual aerosol-phase products. The resulting curves fit 

well the experimental SOA yield curves (Figure A.3.12a). Since the denuderlfilter 

samples were taken at the end of the two experiments (Table A.3. I), the a; and KO,,, , 

values obtained from these samples represent the SOA composition and product 

distribution between gas and aerosol phases at the end of the experiments. The fact that 

they also predict the SOA yields during earlier stages of the experiments indicates that in 

the a-pinene/03 system, the SOA composition and product distribution between gas and 

particle phase remains relatively unchanged over time. This is in agreement with the 

time profiles of a-pinene mixing ratio and organic aerosol mass concentration dM,, 

(Figure A.3.12b). As Figure A.3.12b shows, after most of the a-pinene is oxidized, the 

aerosol mass remains almost constant, which indicates that the SOA mass arises from 

either primary products or secondary products formed relatively rapidly. 
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Conversely, if the total amount of a product that is generated in the reaction is not 

proportional to the amount of the parent hydrocarbon reacted throughout an experiment, 

e.g., the relative chemical composition changes over the course of the experiment, one set 

of a, and K,,,,,, , values will not describe the SOA yields over the reaction time. The time- 

dependent SOA yield in the sabinene/03 reaction appears to be such an example (Figure 

A.3.13a). As shown in Figure A.3.13a, a two-product model, using equation (6) and 

assuming two hypothetical products with a, = 0.04 1, K, ,,,,, I = 0.154, CQ = 0.5 1, and K( ,,,,, 2 

= 0.0005, describes the time-dependent aerosol yield reasonably well up to AM,, - I5 

pg/n13? which corresponds to a reaction time of - 100 min and 99% sabinene 

consumption. The Y(1) curve computed using equation (6) and the a,, and K,,,,, , values 

for multiple actual products fits well the measured aerosol yields at the later stage, but 

represents poorly the early-stage yields. The denuder/aerosol sample was taken 232 

minutes after the reaction started, therefore the measured a,, and &,,,, , values of 

individual products reflect the SOA composition in the later stage of the experiment. The 

above analysis suggests that slowly forming secondary or tertiary products play a role in 

the aerosol formation in the sabinene/ O3 reaction. The contribution of secondary 

products is further evidenced by the time profiles of sabinene mixing ratio and organic 

aerosol mass concentration AM,,. As shown in Figure A.3.13b, at - 100 min, while nearly 

all the sabinene is reacted, the organic aerosol mass continues to grow. 

For reaction systems such as a-pinene/03 reaction, one set of a, and K,,,,, , values 
\ 

is sufficient to describe the kinetics of aerosol formation. On the other hand, for reaction 

systems such as the sabinene/03 reaction, more than one set of a, and K,,,,,, , values are 

necessary to describe the evolution of aerosol mass. 



A.3.6. Mechanisms of product formation 

Based on known reaction mechanisms for alkene-Oi reactions, it is possible to 

propose reaction schemes to account for most of the observed products. 

A.3.6.1 $-pinene / O3 reaction 

Figure A.3.14 shows reaction sequences leading to the products in the P- 

pinene/03 reaction. The reaction of P-pinene with oi proceeds by initial O3 addition to 

the C=C bond to yield an energy-rich ozonide, which rapidly decomposes to form 

nopinone and a C9 biradical. Many of the observed products are formed from the 

subsequent reactions of the C9 biradical. The energy-rich C9 biradical undergoes 

isomerization to give rise to two enehydroperoxides (ENI and EN2) with excess energies. 

This is the so-called hydroperoxide channel. The formation of hydroxy pina ketones (P4) 

are a result of stabilization of ENI and EN? through collision [Niki et al., 1987; Martine; 

and Hrrron, 1987, 1988; Atkirzsorz, 19971. One additional pathway for EN2 is to produce 

3-0x0-pina ketone (PI I )  by loss of a H2 molecule. This pathway is not operative for ENI 

because the OH group is attached to a tertiary C, and no H-atom is available for loss of a 

H2 molecule. It is postulated that the energized 3-hydroxy pina ketone could undergo 

unimolecular dissociation to form an acetyl-like radical II and Iz. For the acetyl radical, it 

has been established that its subsequent reactions with O2 and H02  radical lead to the 

formation of acetic acid [Niki et nl., 1985; Moortgat et ul., 19891. 



Similarly, the reaction of I] and 1, with 0 2  and subsequently with H02  would lead to P6. 

1, can also lose a molecule of CO to foim 13, which reacts with 02, and a peroxy radical 

RO, to form IJ. It follows that 4 loses one H-atom to an 0 2  molecule to produce Plo. 

The formation of P5, norpinic acid (PI), and pinic acid (Pz) is presupposed to result from 

oxidation of their corresponding aldehydes, Plo, Ps and P6, respectively, although the 

explicit oxidation mechanism is unclear. 

The formation pathway for a possible candidate of P8 is proposed to arise from Is, 

which can he formed from isomerization of 11. It is difficult to construct plausible 

formation pathways for pinonic acid and hydroxy pinonic acid. 

A,3.6,2 Sabinene / O3 reaction 

Figure A.3.15 depicts reaction pathways that account for most of the products 

observed from the sabinene/Oi reaction. The many pairs of analogous products in the 

sabinene/Oi and P-pinene/03 reactions are easily explained by the same reaction 

pathways derived from O3 attack of the external C=C bond. 

The observation of pinic acid in the sabinene/03 reaction is difficult to explain in 

terms of plausible gas-phase reaction mechanisms. It is not clear whether aerosol surface 

plays a role in the formation of pinic acid via heterogeneous reactions. There is evidence 

that isomerization of monoterpenes can take place on acidic surfaces [Pio and Valrnte, 

19981. In addition, Coeur et ~l l .  [I9971 observed that - 70% of sabinene isornerizes to 

other monoterpenes of lower ring tension when it is sampled onto Tenax TA or Carboxen 
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sorbents. Sabinic acid may undergo similar isomerization to pinic acid on particle 

surfaces. 

As the chemical structures of the two unique products, S8 and SI?, in the 

sabineneIO3 reaction remain uncertain, we do not attempt to propose formation 

mechanisms for them. 

A.3.6.3 a-Pinene / O3 and ~'~carene  / 0' 

The formation mechanisms of products from ozone oxidation of a-pinene have 

been described in an earlier paper [Yu et al., 19981. Here we only discuss the formation 

pathways for the newly identified products (Figure A.3.16). The formation of A3 arises 

from isomerization of the Criegee biradical, known as the ester channel [Atkitzso~z, 19971. 

Hydroxy pinonic acid is postulated to result from its aldehyde precursor, 10-hydroxy- 

pinonaldehyde (Aj2). We do not yet attempt to propose formation mechanism for A, 

A13 and AI4, as their chemical structures are not yet known. 

The formation pathways for most of the products in the A'-carene/03 reaction 

(Figure A.3.17) are similar to those in the a-pinenelOi reaction, as a result of the internal 

C=C bond common to both reactants. Those products unique to the ~ ~ - c a r e n e / 0 ~  

reaction do not have obvious routes of formation. The presence of pinic acid in the A ~ -  

carene/03 reaction system may derive from similar routes to those responsible for the 

formation of pinic acid in the sabinenel O3 reaction system. 

A.3.7. Summary and Conclusions 

This study has identified a substantial fraction of the particulate products from 

ozone oxidation of each of the four monoterpenes: a-pinene, P-pinene. A'-carene, and 



sabinene. b-Pinene and sabinene are structurally analogous in that both are bicyclic and 

have an external unsaturated bond where ozone oxidation takes place. a-Pinene and A'- 

carene also share one common structural moiety, an internal unsaturated bond. A number 

of analogous product pairs, including major products, have been identified for each pair 

of monoterpenes. These products are consistent with the established understanding of the 

mechanism of ozone-alkene reactions. In addition to expected products, a number of 

products having minor yields that are unique to each monoterpene have also been 

detected. One interesting finding that is yet to be explained is the presence of pinic acid 

in both the sabinene/03 and ~ ' - c a r e n e / ~ ~  reactions. 

Yields of individual products in both the gas and aerosol phases have been 

determined or estimated, thus providing a direct measure of the gas-particle partitioning 

of each product. The identified products account for a significant fraction of the 

secondary organic aerosol for each of the parent hydrocarbons. Identified products, in 

both gas and aerosol phases, are estimated to account for about 34-50%, 57%,29-67%, 

and 24% of the total reacted carbon mass for P-pinene, sabinene, a-pinene, and a3- 

carene, respectively. Whereas these percentages exceed those of previous studies, a 

significant fraction of the monoterpenes reacted still remains unaccounted for. As the 

yields of many products are estimated using the response factor of surrogates, an 

improved mass balance awaits authentic standards or new analytical techniques that do 

not require authentic standards. Based on experimentally measured gas-particle 

partitioning coefficients of individual oxidation products, it is possible to evaluate the 

extent to which overall aerosol yields observed in smog chamber experiments can be 
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represented by the stoichiometric yields and gas-particle partitioning of the individual 

products . 

Based on the nature and yield of various aerosol components, products such as 

pinic acid, pinonic acid, norpinonic acid, hydroxy pinonic acid, and hydroxy 

pinonaldehydes can act as molecular markers for secondary organic aerosol derived from 

biogenic sources. 
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Table A.3.1. Initial conditions and results of ozone-terpene reactions. 

Table A.3.2. Denuder and filter collection efficiencies of selected products. 

Compound 

Collection efficienc y (5%) 

denuder filter 

pinic acid 98.7 + 0.2 0.85 

2,2-dimethyl-3-formyl-cyclobutyl 
97.1 + 1.9 NA' 

methanoic acid 

norpinonic acid 94.0 -t 4.0 NA 

pinonic acid 97.8 + 1.3 0.59 

norpinonaldehyde 95.8 + 1.0 0.89 

pinonaldehyde 97.7 -t- 0.5 0.95 

Not available. 



Table A.3.3. Relative recoveries of select multifunctional compounds vs. recovery 
standard. 

Compound 
Denuder samples Filter samples 

~ = 6 ^  ~ = 5  'I' 

pinic acid 0.6620.04 0.80~0.07 

pinonic acid 0.67~0.19 0 .74~0 .  14 

7-0x0-octanoic acid 0.66-tO. 12 0.83~0.07 

heptanedioic acid 0.69~0.05 0 .77~0 .  17 

octanedioic acid 0.59~0.05 0.82~0.14 

* Number of experiments conducted. 
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Table A.3.4. Products from ozone oxidation of P-pinene. 

M+73: 389 M+1: 317 
M-15: 301 M-89: 227 

M+73:403 M+l: 331 
M-15: 315 M-89: 241 

deri. MW=330 

M+181: 514 M+29: 362 
M+1: 334 M-181: 152 

hydroxy pina ketone 
M-15: 406 M-89: 332 

cyclobutyl-methanoic acid M-15:408 M-89:334 
M-117: 306 M-181: 242 

no~.pinonic acid and its Mt-73: 510 M+l:438 

M-117: 320 M-181: 256 

deri. MW=437 

-89: 362 M- 18 1 : 270 
-197: 254 M-238: 213 

oxy norpinonic acids 
-15: 5 10 M-89: 436 
-181: 344 M-197: 328 



Table A.3.4. (continued) Products from ozone oxidation of P-pinene. 

Pseudo-molecular ions 
Structure I in (11 mass snectrum 

M+l: 530 M-181: 
2.2-dimethyl-cyclobutane- 
1,3-dicarboxaldehyde M- 197: 333 M-224: 

Mi-29: 57 1 M-I- 1 : 543 

deri. denotes derivative. 
"' identification confirmed with an authentic standard. 
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Table A.3 -5. Products from ozone oxidation of sabinene. 

M- 15: 301 M-89: 227 

M-15: 315 M-89: 241 

Mr-"1: 403 M+1: 331 
M-15: 315 M-89: 241 

M+181: 514 M+29: 362 
M+l: 334 M-181: 152 

deri. MW=333 

-(2-isopropy1)-2-fomyl- Rtl-1-73: 496 M+1: 424 
M- 15: 408 M-89: 334 
M-181: 242 M-197: 226 

ydroxy sabina ketones 
M1-181: 602 M+1: 422 
M-15: 406 M-89: 332 
Nl-19'7: 224 M-212: 210 

norsabinonic acid and its 
M+197: 634 Nft-181: 618 
M1-73: 510 M+l: 438 
M- 1 5: 422 M-89: 348 

deri. MW=437 



Table A.3.5. (continued) Products from ozone oxidation of sabinene. 

M+89: 584 M+l : 496 
M+29: 524 M-15: 480 
M-89: 406 M-147: 348 

deri. MW=495 

s9: C9HI4o4 
hydroxy norsabinonic acid 
MW= 186 
deri. MW=525 

MW=200 
deri. MW=539 

SI1:  C9HI2o2 
3-0x0-sabina ketone 
MW=152 
deri. MW=542 

S 12: C6H803 e.g. EI spectrum 

MW=128 M: 590 M-15: 575 

deri. MW=590 M-181: 409 M-197: 393 
CHpOH 

i I 
- I 

"' identification confirmed with an authentic standard. 
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Table A.3.6. Products from ozone oxidation of a-pinene. 

,2-dimethyl-3-forrnyl- 
yclobutyl-methanoic 

deri. MW=646 

deri. MW=588 

identification confirmed with an authentic standard. 



31 1 

Table A.3.7. Products from ozone oxidation of A?-carene. 

M+l: 317 M-15: 301 
M-89: 227 M- 1 17: 199 

M+29: 359 M+l: 33 3 
M-15: 315 M-89: 241 

one carbonyl and two 
OHICOOH groups 

+1:424 M-89:334 

M+'73: 5 10 M+1: 437 
-89: 348 M- 18 1 : 256 

deri. MW=437 

M+73: 524 M+l : 452 
M-89: 362 M- 18 1 : 270 
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Table A.3.7. (continued) Products from ozone oxidation of A'-carene. 

Product 

C9: C I OH 1 6 0 3  

hydroxy 3-caronic acid 
MW= 184 
deri. MW=539 

I 0: 

MW=128 
deri. MW=5 18 

C1 C9Hl4O2 
norcaronalde hyde 
MW= 154 
deri. MW=544 

C12: c10H1602 
caronaldehyde 
MW=168 
deri. MW=558 

C13: C10H1603 
hydroxy 3-caronic 
aldehydes 
MW= 1 84 
deri. MW=646 
identification confirmed I 

Structure 

two carbonyl groups, no 
OH/COOH groups 

ith an authentic standard. 

Pseudo-molecular ions in C 
mass spectrum 
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Table A.3.8. Products and their surrogates for quantification. 



Table A.3.9. Gaseous and particulate product yields in the P-pinene/03 reaction 
(6/11/98b). 

Product 

Ipinonic acid 0.10 0.52 1 0.14 

norpinonic acid 
and its isomer 
hydroxy-pina- 
ketones 1 6.6 

. ---.--- 

2.2-dimethyl- 
cyclobutane- 1,3- 0.35 ND 0.35 r- ND 
dicarboxaldehvde 

17.0 trace 

Aerosol yield measured by SEMS and CNC 4.5 



Table A.3.9. (continued) Gaseous and particulate product yields in the P-pinene/O3 
reaction (6/ 1 7/98b). 

Product 
Molar yield (%) Aerosol yield by1 

Aerosol Total mass ($1 1 

Aerosol yield measured by SEMS and CNC 8.3 

/noxnic acid 0.17 7 0.27 
I "-- 

0.12 -) 



Table A.3.10. Gaseous and particulate product yields in the sabinene/03 reaction. 

Product I Molar yield (96) 

1 Gas 1 Aerosol 1 Total 

Aerosol yield b j  

mass (%) 

isabinic acid 

Forsabinic acid 0.18 0.07 1 0 . 2 5 '  0.09 

norsabiizonic acid 
and its isomers 

1 3.6 

3-0x0-sabina- 
ketone 

[ZG molar yield 60.5 2.9 63.4 '7 

Aerosol yield measured by SEMS and CNC 3.5 
C- I 

See ~ a b F ~ . 3 . 5  for possible candidate structures. 



Table A.3.11. Gaseous and particulate product yields in the cc-pinene/03 reaction. 

Aerosol yield measured by SEMS and C N ~  1 7.6 1 8.6 I 1 5.9 

See Table A.3.6 for possible candidate structures. 



Table A.3.12. Gaseous and particulate product yields in the ~ ' - c a r e n e l ~ ~  reaction. 

1 Molar yield (5%) 7 Aerosol yield 

Gas 1 Aerosol Total 1 by mass (%I) 

Ipinic acid 

3-caric acid 

/nor-3-caric acid 1 0.07 / ND / 0.07 ND 

hydrox y 
~~aronaldeh~des 3 .O 0.19 

3 - 7 1  0.25 

(3-caronic acid 

nor-3-caronic acid 
and isomers 

Inorcaronaldehyde trace trace trace I trace rxY 3-caronic 0.47 0.69 1 
acid 

0.3 1 0.39 0.70 

carbon-based total 24.4 

Aerosol yield measured by SEMS and CNC 13.0 

'See Table A.3.7 for possible candidate structures. 
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Table A.3.13. Gas-particle partitioning coefficients (m' pg-') of individual products at 

306-308 K. 



Table A.3.14. Sub-cooled liquid vapor pressure estimates. 

Vapor pressure estimates at 306Kb 
Compound Tb 

mm Hg PPmv 

hydroxy pinonic acid 

pinic acid 

hydrox y pinonaldehydes 

pinonic acid 

norpinonic acid & isomers 

hydroxy pina ketone 

pinonal dehyde 

3-0x0-pina ketone 

nopinone 

" Tb, boiling point at 1 atm if decomposition would not occur, estimated using Meissner's 
method [Rechsteiner, 19901. TI, is needed to estimate vapor pressure. Meissner's 
method underestimates the Th for each of C5-CI0 n-alkanoic acids by -6.5%, therefore 
a correction formula is obtained by a linear regression (r2=0.994) for Cs-Clo n-alkanoic 
acids, and applied to the compounds of unknown Tb. This correction is also justified 
for carbonyl-containing compounds. For example, Meissner's method estimates that 
the T ,  for nopinone is 453K before correction and 485K after correction, which agrees 
well with the experimental value 482K. 

b Sub-cooled liquid vapor pressures are estimated using a modification of the Clausius- 
Claperyron equation [Schwarzen bach et al., 1 9931. 
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Figure A.3.1. Chromatogram of products from P-pinene/03 reaction; see Table A.3.4 for 
peak identification. Top: Products containing carbonyl groups. Bottom: Products 
containing OH/COOH groups. 
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Figure A.3.2. Methane C1 mass spectra for the derivatives of products from ozone 
oxidation of P-pinene. 
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Figure A.3.2. (continued) Methane C1 mass spectra for the derivatives of products from 
ozone oxidation of P-pinene. 
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Figure A.3.2. (continued) Methane CI mass spectra for the derivatives of products from 
ozone oxidation of P-pinene. 



Re1 
ati 
ve 
Int 
en 
sit 
Y 

P,: Pinonic acid 
MW=184 T Deri. MW=451 

P, Hydroxy norpinonic acid 

Deri. MW=525 

Figure A.3.2. (continued) Methane CI mass spectra for the derivatives of products from 
ozone oxidation of P-pinene. 
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Figure A.3.2. (continued) Methane CI mass spectra for the derivatives of products from 
ozone oxidation of P-pinene. 
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Figure A.3.2. (continued) Methane C1 mass spectra for the derivatives of products from 
ozone oxidation of P-pinene. 
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Figure A.3.3. Chromatogram of products from sabinene/03 reaction; see Table A.3.5 for 
peak identification. Top: Products containing carbonyl groups. Bottom: Products 
containing OHiCOOH groups. (*: present in blank samples). 



Figure A.3.4. Mass spectra for the derivatives of two products (S8 and Slz) from ozone 
oxidation of sabinene. 
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Figure A.3.5. Chromatogram of products from a-pinene/03 reaction, see Table A.3.6 for 
peak identification. Top: Products containing carbonyl groups. Bottom: Products 
containing OHiCOOH groups. 
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Figure A.3.6. Mass spectra for the derivatives of products from ozone oxidation of cc- 
pinene. 
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Figure A.3.6. (continued) Mass spectra for the derivatives of products from ozone 
oxidation of a-pinene. 
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Figure A.3.6. (continued) Mass spectra for the derivatives of products from ozone 
oxidation of a-pinene. 
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Figure A.3.6. (continued) Mass spectra for the derivatives of products from ozone 
oxidation of a-pinene. 
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Figure A.3.7. Chromatogram of products from ~ ~ - c a r e n e l O ~  reaction; see Table A.3.7 for 
peak identification. Top: Products containing carbonyl groups. Bottom: Products 
containing OHICOOH groups. 
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Figure A.3.8. Methane CI mass spectra for the derivatives of pmducts from ozone 
oxidation of A'-carene. 



Figure A.3.8. (continued) Methane CI mass spectra for the derivatives of products from 
ozone oxidation of A'-carene. 
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Figure A.3.9. Amount of nopinone formed versus the amount of P-pinene reacted. 

Figure A.3.10. Measured log (K,,,,,+i) versus estimated log poL for the major products in the 
P-pinene/Oi and a-pinene/03 systems. 
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Experimental values 

Figure A.3.11. Fraction of pinic acid in aerosol phase as a function of organic aerosol 
mass concentration. (The curve is generated using an average KO,, value for pinic 
acid determined in all a-pinene/03 and P-pinene/03 experiments.) 
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Figure A.3.12. Top: Time-dependent secondary organic aerosol yields as a function of 
organic aerosol mass for two a-pineiie/03 experiments. Bottom: a-Pinene mixing 
ratio and organic aerosol mass concentration as a function of time in the 619198b 
experiment. 
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Figure A.3.13. Top: Time-dependent secondary organic aerosol yields as a function of 
organic aerosol mass concentration for the sabinene/03 reaction. Bottom: Sabinene 
mixing ratio and organic aerosol mass concentration as a function of time. 
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Figure A.3.14. Reaction mechanism of 03/P-pinene reaction. (Ox denotes oxidant) 
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Figure A.3.15. Reaction mechanism of 03/sabinene reaction. (Ox denotes oxidant) 
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Figure A.3.16. Formation mechanism of A3 and A7 in the 03/cc-pinene reaction. 



Figure A.3.17. Reaction mechanism of ~ ~ / ~ ' - c a r e n e  reaction. (Ox denotes oxidant) 


